

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT CLASS ENVIRONMENTAL ASSESSMENT STUDY NINTH LINE FROM EGLINTON AVENUE WEST TO DERRY ROAD WEST CITY OF MISSISSAUGA, ONTARIO

Report

to

HDR

Cecile Ritchie Geotechnical EIT

Mark Farrant., P.Eng. Senior Geotechnical Engineer

7

Weiss Mehdawi, P.Eng. Principal, Review Engineer

Date: April 9, 2021 File: 27269

TABLE OF CONTENTS

1	INT	ROD	UCTION	1
2	SIT	E DE	SCRIPTION	1
3	SIT	E IN	VESTIGATION AND FIELD TESTING	1
	3.1 F	Field	Investigation	1
	3.2 L	_abor	atory Testing	2
4	SUI	MMA	RY OF SITE CONDITIONS	3
	4.1	Surfa	ce Conditions	3
	4.1.	.1	Geological Conditions	3
	4.1.	.2	Surface Drainage	4
	4.1.	.3	Pavement Condition	4
	4.1.	.4	Topsoil Thickness	4
	4.2 F	Paver	ment Structure	4
	4.3 F	Fill		5
	4.4	Silty (Clay	5
	4.5	Silty (Clay Till	6
	4.6	Silty S	Sand to Sandy Silt Till	7
	4.7	Sand	to Sand and Silt	8
	4.8	Shale		9
	4.9	Grour	ndwater	9
	4.10 (Chem	nical Analysis1	0
5	PA\	∨EME	ENT EVALUATION AND DESIGN1	1
	5.1	Gene	ral1	1
	5.2	Traffic	c Analysis1	1
	5.3	New I	Pavement Design Analysis1	2
	5.3.	.1	AASHTO Design Procedure	2
	5.3.	.2	City of Mississauga Design Requirements	2
	5.4 F	Paver	ment Rehabilitation1	2
	5.4.	.1	Functional Requirements1	2
	5.4.	.2	Structural Requirements	3
	5.4.	.3	Full Depth Asphalt Replacement	3
	5.4.	.4	Pavement Resurfacing with Base Repairs1	4
6	PRI	ELIM	INARY GEOTECHNICAL RECOMMENDATIONS 1	4
	6.1 N	Vinth	Line Rehabilitation1	4
	6.1.	.1	Pavement Widening Areas	5
	62 F	Paver	ment Materials 1	5

	6.	2.1	New Hot Mix Asphalt	15
	6.	2.2	New Granular Material	16
	6.3	Sub	grade Preparation	16
	6.4	Pave	ement Drainage	16
	6.5	Culv	ert Structures	17
	6.	5.1	Foundation Design, Bedding and Subgrade Preparation	18
	6.	5.2	Frost Cover	20
	6.	5.3	Backfill and Lateral Earth Pressures	20
	6.	5.4	Erosion and Scour Protection	21
	6.6	Exca	avation and Groundwater Control	22
	6.7	Stori	m Sewer Installation – Trenching/Pipe Bedding	23
	6.8	Man	agement of Excess Materials	23
	6.9	Cons	struction Inspection and Testing	24
7	CI	LOSU	IRE	24

Statement of Limitations and Conditions

APPENDICES

APPENDIX A	Borehole Location Plan
APPENDIX B	Record of Borehole Sheets
APPENDIX C	Geotechnical Laboratory Test Results
APPENDIX D	Analytical Laboratory Certificates of Analysis
APPENDIX E	Pavement Design Analysis

1 INTRODUCTION

This report presents the results of a preliminary geotechnical investigation conducted in support of the Municipal Class Environmental Assessment (EA) for the proposed improvements of Ninth Line from Eglinton Avenue West to Derry Road West in Mississauga, Ontario.

The purpose of this investigation was to explore the subsurface conditions within the project limits and based on the data obtained, to provide borehole logs, borehole location plans and written descriptions of the subsurface conditions. Preliminary geotechnical recommendations for road widening, pavement design, and management options for soil that may be removed during construction are also provided.

Thurber Engineering Ltd. (Thurber) carried out the investigation as a sub-consultant to HDR who are conducting the Class EA for the City of Mississauga. The investigation was conducted concurrently with a Phase One Environmental Site Assessment by Thurber, under separate cover.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

This report uses the International System of Units (SI Units).

2 SITE DESCRIPTION

The study area extends along Ninth Line from Eglinton Avenue West to Derry Road West, a distance of approximately 6.2 km. Ninth Line within the study area is an north-south arterial roadway presently comprising a two-lane road cross-section with a centre left-turn lane and a posted speed limit of up to 70 km/hr.

The area surrounding the project corridor is residential east of the centreline of Ninth Line. West of the centreline of Ninth Line, the property use is a mix of commercial and industrial with some open fields. Highway 407 runs parallel to Ninth Line, within 400 m west of the study area.

3 SITE INVESTIGATION AND FIELD TESTING

3.1 Field Investigation

The field work for this investigation was carried out on between August 5, 2020 and August 13, 2020 and comprised of 30 boreholes advanced at the approximate locations along Ninth Line, as

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 1 of 25

shown on the borehole location plan in Appendix A. The boreholes are designated as 20-01 to 20-30 and were generally advanced to depths from 4.7 to 5.2 m below the existing ground surface with the exception of Boreholes 20-05, 20-06, 20-26 and 20-29 which were terminated upon encountering shale or auger refusal at shallower depths between 3.0 and 4.0 m.

Prior to starting the site investigation, clearance was obtained from utilities having plant in the area through the Ontario One-Call system. The borehole locations were established in the field using a Trimble R10 GPS unit. During the utility locate process, the presence of an unlocatable 400 mm diameter watermain was identified in the boulevard on the east side of Ninth Line. As the exact location of the watermain was not confirmed for this preliminary investigation, no boreholes were drilled on the east lane or east shoulder of Ninth Line between Eglinton Avenue West and Britannia Road West.

The boreholes were drilled with solid stem augers by a specialized drilling subcontractor (DBW Drilling Limited) under the direction and supervision of Thurber personnel. Soil samples were obtained using a split spoon sampler in conjunction with the Standard Penetration Test (SPT). The soil stratigraphy was recorded in each borehole by Thurber personnel who processed the recovered soil samples for transport to Thurber's laboratory for further examination and testing.

The groundwater conditions in the open boreholes were observed throughout the drilling operations. Standpipe piezometers (25 mm diameter) were installed in seven (7) of the boreholes to allow for groundwater level measurements. The boreholes were backfilled with auger cuttings and the roadway surface was reinstated with asphalt cold patch. The piezometers were decommissioned following completion of the field investigation.

Results of the field drilling, sampling and testing are presented on the Record of Borehole sheets in Appendix B.

3.2 Laboratory Testing

All recovered soil samples were subjected to visual identification and to natural moisture content determination. Selected soil samples were also subjected to grain size analysis and Atterberg Limits testing. Test results are shown on the individual borehole logs presented in Appendix B. The grain size distribution curves and Atterberg Limits test results are plotted on figures attached in Appendix C.

To evaluate the requirements for management and/or disposal of soil excavated during construction, selected soil samples recovered from the boreholes were submitted to Bureau

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 2 of 25

Veritas Laboratories for analysis of selected parameters defined in the Request for Proposal for this project and in accordance with Ontario Regulation 153/04 (O.Reg. 153/04). The sample locations and material types are summarized in Table 3.1.

Table 3.1 - Samples Selected for Environmental Testing

Borehole	Sample No.	Depth (ft)	Soil Type	Analysis
BH20-01	SS6	15' – 17'	Sand and Silt	
BH20-04	SS5	10' – 12'	Silty Sand	
BH20-05	SS3	5' – 7'	Sandy Silt Till	
BH20-09	SS4	7'6" – 9'6"	Silty Clay Till	
BH20-15	SS3	5' – 7'	Silty Clay	O.Reg 153 PHCs,
BH20-18	SS4	7'6" – 9'6"	Silty Clay Till	BTEX/F1-F4, EC, SAR
BH20-19	SS5	10' – 12'	Silty Clay Till	
BH20-23	SS6	10' – 12''	Silty Clay Till	
BH20-26	SS4	5' – 7'	Silty Clay Till	
BH20-30	SS5	10' – 12'	Silty Clay Till	

The results of the analyses are provided on the Certificates of Analysis presented in Appendix D.

4 SUMMARY OF SITE CONDITIONS

4.1 Surface Conditions

Ninth Line is currently a two-lane arterial road with a centre left-turn lane between Foxwood Avenue and Eglinton Avenue West and with left turn lanes and an urban cross-section at select intersections between Foxwood Avenue and Derry Road West. The existing travel lanes are comprised of an asphalt pavement, with an unpaved gravel shoulder on the east road edge and a paved pedestrian sidewalk on the west road edge.

4.1.1 Geological Conditions

The study area is located within the Peel Plain physiographic region to the north and the South Slope physiographic region to the south of the alignment, as delineated in The Physiography of Southern Ontario by Chapman and Putnam (1984). The surficial geology consists of glaciolacustrine deposits of silt and clay with minor sand, as well as Halton till, a clayey silt to silty clay till that contains occasional sand layers. The underlying bedrock in the area consists of shale,

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 3 of 25

limestone, dolostone and siltstone of the Queenston Formation.

4.1.2 Surface Drainage

Drainage of surface water along the existing corridor is managed through open ditches on the east side of the roadway and catch basins on the west side of the road.

Major drainage features in the area comprise of tributaries of Sixteen Mile Creek that flow generally along Hwy 407 to the west of Ninth Line. One tributary crosses Ninth Line to the north of Britannia Road. Another tributary crosses Ninth Line to the north of Deepwood Heights.

4.1.3 Pavement Condition

The current condition of the pavement surface on Ninth Line is considered **Good**, with predominant pavement distresses consisting of extensive, slight to moderate severity longitudinal cracking, with intermittent, slight to moderate severity transverse cracking. In localized poorly performing areas, pavement distresses included severe wheelpath fatigue cracking and slight to moderate pavement rutting, with the cracks repaired with crack sealant.

4.1.4 Topsoil Thickness

At several borehole locations, hand dug test pits were carried out in order to measure the thickness of surficial topsoil beside the roadway, adjacent to the closest borehole. The measured topsoil thicknesses are summarized in Table 4.1 below.

Table 4.1 – Topsoil Thickness Summary

Borehole Location	Side of Ninth Line	Topsoil Thickness (mm)
20-02	West	100
20-05	East	25
20-12	West	150
20-17	West	75
20-26	West	25
20-29	West	75

4.2 Pavement Structure

The pavement structure encountered in the boreholes drilled on Ninth Line consisted of 150 mm to 250 mm of asphalt, overlying granular base fill varying from sand and gravel to gravelly sand

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 4 of 25

with some silt. The thickness of the granular fill under the asphalt pavement ranged from approximately 150 mm to 600 mm.

Moisture contents for the sand and gravel to gravelly sand fill ranged from 1 to 7 percent.

The results of grain size distribution analyses conducted on samples of the granular material are presented on Figures C1 to C3 of Appendix C. A summary of these results is presented below. In general, the gradation of the samples is finer than the requirements for OPSS Granular A and Granular B, Type I and Type II. Testing of bulk samples collected from open test pits would be required to confirm the gradation.

Soil Particle	Percentage (%)
Gravel	25 to 47
Sand	38 to 56
Silt & Clay	13 to 25

4.3 Fill

A layer of fill was encountered below the pavement structure in Boreholes 20-14, 20-16, 20-17, 20-20, and 20-26. The fill layer varied considerably from a sandy silt with some clay towards the north end of the alignment ranging to silty clay with trace to some sand and trace gravel moving south towards Eglinton Ave W. This layer was typically described as brown to black and contained organic material at some locations. The fill layers extended to depths between 1.1 m and 1.5 m (Elev. 191.9 m to 188.1 m).

An SPT N-value of 21 blows per 0.3 m of penetration was obtained in the sandy silt fill in Borehole 20-06, indicating a compact relative density. Moisture contents of the fill varied between 2 and 18 percent.

4.4 Silty Clay

A deposit consisting of silty clay with trace sand and trace gravel was encountered directly below the pavement structure or fill materials in Boreholes 20-11 to 20-17. This layer was encountered to depths ranging from 3.0 m to 4.1 m (Elev. 187.3 to 185.7 m) where fully penetrated, and to a borehole termination depth of 5.2 m in Borehole 20-12 (Elev. 185.4 m).

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 5 of 25

SPT N-values obtained in the silty clay deposit ranged from 6 to 26 blows per 0.3 m of penetration, indicating a firm to very stiff consistency. Moisture contents varied between 13 and 29 percent, typically between 21 and 26 percent.

The results of grain size distribution analyses conducted on samples of the silty clay are presented on Figure C4 of Appendix C. The results of the Atterberg Limits tests are presented on Figure C5. A summary of these results is presented below.

Soil Particle	Percentage (%)
Gravel	0
Sand	1 to 9
Silt	45 to 62
Clay	34 to 53

Soil Property	Percentage (%)
Liquid Limit	32 to 44
Plastic Limit	18 to 21
Plasticity Index	14 to 23

The Atterberg Limits test results indicate that the silty clay varies from low to intermediate plasticity, with group symbols of CL to CI.

4.5 Silty Clay Till

A till deposit consisting of silty clay was encountered either directly below the pavement structure or underlying the fill or silty clay layers in Boreholes 20-02, 20-07 to 20-11, and 20-13 to 20-30. The silty clay till generally contains some sand to sandy and trace gravel. These boreholes were all terminated within the till deposit at depths between 3.0 m and 5.2 m (Elev. 195.7 to 181.8 m) except for Borehole 20-07 where the deposit was 3.5 m thick and extended to a depth of 4.0 m (Elev. 188.9 m).

SPT N-values obtained in the till deposit ranged from 6 to 78 blows per 0.3 m of penetration, typically between 15 and 38 blows, indicating a fir to hard consistency, typically very stiff to hard. Moisture contents varied between 8 and 38 percent, typically between 9 and 23 percent.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 6 of 25

The results of grain size distribution analyses conducted on samples of the silty clay till are presented on Figures C6 to C8 of Appendix D. The results of the Atterberg Limits tests are presented on Figures C9 and C10. A summary of these results is presented below.

Soil Particle	Percentage (%)
Gravel	1 to 10
Sand	20 to 37
Silt	38 to 48
Clay	17 to 37

Soil Property	Percentage (%)
Liquid Limit	21 to 28
Plastic Limit	13 to 16
Plasticity Index	6 to 12

The Atterberg Limits test results indicate that the silty clay till has low plasticity, with a group symbol of CL.

Till soils frequently contain cobbles and boulders, and these should be anticipated when excavating during construction.

4.6 Silty Sand to Sandy Silt Till

A deposit of native silty sand to sandy silt till with trace to some clay and trace gravel was encountered directly below the granular fill in Boreholes 20-04 to 20-06. The till deposit ranged in thickness from 1.8 m to 3.3 m and extended to depths of 2.2 to 3.8 m (Elev. 194.5 to 190.2 m).

SPT 'N' values measured in the silty sand to sandy silt till deposit ranged from 21 to 78 blows per 0.3 m of penetration, indicating that the deposit is compact to very dense. The measured moisture contents in the deposit ranged between 9 and 18 percent.

The results of grain size analyses conducted on samples of the silty sand to silty silt till deposit are presented on Figure C11 in Appendix C. The results of an Atterberg Limits test are presented on Figure C12. The results for the silt and sand to silt and sand till are summarized as follows:

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 7 of 25

Soil Particle	Percentage (%)
Gravel	1 to 8
Sand	21 to 46
Silt	41 to 62
Clay	5 to 16

Soil Property	Percentage (%)
Liquid Limit	22
Plastic Limit	16
Plasticity Index	6

The Atterberg Limits test result indicates that the silty sand to sandy silt till has low plasticity to non-plastic, with a group symbol of CL-ML.

Till soils frequently contain cobbles and boulders, and these should be anticipated when excavating during construction.

4.7 Sand to Sand and Silt

A deposit of native sand to sand and silt with trace clay and trace to some gravel was encountered either directly below the granular fill or below the silty clay till or silty sand to sandy silt till in Boreholes 20-01 to 20-04 and 20-07. The sand to sand and silt deposit ranged in thickness from 0.8 m to 2.4 m and extended to depths of 4.0 to 4.6 m (Elev. 196.5 to 192.1 m) where fully penetrated in Boreholes 20-02 and 20-04. Boreholes 20-01, 20-03 and 20-07 were terminated within this deposit at depths of 4.9 to 5.2 m (Elev. 196.2 to 187.7 m).

SPT 'N' values measured in this deposit ranged from 11 to greater than 50 blows per 0.3 m of penetration, indicating that the deposit is compact to very dense. The measured moisture contents in the deposit ranged between 8 and 18 percent.

The results of grain size analyses conducted on samples of the sand to sand and silt deposit are presented on Figure C13 in Appendix C. The results are summarized as follows:

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 8 of 25

Soil Particle	Percentage (%)	
Gravel	1 to 8	
Sand	43 to 85	
Silt	12 to 47	
Clay	2 to 6	

4.8 Shale

Boreholes 20-04 and 20-05 were terminated within highly weathered shale, and Borehole 20-06 was terminated upon auger refusal on probably bedrock. The boreholes were terminated at depths ranging from 3.4 m to 4.7 m (Elev. 192.0 to 190.2 m).

4.9 Groundwater

The groundwater level was measured upon completion in the majority of the open boreholes and in the standpipe piezometers installed in Boreholes 20-04, 20-09, 20-13, 20-17, 20-18, 20-21 and 20-28. The summary of measured water levels is provided in Table 4.2 below:

Table 4.2 – Summary of Groundwater Level Measurements

Borehole ID	Water Level (m)	Elevation (m)	Measurement type	
20-01	3.66	197.8	open borehole	
20-02	Dry	-	open borehole	
20-03	1.83	196.5	open borehole	
20-04	1.66	195.0	standpipe piezometer	
20-07	4.10	188.8	open borehole	
20-08	3.96	187.8	open borehole	
20-09	2.25	189.0	standpipe piezometer	
20-11	Dry	-	open borehole	
20-12	Dry	-	open borehole	
20-13	2.95	187.3	standpipe piezometer	
20-16	Dry	-	open borehole	
20-17	3.09	187.2	standpipe piezometer	
20-18	2.50	187.0	standpipe piezometer	
20-19	Dry	-	open borehole	
20-21	2.24	187.0	standpipe piezometer	
20-22	Dry	-	open borehole	
20-23	Dry	-	open borehole	

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 9 of 25

Borehole ID	Water Level (m)	Elevation (m) Measurement type		
20-24	Dry	-	open borehole	
20-25	Dry	-	open borehole	
20-27	Dry	-	open borehole	
20-28	1.67	186.3	standpipe piezometer	
20-30	Dry	-	open borehole	

Groundwater levels are expected to fluctuate seasonally. Higher groundwater levels are expected during wet periods of the year, such as spring and following periods of sustained precipitation.

4.10 Chemical Analysis

In general, visual, and olfactory examination of the soil samples recovered from the field investigation program revealed no unusual staining or odours indicative of hydrocarbon impact or other contamination.

The analytical results were compared to the Table 2 Standards of O.Reg. 153/04, for Residential, Parkland and Institutional property use. The concentrations of all parameters measured in the samples are below Table 2 Standards, with the exception of Electrical Conductivity (EC) in four samples and Sodium Adsorption Ratio (SAR) in three samples. A summary of samples where exceedances were detected is provided in Table 4.3 below. The laboratory Certificate of Analysis is provided in Appendix D.

Table 4.3 – Summary of Analytical Test Exceedances

Sample	Soil Type	Parameter	Guideline Value*	Test Result
20-05 SS3 1.5 – 2.1m	Sandy Silt Till	Conductivity	0.7	1.9
		Sodium Adsorption Ratio	5	5.3
20-15 SS3 1.5 – 2.1m	Silty Clay	Conductivity	0.7	2.7
20-18 SS4 2.3 – 2.9m	Silty Clay Till	Conductivity	0.7	2.2
		Sodium Adsorption Ratio	5	18
20-23 SS5 3.0 – 3.7m	Silty Clay Till	Conductivity	0.7	0.88

^{*}Note: Results compared to Table 2 Standards ("Full Depth Generic Site Condition Standards in a Potable Ground Water Condition" for Residential/Park/Institutional Property Use with coarse textured soils)

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 10 of 25

5 PAVEMENT EVALUATION AND DESIGN

5.1 General

This section of the report presents the design analysis for the rehabilitation and potential widening of Ninth Line based on our interpretation of the borehole information and projected traffic volumes.

5.2 Traffic Analysis

Traffic information for Ninth Line was provided by HDR and included the 2018 Annual Average Daily Traffic (AADT) volumes for Ninth Line and the percentage of heavy trucks for the three roadway segment within the project limits. The highest traffic volume was used in the design process. It is assumed that the provided AADT includes two-way traffic volumes. Forecasted volumes were also provided for the year 2041, which were used to estimate future growth rate. A summary of the provided traffic information is provided in Table 5.1 below.

Table 5.1 - Traffic Summary

Year	AADT	Percentage Trucks
2018	18,500	2.15 %
2041	40,000	2.15 %

Based on the forecasted traffic volumes, a growth rate of 3.4 percent was back-calculated between the years 2018 and 2041. For pavement design purposes, an estimated 2021 (the assumed construction year) AADT of 20,452 will be assumed for Ninth Line, with 2.15 percent truck traffic.

The traffic data was used to determine the amount of pavement damage caused by the anticipated traffic volumes. Using an average truck factor of 2.5, the pavement damage caused by different vehicle classes are converted to a standard axle load known as an Equivalent Single Axle Load (ESAL). The 20-year design ESALs (commencing in year 2021) for Ninth Line is estimated to be some 4.5 million ESALs.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 11 of 25

5.3 New Pavement Design Analysis

5.3.1 AASHTO Design Procedure

Flexible pavement designs were developed using the AASHTO procedure as outlined in the 1993 Guide for Design of Pavement Structures, as modified by the MTO publication MI-183. The following inputs were used in developing the required pavement designs.

- Initial serviceability, (P_i) = 4.5
- Terminal serviceability (P_t) = 2.5
- Reliability level (R) = 90 percent
- Overall standard of deviation (S_o) = 0.44
- Mean soil resilient modulus (M_R) = 30 MPa

5.3.2 City of Mississauga Design Requirements

The results of the AASHTO pavement design analysis were compared to the City of Mississauga Standard Pavement and Road Base Design Requirements (Standard No. 2220.010). The new pavement design developed for pavement widening areas matches the design standard for an Arterial roadway, when constructed on a subgrade soil (or fill material) containing less than 55 percent silt content.

However, it is noted that the thickness of the granular subbase is to be increased by 150 mm when roadways are constructed within 15 m of intersections.

5.4 Pavement Rehabilitation

The rehabilitation of Ninth Line will need to address the functional and structural requirements to extend the service life of this roadway. The understanding of these requirements is critical for the development of the most practical and cost-effective rehabilitation treatment.

5.4.1 Functional Requirements

The functional capacity of a roadway is a measure of how well the pavement serves the user. This serviceability index is often referred to as 'Ride Comfort' and is reflective of the pavement condition at a particular time during the service life of the pavement. Pavement distresses that impact a pavement's functional ability to serve the travelling public include transverse cracking; potholes; ravelling; as well as heave and swells.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 12 of 25

The segment of Ninth Line within the project limits is considered to be in Good condition, with pavement distresses such as transverse and longitudinal cracking. Most of the transverse cracks vary from slight to moderate severity, with the majority of the cracks being moderate severity, which negatively affects the ride quality. Furthermore, based on the observed severity, these cracks are expected to have propagated through the full asphalt thickness. Any rehabilitation treatments considered for Ninth Line will need to improve the observed functional distresses.

5.4.2 Structural Requirements

The structural capacity of a pavement is the physical condition of the roadway that adversely affects the load-carrying capability of the pavement structure. The structural assessment of Ninth Line was completed by identifying pavement distresses that indicate structural failure (such as alligator/fatigue cracking and pavement rutting), as well as considering the existing pavement layer thicknesses.

Although the asphalt thickness on Ninth Line appears to be of adequate thickness, the pavement surface shows localized structural distresses that are an early indication of structurally deficiency. As the proposed improvements to Ninth Line may not be completed for several years, the existing pavement will continue to deteriorate. Therefore, any rehabilitation treatment considered for the existing portion of Ninth Line should include structural strengthening as part of the roadway improvements.

5.4.3 Full Depth Asphalt Replacement

Based on the AASHTO pavement design analysis and the analysis of the field investigation, the existing pavement on Ninth Line is considered to be approaching the end of the service life, and in need of functional and structural improvement. Based on the expected pavement condition at the time of the proposed widening, the most practical and cost-effective rehabilitation strategy to address the functional and structural pavement capacity includes full-depth removal of the existing asphalt and placement of a new granular base and HMA layers. The existing granular material should be graded to permit the placement of the new granular base and asphalt layers. The thickness of the new pavement layers should match the design in the pavement widening area.

This rehabilitation strategy will provide a uniform granular base and asphalt thickness across the entire new pavement platform, which is expected to maintain a consistent performance over the pavement service life.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 13 of 25

5.4.4 Pavement Resurfacing with Base Repairs

It is understood that the City would also like to consider a resurfacing strategy for the rehabilitation of the existing travel lanes. However, in consideration of the severity and extent of the distresses observed in the existing pavement, a resurfacing strategy would not be considered a viable long-term pavement rehabilitation option.

Although suitable as a short-term holding strategy, resurfacing the existing pavement would results in reflective cracking of underlying structural distresses within a few years following construction. To reduce the rate of reflection cracking through an asphalt overlay, the 'mill and overlay' strategy would need to be combined with repairs to the base asphalt to address moderate to severe distresses prior to the placement of the asphalt overlay. Areas exhibiting extensive localized cracking would require additional asphalt removal and patching, while areas with severe fatigue cracking and rutting would require full-depth asphalt removal and replacement. Based on a review of existing conditions, it is estimated that as much as 20 percent of the paving area would require base asphalt repairs prior to the placement of the asphalt overlay. Due to the estimated quantity of base repairs, this option is not considered as a viable rehabilitation strategy for this roadway, and was not considered further in the design analysis.

6 PRELIMINARY GEOTECHNICAL RECOMMENDATIONS

6.1 Ninth Line Rehabilitation

Preliminary recommendations for the pavement rehabilitation of Ninth Line consist of full depth removal of the existing asphalt, with the exposed granular material graded as required for the placement of new Granular Base and Hot Mix Asphalt (HMA). The recommended pavement lift types and thicknesses shall consist of:

40 mm	HL1
50 mm	HDBC
50 mm	HDBC
50 mm	HDBC
150 mm	Granular 'A' Base

It is noted that the recommended rehabilitation strategy for the existing travel lanes permits the placement of a consistent granular base and asphalt layer thickness across the entire new pavement platform.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 14 of 25

6.1.1 Pavement Widening Areas

In all pavement widening areas (beyond existing shoulder rounding or curb and gutters), the surficial topsoil should be removed with the underlying subgrade graded as required. As shown in Table 4.2, topsoil thickness ranges from 25 to 150 mm.

The preliminary recommended pavement structure for widening of Ninth Line shall consist of:

40 mm HL1

50 mm HDBC 50 mm HDBC

50 mm HDBC

150 mm Granular 'A' Base

300 mm Granular 'B' Type II Subbase

As per City of Mississauga standards (Standard No. 2220.010), the thickness of the granular subbase layer should be increased by 150 mm when placed within 15 m of an intersection.

Final grades in all pavement widening areas will need to match the expected elevation of the new curb and gutters. The top of subgrade in pavement widening areas must be no higher than the top of subgrade in the adjacent existing pavement to maintain lateral drainage at the top of subgrade. The total thickness of the new pavement should be sufficient to maintain subsurface drainage across the widening for most of the project limits; however, localized thickening of the granular subbase will be required.

6.2 Pavement Materials

6.2.1 New Hot Mix Asphalt

All HMA materials should meet the requirements of OPSS.MUNI 310 and OPSS.MUNI 1150, as amended by the City of Mississauga Special Provisions. All new HMA should be compacted to at least 92 percent of the Maximum Relative Density (MRD) for HL 1 material and 91 percent of the MRD for the HDBC material. An asphalt cement binder grade of PG 64-28 is required for the asphalt mix. A tack coat shall be utilized between the asphalt lifts, all vertical faces, and at all tie-in to existing locations. Recycled Asphalt Pavement (RAP) material may not be used in HL 1 or HDBC asphalt mixes.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 15 of 25

6.2.2 New Granular Material

New granular material will be required for the pavement widening, grade raises, and full pavement reconstruction sections, as well as for grading of the new gravel shoulders and shoulder rounding. All granular base material should consist of new Granular A, while new granular subbase material should consist on Granular B, Type II, consistent with OPSS.MUNI 1010 requirements.

Placement of the granular material should be completed in accordance with OPSS.MUNI 314 and should be compacted to 100 percent of the Standard Proctor Maximum Dry Density (SPMDD) within 2 percent of Optimum Moisture Content (OMC) in accordance with the requirements of OPSS.MUNI 501.

6.3 Subgrade Preparation

In all pavement widening areas, any surficial topsoil should be stripped to expose the underlying soils. The underlying subgrade soils should be removed and graded as required to accommodate the new pavement platform. The exposed top of subgrade should be graded to a 3 percent crossfall towards the outer pavement edge.

As per City of Mississauga standards, the top 1.0 m of the subgrade shall be compacted to a minimum of 98 percent of Standard Proctor Maximum Dry Density (SPMDD), within 2 percent of optimum moisture content (OMC). The exposed subgrade should be compacted and proof-rolled with a heavy roller and examined to identify areas of unstable subgrade. Any soft/wet areas identified should be sub-excavated and replaced with approved material.

6.4 Pavement Drainage

Proper drainage of the pavement structure must be provided by way of curb and gutter and use of subdrains to ensure optimal pavement performance. Pavement design thicknesses in widening areas are based on the pavement structure thicknesses recorded in the boreholes. It is cautioned that actual existing pavement thicknesses may fluctuate between borehole locations. The actual thickness of the new granular subbase layer may need to be increased during construction to ensure that the total thickness of the pavement in the widening area match, or exceed, the thickness of the existing pavement.

All new subdrains should be constructed as per City of Mississauga standard No. 2220.040.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 16 of 25

6.5 Culvert Structures

If the proposed rehabilitation works include widening of Ninth Line, it is anticipated that four structural culverts may require extension. The culvert locations are shown on the Borehole Location Plan in Appendix A. Details on the following existing structures were obtained from previous drawings and 2019 inspection reports that were provided for review by HDR:

- Culvert 1 (City of Mississauga Asset ID: 056005): Existing 3-cell concrete box culvert crossing Sixteen Mile Creek, located approximately 50 m north of Parkgate Drive. Referred to as Sixteen Mile Creek bridge in 2019 inspection report. Total structure span length of approximately 44 m along Ninth Line, including approach slabs and retaining walls. Approximate invert Elev. 187.25 to 187.35 m, with base level at approximate Elev. 186.7 m;
- Culvert 2 (City of Mississauga Asset ID: 057005): Existing 2.4 m wide concrete box culvert, located approximately 20 m north of McDowell Drive. Approximate invert Elev. 189.20 to 188.91 m, with base level at approximate Elev. 188.3 m;
- Culvert 3 (City of Mississauga Asset ID: 057003): Existing twin 2.4 m wide cell concrete box culvert, located approximately 50 m south of Lacman Trail. Approximate invert Elev. 186.8 to 186.6 m, with base level at approximate Elev. 186.3 m; and,
- Culvert 4 (City of Mississauga Asset ID: 057004): Existing twin 2.4 m wide cell concrete box culvert, located at approximately 100 m north of Deepwood Heights. Approximate invert Elev. 186.5 to 186.4 m, with base level at approximate Elev. 186.3 m.

At Culvert 1, the stratigraphy based on Boreholes 20-13 and 20-14 consisted of asphalt and granular fill to a depth between 0.5 and 1 m, overlying native firm to very stiff silty clay to a depth of 4.1 m, underlain by firm to stiff silty clay till to at least 5.2 m depth. The groundwater level was measured at approximate Elev. 187.3 m.

At Culvert 2, the stratigraphy based on Borehole 20-17 consisted of asphalt, granular fill and sand fill to a depth of 1.5 m, underlain by firm to stiff silty clay to 3.0 m and very stiff to stiff silty clay till to at least 5.2 m depth. The groundwater level was measured at approximate Elev. 187.2 m.

At Culvert 3, the stratigraphy based on Borehole 20-18 consisted of asphalt and granular fill to a depth of 0.5 m, underlain by stiff to very stiff silty clay till to a depth of at least 5.2 m. The groundwater level was measured at approximate Elev. 187.0 m.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 17 of 25

At Culvert 4 the stratigraphy based on Borehole 20-21 consisted of asphalt and granular fill to a depth of 0.4 m, underlain by firm to hard silty clay till to a depth of at least 5.2 m. The groundwater level was measured at approximate Elev. 187.0 m.

6.5.1 Foundation Design, Bedding and Subgrade Preparation

The bases of any culvert extensions should be placed at the same level or lower than the existing culvert bases and founded on native stiff to hard or compact to very dense soil.

The base of the culvert at Culvert 1 is at approximate Elev. 186.7 m, which corresponds to firm to stiff silty clay till in Boreholes 20-13 and 20-14. However, due to the size of this culvert, if the ultimate design of the project includes extension of this culvert, additional deeper boreholes should be advanced during detailed design to confirm the founding soil conditions.

All existing fill, topsoil, organic/streambed deposits and soft / loose soils should be removed from the culvert subgrade prior to placement of the culvert bedding material. Inspection and approval of the exposed base by a geotechnical engineer is recommended. To minimize the potential for differential settlement on the subgrade silty clay or silty clay till, it is recommended that the subgrade below any culvert extensions on the firm silty clay be sub-excavated down to the underlying stiff to very stiff silty clay till and replaced with compacted Granular A or Granular B Type II material to the appropriate subgrade level. Furthermore, if necessary to maintain the culvert extensions at the same or lower elevation as the existing culverts, the grade may be raised using Granular A backfill, compacted to 100% of SPMDD.

In order to provide a uniform foundation subgrade, a minimum 300 mm thick layer of bedding material conforming to OPSS.MUNI 1010 Granular A or Granular B Type II requirements should be provided under the base of the box culvert extensions, as per OPSD 803.010. The bedding material should be placed on the prepared subgrade as soon as practicable following its inspection and approval.

The subgrade preparation and placement and compaction of the bedding material should be carried out in the dry. The subgrade surface prepared to support the box units should have a 75 mm minimum thick top levelling course consisting of uncompacted Granular A as per OPSS 422. Construction equipment should not be allowed to travel on the bedding or the prepared subgrade, which should be protected from disturbance during construction.

The anticipated culvert subgrade conditions and recommended design bearing resistances at the concrete culverts at Culvert 1 to Culvert 4 are presented in Table 6.1 below.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 18 of 25

Table 6.1 – Recommended Culvert Bearing Resistances

Culvert	Reference Boreholes	Approximate Base Elevation (m)	Anticipated Subgrade	Factored Bearing Resistance at ULS (kPa)	Bearing Resistance at SLS (for up to 25 mm settlement) (kPa)
Culvert 1	20-13, 20-14	186.7	Firm to Stiff Silty Clay Till	225	150
Culvert 2	20-17	188.3	Firm to Stiff Silty Clay	225	150
Culvert 3	20-18	186.3	Very Stiff Silty Clay Till	225	150
Culvert 4	20-21	186.3	Stiff to Very Stiff Silty Clay Till	225	150

A consequence factor of 1.0 was utilized in this design adopting the typical consequence level. The geotechnical resistance factor of 0.5 for bearing and 0.8 for settlement, both adopted for typical degree of understanding, were used to obtain the above values, as per Canadian Highway Bridge Design Code (CHBDC) 2019, Section 6.9.

The above geotechnical resistances are for vertical, concentric loads. Where eccentric or inclined loads are applied, the resistance values used in design must be reduced in accordance with the CHBDC 2019, Clause 6.10.3 and Clause 6.10.4.

Resistance to sliding between the concrete and the underlying Granular A or B Type II bedding material should be calculated assuming an ultimate coefficient of friction of 0.45.

The culvert extensions should be designed to resist external loadings including frost forces, lateral earth pressures, hydrostatic pressure, weight of embankment fill, traffic loadings and surcharge due to construction equipment.

Applicable comments regarding excavation and groundwater control during culvert installation are presented in Section 6.5.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 19 of 25

6.5.2 Frost Cover

The depth of frost penetration at this site is approximately 1.2 m. Any concrete box culvert extensions to be constructed within the frost penetration depth should include frost treatment as per OPSD 803.010.

6.5.3 Backfill and Lateral Earth Pressures

Backfill to the culvert extensions and any headwalls should consist of free-draining, non-frost susceptible granular materials conforming to OPSS Granular A or Granular B Type II requirements. Reference should be made to the backfill arrangements stipulated in OPSD 802 series, 803.010, 3121.150 and 3190.100, as appropriate.

Widened embankment slopes beyond the culverts should be constructed at the same slope inclination as the existing embankment, but not steeper than 2H:1V.

The lateral earth pressures acting on the culvert (and any headwalls), assuming full drainage from behind the walls, may be computed using the following pressure distribution:

where p = lateral earth pressure acting at depth H, kPa K = earth pressure coefficient (see Table 6.2 below) $\gamma = \text{unit weight of retained soil or backfill, kN/m}^3 \text{ (see Table 6.2 below)}$ H = depth below top of wall where pressure is computed, m q = surcharge pressure including traffic loads, kPa

Table 6.2 lists the unfactored parameters recommended for design, for an essentially level ground surface or for sloping backfill (2H:1V) behind and in front of the culvert and walls:

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 20 of 25

Table 6.2 – Earth Pressure Parameters

	Retained Material				
Parameter	OPSS Granular A or Granular B Type II		OPSS Granular B Type I		
i arameter	Horizontal Surface Behind Wall	Sloping Backfill (2H:1V)	Horizontal Surface Behind Wall	Sloping Backfill (2H:1V)	
Unit Weight, kN/m ³	22.8	22.8	21.2	21.2	
Friction Angle, degrees	35	35	32	32	
Active Pressure Coefficient, K _a	0.27	0.38	0.31	0.46	
At-Rest Pressure Coefficient, K ₀	0.43	-	0.47	-	
Passive Pressure Coefficient, K _p	3.7	-	3.3	-	

If lateral movement is not permissible and/or the wall is restrained from lateral yielding, the at-rest pressure coefficient, K_o, should be used. If the wall design allows lateral yielding (non-rigid structure), the active earth pressure coefficient, K_a, may be used.

The earth pressure coefficients in the table above do not include potential compaction effects that must be included in the design. Compaction effects should be considered as per CHBDC.

Wall backfill should be placed in maximum 200 mm loose lifts and compacted to 95% of the material's SPMDD. The backfill should be placed and compacted in simultaneous equal lifts on both sides of the culvert, and the top of the backfill elevation should be the same on both sides of the culvert at all times. Heavy compaction equipment should not be used adjacent to the walls and roof of the culvert or headwalls.

Design of the culvert headwalls must incorporate measures such as weepholes as per OPSD 3190.100 to permit drainage of the backfill and avoid potential build-up of hydrostatic pressures behind the walls.

6.5.4 Erosion and Scour Protection

Erosion protection should be provided at the culvert extension inlet and outlet areas. Vegetation cover, riprap or other protective measures should be established on the creek banks to protect against surficial erosion and seepage-induced material loss. Design of the scour and erosion protection measures must consider hydrologic/hydraulic factors.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 21 of 25

A concrete/steel cut-off wall or clay seal should be installed at the culvert inlet to minimize the potential for seepage through the granular bedding and backfill material and avoid consequent erosion of these materials. The clay seal should have a minimum thickness of 0.5 m, completely surround the culvert, extend laterally the width of the granular backfill material, and extend above the high water level. The material used for the clay seal should conform to the requirements of OPSS 1205.

6.6 Excavation and Groundwater Control

Excavations for culvert extension foundations and open cut installation of sewers will primarily extend through the existing roadway pavement structure and into native sand and silt, silty clay, silty clay till, and silty sand to sandy silt till deposits. Use of a hydraulic excavator should be suitable for excavation within these materials. Provision should be made for handling and removal of possible obstructions in the fill and cobbles or boulders in the till soils.

All temporary excavations must be carried out in accordance with the current Occupational Health and Safety Act (OHSA) of Ontario and local regulations. In general, the pavement structure, fill materials, sand and soils are classified as Type 3 soils above the observed water table and Type 4 at depths below the observed water table. The native silty clay to silty clay till soils can be classified as Type 3 soils.

Where space restrictions preclude excavation of inclined slopes, sewer installation may be carried out using a trench box or temporary shoring. If the trench depth exceeds 6 m, the support system must be designed specifically for this project.

The design of all members of the support system should include the effects of surcharge loads such as those imposed by construction equipment and highway traffic. Soil should not be stockpiled within a horizontal distance from the excavation wall equal to the depth of excavation.

Groundwater was measured in the piezometers at depths of 1.7 to 3.1 m below the ground surface. Considering the observations during drilling and the consistency of the soils on site, dewatering of shallow excavations will be required. Concentrated seepage and instability of the trench walls and base may be experienced where cohesionless layers are encountered below the groundwater level. Further, localized zones of perched water may be encountered in the fill. Sumps and pumps or suitable well point systems may be required dependent on the conditions at a particular location. Boreholes 20-01 to 20-07 encountered cohesionless soils below the water level, and therefore excavations in these locations may require additional groundwater control

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 22 of 25

measures, such as carrying out excavations within a water-tight, sheetpile enclosure, or utilizing well point systems for dewatering.

Temporary stream diversion measures such as impervious dykes and/or sandbagging should be provided to divert surface water runoff and stream flow away from the culvert extension excavations at all times during construction.

6.7 Storm Sewer Installation – Trenching/Pipe Bedding

New storm sewers may be installed along Ninth Line as part of the roadway improvements. Excavations and control of groundwater for sewer installations should follow the recommendations provided in Section 6.5.

Prior to placement of the pipe bedding, the base of the sewer trench should be maintained in a dry condition, free of loose or disturbed material. The pipe must be placed on a uniformly competent subgrade. Pipe bedding materials, compaction and cover should follow OPSD 802.030 to 803.034, and/or Peel Region specifications.

In areas where a less competent subgrade is encountered, it may be necessary to increase the sewer bedding thickness. Any excessively soft, loose or compressible materials at the pipe subgrade should be subexcavated and replaced with OPSS Granular A material compacted to at least 95 percent of SPMDD.

Trench backfill materials should be placed and compacted as per OPSS 401. Where the sewer trench is located beneath the roadway, OPSS Granular A or B material, or unshrinkable fill should be employed as backfill.

6.8 Management of Excess Materials

Selected soil samples were submitted for analytical laboratory testing as outlined in Section 3.2. The test results are provided in Appendix D, with the parameters exceeding the O.Reg. 153/04 criteria summarized on Table 4.2 in Section 4.10.

The concentrations of all parameters measured in the samples are below the Table 2 Residential, Parkland and Institutional Standards, with the exception of Electrical Conductivity (EC) in four samples and Sodium Adsorption Ratio (SAR) in three samples.

The EC and SAR values likely result from de-icing salt applied to the roadway for safety purposes. The presence of EC and SAR does not impose a risk to human health, but rather may only impact

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 23 of 25

the physical composition of the soil which could affect the growth of vegetation. Further, where salt has been applied by a government or municipal authority, salt-related impacts are exempt, and the applicable site condition standard is deemed not to be exceeded under Section 48 (3) of O. Reg. 153/04. Therefore, based on the preliminary test results, the excavated materials are anticipated to be acceptable for reuse in engineering applications on site (i.e. site grading fill or backfill) pending geotechnical approval. The material should not be used in landscaped areas with sensitive vegetation and plant species. The gradation tests on samples of the granular fill soils indicate that the soils contain too much fine material to meet OPSS Granular A or Granular B Type I or Type II specifications, however testing of bulk samples collected from open test pits would be required to confirm the gradation.

Excess excavated soils are also anticipated to be acceptable for disposal off-site at suitable fill receiver sites or waste disposal facilities, subject to additional Toxicity Characteristic Leaching Procedures (TCLP) analysis in accordance with O. Reg. 558/00, as appropriate.

Please note that additional testing will be required during the detailed design stage to confirm these preliminary recommendations regarding management of excess excavated soils. In particular, additional testing and preparation of additional planning documents may be necessary to meet the new O. Reg. 406/19 "Excess Soil Regulation" requirements.

6.9 Construction Inspection and Testing

The successful performance of the pavement and roadwork will depend largely on good workmanship and quality control during construction. It is therefore recommended that materials testing and inspection by qualified personnel be provided during construction. The inspection and testing should include observation and inspection of sewer trench, culvert and pavement subgrade conditions, compaction testing of backfill and pavement materials as well as concrete and asphalt testing.

7 CLOSURE

Overall supervision of the field program was carried out by Ms. Cecile Ritchie, EIT and Mr. Mark Farrant, P.Eng. Interpretation of the field data, and report preparation was conducted by Ms. Cecile Ritchie, EIT, Mr. Mark Farrant, P.Eng and Ms. Amelia Jewison, P.Eng. A technical review of this report was completed by Mr. Weiss Mehdawi, P.Eng.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 24 of 25

The preliminary recommendations made in this report are in accordance with our present understanding of the project requirements. Additional field, laboratory, and analytic work will be required to advance the project beyond the preliminary stage.

We trust that this report satisfies the requirements of HDR, and the City of Mississauga. Please do not hesitate to contact our office if you have any questions.

 Client:
 HDR
 Date:
 April 9, 2021

 File No.:
 27269
 Page:
 25 of 25

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

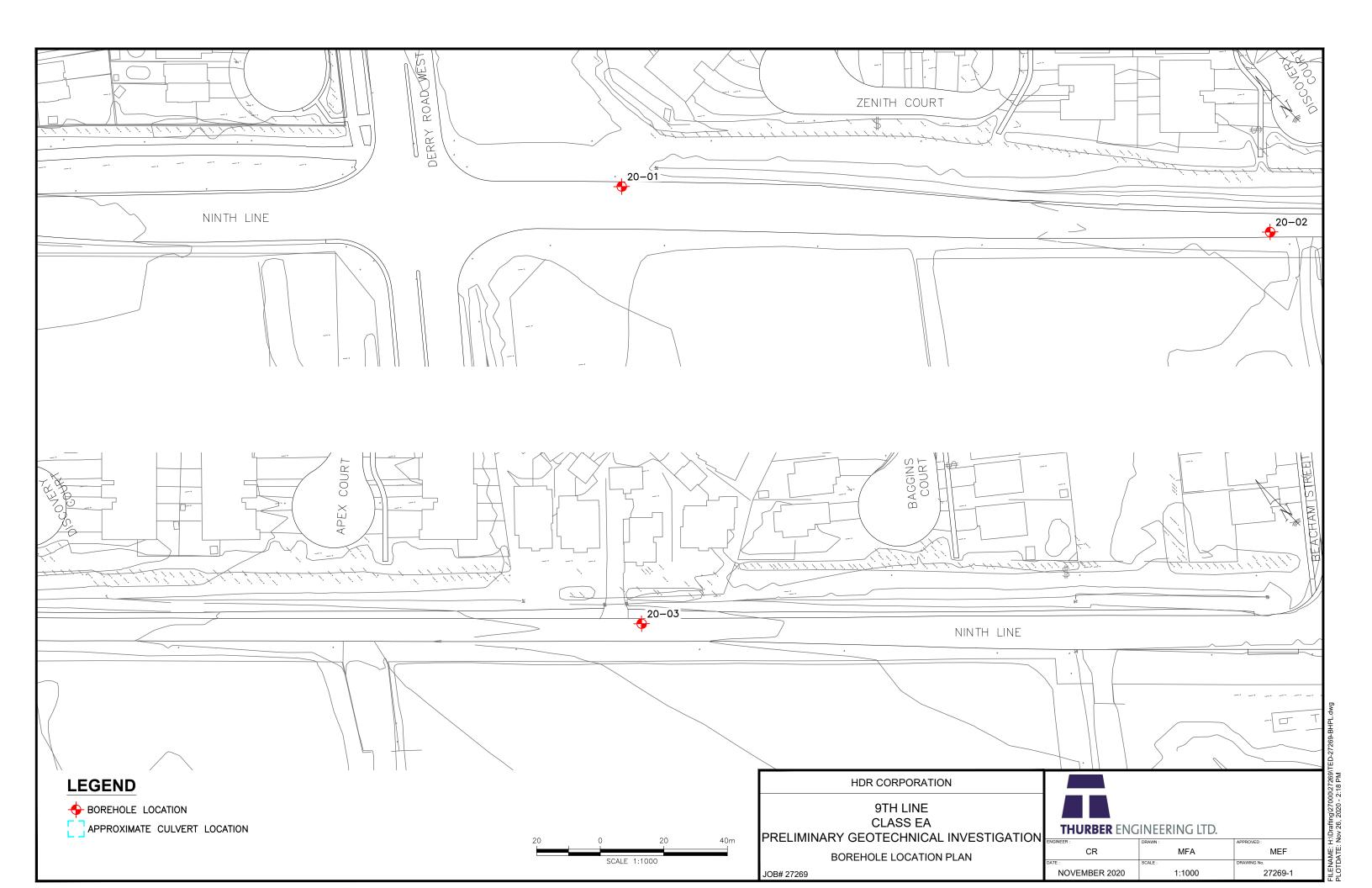
The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

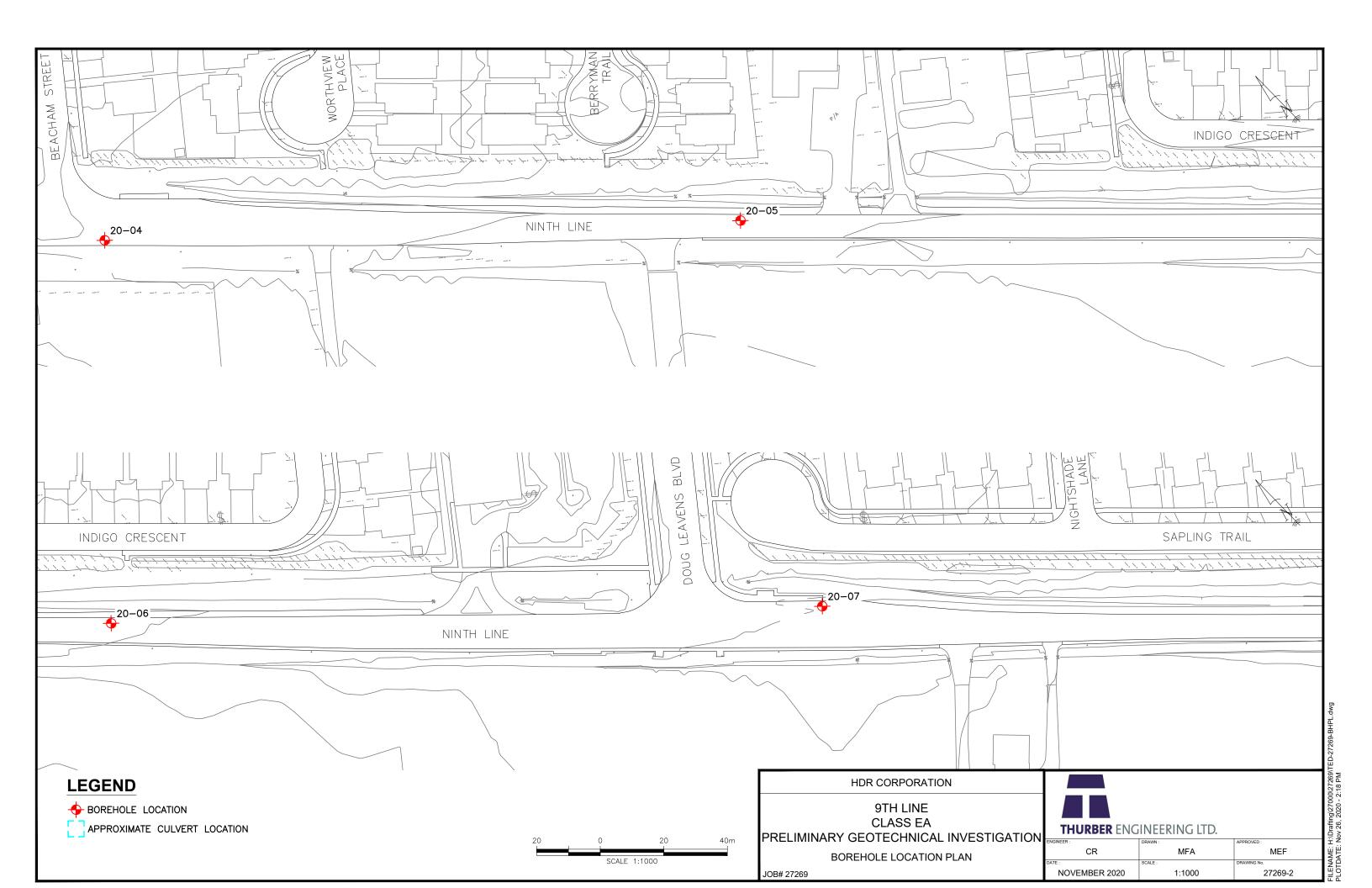
5. INTERPRETATION OF THE REPORT

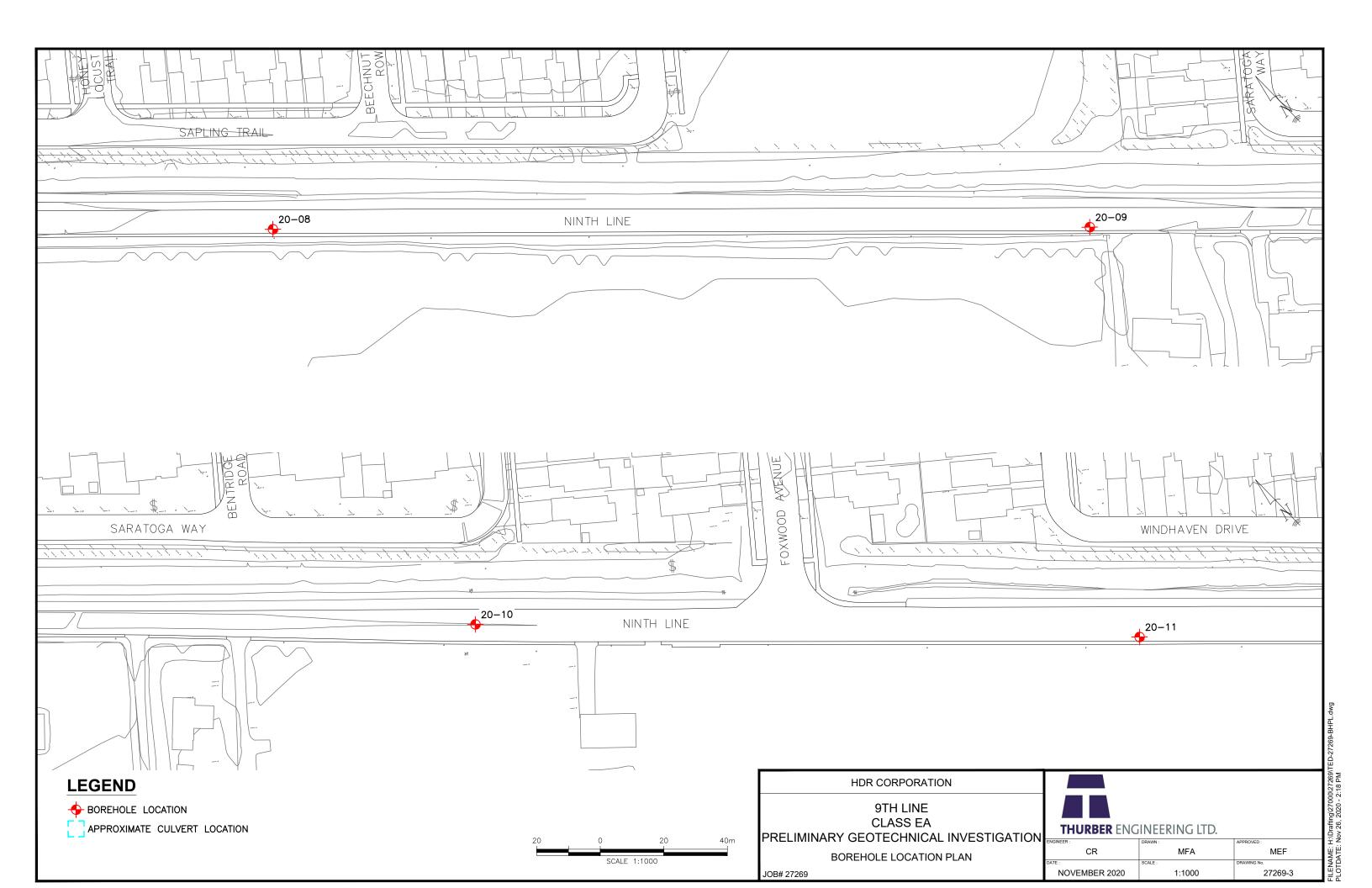
- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

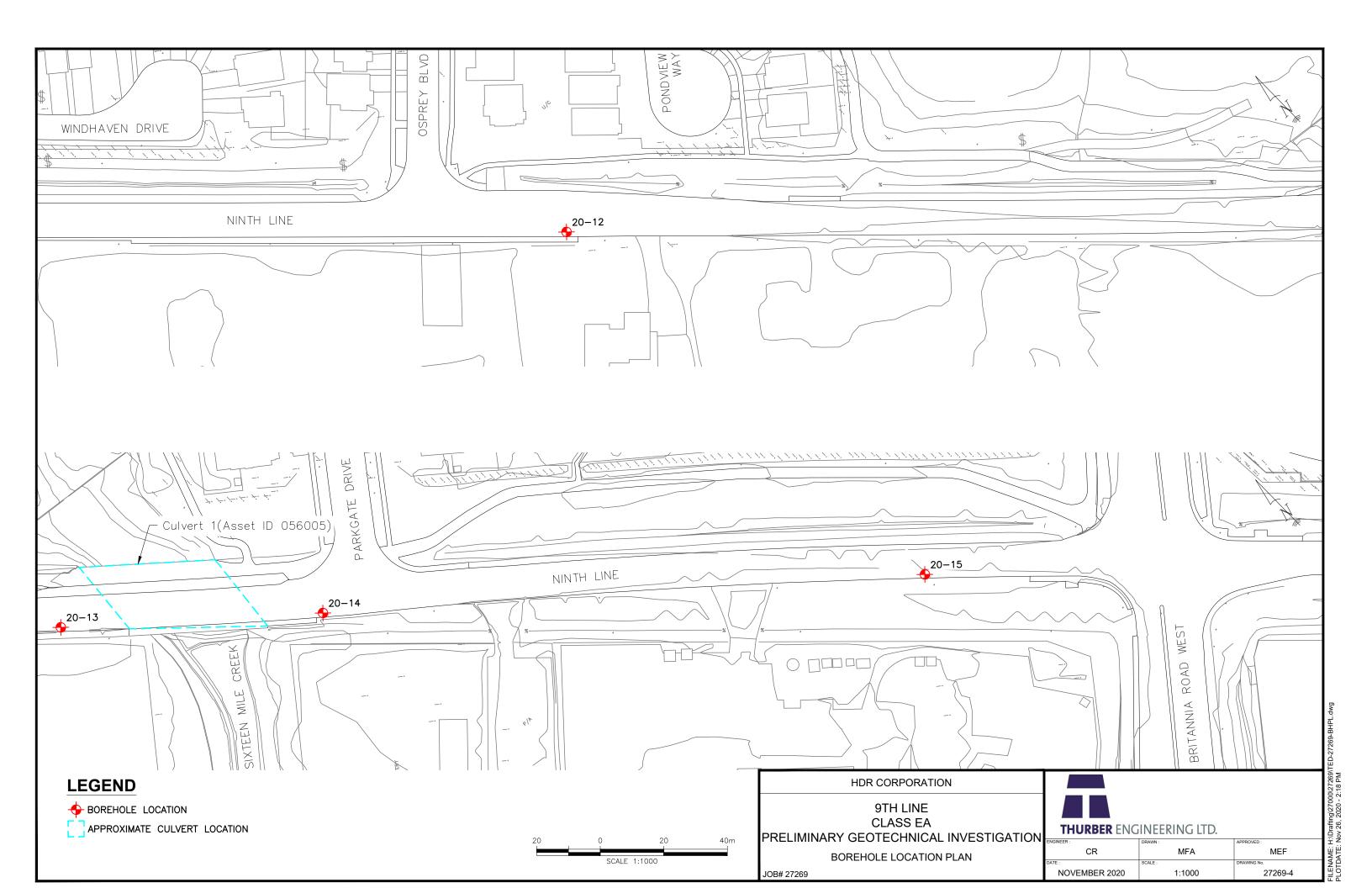
6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

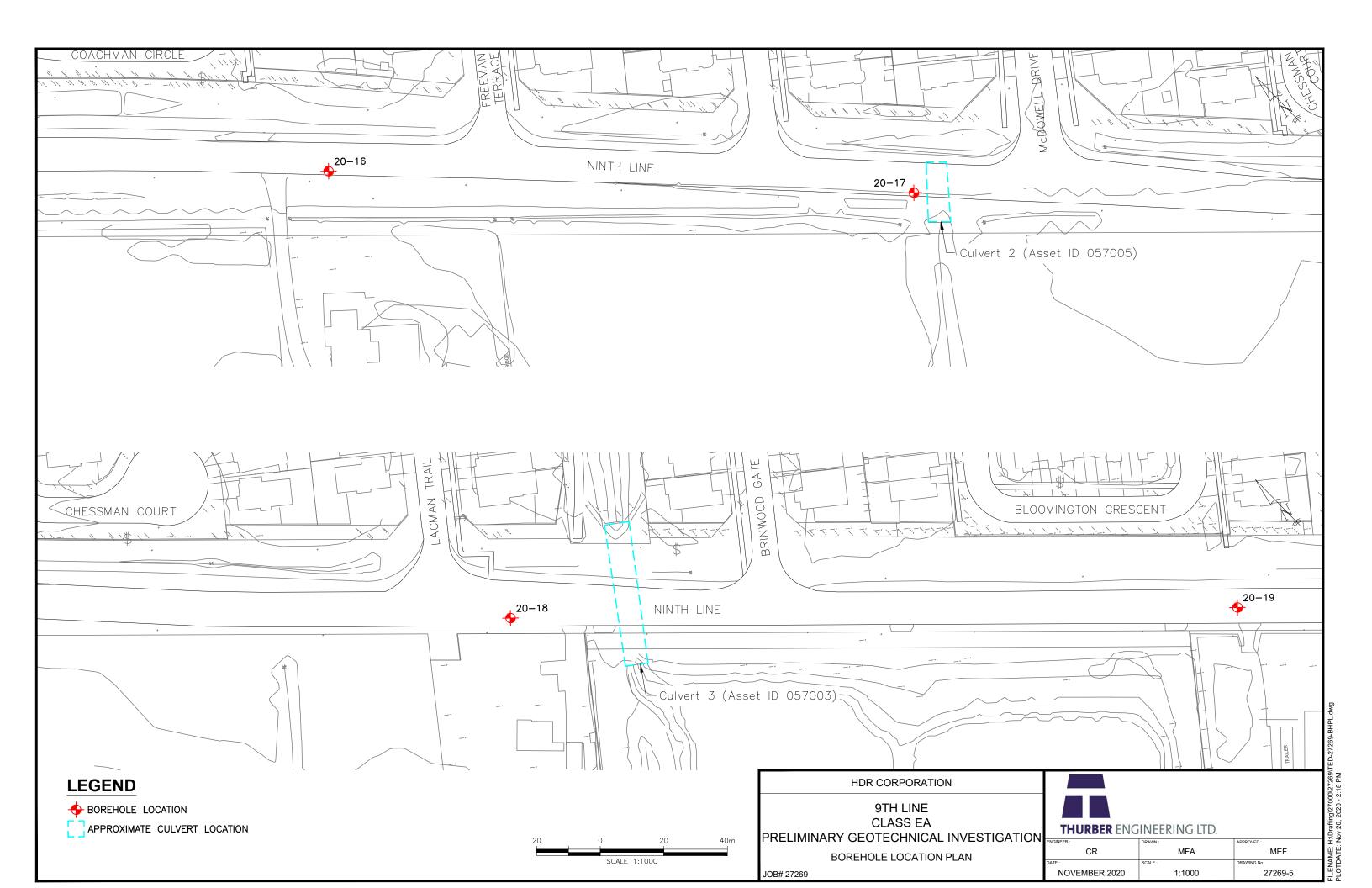
Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

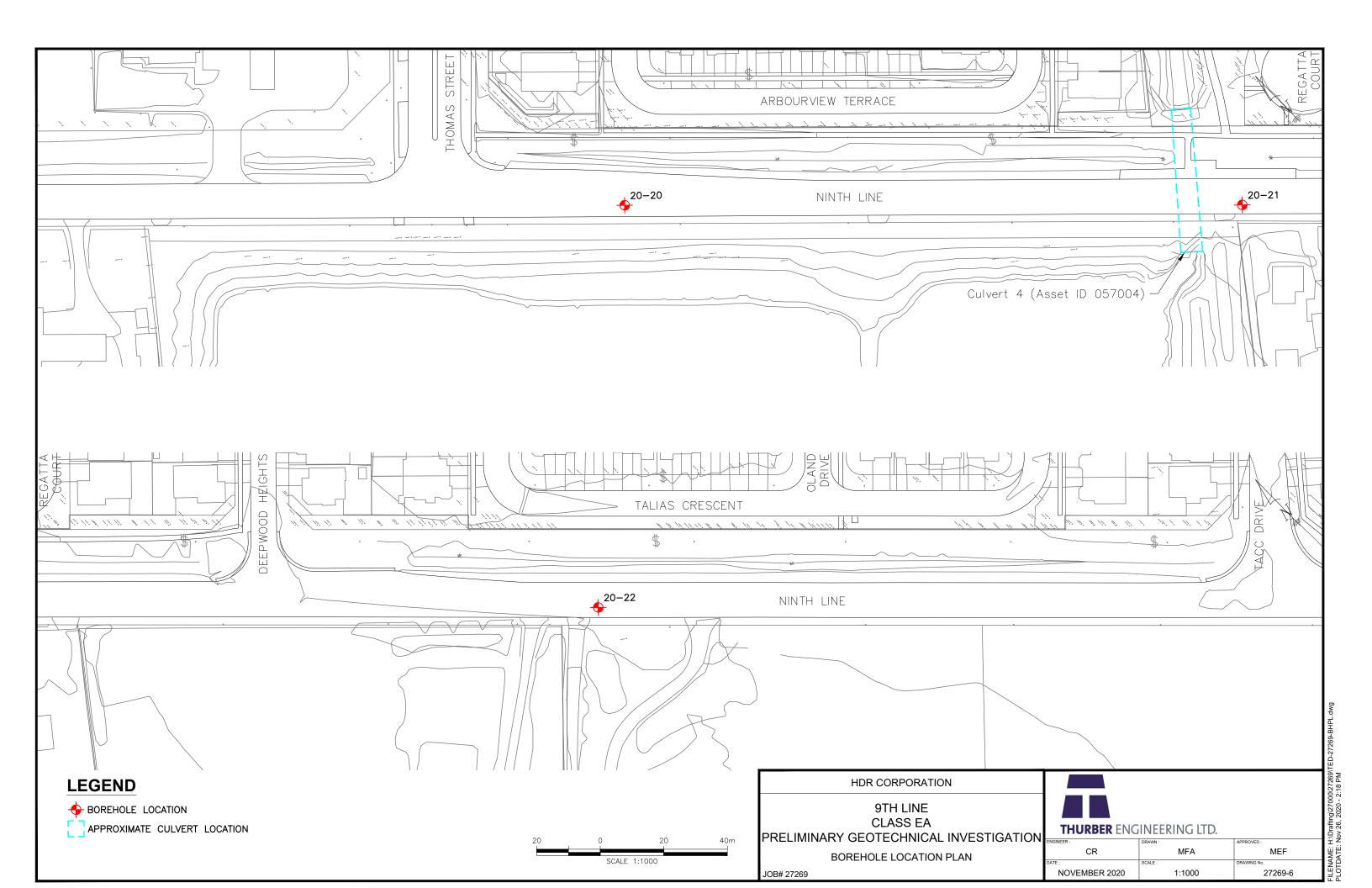

7. INDEPENDENT JUDGEMENTS OF CLIENT

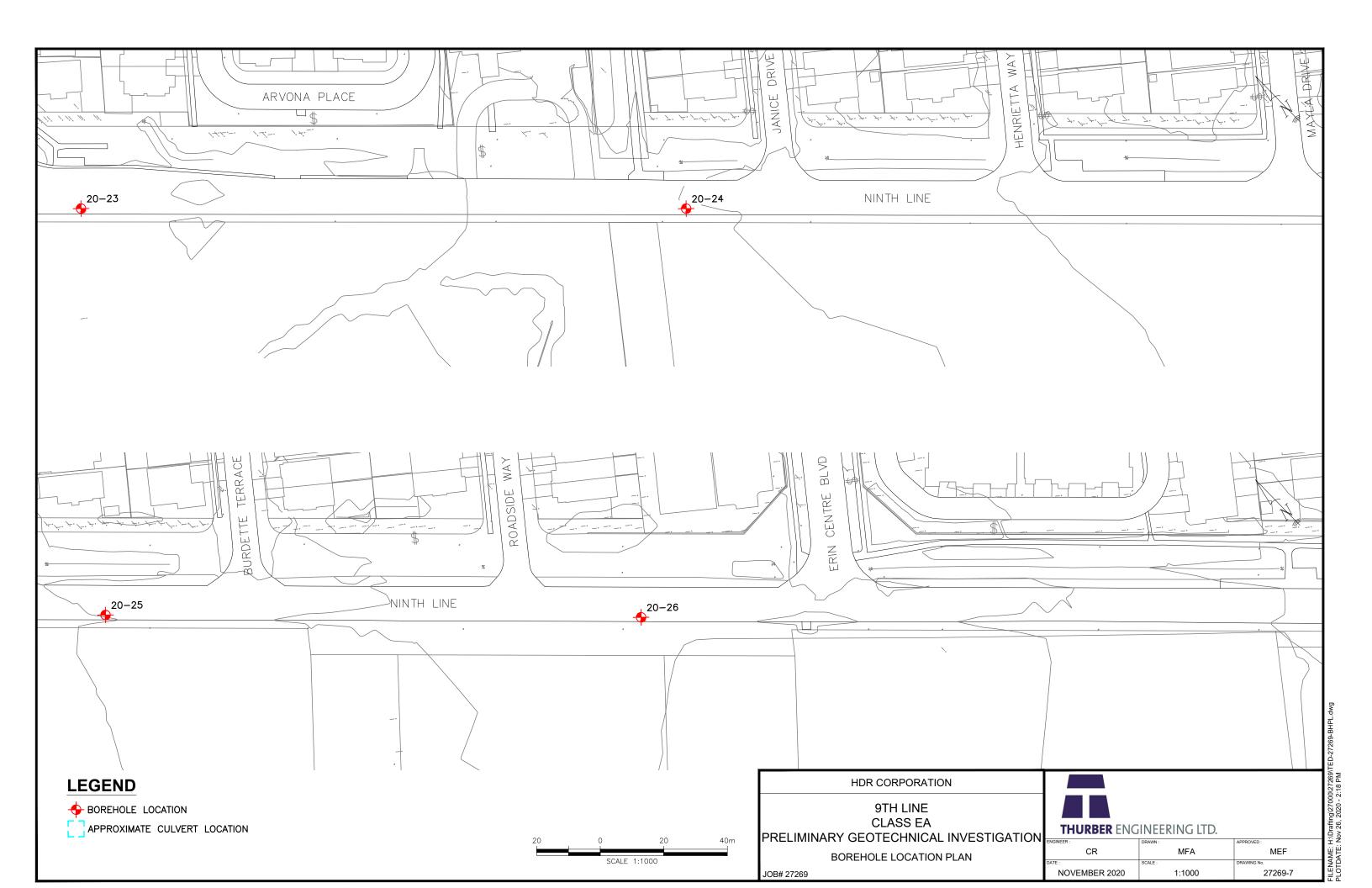

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

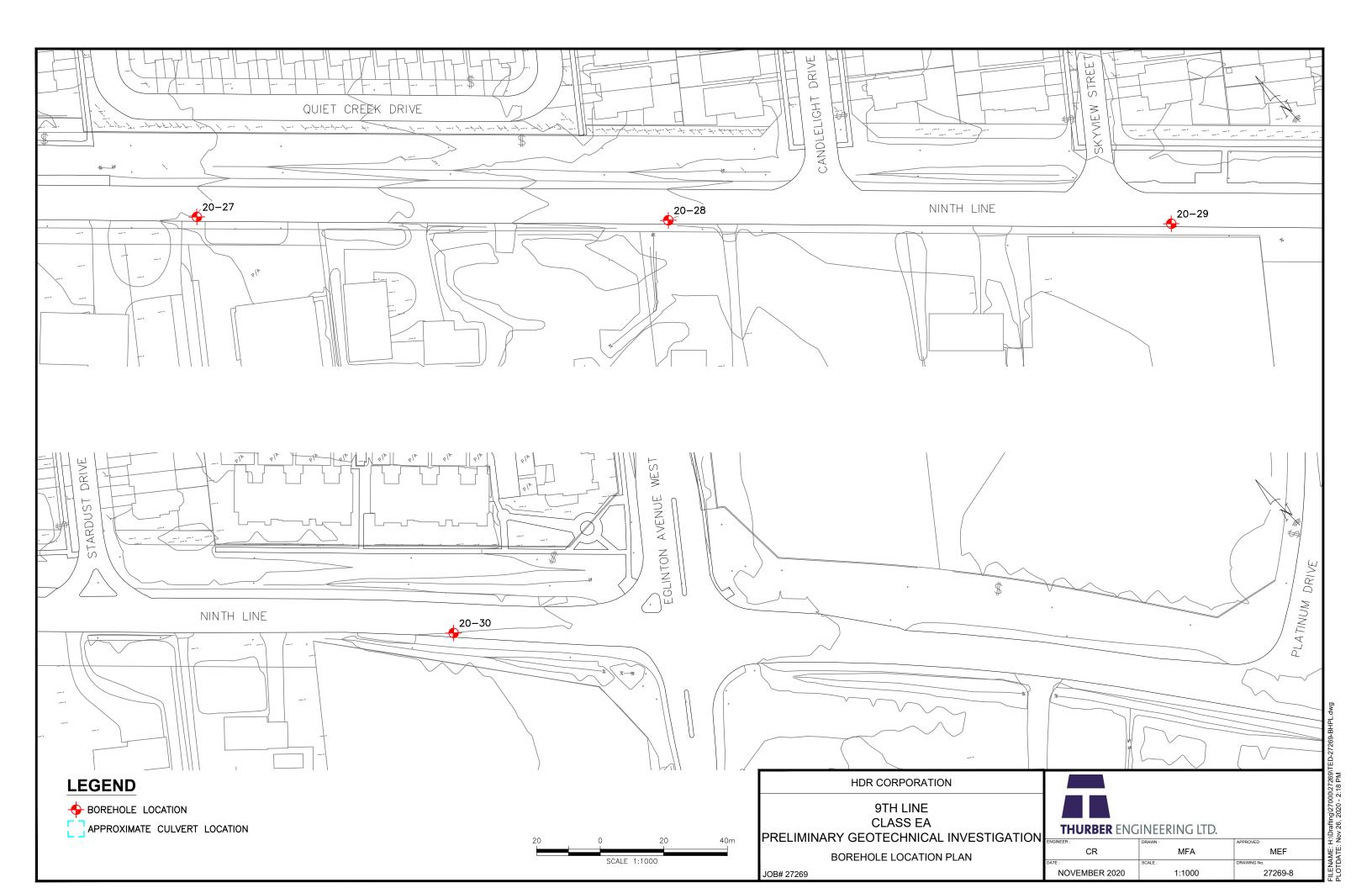



Appendix A


Borehole Location Plan







Appendix B

Record of Borehole Sheets

SYMBOLS, ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES

1. TEXTURAL CLASSIFICATION OF SOILS

CLASSIFICATION PARTICLE SIZE VISUAL IDENTIFICATION

BouldersGreater than 200mmsameCobbles75 to 200mmsameGravel4.75 to 75mm5 to 75mm

Sand 0.075 to 4.75mm Not visible particles to 5mm
Silt 0.002 to 0.075mm Non-plastic particles, not visible to

the naked eye

Clay Less than 0.002mm Plastic particles, not visible to

the naked eye

2. COARSE GRAIN SOIL DESCRIPTION (50% greater than 0.075mm)

TERMINOLOGY
Trace or Occasional
Less than 10%
Some
10 to 20%
Adjective (e.g. silty or sandy)
And (e.g. sand and gravel)
20 to 35%
35 to 50%

3. TERMS DESCRIBING CONSISTENCY (COHESIVE SOILS ONLY)

DESCRIPTIVE TERM	UNDRAINED SHEAR	APPROXIMATE SPT ⁽¹⁾ N'
	STRENGTH (kPa)	VALUE
Very Soft	12 or less	Less than 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	Greater than 200	Greater than 30

NOTE: Hierarchy of Soil Strength Prediction 1) Laboratory Triaxial Testing

2) Field Insitu Vane Testing3) Laboratory Vane Testing

4) SPT value

5) Pocket Penetrometer

4. TERMS DESCRIBING DENSITY (COHESIONLESS SOILS ONLY)

DESCRIPTIVE TERM SPT "N" VALUE
Very Loose Less than 4
Loose 4 to 10
Compact 10 to 30
Dense 30 to 50
Very Dense Greater than 50

5. LEGEND FOR RECORDS OF BOREHOLES

SYMBOLS AND SS Split Spoon Sample WS Wash Sample AS Auger (Grab) Sample ABBREVIATIONS TW Thin Wall Shelby Tube Sample TP Thin Wall Piston Sample

FOR PH Sampler Advanced by Hydraulic Pressure SAMPLE TYPE PM Sampler Advanced by Self Static Weight PM Sampler Advanced by Self Static Weight PM Sampler Advanced by Self Static Weight PM Sampler Advanced by Manual Pressure PM School PM Sampler Advanced by Manual Pressure SC Soil Core

Undisturbed Shear Strength
----Remoulded Shear Strength

■ Water Level

Sensitivity =

C_{pen} Shear Strength Determination by Pocket Penetrometer

- (1) SPT 'N' Value Standard Penetration Test 'N' Value refers to the number of blows from a 63.5kg hammer free falling a height of 0.76m to advance a standard 50 mm outside diameter split spoon sampler for 0.3 m depth into undisturbed ground.
- (2) DCPT Dynamic Cone Penetration Test Continuous penetration of a 50 mm outside diameter, 60° conical steel point attached to "A" size rods driven by a 63.5 kg hammer free falling a height of 0.76 m. The resistance to cone penetration is the number of hammer blows required for each 0.3 m advance of the conical point into undisturbed ground.

UNIFIED SOILS CLASSIFICATION

GROUP SYMBOL

GRAVEL AND GRAVELLY COARSE GRAINED SOILS SULS GM Silty gravels, gravel-sand-silt mixtures, little or no fines. GRAVELLY SOILS GM Silty gravels, gravel-sand-silt mixtures. GC Clayey gravels, gravel-sand-silt mixtures. GC Clayey gravels, gravel-sand-silt mixtures. GC Clayey gravels, gravel-sand-silt mixtures. Well-graded sands or gravelly sands, little or no fines. SANDY SOILS SM Silty sands, sand-silt mixtures. SC Clayey sands, sand-clay mixtures. ML Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity. CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. (W ₁ < 30%). WL < 50% CI Inorganic clays of medium plasticity, silty clays. (30% < W ₁ < 50%). OL Organic silts and organic silty-clays of low plasticity. Inorganic clays of medium plasticity, silty clays. (30% < W ₁ < 50%). OL Organic silts and organic silty-clays of low plasticity. Inorganic clays of medium to high plasticity, organic silts. CLAYS CH Inorganic clays of medium to high plasticity, organic silts. CHAYS CH Inorganic clays of medium to high plasticity, organic silts. Peat and other highly organic soils.	MAJO	R DIVISIONS	GROUP SYMBOL	TYPICAL DESCRIPTION
COARSE GRAVELLY SOILS GRAVELLY SOILS GRAVELLY SOILS GRAVELY SOILS GRAVELY GRAVELY SOILS GRAVELY SOILS GRAVELY GRAVELY SOILS GRAVELY				
COARSE GRAINED SOILS GRAVELLY SOILS GRAINED SOILS GRAVELLY SOILS GRAVELY SOILS GRAVELY GRAND AND SAND AND SANDY SOILS SW Well-graded sands or gravelly sands, little or no fines. SM Silty sands, sand-silt mixtures. SC Clayey sands, sand-silt mixtures. SC Clayey sands, sand-lay mixtures. GC Clayey sands, sand-lay mixtures. Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity. Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. (WL < 30%). GRAINED SOILS GRAINED S		GRAVEL		no fines.
COARSE GRAINED SOILS SAND AND SANDY SOILS SAND AND SOILS SOI		AND	GP	Poorly-graded gravels or gravel-sand mixtures, little
GRAINED SOILS SAND AND SANDY SOILS SAND AND SANDY SOILS SOILS SOILS SAND AND SOILS CLAYS SHALE SANDSTONE SILTSTONE CLAYSTONE		GRAVELLY		or no fines.
SOILS SAND AND SANDY SOILS SANDY SOILS SOILS SOILS SAND AND SOILS CLAYSHALE SANDSTONE SILTSTONE CLAYSTONE SOILS CLAYSTONE SOILS SOILS SOILS SOILS SOILS SOILS SOILS CLAYSTONE SOILS CLAYSTONE SOILS	COARSE	SOILS	GM	Silty gravels, gravel-sand-silt mixtures.
SAND AND SANDY SOILS Flower Soils	GRAINED		GC	Clayey gravels, gravel-sand-clay mixtures.
SANDY SOILS SM Silty sands, sand-silt mixtures. SC Clayey sands, sand-clay mixtures. SC Clayey sands, sand-clay mixtures. SC Clayey fine sands or clayey silts with slight plasticity. CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. (WL < 30%). GRAINED SOILS OL Organic silts and organic silty-clays of low plasticity. OL Organic silts and organic silty-clays of low plasticity. Inorganic silts and organic silty-clays of low plasticity. OL Organic silts and organic silty-clays of low plasticity. Inorganic silts and organic silty-clays of low plasticity. OL Organic silts and organic silty-clays of low plasticity. Inorganic clays of medium plasticity, silty clays. (30% < WL < 50%). OL Organic clays of high plasticity, fat clays. OH Organic clays of medium to high plasticity, organic silts. CLAYS CH Inorganic clays of medium to high plasticity, organic silts. Peat and other highly organic soils. CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE	SOILS		SW	Well-graded sands or gravelly sands, little or no
SOILS SM Silty sands, sand-silt mixtures. SC Clayey sands, sand-clay mixtures. SC Clayey sands, sand-clay mixtures. Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity. CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. (W _L < 30%). SOILS OL Organic silts and organic silty-clays of low plasticity. OL Organic silts and organic silty-clays of low plasticity. MH Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. CLAYS CH Inorganic clays of high plasticity, fat clays. OH Organic clays of medium to high plasticity, organic silts. Peat and other highly organic soils. CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE		SAND AND		fines.
SM Silty sands, sand-silt mixtures. SC Clayey sands, sand-clay mixtures. Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity. CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. (WL < 30%). CLAYS WL < 50% CI Inorganic clays of medium plasticity, silty clays. (30% < WL < 50%). OL Organic silts and organic silty-clays of low plasticity. Inorganic silts and organic silty-clays of low plasticity. Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. CLAYS CH Inorganic clays of high plasticity, fat clays. WL > 50% OH Organic clays of medium to high plasticity, organic silts. HIGHLY ORGANIC SOILS CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE		SANDY	SP	Poorly-graded sands or gravelly sands, little or no
SC Clayey sands, sand-clay mixtures. ML Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity. CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. (W _L < 30%). GRAINED SOILS WL < 50% CI Inorganic clays of medium plasticity, silty clays. (30% < W _L < 50%). OL Organic silts and organic silty-clays of low plasticity. MH Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. CLAYS W _L > 50% CH Inorganic clays of high plasticity, fat clays. OH Organic clays of medium to high plasticity, organic silts. Peat and other highly organic soils. CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE		SOILS		fines.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			SM	Silty sands, sand-silt mixtures.
$FINE \\ GRAINED \\ SOILS \\ W_L < 50\% \\ V_L < 50\% \\ OL \\ Organic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. \\ (W_L < 30\%). \\ (W_L < 50\%). \\ OL \\ Organic silts and organic silty-clays of low plasticity. \\ (30\% < W_L < 50\%). \\ OL \\ Organic silts and organic silty-clays of low plasticity. \\ Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. \\ CLAYS \\ W_L > 50\% \\ OH \\ OTHER SILTS AND CLAYS \\ W_L > 50\% \\ OH \\ OTHER SILTS AND CLAYS AND CLAY SHALE SANDSTONE \begin{array}{c ccccccccccccccccccccccccccccccccccc$			SC	Clayey sands, sand-clay mixtures.
$FINE \\ GRAINED \\ SOILS \\ FINE \\ FINE \\ FINE \\ CLAYS \\ FINE \\$			ML	Inorganic silts and very fine sands, rock flour, silty or
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				clayey fine sands or clayey silts with slight plasticity.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CL	Inorganic clays of low to medium plasticity, gravelly
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		SILTS AND		clays, sandy clays, silty clays, lean clays.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FINE	CLAYS		$(W_L < 30\%)$.
OL Organic silts and organic silty-clays of low plasticity. MH Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. CLAYS WL > 50% OH Organic clays of high plasticity, fat clays. OH Organic clays of medium to high plasticity, organic silts. Pt Peat and other highly organic soils. CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE	GRAINED	$W_L < 50\%$	CI	Inorganic clays of medium plasticity, silty clays.
MH Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. CLAYS WL > 50% OH Organic clays of high plasticity, fat clays. WI > 50% OH Organic clays of medium to high plasticity, organic silts. Pt Peat and other highly organic soils. CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE	SOILS			$(30\% < W_L < 50\%).$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OL	Organic silts and organic silty-clays of low plasticity.
$\begin{array}{c c} CLAYS \\ W_L > 50\% \\ \hline \\ OH \\ Organic clays of high plasticity, fat clays. \\ OH \\ Organic clays of medium to high plasticity, organic silts. \\ \hline \\ HIGHLY \\ ORGANIC \\ SOILS \\ \hline \\ CLAY SHALE \\ \hline \\ SANDSTONE \\ \hline \\ SILTSTONE \\ \hline \\ CLAYSTONE \\ \hline \\ \\ CLAYSTONE \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			MH	Inorganic silts, micaceous or diatomaceous fine
$W_L > 50\% \qquad OH \qquad Organic clays of medium to high plasticity, organic silts. \\ HIGHLY \qquad Pt \qquad Peat and other highly organic soils. \\ ORGANIC \qquad SOILS \qquad CLAY SHALE \\ SANDSTONE \\ SILTSTONE \\ CLAYSTONE \\ \\ CLAYSTONE \\ \\ OH \qquad Organic clays of medium to high plasticity, organic soils. \\ Peat and other highly organic soils. \\ \\ ORGANIC \qquad ORG$		SILTS AND		sandy or silty soils, elastic silts.
Silts. HIGHLY ORGANIC SOILS CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE silts. Peat and other highly organic soils. Peat and other highly organic soils.		CLAYS	СН	Inorganic clays of high plasticity, fat clays.
HIGHLY ORGANIC SOILS CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE		$W_L > 50\%$	ОН	Organic clays of medium to high plasticity, organic
ORGANIC SOILS CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE				silts.
SOILS CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE	HIGHLY		Pt	Peat and other highly organic soils.
CLAY SHALE SANDSTONE SILTSTONE CLAYSTONE	ORGANIC			
SANDSTONE SILTSTONE CLAYSTONE	SOILS			
SILTSTONE CLAYSTONE	CLAY SHALE		1	
CLAYSTONE	SANDSTONE			
	SILTSTONE			1
COAL	CLAYSTONE			1
	COAL			1

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 10, 2020 STARTED

SHEET 1 OF 1

August 10, 2020 N 4 825 266.9 E 598 005.6 COMPLETED

DATUM Geodetic

DESCRIPTION # ENTRY 1	
GPOUND SURFACE Solve Color Col	IEZOMETER OR STANDPIPE STALLATION
ASPHALT (150mm) SAND and GRAVE, some six, brown, model (Fil.1) SAND and SRIT trans day, model (Fil.2) SAND and	
SAMD_airly to SAMD and SRLT trace day,	
SAND, ally to SAND and SILT, flace day,	
1	
1	
2	
2 8 8 9 9 9 9 9 9 9 9	
2	
2 8 8 9 9 9 9 9 9 9 9	
2 B B B B B B B B B	
Second S	
19822 S. S. B. B. Grain Size Analysis: Gr. 8% Sa. 43% Si.47% Cl.2% O O O O O O O O O	
100 OF BOREHOLE AT 5.18m 100 AZ 5	
19622 S. 18	
19822 S. S. B. B. Grain Size Analysis: Gr. 8% Sa. 43% Si.47% Cl.2% O O O O O O O O O	
19822 S. S. B. B. Grain Size Analysis: Gr. 8% Sa. 43% Si.47% Cl.2% O O O O O O O O O	
S S 64 Gr 8% Sa 43% Si 47% Cl 2%	
6 SS - END OF BOREHOLE AT 5.18m. BOREHOLE AT 3.58m. BORNEHOLE AT 5.18m. BOREHOLE AT 3.68m. JPON COMPLETION. BOREHOLE BACKFILLE WITH BORNEHOLE BACKFILLE WITH BACKFILLE BACKFILL	
6 SS - END OF BOREHOLE AT 5.18m. BOREHOLE AT 3.58m. BORNEHOLE AT 5.18m. BOREHOLE AT 3.68m. JPON COMPLETION. BOREHOLE BACKFILLE WITH BORNEHOLE BACKFILLE WITH BACKFILLE BACKFILL	
5 END OF BOREHOLE AT \$18m. BOREHOLE OPEN TO 4.0m AND WATER LEVEL AT 3.66m UPON COMPLETION. BOREHOLE BACKFLLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE. 7 8 9	
END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 4.0m AND WATER LEVEL AT 3.66m UPON COMPLETION. BOREHOLE BORCHLED WITH BENTONITE HOLEPILUG AND ASPHALT COLDPATCH TO SURFACE.	
END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 4.0m AND WATER LEVEL AT 3.66m UPON COMPLETION. BOREHOLE BORCHLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.	
END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 4.0m AND WATER LEVEL AT 3.66m UPON COMPLETION. BOREHOLE BORCHLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.	
5 END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 4.0m AND WATER LEVEL AT 3.66m UPON COMPLETION. BOREHOLE AND ASPHALT COLDPATCH TO SURFACE. 7 8 8 9	
END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 4.0m AND WATER LEVEL AT 3.68m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEFULGA AND ASPHALT COLDPATCH TO SURFACE. 7 8 9	
ELEVEL AT 3.66m UPON COMPLETION. BORSHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE. 7 8 9	
ELEVEL AT 3.66m UPON COMPLETION. BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE. 7 8 9	
6 COLDPATCH TO SURFACE. 7 8 9	
8	
9	
CROUNDWATER ELEVATIONS	
CROUNDWATER ELEVATIONS	
CDOLINDWATER ELEVATIONS	
CPOLINDWATER ELEVATIONS	
(' 1) ()	
GROUNDWATER ELEVATIONS	
$\overline{oldsymbol{oldsymbol{arphi}}}$ WATER LEVEL UPON COMPLETION $\overline{oldsymbol{oldsymbol{arphi}}}$ WATER LEVEL IN WELL/PIEZOMETER LOGGED : RB	
CHECKED : CAR	THURB

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

August 12, 2020 STARTED August 12, 2020 COMPLETED :

N 4 825 114.2 E 598 141.7

SHEET 1 OF 1 DATUM Geodetic

<u>,</u>	5	3 [SOIL PROFILE			SA	MPL	ES	CC	OMMEN	NTS]	SHEA nat	RST V- V-	RENG	TH: Ci Q Cn	ı, KPa } - X en A		ا کو آ	
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC O RESI: - 20 40	CONE PE STANCE	ENETRA E PLOT — 80	ATION 100	V	40 	R CC	0 DNTEN	120 T, PEF	160	Г	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_	<u>"</u>	\dashv	GROUND SURFACE	ν	200.44	\vdash		<u> </u>	20 40 			100	\vdash	+			+	+0	-		
			ASPHALT(150mm)	XXX	0.00								1_								
			SAND and GRAVEL, some silt, brown, moist: (FILL)		0.15	1	GS						0								
						2	GS						0								
		ŀ	CLAY, silty, sandy, trace gravel, hard, brown, moist: (TILL) (CL)		199.67 0.76																
1			brown, moist: (TILL) (CL)			3	GS							0							
						4	ss	37	Grain Size Anal Gr 7%/ Sa 20%	ysis: ⁄₀/ Si 47%	6/ CI 26	6%		0	· —	—					
2																					
	ugers	≡																			
	em A	ary Di				5	SS	61													
	Solid Stem Augers	Rot																			
3	တိ				197.24																
		ľ	SILT, sandy, trace clay, hard, brown, moist		3.20	6	SS	81/ 0.20)					ာ							
]																
					196.47																
4			CLAY , silty, trace gravel, sandy, hard, red, moist: (TILL)		3.96																
			,																		
					195.71	7	SS	60/													
_			END OF BOREHOLE AT 4.72m. BOREHOLE OPEN TO 4.26m AND DRY	N/X/	4.72			0.15					`								
5			UPON COMPLETION. BOREHOLE BACKFILLED WITH																		
			BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.																		
<u> </u>																					
6																					
,																					
'																					
8																					
´																					
9																					
-																					
						L															
			GROUNDWATER ELE				_	_													
			$\overline{egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} arra$	MPL	ETION		7	L V	ATER LEVE	EL IN \	WELL	/PIEZC	METE	ER		LOGGI	ĒD :	RI	В		
																CHEC	KED :	C	AR		THURB

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

SHEET 1 OF 1

August 7, 2020 STARTED August 7, 2020 COMPLETED :

N 4 824 972.2 E 598 292.7

DATUM Geodetic

	SOIL PROFILE			SA	MPL	_	CON	IMENTS		SI	HEAR ST	RENGT	H: Cu, k	(Pa		
BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CON RESIST.	NE PENETR ANCE PLOT	ATION	WA	0 8 L ATER CO	0 1: L DNTENT	20 1 L PERCE	160 _L ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
BOR		STRA	(m)	≥	-	BLO	20 40	60 80	100		p I	0 3		wl 40 1	¥ 4	
	GROUND SURFACE		198.31													
	ASPHALT (175mm) SAND and GRAVEL, some silt, brown,	***	0.00 0.18	1	GS					0						
m	moist: (FILL)	\mathbb{R}^{\times}	197.83		GS		Grain Size Analysi Gr 35%/Sa 45%/	s: Si & Cl 209	%	0						
C	SAND, some silt, trace to some gravel, compact, brown to grey, moist		0.48													
																∇
				3	SS	11					0					- -
Sign																
Auge							Grain Size Analysi Gr 1%/ Sa 85%/	s:								
Sterr				4	SS	22	Gr 1%/ Sa 85%/ S	Si 12%/ Cl 2	2%		0					
Solid Stem Augers Rotary Drill																
				5	SS	20					0					
	grey		193.44	6	ss	50/ 0.000					0					
E	END OF BOREHOLE AT 4.88m. BOREHOLE OPEN TO 2.44m AND		4.88			0.000										
W C	WATER LEVEL AT 1.83m UPON COMPLETION.															
B	BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.															
	SOLDFATOR TO SURFACE.															
_	GROUNDWATER ELE	VA	TIONS	5			<u> </u>				<u> </u>	<u> </u>			1	
					1	Z _W	/ATER LEVEL	IN WELI	L/PIEZO	METEI	R	LOGGE	D ·	RB		
				-		* *		***	_,. ,	, ,		CHECK		CAR		THURBEI
	GROUNDWATER ELE				Ţ	Z w	/ATER LEVEL	IN WELI	L/PIEZO	METEI		LOGGE		RB CAR		

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

SHEET 1 OF 1

August 10, 2020 STARTED August 10, 2020 COMPLETED

N 4 824 802.8 E 598 457.2

DATUM Geodetic

4	5	3	SOIL PROFILE			SA	MPL	ES	COM	MENTS		SI	HEAR ST nat V -	RENGTH	l: Cu, KPa Q - X Cpen ▲	ں ا		
DEPTH SCALE (metres)	BORING METHOD	BONING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CON RESISTA 20 40 6	E PENETR NCE PLOT	ATION 100	W.	0 8 L	0 12 NTENT,	0 160 	ADDITIONAL LAB. TESTING	PIEZOM OF STAND INSTALL	R PIPE
			GROUND SURFACE	+"	196.66	\vdash												
			ASPHALT (150mm)		0.00													
			SAND and GRAVEL, some silt, brown, moist: (FILL)	\bowtie	0.15 196.23		GS GS					0						
		-	SILT, sandy, some clay, trace gravel, very stiff, mottled brown, moist: (TILL)	0	0.43		GS											
2					2	3	ss	25	Grain Size Analysis Gr 2%/ Sa 32%/ Si	53%/ CI 1	3%		0				Bentonite	
	n Augers	, Drill	SAND, silty, frequent shale fragments, compact to dense, brown, moist		194.45 2.21								_					
3	Solid Stem Augers	Rotary Drill				4	SS	25					0				Filter Sand	
						5	SS	37					0					
1																	Slotted Screen	
5			Highly weathered SHALE , hard, red, moist END OF BOREHOLE AT 4.67m. Piezometer installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Sep 09/20 1.66 195.00		192.09 4.57 4.70	6	SS	50/ 0.07				0						
7																		
3																		
9																		
			GROUNDWATER ELE	VA	TIONS	3												
			¥ WATER LEVEL UPON CO				Ī		/ATER LEVEL	N WELI	_/PIEZC	METE		LOGGED CHECKE			TL	IURE

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

August 5, 2020 STARTED SHEET 1 OF 1 August 5, 2020 N 4 824 667.6 E 598 604.8 DATUM Geodetic COMPLETED

щ	C	3	SOIL PROFILE			SA	MPL	.ES	COMMENTS		Sŀ	HEAR nat V	STREI	NGT	H: Cu, I Q - Cpen	KPa X	٥٫٫	
DEPTH SCALE (metres)	BOBING METHOD			LOT		ĸ.		.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		4	rem v 0	80	12	Open 20	160	ADDITIONAL LAB. TESTING	PIEZOMETER OR
PTH SC/ (metres)	Ų.	5	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	RESISTANCE PLOT				CONTI	ENT,	PERC		DOTE B. TE	STANDPIPE INSTALLATION
	aCa	20		STR	(m)	ž		BLO	20 40 60 80 100		w 1	o I — 0	20	3		wl 40	₹≤	
			GROUND SURFACE		195.39													
.			ASPHALT (200mm) SAND and GRAVEL some sitt brown	***	0.00	1	GS				5							
.			SAND and GRAVEL, some silt, brown, moist: (FILL)	W	0.36	2	GS GS			0								
.			SiLT, sandy, some clay, trace gravel, very stiff to hard, brown, moist: (TILL) (CL-ML)															
- 1																		
.	ω.			Kg/														
.	Auger	≣																
.	Solid Stem Augers	Rotary Drill							Grain Size Analysis: Gr 1%/ Sa 21%/ Si 62%/ Cl 16%									
-2	S pilo	Rol				3	SS	27	Gr 1%/ Sa 21%/ Si 62%/ Cl 16%			0 F	Τ'					
	S																	
.					1													
					1	4	SS	51			q)						
- 3				19	192.34													
			Highly weathered, SHALE , hard, red, moist		3.05 192.04	5	ss	45/ 0.150			þ)						
			END OF BOREHOLE AT 3.35m. BOREHOLE BACKFILLED WITH		3.35			0.150										
.			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.															
-4																		-
.																		
- 5																		
.																		
.																		
.																		
- 6																		-
.																		
.																		
7																		
.																		
.																		
-8																		·
.																		
- 9																		
.																		
				L	<u> </u>	L												
			GROUNDWATER ELE				_	,										
				MPL	ETION	l	7	- v	/ATER LEVEL IN WELL/PIEZO	OMET	ΓΕΙ	₹) :	RB		
													CHE	CKE	D :	CAR		THURBER

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

August 7, 2020 STARTED

SHEET 1 OF 1 August 7, 2020 N 4 824 523.2 E 598 753.1 DATUM Geodetic COMPLETED :

-	Τ	_	SOIL PROFILE			SA	MPL		COMMENTS	SHEAR S	STRENGTH: Cu, - • Q - - • Cpen	KPa		
DEPTH SCALE (metres)		BORING METHOD	30.21.101.22	Ъ	1			_		rem V	- Cpen 80 120	160	ADDITIONAL LAB. TESTING	PIEZOMETER
TH S(G ME	DESCRIPTION	A PL(ELEV.	BER	TYPE	8/0/3	DYNAMIC CONE PENETRATION RESISTANCE PLOT		ONTENT, PERC		TES	OR STANDPIPE
DEP'		ORIN I	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	≱	BLOWS/0.3m	<u> </u>	wp I	$ 0$ $^{\text{w}}$	wl	ADC LAB.	INSTALLATION
	╀	Ă	ODOLIND OUDS A OF	ST	_	_		B	20 40 60 80 100	10	20 30	40		
_	╁		GROUND SURFACE ASPHALT (200mm)		194.02 0.00									
•			SAND and GRAVEL, some silt, brown, moist: (FILL)	***	0.20	1	GS		Grain Size Analysis: Gr 35%/Sa 44%/ Si & Cl 21%	0				
				\bowtie	193.51 0.51	2	GS			0				
			SAND and SILT, trace clay, trace gravel, occasional cobbles, compact to very dense, brown, moist: (TILL)	o /	0.51									
- 1			blown, moist. (TLL)											
	SIS			9										
	Aug			0										
	Stem	Rotary Drill				3	ss	21						
-2	Solid Stem Augers	8		9										•
	ľ													
						4	SS	78	Grain Size Analysis: Gr 8%/ Sa 46%/ Si 41%/ Cl 5%	0				
-				١٩١										
- 3														-
_						5	ss	82						
				O Z		ľ		02						
					190.21	6	GS	-						
-4			END OF BOREHOLE AT 3.81m UPON AUGER REFUSAL UPON PROBABLE		3.81									-
-			BEDROCK. BOREHOLE OPEN TO 4.27m UPON											
-			COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT											
			COLDPATCH TO SURFACE.											
- 5														
- o														
-														
-														
-6														-
- 7														
-														
-8														_
_														
-														
ŀ														
- 9														-
	L	Ш	GROUNDWATER ELE	\/^-	TIONS	Ļ								
								,						
			$\overline{igspace}$ water level upon CC	MPL	ETION		7	- V	VATER LEVEL IN WELL/PIEZO	DMETER	LOGGED :	RB		
											CHECKED :	CAR		THURBER

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 10, 2020

SHEET 1 OF 1

STARTED August 10, 2020 COMPLETED

N 4 824 370.8 E 598 917.0

DATUM Geodetic

ш	6	00	SOIL PROFILE			SA	MPL	.ES		CON	MEN	ITS		8	HEAR nat V	STREN	GTH:	Cu, KI Q - X	Pa 【	ں ا	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAM R	IC CO ESIST	NE PE FANCE	NETRA PLOT	ATION 100	W	40 	80 CONTE	120 	ERCE	60 L NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	H	П	GROUND SURFACE	1 0,	192.85																
- - - - 1 -			ASPHALT (150mm) SAND and GRAVEL, some silt, brown, moist: (FILL) CLAY, silty, some sand to sandy, trace gravel, stiff to hard, mottled brown to brown, moist: (TILL)		0.00 0.15 192.41 0.43	1	GS GS		Grain Size / Gr 47%/Sa	Analys 38%/	is: Si &	CI 15%		0 0							
-2	jers					3	ss	9								0					
- - - 3	Solid Stem Augers	Rotary Drill				4	ss	24							0						
-4			SAND and SILT, trace gravel, trace clay,		188.88 3.96	5	ss	56							0						√7
-			occasional cobbles, dense, brown, wet			6	ss	45	Grain Size <i>i</i> Gr 4%/ Sa	Analys 46%/	is: Si 44%	-/ CL6	%		0						Ā
- 5 - - -			END OF BOREHOLE AT 5.11m. BOREHOLE OPEN TO 4.27m AND WATER LEVEL AT 4.10m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.		187.74 5.11																
- 6																					
- 7																					
-8 -																					
- 9 - - -																					
-			GROUNDWATER ELE	VA ⁻	TIONS	<u></u>															

▼ WATER LEVEL IN WELL/PIEZOMETER

PROJECT : Ninth Line Class EA Project No. 27269

LOCATION : Mississauga, ON STARTED : August 7, 2020

,

STARTED : August 7, 2020 COMPLETED : August 7, 2020

N 4 824 202.8 E 599 077.4

SHEET 1 OF 1
DATUM Geodetic

		ا ۵	SOIL PROFILE			SΔ	MPL	FS		CO	MMEN	ITS			HEAR S	TRENGT	H: Cu,	KPa		
DEPTH SCALE (metres)		BORING METHOD	SOIL I NOI ILL	۱		\vdash		_						1	nat V - rem V - 40	TRENGT	Q - Cpen 20	★ 160	ADDITIONAL LAB. TESTING	PIEZOMETER
H SC etres		3 ME		STRATA PLOT	ELEV.	NUMBER	М	BLOWS/0.3m	DYNAI	MIC CO RESIS	ONE PE	NETRA PLOT	TION						TEST	OR STANDPIPE
EPT (m)		Z	DESCRIPTION	ATA	DEPTH	UME	TYPE	SWC		2		_			VATER C	ONTENT	, rek(EN I I wl	ADD	INSTALLATION
		Ö		STR	(m)	Z		BLC	20	40 I	60 	80 I	100			20 3	30 I	40	` `	
			GROUND SURFACE		191.81				•	'		'	'							
			ASPHALT (250mm)		0.00									0						
			SAND and GRAVEL, some silt, brown, moist: (FILL)		0.25	1 2	GS GS							0						
			CLAY, silty, some sand to sandy, trace gravel, stiff to hard, brown to grey, moist:		0.41															
			gravel, stiff to hard, brown to grey, moist: (TILL) (CL)																	
1																				
						3	ss	9								0				
-2																				
	gers	. _				_														
	m Au	y Dri				4	SS	15							0					
	Ste	Rotary Drill				*	33	15												
3	Solid Stem Augers	"			1															
			occasional cobbles						Grain Size	Δnalve	eie.									
						5	ss	32	Grain Size Gr 3%/ S	a 27%/	/ Si 47%	/ CI 23	%			+				
					1															
-4					1															
5			grey			6	SS	78										7		
5		Ш			186.63															∇
			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 3.96m AND WATER LEVEL AT 3.96m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT		5.18															
			COMPLETION.																	
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT																	
-6			COLDPATCH TO SURFACE.																	
7																				
7																				
														1						
-8																				
														1						
														1						
														1						
9																				
														1						
														1						
	L		GROUNDWATER ELE	<u> </u>		<u> </u>														<u></u> _

▼ WATER LEVEL IN WELL/PIEZOMETER

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 7, 2020 STARTED

SHEET 1 OF 1

COMPLETED August 7, 2020

Į	Ę		SOIL PROFILE			SA	MPL	_	COMMENTS	s	HEAR S1 nat V - rem V -	FRENGTI	H: Cu, Q - Cpen	KPa X ▲	AP NG	PIEZOMETE	
(metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	W.	l0 8 L ATER CC rp I ——	0 12 L ONTENT,	20 PFR(160	ADDITIONAL LAB. TESTING	OR OR STANDPIP INSTALLATI	PE
_	Ī		GROUND SURFACE	0)	191.23			_					\vdash				_
			ASPHALT (200mm)		0.00	_			Grain Size Analysis: Gr 39%/Sa 47%/ Si & Cl 14%								ı
			SAND and GRAVEL, some silt, brown, moist: (FILL)		0.20	2	GS GS		GI 3970/ 38 4170/ 31 & CI 1470	0							ı
			CLAY , silty, some sand to sandy, trace gravel, stiff to very stiff, brown to grey,		0.46												ı
			moist: (TILL)														ı
1																	ı
																	ı
																Bentonite	ı
						3	SS	12				0					ı
2						٥	33	12									ı
	ers															▼	ı
	Aug	□i⊟							Grain Size Analysis:								ı
	Sterr	otary				4	SS	20	Gr 3%/ Sa 29%/ Si 46%/ Cl 22%		0						i
3	Solid	Rotary Drill							-							Filter Sand	
´			becoming grey						1								ŧ
						5	SS	25			0						Ė
																[::	
																Slotted Screen	F
1																 :-	ŧ
																[:	Ė
									-							<u> </u>	Έ
			hand			6	SS	55			}						
5			hard		186.05												
Ì			END OF BOREHOLE AT 5.18m. Piezometer installation consists of 25mm		5.18												
			diameter Schedule 40 PVC pipe with a 1.52m slotted screen.														
3			WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)														
			Sep 09/20 2.25 188.98														
7																	
3																	
9																	
			GROUNDWATER ELE					_									
			$\overline{igspace}$ water level upon c	OMPL	ETION	l	7	Z _V	VATER LEVEL IN WELL/PIEZO	METE	R	LOGGE	D :	RB			
								S	eptember 9, 2020			CHECKE	ED :	CAR		THUR	

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

August 6, 2020 STARTED August 6, 2020

COMPLETED :

SHEET 1 OF 1 N 4 823 877.4 E 599 414.7 DATUM Geodetic

щ	6	3	SOIL PROFILE			S	AMPI	LES		СО	MMEN	ITS			SHE	AR S at V -	TRENG	TH: Cu C Cpe	ı, KPa } - ≭		ָט	
DEPTH SCALE (metres)	Ė	BORING METHOD		LOT		m m		3m	DYN	AMIC CO	ONE PE	NETR	ATION		re 40	ın ∨ - 8	30	120	en ▲ 160		ADDITIONAL LAB. TESTING	PIEZOMETER OR
TH SCA	9	<u>2</u>	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m		AMIC CO RESIS	TANCE	PLOT			WAT	ER C	ONTEN	IT, PEF	RCENT		ĒΪ	STANDPIPE
- 교	ā			I.S.	DEPTH (m)	Į	-	Po	20	40	60	80	100		wp I 10		O ^V	<u>у</u>	⊣ wl 40		AP	INSTALLATIO
	Ľ	<u>n</u>	GROUND SURFACE	S		_	+	В	20	40 	OU 	ου I	100 	+	10	2		30	40			
	_	\forall	ASPHALT (200mm)		190.77		-	1							+			+				
			SAND and GRAVEL, some silt, brown, moist: (FILL)	***	0.20	1	GS		1					0								
				\bowtie	190.22	2	GS		1					0								
			CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, brown, moist: (TILL) (CL)		0.56																	
₁			(TILL) (CL)																			
'																						
					1																	
						3	ss	18)						
2																						
	gers	_			1	F	+	1	-													
	Solid Stem Augers	Rotary Drill				4	00	24								0						
	1 Ste	Rotar						24								_						
3	Solic	-							1													
						5	SS	31							þ							
					4		+		1													
4					1																	
†																						
			occasional cobbles, becoming grey				+		1													
						6	ss	27	Grain Si Gr 4%/	ze Analy Sa 32%	sis: / Si 45%	6/ Cl 19	9%		0	-	\vdash					
5	L	\bigsqcup			185.59		\perp	L														
			END OF BOREHOLE AT 5.18m. BOREHOLE BACKFILLED WITH		5.18	3																
			BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.																			
6																						
7																						
8																						
'																						
9																						
		Ш	GROUNDWATER ELE	\/ \	TION!	Ļ																
							•	7.	.,,			.	/D:==	O. 4==								
				JMPL	LETION	1	-1	<u>-</u> ∖	VATER	LEVE	L IN \	/VELL	/PIEZ(OME.	IER			ED :				
																	CHEC	KED :	CA	ΑK		THURI

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

August 6, 2020 STARTED

SHEET 1 OF 1 August 6, 2020 N 4 823 728.6 E 599 561.6 DATUM Geodetic COMPLETED :

щ	C	3	SOIL PROFILE			SA	MPL	.ES	COMMENTS		SHEAR S nat V -	TRENGTH:	: Cu, KPa Q - X	ی ا	
DEPTH SCALE (metres)	BORING METHOD	BONING METE	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENE RESISTANCE PLO 20 40 60 80		40 WATER C wp	80 120 	D 160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE	Ë	190.58										
	1	1	ASPHALT (150mm)	xxxx	0.00 0.15		000				0				
			SAND and GRAVEL, some silt, brown, moist: (FILL)		189.97	2	GS GS				0				
1			CLAY, silty, trace sand, varved, firm to stiff, brown, moist (CL)		0.61										
2	s					3	ss	6	Grain Size Analysis: Gr 0%/ Sa 4%/ Si 62%/ C	I 34%		0	1		
	Solid Stem Augers	Rotary Drill				4	ss	14				0			
3	ŏ		mottled			5	SS	13				0			
·4		-	CLAY, silty, some sand, hard, grey, moist: (TILL)		186.46 4.11										
5			END OF BOREHOLE AT 5.18m		185.40 5.18		ss	31			0				
6			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.												
7															
-8															
9															
!			GROUNDWATER ELE	\/^-	LIONS	Ļ									
			WATER LEVEL UPON CC				Ī	<u> </u>	/ATER LEVEL IN WE	LL/PIEZO	METER	LOGGED			THURB

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

SHEET 1 OF 1

August 11, 2020 STARTED August 11, 2020 COMPLETED

N 4 823 572.1 E 599 722.7

DATUM Geodetic

ш	5	3	SOIL PROFILE			SA	MPL	ES	COMMEN	ITS		SHEAR S nat V - rem V -	TRENGT	H: Cu, K	Pa 【	. (1)	
DEPTH SCALE (metres)	COUTTAIN SINIO	MEIH		PLOT	ELEV.	Ä	ш	/0.3m	DYNAMIC CONE PE RESISTANCE	NETRATION PLOT		40 	80 1 	20 1	60 I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
DEPTI (m.		BORING	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60	80 100		WATER C wp I—— 10	o <u>w</u>	v		ADDI LAB. T	INSTALLATION
\dashv	_	\dashv	GROUND SURFACE	8	190.60	\vdash	\vdash	٣		ŢŢ.	+	-	[<u> </u>			
			ASPHALT (150mm)		0.00												
			SAND and GRAVEL, some silt, brown, moist: (FILL)	\bowtie	0.15	┰	_		Grain Size Analysis: Gr 42%/Sa 43%/ Si &	01.450/	0						
			CLAY, silty , trace sand, stiff to firm, grey,		0.36	2	GS		Gr 42%/Sa 43%/ Si &	CI 15%			0				
			moist (CI)														
					1												
1						3	GS						0				
						١.		l									
2					1	4	SS	11					0				
	S					\vdash	-										
	Solid Stem Augers	Į _Ę				H											
l	em A	Rotary Drill			1	5	ss	12					0				
	id St	Rota															
3	Sol				1												
					1				Grain Size Analysis: Gr 0%/ Sa 1%/ Si 54%								
			very stiff			6	SS	18	Gr 0%/ Sa 1%/ Si 54%	/ CI 45%							
						\vdash											
1					1												
					1												
5						7	SS	6)			
		\vdash	FND OF BOREHOLF AT 5 18m	#26	185.42 5.18												
			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN AND DRY UPON COMPLETION.] 3.10												
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT														
			COLDPATCH TO SURFACE.														
·																	
,																	
8																	
9																	
						Ļ											
			GROUNDWATER ELE				_	_									
			$\overline{egin{subarray}{c} igsep}$ water level upon co	OMPL	ETION	ı	7	۷ <u>۷</u>	ATER LEVEL IN \	VELL/PIE	ZOMET	ER	LOGGE	:D :	RB		
													CHECK	ED :	CAR		THURBI
																	THU

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

SHEET 1 OF 1

August 6, 2020 STARTED August 6, 2020 COMPLETED

N 4 823 402.2 E 599 900.5

DATUM Geodetic

ا پ	阜	L	SOIL PROFILE			SA	MPL	ES	COM	IMENT	S] 5H	rat V -	RENGT	rī. Uu, h Q - Cnen	\ra X ▲	ᇦ		
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CON RESIST.	>	_		WA WA	TER C	0 1 L ONTENT	20 , PERC	160 ENT wl	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIP INSTALLATIO	PΕ
	<u> </u>	_		ST	(m)			岡	20 40 I I	60 I	80 ´	100 	10) 2	0 3	30	40			_
			ROUND SURFACE		190.24															_
			SPHALT (175mm) AND and GRAVEL, some silt, brown,	***	0.00 0.18		GS						b							ı
		m	oist: (FILL)	\bowtie	189.79								0							ı
1		CI	LAY, silty, trace sand, occasional gravel, m to stiff, mottled to brown, moist (CI)		0.46														Bentonite	
2	ıs					3	ss	7							0					
3	Solid Stem Augers	Rotary Drill				4	ss	14	Grain Size Analysi Gr 0%/ Sa 1%/ S	s: Si 52%/	CI 47%	,		ŀ	•	-			Enter Sand	
						5	ss	14							0					
4		CI gr	LAY, silty, some sand, trace gravel, firm, ey, moist: (TILL)		186.13 4.11														Slotted Screen	
5					185.06	6	SS	7						0						F
6		Pi dia 1.	ND OF BOREHOLE AT 5.18m. lezometer installation consists of 25mm ameter Schedule 40 PVC pipe with a 52m slotted screen. VATER LEVEL READINGS: ATE DEPTH(m) ELEV.(m) ep 09/20 2.95 187.29		5.18															
7																				
8																				
9																				
			CDOUNDWATER TO T	\/^-	TIONS	Ļ														
			GROUNDWATER ELE				Ī		/ATER LEVEL		'ELL/F	PIEZC	METER	3	LOGGE CHECK		RB CAR		THUR	

PROJECT Ninth Line Class EA Project No. 27269

LOCATION Mississauga, ON

SHEET 1 OF 1

August 11, 2020 STARTED

N 4 823 347.9 E 599 962.7

August 11, 2020 COMPLETED DATUM Geodetic SHEAR STRENGTH: Cu, KPa nat V - ↑ Q - ★ rem V - ↑ Cpen ▲ 40 80 120 160 SAMPLES SOIL PROFILE COMMENTS BORING METHOD DEPTH SCALE (metres) ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.3m DYNAMIC CONE PENETRATION RESISTANCE PLOT NUMBER OR TYPE ELEV. STANDPIPE INSTALLATION WATER CONTENT, PERCENT **DESCRIPTION** DEPTH (m) 60 40 20 30 20 80 40 GROUND SURFACE 190.56 ASPHALT (225mm) 0.00 SAND and GRAVEL, some silt, brown, moist: (FILL) 0.23 GS 0 1 0.43 SAND, silty, some gravel: (FILL) 189.50 2 GS 0 **CLAY**, silty, trace sand, occasional gravel, stiff to very stiff, brown, wet 1.07 SS 10 -2 Solid Stem Augers Rotary Drill SS 17 0 3 Grain Size Analysis: Gr 0%/ Sa 2%/ Si 45%/ CI 53% SS 18 0 186.45 CLAY, silty, some sand, trace gravel, occasional cobbles, stiff, grey, wet: (TILL) SS 10 0 5 185.38 END OF BOREHOLE AT 5.18m. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE. -6 7 -8 9 TEL-27269.GPJ 4/8/21

GROUNDWATER ELEVATIONS

 \overline{Y} WATER LEVEL UPON COMPLETION

THURBER2S

▼ WATER LEVEL IN WELL/PIEZOMETER

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

SHEET 1 OF 1 DATUM Geodetic

August 6, 2020 STARTED August 6, 2020 COMPLETED

N 4 823 224.3 E 600 106.8

щ		00	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S ⁻ nat V -	TRENGT	H: Cu, K Q - S Cpen	Pa C	ی ا	
DEPTH SCALE	es)	BORING METHOD		LOT		~		3m	DYNAMIC CONE PENETRATION] 4	rem V - 10 8	0 1	Cpen 2 20 1	60	ADDITIONAL LAB. TESTING	PIEZOMETER OR
F S	metr	200	DESCRIPTION	P PI	ELEV.	NUMBER	TYPE	/8/0	DYNAMIC CONE PENETRATION RESISTANCE PLOT	W	ATER C	ONTENT	, PERCE	NT	E E	STANDPIPE
B.	$^{\scriptscriptstyle{\smile}}$	ORI		STRATA PLOT	DEPTH (m)	N	-	BLOWS/0.3m	20 40 60 80 100		/р I ——	.0 3		vl IO	AD	INSTALLATION
\vdash	+		GROUND SURFACE	Ω.	<u> </u>			ш	20 40 00 80 100		10 2	.0	1	+	\vdash	
-	+		ASPHALT (150mm)		189.77 0.00				Crain Siza Analysia:							
ı			SAND and GRAVEL, some silt, brown, moist: (FILL)	\bowtie	0.15		GS		Grain Size Analysis: Gr 47%/Sa 40%/ Si & Cl 13%	0						
ĺ				\bigotimes	189.21	2	GS			0						
			CLAY, silty, trace sand, trace gravel, stiff to very stiff, brown, moist		0.56											
- 1																-
ŀ																
ŀ																-
ŀ																-
İ,						1	ss	14				þ				•
-2		σ														
ļ		Solid Stem Augers Rotary Drill														
ŀ	ľ	d Stem Aug Rotary Drill				2	ss	17				0				-
ŀ		Rota Rota														-
- 3	(8 														-
ŀ						3	ss	10				0				-
į																
ļ																-
-4					185.66											-
ŀ			CLAY, silty, sandy, trace gravel, stiff, brown to grey, moist: (TILL) (CL)		4.11											-
ŀ			Siowin to groy, moist. (TEE) (OE)													-
İ									Grain Size Analysis:							-
- 5						4	ss	9	Gr 3%/ Sa 26%/ Si 48%/ Cl 23%		6 —	H				_
[]	F		END OF POPELIOLE AT 5 19m		184.59 5.18											
1			END OF BOREHOLE AT 5.18m. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT		5.10											-
ŀ			COLDPATCH TO SURFACE.													-
ŀ																-
- 6																_
1																-
ŀ																-
- 7																-
ŀ																
İ																-
-8																_
1																-
ŀ																-
1																-
9																1
78/7																-
2																
0.60																
7/7-																
	_		GROUNDWATER ELE	VA	TIONS	<u></u>			ı		1	<u> </u>	1	1		
IHUKBEK2S 1EL-2/269.GPJ 4/8/21			¥ WATER LEVEL UPON CC				3	Z 1/	/ATER LEVEL IN WELL/PIEZO	METE	R		Б	DD		
OKB OCKB			- VVAILIVELUFUN CC	vivi⊏ L	1101	1	-	- V	VALEIX ELVEL IIN VVELE/FIEZO	IVIL I C		LOGGE		RB CAR		
⊑ ∟												J. ILON		J, 11 \		THURBER

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON

SHEET 1 OF 1

August 13, 2020 STARTED August 13, 2020 COMPLETED

N 4 823 072.4 E 600 262.3

DATUM Geodetic

	2	2	SOIL PROFILE			SA	MPL	ES	COMMENTS		SH	EAR S	TRENG	TH: Cu,	KPa	Ι	
DEPTH SCALE (metres)	BOBING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		40 L WA	1	BO ONTEN	120 _l T. PER0	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
วี	- G			STR	(m)	Ź		BLC	20 40 60 80 100		wμ 10			30 	40 		
			GROUND SURFACE		190.75												
			ASPHALT (200mm)	×××	0.00	ı	GS				0						
			SAND and GRAVEL, some silt, brown, moist: (FILL) CLAY, silty, trace sand, trace gravel, some organics, brown, moist: (FILL)		0.20 0.38						0						
1						3	GS		_			C	<u>'</u>				
2			CLAY , silty, trace gravel, trace sand, trace organics, trace rootlets, stiff to very stiff, brown to grey, moist (CI)		189.22 1.52	4	SS	11	Grain Size Analysis: Gr 0%/ Sa 9%/ Si 49%/ Cl 42%				3				
	Solid Stem Augers	Rotary Drill				5	ss	17				0					
3	0)					6	ss	26				0					
4			CLAY, silty, some sand to sandy, trace gravel, hard, brown to grey, moist: (TILL)		186.63 4.11												
5			END OF BOREHOLE AT 5.18m.		185.57 5.18	7	ss	38				0					
6			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 4.57m and DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.		0.10												
7																	
8																	
9																	
!			GROUNDWATER ELE	VA.	TIONS	5			<u> </u>				1	1		-	
			¥ WATER LEVEL UPON CO				Ī	<u> </u>	VATER LEVEL IN WELL/PIE	ZOM	METEF	2	LOGGE		RB CAR		THURE

PROJECT Ninth Line Class EA Project No. 27269

LOCATION Mississauga, ON

SHEET 1 OF 1

August 6, 2020 STARTED

August 6, 2020 N 4 822 939.0 E 600 389.4 COMPLETED DATUM Geodetic SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - ★ rem V - ♥ Cpen ▲ SAMPLES SOIL PROFILE COMMENTS BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE PIEZOMETER 80 120 160 STRATA PLOT BLOWS/0.3m DYNAMIC CONE PENETRATION RESISTANCE PLOT NUMBER OR TYPE ELEV. STANDPIPE WATER CONTENT, PERCENT DESCRIPTION INSTALLATION DEPTH (m) 60 40 100 20 30 20 80 40 GROUND SURFACE 190.25 ASPHALT (200mm) 0.0 0 1 GS 2 GS SAND and GRAVEL, some silt, brown, 0.20 0 moist: (FILL) **SAND**, some gravel, some silt, trace clay, brown, dry: (FILL) 0.46 Bentonite 188.73 **CLAY**, silty, some to trace organics, trace rootlets and wood fragments, firm to stiff, dark brown to brown, moist 1.52 SS 3 0 -2 Solid Stem Augers Rotary Drill SS 0 Filter Sand 187.28 3 **CLAY**, silty, sandy, trace gravel, very stiff to stiff brown to grey, moist: (TILL) 2.97 Grain Size Analysis: Gr 1%/ Sa 29%/ Si 47%/ Cl 23% SS 25 0 Slotted Screen SS 0 5 185.07 END OF BOREHOLE AT 5.18m. Piezometer installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) -6 Sep 09/20 3.09 187.16 7 -8 9

GROUNDWATER ELEVATIONS

 \overline{Y} WATER LEVEL UPON COMPLETION

TEL-27269.GPJ

THURBER2S

▼ WATER LEVEL IN WELL/PIEZOMETER September 9, 2020

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 12, 2020

SHEET 1 OF 1

STARTED August 12, 2020 COMPLETED

N 4 822 739.9 E 600 583.7

DATUM Geodetic

щ	5	3	SOIL PROFILE			SA	MPL	ES	COMMENTS	,	SHEAR ST	FRENGT	H: Cu, KP Q - X Cpen ▲	а	טן	
DEPTH SCALE (metres)	BORING METHOD	DONING ME	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	V	40 € L VATER CO wp I——	0 1: L ONTENT:	20 160 L L , PERCEN	O NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE		189.46											
1		=	ASPHALT (200mm) SAND, gravelly, some silt, brown, moist: (FILL) CLAY, silty, sandy, trace to some gravel, stiff to very stiff, brown to grey, moist: (TILL) (CL)		0.00 0.20 0.46	1 2			Grain Size Analysis: Gr 31%/Sa 46%/ Si & Cl 23%	0	0					
2	ırs					4	ss	14			0					Bentonite
3	Solid Stem Augers	Rotary Drill				5	ss	22	Grain Size Analysis: Gr 4%/ Sa 26%/ Si 47%/ Cl 23%		O I	— I				Filter Sand
4						6	ss	24			0					Slotted Screen
5			END OF BOREHOLE AT 5.18m. Piezometer installation consists of 25mm		184.28 5.18		SS	19			0					
ô			diameter Schedule 40 PVC pipe with a 1.52m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Sep 09/20 2.50 186.96													
7																
8																
9																
			GROUNDWATER ELE						VATER LEVEL IN WELL/PIEZ		 					
			- WATER LEVEL UPON CO	'IVIPL	LETION		_		September 9, 2020	OIVIE (LOGGEI		RB CAR		THURE

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 12, 2020 STARTED

SHEET 1 OF 1 DATUM Geodetic

August 12, 2020 N 4 822 582.5 E 600 749.8 COMPLETED

ш	T :	9	SOIL PROFILE			SA	MPL	ES	COMMENTS	:	SHEAR S nat V - rem V -	TRENG	ΓΗ: Cu, k	(Pa	ا ا	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	V	40 8 L VATER C	30 ´	I20 1	60 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
呂		BOR		STR	(m)	Z	_	BLO	20 40 60 80 100		wp I 10 2		30	wl 40 	₹₹	-
_			GROUND SURFACE ASPHALT (150mm)		189.79 0.00											
			SAND, gravelly, some silt, brown, moist: (FILL)		0.15	1	GS			0						
			CLAY, silty, some sand to sandy, trace gravel, trace organics, very stiff to stiff, brown to grey, moist: (TILL)		0.36											
			brown to grey, moist: (TILL)													
1						2	GS		Grain Size Analysis: Gr 1%/ Sa 21%/ Si 41%/ Cl 37%)				
-2						3	SS	24			0					
_	ers															
	Solid Stem Augers	Rotary Drill														
	d Ster	Rotar				4	ss	21								
3	Soli															
						5	SS	25			0					
4																
4																
5						6	SS	15			0					
	F		END OF BOREHOLE AT 5.18m. BOREHOLE OPEN AND DRY UPON	X2X2	184.61 5.18											
			COMPLETION. BOREHOLE BACKFILLED WITH													
			BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.													
6																
7																
•																
8																
0																
9																
			CDOUNDWATER ELE	\/^-		Ļ										
			GROUNDWATER ELE				•	7	/ATED EVEL							
			¥ WATER LEVEL UPON CC	MPL	LETION	l	-1	- ∨	/ATER LEVEL IN WELL/PIEZC	METE	-R	LOGGE		RB CAR		
												J. ILON		OAN		THURBE

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 13, 2020 STARTED

August 13, 2020 COMPLETED

SHEET 1 OF 1 N 4 822 434.1 E 600 901.4 DATUM Geodetic

щ	9	00	SOIL PROFILE			SA	MPL	.ES	COMMENTS	5	HEAR S nat V - rem V -	TRENGT	H: Cu, I	KPa X	٥٫١	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	W	40 │ /ATER C vp I——	BO 1 L ONTENT	20 L PERC	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	H		GROUND SURFACE	S	189.41						+		+	+	+	
			ASPHALT (150mm) SAND, gravelly, some silt, brown, moist: (FILL)		0.00 0.15 188.80 0.61	2	GS GS		Grain Size Analysis: Gr 29%/Sa 54%/ Si & Cl 17%	0						
1			CLAY, silty, trace sand, trace gravel, some organics, black, moist: (FILL)		188.12 1.30		GS				0					
2			CLAY, silty, sandy, trace gravel, trace rootlets, stiff to hard, brown to grey, moist: (TILL)		1.50	4	ss	15			0					
	Stem Augers	Rotary Drill							Crain Sira Analysis							
3	Solid	æ				5	SS	32	Grain Size Analysis: Gr 6%/ Sa 33%/ Si 42%/ Cl 19%		0					
						6	55	34			0					
4																
5			Stiff		184.23 5.18	7	SS	14			0					
			END OF BOREHOLE AT 5.18m. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.													
6																
7																
8																
9																
			GROUNDWATER ELE	VA ⁻	TIONS											
			¥ WATER LEVEL UPON CC				Ī	Z w	/ATER LEVEL IN WELL/PIEZC	METE	R	LOGGE		RB CAR		THURE

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 12, 2020 STARTED

SHEET 1 OF 1

August 12, 2020 COMPLETED

N 4 822 298.5 E 601 040.6

DATUM Geodetic

щ	Č	3	SOIL PROFILE			5	SAMP	LES		CC	OMMEN	NTS		S	HEAR S nat V - rem V -	TRENGT	TH: Cu, Q -	KPa X	ن ا		
DEPTH SCALE (metres)	ODITION ONIGOR	BORING METH	DESCRIPTION	STRATA PLOT	ELEV DEPTI (m)	H	TYPE	BLOWS/0.3m	DYI	NAMIC C RESI:	CONE PE STANCE	ENETR/ E PLOT — 80	ATION 100	W	40 & L 'ATER C vp I——	BO 1 L ONTENT	120 _l T, PERC	160 	ADDITIONAL LAB. TESTING	PIEZOM OF STAND INSTALL	R PIPE
\dashv		П	GROUND SURFACE	+"	189.2	28	+	+						1							
			ASPHALT (175mm)		0.0	00															
			SAND, gravelly, some silt, brown, moist:	***	0.1	18	1 GS 2 GS	3	1					0							
		 	(FILL) CLAY silty sandy trace grayel firm to		0.4	11 F	2 GS	-	1					0							
			CLAY, silty, sandy, trace gravel, firm to hard, grey, moist to wet: (TILL)																		
1						L									0						
						Ŀ	GS GS	3	-												
					4															Bentonite	
						t			1												
					1	.	4 SS	7							0						
<u> </u>																					
	ers				7	F		+	1											Ţ	
	Solid Stem Augers	Rotary Drill																			
	tem	aryl					5 s	24							0						
	Spi	Rot			4															 	
3	S					F		\perp	4								1			Filter Sand	
									Grain S	Size Anal	ysis:						1				I E
					4	1	SS	30	Gr 3%	/ Sa 30%	%/ Si 47%	%/ CI 20)%		0		1				1
					1	\vdash		+	4												E
					3															Slotted	
.																				Screen	I E
					1																1 =
					1																
									1												
,			stiff		4		7 ss	11							0						
'		Ш			184.1		\perp										1				
		ΙJ	END OF BOREHOLE AT 5.18m. Piezometer installation consists of 25mm		5.1	18											1				
			diameter Schedule 40 PVC pipe with a 1.52m slotted screen.		1																
					1																
,			WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)		1				1												
			Sep 09/20 2.24 187.04		1				1												
					1																
					1																
																	1				
																	1				
					1																
																	1				
					1				1												
														1			1				
					1																
																	1				
- [1				1												
					1																
					1																
)																	1				
					1				1												
					1																
																	1				
_					<u>L</u>									L	L						
		•	GROUNDWATER ELE					•	•					-				•			
				OMPL	LETIO	N	_	<u> </u>	VATEF	R LEVE	EL IN \	WELL	/PIEZO	OMETE	:R	LOGGE	-D ·	RB			
						-			Septemb							CHECK		CAR			
									,	., _0						J. ILON		O/ 11 C		TH	URI

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 12, 2020 STARTED

August 12, 2020 COMPLETED :

N 4 822 157.4 E 601 185.6

SHEET 1 OF 1 DATUM Geodetic

													.01	HFAR 9	TRENGT	H: Cir k	Pa		
ļ	Į.	2	SOIL PROFILE	T L-		SA	MPL		CON	MMEN	ITS			nat V -	TRENGT	Q - Cpen	K a	NG A	DICZONACTO
(metres)	BOBING METHOD	טאואס ואם	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CO RESIST	NE PE FANCE	_	ΠΟΝ 100	W/ W	.0 L ATER C p I	80 1 L ONTENT	20 1 	60 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_	ď		GROUND SURFACE	l S	-	\vdash		В	20 4 0 	UU 	00 	100		 	20 3	1	+0	$\vdash \vdash \vdash$	
\dashv	-	H	ASPHALT (150mm)		190.23										1		1	\vdash	
			SAND, gravelly, some silt, brown, moist: (FILL)		0.15		GS		Grain Size Analys	is.			0						
			CLAY silty, sandy, trace organics, trace sand, trace gravel, stiff to very stiff, brown to grey, moist: (TILL) (CL)		0.41	2	GS		Grain Size Analys Gr 25%/Sa 50%/	Si &	CI 25%		0						
			to grey, moist: (TILL) (CL)																
1						3	GS						0						
2						4	SS	17						(
	હ																		
	Auge	ii.							Grain Size Analys	ie.									
	tem	Rotary Drill				5	SS	15	Grain Size Analys Gr 6%/ Sa 29%/	Si 45%	6/ CI 20%	6		o⊩	\vdash				
	Solid Stem Augers	8																	
3	S																		
						6	SS	27						0					
						7	SS	24						b					
5					185.05														
			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN AND DRY UPON		5.18														
			COMPLETION																
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.																
			GROUNDWATER ELE																

 \overline{Y} WATER LEVEL UPON COMPLETION

▼ WATER LEVEL IN WELL/PIEZOMETER

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 13, 2020 STARTED

COMPLETED

SHEET 1 OF 1

August 13, 2020 N 4 821 987.2 E 601 358.0 DATUM Geodetic

щ	C	3	SOIL PROFILE			SA	AMPL	.ES	CO	MMEN	NTS		S	HEAR S	TRENG	TH: Cu, Q -	KPa X	. (5)	
DEPTH SCALE (metres)	DOBING METHOD	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CORESIS	ONE PERTANCE	ENETRA PLOT 80	TION 100	W v	40 │ /ATER C vp	80 L ONTENT	120 Г, PERC	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		П	GROUND SURFACE	+"	190.81														
			ASPHALT (175mm)																
			SAND and GRAVEL, some silt, brown, moist: (FILL)		0.18								0						
			CLAY, silty, sandy, trace gravel,		0.41	2	GS						0						
			CLAY, silty, sandy, trace gravel, occasional cobbles, firm to stiff, brown to grey, moist: (TILL)																
			<i>3,</i> , , ,						Crain Sina Analy										
1						3	GS		Grain Size Analy Gr 10%/Sa 30%	sis. / Si 38%	6/ CI 22	%		0					
2						4	SS	6						0					
	s				4														
	Solid Stem Augers	_≠				-													
	m.A	Rotary Drill				5	SS	19											
	Ste	Sota			4	ľ									1				
3	Solic	"																	
						[1					
			very stiff			6	ss	28						0					
4																			
_						7	ss	10						0					
5		\bigsqcup			185.63			L								1			
			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN AND DRY UPON		5.18									1					
			COMPLETION.											1					
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.																
6			0025.7.101.10 001.47.02.																
Ŭ																			
																1			
														1					
														1					
7														1					
														1					
																1			
														1					
ر ا																1			
8														1					
																1			
														1					
														1					
9																1			
														1					
																1			
		Щ	GROUNDWATER ELE	VA	TIONS	<u></u>			<u> </u>					1	1			1	
							•	7	/ATED =\ '=		٠	/DIE==		. Б					
				JMPL	LETION	ı	-3	<u>-</u> ∨	ATER LEVE	L IN \	/V ⊨LL	/PIEZO	WEIE	:K	LOGGE		RB		
															CHECK	KED :	CAR		THURI

N 4 821 854.2 E 601 494.3

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 13, 2020 STARTED

SHEET 1 OF 1

August 13, 2020 COMPLETED :

DATUM Geodetic

	2	2	SOIL PROFILE			SA	MPL		CC	MMEN	494.3 ITS		S	HEAR S nat V rem V	TRENG	STH: C	ı, KPa) - X		(1)
DEPTH SCALE (metres)	Ţ	BORING METHOD		PO:		t		_	DANIVIIC C		NETD/	ATION	.	rem V 40	80	Cpe 120	en ▲ 160	ADDITIONAL	PIEZOMET
(metres)	2	ة إك	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CO RESIS	TANCE	PLOT	TION	V	ATER C	ONTEN	IT, PEF	RCENT	₩	OR STANDPIF
ا _ ا _ آ	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DEGOME HON	RAT	DEPTH (m)	NON	}	NO.		<u>~</u>		405	l v	vp —	ov	v	-I wl	ADE	MG INSTALLATI
	۵	ĭ		ST	(111)	Ļ		В	20 40	60	80 I	100		10	20	30	40		
		\sqcup	GROUND SURFACE ASPHALT (150mm)		191.86	-			Grain Size Analy	sis:				1	1		_	_	-
			SAND and GRAVEL, some silt, brown, moist: (FILL)	***	0.00	1			Grain Size Analy Gr 36%/Sa 47%	/ Si &	CI 17%	b	0	1					
			moist: (FILL)		0.36	-	GS						0						
			CLAY, silty, sandy, trace gravel, very stiff, brown to grey, moist: (TILL)																
1						3	GS												
					1	4	SS	16						0					
2	(n					_													1
	uger	₌			1									1					
	m A	J D				5	SS	22											1
	d Ste	Rota				ľ													
3	Solk	Rotary Drill			1									1					
						6	SS	23						0					
					1	_	-							1					
														1					
4					1									1					
														1					
					1									1					
5						7	SS	22						0					
ŀ		\vdash	END OF BOREHOLE AT 5.18m.	XX/2	186.68 5.18		\vdash												
			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN AND DRY UPON COMPLETION.																
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT																1
			COLDPATCH TO SURFACE.											1					
6														1					
																			1
														1					
7														1					
														1					
														1					
3														1					
														1					
														1					
9																			
														1					
														1					
		Ш	GROUNDWATER ELE	VA	TIONS	5									1			I	
			¥ WATER LEVEL UPON CC				1	Z .,	ATER LEVE	LININ	١.	/DIEZO	N/C-T-	:D					
			- WATER LEVEL UPON CO	NVIPL	LETION	N	-	V	VAIEK LEVE	L IIN V	v ELL	/PIEZU	IVIE I E	.17		ED :			
															CHEC	KED :	CAR	•	THU

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 10, 2020 STARTED

SHEET 1 OF 1

August 10, 2020 COMPLETED

N 4 821 698.4 E 601 652.8

DATUM Geodetic

ų	9	<u></u>	SOIL PROFILE			SA	MPL	ES.		COI	MMEN	TS		,	SHEA	R STF V -	RENGT	H: Cu, Q - Cpen	KPa X	L G	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAI	MIC CO RESIST	ONE PETANCE	NETRA PLOT	ATION	v	40		0 120 160 			ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE	1,,	193.87																
			ASPHALT(175mm)	~~~	0.00		00														
			SAND and GRAVEL, some silt, brown, moist: (FILL)	\bowtie	0.18	2	GS GS							0							
			CLAY, silty, sandy, trace gravel, stiff to very stiff, brown to grey, moist: (TILL) (CL)		0.41																
1																					
							00	40													
2						3	SS	10							'	٥					
	ers																				
	Aug ا	Dri≣																			
	Sten	Rotary Drill				4	SS	17							'	0					
3	Solid Stem Augers	<u>د</u>																			
						5	SS	22							þ						
1																					
•																					
_						6	ss	15	Grain Size Gr 8%/ S	Analys a 33%/	sis: 'Si 42%	/ CI 17	%		O -	 1					
5			FAID OF DODELIOLE AT 5 40		188.69 __ 5.18																
			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN AND DRY UPON COMPLETION.		5.16																
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT																		
			COLDPATCH TO SURFACE.																		
3																					
'																					
														1							
														1							
														1							
9														1							
														1							
														1							
														1							
\sqcup	L	Ш	GROUNDWATER ELE			Ļ															

 \overline{Y} WATER LEVEL UPON COMPLETION

▼ WATER LEVEL IN WELL/PIEZOMETER

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 13, 2020

SHEET 1 OF 1

STARTED August 13, 2020 COMPLETED :

N 4 821 580.2 E 601 773.0

DATUM Geodetic

	9	8	SOIL PROFILE	SA	MPL	.ES	COM	MENTS		S	HEAR S	TRENG	ΓΗ: Cu, I Q -	⟨Pa	(0)			
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	≰ DEF		NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CON RESISTA	E PENETR	RATION T	W	40 	. ● 80 1 L :ONTENT	120 	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
ä		g g		STR/	(m)	ž	ľ	BLC	20 40	60 80	100			20	30	40 	4 7	
			GROUND SURFACE ASPHALT (175mm)		193.24 0.00													
			SAND, gravelly, some silt, brown, moist:	***	0.00	-	GS					0						
			(FILL)	₩	0.41	2	GS		Grain Size Analysis Gr 27%/Sa 56%/	: Si & Cl 17	%	0						
			CLAY, silty, trace sand, trace gravel, firm, mottled brown and grey, moist: (FILL)															
4				\bowtie		2	GS											
- 1					191.94		63						0					
	ည		CLAY, silty, sandy, trace to some gravel, very stiff to hard, brown, moist: (TILL)		1.30													
	Auge	⊒	very suit to nard, prown, moist. (TILL)															
	tem /	lary [4	ss	7				0						
-2	S pilo	Rotary Drill																
	S																	
						5	ss	27					0					
3																		
						6	SS	36	Grain Size Analysis Gr 6%/ Sa 33%/ S	: i 41%/ Cl 2	20%		0					
					189.27	7	GS											
-4		П	END OF BOREHOLE AT 3.96m UPON AUGER REFUSAL.	1/9//	3.96		00						О					
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT															
			COLDPATCH TO SURFACE.															
5																		
-6																		
7																		
-8																		
- 9																		
-																		
		Ш			<u></u>													
			GROUNDWATER ELE				_	_										
			$\overline{egin{array}{c} egin{array}{c} egin{arra$	MPL	ETION	l	7	<u>ν</u>	ATER LEVEL	IN WEL	L/PIEZO	METE	R	LOGGE	D :	RB		
				_										CHECK	ED :	CAR		THURBE

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 10, 2020 STARTED

SHEET 1 OF 1

August 10, 2020 COMPLETED

N 4 821 394.3 E 601 962.1

DATUM Geodetic

щ	5	3	SOIL PROFILE	SA	MPL	.ES	СО	MMEN	ITS		S	HEAR S nat V - rem V -							
DEPTH SCALE (metres)	ODING METHOD	ביוחט פואס	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CO RESIS	ONE PEI TANCE	_	ΠΟΝ 100	W	10 € L ATER C /p I	30 1 L ONTENT	20 L PERC	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATIOI
			GROUND SURFACE	Í	190.89														
			ASPHALT (150mm)	***	0.00	_													
			SAND and GRAVEL, some silt, brown, moist: (FILL)		0.15 190.44	-	GS GS						0						
		╽▐	CLAY, silty, sandy, trace gravel, stiff to hard, brown to grey, moist: (TILL) (CL)		0.46		00						~						
			hard, brown to grey, moist: (TILL) (CL)																
1																			
١					1														
						3	ss	14						0					
2																			
	ers																		
	Ang	Rotary Drill							Grain Size Analy	sis:									
	Stem	otary				4	SS	20	Gr 3%/ Sa 34%	/ Si 44%	/ CI 199	6		♭ ⊢	\vdash	1			
<u> </u>	Solid Stem Augers	ᄶ														1			
3	S					\vdash										1			
						5	ss	42						 		1			
																1			
4																			
					1											1			
																1			
					1											1			
			stiff			6	ss	14						0		1			
5					185.71											1			
			END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 4.57m AND DRY		5.18														
			UPON COMPLETION.													1			
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.																
6																1			
																1			
																1			
7																1			
																1			
																1			
8																1			
																1			
																1			
																1			
9																			
																1			
																1			
\Box																			
			GROUNDWATER ELE					_											
			$\overline{igspace}$ water level upon co	OMPL	ETION		Ţ	_ N	ATER LEVE	L IN V	VELL/	PIEZO	METE	R	LOGGE	:D :	RB		
															CHECK		CAR		THURI

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 10, 2020

STARTED August 10, 2020 COMPLETED

SHEET 1 OF 1 N 4 821 289.9 E 602 067.6 DATUM Geodetic

щ	C	3	SOIL PROFILE			SA	MPL	ES	COMMENTS	8	HEAR nat V	STRENGT - • - •	H: Cu, k Q -	(Pa	ی ا	
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	,	40 	80 1 CONTENT	20 / L , PERCI	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE		188.00											
			ASPHALT (175mm)		0.00				Grain Size Analysis: Gr 41%/Sa 46%/ Si & Cl 13%							
			SAND and GRAVEL, some silt, brown, moist: (FILL)	\bowtie	0.18		GS GS		Gr 41%/Sa 46%/ Si & Cl 13%	0						
		╽┟	CLAY, silty, sandy, trace to some gravel, very stiff to hard, brown to grey, moist:		187.52 0.48		03			1						
			very stiff to hard, brown to grey, moist: (TILL)													
1			()		1											
۱ ا																
																Bentonite
																▼
						3	ss	16			0					_
2					1											
	ers															
	Aug	Rotary Drill														
	Stem	otary				4	ss	39			þ					
	Solid Stem Augers	R														Filter Sand
3	S				1											
			375mm silty sandy seam			5	ss	31	Grain Size Analysis: Gr 5%/ Sa 32%/ Si 43%/ Cl 20%		9					
			• •		4						0					
4 I																Slotted Screen
					1											l EH
						6	ss	13			0					
5			stiff		182.82						-					
			END OF BOREHOLE AT 5.18m. Piezometer installation consists of 25mm	14/36/	5.18											
			diameter Schedule 40 PVC pipe with a 1.52m slotted screen.													
6			WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)													
'			Sep 09/20 1.67 186.33													
7																
8																
۱ ۱																
9																
			GROUNDWATER ELE	VA	TIONS	3	-		•	•				•	•	
			$\overline{igspace}$ water level upon co	MPI	LETION	l	7	Z v	/ATER LEVEL IN WELL/PIEZ	OMETF	:R	LOGGE	:D :	RB		
						•			eptember 9, 2020			CHECK		CAR		
												01		•		THURB

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 11, 2020 STARTED

SHEET 1 OF 1

August 11, 2020 COMPLETED

N 4 821 178.7 E 602 180.1

DATUM Geodetic

ш	0		SOIL PROFILE			SA	MPL	ES	COMMENTS	;	SHEAR S nat V - rem V -	TRENGT	ΓΗ: Cu, k Q -	⟨Pa X	(1)	
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	v	40 L VATER C	80 1 	120 - 1 T, PERCI	160 _L ENT	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIOI
5	S			STR/	(m)	ž		BLO	20 40 60 80 100		wp I ——			wl 40	⋖⋬	
		\Box	GROUND SURFACE	+ "	187.11	\vdash				+						
			ASPHALT (175mm)		0.00											
		Ī	SAND and GRAVEL, some silt, brown, moist: (FILL)		0.18	Ļ	00			0						
		ŀ		***	186.63 0.48		GS		1	0						
			CLAY, silty, sandy, trace gravel, very stiff to hard, brown, moist: (TILL) (CL)		0.40	Ë	"		1							
.																
1	စ္															
	√uge	≡.														
	Solid Stem Augers	Rotary Drill				_			-							
	g g	Rot				3	ss	26	Grain Size Analysis: Gr 3%/ Sa 22%/ Si 47%/ Cl 28%		a_	Ц,				
2	ဖွ					٦	33	20	GI 376/ Sa 2276/ SI 4776/ CI 2076		4	•				
									-							
						4	ss	34			0					
									_							
3		\dashv	END OF BOREHOLE AT 3.05m UPON	WX/	184.07 3.05											
			ALIGER REFLISAL													
			BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND ASPHALT COLDPATCH TO SURFACE.													
4																
_																
5																
6																
,																
'																
8																
,																
·																
			GROUNDWATER ELE	VA	TIONS	<u></u>			1			1	1			
			¥ WATER LEVEL UPON CC				3	<u></u>	VATER LEVEL IN WELL/PIEZ	OMET	-R	1000	.n .	DP.		
			WALLE CLAFF OF ON OC	· IVII L	11011		-	V	**************************************	∪ıνı∟ I L	-1`	LOGGE		RB CAR		
												OLIEUN	.LD .	OAR		THUR

Ninth Line Class EA **PROJECT** Project No. 27269

LOCATION Mississauga, ON August 11, 2020 STARTED

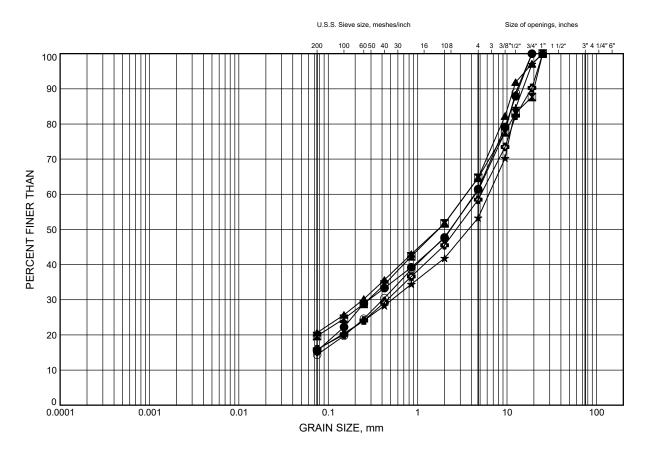
SHEET 1 OF 1

August 11, 2020 COMPLETED

N 4 821 052.3 E 602 307.1

DATUM Geodetic

щ		QO	SOIL PROFILE			SAMPLES			COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - rem V - Cpen Cpen					Z G	DIEZOMETED
DEPTH SCALE	(metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	W	40 8 L ATER C	30 1 L	120 1 L F PERCI	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		BOR		STR/	(m)	ž		BLO	20 40 60 80 100		/p I 10 2	20	30	wl 40 	₹₹	
-	+		GROUND SURFACE ASPHALT (200mm)		187.01 0.00											-
İ			SAND and GRAVEL, some silt, brown, moist: (FILL)		0.20 186.53	_	GS GS		Grain Size Analysis:	0						
-			CLAY, silty, sandy, trace gravel, very stiff to hard, brown to grey, moist: (TILL) (CL)		0.48				Grain Size Analysis: Gr 36%/Sa 47%/ Si & Cl 17%							
1																
'																
ţ																
}_						3	ss	18			0					
- 2		SIS														•
ŀ		Solid Stem Augers Rotary Drill				_		23			0					
Ī	č	IId Stel				4	33	23								
- 3	(8														
-						5	ss	32			b					
ļ																
-4																-
ŀ																
ŀ									Grain Size Analysis:							
- 5			stiff		181.83	6	SS	14	Grain Size Analysis: Gr 8%/ Sa 37%/ Si 38%/ Cl 17%			 				-
	ľ		END OF BOREHOLE AT 5.18m. BOREHOLE OPEN TO 4.57m AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH	12/10/	5.18											
ŀ			BENTONITE HOLEPLUG AND ASPHALT													
-6			COLDPATCH TO SURFACE.													-
ŀ																
ŀ																
7																
}																
-8 -																
ŀ																
-																
- 9																-
ŀ																
ļ																
\vdash			I GROUNDWATER ELE	VA ⁻	L TIONS	 }				J						
9			$\overline{igspace}$ water level upon CC				7	Z _V	/ATER LEVEL IN WELL/PIEZC	METE	R	LOGGE	ED :	RB		
												CHECK	ŒD :	CAR		THURBER



Appendix C

Geotechnical Laboratory Test Results

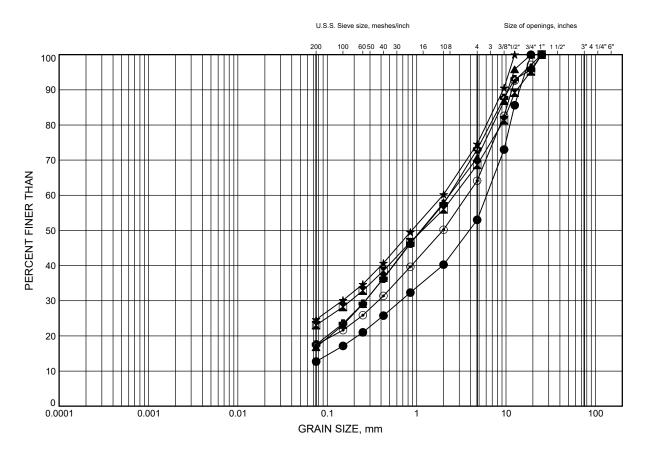
Ninth Line Class EA GRAIN SIZE DISTRIBUTION

Granular FILL

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED	SAND		GRA	AVEL	SIZE	

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-01	0.38	201.02
	20-03	0.43	197.88
A	20-06	0.25	193.77
*	20-07	0.48	192.37
•	20-09	0.20	191.03
•	20-12	0.38	190.22


Date November 2020

Project 27269

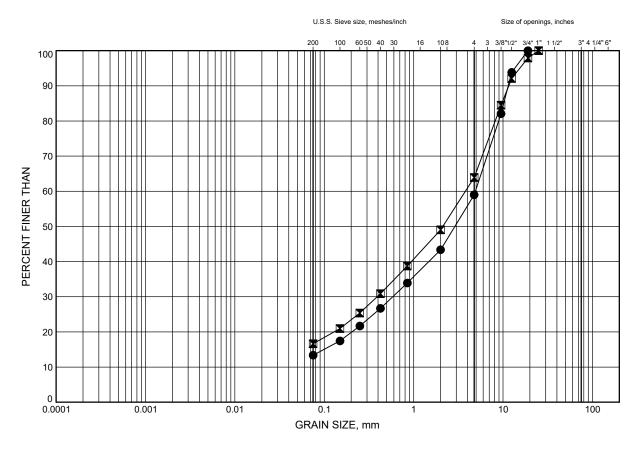
Ninth Line Class EA GRAIN SIZE DISTRIBUTION

Granular FILL

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED	SAND		GRA	AVEL	SIZE	

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-15	0.25	189.52
	20-18	0.51	188.95
A	20-20	0.23	189.18
*	20-22	0.46	189.77
•	20-24	0.15	191.71
۰	20-26	0.43	192.80


Date November 2020

Project 27269

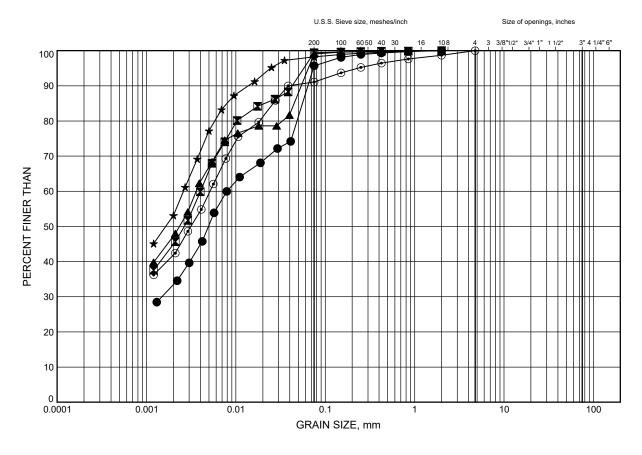
Ninth Line Class EA GRAIN SIZE DISTRIBUTION

Granular FILL

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED	SAND		GRA	AVEL	SIZE	

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-28	0.23	187.77
\blacksquare	20-30	0.51	186.50


Date November 2020

Project 27269

Ninth Line Class EA GRAIN SIZE DISTRIBUTION

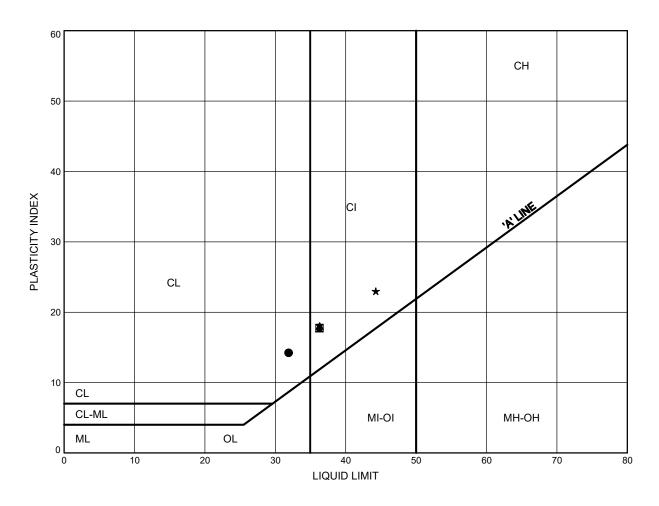
Silty CLAY

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED	SAND		GRA	AVEL	SIZE	

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-11	1.83	188.75
\blacksquare	20-12	3.35	187.25
A	20-13	2.59	187.65
*	20-14	3.35	187.21
•	20-16	1.83	188.92

Date November 2020


Project 27269

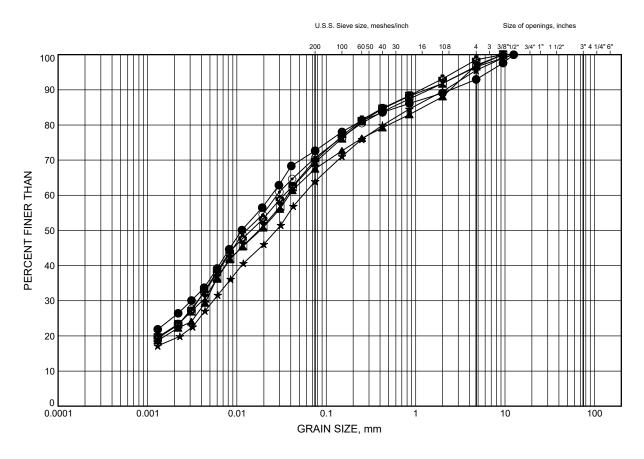
Ninth Line Class EA ATTERBERG LIMITS TEST RESULTS

FIGURE C5

Silty CLAY

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-11	1.83	188.75
\blacksquare	20-12	3.35	187.25
A	20-13	2.59	187.65
*	20-16	1.83	188.92


Date November 2020

Project 27269

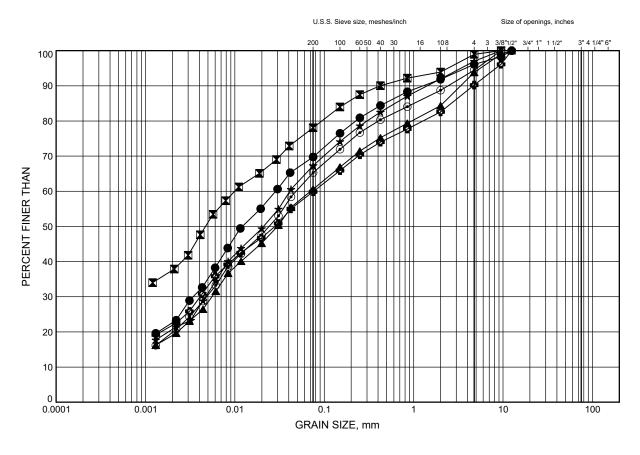
Ninth Line Class EA GRAIN SIZE DISTRIBUTION

Silty CLAY TILL

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED	SAND		GRA	AVEL	SIZE	

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-02	1.83	198.61
	20-08	3.35	188.45
A	20-09	2.59	188.64
*	20-10	4.88	185.90
•	20-15	4.88	184.89
•	20-17	3.35	186.90


Date November 2020

Project 27269

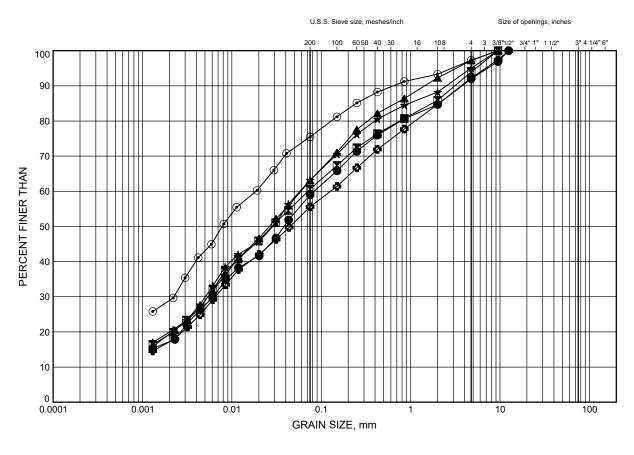
Ninth Line Class EA GRAIN SIZE DISTRIBUTION

Silty CLAY TILL

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED	SAND		GRA	AVEL	SIZE	

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-18	2.59	186.87
\blacksquare	20-19	1.07	188.73
A	20-20	2.90	186.52
*	20-21	3.35	185.93
\odot	20-22	2.59	187.64
•	20-23	1.07	189.75


Date November 2020

Project 27269

Ninth Line Class EA GRAIN SIZE DISTRIBUTION

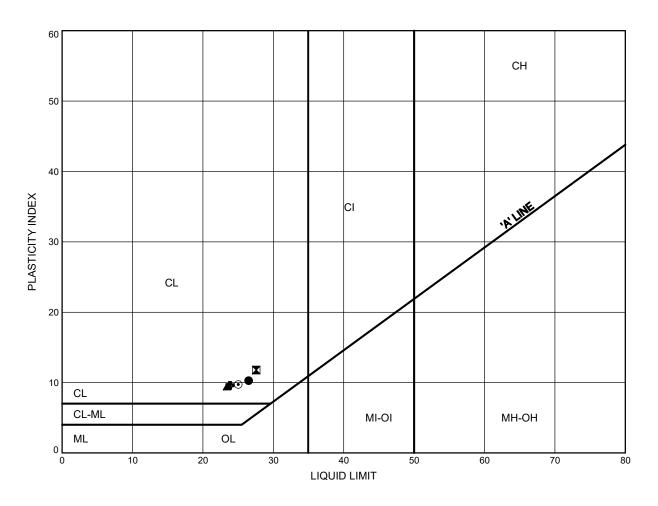
Silty CLAY TILL

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED		SAND		GRA	AVEL	SIZE

LEGEND

_			
SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-25	4.88	189.00
	20-26	3.35	189.88
A	20-27	2.59	188.30
*	20-28	3.35	184.65
•	20-29	1.83	185.28
۰	20-30	4.88	182.13

Date November 2020


Project 27269

Ninth Line Class EA ATTERBERG LIMITS TEST RESULTS

FIGURE C9

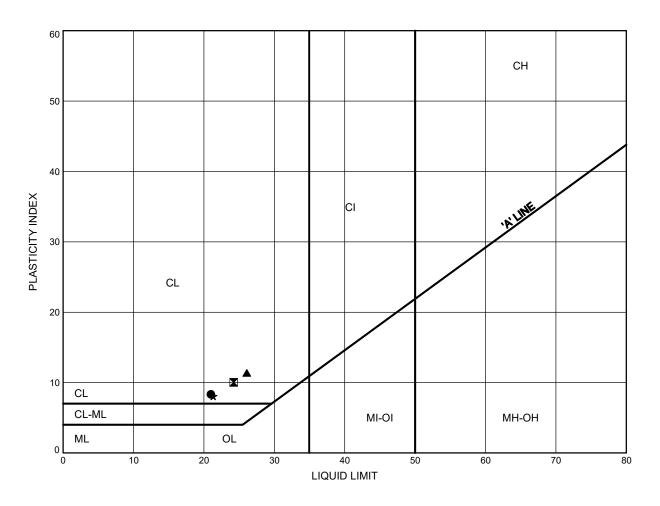
Silty CLAY TILL

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-02	1.83	198.61
	20-08	3.35	188.45
A	20-10	4.88	185.90
*	20-15	4.88	184.89
•	20-18	2.59	186.87
•	20-22	2.59	187.64

Date November 2020

Project 27269


Prep'd AN Chkd. KF

THURBALT TEL-27269.GPJ 11/27/20

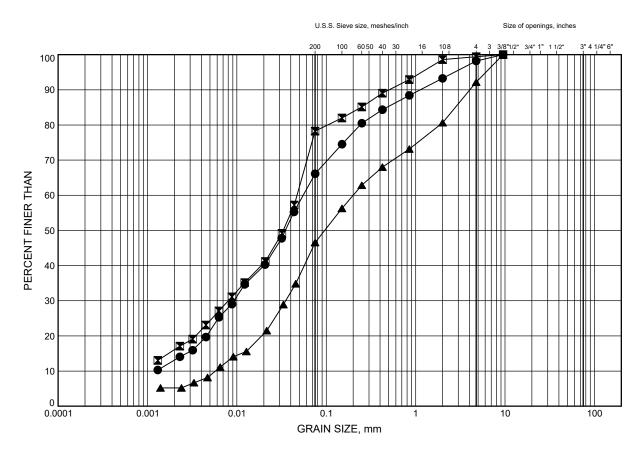
Ninth Line Class EA ATTERBERG LIMITS TEST RESULTS

FIGURE C10

Silty CLAY TILL

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-25	4.88	189.00
	20-27	2.59	188.30
A	20-29	1.83	185.28
*	20-30	4.88	182.13


Date November 2020

Project 27269

Ninth Line Class EA GRAIN SIZE DISTRIBUTION

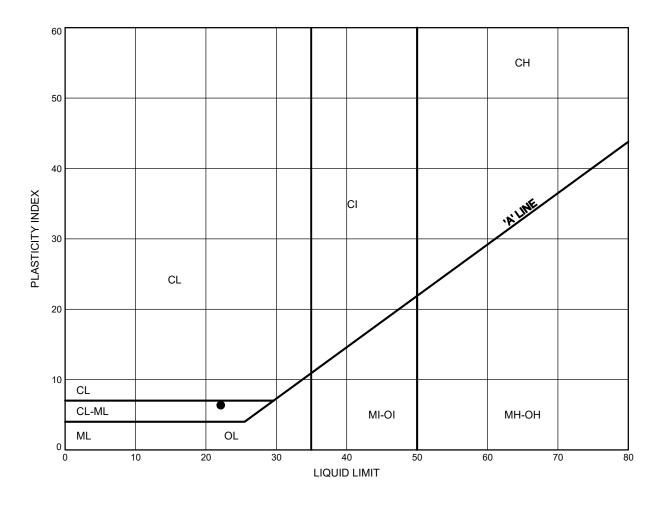
Silty SAND to Sandy SILT TILL

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED		SAND		GRA	AVEL	SIZE

LEGEND

BOREHOLE	DEPTH (m)	ELEV. (m)
20-04	1.83	194.83
20-05	1.83	193.56
20-06	2.59	191.43
	20-04 20-05	20-04 1.83 20-05 1.83

Date November 2020

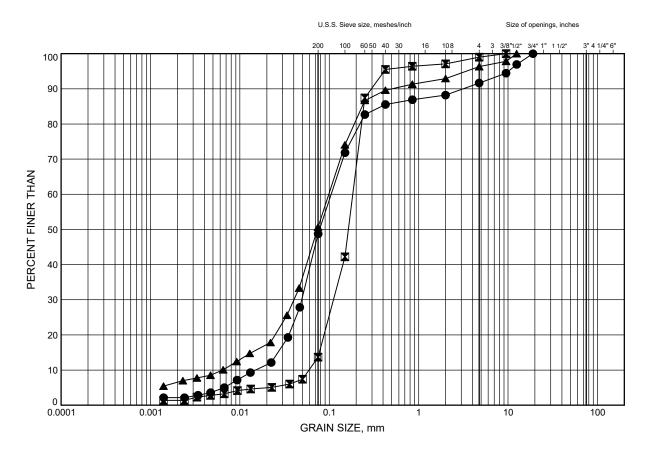

Project 27269

Ninth Line Class EA ATTERBERG LIMITS TEST RESULTS

FIGURE C12

Silty SAND to Sandy SILT TILL

LEGEND			
SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)
•	20-05	1.83	193.56


Date November 2020

Project 27269

Ninth Line Class EA GRAIN SIZE DISTRIBUTION

SAND to SAND and SILT

SILT and CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLE
FINE GRAINED		SAND		GRA	VEL	SIZE

LEGEND

SYMBOL	BOREHOLE	DEPTH (m)	ELEV. (m)	
•	20-01	3.35	198.05	
	20-03	2.59	195.72	
A	20-07	4.84	188.01	
_	20-03	2.59	195.72	

Date November 2020

Project 27269

Appendix D

Analytical Laboratory Certificates of Analysis

Your Project #: 27269

Site Location: 9TH LINE CLASS EA Your C.O.C. #: 785369-01-01

Attention: Cecile Ritchie

Thurber Engineering Ltd 2010 Winston Park Dr Suite 103 Oakville, ON CANADA L6H 5R7

Report Date: 2020/11/26

Report #: R6425922 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C0K7490 Received: 2020/08/13, 17:00

Sample Matrix: Soil # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity	10	2020/08/20	2020/08/20	CAM SOP-00414	OMOE E3530 v1 m
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	10	N/A	2020/08/20	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	10	2020/08/19	2020/08/20	CAM SOP-00316	CCME CWS m
Moisture	10	N/A	2020/08/18	CAM SOP-00445	Carter 2nd ed 51.2 m
Sodium Adsorption Ratio (SAR)	10	N/A	2020/08/21	CAM SOP-00102	EPA 6010C

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

 (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 27269

Site Location: 9TH LINE CLASS EA Your C.O.C. #: 785369-01-01

Attention: Cecile Ritchie

Thurber Engineering Ltd 2010 Winston Park Dr Suite 103 Oakville, ON CANADA L6H 5R7

Report Date: 2020/11/26

Report #: R6425922 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C0K7490 Received: 2020/08/13, 17:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Antonella Brasil, Senior Project Manager

Email: Antonella.Brasil@bvlabs.com

Phone# (905)817-5817

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID			NJI467	NJI467	NJI468	NJI469		
Sampling Date			2020/08/10	2020/08/10	2020/08/10	2020/08/07		
Jamping Date			13:00	13:00	10:00	10:00		
COC Number			785369-01-01	785369-01-01	785369-01-01	785369-01-01		
				20-01				
	UNITS	Criteria	20-01 SS6(15'-17')	SS6(15'-17')	20-04 SS5(10'-12')	20-05 SS3(5'-7')	RDL	QC Batch
				Lab-Dup				
Inorganics								
Moisture	%	-	9.6	N/A	18	11	1.0	6896162
BTEX & F1 Hydrocarbons								
Benzene	ug/g	0.21	<0.020	N/A	<0.020	<0.020	0.020	6899935
Toluene	ug/g	2.3	<0.020	N/A	<0.020	<0.020	0.020	6899935
Ethylbenzene	ug/g	1.1	<0.020	N/A	<0.020	<0.020	0.020	6899935
o-Xylene	ug/g	-	<0.020	N/A	<0.020	<0.020	0.020	6899935
p+m-Xylene	ug/g	-	<0.040	N/A	<0.040	<0.040	0.040	6899935
Total Xylenes	ug/g	3.1	<0.040	N/A	<0.040	<0.040	0.040	6899935
F1 (C6-C10)	ug/g	55	<10	N/A	<10	<10	10	6899935
F1 (C6-C10) - BTEX	ug/g	55	<10	N/A	<10	<10	10	6899935
F2-F4 Hydrocarbons	•	•	•		•	•		
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	<10	<10	<10	10	6898513
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	<50	<50	<50	50	6898513
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	<50	<50	<50	50	6898513
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes	N/A	6898513
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	-	102	N/A	101	101	N/A	6899935
4-Bromofluorobenzene	%	-	97	N/A	99	98	N/A	6899935
D10-o-Xylene	%	-	99	N/A	105	98	N/A	6899935
D4-1,2-Dichloroethane	%	-	100	N/A	107	97	N/A	6899935
o-Terphenyl	%	-	102	101	110	99	N/A	6898513
	•							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID			NJI470	NJI471	NJI472	NJI473		
Compling Data			2020/08/07	2020/08/06	2020/08/12	2020/08/12		
Sampling Date			12:00	15:00	11:00	12:15		
COC Number			785369-01-01	785369-01-01	785369-01-01	785369-01-01		
	UNITS	Criteria	20-09 SS4 (7.5'-9.5')	20-15 SS3 (5'-7')	20-18 SS4(7.5'-9.5')	20-19 SS5(10'-12')	RDL	QC Batch
Inorganics								
Moisture	%	-	11	18	12	11	1.0	6896162
BTEX & F1 Hydrocarbons	•	•						
Benzene	ug/g	0.21	<0.020	<0.020	<0.020	<0.020	0.020	6899935
Toluene	ug/g	2.3	<0.020	<0.020	<0.020	<0.020	0.020	6899935
Ethylbenzene	ug/g	1.1	<0.020	<0.020	<0.020	<0.020	0.020	6899935
o-Xylene	ug/g	-	<0.020	<0.020	<0.020	<0.020	0.020	6899935
p+m-Xylene	ug/g	-	<0.040	<0.040	<0.040	<0.040	0.040	6899935
Total Xylenes	ug/g	3.1	<0.040	<0.040	<0.040	<0.040	0.040	6899935
F1 (C6-C10)	ug/g	55	<10	<10	<10	<10	10	6899935
F1 (C6-C10) - BTEX	ug/g	55	<10	<10	<10	<10	10	6899935
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	<10	<10	<10	10	6898513
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	<50	<50	<50	50	6898513
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	<50	<50	<50	50	6898513
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes	N/A	6898513
Surrogate Recovery (%)	•			•	•			
1,4-Difluorobenzene	%	-	108	111	102	108	N/A	6899935
4-Bromofluorobenzene	%	-	98	96	100	98	N/A	6899935
D10-o-Xylene	%	-	112	118	101	101	N/A	6899935
D4-1,2-Dichloroethane	%	-	111	113	108	111	N/A	6899935
o-Terphenyl	%	-	101	105	99	99	N/A	6898513

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID			NJI474	NJI475	NJI476		
Campling Data			2020/08/13	2020/08/11	2020/08/13		
Sampling Date			15:00	12:00	12:30		
COC Number			785369-01-01	785369-01-01	785369-01-01		
	UNITS	Criteria	20-26 SS4 (5'-7')	20-30 SS5(10'-12')	20-23 SS6(10-12')	RDL	QC Batch
Inorganics							
Moisture	%	-	11	11	12	1.0	6896162
BTEX & F1 Hydrocarbons							
Benzene	ug/g	0.21	<0.020	<0.020	<0.020	0.020	6899935
Toluene	ug/g	2.3	<0.020	<0.020	<0.020	0.020	6899935
Ethylbenzene	ug/g	1.1	<0.020	<0.020	<0.020	0.020	6899935
o-Xylene	ug/g	-	<0.020	<0.020	<0.020	0.020	6899935
p+m-Xylene	ug/g	-	<0.040	<0.040	<0.040	0.040	6899935
Total Xylenes	ug/g	3.1	<0.040	<0.040	<0.040	0.040	6899935
F1 (C6-C10)	ug/g	55	<10	<10	<10	10	6899935
F1 (C6-C10) - BTEX	ug/g	55	<10	<10	<10	10	6899935
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	<10	<10	10	6898513
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	<50	<50	50	6898513
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	<50	<50	50	6898513
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	N/A	6898513
Surrogate Recovery (%)				•			
1,4-Difluorobenzene	%	-	100	107	101	N/A	6899935
4-Bromofluorobenzene	%	-	92	98	100	N/A	6899935
D10-o-Xylene	%	-	93	106	110	N/A	6899935
D4-1,2-Dichloroethane	%	-	105	110	105	N/A	6899935
o-Terphenyl	%	-	99	100	101	N/A	6898513
DDI Decembel Detection				•			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

RESULTS OF ANALYSES OF SOIL

BV Labs ID			NJI467	NJI468	NJI469	NJI470		
Sampling Date			2020/08/10 13:00	2020/08/10 10:00	2020/08/07 10:00	2020/08/07 12:00		
COC Number			785369-01-01	785369-01-01	785369-01-01	785369-01-01		
	UNITS	Criteria	20-01 SS6(15'-17')	20-04 SS5(10'-12')	20-05 \$\$3(5'-7')	20-09 SS4 (7.5'-9.5')	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	5.0	2.7	1.0	5.3	4.8	N/A	6895475
Inorganics								
Conductivity	mS/cm	0.7	0.52	0.16	1.9	0.52	0.002	6900448

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

N/A = Not Applicable

BV Labs ID			NJI471	NJI472	NJI473	NJI474		
Sampling Date			2020/08/06 15:00	2020/08/12 11:00	2020/08/12 12:15	2020/08/13 15:00		
COC Number			785369-01-01	785369-01-01	785369-01-01	785369-01-01		
	UNITS	Criteria	20-15 SS3 (5'-7')	20-18 SS4(7.5'-9.5')	20-19 SS5(10'-12')	20-26 SS4 (5'-7')	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	5.0	0.28 (1)	18	0.39 (1)	0.98	N/A	6895475
Inorganics								
Conductivity	mS/cm	0.7	2.7	2.2	0.49	0.34	0.002	6900448

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

N/A = Not Applicable

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

RESULTS OF ANALYSES OF SOIL

BV Labs ID			NJI475	NJI476				
Sampling Date			2020/08/11 12:00	2020/08/13 12:30				
COC Number			785369-01-01	785369-01-01				
	UNITS	Criteria	20-30 SS5(10'-12')	20-23 SS6(10-12')	RDL	QC Batch		
Calculated Parameters								
Sodium Adsorption Ratio	N/A	5.0	0.40	2.7	N/A	6895475		
Inorganics								
Conductivity	mS/cm	0.7	0.21	0.88	0.002	6900448		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	21.3°C
-----------	--------

Revised Report (2020/11/26): Report re-issued to include criteria limits.

F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

Report Date: 2020/11/26

Thurber Engineering Ltd Client Project #: 27269

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

QUALITY ASSURANCE REPORT

			QUALITY ASSURA					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6896162	MIS	RPD	Moisture	2020/08/18	0	Recovery	%	20
6898513	GUL	Matrix Spike [NJI467-02]	o-Terphenyl	2020/08/20	O	95	%	60 - 130
0030313	GOL	Matrix Spike [MJ1407-02]	F2 (C10-C16 Hydrocarbons)	2020/08/20		86	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2020/08/20		98	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2020/08/20		97	%	50 - 130
6898513	GIII	Spiked Blank	o-Terphenyl	2020/08/20		84	%	60 - 130
0030313	GOL	Spikeu bialik	F2 (C10-C16 Hydrocarbons)	2020/08/20		86	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2020/08/20		98	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2020/08/20		97	%	80 - 120
6898513	GUL	Method Blank	o-Terphenyl	2020/08/19		92	%	60 - 130
0030313	GOL	WELLIOU BIATIK	F2 (C10-C16 Hydrocarbons)	2020/08/19	<10	32	ug/g	00 - 130
			F3 (C16-C34 Hydrocarbons)	2020/08/19	<50		ug/g ug/g	
			F4 (C34-C50 Hydrocarbons)	2020/08/19	<50 <50			
6898513	GUL	RPD [NJI467-02]	F2 (C10-C16 Hydrocarbons)	2020/08/19	NC		ug/g %	30
0090313	GUL	KPD [NJ1407-02]	F3 (C16-C34 Hydrocarbons)	2020/08/20	NC		%	30 30
			' '	· ·				
6000035	LI 14/	Matrix Caika	F4 (C34-C50 Hydrocarbons) 1,4-Difluorobenzene	2020/08/20	NC	04	%	30
6899935	H_W	Matrix Spike	•	2020/08/20		94	%	60 - 140
			4-Bromofluorobenzene	2020/08/20		98	%	60 - 140
			D10-o-Xylene	2020/08/20		106	%	60 - 140
			D4-1,2-Dichloroethane	2020/08/20		91	%	60 - 140
			Benzene	2020/08/20		92	%	50 - 140
			Toluene	2020/08/20		92	%	50 - 140
			Ethylbenzene	2020/08/20		109	%	50 - 140
			o-Xylene	2020/08/20		101	%	50 - 140
			p+m-Xylene	2020/08/20		104	%	50 - 140
5000005		C :	F1 (C6-C10)	2020/08/20		88	%	60 - 140
6899935	H_W	Spiked Blank	1,4-Difluorobenzene	2020/08/20		95	%	60 - 140
			4-Bromofluorobenzene	2020/08/20		99	%	60 - 140
			D10-o-Xylene	2020/08/20		104	%	60 - 140
			D4-1,2-Dichloroethane	2020/08/20		90	%	60 - 140
			Benzene 	2020/08/20		99	%	50 - 140
			Toluene	2020/08/20		98	%	50 - 140
			Ethylbenzene	2020/08/20		118	%	50 - 140
			o-Xylene	2020/08/20		112	%	50 - 140
			p+m-Xylene	2020/08/20		113	%	50 - 140
			F1 (C6-C10)	2020/08/20		97	%	80 - 120
6899935	H_W	Method Blank	1,4-Difluorobenzene	2020/08/20		100	%	60 - 140
			4-Bromofluorobenzene	2020/08/20		99	%	60 - 140
			D10-o-Xylene	2020/08/20		98	%	60 - 140
			D4-1,2-Dichloroethane	2020/08/20		103	%	60 - 140
			Benzene	2020/08/20	<0.020		ug/g	
			Toluene	2020/08/20	<0.020		ug/g	
			Ethylbenzene	2020/08/20	<0.020		ug/g	
			o-Xylene	2020/08/20	<0.020		ug/g	
			p+m-Xylene	2020/08/20	<0.040		ug/g	
			Total Xylenes	2020/08/20	<0.040		ug/g	
			F1 (C6-C10)	2020/08/20	<10		ug/g	
			F1 (C6-C10) - BTEX	2020/08/20	<10		ug/g	
6899935	H_W	RPD	Benzene	2020/08/20	NC		%	50
			Toluene	2020/08/20	NC		%	50
			Ethylbenzene	2020/08/20	NC		%	50

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			o-Xylene	2020/08/20	NC		%	50
			p+m-Xylene	2020/08/20	NC		%	50
			Total Xylenes	2020/08/20	NC		%	50
			F1 (C6-C10)	2020/08/20	NC		%	30
			F1 (C6-C10) - BTEX	2020/08/20	NC		%	30
6900448	NYS	Spiked Blank	Conductivity	2020/08/20		103	%	90 - 110
6900448	NYS	Method Blank	Conductivity	2020/08/20	<0.002		mS/cm	
6900448	NYS	RPD	Conductivity	2020/08/20	3.0		%	10

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Site Location: 9TH LINE CLASS EA

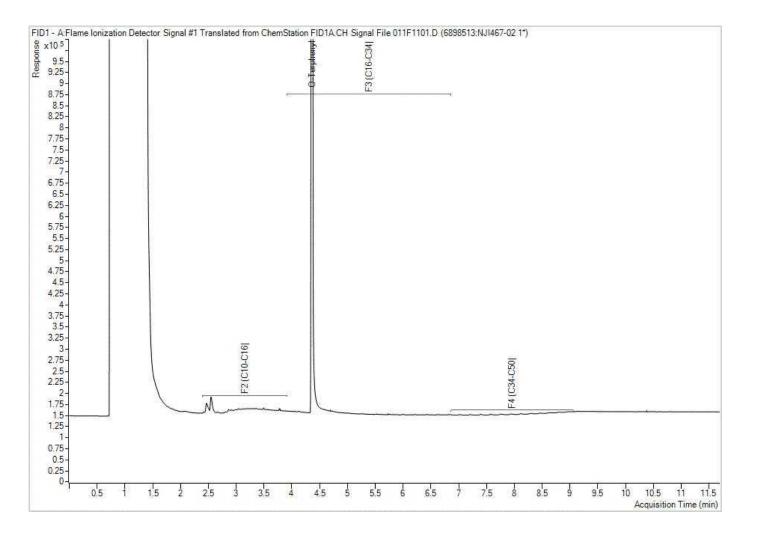
Sampler Initials: RB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

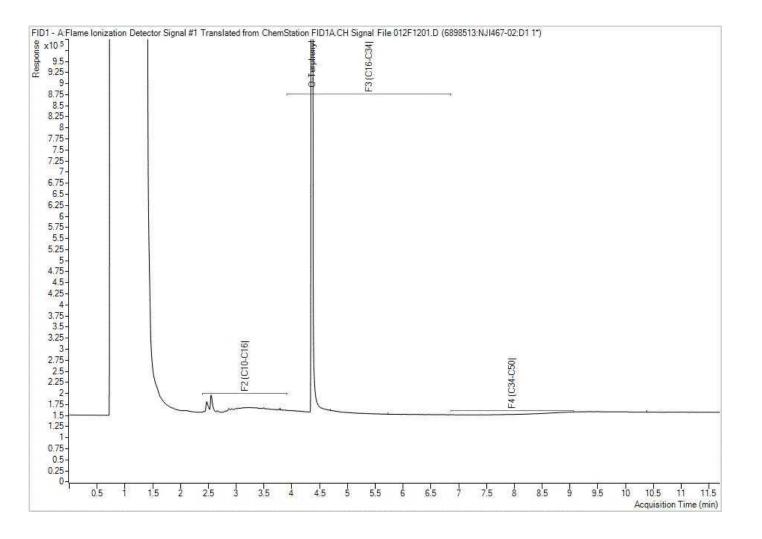
BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


		Bureau Veritas Labor 6740 Campobello Ro	ratories ad, Mississauga, Onta	rio Canada L5N 2L	8 Tel:(905) 817-5	'00 Toll-free:800-	563-6266 Fax (9	905) 817-5	5777 www	v bylabs.com						СНА	IN OF CUS	TODY RECORD	Page of
BUREAU		3 = 53 = 8																	
	IN	VOICE TO:					RT TO:		100 5				0.5500000000000000000000000000000000000	TINFORMATIC	ON:			Laboratory Use	
Company Name		Engineering Ltd		Company	Name: Thu	ber Er	gineen	19	LTI	2	Quotation #	# :	B9018	17	_			BV Labs Job #:	Bottle Order #:
Attention:	Cecile Ritchie			Attention:	Cec	ile Rite	WIE POND	, No	0	1. 100	P.O. #:		27269		-		_		
Address:	2010 Winston Pa Oakville ON L6H			Address:		ville o		- Di	201	ie ius	Project: Project Nar			Line Cla	320	FΔ	_	COC #:	785369 Project Manager:
_0.0	(905) 829-8666	Fax:		Tel:	SAS	-82 9-5	2666 Fax				Site #:	me:	1,604	une or	(2)	CA	1111111		Project manager.
Tet: Email:	critchie@thurber.			Email:	Cri	-829-8 tchie	thurk	er.	Ca		Sampled B	y:	Rac	hel Bo	oun	2859	THE REAL PROPERTY.	C#785369-01-01	Antonella Brasil
	GULATED DRINKING		TER INTENDED F	OR HUMAN CO						AN	ALYSIS REC	DUESTED		E SPECIFIC)				Turnaround Time (TAT) F	
建筑 雅弘	SUBMITTED	ON THE BY LABS	DRINKING WATE	R CHAIN OF C	USTODY		·	(Soil)		1							Bogular (Please provide advance notice for Standard) TAT:	
Regula	tion 153 (2011)		Other Regulations	i j	Special In	structions	circle):	4 (S		1								Standard) TAT: Regulo ad if Rush TAT is not specified):	
	Res/Park Medium		Sanitary Sewer				Cr.V	F1-F									Standard TA	T = 5-7 Working days for most tests	
	Ind/Comm Coarse		Storm Sewer By	/law			(ples	3TEX						1			Please note: days - contac	Standard TAT for certain tests such as B of your Project Manager for details.	OD and Dioxins/Furans are > 5
Table 3	Agri/Other For RS	C MISA	Municipality Reg 406 Table				Field Filtered (please ci Metals / Hg / Cr VI	PHCs, BTEX/F1-F4	100		1 1						are consequent	ic Rush TAT (if applies to entire subm	nission)
		Other _					Filte	153 PH	Me	₹							Date Require	ed:Tin	ne Required:
	Include Criteria	on Certificate of	Analysis (Y/N)?				jeid Z	60 15	SAR - ICP Metals	ducti	\cup						Rush Confirm	mation Number:(c	all lab for #)
Samp	le Barcode Label	Sample (Location		Date Sampled	Time Sampled	Matrix		O.Reg	SAR	So	Ш						# of Bottles	Comm	erits
1 20-0	1 SS 6(15-17)			Avg 10	1:00	Soil		✓	1		/						4		
2 20-01	1 SSS(10-12			Aug 10	10 Am	ч		V	J		/						4	7	
3 20-0	5553(5-7			Aug 7	MA OI	\1		V	V		V						4	Antonella Bra	-20 17:00
	09554 (MH)	(7,545)		Aug 7	12 pm	u		V	1		/				1		4		111 111 111
	15553(5-7)			Aug b	3 pm	W		1	1		1				1		4	C0K749	
				1100	0 , .			-	,	+		-		_	+		1	DSG ENV	-1314
6 20-	18 554 (75-	95)		Aug 12	NAM	11		V	/		/						4		
7 20-1	19 555 (10)-	12)	NC NC	Aug 12	12:15	н	-	V	V		/						4		
8 20-1	P26 (5'-7')	.eqt	Aug B	WAL3 pm	11		V	1		/						4	I Jars were not there were not en	
	5059 (0'-12')			Aug 11	12 pm	4		1	/		1						4	Cap is labelled	
	23 (10-12')			Aug 13	12:30 pm			V	1		·V				1		4		
1000			Date: (YY/II	0 -	ime ph		BY: (Signature/P	rint)	-	Date: (YY/	MM(DD)	т.	ime	# jars used	and I		-	tory Use Only	
	RELINQUISHED BY: (S	ignature/Print)	16/08		DOPM &		WW) OVE		-		813		00	not submit		Time Sensitive		Custody Sa	al Yes No
RBOU	ml 8a		104 201	08/13 5:0	M9 00					1	1,			D2-10-10	W/NSW II	WINDS NO.	23	21 21 ICE Present Intact	8
ACKNOWLEDGE	RWISE AGREED TO IN WINE MENT AND ACCEPTANCE PONSIBILITY OF THE RE	OF OUR TERMS WHIC	H ARE AVAILABLE FO	R VIEWING AT WW	W.BALABS.COM/11	KM2-AND-CONDI	HUNS.						MENT IS	SAM	PLES N	UST BE KEPT C	OOL (< 10° C) F	White: B	V Labs Yellow: Client
	TAINER, PRESERVATION															UNTILLE	EGVERT TO BV	5,50	

Bureau Veritas Canada (2019) Inc.

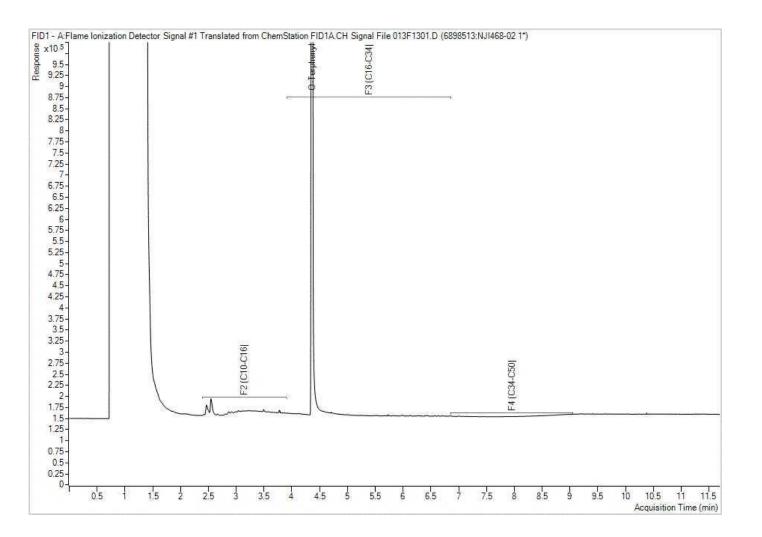
BV Labs Job #: COK7490 Report Date: 2020/11/26 BV Labs Sample: NJI467 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-01 SS6(15'-17')


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

BV Labs Job #: COK7490 Report Date: 2020/11/26 BV Labs Sample: NJI467 Lab-Dup Thurber Engineering Ltd Client Project #: 27269

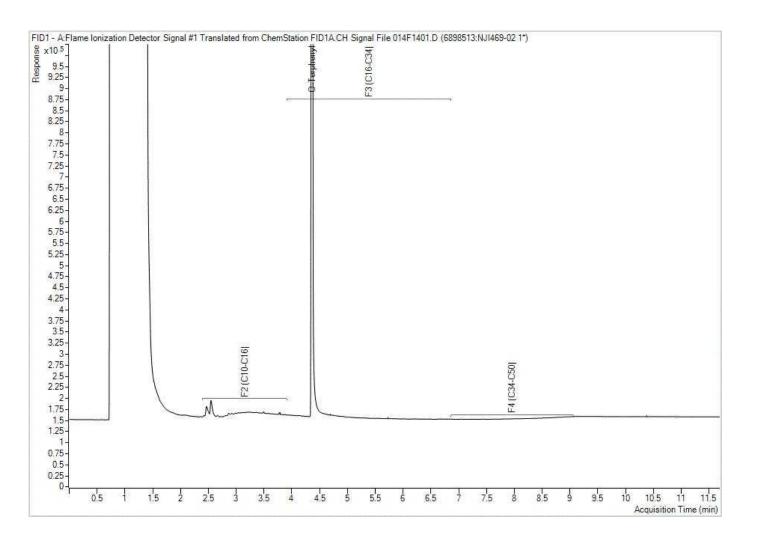
Project name: 9TH LINE CLASS EA Client ID: 20-01 SS6(15'-17')


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

BV Labs Job #: C0K7490 Report Date: 2020/11/26 BV Labs Sample: NJI468 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-04 SS5(10'-12')

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

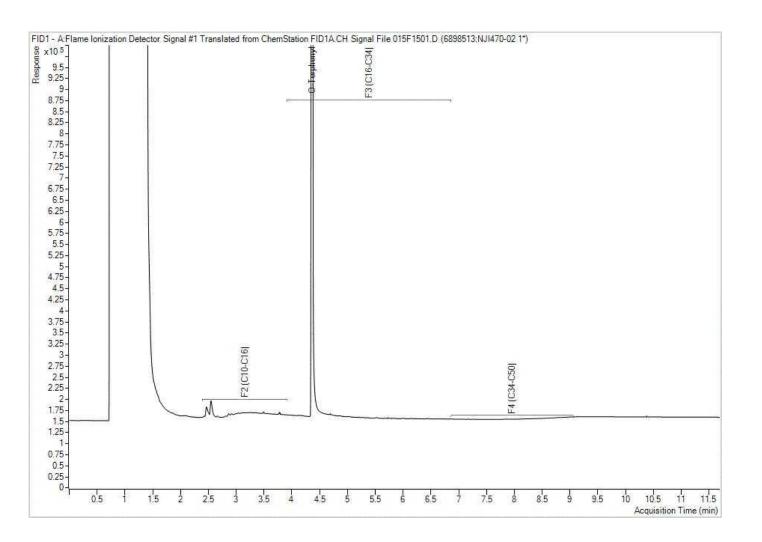


BV Labs Job #: COK7490 Report Date: 2020/11/26 BV Labs Sample: NJI469 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA

Client ID: 20-05 SS3(5'-7')

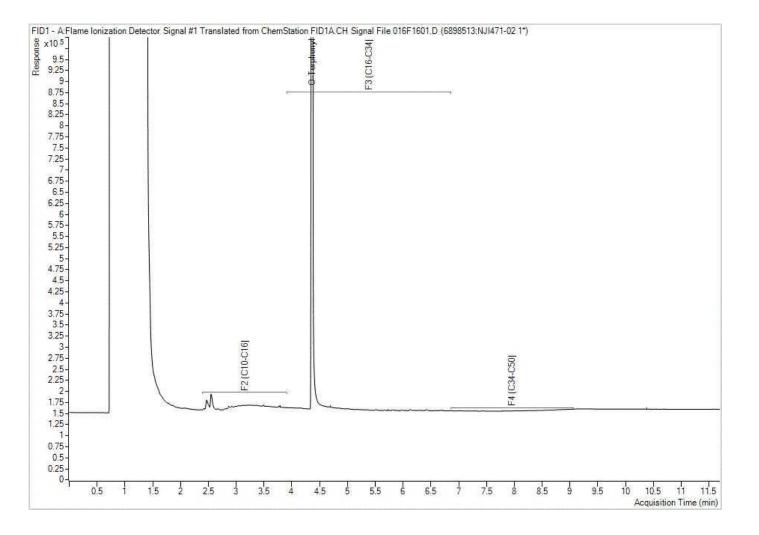
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



BV Labs Job #: C0K7490 Report Date: 2020/11/26 BV Labs Sample: NJI470

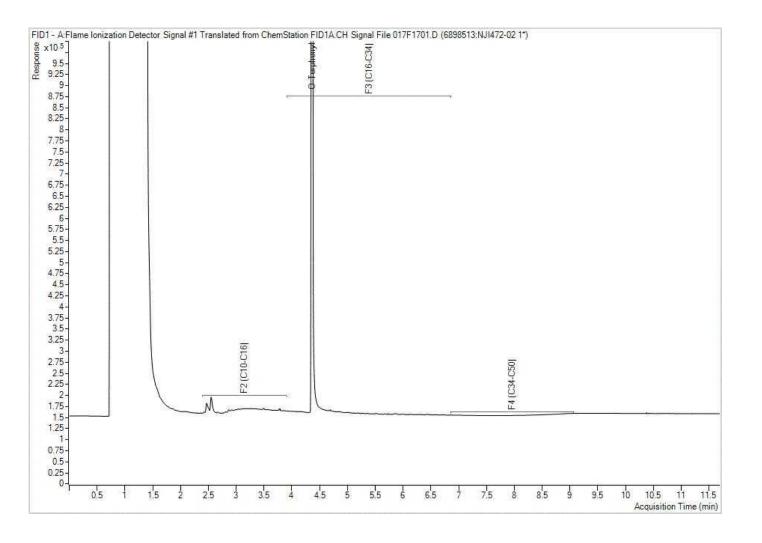
Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-09 SS4 (7.5'-9.5')


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

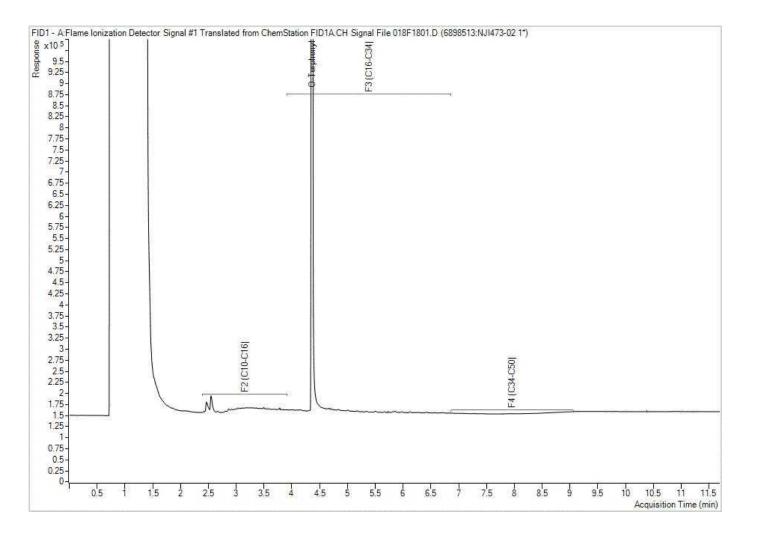
BV Labs Job #: COK7490 Report Date: 2020/11/26 BV Labs Sample: NJI471 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-15 SS3 (5'-7')


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

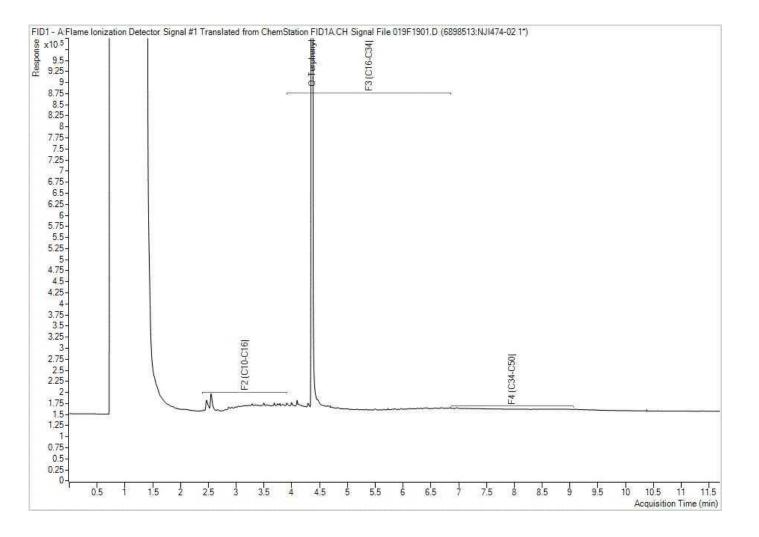
BV Labs Job #: C0K7490 Report Date: 2020/11/26 BV Labs Sample: NJI472 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-18 SS4(7.5'-9.5')


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

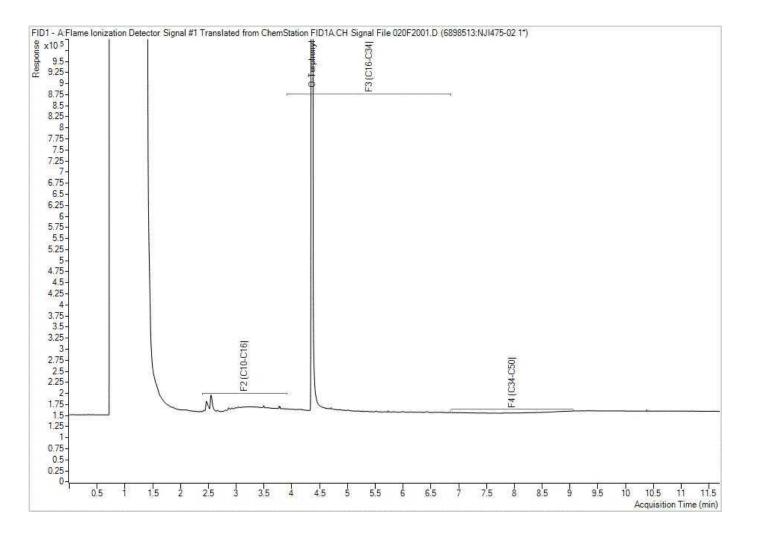
BV Labs Job #: COK7490 Report Date: 2020/11/26 BV Labs Sample: NJI473 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-19 SS5(10'-12')


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

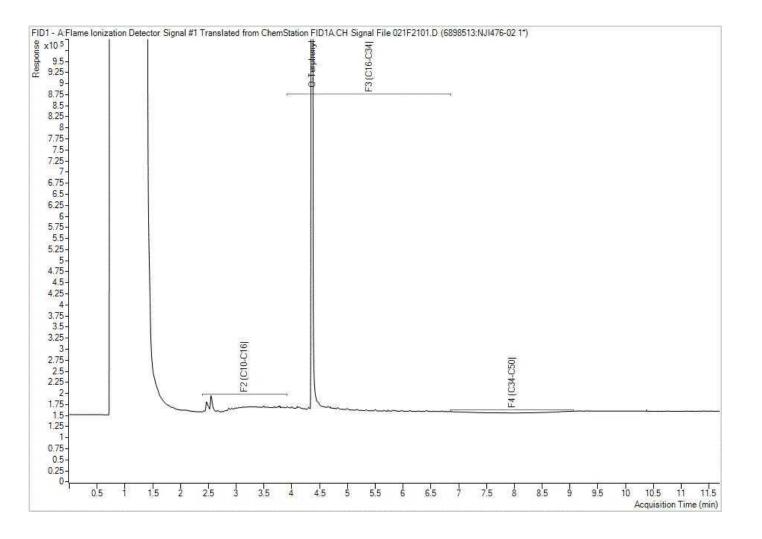
BV Labs Job #: C0K7490 Report Date: 2020/11/26 BV Labs Sample: NJI474 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-26 SS4 (5'-7')


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

BV Labs Job #: COK7490 Report Date: 2020/11/26 BV Labs Sample: NJI475 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-30 SS5(10'-12')


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

BV Labs Job #: C0K7490 Report Date: 2020/11/26 BV Labs Sample: NJI476 Thurber Engineering Ltd Client Project #: 27269

Project name: 9TH LINE CLASS EA Client ID: 20-23 SS6(10-12')

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Site Location: 9TH LINE CLASS EA

Sampler Initials: RB

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C Result Exceedances

Sample ID	BV Labs ID	Parameter	Criteria	Result	DL	UNITS
20-05 SS3(5'-7')	NJI469-01	Conductivity	0.7	1.9	0.002	mS/cm
20-05 SS3(5'-7')	NJI469-01	Sodium Adsorption Ratio	5.0	5.3		N/A
20-15 SS3 (5'-7')	NJI471-01	Conductivity	0.7	2.7	0.002	mS/cm
20-18 SS4(7.5'-9.5')	NJI472-01	Conductivity	0.7	2.2	0.002	mS/cm
20-18 SS4(7.5'-9.5')	NJI472-01	Sodium Adsorption Ratio	5.0	18		N/A
20-23 SS6(10-12')	NJI476-01	Conductivity	0.7	0.88	0.002	mS/cm

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Appendix E

Pavement Design Analysis

1997 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Thurber Engineering Ltd.

Flexible Structural Design Module

Ninth Line Pavement Rehabilitation
Full Depth Asphalt Removal with New HMA
20-Year Design Life

Flexible Structural Design

80-kN ESALs Over Initial Performance Period	4,495,530
Initial Serviceability	4.5
Terminal Serviceability	2.5
Reliability Level	90 %
Overall Standard Deviation	0.45
Roadbed Soil Resilient Modulus	30,000 kPa
Stage Construction	1

Calculated Design Structural Number 128 mm

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	20,452
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	80 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	2.15 %
Average Initial Truck Factor (ESALs/truck)	2.5
Annual Truck Factor Growth Rate	0 %
Annual Truck Volume Growth Rate	3.4 %
Growth	Compound

Total Calculated Cumulative ESALs 4,495,530

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(mm)	<u>(m)</u>	SN (mm)
1	New HMA	0.42	1	190	=	80
2	New Granular A	0.14	1	150	=	21
3	Existing Granular	0.1	0.95	280	-	27
Total	-	-	-	620	-	127

Layered Thickness Design

Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	(Mi)	(Di)(mm)	(Di)(mm)	<u>(kPa)</u>	<u>(m)</u>	<u>(mm)</u>	SN (mm)
1	New HMA	0.42	1	-	50	2,750,000	-	190	80
2	New Granular A	0.14	1	150	-	250,000	-	150	21
3	Existing Granular	0.1	0.95	280	-	150,000	-	280	27
Total	-	-	-	-	-	-	-	620	128

1997 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Thurber Engineering Ltd.

Flexible Structural Design Module

Ninth Line Pavement Rehabilitation Mill and Overlay with Base Repairs 20-Year Design Life

Flexible Structural Design

80-kN ESALs Over Initial Performance Period	4,495,530
Initial Serviceability	4.5
Terminal Serviceability	2.5
Reliability Level	90 %
Overall Standard Deviation	0.45
Roadbed Soil Resilient Modulus	30,000 kPa
Stage Construction	1

Calculated Design Structural Number 128 mm

Simple ESAL Calculation

Performance Period (years)	20
Two-Way Traffic (ADT)	20,452
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	80 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	2.15 %
Average Initial Truck Factor (ESALs/truck)	2.5
Annual Truck Factor Growth Rate	0 %
Annual Truck Volume Growth Rate	3.4 %
Growth	Compound

Total Calculated Cumulative ESALs 4,495,530

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(mm)	<u>(m)</u>	<u>SN (mm)</u>
1	New HMA	0.42	1	110	-	46
2	Existing HMA	0.38	1	150	-	57
3	Existing Granular	0.1	0.95	280	-	27
Total	<u>-</u>	_	_	540	_	130

Layered Thickness Design

Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	(Mi)	(Di)(mm)	(Di)(mm)	<u>(kPa)</u>	<u>(m)</u>	<u>(mm)</u>	SN (mm)
1	New HMA	0.42	1	110	-	2,750,000	-	110	46
2	Existing HMA	0.38	1	-	50	2,500,000	-	146	55
3	Existing Granular	0.1	0.95	280	-	150,000	-	280	27
Total	-	-	-	-	-	-	-	536	128