

ENGINEERING

LABORATORY

PHASE II ENVIRONMENTAL SITE ASSESSMENT

6333 HURONTARIO STREET, MISSISSAUGA, ON

400 Esna Park Drive, Unit 15 Markham, ON L3R 3K2

Tel: (905) 475-7755 Fax: (905) 475-7718

www.fisherenvironmental.com

Project No. FE-P 19-9580

August 13, 2019

Issued to:	Dymon Group of Companies
Contact:	Mr. Glen Luckman 2-1830 Walkley Road, Ottawa, ON K1H 8K3
Project Name:	Phase II Environmental Site Assessment
Project Address:	6333 Hurontario Street, Mississauga, ON
Project Number:	FE-P 19-9580
Issued on:	August 13, 2019
Project Manager: (Primary Contact)	
	Sean Fisher, M.Sc. Eng Project Manager
	yvonne@fisherenvironmental.com
Reviewer:	PROFESSIONAL ENGINEER PROFESSIONAL ENGINEER

David Fisher, B.A.Sc., C. Chem., P. Eng.

President

dave@fisherenvironmental.com

TABLE OF CONTENTS

8	7.2 7.2 7.2 7.2 7.3	.2.6. Polycyclic Aromatic Hydrocarbons .2.7. pH	13 (PAH)
	7.2 7.2 7.2 7.2	.2.6. Polycyclic Aromatic Hydrocarbon2.7. pH	13 (PAH)
	7.2 7.2 7.2	.2.6. Polycyclic Aromatic Hydrocarbon2.7. pH	13 (PAH)
	7.2 7.2	.2.6. Polycyclic Aromatic Hydrocarbon	s (PAH)13
	7.2	.2.6. Polycyclic Aromatic Hydrocarbon	s (PAH)13
	1.2	.2.o. Volatilo Organio Compoundo (VO	• ,
	7.	2.5 Volatile Organic Compounds (VO	C)13
	7.2	.2.4. Petroleum Hydrocarbons (PHC)	13
	7.2		
	7.2	.2.2. Soil and Groundwater Quality	1
	7.2	.2.1. Soil and Groundwater Standards	10
	7.2.		10
	7.1.	GENERAL	10
7	. LA	ABORATORY PROGRAM	10
	6.8.	SELECTION OF ANALYTICAL SAMPLES AN	ID PARAMETERS
	6.7.		ER QUALITY 8
	6.6.	HEAD SPACE COMBUSTIBLE VAPOURS	
	6.5.	SITE GEOLOGY	8
	6.4.	WELL RECORD FILED WITH THE MECP	6
	6.3.	MONITORING WELLS PROGRAM	6
	6.2.	BOREHOLES, SOIL AND GROUNDWATER	SAMPLING4
	6.1.	SITE PREPARATION	4
6	. FIE	IELD PROGRAM	4
5	. sc	COPE OF WORK	3
4			3
3	. PR	ROPERTY DESCRIPTION	3
	. IN	NTRODUCTION	3
2		XECUTIVE SUMMARY	

10.	QUALIFICATIONS OF ASSESSOR	19
11.	REFERENCES	20
APPI	ENDIX A – SITE PLAN	A
APPI	ENDIX B – LOG OF BOREHOLES	В
ΔΡΡΙ	ENDIX C - CERTIFICATES OF ANALYSIS	C

GLOSSARY OF ACRONYMS

APEC: Area of Potential Environmental Concern

asl: Above Sea Level

AST: Aboveground Storage Tank
BOD: Biological Oxygen Demand

bgs: Below Ground Surface

BTEX: Benzene, Toluene, Ethylbenzene and Xylenes

COD: Chemical Oxygen Demand

CPC: Contaminants of Potential Concern
CSA: Canadian Standards Association

EC: Electrical Conductivity

ESA: Environmental Site Assessment

FIP: Fire Insurance Plan

MECP: Ministry of the Environment, Conservation and Parks

MOE: Ministry of the Environment

OHSA: Occupational Health and Safety Act

PAH: Polycyclic Aromatic (Polyaromatic) Hydrocarbons

PCA: Potentially Contaminating Activity

PCB: Polychlorinated Biphenyls

pH: potential of Hydrogen

PHC (F1-F4): Petroleum Hydrocarbons (Fractions 1 to 4)

ppb: Parts per Billion ppm: Parts per Million

RSC: Record of Site Condition

SAR: Sodium Adsorption Ratio

UST: Underground Storage Tank

VOC: Volatile Organic Compounds

1. EXECUTIVE SUMMARY

Fisher Environmental Ltd. (Fisher) was commissioned by Dymon Group of Companies to carry out a Phase II Environmental Site Assessment (ESA) of the property located at 6333 Hurontario Street, Mississauga, ON, hereinafter referred to as the "Site". The field works associated with the subsurface soil and groundwater investigation was carried out on June 26 and June 27, 2019.

The Site is located on the northeast side of Hurontario Street, south of World Drive. The Site is bounded by commercial/ industrial buildings to the north, east and south, and Hurontario Street to the west. For purposes of discussion, Hurontario Street is referenced to run north-south.

The northeastern portion of the Site is occupied by a commercial building. The south portion of the Site is gravel covered parking area. The remaining portions of the Site are grass-covered. At the time of the investigation the Site was generally utilized for truck parking and service / repair.

In the current investigation, five (5) boreholes were advanced in the investigated property to depths of up to 6.10 m bgs, and in three (3) of them, monitoring wells were installed to facilitate groundwater level monitoring and sampling.

On the basis of the boreholes completed, the stratigraphy at the investigated areas of the Site generally consists of a layer of fill, extending up to 1.52 m bgs. The fill generally consisted of dark brown and greyish brown silt to sandy silt, trace gravel, with some hydrocarbon staining. Underlying the fill is brown and greyish brown sandy silt till to grey sand and silt, trace gravel.

A total of seven (7) soil and four (4) groundwater samples were submitted to the laboratory for Metals, PHC(F1-F4), VOC, PAH, pH, EC and/or SAR analysis.

For the purpose of this Phase II ESA, the appropriate standards were identified as: Table 3 (Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition – Industrial/Commercial/Community Property Use for soil samples and All Types of Property Use for groundwater samples, coarse textured soil) as contained in the MOE Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, hereinafter referred to as the "MOE Standards".

Findings - Soil

The results of chemical analysis for four (4) of the seven (7) submitted soil samples were found to exceed the applicable MOE Standards. The following exceedances were found:

BH1 (0.00-0.60 m bgs) - Lab ID #19-2789-1

Dibenzo [a,h] anthracene: 0.12 ppm vs. 0.1 ppm.

BH3 (0.75-1.20 m bgs) - Lab ID #19-2789-5

Benzo [a] pyrene: 0.4 ppm vs. 0.3 ppm;

Dibenzo [a,h] anthracene: 0.13 ppm vs. 0.1 ppm.

BH5 (0.15-0.75 m bgs) - Lab ID #19-2789-7

Dibenzo [a,h] anthracene: 0.14 ppm vs. 0.1 ppm.

> BH2 (0.75-1.20 m bgs) - Lab ID #19-2789-3 – EC: 1.51 vs. 1.4

Findings - Groundwater

The results of chemical analysis for all submitted groundwater samples were found to be in compliance with the applicable MOE standards.

Recommendations

Based on the results of the current investigation, it is expected that the historical activities at the Site have impacted the property's near surface soil condition. The identified impacts included polynuclear aromatic hydrocarbons (PAHs) and electrical conductivity (EC). The PAH and EC impacts were generally limited to the eastern half of the Site and contained to near surface soils / fill that exhibited signs of visible oil staining and some heavy petroleum hydrocarbon impacts. In association with proposed development of the Site it would be recommended that impacted soil / fill, preliminarily estimated in the order of 2,000m³ or 3,600 tonnes, be removed and disposed of off Site at a licensed MECP soil disposal facility.

2. INTRODUCTION

Fisher Environmental Ltd. (Fisher) was commissioned by Dymon Group of Companies to carry out a Phase II Environmental Site Assessment (ESA) of the property located at 6333 Hurontario Street, Mississauga, ON, hereinafter referred to as the "Site". The subsurface soil and groundwater investigation were carried out on June 26, and June 27, 2019.

3. PROPERTY DESCRIPTION

The Site is located on the northeast side of Hurontario Street, south of World Drive. The Site is bounded by commercial/ industrial buildings to the north, east and south, and Hurontario Street to the west. For purposes of discussion, Hurontario Street is referenced to run north-south.

The northeastern portion of the Site is occupied by a commercial building. The south portion of the Site is gravel covered parking area. The remaining portions of the Site is grass-covered.

4. EXISTING REPORTS REVIEW

No existing reports were available for review.

5. SCOPE OF WORK

The current Phase II ESA was conducted in accordance with the CAN/CSA-Z769-00 standards, as published in March 2000 and reaffirmed in 2018, by the CSA Group.

A Phase II ESA involves sampling and testing of materials considered, usually by the outcome of a Phase I ESA or other investigation, to be possible instances of environmental contamination. The project, as carried out, fulfills the scope of a "Reconnaissance" type investigation in which conditions are previously unknown, and the aim is to establish whether any environmental contamination is present. Normal environmental assessment protocol reserves a detailed investigation for a subsequent phase if the reconnaissance survey indicates a requirement for further contaminant delineation.

The scope of this work generally consisted of the following:

• **Field Program** - Clearance of underground utilities and advancement of five (5) boreholes to depths of up to 6.10 m or resistance, and installation of three (3) groundwater monitoring wells.

- Laboratory Testing Program Recovery and analysis of selected soil and groundwater samples for Metals, PHC (F1-F4), VOC, PAH, EC, SAR and/or pH.
- Data Evaluation Comparison of results of chemical analyses with the applicable MOE (currently MECP) Standards.
- Reporting Provision of final engineering report detailing findings of performed works, and any further recommendations.

As conducted, the present investigation may lack information or analytical work that are specific requirements for filing a Record of Site Condition (RSC) under Part XV.1 of the EPA and Amended O. Reg. 153/04, therefore, if a RSC is necessary, the property owner or its agent should undertake complementary investigations required under the RSC filing process.

6. FIELD PROGRAM

The subsurface soil and groundwater investigation (Phase II ESA) was carried out on June 26, and June 27, 2019. The field work was conducted by Rajinder Chahal, P.Eng. and Sean Fisher, M.Sc. Eng. of Fisher Environmental Ltd. whom directed drilling and sampling operations, and assured proper chain of custody procedures for the recovered soil and groundwater samples.

Five (5) boreholes were advanced in the investigated property to depths of up to 6.10 m bgs, and in three (3) of them, monitoring wells were installed to facilitate groundwater level monitoring and sampling.

6.1. Site Preparation

Site preparation included the location of public and private underground services by referring to the respective utilities: Mississauga Hydro, Enbridge Gas, Bell Canada, Public Works, water, sewer and light cables to avoid potential disruptions to the utilities during the drilling. Soil drilling was conducted following receipt of clearance from all utilities for the given borehole locations.

6.2. Boreholes, Soil and Groundwater Sampling

Five (5) boreholes were advanced in the investigated property on June 26, 2019. Borehole drilling was carried out using a Diedrich D-50 drilling rig. The boreholes were extended to depths of up to 6.10 m, at which point native material had been reached. Refer to the attached Site Plan with Borehole and Monitoring Well Locations (Figure 1 in Appendix A)

Fisher retains Terra Firma Environmental Services Ltd. (Terra Firma) as our drilling contractor. Terra Firma maintains licensure for drilling (Water Well Drillers, Environmental Protection Act, Well Contractor License No. 6946) as required by the MOE, and conducted drilling and soil sampling works in accordance with CSA Standard Z769-00 (reaffirmed in 2013) and the Ontario Ministry of Environment and Energy (MOEE, currently MECP) "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", December 1996, and in compliance with Occupational Health and Safety regulations.

The intrusive subsurface investigation was conducted by means of solid stem auger boreholes advancement through the pavement and/or subsoil, and a 50 mm diameter spoon sampler driven 600 mm into subsoil by a 65 kg hammer, falling 760 mm, collecting soil samples at a maximum of 0.76 m interval and at stratigraphic boundaries.

Soil and groundwater samples were collected and handled in accordance with generally accepted sampling and handling procedures used by the environmental consulting industry. For guidance, these practices rely on the 1996 MOEE publication "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario". To minimize the potential for cross contamination between soil samples, the split spoon sampler used to collect soil samples from the boreholes was brushed clean of soil and then washed in municipal water containing phosphate free detergent, rinsed in municipal water and then rinsed with distilled water. As well, new disposable nitrile gloves and stainless-steel spatula were used during each sampling event to remove the soil cores from the sampler and to transfer the samples into plastic bags and/or glass jars.

Through each soil sample, the lithology and esthetic evidence of impacts (debris, staining and odours) were recorded as part of field quality control (QC) procedures. Additionally each sample was screened in the field for headspace vapour concentration (combustible soil vapour and total organic vapour) using the 10.6 eV lamp MiniRae 2000 PID calibrated to 100 ppm Isobutylene. The samples were kept out of direct sunlight during field storage and the headspace measurements were made after at least two hours had elapsed since the sample was bagged and the sample had reached a minimum temperature of 15°C. The headspace monitoring was performed on the samples as a preliminary screening for analysis.

Selection of samples to be submitted for laboratory analysis are based on the headspace vapour concentration, physical evidence of odours/ staining, apparent water table and/or proximity to potential contaminant sources. If no odours/staining are noted in the soil samples,

the samples with the highest field screening measurement (i.e. highest headspace vapour concentration) are selected for laboratory analysis. Soil samples from the boreholes selected for potential chemical analysis of organic parameters were placed directly into laboratory supplied glass jars at the time of sampling, labeled and packed with minimal headspace. Samples were kept in coolers provided with cold packs during field storage and transportation to Fisher Environmental Laboratories for analysis. Following sampling, monitoring wells were installed in three (3) boreholes, in accordance to O. Reg. 903.

6.3. Monitoring Wells Program

Three (3) monitoring wells were installed on the subject property. The wells were constructed of 52 mm ID diameter PVC pipes, which were pre-cleaned at the factory and delivered to the Site in sealed plastic bags. Further construction details of the monitoring wells are provided on the "Log of Boreholes" attached in Appendix B.

Groundwater sampling in the installed monitoring wells was conducted using bailers, where single-use (disposable) bailers are slowly lowered into the water column, allowed to fill, and removed. Installed monitoring wells were sampled on June 27, 2019. Prior to sampling, three well volumes of groundwater were purged from each well to ensure the sampling of "fresh" formation water.

Pre-preserved sample containers were used to collect groundwater samples which were labeled, stored in coolers provided with ice/cold packs during field storage and transportation to Fisher Environmental Laboratories for analysis.

Groundwater static level measurement was conducted prior to sampling. The groundwater static level measurements are summarized in Table 1 below.

TABLE 1: GROUNDWATER STATIC LEVEL MEASUREMENTS

Location	Well Depth, m bgs	Groundwater Static Level, m bgs	Relative Groundwater Elevation ^{1,} m
		(June 27, 2019)	
BH1(MW)	6.10	1.69	97.66
BH2(MW)	6.10	0.64	97.39
BH3(MW)	6.10	1.07	98.20

^{1.} Relative elevations referenced to an assumed finished floor elevation (FFE) of entrance to Site building of 100m.

Groundwater generally flows from areas of high hydraulic head towards areas of low hydraulic head. To assess the direction of groundwater movement, the hydraulic head is measured at each well location. This is accomplished by taking water level measurements and referencing them to a known benchmark to determine their elevation. Water level measurements having higher elevations suggest greater hydraulic head. Conversely, lower elevations of the water table are indicative of a lesser hydraulic head.

The localized shallow groundwater flow direction may be influenced by the presence of underground utilities, building foundation, variations in vertical and horizontal stratigraphy, depth of wells' screened intervals and/or well trauma.

Based on noted soil stratigraphy, depths to groundwater and localized topography, general groundwater flow direction was estimated to be in a southerly, southeasterly direction.

6.4. Well Record Filed with the MECP

Groundwater monitoring well installations for this project are regulated under Regulation 903 of the Ontario Water Resources Act. The regulation reveals certain responsibilities on Fisher or Terra Firma and the property owner. As a condition to Terra Firma providing groundwater monitoring well installation services, our client has accepted responsibility for ensuring that the property owner accepts the following conditions:

- 1. The name and address of the property owner have been provided.
- 2. Terra Firma has permission to submit well records to the Ministry and to the property owner and to report multiple installations on a single well record.
- 3. Well tags on installations must not be removed or destroyed.
- 4. Unless otherwise agreed, installations will be decommissioned by the property owner within 180 days of installation.
- 5. The property owner is responsible for future decommissioning of all installations in accordance with the regulation.
- The property owner is responsible for any expenses associated with controlling and decommissioning installations that have, or may have in the future, artesian conditions.

- 7. Maintenance of well installations in accordance with the regulation will be by the property owner. This includes ensuring that seals remain adequate for preventing water or gas migration between formations and to/from surface, that seals do not deteriorate and that wells are decommissioned.
- 8. The client and property owner accept responsibility for the inherent risk associated with industry standard installations, and acknowledge that conditions and materials do not remain constant with time nor that they can be completely quantified or predicted in advance.

6.5. Site Geology

On the basis of the boreholes completed, the stratigraphy at the investigated areas of the Site generally consists of a layer of fill, extending up to 1.52 m bgs. The fill generally consisted of dark brown and greyish brown silt to sandy silt, trace gravel, with some hydrocarbon staining. Underlying the fill is brown and greyish brown sandy silt till to grey sand and silt, trace gravel. A description of the subsurface conditions encountered at the boreholes locations is presented in Appendix B - Log of Boreholes.

6.6. Head Space Combustible Vapours

A 10.6 eV lamp MiniRae 2000 PID calibrated to 100 ppm Isobutylene was used to measure combustible vapours in the soil samples. Vapour concentrations were read during the soil sampling and all soil samples had concentrations of 5 ppm or less.

6.7. Visual Olfactory Soil / Groundwater Quality

During the borehole-drilling program, the following visual/olfactory observations were made:

- Fill materials were encountered in all boreholes at depths of up to 1.52 m bgs.
- Hydrocarbon odours were noted in surface soil collected at BH1 and BH3.
- (No) free product, film or sheen was observed on the surface of groundwater collected from any of the installed monitoring wells.

6.8. Selection of Analytical Samples and Parameters

Selection of samples for environmental analysis was based on appearance, odour, expectations of Site conditions, and proximity of potential contaminant sources.

Seven (7) soil samples were submitted to the laboratory for Metals, PHC (F1-F4), VOC, PAH, EC, SAR and/or pH analysis. Four (4) groundwater samples were collected from the three (3) installed groundwater monitoring wells, and were submitted to the laboratory for PHC (F1-F4) and VOC analysis.

TABLE 2: RATIONALE FOR ANALYTICAL PARAMETER

Parameter	Description
Metals	Various metallic elements can cause adverse environmental effects at relatively low concentrations. Such metals are associated with industrial activities and/or the use of fill materials of unknown quality, both historic and current, and it is common practice to include Metals analysis in subsurface soil investigations. Seven (7) soil samples collected at the Site were submitted for Metals analysis.
PHC(F1-F4)	PHC are components of gasoline, diesel and other petroleum products for which soil quality guidelines have been developed. These compounds are widely utilized and often included in the evaluation of a Site's overall subsurface condition. Four (4) soil and four (4) groundwater samples collected at the Site were submitted for PHC (F1-F4) analysis.
VOC	VOC are any volatile compound of carbon, excluding methane, carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, ammonium carbonate, and exempt compounds. VOC are included in gasoline, diesel, crude oil, lubricant, waste oil, adhesive, paint, stain, solvents, resin, monomer, and/or any other material containing VOC. Note that VOC analysis includes Benzene, Toluene, Ethylbenzene, Xylene (BTEX) parameters. Three (3) soil and four (4) groundwater samples collected at the Site were submitted for VOC analysis.
PAH	PAH are associated with coal and furnace ash, and/or the use of fill materials of unknown quality. Three (3) soil samples collected at the Site were submitted for PAH analysis.
EC	Soil EC is indirectly correlated with various chemical and physical properties of soil and is the ability of any material to conduct an electrical current. Sand has a lower conductivity while clay has a higher conductivity, which is correlated with particle size, soil texture, and water-holding capacity. Seven (7) soil samples collected at the Site were submitted for EC analysis.
SAR	Soil SAR is the ratio of the concentration of sodium in relation to calcium and magnesium, which can be used to assess the potential to cause dispersion in soil. Seven (7) soil samples collected at the Site were submitted for SAR analysis.
рН	Soil pH is referred to as the "acidity" of the soil. When the soil pH is too "acid" (low pH) or too "alkaline" (high pH), nutrients present in the soil become locked-up or unavailable. Two (2) soil samples collected at the Site were submitted for pH analysis.

7. LABORATORY PROGRAM

7.1. General

Recovered soil and groundwater samples were submitted to Fisher Environmental Laboratories for analysis. As a Canadian Association for Laboratory Accreditation (CALA) registered analytical facility, QA/QC procedures were maintained consistent with CALA requirements and standard laboratory practices. The laboratories ensured that analytical sub-samples were, by appearance, representative of the whole sample as collected in the field.

7.2. Data Evaluation

7.2.1. Soil and Groundwater Standards

The MOE presents Soil and Groundwater Standards, under the Publication "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" April 15, 2011. These standards present soil and groundwater criteria, which have been developed with regard to toxicological data. They are levels at and below which no environmental or safety concerns, or adverse conditions, are anticipated for environments or persons with average sensitivity.

The subject property has been used for industrial purposes, and it is our understanding that the property will maintain its current industrial land use.

With regards to the potability status of the groundwater, it is understood that the surrounding area relies on municipal water as a source of drinking water. For the purpose of assessing the soil and groundwater quality at the subject site in accordance to the requirements for site assessment, under Part XV.1 of the EPA and Ontario Regulation 153/04, it is our intention to utilize a non-potable groundwater condition standard.

As specified by O. Reg. 153/04, "coarse textured soil is defined as material having more than 50 percent (by mass) of particles that are 75 μ m or larger in mean diameter. Materials having more than 50 percent (by mass) of particles that are smaller than 75 μ m in mean diameter are medium and fine textured soils." "When at least 1/3 of the soil at the property, measured by volume, consists of coarse textured soil, the standard for coarse textured soil shall apply. In any other case, the standard for medium and fine textured soil may be applied".

A grain size analysis was not completed at the time of the investigation, however, considering the visually identified soil types encountered at the borehole locations, and the distribution of boreholes across the Site, the generally more conservative site condition standards for coarse textured soil have been applied.

For the purpose of this Phase II ESA, the appropriate standards were identified as: Table 3 (Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition – Industrial/ Commercial/Community Property Use for soil samples and All Types of Property Use for groundwater samples, coarse textured soil) as contained in the MOE Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, hereinafter referred to as the "MOE Standards". The criteria values are presented with the results of analysis in the last column of the Certificates of Analysis (Appendix C).

7.2.2. Soil and Groundwater Quality

Seven (7) soil and four (4) groundwater samples were submitted to the laboratory for Metals, PHC (F1-F4), VOC, PAH, EC, SAR and/or pH analysis. A copy of the Laboratory Certificates of Analysis is provided in Appendix C. Results of the chemical analyses are summarized in Table 3.

TABLE 3: EXCEEDANCES OF APPLICABLE SITE CONDITION STANDARDS

Borehole	Sample Depth	Sample #	Parameters Analyzed	Exceedances of April 15, 2011 Table 3 MOE Standards, Industrial/Commercial/ Community Property Use Non-Potable Groundwater condition
		Soil (19-2	789) – June 26	6, 2019
BH1(MW)	0.00-0.60 m	19-2789-1	Metals EC/SAR PHC (F1-F4) VOC PAH	No Exceedances No Exceedances No Exceedances No Exceedances Dibenzo [a,h] anthracene: 0.12 vs. 0.1 ppm
BH1(MW)	0.75-1.20 m	19-2789-2	Metals EC/SAR	No Exceedances No Exceedances
BH2(MW)	0.75-1.20 m	19-2789-3	Metals EC/SAR PHC (F1-F4)	No Exceedances EC: 1.51 mS/cm vs. 1.4 mS/cm No Exceedances

Borehole	Sample Depth	Sample #	Parameters Analyzed	Exceedances of April 15, 2011 Table 3 MOE Standards, Industrial/Commercial/ Community Property Use Non-Potable Groundwater condition					
BH3(MW)	0.00-0.15 m	19-2789-4	Metals	No Exceedances					
			EC/SAR	No Exceedances					
			PHC (F1-F4)	No Exceedances					
			VOC	No Exceedances					
BH3(MW)	0.75-1.20 m	19-2789-5	Metals	No Exceedances					
			EC/SAR	No Exceedances					
			PHC (F1-F4)	No Exceedances					
			VOC	No Exceedances					
			PAH	Benzo [a] pyrene: 0.4 ppm vs. 0.3 ppm					
				Dibenzo [a,h] anthracene: 0.13 vs. 0.1 ppm					
BH4(MW)	0.00-0.60 m	19-2789-6	Metals	No Exceedances					
			EC/SAR	No Exceedances					
BH5(MW)	0.15-0.75 m	19-2789-7	Metals	No Exceedances					
			EC/SAR	No Exceedances					
			PAH	Dibenzo [a,h] anthracene: 0.14 vs. 0.1 ppm					
	G	roundwater	(19-2790) – Ju	ne 27, 2019					
BH1(MW)	Groundwater	19-2790-1	PHC (F1-F4)	No Exceedances					
			VOC	No Exceedances					
BH2(MW)	Groundwater	19-2790-2	PHC (F1-F4)	No Exceedances					
			VOC	No Exceedances					
BH3(MW)	Groundwater	19-2790-3	PHC (F1-F4)	No Exceedances					
			VOC	No Exceedances					
BH14(MW)	Groundwater	19-2790-4	PHC (F1-F4)	No Exceedances					
Duplicate			VOC	No Exceedances					

NOTES: PHC (F1-F4)*: Petroleum Hydrocarbons fractions (F1-F4)

F1 (C6-C10) Gasoline less BTEX

F2 (C10-C16) Diesel

F3 (C16-C34) Diesel

F4 (C34-C50) Heavy Oil

VOC: Volatile Organic Compounds, PAH: Polycyclic Aromatic Hydrocarbons,

pH: potential of Hydrogen, SAR: Sodium Adsorption Ratio, EC: Electrical Conductivity

Bold: Exceeds the MOE Standards

*For a site to meet this standard there must be no evidence of free product, including but not limited to, visible petroleum hydrocarbon film or sheen present on any groundwater samples.

7.2.3. Metals

Seven (7) soil samples were submitted for Metals analysis. The results of chemical analysis for Metals parameters in the submitted soil samples were found to be in compliance with the applicable MOE Standards.

7.2.4. Petroleum Hydrocarbons (PHC)

Four (4) soil and four (4) groundwater samples were submitted for PHC (F1-F4) analysis. The results of chemical analysis for PHC (F1-F4) parameters in the submitted soil and groundwater samples were found to be in compliance with the applicable MOE Standards.

7.2.5. Volatile Organic Compounds (VOC)

Three (3) soil and four (4) groundwater samples were submitted for VOC analysis. The results of chemical analysis for VOC parameters in the submitted soil and groundwater samples were found to be in compliance with the applicable MOE Standards.

7.2.6. Polycyclic Aromatic Hydrocarbons (PAH)

Three (3) soil samples were submitted for PAH analysis. The result of chemical analysis for PAH parameters for all the submitted soil samples were found to exceed the applicable MOE Standards. The following exceedance was found:

BH1 (0.00-0.60 m bgs) - Lab ID #19-2789-1

Dibenzo [a,h] anthracene: 0.12 ppm vs. 0.1 ppm.

BH3 (0.75-1.20 m bgs) - Lab ID #19-2789-5

Benzo [a] pyrene: 0.4 ppm vs. 0.3 ppm;

Dibenzo [a,h] anthracene: 0.13 ppm vs. 0.1 ppm.

BH5 (0.15-0.75 m bgs) - Lab ID #19-2789-7

Dibenzo [a,h] anthracene: 0.14 ppm vs. 0.1 ppm.

7.2.7. pH

Two (2) soil samples were submitted to the laboratory for pH analysis. The result of pH for the submitted soil samples were found to be within the recommended range of 5 to 9.

7.2.8. Electrical Conductivity (EC)

Seven (7) soil samples were submitted to the laboratory for EC analysis. The results of chemical analysis for EC parameters in the submitted soil samples were found to exceed the applicable MOE Standards. The following exceedance was found:

BH2 (0.75-1.20 m bgs) - Lab ID #19-2789-3 – 1.51 mS/cm vs. 1.4 mS/cm.

7.2.9. Sodium Adsorption Ratio (SAR)

Seven (7) soil samples were submitted to the laboratory for SAR analysis. The results of chemical analysis for SAR parameters in the submitted soil samples were found to be in compliance with the applicable MOE Standards.

7.3. Quality Assurance/Quality Control

A chain of custody form was filled out for all samples prior to submitting to the laboratory. The chain of custody documented movement from selection of the sample to receipt at the laboratory and provided sample identification, requested analysis, and condition of samples upon arrival at the laboratory.

The laboratory checks randomly selected samples for Quality Assurance. Generally, one sample for every twenty samples submitted is selected for Quality Assurance checks. For each parameter, there is an acceptable upper and lower limit for the measured concentration of the parameter. Measured concentrations of analyzed samples must fall within the upper and lower acceptable limits in order for the sample to be valid. If the result exceeds the upper or lower acceptable limits, the sample must be re-analyzed.

Based on Quality Assurance Reports provided by Fisher Environmental Laboratories, measured concentrations in soil samples were within the acceptable limits for quality control. Copies of the QA/QC Reports for Metals, PHC (F1-F4), PAH, VOC, pH, EC and/or SAR in soil and groundwater are included with the Certificates of Analysis in Appendix C.

The QA/QC program also includes the collection of field duplicate samples for laboratory analysis as follows: One (1) field duplicate groundwater sample MW1, analyzed for PHC (F1-F4) and VOC.

Relative percent differences (RPDs) were calculated for the field duplicate samples. Quantitative correlation was not calculable for the analytical results of the field duplicate samples and their corresponding sample pairs with reported concentrations equal to or less than five times the reportable detection limits.

8. SUMMARY AND CONCLUSIONS

- Fisher carried out a Phase II Environmental Site Assessment of the property located at 6333 Hurontario Street, Mississauga, ON. The subsurface soil and groundwater investigation were carried out on June 26, and June 27, 2019.
- Five (5) boreholes were advanced in the investigated property to depths of up to 6.10m bgs, and in three (3) of them, monitoring wells were installed to facilitate groundwater level monitoring and sampling.
- On the basis of the boreholes completed, the stratigraphy at the investigated areas of the Site generally consists of a layer of fill, extending up to 1.52 m bgs. The fill generally consisted of dark brown and greyish brown silt to sandy silt, trace gravel, with some hydrocarbon staining. Underlying the fill is brown and greyish brown sandy silt till to grey sand and silt.
- Seven (7) soil and four (4) groundwater samples were submitted to the laboratory for Metals, PHC (F1-F4), VOC, PAH, pH, EC and/or SAR analysis.
- The results of chemical analysis for four (4) of the seven (7) soil samples were found to exceed the applicable MOE Standards. The following exceedances were found:
 - BH1 (0.00-0.60 m bgs) Lab ID #19-2789-1

Dibenzo [a,h] anthracene: 0.12 ppm vs. 0.1 ppm.

BH3 (0.75-1.20 m bgs) - Lab ID #19-2789-5

Benzo [a] pyrene: 0.4 ppm vs. 0.3 ppm;

Dibenzo [a,h] anthracene: 0.13 ppm vs. 0.1 ppm.

BH5 (0.15-0.75 m bgs) - Lab ID #19-2789-7

Dibenzo [a,h] anthracene: 0.14 ppm vs. 0.1 ppm.

BH2 (0.75-1.20 m bgs) - Lab ID #19-2789-3 – EC: 1.51 vs. 1.4

- The results of chemical analysis for all submitted groundwater samples were found to be in compliance with the applicable MOE standards.
- Based on the results of the current investigation, it is expected that the historical activities at the Site have impacted the property's near surface soil condition. The identified impacts included polynuclear aromatic hydrocarbons (PAHs) and electrical conductivity (EC). The PAH and EC impacts were generally limited to the eastern half of the Site and contained to near surface soils / fill that exhibited signs of visible oil staining and some heavy petroleum hydrocarbon impacts. In association with proposed development of the Site it would be recommended that impacted soil / fill, preliminarily estimated in the order of 2,000m3 or 3,600 tonnes, be removed and disposed of off Site at a licensed MECP soil disposal facility.

9. LIMITATIONS

This report was prepared for use by Dymon Group of Companies, and is based on the work as described in the Scope of Work. The conclusions presented in this report reflect existing Site conditions within the scope of this assignment.

No investigation method can completely eliminate the possibility of obtaining partially imprecise or incomplete information. It can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing the information obtained and the formulation of the conclusions and recommendations. Like all professional persons rendering advice, we do not act as absolute insurers of the conclusions reached, but commit ourselves to care and competence in reaching those conclusions. Where a Phase II ESA is conducted without the completion or review of a current Phase I ESA, it is noted that the selected test locations are based on information made readily available to Fisher and/or a cursory review of current site operations. In such instances, knowledge of historical and/or neighboring property use data may be significantly limited. No warranty, whether expressed or implied, is included or intended in this report.

The scope of services performed may not be appropriate for the purposes of other users. This report should not be used in contexts other than pertaining to the evaluation of the property at the current time. Written authorization must be obtained from Fisher Environmental Ltd. prior to use by any other parties, or any future use of this document or its findings, conclusions, or recommendations represented herein. Any use which a third party makes of this report, or any reliance on or decisions made on the basis of it, are the responsibility of the third parties. Fisher Environmental Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Fisher Environmental Ltd. notes that the work conducted at the Site may not fully satisfy the MOE (currently MECP) requirements for the purpose of filling a Record of Site Condition (RSC). Should a RSC be required, then additional investigations should be conducted at the Site.

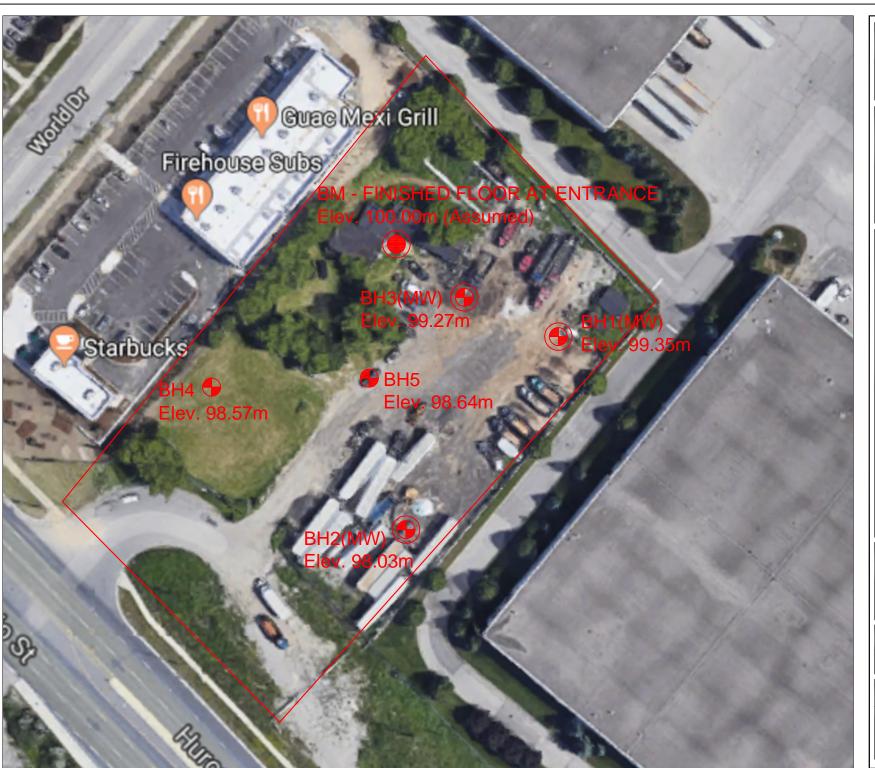
10. QUALIFICATIONS OF ASSESSOR

The field works and report preparation for this assessment were conducted by Mr. Sean Fisher, who has been trained and has 20 years of experience in conducting Phase II ESAs in accordance with the CSA Standard. Mr. Fisher has conducted more than 250 Phase II ESAs for commercial/industrial/residential clients and government agencies and is routinely engaged in this field.

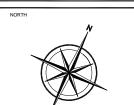
As a Qualified Person who conducts and supervises Phase II ESAs, Mr. David Fisher, president of Fisher Environmental Ltd., is a senior Managerial and Environmental Engineering Specialist with over 30 years of progressive, innovative experience in the Petrochemical and Environmental Engineering Industry. Mr. Fisher is responsible for the development and management of a progressive environmental consulting engineering company specializing in environmental site assessments and remediation, geotechnical and hydrogeological investigations, tank removals, PCB waste treatment, land reclamation, recycling, hazardous waste disposal, and associated laboratory analytical practices.

Fisher Environmental Ltd. has been established as a team of engineers and consultants since 1989, and continues to develop a strong, wide client base. The company is staffed with personnel holding graduate or postgraduate qualifications at the Markham headquarters, as well as specialist associates offering a broad range of expertise and knowledge in environmental consulting. With a background in the petroleum industry, extensive experience has been gained in the prevention and cleanup of contamination in air, water and soil.

11. REFERENCES


The Phase II ESA was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administrated by the Ontario Ministry of the Environment. Specific reference is made to the following:

- CAN/CSA Standard Z769-00 (reaffirmed in 2013), Phase II Environmental Site Assessment, A National Standard of Canada;
- "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" Ministry of the Environment and Energy, December 1996;
- Environmental Protection Act, RSO 1990, Charter E. 19, as amended, September 2004;
- "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", Ministry of the Environment, dated April 15, 2011;
- The Ontario Water Resources Act R.R.O. 1990, Regulation 903 Amended to O. Reg. 128.03, August 2003;
- Google Earth.


APPENDIX A - SITE PLAN

400 Esna Park Dr., #15 Markham, Ontario L3R 3K2 Tel: 905 475-7755 Fax: 905 475-7718

LEGEND

MONITORING WELL

BOREHOLE

SITE BOUNDARY

BENCHMARK

PROJECT NAME AND ADDRESS

GEOTECHNICAL INVESTIGATION AND PHASE II ESA

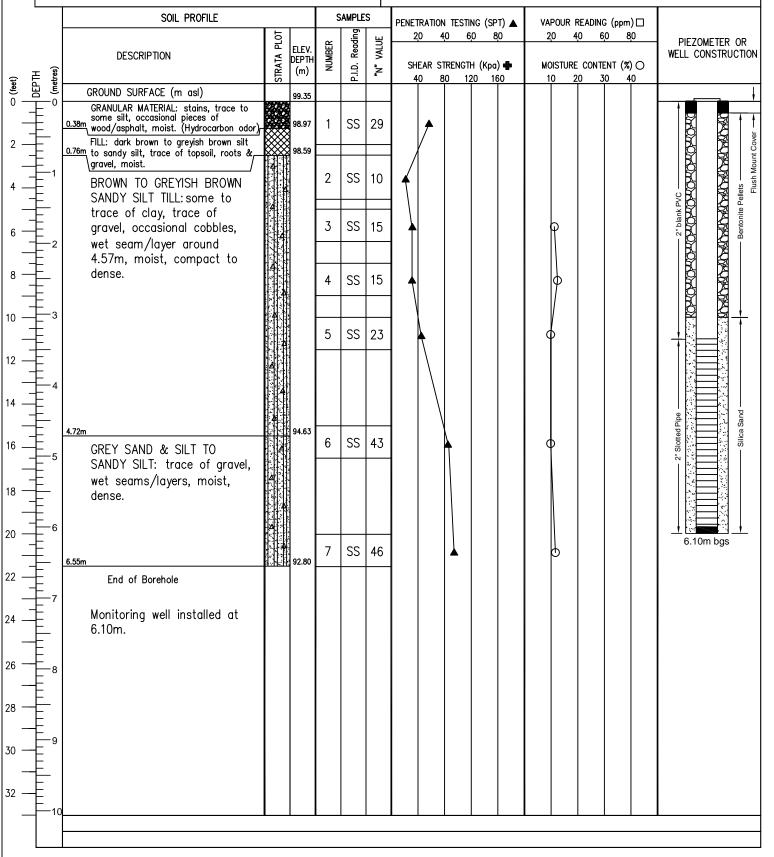
6333 HURONTARIO STREET, MISSISSAUGA, ONTARIO

FIGURE 1:

SITE PLAN WITH BOREHOLE AND MONITORING WELL LOCATIONS

ROJECT NO.	SHEET NO.
FE-P 19-9580	
DATE	1
JULY 2019	
CALE	
AS SHOWN	

APPENDIX B - LOG OF BOREHOLES


LOG OF BOREHOLE NO. BH1(MW) SHEET. 1 of 1

PROJECT NO.: FE-P 19-9580

PROJECT NAME: Geotechnical Investigation

6333 Hurontario St., Mississauga, ON. LOCATION:

DRILLING METHOD: Diedrich D-50

LOG OF BOREHOLE NO. BH2(MW) SHEET. 1 of 1

PROJECT NO.: FE-P 19-9580

PROJECT NAME: Geotechnical Investigation

6333 Hurontario St., Mississauga, ON. LOCATION:

DRILLING METHOD: Diedrich D-50

		SOIL PROFILE			9	SAMPLE	s S	DENET	DATION	TESTINA	G (SPT) ▲	VAPOUR READING (ppm)□	T
			LOT		~	ding	ᆈ	2 2				20 40 60 80	PIEZOMETER OR
		DESCRIPTION	STRATA PLOT	elev. Depth	NUMBER	P.I.D. Reading	VALUE		FAD CT	DENOTU	(V= =\ =	MOISTUDE CONTENT (%)	WELL CONSTRUCTION
£	DEPTH (metres)		STRA	(m)	Ž	D.I.D	ž	3FI			(Kpa) 🖶) 160	MOISTURE CONTENT (%) ○ 10 20 30 40	
O (feet)	DEPTH (metres)	GROUND SURFACE (m asl)	***	98.03									
-		FILL: crushed asphalt mixed with granular material, some sandy silt, occcasional pieces of O.BIM concrete/asphalt/wood, moist.		97.42	1	SS	14	†					AOA()
-	1	FILL: grey sandy silt, layer of topsoil at 1.11m, trace of			2	SS	5						2" blank PVC 2" blank PVC 2" blank PVC 4 CACOACOACOACOACOACOACOACOACOACOACOACOACO
4 —		1.37m roots/topsoil, very moist. GREYISH BROWN TO BROWN	***	96.66	_	00	4-	$\left \cdot \right $					2" blank PVC — PVC PVC — PVC
6 -	2	SANDY SILT TILL: some to trace of clay, trace of gravel, moist, compact.	A		3	SS	17	┤				$\left[\begin{array}{c c} \phi & & \end{array} \right]$	2" b
8 -		graver, moist, compact.	A		4	SS	22						
10 —	3							1					
-	‡		4		5	SS	26		A				
12 —	Ŧ		. 4										
_	<u>+</u> 4		A										
14 —	圭	4.42m	Δ	93.61									
_	#	GREY SANDY SILT TO TILL:						1					Slotted Pipe
16 —	5	trace of clay & gravel, wet layer of silty sand at 6.10m,			6	SS	22] 1	†				Siii Siii Siii Siii Siii Siii Siii Sii
_	ŧ	moist, compact to dense.	4										
18 —	E		A										
_	ŧ,		*										
20 —	Ŧ°				 	00		1					6.10m bgs
-	E	6.55m	4	91.48	7	SS	37]	•				
22 —	£	End of Borehole											
_	- 7												
24 —	+	Monitoring well installed at 6.10m.											
_	F	3113111											
26 —	£.8												
_	ŧ												
28 —	+												
	ŧ												
30 —	9												
_	F												
70	E												
32 —	<u></u>												
	۱ '												

LOG OF BOREHOLE NO. BH3(MW) SHEET. 1 of 1

PROJECT NO.: FE-P 19-9580

PROJECT NAME: Geotechnical Investigation

6333 Hurontario St., Mississauga, ON. LOCATION:

DRILLING METHOD: Diedrich D-50

HLG30	FILL: granular material mixed with sandy silt, occ. pieces of concrete, asphalt, occ. cobbles, moist. 0.53m (Hydrocarbon odor) FILL: dark brown to greyish brown silt to sandy silt, layer of topsoil at 0.91m, some to trace of 1.52m topsoil/roots, moist. GREYISH BROWN TO BROWN SANDY SILT TILL: some to	STRATA PLOT	ELEV. DEPTH (m) 99.27	NUMBER	S P.I.D. Reading	S 3N" VALUE	SH	<u>20 4</u> IEAR ST	0 60 Rength	IG (SPT) A 0 80 H (Kpa) 4 0 160	2,0	R READING 40 60 RE CONTEN 20 30	80 IT (%) ○	PIEZOMETER OR WELL CONSTRUCTION
2	GROUND SURFACE (m asl) FILL: granular material mixed with sandy silt, occ. pieces of concrete, asphalt, occ. cobbles, moist. 0.53m (Hydrocarbon odor) FILL: dark brown to greyish brown silt to sandy silt, layer of topsoil at 0.91m, some to trace of 1.52m topsoil/roots, moist. GREYISH BROWN TO BROWN SANDY SILT TILL: some to	STRATA PLOT	DEPTH (m) 99.27	1		, Z	SH	iear st	RENGTH	ł (Kpa) 春	MOISTU	RE CONTEN	IT (%) ()	
2	FILL: granular material mixed with sandy silt, occ. pieces of concrete, asphalt, occ. cobbles, moist. 0.53m (Hydrocarbon odor) FILL: dark brown to greyish brown silt to sandy silt, layer of topsoil at 0.91m, some to trace of 1.52m topsoil/roots, moist. GREYISH BROWN TO BROWN SANDY SILT TILL: some to			1		41				0 100	Ĭ	1 1	Ĭ	
2	FILL: granular material mixed with sandy silt, occ. pieces of concrete, asphalt, occ. cobbles, moist. 0.53m (Hydrocarbon odor) FILL: dark brown to greyish brown silt to sandy silt, layer of topsoil at 0.91m, some to trace of 1.52m topsoil/roots, moist. GREYISH BROWN TO BROWN SANDY SILT TILL: some to			1	SS	41								
4 —————————————————————————————————————	brown silt to sandy silt, layer of topsoil at 0.91m, some to trace of 1.52m topsoil/roots, moist. GREYISH BROWN TO BROWN SANDY SILT TILL: some to			_			1							John January
‡	GREYISH BROWN TO BROWN SANDY SILT TILL: some to	12	97.75	2	SS	7								2. blank PVC — Bentonite Pellets — Flush Mount Cover — F
1. =				3	SS	14	\							— 2" blank PVC — VOXOVOXO VOXOVOXO Bentonite Pellets
8 = =	trace of clay, trace of gravel, occasional wet seams, moist, compact to dense.	2 A		4	SS	28		\						
10 == ;								$ \ $						
		Δ 4		5	SS	34		1						
12 —		4						`	$\setminus \mid$					
14 == '		A												
	4.72m	4	95.00				ł							ed Pipe
16 =	GREY SANDY SILT TO TILL:	A		6	SS	61			}	\				Slotted
18 —	trace of gravel, wet layer at 4.88m, moist, very dense to dense.	4 A												
20		A	92.72	7	SS	35			$^{\prime} \mid$					6.10m bgs
22	End of Borehole	# officials	92.72				1							
24 —	Monitoring well installed at 6.10m.													
26 —														
28														
<u>-</u> E,														
30 —														
32 —	0													

LOG OF BOREHOLE NO. BH4 SHEET. 1 of 1

PROJECT NO.: FE-P 19-9580

Geotechnical Investigation

LOCATION: 6333 Hurontario St., Mississauga, ON.

SOIL PROFILE SAMPLES PENETRATION TESTING (SPT) A 20 40 60 80 VAPOUR READING (ppm) DESCRIPTION ELEV. EMPTH SO ELEV. EMPTH SOIL ELEV. EMPTH SOIL ELEV. EMPTH EMPTH SOIL ELEV. EMPTH	ואטן	ILLING METHOD: Diedrich D-50)				L	ארו	ING	DAI	Ł: Z	ול לו	une 20	19			
DESCRIPTION DESCR		SOIL PROFILE			S	AMPLE:	s .	PENE	RATION	TESTIN	NG (SPT)) 🛦	VAPOUR	READING	G (ppm)	_ I	
GROUND SURFACE (m asi) TOPSOIL Some slit to sandy slit, some clay, some to trace of topsoil/ roots, moist. BROWN SANDY SILT TILL: some clay, trace of gravel, moist, compact to dense. BROWN SANDY SILT TO TILL: some clay, trace of gravel, moist, compact to dense. GREY SANDY SILT TO TILL: trace of gravel, wet seems/pockets, moist, some clay, trace of gravel, wet seems/pockets, moist, some compact. End of Borehole W.L. at 4.72m on seventities	t) ∏H fres)		STRATA PLOT	ELEV. EPTH (m)	NUMBER	P.I.D. Reading	"N" VALUE	SH	0 4 EAR ST	0 60 RENGTH	0 80 1 (Kpa) 1	4	20 MOISTUR	40 6 E CONTE	50 80 ENT (%)	0	PIEZOMETER OR WELL CONSTRUCTION
This is the sandy silt, some clay, some to trace of topsoil/roots, moist. BROWN SANDY SILT TILL: some clay, trace of gravel, moist, compact to dense. BROWN SANDY SILT TILL: some clay, trace of gravel, moist, compact to dense. The same clay, trace of gravel, moist, some clay, trace of gravel, moist, compact to dense. The same clay, trace of gravel, wet seams/pockets, moist, sam compact. End of Borehole WL. at 4.72m on sampletion of the) (feet DEP	GROUND SURFACE (m asl)				_											
some to trace of topsoil/roots, moist. BROWN SANDY SILT TILL: some clay, trace of gravel, moist, compact to dense. 8 4 SS 31 5 SS 36 4 SS 31 5 SS 36 4 ASS 31 5 SS 36 6 SS 16 8 End of Borehole W.L. at 4.72m on compact to dense.	1	FILL: dark brown to brown o.69m silt to sandy silt, some clay,	· · ·	98.27	1	SS	6	1									
some clay, trace of gravel, moist, compact to dense. 3 SS 20 4 SS 31 5 SS 36 6 SS 16 6 SS 16 W.L. at 4.72m on appelation	4 —	\some to trace of topsoil// roots, moist.	À		2	SS	21] \	_				φ				
10	62	some clay, trace of gravel,	Δ.		3	SS	20	1					•				
12 — 4 4.11m GREY SANDY SILT TO TILL: trace of gravel, wet seams/pockets, moist, 5 SS 36 4.72 Seams/pockets, moist, 5 SS 36 4.72 Seams/pockets, moist, moist, seams/pockets, moist, seams/pockets, moist, seams/pockets, moist, seams/pocket	8 —		A		4	SS	31	-					•				
4.11m GREY SANDY SILT TO TILL: trace of gravel, wet seams/pockets, moist, 5.03m compact. W.L. at 4.72m on completion	丰		A A		5	SS	36	-					•				
16 5	4	GREY SANDY SILT TO TILL: trace of gravel, wet															
18 — W.L. at 4.72m on	65	_{5.03m} compact.	4 9	 93.54	6	SS	16	^					Ф				
~ -=		W.L. at 4.72m on															
	27																
	=																
	丰 *																
	9																
32 — 10	2 —																

LOG OF BOREHOLE NO. BH5 SHEET. 1 of 1

PROJECT NO.: FE-P 19-9580

PROJECT NAME: Geotechnical Investigation

6333 Hurontario St., Mississauga, ON. LOCATION:

DRILLING METHOD: Diedrich D-50

ì			CON PROFILE						 			T T			
ı		-	SOIL PROFILE	<u> </u>			SAMPLE P		PENETRATI 20		ING (SPT) ▲ 50 80	VAPOUR 20			
£	ĭ	(metres)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	P.I.D. Reading	"N" VALUE		STRENGT	50 80 TH (Kpa) 🖶 20 160		RE CONT		PIEZOMETER OR WELL CONSTRUCTION
O (feet)	DEPTH	me 0	GROUND SURFACE (m asl)		98.64								Ī		
2 —	E	_	FILL: dark brown to brown silt to sandy silt, layer of topsoil at 0.23m, occasional 0.76m pieces of wood, some			1	SS	9	 						
- - - 4 —		-1	asphalt/gravel at surface, moist.	**************************************	97.88	2	SS	15							
6 —		-	BROWN SANDY SILT TILL: some to trace of clay, trace of gravel, moist,	Δ.		3	SS	19							
8 —		-2 -	compact to dense.			4	SS	30							
_	É														
10 —	ŧ	-3	3.05m GREY SANDY SILT TO TILL:	4	95.59	5	SS	27							
12 —	E	_	trace of gravel, moist, compact to dense.	Ä											
14 —	E	-4		4											
16 —		-5 -	5.03m	À	93.61	6	SS	36							
18 —		_	End of Borehole												
20 —		-6	BH dry on completion.												
22 —		_													
24 —	E	-7													
	ŧ	-8													
 28 —	E	_													
		-9													
32 —		-													
	F	-10_													
		-													

APPENDIX C - CERTIFICATES OF ANALYSIS

FISHER ENVIRONMENTAL LABORATORIES

FULL RANCE ANALYTICAL SERVICES • SOIL WATER/AIR TESTING • ENVIRONMENTAL COMPLIANCE PACKAGES • 24 HOUR EMERGENCY RESPONSE • CALA ACCREDITED

400 ESNA PARK DRIVE #15 MARKHAM, ONT. L3R 3K2 TEL: 905 475-7755 FAX: 905 475-7718 www.fisherenvironmental.com

Client: Dymon Capital Corp F.E. Job #: 19-2789

Address: 2-1830 Walkley Rd. Project Name: N/A
Ottawa, Ontario Project ID: N/A

 K1H 8K3
 Date Sampled:
 26-Jun-2019

 Tel.:
 Date Received:
 27-Jun-2019

 Fax:
 Date Reported:
 28-Jun-2019

 Email:
 gluckman@dymon.ca
 Location:
 6333 Hurontario

Attn.: Mr. Glen Luckman

Certificate of Analysis

Analyses	Matrix	Quantity	Date Extracted	Date Analyzed	Lab SOP	Method Reference
Metals	Soil	7	28-Jun-19	28-Jun-19	Metals F-18	SM 3125-B
VOCs	Soil	3	27-Jun-19	27-Jun-19	VOCs F-14	SW-846, 8260C
PHCs (F1 & BTEX)	Soil	4	27-Jun-19	27-Jun-19	PHCs F-7	CCME CWS
PHCs (F2 - F4)	Soil	4	27-Jun-19	28-Jun-19	PHCs F-7	CCME CWS
PAHs	Soil	3	27-Jun-19	27-Jun-19	PAHs F-4	SM 6410-B
рН	Soil	2	28-Jun-19	28-Jun-19	pH-EC-SAR F-16	SW-846, 9045D
EC	Soil	7	28-Jun-19	28-Jun-19	pH-EC-SAR F-16	EPA 9050A
SAR	Soil	7	28-Jun-19	28-Jun-19	pH-EC-SAR F-16	EPA 6010C
Moisture Content	Soil	7	N/A	28-Jun-19	Support Procedures F-99	Carter (1993)

Fisher Environmental Laboratories is accredited by CALA (the Canadian Association for Laboratory Accreditation Inc.) for specific parameters as required by Ontario Regulation 153/04. All analytical testing has been performed in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act published by Ontario Ministry of the Environment.

Authorized by:_

Roger Lin, Ph. D., C. Chem. Laboratory Manager Ronggen (Roger) Lin

CHEMIS

Client: Dymon Capital Corp

Certificate of Analysis

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR		
Sample Description:	7 Soil Samples		

Parameter	19-2789-1	19-2789-2	19-2789-3	19-2789-4	19-2789-5					
	BH1-SS1	BH1-SS2	BH2-SS2	BH3-SS1	BH3-SS2	Soil Standards ¹				
	0.00-0.60m	0.75-1.20m	0.75-1.20m	0.00-0.15m	0.75-1.20m					
	Concentration (µg/g)									
Metals in Soil										
Antimony	<1	<1	<1	<1	<1	(50) 40				
Arsenic	1.9	3	1.9	2.3	5.8	18				
Barium	53	52	37	93	73	670				
Beryllium	<2	<2	<2	<2	<2	(10) 8				
Boron	<5	<5	<5	16	9.4	120				
Cadmium	1.4	<1	<1	1.8	<1	1.9				
Chromium	9.2	27	15	24	27	160				
Cobalt	4.2	17	7.6	10	16	(100) 80				
Copper	42	46	21	102	35	(300) 230				
Lead	19	10	<10	24	18	120				
Molybdenum	5.1	<2	<2	<2	<2	40				
Nickel	18	31	17	23	30	(340) 270				
Selenium	<1	<1	<1	<1	1.3	5.5				
Silver	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	(50) 40				
Thallium	<1	<1	<1	<1	<1	3.3				
Uranium	<1	<1	<1	<1	1.1	33				
Vanadium	11	44	26	18	42	86				
Zinc	85	41	<30	108	45	340				

< result obtained was below RL (Reporting Limit).

 $Industrial/Commercial/Community\ Property\ use\ (I/C/C); (\)\ Standard\ value\ in\ brackets\ applies\ to\ medium\ and\ fine\ textured\ soils.$

¹ MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

Certificate of Analysis

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR
Sample Description:	7 Soil Samples

	10.0500 1	10.0500.5		1	
	19-2789-6	19-2789-7			
Parameter	BH4-SS1	BH5-SS1			Soil Standards
	0.00-0.60m	0.15-0.75m			
		Co	oncentration (µg	/g)	
Metals in Soil	·				
Antimony	<1	<1			(50) 40
Arsenic	2.8	3.4			18
Barium	57	47			670
Beryllium	<2	<2			(10) 8
Boron	9.8	7			120
Cadmium	<1	<1			1.9
Chromium	27	27			160
Cobalt	18	18			(100) 80
Copper	29	63			(300) 230
Lead	12	10			120
Molybdenum	<2	<2			40
Nickel	27	32			(340) 270
Selenium	<1	<1			5.5
Silver	< 0.5	< 0.5			(50) 40
Thallium	<1	<1			3.3
Uranium	<1	<1			33
Vanadium	43	42			86
Zinc	37	38			340

< result obtained was below RL (Reporting Limit).

 $Industrial/Commercial/Community\ Property\ use\ (I/C/C); (\)\ Standard\ value\ in\ brackets\ applies\ to\ medium\ and\ fine\ textured\ soils.$

¹ MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

QA/QC Report

Parameter	Blank	RL	LCS	AR	MS	AR
Parameter	(μς	g/g)	Recov	ery (%)	Recovery (%)	
Metals in Soil						
Antimony	<1	1	102	80-120	103	70-130
Arsenic	<1	1	116	80-120	81	70-130
Barium	<5	5	100	80-120	92	70-130
Beryllium	<2	2	96	80-120	97	70-130
Boron	<5	5	98	80-120	113	70-130
Cadmium	<1	1	94	80-120	115	70-130
Chromium	<5	5	106	80-120	90	70-130
Cobalt	<2	2	116	80-120	101	70-130
Copper	<5	5	110	80-120	98	70-130
Lead	<10	10	102	80-120	108	70-130
Molybdenum	<2	2	84	80-120	117	70-130
Nickel	<5	5	86	80-120	109	70-130
Selenium	<1	1	89	80-120	115	70-130
Silver	< 0.5	0.5	88	80-120	103	70-130
Thallium	<1	1	100	80-120	116	70-130
Uranium	<1	1	111	80-120	113	70-130
Vanadium	<10	10	109	80-120	96	70-130
Zinc	<30	30	96	80-120	86	70-130

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

QA/QC Report

_	Duplicate	AR			
Parameter		RPD (%)		<u> </u>	/ <u> </u>
Metals in Soil	'		'		
Antimony	10.7	0-30			
Arsenic	0.4	0-30			
Barium	5.4	0-30			
Beryllium	9.1	0-30			
Boron	1.3	0-30			
Cadmium	9.7	0-30			
Chromium	6.5	0-30			
Cobalt	2.5	0-30			
Copper	9.8	0-30			
Lead	1.8	0-30			
Molybdenum	0.0	0-30			
Nickel	3.4	0-30			
Selenium	0.0	0-30			
Silver	0.0	0-30			
Thallium	0.0	0-30			
Uranium	15.5	0-30			
Vanadium	0.2	0-30			
Zinc	0.8	0-30			

LEGEND:

AR - Acceptable Range

Certificate of Analysis

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR
Sample Description:	7 Soil Samples

	19-2789-1	19-2789-4	19-2789-5						
	BH1-SS1	BH3-SS1	BH3-SS2		Soil Standards ¹				
Parameter	0.00-0.60m	0.00-0.15m	0.75-1.20m		Son Standards				
	0.00 0.00111		oncentration (µg/	/a)					
VOCa in Sail	VOCs in Soil								
	-0.5	ر ۵ 5	-0.5	1	(20) 16				
Acetone Benzene	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02		(28) 16				
Bromodichloromethane	<0.02	<0.02	<0.02		(0.4) 0.32				
Bromoform	<0.05	<0.05	<0.05		(1.7) 0.61				
Bromonethane	<0.05	<0.05	<0.05		0.05				
Carbon Tetrachloride	<0.05	<0.05	<0.05		(1.5) 0.21				
Chlorobenzene	<0.05	<0.05	<0.05		(2.7) 2.4				
Chloroform	<0.05	<0.05	<0.05		(0.18) 0.47				
Dibromochloromethane	<0.05	<0.05	<0.05		13				
1,2-Dichlorobenzene	<0.05	<0.05	<0.05		(8.5) 6.8				
1,3-Dichlorobenzene	<0.05	<0.05	<0.05		(12) 9.6				
1,4-Dichlorobenzene	<0.05	<0.05	<0.05		(0.84) 0.2				
Dichlorodifluoromethane	<0.05	<0.05	<0.05		(25) 16				
1,1-Dichloroethane	<0.05	< 0.05	<0.05		(21) 17				
1,2-Dichloroethane	< 0.05	< 0.05	<0.05		0.05				
1,1-Dichloroethylene	< 0.05	< 0.05	< 0.05		(0.48) 0.064				
c-1,2-Dichloroethylene	<0.05	< 0.05	<0.05		(37) 55				
t-1,2-Dichloroethylene	< 0.05	< 0.05	< 0.05		(9.3) 1.3				
1,2-Dichloropropane	< 0.05	< 0.05	< 0.05		(0.68) 0.16				
1,3-Dichloropropene (cis-+trans-)	< 0.05	< 0.05	< 0.05		(0.21) 0.18				
Ethylbenzene	< 0.05	< 0.05	< 0.05		(19) 9.5				
Ethylene Dibromide	< 0.05	< 0.05	< 0.05		0.05				
Hexane (n)	< 0.05	< 0.05	< 0.05		(88) 46				
Methyl Ethyl Ketone	<0.5	<0.5	<0.5		(88) 70				
Methyl Isobutyl Ketone	<0.5	<0.5	<0.5		(210) 31				
Methyl tert-butyl Ether	< 0.05	< 0.05	< 0.05		(3.2) 11				
Methylene Chloride	< 0.05	< 0.05	< 0.05		(2) 1.6				
Styrene	< 0.05	< 0.05	< 0.05		(43) 34				
1,1,2-Tetrachloroethane	< 0.05	< 0.05	< 0.05		(0.11) 0.087				
1,1,2,2-Tetrachloroethane	< 0.05	< 0.05	< 0.05		(0.094) 0.05				
Tetrachloroethylene	< 0.05	< 0.05	< 0.05		(21) 4.5				
Toluene	< 0.2	< 0.2	< 0.2		(78) 68				
1,1,1-Trichloroethane	< 0.05	< 0.05	< 0.05		(12) 6.1				
1,1,2-Trichloroethane	< 0.05	< 0.05	< 0.05		(0.11) 0.05				
Trichloroethylene	< 0.05	< 0.05	< 0.05		(0.61) 0.91				
Trichlorofluoromethane	< 0.05	< 0.05	< 0.05		(5.8) 4				
Vinyl Chloride	< 0.02	< 0.02	< 0.02		(0.25) 0.032				
Xylenes	< 0.05	< 0.05	< 0.05		(30) 26				
Surrogate Recovery (%)									
1,2-Dichloroethane-d4	130	108	127		50-140				
Toluene-d8	136	124	132		50-140				
4-Bromofluorobenzene	113	95	123		50-140				

< result obtained was below RL (Reporting Limit).

¹ MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

 $Industrial/Commercial/Community\ Property\ use\ (I/C/C); (\)\ Standard\ value\ in\ brackets\ applies\ to\ medium\ and\ fine\ textured\ soils.$

QA/QC Report

Parameter	Blank	RL	LCS	AR	MS	AR
Parameter	(μg	/g)	Recovery (%)		Recovery (%)	
VOCs in Soil						
Acetone	< 0.5	0.5	134	50-140	76	50-140
Benzene	< 0.02	0.02	104	60-130	114	50-140
Bromodichloromethane	< 0.05	0.05	109	50-140	107	50-140
Bromoform	< 0.05	0.05	117	60-130	84	50-140
Bromomethane	< 0.05	0.05	119	50-140	79	50-140
Carbon Tetrachloride	< 0.05	0.05	103	60-130	110	50-140
Chlorobenzene	< 0.05	0.05	95	60-130	95	50-140
Chloroform	< 0.05	0.05	106	60-130	126	50-140
Dibromochloromethane	< 0.05	0.05	114	60-130	94	50-140
1,2-Dichlorobenzene	< 0.05	0.05	119	60-130	127	50-140
1,3-Dichlorobenzene	< 0.05	0.05	123	60-130	103	50-140
1,4-Dichlorobenzene	< 0.05	0.05	108	60-130	130	50-140
Dichlorodifluoromethane	< 0.05	0.05	119	50-140	127	50-140
1,1-Dichloroethane	< 0.05	0.05	109	60-130	124	50-140
1,2-Dichloroethane	< 0.05	0.05	109	60-130	111	50-140
1,1-Dichloroethylene	< 0.05	0.05	99	60-130	105	50-140
c-1,2-Dichloroethylene	< 0.05	0.05	104	60-130	125	50-140
t-1,2-Dichloroethylene	< 0.05	0.05	107	60-130	128	50-140
1,2-Dichloropropane	< 0.05	0.05	108	60-130	104	50-140
1,3-Dichloropropene (cis-+trans-)	< 0.05	0.05	105	60-130	116	50-140
Ethylbenzene	< 0.05	0.05	103	60-130	103	50-140
Ethylene Dibromide	< 0.05	0.05	121	60-130	94	50-140
Hexane (n)	< 0.05	0.05	126	60-130	69	50-140
Methyl Ethyl Ketone	< 0.5	0.5	115	50-140	71	50-140
Methyl Isobutyl Ketone	< 0.5	0.5	76	50-140	108	50-140
Methyl tert-butyl Ether	< 0.05	0.05	74	60-130	81	50-140
Methylene Chloride	< 0.05	0.05	103	60-130	108	50-140
Styrene	< 0.05	0.05	109	60-130	94	50-140
1,1,1,2-Tetrachloroethane	< 0.05	0.05	104	60-130	104	50-140
1,1,2,2-Tetrachloroethane	< 0.05	0.05	111	60-130	112	50-140
Tetrachloroethylene	< 0.05	0.05	105	60-130	97	50-140
Toluene	< 0.2	0.2	119	60-130	107	50-140
1,1,1-Trichloroethane	< 0.05	0.05	106	60-130	115	50-140
1,1,2-Trichloroethane	< 0.05	0.05	105	60-130	96	50-140
Trichloroethylene	< 0.05	0.05	111	60-130	108	50-140
Trichlorofluoromethane	< 0.05	0.05	108	50-140	86	50-140
Vinyl Chloride	< 0.02	0.02	103	50-140	117	50-140
Xylenes	< 0.05	0.05	110	60-130	101	50-140
Surrogates						
Parameter	Recovery (%)	AR	Recovery (%)	AR	Recovery (%)	AR
1,2-Dichloroethane-d4	95	60-140	65	60-140	85	60-140
Toluene-d8	113	60-140	108	60-140	76	60-140
4-Bromofluorobenzene	93	60-140	116	60-140	94	60-140

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

QA/QC Report

	Duplicate	AR			
Parameter	RPD	(%)			1
VOCs in Soil			<u>"</u>		
Acetone	0.0	0-50			
Benzene	10	0-50			
Bromodichloromethane	0.0	0-50			
Bromoform	0.0	0-50			
Bromomethane	0.0	0-50			
Carbon Tetrachloride	0.0	0-50			
Chlorobenzene	0.0	0-50			
Chloroform	0.0	0-50			
Dibromochloromethane	0.0	0-50			
1,2-Dichlorobenzene	0.0	0-50			
1,3-Dichlorobenzene	0.0	0-50			
1,4-Dichlorobenzene	0.0	0-50			
Dichlorodifluoromethane	0.0	0-50			
1,1-Dichloroethane	0.0	0-50			
1,2-Dichloroethane	0.0	0-50			
1,1-Dichloroethylene	0.0	0-50			
c-1,2-Dichloroethylene	0.0	0-50			
t-1,2-Dichloroethylene	0.0	0-50			
1,2-Dichloropropane	0.0	0-50			
1,3-Dichloropropene (cis-+trans-)	11	0-50			
Ethylbenzene	0.0	0-50			
Ethylene Dibromide	0.0	0-50			
Hexane (n)	0.0	0-50			
Methyl Ethyl Ketone	0.0	0-50			
Methyl Isobutyl Ketone	0.0	0-50			
Methyl tert-butyl Ether	0.0	0-50			
Methylene Chloride	0.0	0-50			
Styrene	0.0	0-50			
1,1,1,2-Tetrachloroethane	0.0	0-50			
1,1,2,2-Tetrachloroethane	0.0	0-50			
Tetrachloroethylene	0.0	0-50			
Toluene	11	0-50			
1,1,1-Trichloroethane	0.0	0-50			
1,1,2-Trichloroethane	0.0	0-50			
Trichloroethylene	0.0	0-50			
Trichlorofluoromethane	0.0	0-50	 		
Vinyl Chloride	0.0	0-50			
Xylenes	12	0-50			
Surrogates	1		·	-	
Parameter	Recovery (%)	AR			
1,2-Dichloroethane-d4	95	60-140			
Toluene-d8	102	60-140			
4-Bromofluorobenzene	102	60-140			

LEGEND:

AR - Acceptable Range

Certificate of Analysis

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR
Sample Description:	7 Soil Samples

	19-2789-1	19-2789-3	19-2789-4	19-2789-5				
Donomotor	BH1-SS1	BH2-SS2	BH3-SS1	BH3-SS2	Soil Standards ¹			
Parameter	0.00-0.60m	0.75-1.20m	0.00-0.15m	0.75-1.20m				
			Concentra	tion (μg/g)				
BTEX in Soil								
Benzene	< 0.02	< 0.02	< 0.02	< 0.02	(0.4) 0.32			
Toluene	< 0.2	< 0.2	< 0.2	< 0.2	(78) 68			
Ethylbenzene	< 0.05	< 0.05	< 0.05	< 0.05	(19) 9.5			
Xylenes	< 0.05	< 0.05	< 0.05	< 0.05	(30) 26			
PHCs (F ₁ -F ₄) in Soil								
$F1_{-BTEX}(C_6 - C_{10})$	<10	<10	<10	<10	(65) 55			
F2 (C ₁₀ - C ₁₆)	35	51	71	65	(250) 230			
F3 (C ₁₆ - C ₃₄)	< 50	78	1660	63	(2,500) 1,700			
$F4 (C_{34}-C_{50})$	< 50	< 50	253	< 50	(6,600) 3,300			
Chromatogram descends to baseline by nC50 ? (Yes/No)	Yes	Yes	Yes	Yes				
Surrogate Recovery (%)	Surrogate Recovery (%)							
1,2-Dichloroethane-d4	130	106	108	127	60-140			
Toluene-d8	136	114	124	132	60-140			
4-Bromofluorobenzene	113	88	95	123	60-140			

 F_{4G} (gravimetric heavy hydrocarbons) cannot be added to the C_6 to C_{50} hydrocarbons.

 $Industrial/Commercial/Community\ Property\ use\ (I/C/C); (\)\ Standard\ value\ in\ brackets\ applies\ to\ medium\ and\ fine\ textured\ soils.$

< result obtained was below RL (Reporting Limit).

¹ MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

QA/QC Report

Parameter	Blank	RL	LCS	AR	MS	AR		
Parameter	(μg	ı/g)	Recov	ery (%)	Recov	ery (%)		
BTEX in Soil								
Benzene	< 0.02	0.02	104	60-130	114	50-140		
Toluene	< 0.2	0.2	119	60-130	107	50-140		
Ethylbenzene	< 0.05	0.05	103	60-130	103	50-140		
Xylenes	< 0.05	0.05	110	60-130	101	50-140		
PHCs (F ₁ -F ₄) in Soil								
$F1_{-BTEX}(C_6 - C_{10})$	<10	10	119	80-120	107	60-140		
F2 (C ₁₀ - C ₁₆)	<10	10	91	80-120	76	60-140		
F3 (C ₁₆ - C ₃₄)	< 50	50	94	80-120	79	60-140		
F4 (C ₃₄ -C ₅₀)	< 50	50	92	80-120	61	60-140		
Surrogates								
Parameter	Recovery (%)	AR	Recovery (%)	AR	Recovery (%)	AR		
1,2-Dichloroethane-d4	95	60-140	65	60-140	85	60-140		
Toluene-d8	113	60-140	108	60-140	76	60-140		
4-Bromofluorobenzene	93	60-140	116	60-140	94	60-140		

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

AR - Acceptable Range

BTEX should be subtracted from F_1 , Naphthalene from F_2 and selected PAHs from F_3 if BTEX/PAHs are analyzed, then report $F_{1\text{-BTEX}}$, $F_{2\text{-Naph.}}$ and $F_{3\text{-PAH}}$. nC_{50} response factor was within 70% of $nC_{10}+nC_{16}+nC_{34}$ average.

QA/QC Report

Donom et en	Duplicate	AR						
Parameter	RPD	(%)						
BTEX in Soil	BTEX in Soil							
Benzene	10	0-50						
Toluene	11	0-50						
Ethylbenzene	11	0-50						
Xylenes	12	0-50						
PHCs (F ₁ -F ₄) in Soil								
$F1_{-BTEX}(C_6 - C_{10})$	16	0-30						
F2 (C ₁₀ - C ₁₆)	14	0-30						
F3 (C ₁₆ - C ₃₄)	12	0-30						
F4 (C ₃₄ -C ₅₀)	28	0-30						
Surrogates								
Parameter	Recovery (%)	AR						
1,2-Dichloroethane-d4	95	60-140						
Toluene-d8	102	60-140						
4-Bromofluorobenzene	102	60-140						

LEGEND:

AR - Acceptable Range

Certificate of Analysis

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR
Sample Description:	7 Soil Samples

	19-2789-1	19-2789-5	19-2789-7		
Da	BH1-SS1	BH3-SS2	BH5-SS1		Soil Standards ¹
Parameter	0.00-0.60m	0.75-1.20m	0.15-0.75m		
			Concentra	tion (µg/g)	·
PAHs in Soil					
Naphthalene	< 0.05	< 0.05	< 0.05		(28) 9.6
2-Methylnaphthalene	< 0.05	< 0.05	< 0.05		(85) 76
1-Methylnaphthalene	< 0.05	< 0.05	< 0.05		(83) 70
Acenaphthylene	< 0.05	< 0.05	< 0.05		(0.17) 0.15
Acenaphthene	< 0.05	< 0.05	< 0.05		96
Fluorene	< 0.05	< 0.05	< 0.05		(69) 62
Phenanthrene	0.12	0.29	0.26		(16) 12
Anthracene	0.09	0.1	0.08		(0.74) 0.67
Fluoranthene	0.08	0.49	0.27		9.6
Pyrene	0.07	0.4	0.22		96
Benzo [a] anthracene	0.07	0.3	0.17		0.96
Chrysene	0.09	0.23	0.19		9.6
Benzo [b] fluoranthene	0.08	0.21	0.15		0.96
Benzo [k] fluoranthene	0.06	0.16	0.11		0.96
Benzo [a] pyrene	0.06	0.4	0.11		0.3
Indeno [1,2,3-cd] pyrene	0.15	0.26	0.21		(0.95) 0.76
Dibenzo [a,h] anthracene	0.12	0.13	0.14		0.1
Benzo [g,h,i] perylene	0.19	0.21	0.14		9.6
Surrogate Recovery (%)					
Naphthalene-d8	106	93	91		50-140
Phenanthrene-d10	58	64	66		50-140
Chrysene-d12	58	60	59		50-140

< result obtained was below RL (Reporting Limit).

¹ MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

 $Industrial/Commercial/Community\ Property\ use\ (I/C/C); (\)\ Standard\ value\ in\ brackets\ applies\ to\ medium\ and\ fine\ textured\ soils.$

QA/QC Report

Doromotor	Blank	RL	LCS	AR	MS	AR
Parameter	(μg/g)		Recov	ery (%)	Recovery (%)	
PAHs in Soil			,			
Naphthalene	< 0.05	0.05	116	50-140	105	50-140
2-Methylnaphthalene	< 0.05	0.05	102	50-140	83	50-140
1-Methylnaphthalene	< 0.05	0.05	93	50-140	103	50-140
Acenaphthylene	< 0.05	0.05	104	50-140	83	50-140
Acenaphthene	< 0.05	0.05	108	50-140	85	50-140
Fluorene	< 0.05	0.05	95	50-140	113	50-140
Phenanthrene	< 0.05	0.05	107	50-140	102	50-140
Anthracene	< 0.05	0.05	100	50-140	91	50-140
Fluoranthene	< 0.05	0.05	95	50-140	95	50-140
Pyrene	< 0.05	0.05	93	50-140	91	50-140
Benzo [a] anthracene	< 0.05	0.05	109	50-140	109	50-140
Chrysene	< 0.05	0.05	98	50-140	99	50-140
Benzo [b] fluoranthene	< 0.05	0.05	103	50-140	87	50-140
Benzo [k] fluoranthene	< 0.05	0.05	102	50-140	93	50-140
Benzo [a] pyrene	< 0.05	0.05	112	50-140	97	50-140
Indeno [1,2,3-cd] pyrene	< 0.1	0.1	119	50-140	109	50-140
Dibenzo [a,h] anthracene	< 0.1	0.1	114	50-140	102	50-140
Benzo [g,h,i] perylene	< 0.1	0.1	111	50-140	105	50-140
Surrogates						
Parameter	Recovery (%)	AR	Recovery (%)	AR	Recovery (%)	AR
Naphthalene-d8	107	50-140	133	50-140	103	50-140
Phenanthrene-d10	82	50-140	70	50-140	68	50-140
Chrysene-d12	115	50-140	87	50-140	83	50-140

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

QA/QC Report

Parameter	Duplicate	AR			
Parameter	RPD	(%)			
PAHs in Soil					
Naphthalene	0.0	0-40			
2-Methylnaphthalene	0.0	0-40			
1-Methylnaphthalene	0.0	0-40			
Acenaphthylene	0.0	0-40			
Acenaphthene	0.0	0-40			
Fluorene	0.0	0-40			
Phenanthrene	0.0	0-40			
Anthracene	0.0	0-40			
Fluoranthene	0.0	0-40			
Pyrene	0.0	0-40			
Benzo [a] anthracene	0.0	0-40			
Chrysene	0.0	0-40			
Benzo [b] fluoranthene	0.0	0-40			
Benzo [k] fluoranthene	0.0	0-40			
Benzo [a] pyrene	0.0	0-40			
Indeno [1,2,3-cd] pyrene	0.0	0-40			
Dibenzo [a,h] anthracene	0.0	0-40			
Benzo [g,h,i] perylene	0.0	0-40			
Surrogates					
Parameter	Recovery (%)	AR			
Naphthalene-d8	97	50-140			
Phenanthrene-d10	77	50-140			
Chrysene-d12	86	50-140			

LEGEND:

AR - Acceptable Range

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR
Sample Description:	7 Soil Samples

	19-2789-2	19-2789-6		
Parameter	BH1-SS2	BH4-SS1		Soil Standards *
	0.75-1.20m	0.00-0.60m		
pH (pH unit)	7.49	7.84		(5-11) 5-9

^{*} Surface soil pH value from 5 - 9, Sub-surface soil pH value from 5-11.

QA/QC Report

Parameter	LCS	AR	Duplicate	AR		
Parameter			Absolute Difference (pH Unit)			
pH (pH unit)	7.00	6.90-7.20	0.05	< 0.3		

LEGEND:

LCS - Laboratory Control Sample

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR
Sample Description:	7 Soil Samples

	19-2789-1	19-2789-2	19-2789-3	19-2789-4	19-2789-5	
Parameter	BH1-SS1	BH1-SS2	BH2-SS2	BH3-SS1	BH3-SS2	Soil Standards ¹
	0.00-0.60m	0.75-1.20m	0.75-1.20m	0.00-0.15m	0.75-1.20m	
EC (mS/cm)	0.25	0.84	1.51	0.34	0.33	1.4

	19-2789-6	19-2789-7		
Parameter	BH4-SS1	BH5-SS1		Soil Standards ¹
	0.00-0.60m	0.15-0.75m		
EC (mS/cm)	0.40	0.76		1.4

¹ MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

 $Industrial/Commercial/Community\ Property\ use\ (\textbf{I/C/C}).$

QA/QC Report

Parameter	Blank	RL	LCS	AR	Duplicate	AR
Parameter			Recovery (%)		RPD (%)	
EC (mS/cm)	< 0.01	0.01	104	90-110	2.3	0-10

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

AR - Acceptable Range

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR
Sample Description:	7 Soil Samples

	19-2789-1	19-2789-2	19-2789-3	19-2789-4	19-2789-5	
Parameter	BH1-SS1	BH1-SS2	BH2-SS2	BH3-SS1	BH3-SS2	Soil Standards ¹
	0.00-0.60m	0.75-1.20m	0.75-1.20m	0.00-0.15m	0.75-1.20m	
SAR (no unit)	0.90	2.7	5.3	2.6	1	12

	19-2789-6	19-2789-7		
Parameter	BH4-SS1	BH5-SS1		Soil Standards ¹
	0.00-0.60m	0.15-0.75m		
SAR (no unit)	1.7	2.6		12

Bold: Result exceeds limit noted in Soil Standards (Table 3, I/C/C).

 $Industrial/Commercial/Community\ Property\ use\ (\textbf{I/C/C}).$

QA/QC Report

Parameter	LCS	AR	Duplicate	AR	
Parameter			RPD (%)		
SAR (no unit)	0.39	0.30-0.50	1.2	0-30	

LEGEND:

LCS - Laboratory Control Sample

AR - Acceptable Range

¹ MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

Client: Dymon Capital Corp F.E. Job #: 19-2789

Certificate of Analysis

Analysis Requested:	Metals, VOCs, PHCs, PAHs, pH, EC, SAR
Sample Description:	7 Soil Samples

	19-2789-1	19-2789-2	19-2789-3	19-2789-4	19-2789-5	19-2789-6
Parameter	BH1-SS1	BH1-SS2	BH2-SS2	BH3-SS1	BH3-SS2	BH4-SS1
	0.00-0.60m	0.75-1.20m	0.75-1.20m	0.00-0.15m	0.75-1.20m	0.00-0.60m
Moisture Content (%)	13	18	16	4	26	16

	19-2789-7			
Parameter	BH5-SS1			
	0.15-0.75m			
Moisture Content (%)	16			

QA/QC Report

Parameter Blank		RL	LCS	LCS AR		Duplicate AR	
Parameter			Recov	ery (%)	RPD (%)		
Moisture Content (%)	< 0.1	0.1	99	70-130	1.2	0-20	

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

AR - Acceptable Range

FISHER ENVIRONMENTAL LABORATORIES

FULL RANGE ANALYTICAL SERVICES • SOIL/WATER/AIR TESTING • ENVIRONMENTAL COMPLIANCE PACKAGES • 24 HOUR EMERGENCY RESPONSE • CALA ACCREDITED

400 ESNA PARK DRIVE #15 MARKHAM, ONT. L3R 3K2 TEL: 905 475-7755 FAX: 905 475-7718

www.fisherenvironmental.com

Client: Dymon Capital Corp F.E. Job #: 19-2790

Address: 2-1830 Walkley Rd. Project Name: N/A
Ottawa, Ontario Project ID: N/A

Ottawa, Ontario **Project ID:** N/A
K1H 8K3 **Date Sampled:** 27-Jun-2019 **Date Received:** 27-Jun-2019

Tel.: Date Received: 27-Jun-2019
Fax: Date Reported: 28-Jun-2019
Email: gluckman@dymon.ca Location: 6333 Hurontario

Attn.: Mr. Glen Luckman

Certificate of Analysis

Analyses	Matrix	Quantity	Date Extracted	Date Analyzed	Lab SOP	Method Reference
VOCs	Water	4	N/A	27-Jun-19	VOCs F-6	SM 6200-B
PHCs (F1 & BTEX)	Water	4	N/A	27-Jun-19	PHCs F-7	CCME CWS
PHCs (F2 - F4)	Water	4	27-Jun-19	28-Jun-19	PHCs F-7	CCME CWS

Fisher Environmental Laboratories is accredited by CALA (the Canadian Association for Laboratory Accreditation Inc.) for specific parameters as required by Ontario Regulation 153/04. All analytical testing has been performed in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act published by Ontario Ministry of the Environment.

Authorized by:

Roger Lin, Ph. D., C. Chem. Laboratory Manager Ronggen (Roger) Lin

CHEMIST

Analysis Requested:	VOCs, PHCs
Sample Description:	4 Water Samples

	19-2790-1	19-2790-2	19-2790-3	19-2790-4					
	MW1	MW2	MW3	MW1		Ground Water			
Parameter				Duplicate		Standards ¹			
	Concentration (μ g/L)								
VOCs in Water				(F-8/-)					
Acetone	<30	<30	<30	<30		130000			
Benzene	<0.5	<0.5	<0.5	<0.5		(430) 44			
Bromodichloromethane	<2	<2	<2	<2		85000			
Bromoform	<5	<5	<5	<5		(770) 380			
Bromomethane	< 0.5	<0.5	<0.5	<0.5		(56) 5.6			
Carbon Tetrachloride	<0.2	<0.2	< 0.2	<0.2		(8.4) 0.79			
Chlorobenzene	<0.5	<0.5	< 0.5	<0.5		630			
Chloroform	<1	<1	<1	<1		(22) 2.4			
Dibromochloromethane	<2	<2	<2	<2		82000			
1,2-Dichlorobenzene	< 0.5	<0.5	< 0.5	<0.5		(9600) 4600			
1,3-Dichlorobenzene	<0.5	<0.5	<0.5	<0.5		9600			
1,4-Dichlorobenzene	<0.5	<0.5	<0.5	<0.5		(67) 8			
Dichlorodifluoromethane	<2	<2	<2	<2		4400			
1,1-Dichloroethane	<0.5	<0.5	<0.5	<0.5		(3100) 320			
1,2-Dichloroethane	<0.5	<0.5	<0.5	<0.5		(12) 1.6			
1,1-Dichloroethylene	<0.5	<0.5	<0.5	<0.5		(17) 1.6			
c-1,2-Dichloroethylene	<0.5	<0.5	<0.5	<0.5		(17) 1.6			
t-1,2-Dichloroethylene	<0.5	<0.5	<0.5	<0.5		(17) 1.6			
1,2-Dichloropropane	<0.5	<0.5	<0.5	<0.5		(140) 16			
1,3-Dichloropropene (cis-+trans-)	<0.5	<0.5	<0.5	<0.5		(45) 5.2			
Ethylbenzene	<0.5	<0.5	<0.5	<0.5		2300			
Ethylene Dibromide	<0.2	<0.2	<0.2	<0.2		(0.83) 0.25			
Hexane (n)	<5	<5	<5	<5		(520) 51			
Methyl Ethyl Ketone	<20	<20	<20	<20		(1500000)470000			
Methyl Isobutyl Ketone	<20	<20	<20	<20		(580000)140000			
Methyl tert-butyl Ether	<2	<2	<2	<2		(1400) 190			
Methylene Chloride	<5	<5	<5	<5		(5500) 610			
Styrene	<0.5	<0.5	<0.5	<0.5		(9100) 1300			
1,1,1,2-Tetrachloroethane	<0.5	<0.5	<0.5	<0.5		(28) 3.3			
1,1,2,2-Tetrachloroethane	<0.5	<0.5	< 0.5	<0.5		(15) 3.2			
Tetrachloroethylene	<0.5	<0.5	< 0.5	<0.5		(17) 1.6			
Toluene	< 0.5	<0.5	<0.5	<0.5		18000			
1,1,1-Trichloroethane	<0.5	<0.5	<0.5	<0.5		(6700) 640			
1,1,2-Trichloroethane	<0.5	<0.5	<0.5	<0.5		(30) 4.7			
Trichloroethylene	<0.5	<0.5	<0.5	<0.5		(17) 1.6			
Trichlorofluoromethane	<5	<5	<5	<5		2500			
Vinyl Chloride	<0.5	<0.5	< 0.5	<0.5		(1.7) 0.5			
Xylenes	< 0.5	<0.5	<0.5	<0.5		4200			
Surrogate Recovery (%)					ı <u>. </u>				
Bromochloromethane	128	71	95	121		60-140			
1,4-Difluorobenzene	123	70	92	114		60-140			
1,4-Dichlorobutane	123	81	97	123		60-140			

< result obtained was below RL (Reporting Limit).

¹ MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

All Types of Property Use. () Standard value in brackets applies to medium and fine textured soils.

QA/QC Report

Parameter	Blank	RL	LCS	AR	MS	AR
Parameter	(ug	/L)	Recov	ery (%)	Recove	ery (%)
VOCs in Water						
Acetone	<30	30	71	50-140	91	50-140
Benzene	< 0.5	0.5	109	60-130	100	50-140
Bromodichloromethane	<2	2	98	50-140	108	50-140
Bromoform	<5	5	96	60-130	97	50-140
Bromomethane	< 0.5	0.5	87	50-140	114	50-140
Carbon Tetrachloride	< 0.2	0.2	110	60-130	91	50-140
Chlorobenzene	< 0.5	0.5	110	60-130	84	50-140
Chloroform	<1	1	97	60-130	116	50-140
Dibromochloromethane	<2	2	96	60-130	107	50-140
1,2-Dichlorobenzene	< 0.5	0.5	107	60-130	88	50-140
1,3-Dichlorobenzene	< 0.5	0.5	105	60-130	117	50-140
1,4-Dichlorobenzene	< 0.5	0.5	106	60-130	115	50-140
Dichlorodifluoromethane	<2	2	106	50-140	95	50-140
1,1-Dichloroethane	< 0.5	0.5	100	60-130	121	50-140
1,2-Dichloroethane	< 0.5	0.5	103	60-130	82	50-140
1,1-Dichloroethylene	< 0.5	0.5	108	60-130	73	50-140
c-1,2-Dichloroethylene	< 0.5	0.5	107	60-130	125	50-140
t-1,2-Dichloroethylene	< 0.5	0.5	104	60-130	87	50-140
1,2-Dichloropropane	< 0.5	0.5	105	60-130	109	50-140
1,3-Dichloropropene (cis-+trans-)	< 0.5	0.5	116	60-130	118	50-140
Ethylbenzene	< 0.5	0.5	95	60-130	89	50-140
Ethylene Dibromide	< 0.2	0.2	113	60-130	118	50-140
Hexane (n)	<5	5	111	60-130	87	50-140
Methyl Ethyl Ketone	<20	20	102	50-140	71	50-140
Methyl Isobutyl Ketone	<20	20	110	50-140	118	50-140
Methyl tert-butyl Ether	<2	2	117	60-130	83	50-140
Methylene Chloride	<5	5	96	60-130	131	50-140
Styrene	< 0.5	0.5	105	60-130	82	50-140
1,1,1,2-Tetrachloroethane	< 0.5	0.5	118	60-130	79	50-140
1,1,2,2-Tetrachloroethane	< 0.5	0.5	105	60-130	108	50-140
Tetrachloroethylene	< 0.5	0.5	84	60-130	92	50-140
Toluene	< 0.5	0.5	103	60-130	101	50-140
1,1,1-Trichloroethane	< 0.5	0.5	102	60-130	100	50-140
1,1,2-Trichloroethane	< 0.5	0.5	89	60-130	117	50-140
Trichloroethylene	< 0.5	0.5	108	60-130	117	50-140
Trichlorofluoromethane	<5	5	104	50-140	74	50-140
Vinyl Chloride	< 0.5	0.5	107	50-140	78	50-140
Xylenes	< 0.5	0.5	106	60-130	106	50-140
Surrogates						
Parameter	Recovery (%)	AR	Recovery (%)	AR	Recovery (%)	AR
Bromocholoromethane	94	60-140	90	60-140	115	60-140
1,4-Difluorobenzene	85	60-140	82	60-140	109	60-140
1,4-Dichlorobutane	96	60-140	98	60-140	122	60-140

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike
AR - Acceptable Range

QA/QC Report

Doromotor	Duplicate	AR			
Parameter	RPD	(%)			
VOCs in Water			,		
Acetone	0.0	0-30			
Benzene	0.0	0-30			
Bromodichloromethane	0.0	0-30			
Bromoform	0.0	0-30			
Bromomethane	0.0	0-30			
Carbon Tetrachloride	0.0	0-30			
Chlorobenzene	0.0	0-30			
Chloroform	0.0	0-30			
Dibromochloromethane	0.0	0-30			
1,2-Dichlorobenzene	0.0	0-30			
1,3-Dichlorobenzene	0.0	0-30			
1,4-Dichlorobenzene	0.0	0-30			
Dichlorodifluoromethane	0.0	0-30			
1,1-Dichloroethane	0.0	0-30			
1,2-Dichloroethane	0.0	0-30			
1,1-Dichloroethylene	0.0	0-30			
c-1,2-Dichloroethylene	1	0-30			
t-1,2-Dichloroethylene	0.0	0-30			
1,2-Dichloropropane	0.0	0-30			
1,3-Dichloropropene (cis-+trans-)	0.0	0-30			
Ethylbenzene	0.0	0-30			
Ethylene Dibromide	0.0	0-30			
Hexane (n)	0.0	0-30			
Methyl Ethyl Ketone	0.0	0-30			
Methyl Isobutyl Ketone	0.0	0-30			
Methyl tert-butyl Ether	0.0	0-30			
Methylene Chloride	0.0	0-30			
Styrene Styrene	0.0	0-30			
1,1,1,2-Tetrachloroethane	0.0	0-30			
1,1,2,2-Tetrachloroethane	0.0	0-30			
Tetrachloroethylene	0.0	0-30			
Toluene	0.0	0-30			
1,1,1-Trichloroethane	0.0	0-30			
1,1,2-Trichloroethane	0.0	0-30			
Trichloroethylene	7	0-30			
Trichlorofluoromethane	0.0	0-30			
Vinyl Chloride	0.0	0-30			
Xylenes	0.0	0-30			
Surrogates	B (2/2)		<u> </u>		
Parameter	Recovery (%)	AR			
Bromocholoromethane	126	60-140			
1,4-Difluorobenzene	109	60-140			
1,4-Dichlorobutane	139	60-140			

LEGEND:

AR - Acceptable Range

Certificate of Analysis

Analysis Requested:	VOCs, PHCs
Sample Description:	4 Water Samples

Parameter	19-2790-1 MW1	19-2790-2 MW2	19-2790-3 MW3	19-2790-4 MW1 Duplicate		Ground Water Standards ¹		
	Concentration (μ g/L)							
BTEX in Water								
Benzene	< 0.5	< 0.5	< 0.5	< 0.5		(430) 44		
Toluene	< 0.5	< 0.5	< 0.5	< 0.5		18000		
Ethylbenzene	< 0.5	< 0.5	< 0.5	< 0.5		2300		
Xylenes	< 0.5	< 0.5	< 0.5	< 0.5		4200		
PHCs (F1-F4) in Water								
$F1_{-BTEX}(C_6 - C_{10})$	<25	<25	<25	<25		750		
F2 (C ₁₀ - C ₁₆)	<100	<100	<100	<100		150		
F3 (C ₁₆ - C ₃₄)	<100	<100	130	<100		500		
F4 (>C ₃₄)	<100	<100	<100	<100		500		
Chromatogram descends to baseline by nC50 ? (Yes/No)	Yes	Yes	Yes	Yes				
Surrogate Recovery (%)								
Bromochloromethane	128	71	95	121		60-140		
1,4-Difluorobenzene	123	70	92	114		60-140		
1,4-Dichlorobutane	123	81	97	123		60-140		

 F_{4G} (gravimetric heavy hydrocarbons) cannot be added to the C_6 to C_{50} hydrocarbons.

< result obtained was below RL (Reporting Limit).

 $^{^{1}\,}MOE - Soil, Ground\ Water\ and\ Sediment\ Standards\ for\ Use\ Under\ Part\ XV.1\ of\ the\ Environmental\ Protection\ Act,\ April\ 15,\ 2011.$

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

 $All\ Types\ of\ Property\ Use.\ (\)\ Standard\ value\ in\ brackets\ applies\ to\ medium\ and\ fine\ textured\ soils.$

QA/QC Report

Parameter	Blank	RL	LCS	AR	MS	AR	
	(ug/L)		Recovery (%)		Recovery (%)		
BTEX in Water							
Benzene	< 0.02	0.02	112	60-130	74	50-140	
Toluene	< 0.2	0.2	83	60-130	105	50-140	
Ethylbenzene	< 0.05	0.05	98	60-130	96	50-140	
Xylenes	< 0.05	0.05	103	60-130	133	50-140	
PHC (F1-F4) in Water							
$F1_{-BTEX}(C_6 - C_{10})$	<10	10	83	80-120	105	60-140	
F2 (C ₁₀ - C ₁₆)	<10	10	107	80-120	76	60-140	
F3 (C ₁₆ - C ₃₄)	< 50	50	101	80-120	74	60-140	
F4 (>C ₃₄)	< 50	50	117	80-120	61	60-140	
Surrogates							
Parameter	Recovery (%)	AR	Recovery (%)	AR	Recovery (%)	AR	
Bromochloromethane	89	60-140	114	60-140	122	60-140	
1,4-Difluorobenzene	91	60-140	119	60-140	114	60-140	
1,4-Dichlorobutane	87	60-140	103	60-140	119	60-140	

LEGEND:

RL - Reporting Limit LCS - Laboratory Control Sample

MS - Matrix Spike

QA/QC Report

Parameter	Duplicate	AR				
	RPD (%)					
BTEX in Water						
Benzene	3	0-30				
Toluene	2	0-30				
Ethylbenzene	2	0-30				
Xylenes	3	0-30				
PHC (F1-F4) in Water						
$F1_{-BTEX}(C_6 - C_{10})$	9	0-30				
F2 (C ₁₀ - C ₁₆)	25	0-30				
F3 (C ₁₆ - C ₃₄)	29	0-30				
F4 (>C ₃₄)	0.0	0-30				
Surrogates						
Parameter	Recovery (%)	AR				
Bromochloromethane	118	60-140				
1,4-Difluorobenzene	122	60-140				
1,4-Dichlorobutane	124	60-140				

LEGEND:

AR - Acceptable Range RPD - Relative Percent Difference