

#### Metrolinx

Port Credit GO Station 30 Queen Street East, Mississauga, Ontario

**Final Geotechnical Investigation Report** 

Date: February 25, 2016

Ref. N°: 124-P-0004553-0-027-GE-R-001-01



### **Metrolinx**

# Port Credit GO Station 30 Queen Street East, Mississauga, Ontario

Final Geotechnical Investigation Report | P-0004553-0-01-027-GE-R-001-01

Prepared by:

Houshang Akbari, P.Eng.

Senior Geotechnical Engineer

Approved by:

Alain Duclos, MASc., P.Eng.

Principal Geotechnical and Pavement Engineer



### **TABLE OF CONTENTS**

| IN  | TRODUCTION                                                                           | I |
|-----|--------------------------------------------------------------------------------------|---|
|     | PROJECT METHODOLOGY2                                                                 |   |
|     | SUBSOIL CONDITIONS                                                                   |   |
| 3   | LABORATORY TESTING RESULTS                                                           | 3 |
| 4   | FOUNDATION CONSIDERATIONS                                                            | 1 |
| 5   | EXCAVATION AND BACKFILL CONSIDERATIONS                                               | 1 |
| 6   | DRAINAGE CONSIDERATIONS                                                              | ò |
| 7   | PERMANENT EARTH PRESSURE                                                             | ò |
| 8   | SHORING DESIGN CONSIDERATIONS FOR BASEMENT LEVELS                                    | ò |
| 9   | SLAB ON GRADE                                                                        | 7 |
| 10  | EARTHQUAKE CONSIDERATIONS                                                            | 3 |
| 11  | CHEMICHAL LABORATORY TESTING                                                         | 3 |
| 12  | PAVEMENT DESIGN RECOMMENDATIONS                                                      | 3 |
| 13  | GENERAL COMMENTS10                                                                   | ) |
|     |                                                                                      |   |
| Та  | bles                                                                                 |   |
|     | ole 1 Bearing Pressure for Settlement (SLS), Factored Ultimate Soil Bearing Pressure |   |
| (UI | LS) and Corresponding Founding Level                                                 | ļ |
|     |                                                                                      |   |

#### **Appendices**

| Appendix 1 | Drawings                                           |
|------------|----------------------------------------------------|
| Appendix 2 | Borehole and RQD Logs                              |
| Appendix 3 | Geotechnical Testing                               |
| Appendix 4 | Chemical Testing Results                           |
| Appendix 5 | MASW Analysis                                      |
| Appendix 6 | Previously Drilled Borehole Location Plan and Logs |



#### **Property and Confidentiality**

"This engineering document is protected under Copyright Law. It can only be used for the purposes mentioned herein. Any reproduction or adaptation, whether partial or total, is strictly prohibited without having obtained Englobe's and its client's prior written authorization to do so.

Test results mentioned herein are only valid for the sample(s) stated in this report.

Englobe's subcontractors who may have accomplished work either on site or in laboratory are duly qualified as stated in our Quality Manual's procurement procedure. Should you require any further information, please contact your Project Manager."

| REVISION AND PUBLICATION REGISTER |            |                                                                                                                                       |  |  |  |  |  |
|-----------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Revision N°                       | Date       | Modification And/Or Publication Details                                                                                               |  |  |  |  |  |
| 0A                                | 2016-02-09 | Submission of Draft Geotechnical Investigation Report                                                                                 |  |  |  |  |  |
| 00                                | 2016-02-11 | Submission of Final Geotechnical Investigation Report                                                                                 |  |  |  |  |  |
| 01                                | 2016-02-25 | Submission of Final Geotechnical Investigation Report – The first paragraph under Property and Confidentiality on page ii is revised. |  |  |  |  |  |



#### INTRODUCTION

Englobe Corp. has completed a geotechnical investigation for the proposed development of high-rise buildings at the existing surface parking area located at the northeast corner of Hurontario Street and Park Street East in the City of Mississauga. This project was carried out at the request of Laura Filice, Environmental Programs and Assessments of GO, a division of Metrolinx.

Englobe carried out a supplementary geotechnical investigation at the existing parking area in conjunction with LVM (a division of EnGlobe Corp.) Geotechnical Report 124-P-0004553-0-01-007-GE-001-0A (dated November 04, 2014). The purpose of this investigation was to determine the subsoil/rock conditions in order to provide recommendations for design of the foundation for the proposed two (2) twenty two (22) storey buildings including four (4) levels of below grade parking levels which assumed a maximum up to five (5) m depth per level.

The subsoil/rock types and groundwater conditions within the project limits were documented in order to provide recommendations for the geotechnical design aspect of the proposed high-rise buildings including four basement levels. The results of the geotechnical investigation have been summarized and geotechnical recommendations developed for the proposed developments.



#### 1 PROJECT METHODOLOGY

The geotechnical investigation for this project consisted of the following components.

Subsequent to obtaining service clearances at each borehole location, six boreholes (BH-1-16 to BH-6-16) were advanced to 26 m below ground surface within the limits of the project. The locations of the boreholes are indicated on the attached Borehole Location Drawing (Appendix 1, Drawing 1) with the Borehole Logs provided in Appendix 2. The boreholes were completed using continuous flight hollow stem auger equipment supplied by Determination Drilling and Drilltech Drilling Ltd. under the continuous supervision of an Englobe field technician.

Subsoil samples were recovered at regular intervals of depth using a 50 mm O.D. split-barrel sampler driven into the subsoil in accordance with the Standard Penetration Test (SPT) procedure (ASTM D1586). Cores of the bedrock were recovered in 1.5 m runs to achieve the specified drilling depth of 26 m below ground surface (mbgs). The recovered subsoil and rock core samples were visually examined in the field and then preserved and transported to the Englobe Toronto laboratory for examination and testing. Ground water observations were carried out in the open boreholes upon completion of the field work. The boreholes were then promptly backfilled upon completion in accordance with Ontario Regulation 468/10. Water levels were measured upon completion of drilling.

In the laboratory, each soil sample was examined as to its visual and textural characteristics by the Project Engineer. Moisture content determinations were carried out on all granular base/subbase and subgrade soil samples. In addition, grain size analysis and hydrometer testing were completed on six representative soil samples. The rock core samples were examined to determine the Rock Quality Designation (RQD), and four (4) representative rock samples were selected for Unconfined Compressive Strength testing.

Two (2) representative subsoil samples were tested for Corrosivity (sulphate, chloride ion, electrical conductivity, PH and Redox potential) tests. In addition, one representative soil sample was selected by Englobe and submitted to Maxxam for environmental analysis in accordance with Ontario Regulation 347 (as amended by O.Reg.558/00) for disposal of soil cuttings generated from the boreholes.

A site MASW (Multi-Channel Analysis of Surface Waves) survey was completed by Geophysics GPR International Inc. as a sub-consultant to Englobe, in order to measure the shear wave velocities in the soils for the determination of the V<sub>S30</sub> value for seismic site classification in conformance with the current Ontario Building Code requirements. The full MASW report is included in Appendix 5.



The elevations provided in the borehole logs are based on an assumed elevation of 100.00 on top of the concrete base light stand in north parking lot. The same location was utilized as benchmark in the previous LVM report. The relative ground surface elevations at each borehole location are shown on the borehole logs included in Appendix 2.

#### 2 SUBSOIL CONDITIONS

The approximate borehole locations are indicated on the attached Borehole Location Drawing in Appendix 1, with the Borehole Logs provided in Appendix 2. The general subsoil conditions are outlined briefly below.

A layer of asphalt concrete ranging in thickness from 75 to 115 mm was observed in BH1 to BH6.

The subgrade soil at the borehole locations was observed to consist of a mix of sandy silt, clayey silt and till (silty sand, sandy silt, clayey silt).

The sandy silt was loose to dense in relative density having Standard Penetration Test (SPT) 'N'-values ranging from 6 to 31 blows per 300 mm of penetration. The in-situ moisture content of this material ranged from about 15.3 (moist) to 21.2 (very moist) percent.

The clayey silt was compact to dense in relative density having SPT 'N'-values ranging from 26 to 34 blows per 300 mm of penetration. The in-situ moisture content of this material ranged from about 14.5 to 16.5 (moist) percent.

The sandy silt/clayey silt till was compact to very dense in relative density having SPT 'N'-values ranging from 18 to over 50 blows per 300 mm of penetration. The in-situ moisture content of this material ranged from about 4.1 to 14.2 (moist) percent.

Bedrock is located at approximately 9.0 to 10.5 mbgs (Elev. 87.7 to 90.2). The bedrock was comprised of grey shale (Georgian Bay Formation) with limestone inclusions. The uppermost 1.5 to 4.0 m of the shale is weathered and soft. The Rock Quality Designation (RQD), a measurement of the quality of the bedrock mass below the weathered portion, ranges from 19% to 100% indicating very poor to excellent bedrock quality. The average RQD for all cores is 74.5% indicating good quality rock.

Groundwater measurements conducted in the open boreholes upon completion of drilling indicated groundwater levels of 7.0, 9.1 and 4.0 mbgs in BH-03-16, BH-05-16 and BH-06-16 respectively, with no water observed in the other boreholes.

#### 3 LABORATORY TESTING RESULTS

Soil samples recovered during this investigation were preserved and transported to the Englobe GTA laboratory for additional testing. Moisture content testing was completed on all



recovered soil samples with the results plotted on the borehole logs. Rock cores were photographed and logs prepared detailing their Total Core Recovery Ratio (CR%) and Rock Quality Designation (RQD). Borehole logs and rock core logs are provided in Appendix 2.

Six representative soil samples were selected and tested for gradation and hydrometer analysis. Three representative soil samples were tested for unit weight. Four representative rock core samples were selected for Unconfined Compressive Strength testing. The test results indicated compressive strength of 30.4, 47.7, 49.4 and 53.2 MPa with an average strength of 45.2 MPa. The complete laboratory test results are included in Appendix 3.

The samples will be stored for a period of three months from the date of sampling. After this time, they will be discarded unless arrangements are made for extended storage.

#### 4 FOUNDATION CONSIDERATIONS

The proposed plan of development has four levels of basement with slab-on-grade depth up to 20.0 mbgs. Therefore the founding depth for the footings is expected to be in a depth where intact shale is located.

It should be possible to employ conventional spread and strip footings, founded on the competent shale to support the buildings and underground structures.

Table 1 Bearing Pressure for Settlement (SLS), Factored Ultimate Soil Bearing Pressure (ULS) and Corresponding Founding Level

| Bearing Pressure for Settlement (SLS), Factored Ultimate Soil Bearing Pressure (ULS) and Corresponding Founding Level |     |          |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----|----------|--|--|--|
| Depth                                                                                                                 | SLS | ULS      |  |  |  |
| 11 to 20 mbgs -                                                                                                       |     | 2000 kPa |  |  |  |

For foundations bearing on bedrock, the ULS will govern the design as the bearing stratum must fail in order for appreciable deformation to occur. Settlement of the foundation on sound bedrock will be negligible. The foundation area should be inspected by a qualified geotechnical engineer to ensure that the soil/rock conditions encountered at the time of construction are suitable to support the design pressure. Any disturbed to soil/rock identified during the inspection should be removed from the footing areas and replaced with un-shrinkable fill or lean concrete.

#### 5 EXCAVATION AND BACKFILL CONSIDERATIONS

Excavation within the soil at the site is expected to be achieved easily using conventional excavation equipment. However, the site subsoil will require properly designed and installed



shoring for excavations to proceed with depth. The shoring system should be comprised of a combination of soldier piles and tieback anchors. The number and levels of the tieback anchors will be determined in large by the depth of the excavation and the location of buried services under the street bordering the property and should be designed by a structural engineer.

Based on the results of the subsurface investigation, weathered shale bedrock will be encountered within the proposed depth of excavation. While it is likely that this material will be able to be excavated using conventional backhoe equipment equipped with ripping teeth in conjunction with a rock breaker, the presence of additional harder zones within the shale is anticipated, and therefore provision for additional rock breaking or blasting should be included in the contract documents.

The shale bedrock is likely to be capable of standing the near-vertical side slopes for relatively short periods of time. However, the weathered shale is susceptible to softening with cycles of wetting and drying (and freezing and thawing), with subsequent ravelling and/or sloughing. Is field inspection (by qualified geological engineer or engineering geologist) indicates that the shale is capable of standing unsupported for the relatively short construction period, the exposed face of the shale should be checked regularly, and measures taken to protect the shale from precipitation effects, and workers from ravelling and/or sloughing of the excavation faces. Excavation side slopes in the weathered shale bedrock must be properly and regularly scaled to remove any loose or dislodged rock pieces and covered with tarpaulins to protect them from moisture effects during the construction periods.

Weathered shale bedrock has the potential for deformations to occur due to relief of locked-in horizontal stresses and rock swell, especially if installed in relatively narrow excavations. It is, therefore, recommended that a layer of compressible material be provided between the trench sidewalls and the pipe to mitigate potential damage due to rock deformations.

Regardless, all excavations must be carried out in accordance with the Ontario Occupational Health and Safety Act (OHSA). The subsoil encountered at the site as per OHSA criteria would typically be considered:

Moist to Very Moist, Loose to Dense, Sandy Silt - Type 3

Moist, Compact to Dense, Clayey Silt - Type 3

Moist to Very Moist, Compact to Very Dense, Silty Sand Till - Type 2

Moist, Compact to Very Dense, Clayey Silt Till - Type 2

Competent Shale – Type 1



#### 6 DRAINAGE CONSIDERATIONS

Groundwater measurements were conducted in the open boreholes upon completion of drilling and in the monitoring wells installed as part of geotechnical investigation by LVM in November 2014. The borehole location and borehole logs of previous report are provided in Appendix 6. The groundwater monitoring in the monitoring wells indicated a stabilized groundwater level at approximately 1.4 to 5.8 mbgs in the proposed high-rise development area. The anticipated excavation zone is below the groundwater level and ground water dewatering is expected. It is expected that Permit to Take Water (PTTW) may be required for basement excavations unless measures are taken to ensure excavations are watertight. The need for a PTTW must be assessed in conjunction with the final design and require a more detailed study by a qualified hydrogeologist.

#### 7 PERMANENT EARTH PRESSURE

The subsurface walls of the structures should be designed to resist an earth pressure, 'P', at any depth, 'h', evaluated using the expression:

 $P=K_A(\gamma h+q)$ 

Where  $K_A$ = 0.35, is the estimated applicable earth pressure coefficient;

 $\gamma$ = 22.0 KN/m³, the average unit weight of the soil behind the wall

q= is an allowance for surface surcharge, if any

It is assumed that the backfill adjacent to the walls will be free draining material so as to prevent the build-up of pore pressure behind the wall. This will not be the case if it is not drained and the design will have to be modified to take this into account.

# 8 SHORING DESIGN CONSIDERATIONS FOR BASEMENT LEVELS

The shoring design should be performed by a specialized engineering consultant. It is assumed that the excavation may be extended to a maximum depth of 20.0 m. Therefore, three levels of lateral supports (tie backs) should be adequate.

The active earth pressure of any depth, H, per unit length of the excavation wall can be estimated by the expression:

 $P_A = K_A (\gamma H + q)$ 

Where:

 $\gamma$  = 22.0 kN/m<sup>3</sup>, the unit weight of soil being retained



H = Depth of Excavation (m)

q = Equivalent uniform vertical pressure of any surcharge adjacent to the excavation

K<sub>A</sub> = 0.35, Active earth pressure coefficient

In order to achieve more positive support from the shoring system, a rectangular earth pressure distribution can be assumed.

The passive earth pressure resistance developed by the soil in front of the buried portion of the soldier pile can be estimated using the following expression and parameters:

 $P_P = K_P (\gamma H)$ 

K<sub>p</sub> = 5.0, passive earth pressure coefficient

H = embedded length of soldier piles

 $\gamma$  = 22.0 kN/m<sup>3</sup>, the unit weight of soil

The lateral movement of the shoring system must be monitored especially at locations in which settlement sensitive structures are present. These measurements are required not only to ascertain the stability of the shoring but also to identify any movement that may influence the thickness of the exterior subsurface walls of the proposed structure.

#### 9 SLAB ON GRADE

Slab-on-grade construction may be employed for the lower basement level. The subgrade for the slab-on-grade is expected to be shale. It is recommended that a base course comprised of minimum 200 mm thick layer of 19 mm clear crushed limestone should be placed by rafting it over the prepared subgrade.

If a moisture-sensitive floor finish is to be applied to the slab, then we recommend that a 15 mil polyethylene moisture vapour barrier be installed directly beneath the slab as per Section 9.13.2.7 of Ontario Building Code (2012). However, it should be recognized that provision of a polyethylene vapour barrier has been known to contribute to differential slab curl unless suitable provisions are made to address differential moisture/evaporation conditions between the top and bottom of the slab.

High horizontal stresses are known to exist in the bedrock. The removal of material, i. e., both over burden and rock, relives the load on the base of the excavation. These stress related movements are time dependent and are essentially complete before the concrete is poured on a typical building site, hence are of little consequence unless construction is staged with excavation. The vast majority of stress relief shale displacements will occur within ninety days after excavation.



#### 10 EARTHQUAKE CONSIDERATIONS

The Ontario Building Code stipulates that a building should be designed to withstand a minimum live load due to earthquake.

The Canadian Foundation Engineering Manual (4<sup>th</sup> Edition) describes the equivalent static force procedures that can be used to calculate a design seismic base shear proportional to the weight of the building that is to be constructed.

A site MASW (Multi-Channel Analysis of Surface Waves) survey was completed by Geophysics GPR International Inc. as a sub-consultant to Englobe, in order to measure the shear wave velocities in the soils for the determination of the VS30 value for seismic site classification in conformance with the current Ontario Building Code requirements. The full Geophysics GPR report is included in Appendix 5.

Based on the MASW results the site classification for seismic site response B (Rock) should be used for earthquake load and effects in accordance with Table 4.1.8.4.A of the 2012 Ontario Building Code.

#### 11 CHEMICHAL LABORATORY TESTING

Two (2) soil samples (BH3-SS6 and BH6-SS3) were submitted to Maxxam for analysis of soil chemistry. Detailed testing was conducted to determine resistivity, Chloride (CI), conductivity, PH, sulphate (SO4) and redox. The complete chemical analysis results, including the Maxxam Certificate of Analysis, are given in Appendix 4.

The laboratory results indicate that percentage of sulphate (SO4) in the soil samples tested is between 0.008 to 0.025 % and maximum chloride content in the samples tested was 710  $\mu$ g/g, Based on these test results, there is not significant potential for sulphate attack. Accordingly, normal Type (GU) portland cement can be used in subsurface concrete. Chloride exposure is known to lead to corrosion in reinforced concrete. A designer competent is concrete mix design should complete the concrete mix design specifications.

#### 12 PAVEMENT DESIGN RECOMMENDATIONS

The exterior area of the proposed parking areas are to be provided with a flexible pavement surfacing. At the time of our report, it has not been confirmed if the subject parking lot will be used solely for light duty passenger vehicles, or will be used as a fire route or for industrial vehicles (i.e. medium duty). As a result, Englobe has provided both light duty and medium duty pavement design options that can be used by the designers where warranted.

Following stripping of the topsoil or other obviously objectionable materials from the pavement area, the subgrade should be graded and provided with a continuous cross fall of at 3 to 4



percent. The subgrade should be proofrolled using a heavily-loaded truck to identify any soft areas exhibiting excessive deflections. Any such area should be sub-excavated and properly replaced with approved granular material.

It should be noted that the grain size analysis testing of the pavement subgrade material indicated that the subgrade is considered to be highly frost susceptible in some locations. As a result, if the subgrade is allowed to become wet during construction or by infiltration through cracks during the service life, there is a strong possibility of differential frost heave occurring during periods of freezing and thawing during the winter months resulting in bumps throughout the parking facility. In addition, a saturated subgrade will become soft/weak during the spring period resulting in localized structural damage to the pavement surface from parked cars. While it is understood that for parking facilities it is not practical to remove and replace the impacted material to the frost penetration depth, if bumps and depressions are considered to be a safety or maintenance concern (ponding and formation of ice patches, for instance) consideration could be given to taking supplemental frost protection measures for this facility. One measure would be to remove an additional amount of the subgrade and replace it with non-frost susceptible material (select subgrade material or additional Granular B Type I, for instance). Alternatively, subdrainage could be installed throughout the parking lot to direct water away from the sensitive subgrade. Regardless, proper surface drainage (surface water directed to catchbasins) and pavement surface maintenance (regular crack sealing, for instance) is considered critical for this facility in order to ensure that the pavement achieves its design service life.

#### Light-Duty Parking and Driveway Pavements

The following flexible pavement structure is recommended for use in areas with light duty parking and light duty driveway pavements.

50 mm of OPSS 1150 HL 3 Hot Mix Asphalt

150 mm OPSS 1010 Granular A Base

225 mm of OPSS 1010 Granular B Type I Subbase for frost susceptible subgrade (sandy silt) and 150 mm for non-frost susceptible subgrade (silty clay)

#### Medium-Duty Parking and Fire Routes

The following flexible pavement structure is recommended for fire routes and for medium duty traffic such as garbage trucks and recycling vehicles.

100 mm of hot-mix asphalt consisting of:
40 mm of OPSS 1150 HL 3 surface course
60 mm of OPSS 1150 HL 8 base course
150 mm OPSS 1010 Granular A Base



350 mm OPSS 1010 Granular B Type I Subbase for frost susceptible subgrade (sandy silt) and

225 mm for non-frost susceptible subgrade (silty clay)

All pavement construction work should only be completed during periods of favourable weather. These preliminary pavement design recommendations are contingent upon provision of a consistently competent, stable subgrade that is properly drained and free of soft spots and objectionable materials such as organic material, and is capable of supporting the design traffic loads. Subdrain and/or ditches should be installed as far in advance of the construction work as possible to permit proper drainage of the subgrade, particularly in cut areas. The subgrade should be properly prepared, shaped and graded to provide uniform, continuous cross-fall toward properly designed and constructed subdrains and/or ditches. The prepared subgrade should be carefully proof rolled in the presence of a qualified representative of a geotechnical engineering firm, and any soft or wet spots or other obviously objectionable materials sub-excavated and properly replaced with suitable, approved material.

#### 13 GENERAL COMMENTS

The comments provided in this report have been developed for the use of Metrolinx. It should be noted that the soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling and should not be interpreted as exact planes of geological change. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design. Also, the subsoil and groundwater conditions have been determined at the borehole locations only. Additional boreholes and/or test pits would be necessary to determine the localized conditions between boreholes. Contractors bidding on, or undertaking the works, must conduct their own investigations, and interpretations of the factual borehole data, and draw their own conclusions as to how the subsoil and groundwater conditions may affect their construction techniques, scheduling and costs.

It is further noted that, depending on the time of year the field work was completed, water levels should be expected to vary, perhaps significantly from those observed at the time of this investigation.

# Appendix 1 Drawings





#### LEGEND



**BOREHOLE LOCATION** 

#### NOTES:

- 1 REFERENCE: Google Earth 2015
- 2 Drawing scale may be distorted due to file conversion and /or copying. Measurements taken from the drawing must be verified in the field.

#### **GEOTECHNICAL INVESTIGATION PORT CREDIT GO TRANSIT PARKING LOT**

MISSISSAUGA, ONTARIO

**BOREHOLE LOCATION PLAN** 



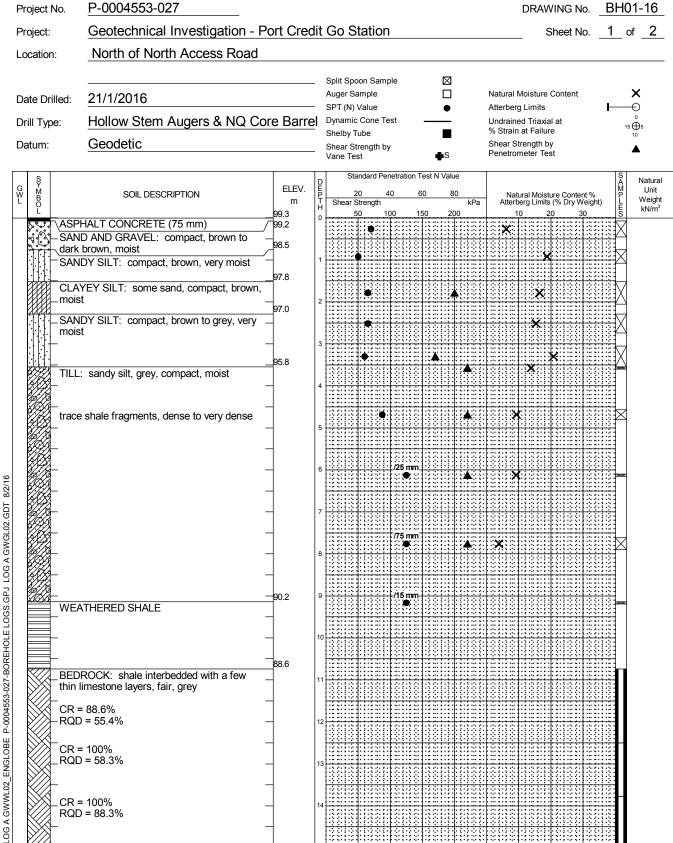
1821, Albion Road, Unit 7 Toronto (Ontario) M9W 5W8 Telephone : 416.213.1060 Fax : 416.213.1070

H. Akbarl S. Hassan Checked H. Akbari

GEOTECHNICAL Discipline N.T.S. Scale

2016/02/01

Project manager H. Akbari Sequence no. 01 of 01


10 cm

Work pckg. Type Drawing no. |124 |P-0004553| 0-01 |027 |GE D 01

Appendix 2 Borehole and RQD Logs



# LOG OF BOREHOLE No. 01-16 DRAWING No. BH01-16 RI Investigation - Port Credit Go Station Sheet No. 1 of 2



Continued Next Page

| Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------------|-------------------------|
| none                  | noné                    |
|                       | Level<br>(m)            |

# LOG OF BOREHOLE No. 01-16

P-0004553-027

Project No.

Englobe

DRAWING No. BH01-16

Geotechnical Investigation - Port Credit Go Station Sheet No. 2 of 2 Project: Standard Penetration Test N Value Natural ELEV. G W L Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ m Shear Strength BEDROCK: shale interbedded with a few thin limestone layers, fair, grey CR = 88.6% RQD = 55.4% (continued) CR = 100% RQD = 92.3% CR = 100% RQD = 93.9% CR = 71.9% RQD = 32.0% CR = 100% RQD = 19.0% CR = 100% RQD = 50.7%CR = 100% RQD = 37.8%8/2/16 CR = 100% RQD = 54.9% LOG A GWWL02\_ENGLOBE P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT Terminated at 26.0 m Borehole advanced using continuous flight hollow stem augering and NQ core barrel equipment on January 21, 2016 by Drilltech Drilling Limited. No water was encountered upon borehole completion.

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | noné                  | none                    |

# LOG OF BOREHOLE No. <u>02-16</u>

**Englobe** 

| oject No.                           | P-0004553-027                                                  |                      |                      |                                                                                                                          |                                        | DRA                                                                                         | WING No.                              | Br                                     | 102             | 2-16               |
|-------------------------------------|----------------------------------------------------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-----------------|--------------------|
| oject:                              | Geotechnical Investigation -                                   | Port Cred            | dit                  | Go Station                                                                                                               |                                        |                                                                                             | Sheet No.                             | 1                                      | _ of            | _2                 |
| ocation:                            | Northwest Corner of East Page 1                                | arking Lot           | t_                   |                                                                                                                          |                                        |                                                                                             |                                       |                                        |                 |                    |
| ate Drilled:<br>rill Type:<br>atum: | 23/1/2016 Hollow Stem Augers & NQ C                            | Core Barre           | -<br>-<br><b>e</b> l | Split Spoon Sample Auger Sample  SPT (N) Value  Dynamic Cone Test Shelby Tube Shear Strength by Vane Test  SPI (N) Value |                                        | Natural Moistur Atterberg Limit Undrained Tria. % Strain at Fai Shear Strength Penetrometer | s<br>xial at<br>ure<br>by             | <b> </b>                               | 0<br>15 0<br>10 | )<br>D5            |
| S<br>Y<br>M<br>B                    | SOIL DESCRIPTION                                               | ELEV.                | DEPTH                | Standard Penetration Test N Value 20 40 60 80 Shear Strength                                                             |                                        | Natural Mo<br>Atterberg Lim                                                                 | isture Content %<br>its (% Dry Weight | )                                      | M               | Natu<br>Un<br>Weig |
| SAN<br>brow                         | HALT CONCRETE (75 mm) D AND GRAVEL: very dense, light n, moist | 98.8<br>98.7<br>98.0 | 0                    | 50 100 150 20                                                                                                            | 0                                      | 10<br><b>X</b>                                                                              | 20 30                                 |                                        | <u>\$</u>       | kN/r               |
| SAN<br>brow                         | DY SILT: compact, dark brown to<br>n, wet                      |                      | 2                    |                                                                                                                          |                                        |                                                                                             | ×                                     |                                        | XX              |                    |
| TII 1                               | silty sand, some clay, trace gravel,                           | 95.8                 | 3                    |                                                                                                                          |                                        | ×                                                                                           | *                                     |                                        | X X             |                    |
| - com                               | act, grey, moist                                               | _                    | 4                    |                                                                                                                          |                                        | ^                                                                                           |                                       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                 |                    |
|                                     |                                                                |                      | 5                    |                                                                                                                          | <b>A</b>                               | *                                                                                           |                                       |                                        | Z               |                    |
| trace                               | shale fragments                                                |                      | 6                    | /100 mm                                                                                                                  | <b>A</b>                               | ×                                                                                           |                                       |                                        | ×               |                    |
|                                     |                                                                | _                    | 7                    |                                                                                                                          |                                        | *                                                                                           |                                       |                                        | ×               |                    |
|                                     |                                                                |                      | 8                    |                                                                                                                          |                                        |                                                                                             |                                       |                                        |                 |                    |
| WEA                                 | THERED SHALE                                                   | 69.8                 | 9                    | /50 mm                                                                                                                   |                                        |                                                                                             |                                       |                                        | K               |                    |
|                                     | ROCK: shale interbedded with a few imestone layers, fair, grey | 88.1                 | 11                   |                                                                                                                          |                                        |                                                                                             |                                       |                                        | 1               |                    |
| CR =                                | = 100%<br>= 52.6%                                              | _                    | 12                   |                                                                                                                          |                                        |                                                                                             |                                       |                                        |                 |                    |
|                                     | = 94.8%<br>) = 53.9%                                           | _                    | 13                   |                                                                                                                          | ************************************** |                                                                                             |                                       |                                        |                 |                    |
| CR =                                | = 100%<br>= 67.4%                                              |                      | 14                   |                                                                                                                          |                                        |                                                                                             |                                       |                                        |                 |                    |
|                                     | Continued Next Page                                            |                      | 15                   |                                                                                                                          |                                        |                                                                                             |                                       |                                        | L               |                    |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | none                  | none                    |
|                 |                       |                         |

# LOG OF BOREHOLE No. 02-16

P-0004553-027

Project No.

Englobe

DRAWING No. BH02-16

Geotechnical Investigation - Port Credit Go Station Sheet No. 2 of 2 Project: Standard Penetration Test N Value Natural ELEV. G W L Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ m Shear Strength 83.8 BEDROCK: shale interbedded with a few thin limestone layers, fair, grey CR = 100% RQD = 52.6% (continued) CR = 98.7% RQD = 68.4% CR = 100% RQD = 90.2% CR = 98.0% RQD = 38.2% CR = 100% RQD = 49.0% CR = 100% RQD = 94.1% CR = 98.7% RQD = 87.1% 8/2/16 CR = 95.4% RQD = 47.4% LOG A GWWL02\_ENGLOBE P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT Terminated at 26.0 m Borehole advanced using continuous flight hollow stem augering and NQ core barrel equipment on January 23, 2016 by Drilltech Drilling Limited. No water was encountered upon borehole completion.

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | none                  | none                    |

#### LOG OF BOREHOLE No. 03-16 **Englobe**

P-0004553-027 BH03-16 DRAWING No. Project No. Geotechnical Investigation - Port Credit Go Station 1 of 2 Project: Sheet No. Northeast Corner of East Parking Lot Location: Split Spoon Sample  $\boxtimes$ Auger Sample Natural Moisture Content X 18/1/2016 Date Drilled: SPT (N) Value Atterberg Limits 0 Hollow Stem Augers & NQ Core Barrel Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 Shelby Tube % Strain at Failure Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Standard Penetration Test N Value G W L ELEV. Unit SOIL DESCRIPTION Weight m kN/m<sup>3</sup> 98.8 ASPHALT CONCRETE (100 mm) 98.7 SAND AND GRAVEL: trace silt, compact, brown, moist SANDY SILT: trace clay, compact, brown, very moist 97.3 TILL: clayey silt, some sand, trace gravel, compact, brown, moist .grey 21.0 becoming dense trace shale fragments, becoming very dense 91.8 88.3 WEATHERED SHALE /75 mm

Continued Next Page

LOG A GWWL02\_ENGLOBE P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT 8/2/16

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 7.0 m                 | none                    |
|                 |                       |                         |

# LOG OF BOREHOLE No. <u>03-16</u>

Englobe

P-0004553-027 DRAWING No. BH03-16 Project No. Geotechnical Investigation - Port Credit Go Station Sheet No. 2 of 2Project: Standard Penetration Test N Value Natural ELEV. G W L Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ m Shear Strength 83.8 83.6 BEDROCK: shale interbedded with a few thin limestone layers, good, grey CR = 88.0% RQD = 60.7% CR = 93.4% RQD = 92.8% CR = 100% **RQD = 100%** CR = 100% **RQD = 100%** CR = 92.1% RQD = 80.9%CR = 100% RQD = 82.2% CR = 100% 8/2/16 RQD = 94.7%LOG A GWWL02\_ENGLOBE P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT CR = 100% RQD = 78.0% Terminated at 26.0 m Borehole advanced using continuous flight hollow stem augering and NQ core barrel equipment on January 18, 2016 by Determination Drilling. Water was encountered at 7.0 m upon borehole completion.

| Level<br>(m) | Depth to<br>Cave<br>(m) |
|--------------|-------------------------|
| 7.0 m        | noné                    |
|              | (m)                     |

#### **Englobe** LOG OF BOREHOLE No. <u>04-16</u>

P-0004553-027 BH04-16 DRAWING No. Project No. Geotechnical Investigation - Port Credit Go Station 1 of 2 Project: Sheet No. In the Center of East Parking Lot Location: Split Spoon Sample  $\boxtimes$ Auger Sample Natural Moisture Content X 21/1/2016 Date Drilled: SPT (N) Value Atterberg Limits 0 Hollow Stem Augers & NQ Core Barrel Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 % Strain at Failure Shelby Tube Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Standard Penetration Test N Value G W L ELEV. Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight m kN/m<sup>3</sup> 98.5 ASPHALT CONCRETE (115 mm) 98.4 SAND AND GRAVEL: some silt, compact, brown, moist SANDY SILT: trace clay, loose, brown, wet TILL: silty sand, some clay, trace gravel, compact to dense, brown, very moist \_ moist grey 21.6 trace shale fragments, becoming very dense /50 mn WEATHERED SHALE BEDROCK: shale interbedded with a few thin limestone layers, good, grey CR = 69.2% RQD = 30.8%CR = 97.4% RQD = 90.8% CR = 100% RQD = 98.7% Continued Next Page

8/2/16

-OG A GWWL02\_ENGLOBE P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | noné                  | none                    |
|                 |                       |                         |

# LOG OF BOREHOLE No. <u>04-16</u>

P-0004553-027

Project No.

**Englobe** 

DRAWING No. BH04-16

Geotechnical Investigation - Port Credit Go Station Sheet No. 2 of Project: Standard Penetration Test N Value Natural ELEV. G W L Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ m Shear Strength 83.5 CR = 98 7% RQD = 97.1% BEDROCK: shale interbedded with a few thin limestone layers, good, grey CR = 69.2% RQD = 30.8% (continued) CR = 100% RQD = 84.2% CR = 100% RQD = 96.1% CR = 100% RQD = 97.4% CR = 100% RQD = 100% CR = 100% RQD = 100% CR = 100% 8/2/16 RQD = 82.2% P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT CR = 100% RQD = 82.0% Terminated at 26.0 m Borehole advanced using continuous flight hollow stem augering and NQ core barrel equipment on January 21, 2016 by Determination Drilling. No water was encountered upon borehole completion. LOG A GWWL02\_ENGLOBE

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | noné                  | noné                    |
|                 |                       |                         |

#### **Englobe** LOG OF BOREHOLE No. <u>05-16</u>

P-0004553-027 BH05-16 DRAWING No. Project No. Geotechnical Investigation - Port Credit Go Station 1 of 2 Sheet No. Project: Southwest Corner of East Parking Lot Location: Split Spoon Sample  $\boxtimes$ Auger Sample Natural Moisture Content X 18/1/2016 Date Drilled: SPT (N) Value Atterberg Limits 0 Hollow Stem Augers & NQ Core Barrel Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 % Strain at Failure Shelby Tube Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Standard Penetration Test N Value G W L ELEV. Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight m kN/m<sup>3</sup> ASPHALT CONCRETE (100 mm) SAND AND GRAVEL: compact, brown, moist SANDY SILT: some clay, compact, brown, very moist 96.0 CLAYEY SILT: trace sand, dense, grey, - moist TILL: clayey silt, trace sand, compact, grey, moist becoming dense to very dense trace shale fragments 88.4 × 87.0 WEATHERED SHALE /100 mm

Continued Next Page

8/2/16

LOG A GWWL02\_ENGLOBE P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 9.1 m                 | none                    |

# LOG OF BOREHOLE No. <u>05-16</u>

**Englobe** 

P-0004553-027 DRAWING No. BH05-16 Project No. Geotechnical Investigation - Port Credit Go Station Sheet No. 2 of Project: Standard Penetration Test N Value Natural ELEV. G W L Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ Shear Strength 82.5 82.3 BEDROCK: shale interbedded with a few thin limestone layers, fair, grey CR = 29.6% RQD = 0% CR = 100% RQD = 56.2% CR = 95.4% RQD = 74.7%CR = 79.1% RQD = 60.1% CR = 90.1% RQD = 77.0% CR = 100% RQD = 75.0% 8/2/16 CR = 92.2% RQD = 87.3% LOG A GWWL02\_ENGLOBE P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT Terminated at 26.0 m Borehole advanced using continuous flight hollow stem augering and NQ core barrel equipment on January 18, 2016 by Drilltech Drilling Limited. Water water was encountered at 9.1 m upon borehole completion.

| none |
|------|
|      |

# LOG OF BOREHOLE No. <u>06-16</u> Englobe

P-0004553-027 BH06-16 DRAWING No. Project No. Geotechnical Investigation - Port Credit Go Station 1 of 2 Project: Sheet No. Southeast Corner of East Parking Lot Location: Split Spoon Sample  $\boxtimes$ Auger Sample Natural Moisture Content X 20/1/2016 Date Drilled: SPT (N) Value Atterberg Limits 0 Hollow Stem Augers & NQ Core Barrel Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 Shelby Tube % Strain at Failure Geodetic Shear Strength by Datum: Shear Strength by Penetrometer Test Standard Penetration Test N Value G W L ELEV. Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight m kN/m<sup>3</sup> ASPHALT CONCRETE (100 mm) 97.3 SAND AND GRAVEL: dense, brown, moist SANDY SILT: trace clay, compact, brown, TILL: silty sand, some clay, trace gravel, dense to very dense, brown, moist 21.7 93.4 trace shale fragments × 87.7 WEATHERED SHALE 86.7 BEDROCK: shale interbedded with a few thin limestone layers, good, grey CR = 80.8% RQD = 52.5% CR = 98.7% RQD = 78.1% CR = 100% RQD = 91.4% CR = 96.2%

Continued Next Page

8/2/16

LOG A GWWL02\_ENGLOBE P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 4.0 m                 | none                    |
|                 |                       |                         |

# LOG OF BOREHOLE No. <u>06-16</u>

P-0004553-027

Project No.

Englobe

DRAWING No. BH06-16

Geotechnical Investigation - Port Credit Go Station Sheet No. 2 of Project: Standard Penetration Test N Value Natural ELEV. G W L Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ m Shear Strength RQD = 78.8% BEDROCK: shale interbedded with a few thin limestone layers, good, grey CR = 80.8% RQD = 52.5% (continued) CR = 100% RQD = 71.6% CR = 100% RQD = 98.3% CR = 100% RQD = 96.0% CR = 96.1% RQD = 92.8% CR = 100% RQD = 95.4% CR = 100% 8/2/16 **RQD = 100%** P-0004553-027-BOREHOLE LOGS.GPJ LOG A GWGL02.GDT CR = 100% **RQD = 100%** Terminated at 26.0 m Borehole advanced using continuous flight hollow stem augering and NQ core barrel equipment on January 20, 2016 by Determination Drilling. Water was encountered at 4.0 m upon borehole completion. LOG A GWWL02\_ENGLOBE

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 4.0 m                 | none                    |



|            |         |              |            | RQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D Data                           | a Sheet       | •                          |               |              |            |
|------------|---------|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|----------------------------|---------------|--------------|------------|
| Project:   |         | P-00045      | 53-027, Po | ort Credit G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o Station                        |               | Date:                      |               | 2016-01-2    | 5          |
| Core Box I | .D.No.  | :            | 596        | 603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ВН                               | l 1-1         | Recorder:                  | J. Yao        |              |            |
| Total Leng | th of C | ore Run, mm  | 152        | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drilling (                       | Company:      | Dr                         | Iltech Drilli | ng Limited   |            |
| Core Diam  | etre, n | nm           | 47         | Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.74 m to 26.00 m Drilling Date |               |                            |               | 2016-01-2    | 1          |
|            | Depth   | , m          | Photogra   | aphic Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e of Core                        |               | Each Sound<br>ore > 100 mm |               | Remarks      |            |
| 10.760     | to      | 10.900       | 77836      | 1-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 880                              |               | 140                        | RUN#          | CR (%)       | RQD (%)    |
| 11.275     | to      | 11.400       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 125                        | RUN 1         | 88.6         | 55.4       |
| 11.430     | to      | 11.620       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 190                        | RUN 2         | 100.0        | 58.3       |
| 11.760     | to      | 12.260       | 倡言         | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |               | 500                        | RUN 3         | 100.0        | 88.3       |
| 12.720     | to      | 12.880       | 18 P       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 160                        | RUN 4         | 100.0        | 92.3       |
| 12.960     | to      | 13.180       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 220                        | RUN 5         | 100.0        | 93.9       |
| 13.230     | to      | 13.460       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                               |               | 230                        | RUN 6         | 100.0        | 32.0       |
| 13.530     | to      | 13.665       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 135                        | RUN 7         | 71.9         | 19.0       |
| 13.860     | to      | 15.080       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 1220                       | RUN 8         | 100.0        | 50.7       |
| 15.170     | to      | 15.280       | 京山 水 冲气 >> | The state of the s |                                  |               | 110                        | RUN 9         | 100          | 37.8       |
| 15.375     | to      | 17.390       | E C W      | 41.07 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carep a r                        | 2             | 2015                       | RUN 10        | 100          | 54.9       |
| 17.410     | to      | 17.720       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 310                        |               |              |            |
| 17.730     | to      | 18.035       | SAS.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 305                        |               |              |            |
| 18.060     | to      | 18.270       | 5 17 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                             |               | 210                        |               |              |            |
| 18.970     | to      | 19.120       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 150                        |               |              |            |
| 19.170     | to      | 19.310       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63                               |               | 140                        |               |              |            |
| 19.370     | to      | 19.560       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 190                        |               |              |            |
| 20.700     | to      | 20.990       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 290                        |               |              |            |
| 21.620     | to      | 21.880       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | 260                        |               |              |            |
| 22.060     | to      | 22.190       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 1                              |               | 130                        |               |              |            |
| 22.300     | to      | 22.430       | 5 Z Z      | 20 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13 24                            |               | 130                        |               |              |            |
|            |         | Total Caro   | Pagavary F | Potio (CD 9/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | () 14.01.                        | 15 06v100     | 01.9.9/                    |               |              |            |
|            |         | Total Core F |            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |               |                            |               |              |            |
|            |         | Length of So | und Pieces | s of Core >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 100 mm:                        | -             | 7160                       |               |              |            |
|            |         | RQD (%) =    | Le         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | es of Core >  | - 100 mm * 100<br>un, mm   | %             |              |            |
|            |         | RQD (%) =    | 57.        | 8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rock (                           | Classificatio | n: Fair - S                | Shale Interb  | edded with a | a few thin |



| Project:    |         | P-00045      | 53-027, Po |            |                 | a Sneet       | Date:                      | 2016-01-25     |              |            |
|-------------|---------|--------------|------------|------------|-----------------|---------------|----------------------------|----------------|--------------|------------|
| Core Box I  | D.No.   | :            | 596        | 59603      |                 | l 1-2         | Recorder:                  |                | J. Yao       |            |
| Total Lengt | h of C  | ore Run, mm  | 152        | 260        | Drilling (      | Company:      | Dr                         | illtech Drilli | ng Limited   |            |
| Core Diam   | etre, m | ım           | 47         | Depth:     | 10.74 m         | to 26.00 m    | Drilling Date:             |                | 2016-01-2    | 1          |
|             | Depth,  | , m          | Photogra   | phic Image | e of Core       |               | Each Sound<br>ore > 100 mm |                | Remarks      |            |
| 22.530      | to      | 22.780       |            | 1-17       | 1886            |               | 250                        | RUN#           | CR (%)       | RQD (%)    |
| 23.210      | to      | 23.400       |            |            |                 |               | 190                        | RUN 1          | 88.6         | 55.4       |
| 23.910      | to      | 24.095       |            | 1          |                 |               | 185                        | RUN 2          | 100.0        | 58.3       |
| 24.180      | to      | 24.380       | 倡言         | - 1        |                 |               | 200                        | RUN 3          | 100.0        | 88.3       |
| 24.390      | to      | 24.620       |            |            |                 |               | 230                        | RUN 4          | 100.0        | 92.3       |
| 24.660      | to      | 24.830       |            |            |                 |               | 170                        | RUN 5          | 100.0        | 93.9       |
| 24.920      | to      | 25.030       |            |            |                 |               | 110                        | RUN 6          | 100.0        | 32.0       |
| 25.170      | to      | 25.500       |            |            |                 |               | 330                        | RUN 7          | 71.9         | 19.0       |
|             |         |              |            |            |                 |               |                            | RUN 8          | 100.0        | 50.7       |
|             |         |              | 五日 小 中二    | 2 1.02     | C CONSIDER OF L |               |                            | RUN 9          | 100          | 37.8       |
|             |         |              |            |            |                 |               |                            | RUN 10         | 100          | 54.9       |
|             |         | Total Core F | Recovery R | atio (CR % | (a) = 14.01÷    | ÷15.26x100    | = 91.8 %                   |                |              |            |
|             |         | Length of So | und Pieces | of Core >  | > 100 mm:       | 1             | 1665                       |                |              |            |
|             |         | RQD (%) =    | Le         |            |                 | es of Core >  | - 100 mm * 100<br>ın, mm   | -<br>9%        |              |            |
|             |         | RQD (%) =    | 57.        | 8%         | Rock (          | Classificatio | n: Fair - S                | Shale Interb   | edded with a | a few thin |



| Project:   |         | P-00045                                    | 53-027, Pc               |            |              | a Sheet                | Date:                      |                         | 2016-01-2    | <br>5      |
|------------|---------|--------------------------------------------|--------------------------|------------|--------------|------------------------|----------------------------|-------------------------|--------------|------------|
| Core Box I | D.No    |                                            |                          | 603        |              | I 2-1                  | Recorder:                  |                         | J. Yao       |            |
|            |         | ore Run, mm                                |                          | 330        |              | Company:               |                            | illtech Drilli          |              |            |
|            |         |                                            |                          |            |              |                        |                            |                         |              | 4          |
| Core Diam  | etre, n | nm<br>———————————————————————————————————— | 47                       | Depth:     | 10.67 m      | to 26.00 m             | Drilling Date:             |                         | 2016-01-2    | 4          |
|            | Depth   | , m                                        | Photographic Image of Co |            |              |                        | Each Sound<br>ore > 100 mm |                         | Remarks      |            |
| 12.285     | to      | 12.405                                     | FRASE                    | TE         | 220          |                        | 120                        | RUN#                    | CR (%)       | RQD (%)    |
| 12.460     | to      | 12.660                                     | 中層層層                     |            |              |                        | 200                        | RUN 1                   | 100.0        | 52.6       |
| 13.030     | to      | 13.310                                     |                          |            |              |                        | 280                        | RUN 2                   | 94.8         | 53.9       |
| 13.590     | to      | 13.700                                     |                          |            |              |                        | 110                        | RUN 3                   | 100.0        | 67.4       |
| 12.460     | to      | 12.575                                     |                          |            |              |                        | 115                        | RUN 4                   | 98.7         | 68.4       |
| 13.960     | to      | 14.260                                     |                          |            |              |                        | 300                        | RUN 5                   | 100.0        | 90.2       |
| 14.400     | to      | 14.550                                     |                          |            |              |                        | 150                        | RUN 6                   | 98.0         | 38.2       |
| 14.610     | to      | 14.720                                     |                          |            |              |                        | 110                        | RUN 7                   | 100.0        | 49.0       |
| 14.860     | to      | 15.045                                     | 三夏                       |            |              |                        | 185                        | RUN 8                   | 100.0        | 94.1       |
| 15.060     | to      | 15.420                                     | विश्वीत व                | E E        |              | f                      | 360                        | RUN 9                   | 98.7         | 87.1       |
| 15.445     | to      | 16.155                                     | - 000                    |            |              |                        | 710                        | RUN 10                  | 95.4         | 47.4       |
| 16.000     | to      | 16.150                                     |                          | ,          |              |                        | 150                        |                         |              |            |
| 16.800     | to      | 18.030                                     |                          |            | 2:1          | 1                      | 1230                       |                         |              |            |
| 18.080     | to      | 18.230                                     |                          |            |              |                        | 150                        |                         |              |            |
| 19.005     | to      | 19.160                                     |                          |            |              |                        | 155                        |                         |              |            |
| 19.275     | to      | 19.700                                     |                          |            | # 1          |                        | 425                        |                         |              |            |
| 19.910     | to      | 20.610                                     |                          |            |              |                        | 700                        |                         |              |            |
| 20.900     | to      | 21.100                                     |                          |            |              |                        | 200                        |                         |              |            |
| 21.340     | to      | 21.590                                     |                          |            |              |                        | 250                        |                         |              |            |
| 21.680     | to      | 23.200                                     | Y .                      | 4          |              | 1                      | 1520                       |                         |              |            |
| 23.205     | to      | 23.405                                     | क्षेत्र स                | The day    | 150          |                        | 200                        |                         |              |            |
| <u> </u>   |         | Total Core F                               | Recovery R               | atio (CR % | ⁄₀) = 15.02÷ | <u> </u><br>-15.33x100 | = 98.0 %                   |                         |              |            |
|            |         | Length of So                               | und Pieces               | of Core >  | > 100 mm:    | -                      | 7620                       |                         |              |            |
|            |         | RQD (%) =                                  | Le                       |            |              | es of Core >           | - 100 mm * 100<br>ın, mm   | 9%                      |              |            |
|            |         | RQD (%) =                                  | 62.                      | 8%         | Rock (       | Classificatio          | Fair - S                   | Shale Interb<br>Limesto | edded with a | a few thin |



| Droigati    | HQD Data Sheet  pject: P-0004553-027, Port Credit Go Station Date: 2016-01-25 |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |                            |                            |              |            |  |  |
|-------------|-------------------------------------------------------------------------------|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|----------------------------|----------------------------|--------------|------------|--|--|
| Project:    |                                                                               |              | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |                            |                            |              | <b></b>    |  |  |
| Core Box I. |                                                                               |              | 596        | 59603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 1 2-2         | Recorder:                  | J. Yao                     |              |            |  |  |
| Total Lengt | h of Co                                                                       | ore Run, mm  | 153        | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drilling (   | Company:      | Dri                        | Drilltech Drilling Limited |              |            |  |  |
| Core Diam   | etre, m                                                                       | m            | 47         | Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.67 m t    | to 26.00 m    | Drilling Date:             |                            | 2016-01-2    | 4          |  |  |
|             | Depth,                                                                        | m            | Photogra   | phic Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e of Core    |               | Each Sound<br>ore > 100 mm |                            | Remarks      |            |  |  |
| 23.570      | to                                                                            | 23.965       | FRASE      | TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAS          |               | 395                        | RUN#                       | CR (%)       | RQD (%)    |  |  |
| 23.980      | to                                                                            | 24.370       | - / 图图图    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               | 390                        | RUN 1                      | 100.0        | 52.6       |  |  |
| 24.570      | to                                                                            | 24.685       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               | 115                        | RUN 2                      | 94.8         | 53.9       |  |  |
| 24.700      | to                                                                            | 24.875       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               | 175                        | RUN 3                      | 100.0        | 67.4       |  |  |
| 24.960      | to                                                                            | 25.290       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               | 330                        | RUN 4                      | 98.7         | 68.4       |  |  |
| 25.400      | to                                                                            | 26.000       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               | 600                        | RUN 5                      | 100.0        | 90.2       |  |  |
|             |                                                                               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |                            | RUN 6                      | 98.0         | 38.2       |  |  |
|             |                                                                               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |                            | RUN 7                      | 100.0        | 49.0       |  |  |
|             |                                                                               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |                            | RUN 8                      | 100.0        | 94.1       |  |  |
|             |                                                                               |              | るが、ない      | E CENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |               |                            | RUN 9                      | 98.7         | 87.1       |  |  |
|             |                                                                               |              | 10 Miles   | Total Marie |              |               |                            | RUN 10                     | 95.4         | 47.4       |  |  |
|             |                                                                               | Total Core F | Recovery R | atio (CR %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (s) = 15.02÷ | -15.33x100    | = 98.0 %                   |                            |              |            |  |  |
|             |                                                                               | Length of So | und Pieces | of Core >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > 100 mm:    | 2             | 2005                       |                            |              |            |  |  |
|             |                                                                               | RQD (%) =    | Le         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | s of Core >   | - 100 mm * 100<br>in, mm   |                            |              |            |  |  |
|             |                                                                               | RQD (%) =    | 62.        | 8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rock (       | Classificatio | Fair - S                   | Shale Interb               | edded with a | a few thin |  |  |



| Project:    |                       | P-00045      | 553-027, Po | ort Credit G |                                         | a Sneet       | Date:                      |             | 2016-01-2                 | 0          |
|-------------|-----------------------|--------------|-------------|--------------|-----------------------------------------|---------------|----------------------------|-------------|---------------------------|------------|
| Core Box I. | D.No.                 | :            | 59593       |              | ВІ                                      | H 3           | Recorder:                  |             | J. Yao                    |            |
| Total Lengt | ength of Core Run, mm |              | 109         | 940          | Drilling (                              | Company:      | D                          | eterminatio | on Drilling               |            |
| Core Diam   | etre, m               | nm           | 47          | Depth:       | 15.24 m                                 | to 26.18 m    | Drilling Date:             |             | 2016-01-1                 | 8          |
|             | Depth,                | m            | Photogra    | aphic Image  | e of Core                               |               | Each Sound<br>ore > 100 mm |             | Remarks                   |            |
| 15.660      | to                    | 16.310       | 一是富         | -            |                                         |               | 650                        | RUN#        | CR (%)                    | RQD (%)    |
| 16.310      | to                    | 17.070       |             |              |                                         |               | 760                        | RUN 1       | 88.0                      | 60.7       |
| 17.080      | to                    | 17.730       |             |              |                                         |               | 650                        | RUN 2       | 93.4                      | 92.8       |
| 17.830      | to                    | 19.350       | 8           |              |                                         | -             | 1520                       | RUN 3       | 100.0                     | 100.0      |
| 19.350      | to                    | 20.880       | 18          |              |                                         | 1             | 1530                       | RUN 4       | 100.0                     | 100.0      |
| 20.880      | to                    | 21.590       |             |              |                                         |               | 710                        | RUN 5       | 92.1                      | 80.9       |
| 21.610      | to                    | 22.130       |             |              |                                         |               | 520                        | RUN 6       | 100.0                     | 82.2       |
| 22.400      | to                    | 23.090       |             |              |                                         |               | 690                        | RUN 7       | 100.0                     | 94.7       |
| 23.140      | to                    | 23.700       | 1           | 3 1          |                                         |               | 560                        | RUN 8       | 100.0                     | 78.0       |
| 23.930      | to                    | 24.800       | Se Se       | £ 55         | 3 - 2 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 |               | 870                        |             |                           |            |
| 24.880      | to                    | 25.450       |             |              | -                                       |               | 570                        |             |                           |            |
| 25.610      | to                    | 26.180       |             | 594.         |                                         |               | 570                        |             |                           |            |
|             |                       | Total Core F | Recovery R  | Ratio (CR %  | (a) = 10.59                             | ÷10.94x100    | = 96.8 %                   |             |                           |            |
|             |                       | Length of So | und Pieces  | s of Core >  | > 100 mm:                               | Ç             | 9600                       |             |                           |            |
|             |                       | RQD (%) =    | Le          |              |                                         | es of Core >  | - 100 mm * 100<br>ın, mm   | 9%          | -                         |            |
|             |                       | RQD (%) =    | 87.         | 8%           | Rock (                                  | Classificatio | n: Good -                  |             | pedded with<br>one Layers | a few thin |



|             |         | :            |                                           | RQ                        | D Data       | a Sheet        |                             |             |             |            |
|-------------|---------|--------------|-------------------------------------------|---------------------------|--------------|----------------|-----------------------------|-------------|-------------|------------|
| Project:    |         | P-00045      | 53-027, Po                                | ort Credit G              | o Station    |                | Date:                       |             | 2016-01-2   | 6          |
| Core Box I. | D.No.   | :            | 59601                                     |                           | ВН           | l 4-1          | Recorder:                   |             | J. Yao      |            |
| Total Lengt | h of C  | ore Run, mm  | 15                                        | 180                       | Drilling (   | Company:       | D                           | eterminatio | on Drilling |            |
| Core Diame  | etre, n | nm           | 47                                        | Depth: 10.82 m to 26.00 m |              | Drilling Date: |                             | 2016-01-2   | 2           |            |
| !           | Depth   | , m          | Photogra                                  | aphic Image               | e of Core    |                | Each Sound<br>Fore > 100 mm |             | Remarks     |            |
| 11.450      | to      | 11.730       | TOTAL                                     | 77                        | All          |                | 280                         | RUN#        | CR (%)      | RQD (%)    |
| 11.765      | to      | 11.980       |                                           | 4                         |              |                | 215                         | RUN 1       | 69.2        | 30.8       |
| 11.990      | to      | 12.130       |                                           |                           |              |                | 140                         | RUN 2       | 97.4        | 90.8       |
| 12.150      | to      | 12.495       |                                           |                           | 35           |                | 345                         | RUN 3       | 100.0       | 98.7       |
| 12.570      | to      | 13.260       | 86                                        |                           |              |                | 690                         | RUN 4       | 98.7        | 97.1       |
| 13.260      | to      | 14.560       | 1                                         |                           |              | 1              | 1300                        | RUN 5       | 100.0       | 84.2       |
| 14.580      | to      | 14.780       | 1                                         |                           |              |                | 200                         | RUN 6       | 100.0       | 96.1       |
| 14.790      | to      | 15.580       |                                           |                           | 了国           |                | 790                         | RUN 7       | 100.0       | 97.4       |
| 15.615      | to      | 16.310       |                                           |                           |              |                | 695                         | RUN 8       | 100.0       | 100.0      |
| 16.310      | to      | 16.590       | たで、実                                      | 67                        | 0 主。了        |                | 280                         |             |             |            |
| 16.630      | to      | 17.110       |                                           |                           |              |                | 480                         |             |             |            |
| 17.150      | to      | 17.670       |                                           |                           |              |                | 520                         |             |             |            |
| 17.830      | to      | 18.750       |                                           |                           |              |                | 920                         |             |             |            |
| 18.810      | to      | 19.350       |                                           |                           |              |                | 540                         |             |             |            |
| 19.350      | to      | 20.290       |                                           |                           | 3            |                | 940                         |             |             |            |
| 20.330      | to      | 20.880       |                                           |                           | 至            |                | 550                         |             |             |            |
| 20.880      | to      | 22.400       | F. S. | R4 R4                     | 94           | -              | 1520                        |             |             |            |
|             |         | Total Core F | Recovery F                                | atio (CR %                | (o) = 14.90÷ | -15.18x100     | = 98.2 %                    |             |             |            |
|             |         | Length of So | und Pieces                                | s of Core >               | > 100 mm:    | 1              | 0405                        |             |             |            |
|             |         | RQD (%) =    | Le                                        |                           |              | s of Core >    | > 100 mm * 100<br>un, mm    | %           |             |            |
|             |         | RQD (%) =    | 89.                                       | 8%                        | Rock (       | Classificatio  | Good -                      |             | pedded with | a few thin |

Limestone Layers



| Project:                                                 |                | P-00045                                                  | 553-027, Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              | a Sneet       | Date:                                   |                           | 2016-01-2                         | 6                                |
|----------------------------------------------------------|----------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|---------------|-----------------------------------------|---------------------------|-----------------------------------|----------------------------------|
| Core Box I                                               | .D.No.         | :                                                        | 596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 601        | BH           | l 4-2         | Recorder:                               |                           | J. Yao                            |                                  |
| Total Leng                                               | th of C        | ore Run, mm                                              | 15 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180        | Drilling (   | Company:      | D                                       | eterminatio               | n Drilling                        |                                  |
| Core Diam                                                | etre, m        | ım                                                       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth:     | 10.82 m      | to 26.00 m    | Drilling Date:                          |                           | 2016-01-2                         | 2                                |
|                                                          | Depth,         | m                                                        | Photogra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | phic Image | e of Core    |               | Each Sound<br>ore > 100 mm              |                           | Remarks                           |                                  |
| 22.400<br>23.965<br>24.130<br>24.790<br>25.450<br>25.780 | to to to to to | 23.930<br>24.090<br>24.600<br>25.445<br>25.670<br>26.000 | A CONTRACTOR OF THE PARTY OF TH | R-10       |              |               | 1530<br>125<br>470<br>655<br>220<br>220 | RUN # RUN 9 RUN 10 RUN 11 | CR (%)<br>100.0<br>100.0<br>100.0 | RQD (%)<br>100.0<br>82.2<br>82.0 |
|                                                          |                | Total Core F                                             | Recovery R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atio (CR % | (a) = 14.90- | ÷15.18x100    | = 98.2 %                                |                           |                                   |                                  |
|                                                          |                | Length of So                                             | und Pieces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s of Core  | > 100 mm:    | 3             | 3220                                    |                           |                                   |                                  |
|                                                          |                | RQD (%) =                                                | Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | es of Core >  | - 100 mm * 100<br>un, mm                | )%                        |                                   |                                  |
|                                                          |                | RQD (%) =                                                | 89.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8%         | Rock         | Classificatio | Good -                                  | Shale Interb              | pedded with<br>one Layers         | a few thin                       |



### **RQD Data Sheet**

| Project:    |         | P-00045      | 553-027, Po | ort Credit G     |              | a Sneet       | Date:                         |                         | 2016-01-2    | 0          |
|-------------|---------|--------------|-------------|------------------|--------------|---------------|-------------------------------|-------------------------|--------------|------------|
| Core Box I. | D.No.   | :            | 598         | 593              | В            | H 5           | Recorder:                     |                         | J. Yao       |            |
| Total Lengt | h of C  | ore Run, mm  | 10          | 760              | Drilling (   | Company:      | Dr                            | illtech Drilli          | ng Limited   |            |
| Core Diame  | etre, m | ım           | 47          | Depth:           | 15.24 m      | to 26.0 m     | Drilling Date:                |                         | 2016-01-1    | 8          |
|             | Depth,  | m            | Photogra    | aphic Image      | e of Core    |               | f Each Sound<br>Fore > 100 mm |                         | Remarks      |            |
| 17.410      | to      | 18.270       | TIME        | 1                | I A          |               | 860                           | RUN#                    | CR (%)       | RQD (%)    |
| 18.320      | to      | 18.435       |             | 1                |              |               | 115                           | RUN 1                   | 29.6         | 0          |
| 18.500      | to      | 18.820       |             |                  |              |               | 320                           | RUN 2                   | 100.0        | 56.2       |
| 18.860      | to      | 18.980       | ALE         |                  |              |               | 120                           | RUN 3                   | 95.4         | 74.7       |
| 19.030      | to      | 19.460       |             |                  |              |               | 430                           | RUN 4                   | 79.1         | 60.1       |
| 19.480      | to      | 19.630       |             |                  |              |               | 150                           | RUN 5                   | 90.1         | 77.0       |
| 20.070      | to      | 20.500       |             |                  |              |               | 430                           | RUN 6                   | 100.0        | 75.0       |
| 20.630      | to      | 21.120       |             |                  |              |               | 490                           | RUN 7                   | 92.2         | 87.3       |
| 21.580      | to      | 22.750       | 15          |                  |              |               | 1170                          |                         |              |            |
| 22.860      | to      | 23.370       | 209 - 06F.  | OF 3             |              |               | 510                           |                         |              |            |
| 23.660      | to      | 24.290       |             |                  |              |               | 630                           |                         |              |            |
| 24.380      | to      | 25.570       |             |                  |              |               | 1190                          |                         |              |            |
| 25.765      | to      | 26.000       |             | БНО <sup>2</sup> |              |               | 235                           |                         |              |            |
|             |         | Total Core F | Recovery F  | Ratio (CR %      | (s) = 8.94÷1 | 10.76x100 =   | = 83.1 %                      |                         |              |            |
|             |         | Length of So | und Pieces  | s of Core >      | > 100 mm:    | (             | 6650                          |                         |              |            |
|             |         | RQD (%) =    | Le          |                  |              | s of Core >   | > 100 mm * 100<br>un, mm      | )%                      | -            |            |
|             |         | RQD (%) =    | 61.         | 8%               | Rock (       | Classificatio | Fair -                        | Shale Interb<br>Limesto | edded with a | a few thin |

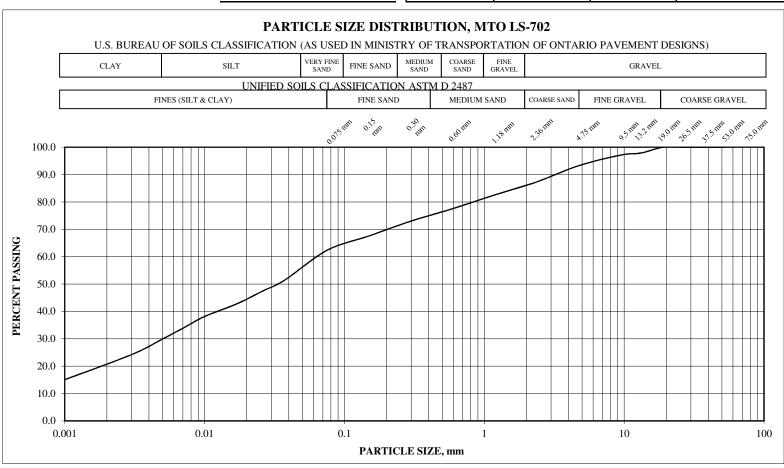


### **ROD Data Sheet**

|             |         | :            |            | RQ           | D Data       | a Sheet                                        |                          |             |                           |            |
|-------------|---------|--------------|------------|--------------|--------------|------------------------------------------------|--------------------------|-------------|---------------------------|------------|
| Project:    |         | P-00045      | 53-027, Po | ort Credit G | o Station    |                                                | Date:                    |             | 2016-01-2                 | 1          |
| Core Box I. | D.No.   | :            | 598        | 593          | ВН           | l 6-1                                          | Recorder:                |             | J. Yao                    |            |
| Total Lengt | h of C  | ore Run, mm  | 150        | 330          | Drilling (   | Company:                                       | D                        | eterminatio | on Drilling               |            |
| Core Diame  | etre, m | nm           | 47 Depth:  |              | 10.67 m      | to 26.00 m                                     | Drilling Date:           |             | 2016-01-2                 | 0          |
| ı           | Depth.  | , m          | Photogra   | phic Image   | e of Core    | Length of Each Sound<br>Piece of Core > 100 mm |                          |             | Remarks                   |            |
| 11.130      | to      | 11.650       | 77         |              |              |                                                | 520                      | RUN#        | CR (%)                    | RQD (%)    |
| 11.660      | to      | 11.840       | 15 13 18   |              |              |                                                | 180                      | RUN 1       | 80.8                      | 52.5       |
| 11.895      | to      | 12.015       | 100        |              |              |                                                | 120                      | RUN 2       | 98.7                      | 78.1       |
| 12.120      | to      | 12.520       | 16 E       | 1            |              |                                                | 400                      | RUN 3       | 100.0                     | 91.4       |
| 12.530      | to      | 12.800       |            |              |              |                                                | 270                      | RUN 4       | 96.2                      | 78.8       |
| 12.820      | to      | 13.050       |            |              |              |                                                | 230                      | RUN 5       | 100.0                     | 71.6       |
| 13.210      | to      | 13.770       |            |              |              |                                                | 560                      | RUN 6       | 100.0                     | 98.3       |
| 13.770      | to      | 14.410       |            |              |              |                                                | 640                      | RUN 7       | 100.0                     | 96.0       |
| 14.535      | to      | 14.660       |            |              |              |                                                | 125                      |             |                           |            |
| 14.660      | to      | 15.520       | Q Z        |              | 至 20年至       |                                                | 860                      |             |                           |            |
| 15.680      | to      | 15.880       | 一 五        | £.           |              |                                                | 200                      |             |                           |            |
| 15.930      | to      | 16.130       | SA         | 1            |              |                                                | 200                      |             |                           |            |
| 16.370      | to      | 16.685       |            |              | 1            |                                                | 315                      |             |                           |            |
| 16.745      | to      | 16.910       |            |              | 18           |                                                | 165                      |             |                           |            |
| 16.915      | to      | 17.105       |            | 1            |              |                                                | 190                      |             |                           |            |
| 17.310      | to      | 17.425       |            |              | 111          |                                                | 115                      |             |                           |            |
| 17.500      | to      | 17.860       |            |              |              |                                                | 360                      |             |                           |            |
| 17.860      | to      | 18.130       |            |              |              |                                                | 270                      |             |                           |            |
| 18.140      | to      | 19.330       |            |              |              | 1                                              | 1190                     |             |                           |            |
| 19.380      | to      | 20.010       |            |              |              |                                                | 630                      |             |                           |            |
| 20.040      | to      | 20.850       | 6 E 5      | 25           | e straig     |                                                | 810                      |             |                           |            |
|             |         | Total Core F | Recovery R | atio (CR %   | (6) = 15.04÷ | ÷15.33x100                                     | = 98.1 %                 |             |                           |            |
|             |         | Length of So | und Pieces | s of Core    | > 100 mm:    | 8                                              | 3350                     |             |                           |            |
|             |         | RQD (%) =    | Le         |              |              | es of Core >                                   | - 100 mm * 100<br>in, mm | %           | -                         |            |
| ·           |         | RQD (%) =    | 86.        | 9%           | Rock (       | Classificatio                                  | n: Good -                |             | pedded with<br>one Layers | a few thin |

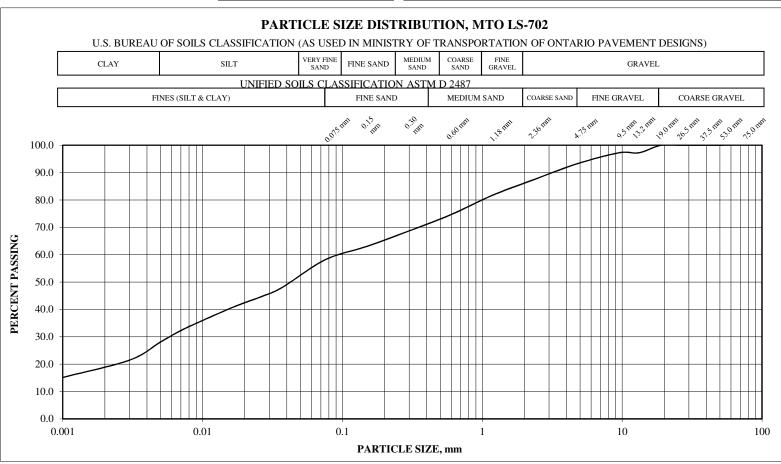


### **RQD Data Sheet**


| Project:                                                 |                           | P-00045                                                  | 553-027, Po     |             |              | a Sneet                | Date:                                    |                                                                     | 2016-01-2               | 1                                         |
|----------------------------------------------------------|---------------------------|----------------------------------------------------------|-----------------|-------------|--------------|------------------------|------------------------------------------|---------------------------------------------------------------------|-------------------------|-------------------------------------------|
| Core Box I.                                              | D.No.:                    | :                                                        | 595             | 593         | BH           | l 6-2                  | Recorder:                                |                                                                     | J. Yao                  |                                           |
| Total Lengt                                              | al Length of Core Run, mm |                                                          | 150             | 330         | Drilling (   | Company:               | D                                        | eterminatio                                                         | n Drilling              |                                           |
| Core Diame                                               | etre, m                   | ım                                                       | 47 Depth:       |             | 10.67 m      | to 26.00 m             | Drilling Date:                           |                                                                     | 2016-01-2               | 0                                         |
|                                                          | Depth,                    | m                                                        | Photogra        | phic Image  | e of Core    |                        | f Each Sound<br>Fore > 100 mm            |                                                                     | Remarks                 |                                           |
| 20.850<br>21.670<br>22.380<br>23.800<br>23.900<br>25.450 | to to to to to            | 21.560<br>22.380<br>23.730<br>23.900<br>25.450<br>26.000 |                 |             |              |                        | 710<br>710<br>1350<br>100<br>1550<br>550 | RUN # CR (%) RQ<br>RUN 8 96.1 9<br>RUN 9 100.0 9<br>RUN 10 100.0 10 |                         | RQD (%)<br>92.8<br>95.4<br>100.0<br>100.0 |
|                                                          |                           | Total Core F                                             | l<br>Recovery R | atio (CR %  | (a) = 15.04÷ | <u>I</u><br>÷15.33x100 | = 98.1 %                                 |                                                                     |                         |                                           |
|                                                          |                           | Length of So                                             | und Pieces      | s of Core > | > 100 mm:    | 4                      | 4970                                     |                                                                     |                         |                                           |
|                                                          |                           | RQD (%) =                                                | Le              |             |              | es of Core >           | > 100 mm * 100<br>un, mm                 | 1%                                                                  |                         |                                           |
|                                                          |                           | RQD (%) =                                                | 86.             | 9%          | Rock (       | Classificatio          | Good -                                   | Shale Interb<br>Limesto                                             | edded with<br>ne Layers | a few thin                                |

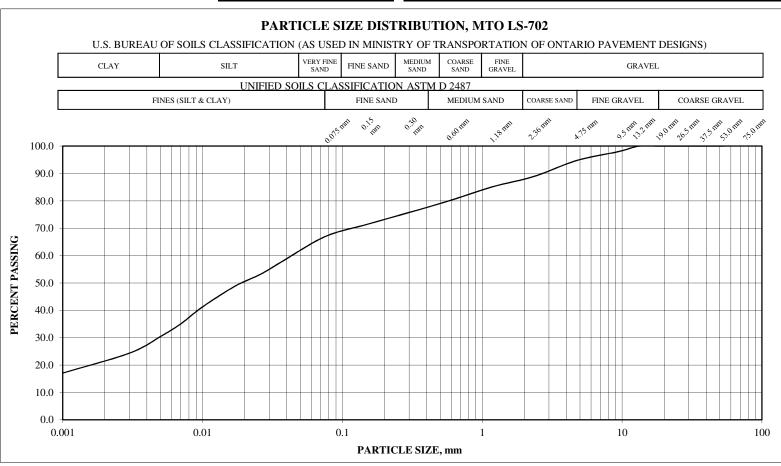
**Appendix 3** Geotechnical Testing





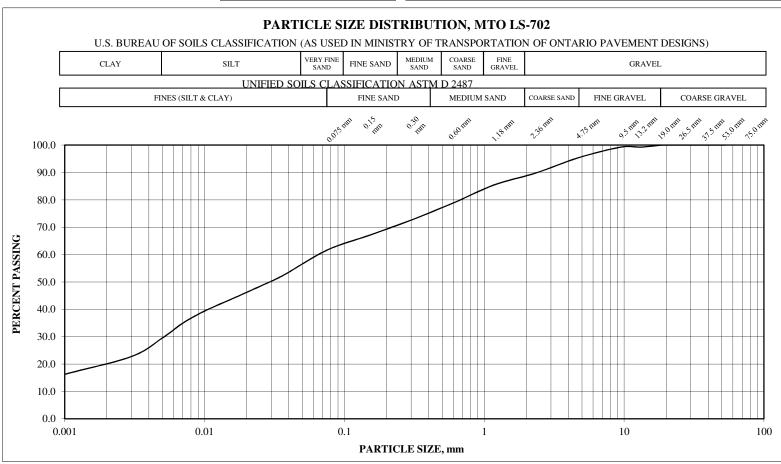

| PROJECT: P-0004553-027 CLIEN        | NT/JOB NAME: Metrolinx Env          | s CONTR    | ACT NUMBER:                             | NA                  |                                         |
|-------------------------------------|-------------------------------------|------------|-----------------------------------------|---------------------|-----------------------------------------|
| SAMPLE ID: 59604                    | PROJECT/LOCATION:                   | Geote      | echnical Investigation                  | on/ Port Credit Go  | Station                                 |
| SAMPLING LOCATION:                  | BH1 SS8                             | GRAIN SIZ  | E ANALYSIS                              | HYDROME             | TER ANALYSIS                            |
| SAMPLING DEPTH, m                   | 7.50                                | SIEVE SIZE | % PASSING                               | DIAMETER            | % PASSING                               |
| SAMPLING METHOD:                    | SS                                  | mm         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | mm                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| SAMPLED BY:                         | EM, LVM                             | 53.0       | 100.0                                   | 0.037               | 51.3                                    |
| SAMPLE DESCRIPTION:                 | Sandy Silt, some Clay, trace Gravel | 37.5       | 100.0                                   | 0.026               | 47.5                                    |
| SAMPLE DESCRIPTION.                 | Sandy Sitt, some Clay, trace Graver | 26.5       | 100.0                                   | 0.017               | 42.8                                    |
| SAMPLING DATE:                      | 25/01/2016                          | 19.0       | 100.0                                   | 0.010               | 38.2                                    |
| SAMPLE RECEIVED DATE:               | 25/01/2016                          | 13.2       | 97.9                                    | 0.007               | 33.9                                    |
|                                     |                                     | 9.5        | 97.1                                    | 0.005               | 29.9                                    |
| GRAIN SIZE PROI                     | PORTIONS, %                         | 4.75       | 93.3                                    | 0.003               | 24.2                                    |
| % GRAVEL ( > 4.75 mm):              | 6.7                                 | 2.36       | 87.3                                    | 0.001               | 15.0                                    |
| % SAND ( 75 $\mu m$ to 4.75 $mm$ ): | 31.0                                | 1.18       | 82.5                                    | ATTEDDE             | DC LIMITS OF                            |
| % Silt (5 μm to 75 μm):             | 32.4                                | 0.60       | 77.6                                    | ATTERBERG LIMITS, % |                                         |
| % Clay ( <5 μm):                    | 29.9                                | 0.30       | 73.0                                    | Plastic Limit       |                                         |
| SUSCEPTIBILITY TO FROST             | Low                                 | 0.15       | 67.6                                    | Liquid Limit        |                                         |
| HEAVING:                            | LOW                                 | 0.075      | 62.3                                    | Plastic Index       |                                         |





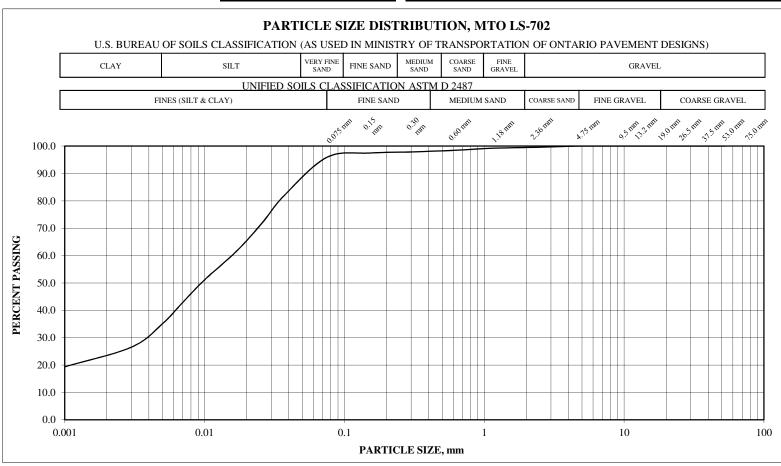

| PROJECT: P-0004553-027 CLI        | ENT/JOB NAME: Metrolinx En          | ME: Metrolinx Environmental Sevices C |                        |                     | NA            |  |
|-----------------------------------|-------------------------------------|---------------------------------------|------------------------|---------------------|---------------|--|
| SAMPLE ID: 59605                  | PROJECT/LOCATION:                   | Geote                                 | echnical Investigation | on/ Port Credit Go  | Station       |  |
| SAMPLING LOCATION:                | BH2 SS6                             | GRAIN SIZ                             | E ANALYSIS             | HYDROMETER ANALYSIS |               |  |
| SAMPLING DEPTH, m                 | 6.00                                | SIEVE SIZE                            | % PASSING              | DIAMETER            | % PASSING     |  |
| SAMPLING METHOD:                  | SS                                  | mm                                    | 70 1 7 ISSN VO         | mm                  | 70 TTISSIT (G |  |
| SAMPLED BY:                       | EM, LVM                             | 53.0                                  | 100.0                  | 0.037               | 48.0          |  |
| SAMPLE DESCRIPTION:               | Cilty Cand came Clay trace Croyal   | 37.5                                  | 100.0                  | 0.026               | 44.6          |  |
| SAMPLE DESCRIPTION.               | Silty Sand, some Clay, trace Gravel | 26.5                                  | 100.0                  | 0.017               | 41.1          |  |
| SAMPLING DATE:                    | 25/01/2016                          | 19.0                                  | 100.0                  | 0.010               | 36.0          |  |
| SAMPLE RECEIVED DATE:             | 25/01/2016                          | 13.2                                  | 97.2                   | 0.007               | 32.3          |  |
|                                   |                                     | 9.5                                   | 97.2                   | 0.005               | 28.1          |  |
| GRAIN SIZE PR                     | OPORTIONS, %                        | 4.75                                  | 93.2                   | 0.003               | 21.5          |  |
| % GRAVEL ( > 4.75 mm):            | 6.8                                 | 2.36                                  | 87.5                   | 0.001               | 15.1          |  |
| % SAND ( 75 $\mu m$ to 4.75 mm):  | 35.1                                | 1.18                                  | 81.7                   | ATTEDDE             | EDC LIMITE (7 |  |
| % Silt (5 $\mu$ m to 75 $\mu$ m): | 30.0                                | 0.60                                  | 74.7                   | ATTERBERG LIMITS, % |               |  |
| % Clay ( <5 μm):                  | 28.1                                | 0.30                                  | 68.7                   | Plastic Limit       |               |  |
| SUSCEPTIBILITY TO FROST           | Low                                 | 0.15                                  | 63.1                   | Liquid Limit        |               |  |
| HEAVING:                          | Low                                 | 0.075                                 | 58.1                   | Plastic Index       |               |  |





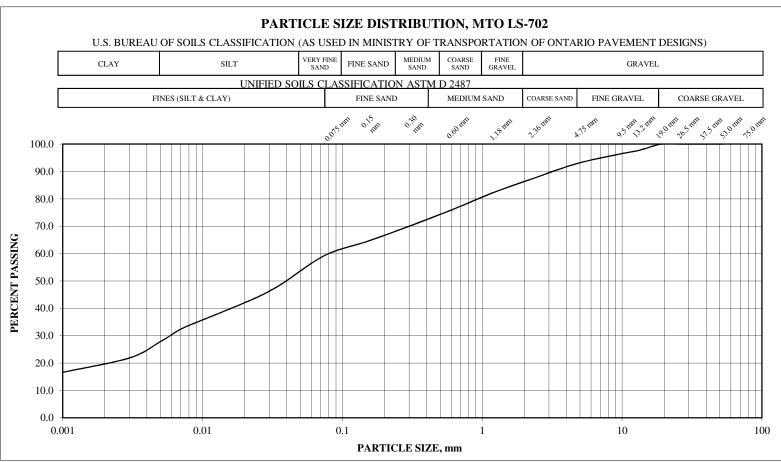

| PROJECT: P-0004553-027 CLIE           | ENT/JOB NAME:                 | Metrolinx CONTRACT N                               |            |                     | NA          |  |  |
|---------------------------------------|-------------------------------|----------------------------------------------------|------------|---------------------|-------------|--|--|
| SAMPLE ID: 59580                      | PROJECT/LOCATION:             | Geotechnical Investigation/ Port Credit Go Station |            |                     |             |  |  |
| SAMPLING LOCATION:                    | BH3 SS4                       | GRAIN SIZ                                          | E ANALYSIS | HYDROMETER ANALYSIS |             |  |  |
| SAMPLING DEPTH, m<br>SAMPLING METHOD: | SS                            | SIEVE SIZE<br>mm                                   | % PASSING  | DIAMETER<br>mm      | % PASSING   |  |  |
| SAMPLED BY:                           | EM, LVM                       | 53.0                                               | 100.0      | 0.037               | 57.8        |  |  |
| SAMPLE DESCRIPTION:                   | Clayey Silt, some Sand, trace | 37.5                                               | 100.0      | 0.026               | 53.2        |  |  |
| SAMPLE DESCRIPTION:                   | Gravel                        | 26.5                                               | 100.0      | 0.017               | 48.8        |  |  |
| SAMPLING DATE:                        | 14/01/2016                    | 19.0                                               | 100.0      | 0.010               | 41.2        |  |  |
| SAMPLE RECEIVED DATE:                 | 14/01/2016                    | 13.2                                               | 100.0      | 0.007               | 35.1        |  |  |
|                                       |                               | 9.5                                                | 98.0       | 0.005               | 30.4        |  |  |
| GRAIN SIZE PRO                        | OPORTIONS, %                  | 4.75                                               | 94.8       | 0.003               | 24.4        |  |  |
| % GRAVEL ( > 4.75 mm):                | 5.2                           | 2.36                                               | 89.0       | 0.001               | 17.1        |  |  |
| % SAND ( 75 $\mu m$ to 4.75 mm):      | 27.9                          | 1.18                                               | 85.1       | ATTEDDE             | DC LIMITS O |  |  |
| % Silt (5 $\mu$ m to 75 $\mu$ m):     | 36.5                          | 0.60                                               | 80.2       | ATTERBERG LIMITS, % |             |  |  |
| % Clay ( <5 μm):                      | 30.4                          | 0.30                                               | 75.7       | Plastic Limit       |             |  |  |
| SUSCEPTIBILITY TO FROST               | T                             | 0.15                                               | 71.4       | Liquid Limit        |             |  |  |
| HEAVING:                              | Low                           | 0.075                                              | 66.9       | Plastic Index       |             |  |  |






| PROJECT: P-0004553-027 CLIE        | NT/JOB NAME: Metrolinx En           | rolinx Environmental Sevices CONTRACT NUM |                        |                       | NA            |
|------------------------------------|-------------------------------------|-------------------------------------------|------------------------|-----------------------|---------------|
| SAMPLE ID: 59599                   | PROJECT/LOCATION:                   | Geote                                     | echnical Investigation | on/ Port Credit Go    | Station       |
| SAMPLING LOCATION:                 | BH4 SS6                             | GRAIN SIZ                                 | E ANALYSIS             | HYDROME               | TER ANALYSIS  |
| SAMPLING DEPTH, m SAMPLING METHOD: | 5.00<br>SS                          | SIEVE SIZE<br>mm                          | % PASSING              | DIAMETER<br>mm        | % PASSING     |
| SAMPLED BY:                        | EM, LVM                             | 53.0                                      | 100.0                  | 0.037                 | 52.6          |
| CAMBLE DECORIDATION                |                                     | 37.5                                      | 100.0                  | 0.026                 | 48.8          |
| SAMPLE DESCRIPTION:                | Silty Sand, some Clay, trace Gravel | 26.5                                      | 100.0                  | 0.017                 | 44.6          |
| SAMPLING DATE:                     | 21/01/2016                          | 19.0                                      | 100.0                  | 0.010                 | 39.4          |
| SAMPLE RECEIVED DATE:              | 21/01/2016                          | 13.2                                      | 99.3                   | 0.007                 | 35.0          |
|                                    |                                     | 9.5                                       | 99.3                   | 0.005                 | 29.5          |
| GRAIN SIZE PRO                     | PORTIONS, %                         | 4.75                                      | 95.4                   | 0.003                 | 22.8          |
| % GRAVEL ( > 4.75 mm):             | 4.6                                 | 2.36                                      | 89.9                   | 0.001                 | 16.3          |
| % SAND ( 75 $\mu m$ to 4.75 mm):   | 33.8                                | 1.18                                      | 85.5                   | ATTEDDE               | DC LIMITS (1) |
| % Silt (5 μm to 75 μm):            | 32.1                                | 0.60                                      | 78.8                   | - ATTERBERG LIMITS, % |               |
| % Clay ( <5 μm):                   | 29.5                                | 0.30                                      | 72.6                   | Plastic Limit         |               |
| SUSCEPTIBILITY TO FROST            | Low                                 | 0.15                                      | 67.0                   | Liquid Limit          |               |
| HEAVING:                           | Low                                 | 0.075                                     | 61.6                   | Plastic Index         |               |






| PROJECT: P-0004553-027                | CLIENT/JOB NAME: Metrolinx E | Environmental Sevice                               | cs CONTR   | ACT NUMBER:         | NA           |  |  |
|---------------------------------------|------------------------------|----------------------------------------------------|------------|---------------------|--------------|--|--|
| SAMPLE ID: 59590                      | PROJECT/LOCATION:            | Geotechnical Investigation/ Port Credit Go Station |            |                     |              |  |  |
| SAMPLING LOCATION:                    | BH5 SS3                      | GRAIN SIZ                                          | E ANALYSIS | HYDROMETER ANALYSIS |              |  |  |
| SAMPLING DEPTH, m<br>SAMPLING METHOD: | SS                           | SIEVE SIZE<br>mm                                   | % PASSING  | DIAMETER<br>mm      | % PASSING    |  |  |
| SAMPLED BY:                           | EM, LVM                      | 53.0                                               | 100.0      | 0.037               | 81.9         |  |  |
| CAMDLE DESCRIPTION.                   | Classes Sile to a Sand       | 37.5                                               | 100.0      | 0.026               | 72.1         |  |  |
| SAMPLE DESCRIPTION:                   | Clayey Silt, trace Sand      | 26.5                                               | 100.0      | 0.017               | 61.7         |  |  |
| SAMPLING DATE:                        | 18/01/2016                   | 19.0                                               | 100.0      | 0.010               | 51.1         |  |  |
| SAMPLE RECEIVED DATE:                 | 18/01/2016                   | 13.2                                               | 100.0      | 0.007               | 43.0         |  |  |
|                                       |                              | 9.5                                                | 100.0      | 0.005               | 35.1         |  |  |
| GRAIN SIZE                            | PROPORTIONS, %               | 4.75                                               | 100.0      | 0.003               | 26.5         |  |  |
| % GRAVEL ( > 4.75 mm):                | 0.0                          | 2.36                                               | 99.6       | 0.001               | 19.3         |  |  |
| % SAND ( 75 $\mu m$ to 4.75 mm):      | 4.1                          | 1.18                                               | 99.2       | ATTEDDE             | DC LIMITS (7 |  |  |
| % Silt (5 $\mu m$ to 75 $\mu m$ ):    | 60.8                         | 0.60                                               | 98.5       | ATTERBERG LIMITS, % |              |  |  |
| % Clay ( <5 μm):                      | 35.1                         | 0.30                                               | 97.9       | Plastic Limit       |              |  |  |
| SUSCEPTIBILITY TO FROST               | High                         | 0.15                                               | 97.5       | Liquid Limit        |              |  |  |
| HEAVING:                              | High                         | 0.075                                              | 95.9       | Plastic Index       |              |  |  |





| PROJECT: P-0004553-027 CLI            | ENT/JOB NAME: Metrolinx En          | vironmental Sevice | s CONTR                | ACT NUMBER:         | NA          |  |
|---------------------------------------|-------------------------------------|--------------------|------------------------|---------------------|-------------|--|
| SAMPLE ID: 59591                      | PROJECT/LOCATION:                   | Geote              | echnical Investigation | on/ Port Credit Go  | Station     |  |
| SAMPLING LOCATION:                    | BH6 SS5                             | GRAIN SIZ          | E ANALYSIS             | HYDROMETER ANALYSIS |             |  |
| SAMPLING DEPTH, m<br>SAMPLING METHOD: | SS                                  | SIEVE SIZE<br>mm   | % PASSING              | DIAMETER<br>mm      | % PASSING   |  |
| SAMPLED BY:                           | EM, LVM                             | 53.0               | 100.0                  | 0.037               | 49.0        |  |
| SAMPLE DESCRIPTION:                   | Cilty Cand same Clay trace Crayal   | 37.5               | 100.0                  | 0.026               | 44.6        |  |
| SAMPLE DESCRIPTION:                   | Silty Sand, some Clay, trace Gravel | 26.5               | 100.0                  | 0.017               | 40.5        |  |
| SAMPLING DATE:                        | 20/01/2016                          | 19.0               | 100.0                  | 0.010               | 35.8        |  |
| SAMPLE RECEIVED DATE:                 | 20/01/2016                          | 13.2               | 97.7                   | 0.007               | 32.4        |  |
|                                       |                                     | 9.5                | 96.3                   | 0.005               | 27.8        |  |
| GRAIN SIZE PR                         | OPORTIONS, %                        | 4.75               | 92.9                   | 0.003               | 21.9        |  |
| % GRAVEL ( > 4.75 mm):                | 7.1                                 | 2.36               | 87.6                   | 0.001               | 16.6        |  |
| % SAND ( 75 $\mu m$ to 4.75 $mm$ ):   | 33.5                                | 1.18               | 82.1                   | ATTEDDE             | DC LIMITS 0 |  |
| % Silt (5 μm to 75 μm):               | 31.5                                | 0.60               | 75.9                   | ATTERBERG LIMITS, % |             |  |
| % Clay ( <5 μm):                      | 27.8                                | 0.30               | 70.0                   | Plastic Limit       |             |  |
| SUSCEPTIBILITY TO FROST               | Low                                 | 0.15               | 64.4                   | Liquid Limit        |             |  |
| HEAVING:                              | Low                                 | 0.075              | 59.4                   | Plastic Index       |             |  |





#### **COMPRESSIVE STRENGTH OF CONCRETE CORES** MTO LS-410, A23.2-14C

| PROJECT NO.:_                             | P004553                                           | CLIENT:                                                                                                          | Metrolinx CC         | ONTRACT:             | DATE: 29/01/2016    |  |  |  |
|-------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------|--|--|--|
| ROS NO.:                                  | 59590                                             | PROJECT/LOCATION                                                                                                 | ON:                  | Port Credit GO Stati | on                  |  |  |  |
| SPECIFIED STR                             | ENGTH, MP                                         | a: SEAL N                                                                                                        | IO.:                 | LOT:                 | SUBLOT:             |  |  |  |
| MATERIAL TYP                              | PE:                                               | Bore Hol                                                                                                         | e Core SAM           | SAMPLE RECEIVED DATE |                     |  |  |  |
| Core N                                    | No.                                               | BH1 Run 3                                                                                                        | BH4 Run 7            | BH5 Run 6            | BH6 Run 6           |  |  |  |
| Station No.                               |                                                   | 19.17 m to 19.31 m                                                                                               | 19.88 m to 20.025 m  | 23.22 m to 23.37 m   | 18.14 m to 18.295 m |  |  |  |
| Core Length as R                          | eceived, mm                                       | 140.0                                                                                                            | 145.0                | 150.0                | 155.0               |  |  |  |
| Date Placed                               |                                                   |                                                                                                                  |                      |                      |                     |  |  |  |
| Date Cored                                |                                                   | 08/01/2016                                                                                                       | 08/01/2016           | 42377                | 08/01/2016          |  |  |  |
| Core Abnormaliti                          | es                                                | None                                                                                                             | None                 | None                 | None                |  |  |  |
| Trimmed Length,                           | mm                                                | 94.0                                                                                                             | 94.0                 | 94.0                 | 94.0                |  |  |  |
| Capping Material                          | Used                                              | -                                                                                                                | -                    | -                    | -                   |  |  |  |
| Max. Size Aggreg                          | gate, mm                                          | -                                                                                                                | -                    | -                    | -                   |  |  |  |
| Moisture Condition                        | on                                                | Moist                                                                                                            | Moist                | Moist                | Moist               |  |  |  |
| Core Mass, kg                             |                                                   | 0.444                                                                                                            | 0.432                | 0.425                | 0.427               |  |  |  |
| Core Density, kg/                         | $m^3$                                             | 2723                                                                                                             | 2649                 | 2606                 | 2618                |  |  |  |
|                                           |                                                   | C                                                                                                                | Compressive Strength |                      |                     |  |  |  |
| Date Tested                               |                                                   | 29/01/2016                                                                                                       | 29/01/2016           | 29/01/2016           | 29/01/2016          |  |  |  |
| Concrete Age, da                          | y                                                 |                                                                                                                  |                      |                      |                     |  |  |  |
| Diameter, D, mm                           |                                                   | 47.0                                                                                                             | 47.0                 | 47.0                 | 47.0                |  |  |  |
| Capped Length, L                          | ., mm                                             | -                                                                                                                | -                    | -                    | -                   |  |  |  |
| L/D Ratio                                 |                                                   | 2                                                                                                                | 2                    | 2                    | 2                   |  |  |  |
| Max. Load Applie                          | ed, kN                                            | 82.8                                                                                                             | 52.8                 | 92.3                 | 85.7                |  |  |  |
| Correction Factor                         | •                                                 | 1.0                                                                                                              | 1.0                  | 1.0                  | 1.0                 |  |  |  |
| Strength, MP <sub>a</sub>                 |                                                   | 47.7                                                                                                             | 30.4                 | 53.2                 | 49.4                |  |  |  |
| Corrected Strengt                         | h, MP <sub>a</sub>                                | 47.7                                                                                                             | 30.4                 | 53.2                 | 49.4                |  |  |  |
| Type of Failure                           |                                                   | T2                                                                                                               | T2                   | T2                   | T2                  |  |  |  |
| L<br>S<br>T                               | Load (kN) = L<br>Strength (MPa<br>Cesting shall b | al Reading (lb) * Conversion (N) / 1000 ) = Load (kN) / Area e in accordance to CSA American control (kn) / Area | ` ,                  | 5.8.2                |                     |  |  |  |
| RESULTS REPO                              | RTED TO:                                          |                                                                                                                  |                      | FAX                  |                     |  |  |  |
| TECHNICIAN:                               | LF                                                | CHECKEI                                                                                                          | DBY: DA              | DATE:                | 29/01/2016          |  |  |  |
| SIGNED:  Dawit Amar/Laboratory Supervisor |                                                   |                                                                                                                  |                      |                      |                     |  |  |  |

**Appendix 4** Chemical Testing Results





Your P.O. #: A03254

Your Project #: P-0004553-027 Site Location: PORT CREDIT

Your C.O.C. #: NA

Attention: A.J. Antonacci

Englobe Corp 1821 Albion Rd, Unit 7 Etobicoke, ON CANADA M9W 5W8

Report Date: 2016/02/03

Report #: R3876199 Version: 2 - Revision

#### **CERTIFICATE OF ANALYSIS – REVISED REPORT**

MAXXAM JOB #: B613720 Received: 2016/01/22, 12:02

Sample Matrix: Soil # Samples Received: 2

|                         |          | Date       | Date       |                          |                 |
|-------------------------|----------|------------|------------|--------------------------|-----------------|
| Analyses                | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference       |
| Chloride (20:1 extract) | 2        | N/A        | 2016/01/29 | CAM SOP-00463            | EPA 325.2 m     |
| Conductivity            | 2        | N/A        | 2016/01/28 | CAM SOP-00414            | OMOE E3138 v2 m |
| pH CaCl2 EXTRACT        | 2        | 2016/01/27 | 2016/01/27 | CAM SOP-00413            | EPA 9045 D m    |
| Resistivity of Soil     | 2        | 2016/01/22 | 2016/01/28 | CAM SOP-00414            | SM 22 2510 m    |
| Sulphate (20:1 Extract) | 2        | N/A        | 2016/01/29 | CAM SOP-00464            | EPA 375.4 m     |
| Redox Potential (1)     | 2        | 2016/01/25 | N/A        | SLA SOP-00101            | In house        |

#### Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Sladeview Petrochemical

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Augustyna Dobosz, Project Manager

Email: A Dobosz @ mayyam so

Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

\_\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Englobe Corp

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### **RESULTS OF ANALYSES OF SOIL**

| Maxxam ID                     |        |          | BRY398     | BRY399     | BRY399             |       |          |
|-------------------------------|--------|----------|------------|------------|--------------------|-------|----------|
| Sampling Date                 |        |          | 2016/01/21 | 2016/01/21 | 2016/01/21         |       |          |
| COC Number                    |        |          | NA         | NA         | NA                 |       |          |
|                               | UNITS  | Criteria | BH3 SS6    | BH6 SS3    | BH6 SS3<br>Lab-Dup | RDL   | QC Batch |
| Calculated Parameters         |        | •        | ·          | ·          | ·                  | •     |          |
| Resistivity                   | ohm-cm | -        | 1500       | 760        | N/A                | N/A   | 4355083  |
| Inorganics                    |        |          |            |            |                    | •     | •        |
| Soluble (20:1) Chloride (Cl)  | ug/g   | -        | 200        | 710        | N/A                | 20    | 4361556  |
| Conductivity                  | mS/cm  | 0.7      | 0.68       | 1.3        | N/A                | 0.002 | 4361555  |
| Available (CaCl2) pH          | рН     | -        | 7.71       | 7.73       | N/A                | N/A   | 4359905  |
| Soluble (20:1) Sulphate (SO4) | %      | -        | 0.025      | 0.008      | 0.008              | 0.002 | 4361574  |
| Subcontracted Analysis        | •      |          | •          | •          | •                  | •     |          |
| Redox Potential               | mV     | -        | +173       | +141       | +128               | N/A   | 4357189  |
|                               | •      |          |            |            |                    |       |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Texture

N/A = Not Applicable



**Englobe Corp** 

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### **TEST SUMMARY**

Maxxam ID: BRY398 Sample ID: BH3 SS6 Collected:

2016/01/21

mple ID: BH3 SS6
Matrix: Soil

Shipped: Received: 2016/01/22

| Test Description        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst             |
|-------------------------|-----------------|---------|------------|---------------|---------------------|
| Chloride (20:1 extract) | KONE/EC         | 4361556 | N/A        | 2016/01/29    | Deonarine Ramnarine |
| Conductivity            | AT              | 4361555 | N/A        | 2016/01/28    | Lemeneh Addis       |
| pH CaCl2 EXTRACT        | AT              | 4359905 | 2016/01/27 | 2016/01/27    | Neil Dassanayake    |
| Resistivity of Soil     |                 | 4355083 | 2016/01/28 | 2016/01/28    | Automated Statchk   |
| Sulphate (20:1 Extract) | KONE/EC         | 4361574 | N/A        | 2016/01/29    | Deonarine Ramnarine |
| Redox Potential         | PH              | 4357189 | 2016/01/25 |               | Grace Sison         |

Maxxam ID: BRY399 Sample ID: BH6 SS3 Collected:

2016/01/21

mple ID: BH6 SS3
Matrix: Soil

Shipped: Received:

2016/01/22

| Test Description        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst             |
|-------------------------|-----------------|---------|------------|---------------|---------------------|
| Chloride (20:1 extract) | KONE/EC         | 4361556 | N/A        | 2016/01/29    | Deonarine Ramnarine |
| Conductivity            | AT              | 4361555 | N/A        | 2016/01/28    | Lemeneh Addis       |
| pH CaCl2 EXTRACT        | AT              | 4359905 | 2016/01/27 | 2016/01/27    | Neil Dassanayake    |
| Resistivity of Soil     |                 | 4355083 | 2016/01/28 | 2016/01/28    | Automated Statchk   |
| Sulphate (20:1 Extract) | KONE/EC         | 4361574 | N/A        | 2016/01/29    | Deonarine Ramnarine |
| Redox Potential         | PH              | 4357189 | 2016/01/25 |               | Grace Sison         |

Maxxam ID: BRY399 Dup Sample ID: BH6 SS3

Soil

Matrix:

Collected:

: 2016/01/21

Shipped:

**Received:** 2016/01/22

| Test Description        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst             |
|-------------------------|-----------------|---------|------------|---------------|---------------------|
| Sulphate (20:1 Extract) | KONE/EC         | 4361574 | N/A        | 2016/01/29    | Deonarine Ramnarine |
| Redox Potential         | PH              | 4357189 | 2016/01/25 |               | Grace Sison         |



Englobe Corp

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### **GENERAL COMMENTS**

| Each te | emperature is the a                                                      | verage of up to | three cooler temperatures taken at receipt |  |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------|-----------------|--------------------------------------------|--|--|--|--|--|--|--|
|         | Package 1                                                                | 1.3°C           |                                            |  |  |  |  |  |  |  |
| Revise  | Revised report (2016/02/03): Units for Sulphate have been ammended to %. |                 |                                            |  |  |  |  |  |  |  |
| Results | Results relate only to the items tested.                                 |                 |                                            |  |  |  |  |  |  |  |



**Englobe Corp** 

Client Project #: P-0004553-027
Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                          |                               | Date       |         |          |       |           |
|---------|------|--------------------------|-------------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                     | Analyzed   | Value   | Recovery | UNITS | QC Limits |
| 4357189 | MJP  | QC Standard              | Redox Potential               |            |         | +245     | %     | 238 - 248 |
| 4357189 | MJP  | Method Blank             | Redox Potential               |            | +138    |          | mV    |           |
| 4357189 | MJP  | RPD [BRY399-02]          | Redox Potential               |            | 9.7     |          | %     | 20        |
| 4359905 | NYS  | Spiked Blank             | Available (CaCl2) pH          | 2016/01/27 |         | 99       | %     | 97 - 103  |
| 4359905 | NYS  | RPD                      | Available (CaCl2) pH          | 2016/01/27 | 0.75    |          | %     | N/A       |
| 4361555 | L_A  | Spiked Blank             | Conductivity                  | 2016/01/28 |         | 100      | %     | 90 - 110  |
| 4361555 | L_A  | Method Blank             | Conductivity                  | 2016/01/28 | < 0.002 |          | mS/cm |           |
| 4361555 | L_A  | RPD                      | Conductivity                  | 2016/01/28 | 1.3     |          | %     | 10        |
| 4361556 | DRM  | Matrix Spike             | Soluble (20:1) Chloride (Cl)  | 2016/01/29 |         | 113      | %     | 70 - 130  |
| 4361556 | DRM  | Spiked Blank             | Soluble (20:1) Chloride (Cl)  | 2016/01/29 |         | 103      | %     | 70 - 130  |
| 4361556 | DRM  | Method Blank             | Soluble (20:1) Chloride (Cl)  | 2016/01/29 | <20     |          | ug/g  |           |
| 4361556 | DRM  | RPD                      | Soluble (20:1) Chloride (Cl)  | 2016/01/29 | NC      |          | %     | 35        |
| 4361574 | DRM  | Matrix Spike [BRY399-01] | Soluble (20:1) Sulphate (SO4) | 2016/01/29 |         | NC       | %     | 70 - 130  |
| 4361574 | DRM  | Spiked Blank             | Soluble (20:1) Sulphate (SO4) | 2016/01/29 |         | 99       | %     | 70 - 130  |
| 4361574 | DRM  | Method Blank             | Soluble (20:1) Sulphate (SO4) | 2016/01/29 | < 0.002 |          | %     |           |
| 4361574 | DRM  | RPD [BRY399-01]          | Soluble (20:1) Sulphate (SO4) | 2016/01/29 | NC      |          | %     | 35        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



**Englobe Corp** 

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina Carriere, Scientific Services

Cristina Carriere, Scientific Services

Grace Sison, B.Sc., C.Chem, Senior Project Manager - Petroleum Division

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| INVOICE INFORMATI                                       | ON:               |                 | REPORT IN                      | IFOR      | MAT     | ON (     | if diffe        | ers*fi   | rom                    | invoic     | e):    |          | Р      | ROJ | ECT II   | NFORMATION:                       | MAXXAM JOB NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|-------------------|-----------------|--------------------------------|-----------|---------|----------|-----------------|----------|------------------------|------------|--------|----------|--------|-----|----------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mpany Name: Englobe                                     |                   |                 | Company Name:                  |           |         |          |                 |          |                        |            | -      | Quotat   |        |     | 3844     | 1.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ntact Name: A.J. Antonacci                              |                   | المساريط        | Contact Name:                  |           | _       | -        |                 |          |                        |            |        | P.O. #   |        |     |          | 3254                              | OULD OF OUCTORY #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| fress: 1821 Albion Road                                 |                   |                 | Address:                       |           | 4       |          | _               | -        |                        |            | -      | Project  |        | -   | 000455   |                                   | CHAIN OF CUSTODY #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Etobicoke, Ontario                                      |                   |                 |                                |           |         |          |                 |          |                        |            |        |          | Name:  | Po  | rt Cred  | it                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ne: 416 213 1060 Fax:                                   |                   |                 | Phone:<br>Email: houshan       | a akha    | ri@o    | naloh    | _               | ax:      |                        |            |        | Location |        | Α.  | J. Antor | nacci                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| arthur.antonacci@englobecorp.com                        |                   |                 | Email: Houshari                | g.anoc    |         |          |                 |          |                        |            |        |          |        |     |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REGULATOR                                               |                   |                 |                                |           |         | ANAI     | YSIS            | _        |                        | STED       | Please | be s     | ecific | :): |          |                                   | IME (TAT) REQUIRED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| e: For regulated drinking water samples -<br>stody Form | please use the    | Drinking V      | Vater Chain of                 |           |         |          |                 |          | 힣                      |            |        |          |        |     |          |                                   | VANCE NOTICE FOR RUSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| stody r om                                              |                   |                 |                                | î         |         |          |                 |          | bl                     |            |        |          |        |     |          | Regular (Standard) T              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MISA Reg. 153                                           |                   | Sewer           | r Use                          | -         | _       | te       |                 |          | 3                      |            |        |          |        |     |          | √ 5 to 7 Workin                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         | ential / Parkland |                 | anitary                        | 7 (Y      | N/      | sulphate |                 |          | Resistivity/Conduction |            |        |          |        |     |          | Rush TAT: Rush Cor                | all Lab for #)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 2 Indust                                          | rial / Commerc    |                 | orm                            | Water     | ? (Y    | Ju S     |                 |          | ţį                     | _          |        | -        | -      |     |          | 1 day                             | 2 days 3 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reg. 558  Table 3  Mediu                                | m / Fine          | Municipa        | ality:                         |           | pa.     | (U)      |                 | -        | Sis                    | tia        |        |          |        |     |          | DATE Required:                    | 2 days o days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other (specify):                                        |                   | Criteria on 0   | C of A?                        | Drinking  | Filter  | qn       |                 |          |                        | potentia   |        |          |        | 1   |          | TIME Required:                    | and the same of th |
| AMPLES MUST BE KEPT COOL ( <                            | 10 °C ) ERON      | A TIME OF       | E SAMPLING                     |           | Field F | golubi   | e e             |          | g                      | b          |        |          | -      |     |          |                                   | lests such as BOD and Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NTIL DELIVERY TO MAXXAM                                 | TO C/THOM         | i TIME OF       | SAMI LING                      | late      | S Fi    | ter      | oric            |          | ctri                   | õ          |        |          | -      |     |          | are > 5 days - contact your Proje |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Identification                                   | Date<br>Sampled   | Time<br>Sampled | Matrix<br>(GW, SW, Soil, etc.) | Regulated | Metal   | Water    |                 | _        |                        | Redox      |        |          |        |     |          | Cont.                             | NTS / TAT COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BH3 SS6                                                 | 2016/01/21        | AM              | Soil                           |           |         |          | Comment Comment |          | X                      |            | Ш      |          |        |     |          | 2                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BH6 SS3                                                 | 2016/01/21        | AM              | Soil                           |           |         | $\times$ | $\times$        | $\times$ | $\times$               | $\times$ L |        |          |        | ┸   | $\perp$  | 2                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * * * * * * * * * * * * * * * * * * * *                 | 1                 |                 | *                              |           |         |          |                 |          |                        |            |        |          |        | _   |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~                                                       |                   |                 | _ n -n - b                     |           |         |          |                 |          |                        |            |        | 100      |        |     |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                                       |                   |                 |                                |           |         |          |                 |          |                        |            |        |          |        |     |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                   |                 |                                |           |         |          |                 |          |                        |            |        |          |        |     |          | 22-J                              | an-16 12:02 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                         |                   |                 |                                |           |         |          |                 | T        |                        |            |        |          |        |     |          | - Augustyne                       | Dohosz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                         |                   |                 |                                |           |         |          |                 | J        |                        |            |        |          |        |     |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                   |                 |                                |           |         |          |                 | J        |                        |            |        |          |        |     |          | B6137                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                         |                   |                 |                                |           |         |          |                 |          |                        |            |        |          |        |     |          | RGN E                             | VIV. 02.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                         |                   |                 |                                |           |         |          |                 | T        |                        |            |        |          |        |     |          | I I EI                            | NV-936 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                         |                   |                 |                                |           |         |          |                 | T        |                        |            |        |          |        |     |          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINQUISHED BY: (Signature/Pr                          | rint)             | RECI            | EIVED BY: (Sign                | ature     | /Prin   | t)       |                 |          |                        | Date:      |        |          | Tim    | ne: |          | # JARS USED AND N                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.1. W A.5. Anto                                        | nacci             |                 |                                |           |         |          | _               | 20       | -                      | 101,       |        |          | 30     |     | <u>_</u> | SUBMITTED                         | Temperature (°C) on Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         | 6                 | notes           | AUCA                           | 0         | 25      | re       |                 | Di       | 181                    | 0112       | 2      | 10       | 220    | 2   | -        | 70                                | 21111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



Your P.O. #: A03254

Your Project #: P-0004553-027 Site Location: PORT CREDIT

Your C.O.C. #: NA

Attention: A.J. Antonacci

Englobe Corp 1821 Albion Rd, Unit 7 Etobicoke, ON CANADA M9W 5W8

Report Date: 2016/01/28

Report #: R3869899 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B613724 Received: 2016/01/22, 12:02

Sample Matrix: Soil # Samples Received: 1

|                                         |          | Date       | Date       |                          |                      |
|-----------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                                | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Cyanide (WAD) in Leachates              | 1        | N/A        | 2016/01/27 | CAM SOP-00457            | OMOE 3015 m          |
| Fluoride by ISE in Leachates            | 1        | 2016/01/27 | 2016/01/27 | CAM SOP-00449            | SM 22 4500-F- C m    |
| Mercury (TCLP Leachable) (mg/L)         | 1        | N/A        | 2016/01/27 | CAM SOP-00453            | EPA 7470A m          |
| Total Metals in TCLP Leachate by ICPMS  | 1        | 2016/01/27 | 2016/01/27 | CAM SOP-00447            | EPA 6020A m          |
| Nitrate(NO3) + Nitrite(NO2) in Leachate | 1        | N/A        | 2016/01/27 | CAM SOP-00440            | SM 22 4500-NO3I/NO2B |
| TCLP - % Solids                         | 1        | 2016/01/26 | 2016/01/27 | CAM SOP-00401            | EPA 1311 Update I m  |
| TCLP - Extraction Fluid                 | 1        | N/A        | 2016/01/27 | CAM SOP-00401            | EPA 1311 Update I m  |
| TCLP - Initial and final pH             | 1        | N/A        | 2016/01/27 | CAM SOP-00401            | EPA 1311 Update I m  |

#### Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager

Email: ADobosz@maxxam.ca
Phone# (905)817-5700 Ext:5798

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Englobe Corp

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### O.REG 558 TCLP INORGANICS PACKAGE (SOIL)

| Maxxam ID                       |       |          | BRY469     |        |          |
|---------------------------------|-------|----------|------------|--------|----------|
| Sampling Date                   |       |          | 2016/01/20 |        |          |
| COC Number                      |       |          | NA         |        |          |
|                                 | UNITS | Criteria | TCLP       | RDL    | QC Batch |
| Inorganics                      |       |          |            |        |          |
| Leachable Fluoride (F-)         | mg/L  | 150      | 0.25       | 0.10   | 4360063  |
| Leachable Free Cyanide          | mg/L  | 20       | <0.010     | 0.010  | 4360060  |
| Leachable Nitrite (N)           | mg/L  | -        | <0.10      | 0.10   | 4360064  |
| Leachable Nitrate (N)           | mg/L  | -        | <1.0       | 1.0    | 4360064  |
| Leachable Nitrate + Nitrite (N) | mg/L  | 1000     | <1.0       | 1.0    | 4360064  |
| Metals                          |       |          |            |        |          |
| Leachable Mercury (Hg)          | mg/L  | 0.1      | <0.0010    | 0.0010 | 4359734  |
| Leachable Arsenic (As)          | mg/L  | 2.5      | <0.20      | 0.20   | 4360005  |
| Leachable Barium (Ba)           | mg/L  | 100      | 0.74       | 0.20   | 4360005  |
| Leachable Boron (B)             | mg/L  | 500      | 0.16       | 0.10   | 4360005  |
| Leachable Cadmium (Cd)          | mg/L  | 0.5      | <0.050     | 0.050  | 4360005  |
| Leachable Chromium (Cr)         | mg/L  | 5        | <0.10      | 0.10   | 4360005  |
| Leachable Lead (Pb)             | mg/L  | 5        | <0.10      | 0.10   | 4360005  |
| Leachable Selenium (Se)         | mg/L  | 1        | <0.10      | 0.10   | 4360005  |
| Leachable Silver (Ag)           | mg/L  | 5        | <0.010     | 0.010  | 4360005  |
| Leachable Uranium (U)           | mg/L  | 10       | <0.010     | 0.010  | 4360005  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 347/90 Schedule 4 Leachate Quality Criteria (as amended by Reg 558/00)



Englobe Corp

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

| Maxxam ID                      |                                  | BRY469     |     |          |  |  |  |  |  |  |
|--------------------------------|----------------------------------|------------|-----|----------|--|--|--|--|--|--|
| Sampling Date                  |                                  | 2016/01/20 |     |          |  |  |  |  |  |  |
| COC Number                     |                                  | NA         |     |          |  |  |  |  |  |  |
|                                | UNITS                            | TCLP       | RDL | QC Batch |  |  |  |  |  |  |
| Inorganics                     |                                  |            |     |          |  |  |  |  |  |  |
| Final pH                       | рН                               | 6.16       | N/A | 4359722  |  |  |  |  |  |  |
| Initial pH                     | рН                               | 9.86       | N/A | 4359722  |  |  |  |  |  |  |
| TCLP - % Solids                | %                                | 100        | 0.2 | 4359717  |  |  |  |  |  |  |
| TCLP Extraction Fluid          | N/A                              | FLUID 1    | N/A | 4359721  |  |  |  |  |  |  |
| RDL = Reportable Detection L   | RDL = Reportable Detection Limit |            |     |          |  |  |  |  |  |  |
| OC Batala Constitut Control Ba |                                  |            |     |          |  |  |  |  |  |  |

QC Batch = Quality Control Batch

N/A = Not Applicable



Matrix: Soil

Maxxam Job #: B613724 Report Date: 2016/01/28 Englobe Corp

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### **TEST SUMMARY**

Collected: 2016/01/20 Shipped: Maxxam ID: BRY469 Sample ID: TCLP

**Received:** 2016/01/22

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst         |
|-----------------------------------------|-----------------|---------|------------|---------------|-----------------|
| Cyanide (WAD) in Leachates              | SKAL/CN         | 4360060 | N/A        | 2016/01/27    | Christine Pham  |
| Fluoride by ISE in Leachates            | ISE             | 4360063 | 2016/01/27 | 2016/01/27    | Surinder Rai    |
| Mercury (TCLP Leachable) (mg/L)         | CV/AA           | 4359734 | N/A        | 2016/01/27    | Ron Morrison    |
| Total Metals in TCLP Leachate by ICPMS  | ICP1/MS         | 4360005 | 2016/01/27 | 2016/01/27    | Cristina Petran |
| Nitrate(NO3) + Nitrite(NO2) in Leachate | LACH            | 4360064 | N/A        | 2016/01/27    | Chandra Nandlal |
| TCLP - % Solids                         | BAL             | 4359717 | 2016/01/26 | 2016/01/27    | Jian (Ken) Wang |
| TCLP - Extraction Fluid                 |                 | 4359721 | N/A        | 2016/01/27    | Jian (Ken) Wang |
| TCLP - Initial and final pH             | PH              | 4359722 | N/A        | 2016/01/27    | Jian (Ken) Wang |



Englobe Corp

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### **GENERAL COMMENTS**

| Each tei | mperature is the  | average of up to | ρ to three c |
|----------|-------------------|------------------|--------------|
|          | Package 1         | 1.3°C            |              |
| ·        |                   |                  |              |
| Results  | relate only to th | e items tested.  | d.           |



Englobe Corp

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                |                                               | Date                     |          |          |                                        |           |
|---------|------|----------------|-----------------------------------------------|--------------------------|----------|----------|----------------------------------------|-----------|
| Batch   | Init | QC Type        | Parameter                                     | Analyzed                 | Value    | Recovery | UNITS                                  | QC Limits |
| 4359734 | RON  | Matrix Spike   | Leachable Mercury (Hg)                        | 2016/01/27               |          | 103      | %                                      | 75 - 125  |
| 4359734 | RON  | Leachate Blank | Leachable Mercury (Hg)                        | 2016/01/27               | < 0.0010 |          | mg/L                                   |           |
| 4359734 | RON  | Spiked Blank   | Leachable Mercury (Hg)                        | 2016/01/27               |          | 95       | %                                      | 80 - 120  |
| 4359734 | RON  | Method Blank   | Leachable Mercury (Hg)                        | 2016/01/27               | < 0.0010 |          | mg/L                                   |           |
| 4359734 | RON  | RPD            | Leachable Mercury (Hg)                        | 2016/01/27               | NC       |          | %                                      | 25        |
| 4360005 | CPE  | Matrix Spike   | Leachable Arsenic (As)                        | 2016/01/27               |          | 98       | %                                      | 80 - 120  |
|         |      |                | Leachable Barium (Ba)                         | 2016/01/27               |          | NC       | %                                      | 80 - 120  |
|         |      |                | Leachable Boron (B)                           | 2016/01/27               |          | 98       | %                                      | 80 - 120  |
|         |      |                | Leachable Cadmium (Cd)                        | 2016/01/27               |          | 100      | %                                      | 80 - 120  |
|         |      |                | Leachable Chromium (Cr)                       | 2016/01/27               |          | 98       | %                                      | 80 - 120  |
|         |      |                | Leachable Lead (Pb)                           | 2016/01/27               |          | 95       | %                                      | 80 - 120  |
|         |      |                | Leachable Selenium (Se)                       | 2016/01/27               |          | 98       | %                                      | 80 - 120  |
|         |      |                | Leachable Silver (Ag)                         | 2016/01/27               |          | 95       | %                                      | 80 - 120  |
|         |      |                | Leachable Uranium (U)                         | 2016/01/27               |          | 95       | %                                      | 80 - 120  |
| 4360005 | CPE  | Leachate Blank | Leachable Arsenic (As)                        | 2016/01/27               | <0.20    | 33       | mg/L                                   | 00 120    |
| 1300003 | O. L | Ecachate Blank | Leachable Barium (Ba)                         | 2016/01/27               | <0.20    |          | mg/L                                   |           |
|         |      |                | Leachable Boron (B)                           | 2016/01/27               | <0.10    |          | mg/L                                   |           |
|         |      |                | Leachable Cadmium (Cd)                        | 2016/01/27               | <0.050   |          | mg/L                                   |           |
|         |      |                | Leachable Chromium (Cr)                       | 2016/01/27               | <0.10    |          | mg/L                                   |           |
|         |      |                | Leachable Lead (Pb)                           | 2016/01/27               | <0.10    |          | mg/L                                   |           |
|         |      |                | Leachable Selenium (Se)                       | 2016/01/27               | <0.10    |          | mg/L                                   |           |
|         |      |                | Leachable Silver (Ag)                         | 2016/01/27               | <0.10    |          | mg/L                                   |           |
|         |      |                | Leachable Uranium (U)                         | 2016/01/27               | <0.010   |          | mg/L                                   |           |
| 4360005 | CPE  | Spiked Blank   | Leachable Arsenic (As)                        | 2016/01/27               | <0.010   | 95       | // // // // // // // // // // // // // | 80 - 120  |
| 4300003 | CFL  | эрікей Біатік  | Leachable Barium (Ba)                         | 2016/01/27               |          | 105      | %<br>%                                 | 80 - 120  |
|         |      |                | Leachable Boron (B)                           | 2016/01/27               |          | 103      | %<br>%                                 | 80 - 120  |
|         |      |                | Leachable Cadmium (Cd)                        | 2016/01/27               |          | 98       | %<br>%                                 | 80 - 120  |
|         |      |                | Leachable Chromium (Cr)                       | 2016/01/27               |          | 97       | %<br>%                                 | 80 - 120  |
|         |      |                | Leachable Lead (Pb)                           | 2016/01/27               |          | 97<br>97 | %<br>%                                 | 80 - 120  |
|         |      |                | Leachable Selenium (Se)                       | 2016/01/27               |          | 96       | %<br>%                                 | 80 - 120  |
|         |      |                |                                               | 2016/01/27               |          | 98       | %<br>%                                 | 80 - 120  |
|         |      |                | Leachable Silver (Ag)                         |                          |          | 96       |                                        |           |
| 426000F | CDE  | DDD            | Leachable Uranium (U)                         | 2016/01/27               | NC       | 96       | %                                      | 80 - 120  |
| 4360005 | CPE  | RPD            | Leachable Arsenic (As)                        | 2016/01/27               | NC       |          | %<br>%                                 | 35<br>25  |
|         |      |                | Leachable Barium (Ba)<br>Leachable Boron (B)  | 2016/01/27               | NC<br>NC |          | %<br>%                                 | 35<br>25  |
|         |      |                | Leachable Cadmium (Cd)                        | 2016/01/27<br>2016/01/27 | NC       |          | %<br>%                                 | 35<br>25  |
|         |      |                | Leachable Chromium (Cr)                       | 2016/01/27               | NC       |          | %<br>%                                 | 35<br>35  |
|         |      |                | Leachable Lead (Pb)                           |                          |          |          |                                        |           |
|         |      |                | • •                                           | 2016/01/27               | NC<br>NC |          | %                                      | 35        |
|         |      |                | Leachable Selenium (Se) Leachable Silver (Ag) | 2016/01/27<br>2016/01/27 | NC       |          | %                                      | 35<br>25  |
|         |      |                |                                               |                          | NC       |          | %                                      | 35<br>25  |
| 420000  | CD   | Matrix Cailes  | Leachable Uranium (U)                         | 2016/01/27               | NC       | 107      | %                                      | 35        |
| 4360060 | CP   | Matrix Spike   | Leachable Free Cyanide                        | 2016/01/27               | <0.010   | 107      | %<br>ma/l                              | 80 - 120  |
| 4360060 | CP   | Leachate Blank | Leachable Free Cyanide                        | 2016/01/27               | <0.010   | 100      | mg/L                                   | 00 130    |
| 4360060 | CP   | Spiked Blank   | Leachable Free Cyanide                        | 2016/01/27               | <0.0020  | 106      | %<br>ma/l                              | 80 - 120  |
| 4360060 | CP   | Method Blank   | Leachable Free Cyanide                        | 2016/01/27               | <0.0020  |          | mg/L                                   | 20        |
| 4360060 | CP   | RPD            | Leachable Free Cyanide                        | 2016/01/27               | NC       | 100      | %                                      | 20        |
| 4360063 | SAU  | Matrix Spike   | Leachable Fluoride (F-)                       | 2016/01/27               | 10.10    | 100      | %<br>/1                                | 80 - 120  |
| 4360063 | SAU  | Leachate Blank | Leachable Fluoride (F-)                       | 2016/01/27               | <0.10    | 400      | mg/L                                   | 00 100    |
| 4360063 | SAU  | Spiked Blank   | Leachable Fluoride (F-)                       | 2016/01/27               | .0.10    | 102      | %                                      | 80 - 120  |
| 4360063 | SAU  | Method Blank   | Leachable Fluoride (F-)                       | 2016/01/27               | <0.10    |          | mg/L                                   | 25        |
| 4360063 | SAU  | RPD            | Leachable Fluoride (F-)                       | 2016/01/27               | NC       |          | <u> %</u>                              | 25        |



**Englobe Corp** 

Client Project #: P-0004553-027
Site Location: PORT CREDIT

Your P.O. #: A03254 Sampler Initials: AJA

#### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |                |                                 | Date       |        |          |       |           |
|---------|------|----------------|---------------------------------|------------|--------|----------|-------|-----------|
| Batch   | Init | QC Type        | Parameter                       | Analyzed   | Value  | Recovery | UNITS | QC Limits |
| 4360064 | C_N  | Matrix Spike   | Leachable Nitrite (N)           | 2016/01/27 |        | 106      | %     | 80 - 120  |
|         |      |                | Leachable Nitrate (N)           | 2016/01/27 |        | 94       | %     | 80 - 120  |
|         |      |                | Leachable Nitrate + Nitrite (N) | 2016/01/27 |        | 96       | %     | 80 - 120  |
| 4360064 | C_N  | Leachate Blank | Leachable Nitrite (N)           | 2016/01/27 | < 0.10 |          | mg/L  |           |
|         |      |                | Leachable Nitrate (N)           | 2016/01/27 | <1.0   |          | mg/L  |           |
|         |      |                | Leachable Nitrate + Nitrite (N) | 2016/01/27 | <1.0   |          | mg/L  |           |
| 4360064 | C_N  | Spiked Blank   | Leachable Nitrite (N)           | 2016/01/27 |        | 107      | %     | 80 - 120  |
|         |      |                | Leachable Nitrate (N)           | 2016/01/27 |        | 95       | %     | 80 - 120  |
|         |      |                | Leachable Nitrate + Nitrite (N) | 2016/01/27 |        | 97       | %     | 80 - 120  |
| 4360064 | C_N  | Method Blank   | Leachable Nitrite (N)           | 2016/01/27 | < 0.10 |          | mg/L  |           |
|         |      |                | Leachable Nitrate (N)           | 2016/01/27 | <1.0   |          | mg/L  |           |
|         |      |                | Leachable Nitrate + Nitrite (N) | 2016/01/27 | <1.0   |          | mg/L  |           |
| 4360064 | C_N  | RPD            | Leachable Nitrite (N)           | 2016/01/27 | NC     |          | %     | 25        |
|         |      |                | Leachable Nitrate (N)           | 2016/01/27 | NC     |          | %     | 25        |
|         |      |                | Leachable Nitrate + Nitrite (N) | 2016/01/27 | NC     |          | %     | 25        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



Englobe Corp

Client Project #: P-0004553-027 Site Location: PORT CREDIT

Your P.O. #: A03254

Sampler Initials: AJA

#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

| Custim           | Carrière               |  |
|------------------|------------------------|--|
| Cristina Carrier | e, Scientific Services |  |

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

|    | 1         |
|----|-----------|
| Ma | XXam      |
|    | Analytics |

6740 Campobello Road Mississauga, ON L5N 2L8

#### CHAIN OF CUSTODY RECORD

| INVOICE INFORMATION: REPOR                                                                                                                                  |                        |                                                                    |                                              |                                | IFORI                            | ITAN                 | ON (if diffe               | if differs from invoice): PROJECT |                                              |            |                                                      |        | ROJECT | INFORM             | MAXXAM JOB NUMB                                                                                                                                                         |                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------|----------------------------------------------|--------------------------------|----------------------------------|----------------------|----------------------------|-----------------------------------|----------------------------------------------|------------|------------------------------------------------------|--------|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Intact Name:         A.J. Antonacci         Contact           Idress:         1821 Albion Road         Address           Etobicoke, Ontario         Address |                        |                                                                    | Company Name:<br>Contact Name:<br>Address:   | ame:                           |                                  |                      |                            |                                   | Quotation # P.O. #: Project #: Project Name: |            | B53844<br>A 03 2 5 4<br>P-0004553-027<br>Port Credit |        | 54     | CHAIN OF CUSTODY # |                                                                                                                                                                         |                                                                    |
| one: 416 213 1060 Fax: Phone:  aii: arthur.antonacci@englobecorp.com Email:                                                                                 |                        |                                                                    |                                              |                                | -                                | Fax:                 |                            |                                   | Location:  Sampled By:  A.J. Antonacci       |            |                                                      | onacci |        |                    |                                                                                                                                                                         |                                                                    |
| II. ditriditantona                                                                                                                                          | REGULATOR              |                                                                    |                                              | Littali,                       |                                  |                      | ANALYSIS                   |                                   |                                              |            |                                                      | _      |        | _                  |                                                                                                                                                                         | E (TAT) REQUIRED:                                                  |
| MISA  PWQO  Reg. 558  Other (specify):  MPLES MUST TIL DELIVERY                                                                                             | Table 2 Indust         | ential / Parkland rial / Commerci m / Fine e Report 0 10 °C ) FROM | Sewer  Sewer  State  Municipa  Criteria on C | Use initary orm ality: C of A? | Regulated Drinking Water ? (Y/N) | Field Filtered ? (Y/ | O.Reg. 558 Metals & Inorga |                                   |                                              |            |                                                      |        |        | Regula Rush        | PROJ ar (Standard) TAT  √ 5 to 7 Working I  TAT: Rush Confirm (call L  1 day   TATE Required:  IME Required: te that TAT for certain tests ys - contact your Project M. | Cays nation # ab for #) 2 days 3 days such as BOD and Dioxins/Furs |
| TCLP                                                                                                                                                        |                        | Sampled 2016/01/20                                                 | Sampled                                      | (GW, SW, Soil, etc.)<br>Soil   |                                  |                      | X                          |                                   |                                              |            |                                                      | $\top$ |        | 1                  |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             |                        |                                                                    |                                              |                                | П                                |                      |                            |                                   |                                              |            |                                                      |        |        |                    |                                                                                                                                                                         | *-                                                                 |
| 3                                                                                                                                                           |                        |                                                                    |                                              | 1. 21                          | П                                |                      |                            |                                   |                                              | П          |                                                      |        |        |                    |                                                                                                                                                                         |                                                                    |
| - 00                                                                                                                                                        |                        |                                                                    | -                                            |                                | Ħ                                |                      |                            |                                   |                                              | Ħ          |                                                      | Ŧ      | FF     | 1                  |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             |                        |                                                                    |                                              |                                |                                  |                      |                            |                                   |                                              |            |                                                      | -      |        |                    |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             |                        |                                                                    |                                              |                                | П                                |                      |                            | T                                 |                                              |            | 22-3                                                 | an-1   | 5 12:0 | 2                  |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             | ,                      | <u> </u>                                                           | 7                                            |                                | П                                |                      |                            | Ŧ                                 | A                                            | ugu        | styne                                                | Dol    | 087    | . ,                |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             |                        |                                                                    |                                              |                                | П                                |                      |                            | +                                 | 11 11 11                                     | IIIII      | 11 11 111                                            |        | osz    |                    |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             |                        |                                                                    |                                              |                                | Ħ                                |                      |                            | +                                 |                                              | В          | 6137                                                 | 24     |        |                    |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             |                        |                                                                    |                                              |                                | П                                |                      |                            | †                                 | RGN                                          | J          | E                                                    | VV-9   | 26 .   | •                  |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             |                        |                                                                    |                                              | - /-                           |                                  |                      |                            |                                   |                                              |            |                                                      |        |        |                    |                                                                                                                                                                         |                                                                    |
|                                                                                                                                                             |                        |                                                                    |                                              | _                              | H                                |                      |                            |                                   | 7                                            | ,<br>II II | 151                                                  | 11     | 36     |                    | . —                                                                                                                                                                     | -                                                                  |
|                                                                                                                                                             |                        |                                                                    |                                              |                                | Ħ                                |                      |                            | 1                                 | 1                                            | H          |                                                      | 1 1    | 36     |                    |                                                                                                                                                                         | -                                                                  |
| RELINQUIS                                                                                                                                                   | SHED BY: (Signature/Pr | int)                                                               | RECE                                         | EIVED BY: (Signa               | ature/                           | Print                |                            | D                                 | nte:                                         |            |                                                      | Time   | H      | # JAF              | RS USED AND NOT                                                                                                                                                         | Laboratory Use C                                                   |

\* MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

White: Maxxam Yellow: Mail Pink: Client

Maxxam Analytics International Corporation o/a Maxxam Analytics

| Metals: Reg 153 metal Hq Electrical Con   | PMC F2F PGP (O'Reg F2F) Arsenic Arsenic Bartum | Point Time*  syab 4  syab S/28  syab 4  syab 4 | Preservation Nonc Nonc Nonc                                             | to Drinking Water Samples - Reter to Maxo Recommended Sample Container 250 mt. plastic 250 mt. plastic 250 mt. plastic | Analytical Parameter Albalinity / PH Analytical Parameter Anions - (Br, CT, F, NO3., NO2., Po4 <sup>b</sup> , SO4 <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |      |                                       |
|-------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|---------------------------------------|
| Metals Reg 153 metal Hq Hq Electrical Con | Reg 153 Metals<br>Antimony<br>Arsenic          | S/28 Days                                      | Mone                                                                    | 250 mL plastic                                                                                                         | Anions - ( Br., CT, F., NO3', NO2', PO4", SO4")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
| Reg 153 metal<br>pH<br>Electrical Con     | VnomimA<br>SinostA                             | S/28 Days                                      | Mone                                                                    | 250 mL plastic                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
|                                           |                                                |                                                |                                                                         | 500 mL plastic                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
|                                           | mnueg                                          |                                                |                                                                         |                                                                                                                        | Biochemical Oxygen Demand ( BOD )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 12.7 |                                       |
| 100014 HIPPOO                             |                                                | 10 days<br>30 days                             | 142 > 402 H<br>2 Hq > 402 H                                             | 250 mL plastic<br>250 mL plastic                                                                                       | Curbon - ( DOC, TOC ) Chemical Oxygen Demand ( COD <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |      | ĝ e                                   |
|                                           | Beryllium<br>Cadmium                           | stabommi                                       | onoN                                                                    | 40 mL clear glass septum vial**                                                                                        | Chlorine, residual ( Cl )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - | Br.  |                                       |
|                                           | Chromium (total)                               | skep ç                                         | None                                                                    | 250 mL plastic                                                                                                         | Chromium VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |      |                                       |
| -1-1-1-1                                  | Chromium VI                                    | 28 days<br>7 days                              | NaOH >12                                                                | 250 mL plastic<br>250 mL plastic                                                                                       | Съящие (СИ.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |      |                                       |
| sulq əvodo                                | Copper                                         | 30 days                                        | 2 Hq > ¿ONH                                                             | 250 mL plastic                                                                                                         | Dissolved ICP/MS, ICP Metals - FIELD FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |      |                                       |
| Hot Water Sol                             | bead                                           | egeb 0£                                        | HVO <sub>3</sub> < pH 2                                                 | 250 mL plastic                                                                                                         | Total ICP/MS, ICP Metals - NOT FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |      |                                       |
| Pree Cyanide                              | Molybdenum                                     | sysb 7                                         | K <sup>2</sup> Ct <sup>2</sup> O <sup>2</sup> / HNO <sup>2</sup> < bH 2 | 125 mL clear glass<br>250 mL plastic                                                                                   | Among (TS, TDS)  Moreotics - Total  Moreotics - Tot |   |      | TO THE RESIDENCE AND A                |
| - '                                       | - Nickel -<br>Selenium                         | 30 days                                        | 2 Hq > pOs <sub>2</sub> H                                               | 120 mL ambor glass                                                                                                     | Phenolics - Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |      |                                       |
|                                           | Silver                                         | syab 7                                         | Mone                                                                    | 500 mL plastic                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
| uk nat<br>Uloni t                         | Print Na                                       |                                                | STITUTE THE A                                                           | Strain In 105                                                                                                          | Success Through Science®  1) Maxxam copy- 2) Sender copy 3) Receiver copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |      |                                       |
| Water<br>CAP<br>Metal                     | City Receiver's Signa                          | ture:                                          |                                                                         | C                                                                                                                      | dometer Reading Delivery Time  Total Mileage km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * |      | · · · · · · · · · · · · · · · · · · · |
| vniM<br>A es a                            | Address                                        | 10                                             |                                                                         |                                                                                                                        | Wait Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |      |                                       |
| leio]                                     | Company Name                                   | 1/4/35                                         |                                                                         | \(C)                                                                                                                   | DANGEROUS GOODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
| with                                      | Receiver:                                      | MAR                                            |                                                                         |                                                                                                                        | Time of Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |      |                                       |
| Eur                                       |                                                | 10                                             |                                                                         |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
| oqds                                      | S'ender's Signatu                              | re: YZ                                         |                                                                         | /-                                                                                                                     | <u>km</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |      |                                       |
| LV'                                       | City                                           | XI                                             | 1991                                                                    | °                                                                                                                      | dometer Reading Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |      |                                       |
| otefu<br>A ott                            | Address                                        | JA.                                            | KASH-                                                                   |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 1    |                                       |
| NIV P                                     | Sender:<br>Company Name                        | PIB                                            | LOSE                                                                    |                                                                                                                        | Time of Pick Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
| roi m<br>roi m                            | DELIVERY                                       |                                                | ENVELOPE                                                                |                                                                                                                        | No. of Pieces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |      |                                       |
|                                           | Driver<br>PICK UP                              |                                                | COOLER                                                                  | OTHER (Desc                                                                                                            | Tibe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |      | *                                     |
|                                           | Deliver                                        |                                                |                                                                         | Return to La                                                                                                           | (Time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |      |                                       |
| 14                                        | Date                                           | Month                                          | Day Year                                                                | RUSH                                                                                                                   | within 2 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |      |                                       |
|                                           | A Bureau Verita                                | s Group Company                                |                                                                         | Tel: 905-817-5700 • Toll Free: (800)                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
|                                           | Maxx                                           | lam                                            | Environmental: 6                                                        | 660 Campobello Rd., Mississauga, ON<br>740 Campobello Rd., Mississauga, ON                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |
| r41 92                                    |                                                |                                                |                                                                         |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      |                                       |

Appendix 5 MASW Analysis





6741 Columbus Road Unit 14 Mississauga, Ontario Canada L5T 2G9 Tel.: (905) 696-0656 Fax: (905) 696-0570 gprtor@gprtor.com www.geophysicsgpr.com

January 6, 2016 GPR file: T15793B

Houshang Akbari, P.Eng., Senior Geotechnical Engineer **Englobe** 1821 Albion Road, Suite 7 Toronto, ON M9W 5W8

RE: Shear-wave velocity sounding at the Port Credit GO station parking lot, NW corner of Hurontario Street and Park Street East, Mississauga, Ontario

Dear Mr. Akbari:

Geophysics GPR International Inc. has been requested by Englobe to carry out a shear-wave velocity sounding at the above site in Mississauga. Figure 1 shows the location of the test profile.

The survey was performed on December 16<sup>th</sup>, 2015.

The investigation included the multi-channel analysis of surface waves (MASW) and the refraction methods to generate a shear-wave velocity model (Figure 4).

The following paragraphs describe the survey design, the principles of the test method, the methodology for interpreting the data, and provide a culmination of the results in table format.





Figure 1: Approximate location of the shear-wave velocity soundings

#### **MASW and MAM Surveys**

#### **Basic Theory**

The Multi-channel Analysis of Surface Waves (MASW) and the Micro-tremor Array Measurements (MAM) are seismic methods used to evaluate the shearwave velocities of subsurface materials through the analysis of the dispersion properties of Rayleigh surface waves ("ground roll"). The dispersion properties are measured as a change in phase velocity with frequency. Surface wave energy will decay exponentially with depth. Lower frequency surface waves will travel deeper and thus be more influenced by deeper velocity layering than the shallow higher frequency waves. Inversion of the Rayleigh wave dispersion curve yields a shear-wave (V<sub>s</sub>) velocity depth profile (sounding). Figure 2 outlines the basic operating procedure for the MASW method. Figure 3 is an example image of a typical MASW record and resulting 1D V<sub>s</sub> model. A more detailed description of the method can be found in the paper *Multi-channel Analysis of Surface Waves*, Park, C.B., Miller, R.D. and Xia, J. Geophysics, Vol. 64, No. 3 (May-June 1999); P. 800–808.

#### Survey Design

The geometry of an MASW survey is similar set to that of a seismic refraction investigation (i.e. 24 geophones in a linear array). The fundamental principle involves intentionally generating an acoustic wave at the surface and digitally recording the surface waves from the moment of source impact with a linear series of geophones on the surface. This is referred to as an "active source" method. An elastic-wave hammer was used as the primary energy source with traces being



recorded at 5 locations: approximately 6 m off both ends, 25 to 30 m off both ends, and in the middle of the spread. Data were collected with geophones spacing of 3m and 1m for a total of 10 shot records per sounding.

Unlike the refraction method, which produces a data point beneath each geophone, the shear-wave depth profile is the average of the bulk area within the middle third of the geophone spread.

The theoretical maximum depth of penetration (34.5m) is half of the maximum seismic array length (69m), in practice the maximum depth of penetration is often influenced by the geology.

The MAM/passive survey used the same geophone array set up as for the MASW survey. Unlike the MASW survey, the MAM method is considered a "passive source" method in that there is no time break and the motions recorded are from ambient energy generated by cultural noise such as traffic, wind, wave motion, etc. Data collection for the passive method involves recording approximately 10 minutes of background "noise." The records generated by the MAM method contain lower frequency data, thus increasing the data resolution at greater depths of investigation. Typically the MAM results aid in clarifying the MASW results for depths greater than 20 m; however, the direction of noise propagation relative to the spread orientation can influence the results.

#### Interpretation Method and Accuracy of Results

The main processing sequence involved plotting, picking, and 1-D inversion of the MASW shot records using the SeisimagerSW<sup>TM</sup> software package. In theory, all MASW shot records should produce a similar shear-wave velocity profile. In practice, however, differences can arise due to energy dissipation and localized surface variations. The results of the inversion process are inherently non-unique and the final model must be judged to be geologically realistic. The inversion modelling also assumes that all layering is flat/horizontal and laterally uniform.

The results of the MASW tests are presented in chart format as Figure 4. The chart presents the 1-D shear wave velocity values from the inversion models of the seismic records.

The V<sub>s</sub>30 values for the sounding are presented in Table 1. The V<sub>s</sub>30 values are based on the harmonic mean of the shear wave velocities over the upper 30 m. The V<sub>s</sub>30 value is calculated by dividing the total depth of interest (e.g. 30 m) by the sum of the time spent in each velocity layer up to that depth. This harmonic mean value reflects the equivalent single layer response.

The estimated error in the average  $V_s30$  value determined through MASW tests is typically +/-10 to 15% for overburden sites. The shear-wave velocities modelled through the MASW method within bedrock have a higher estimated error.



S-velocity (m/s) Source= -2.5m Time (msec) Source= -2.5m Phase velocity (m/sec) 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0 1800.0 0.0 400 1000 1400 1600 2.0 4.0 6.0 10 8.0 10.0 10 12.0 20 Distance (m) 14 16 18 14.0 25 16.0 30 20 18.0 22 20.0 Depth 24 26 40 22.0 28 30 45 24.0 B 50 26.0 32 55 28.0 S-velocity model : 690009.SG2 Raw Seismic Shot Record Phase Velocity-Frequency Transformation 1D Shear-Wave Velocity Profile

Figure 2: MASW Operating Principle

Figure 3: Example of a typical MASW shot record, phase velocity/frequency curve and resulting 1D shear-wave velocity model.

indicating Dispersion Curve



from Inversion of Dispersion Curve

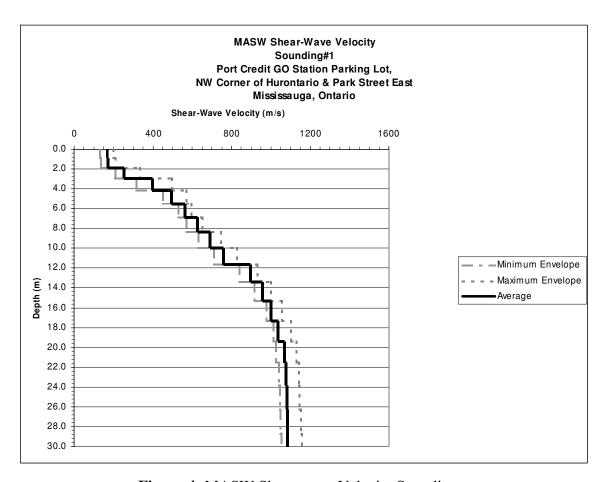



Figure 4: MASW Shear-wave Velocity Sounding



#### CONCLUSIONS

The approximate location of the shear-wave sounding is presented in Figure 1.

The MASW shear-wave models are presented in Figure 4. The results are summarized in Table 1. The background seismic noise levels at this site were moderate. The quality of the seismic records and resulting dispersion curves was good.

No boreholes or geotechnical data were available at the time of this report.

**Table 1:** Calculated V<sub>s</sub>30 values (m/s) from the MASW data (0 to 30m)

| Sounding Minimum |     | Average | Maximum | Site Class |  |
|------------------|-----|---------|---------|------------|--|
| 1                | 550 | 623     | 700     | C          |  |

The calculated average  $V_s30$  values from the 1D MASW soundings collected was 623m/s +/- 15% to 20%.

The V<sub>s</sub>30 values calculated for the minimum and the maximum envelopes ranged from 550 to 700m/s.

Based on information provided by the client, the elevation of the bottom of the basement is approximately 15m below the grade. The  $V_s30$  values have been recalculated taking into consideration the bottom of the basement elevation. The application of these recalculated  $Vs30^*$  value is discussed below and the validity of these assumptions is at the discretion of the design engineer. The recalculated  $Vs30^*$  values are presented in Table 2.

With the new subgrade basement, there may be a need to evaluate any possible ground motion on the side walls that may effect the building.

**Table 2:** Calculated V<sub>s</sub>30\* values (m/s) from the MASW data (15 to 45m)

| Sounding | Minimum | Average | Maximum | Site Class |  |
|----------|---------|---------|---------|------------|--|
| 1        | 1040    | 1076    | 1143    | В          |  |

The calculated average  $V_s30$  values from the 1D MASW soundings collected was 1076 m/s +/- 15% to 20%.

The  $V_s30$  values calculated for the minimum and the maximum envelopes ranged from 1040 to 1143 m/s.

Based on the average  $V_s30$  values (as determined through the MASW method) and table 4.1.8.4.A of the National Building Code of Canada, 2010 Edition, the investigated area is site class "B" (760<  $V_s30 \le 1500$  m/s).

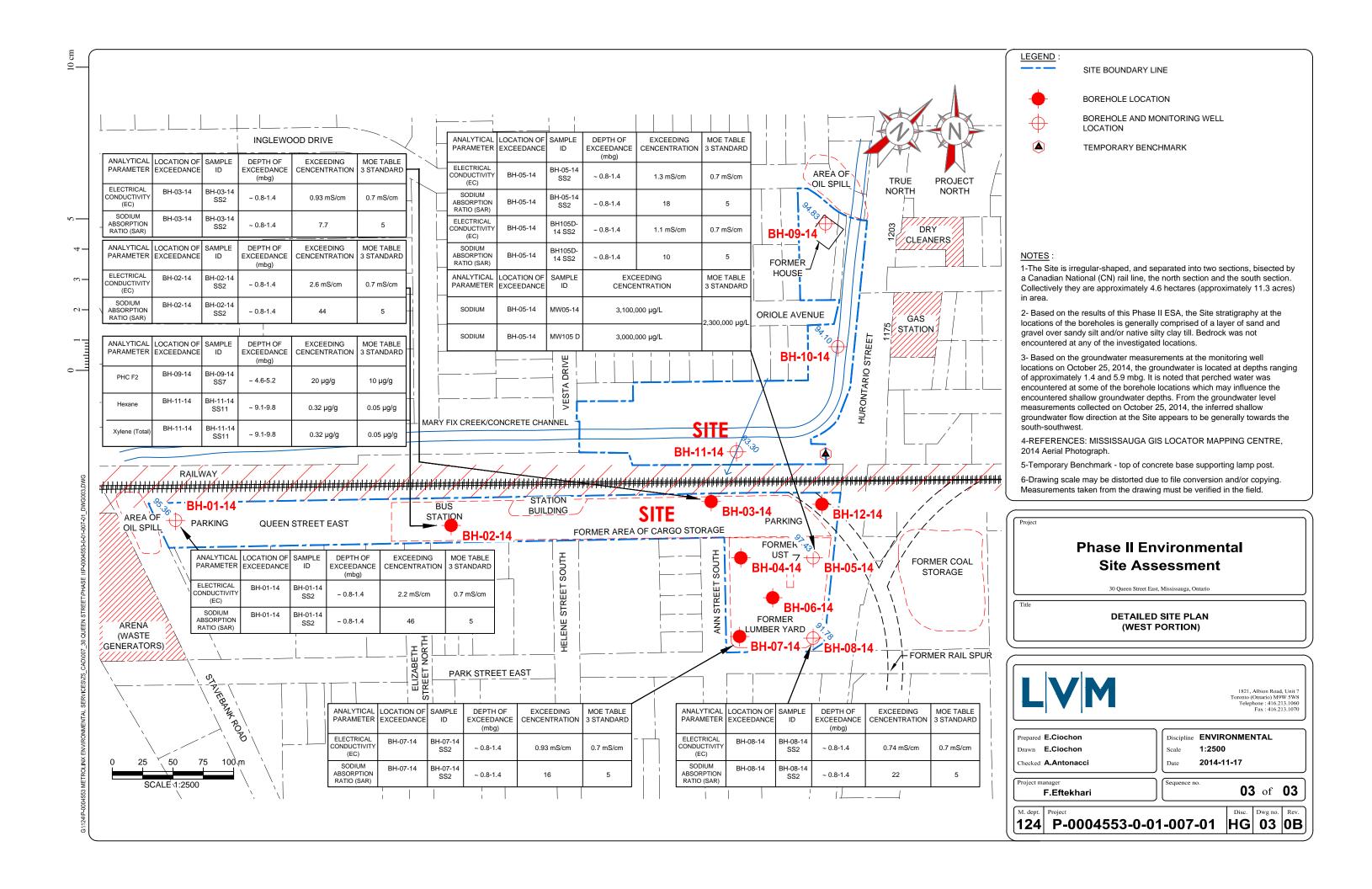
It must be noted that the site classification provided in this report is based solely on the  $V_s30$  value as derived from the MASW method and that it can be superseded by



other geotechnical information. This geotechnical information includes, but is not limited to, the presence of sensitive and/or liquefiable soils, more than 3m of soft clays, high moisture content, etc. The reader is referred to section 4.1.8.4 of the National Building Code of Canada, 2010 Edition for more information on the requirements for site classification.

This report has been written by Milan Situm, P.Geo.

Milan Situm, P.Geo.


Manager





**Appendix 6** Previously Drilled Borehole Location Plan and Logs





#### LOG OF BOREHOLE No. 01-14

| Projec         | t No.                                                           | P-0004553-0-01-007                                                                                                             |                                      | DRAWING No. BH-01-14 |      |                                                                                                                          |       |           |          |                    |                  | 01-14                                                                                   |                                                  |        |                                                    |                           |
|----------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------|----------|--------------------|------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|--------|----------------------------------------------------|---------------------------|
| Projec         | t:                                                              | Metrolinx Port Credit GO Stati                                                                                                 | on                                   |                      |      |                                                                                                                          |       |           |          |                    |                  | <u> </u>                                                                                | Sheet N                                          | o      | _                                                  | of                        |
| Locati         | on:                                                             | West Parking Lot, About 15 m                                                                                                   | East of                              | S                    | Stav | eb                                                                                                                       | ank l | Road      | , 15 ı   | m Sou              | h of N           | orth                                                                                    | Curb                                             |        |                                                    |                           |
| Date Drill Ty  | /pe:                                                            | 10/23/2014 Hollow Stem Augers Assumed                                                                                          | ow Stem Augers                       |                      |      | Split Spoon Sample Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Shear Strength by Vane Test  \$\Boxed{\Pi}\$ |       |           |          |                    |                  | slible Vap<br>Moisture<br>g Limits<br>ed Triaxia<br>n at Failu<br>trength b<br>meter Te | ling<br><b>F</b>                                 | 15     | <b>★ X ⊕</b> ○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ |                           |
| SYMBO<br>SYMBO |                                                                 | SOIL DESCRIPTION                                                                                                               | ELEV.                                | DEPTH                | She  | 20                                                                                                                       | ) 4   | netration | Test N V | /alue<br>80<br>kPa | 2                | 50 5                                                                                    | our Readin<br>00 75<br>ture Conter<br>s (% Dry W | 50     | SAMPL                                              | Natural<br>Unit<br>Weight |
|                | SANI<br>Base<br>SILT<br>trace<br>moist<br>some<br>SANI<br>loose | e silt  DY SILT: trace clay and organic matter, to compact, grey, very moist to wet                                            | 97.9<br>97.8<br>97.5<br>97.5<br>96.4 | 1H 0 1 2 3           | She  | 50                                                                                                                       | 1001  | 00        |          | 200                | 0 1:10<br>0 1:10 | Q 2                                                                                     | 20 3                                             | eight) |                                                    | vveggit<br>kN/im          |
|                | Boreh                                                           | Terminated at 6.8 m role advanced using continuous flight vistem augering equipment on her 23, 2014 by Determination Drilling. | 91,1                                 | 6                    | 200  | •                                                                                                                        | 1201  |           |          |                    |                  | ×                                                                                       |                                                  | 2000   |                                                    |                           |

LOG A GWGL02 2.1 007-BOREHOLE LOGS (WEST PARKING LOT), GPJ LOG A GWGL02 GDT 11/4/14

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon completion | 3.8                   | none                    |
| 24/10/2014      | 2.6                   | none                    |
| 25/10/2014      | 2.6                   | none                    |
|                 |                       |                         |
|                 |                       |                         |

# LOG OF BOREHOLE No. 02-14

| P-0004553-0-01-007                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRAWING No. BH-02                                                                                                                                                                                                                                                                                                                                                                                                     | <u>-14</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Metrolinx Port Credit GO Stati                                                                                          | on                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheet No. 1 of                                                                                                                                                                                                                                                                                                                                                                                                        | _1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Queen Street East, About 30 r                                                                                           | n East c                                                                                                                                                                                                                                                                                                                                                                                                                             | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elizabeth Stree                                                                                                                                                                                                                                                                                                                                                                                                                     | t North Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rsection, 1.0 m South of                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| North Curb                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Split Spoon Sample                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Combustible Vapour Reading                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| ed: 10/22/2014                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Auger Sample<br>SPT (N) Value                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Natural Moisture Content  Atterbera Limits                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Hollow Stem Augers                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dynamic Cone Test                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Undrained Triaxial at                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Assumed                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shear Strength by                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shear Strength by                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         | T                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| SOIL DESCRIPTION                                                                                                        | ELEV.<br>m                                                                                                                                                                                                                                                                                                                                                                                                                           | DHOLT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 40 Shear Strength                                                                                                                                                                                                                                                                                                                                                                                                                | 60 80 kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 250 500 750 M<br>Natural Moisture Content %<br>Atterberg Limits (% Dry Weight)                                                                                                                                                                                                                                                                                                                                        | Natural<br>Unit<br>Weight<br>kN/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| ASPHALT CONCRETE (135 mm)                                                                                               | 97.9                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷::::••:::•;;;;                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *×                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Base/Subbase, 250mm): light brown, moist                                                                                | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * * X                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| SILTY CLAY, TILL: some sand and gravel,very stiff, brown, moist                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         | 97.3                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| SANDT SILT. dense, brown, moist                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 301011001101                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101101101101110111111                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *···· ×··                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| OH TAY OF ANY THE                                                                                                       | 96,7                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| SILTY CLAY, TILL: stiff, grey, moist                                                                                    | _96.6                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30134136146136                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101101000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 7-                                                                                                                      | .                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *******************************                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120121122112111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| -                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************************************                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4013-1401-0103                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| :-                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Terminated at 3.6 m                                                                                                     | 94.5                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Borehole advanced using continuous flight nollow stem augering equipment on October 22, 2014 by Determination Drilling. |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                         | Metrolinx Port Credit GO Stati Queen Street East, About 30 r North Curb d: 10/22/2014 Hollow Stem Augers Assumed  SOIL DESCRIPTION  ASPHALT CONCRETE (135 mm) SAND AND GRAVEL (Granular lase/Subbase, 250mm): light brown, moist SILTY CLAY, TILL: some sand and gravel, ery stiff, brown, moist SANDY SILT: dense, brown, moist SILTY CLAY, TILL: stiff, grey, moist  Terminated at 3.6 m  orehole advanced using continuous flight | Metrolinx Port Credit GO Station  Queen Street East, About 30 m East of North Curb  d: 10/22/2014  Hollow Stem Augers  Assumed  SOIL DESCRIPTION  SCHALT CONCRETE (135 mm)  SCAND AND GRAVEL (Granular base/Subbase, 250mm): light brown, moist state of State | Metrolinx Port Credit GO Station  Queen Street East, About 30 m East of  North Curb  d: 10/22/2014  Hollow Stem Augers  Assumed  SOIL DESCRIPTION  SCAND AND GRAVEL (Granular Base/Subbase, 250mm): light brown, moist  SILTY CLAY, TILL: some sand and gravel, ery stiff, brown, moist  SANDY SILT: dense, brown, moist  SILTY CLAY, TILL: stiff, grey, moist  97.3  Terminated at 3.6 m  Orehole advanced using continuous flight | Metrolinx Port Credit GO Station  Queen Street East, About 30 m East of Elizabeth Stree  North Curb  d: 10/22/2014  Hollow Stem Augers  Assumed  SOIL DESCRIPTION  SOIL DESCRI | Metrolinx Port Credit GO Station  Queen Street East, About 30 m East of Elizabeth Street North Intel  North Curb  10/22/2014  Hollow Stem Augers  Assumed  Soll DESCRIPTION  SPHALT CONCRETE (135 mm)  AND AND GRAVEL (Granular lase/Subbase, 250mm): light brown, moist  SILTY CLAY, TILL: some sand and gravel, ery stiff, brown, moist  SANDY SILT: dense, brown, moist  SANDY SILT: dense, brown, moist  Figure 1 | Metrolinx Port Credit GO Station  Queen Street East, About 30 m East of Elizabeth Street North Intersection, 1.0 m South of  North Curb  10/22/2014  Hollow Stem Augers  Assumed  Septi Spoen Sample Auger Sample Auger Sample Septi Tive Shear Strength by Veane Test Shear Strength by Veane Test Shear Strength by Veane Test Shear Strength by Penetromater Testure Shear Strength by Penetromater Testure Shear Strength by Penetromater Testure Shear Strength by Shear Strength by Shear Strength by Shear Strength by Penetromater Testure Shear Strength by Penetromater Te |  |  |  |  |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 1,5                   | none                    |

#### LOG OF BOREHOLE No. 03-14

|                                                                                 | Project I | No.    | P-0004553-0-01-007                                                     | /\-             |      |        |                                          |                                    |                                        |                        |                                         |          | DRAW                                 | /ING No                    | o. <u>B</u>         | H-(          | 03-14           |
|---------------------------------------------------------------------------------|-----------|--------|------------------------------------------------------------------------|-----------------|------|--------|------------------------------------------|------------------------------------|----------------------------------------|------------------------|-----------------------------------------|----------|--------------------------------------|----------------------------|---------------------|--------------|-----------------|
|                                                                                 | Project:  |        | Metrolinx Port Credit GO Sta                                           | tion            |      |        |                                          |                                    |                                        |                        |                                         |          | _ s                                  | heet No                    | o. <u>1</u>         | <u> </u>     | f <u>1</u>      |
|                                                                                 | Location  | n:     | Handicap Parking Area, Abou                                            | ut 30           | m Ea | as     | t of V                                   | Vest                               | Curb,                                  | 7 m S                  | South                                   | of No    | orth Fe                              | enceli                     | ne                  |              |                 |
|                                                                                 |           |        |                                                                        |                 |      | s      | plit Spo                                 | on Samp                            |                                        | ×                      |                                         | Combus   | stible Vapo                          | our Readi                  |                     |              | *<br>×          |
|                                                                                 | Date Dri  | illed: | 10/23/2014                                                             |                 | -    |        | uger Sa<br>PT (N)                        |                                    |                                        | •                      |                                         |          | g Limits                             | Jonlent                    | F                   |              | €               |
|                                                                                 | Drill Typ | e:     | Hollow Stem Augers                                                     |                 |      |        | ynamic<br>helby T                        | Cone Te                            | st                                     | _                      |                                         |          | ed Triaxia<br>n at Failun            |                            |                     |              | 0<br>5<br>10    |
|                                                                                 | Datum:    |        | Assumed                                                                |                 |      | S      | hear St                                  | rength by                          | ,                                      | •s                     |                                         |          | trength by                           |                            |                     |              | <b>A</b>        |
|                                                                                 |           |        |                                                                        |                 |      | ·      | ane Te                                   |                                    | notestion T                            | est N Valu             |                                         |          | stible Vapo                          |                            | n (nnm)             | ISI          |                 |
|                                                                                 | S Y M B C |        | SOIL DESCRIPTION                                                       | EL              | .EV. | DE L   | 2                                        |                                    |                                        |                        | 0                                       | 2        | 50 50                                | 0 75                       | 0                   | SAMP.        | Natural<br>Unit |
|                                                                                 | N BOL     |        | COLE BECOME HON                                                        | 99.6            | m    | H      | Shear S                                  | trength                            | 00_/225                                |                        | kPa<br>00                               | Attert   | tural Moiste<br>berg Limits<br>(0 2) | (% Dry We                  | eight)<br>)         | LES          | Weight<br>kN/m³ |
| ı                                                                               | NO.       |        | HALT CONCRETE (120 mm)                                                 | 299.5<br>299.4  | - 1  | ۱,     |                                          | :1381:                             | •                                      | (281:):                | 10030                                   |          | <b>*</b>                             | 1131                       | 2012                | X            |                 |
|                                                                                 | 7//       | Base   | O AND GRAVEL (Granular<br>/Subbase, 130 mm): brown, moist              | F99.2           |      |        | 3213                                     | · ( · ) · ( · )<br>· ( · ) · ( · ) | 3133                                   | 1-2 G (+)<br>1-3 G (+) |                                         | 303      |                                      | ::::::::                   | 3813                | 11           |                 |
|                                                                                 |           |        | HALT CONCRETE (150 mm)  Y CLAY, TILL: firm, brown, very moist          | ]_              | - 1  | 1      | •                                        |                                    | 2112                                   |                        |                                         |          | 1915 (191                            | <u> </u>                   | 32:13<br>22:13      | M            |                 |
| Ι,                                                                              | <b>7</b>  | to mo  |                                                                        | 98,1            |      | :      |                                          |                                    | \$133                                  |                        |                                         |          |                                      |                            | 3813                | 1            |                 |
|                                                                                 |           |        |                                                                        |                 |      | 0      | tili.                                    |                                    | i i i i i i i i i i i i i i i i i i i  |                        |                                         | 303      |                                      | ×                          |                     | X            |                 |
| - 1                                                                             |           | -      |                                                                        | <del></del>     | - 1  | 2      |                                          | .1.3.3.1.                          | 3133                                   |                        | 11121                                   | 2112     |                                      | 1121                       | 34.13               |              |                 |
|                                                                                 |           | _      |                                                                        | -               |      | :      |                                          |                                    |                                        | (38(3)<br>(37/13       | 10000                                   | 60 (+) 0 | 33833                                | X                          | 8013                | M            |                 |
|                                                                                 |           |        |                                                                        |                 | _ I. | :      |                                          |                                    | i di i i di i di i di i di i di i di i |                        | 11131                                   | 81:13    |                                      |                            | 3013                | 1            |                 |
|                                                                                 |           | -      |                                                                        |                 | 1    | ,      | 38133                                    | :1381:                             | 2132                                   | 32(3)                  | ::::::::::::::::::::::::::::::::::::::: | 3012     |                                      |                            | ¥::::               | M            |                 |
|                                                                                 |           |        |                                                                        | -               |      |        | ) (;   ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | :1381                              |                                        | 3873                   |                                         | 3713     | 3571                                 | 2137                       | 37.13               | M            |                 |
| 4                                                                               |           | eome   | sand and gravel, very stiff to hard, grey                              | 20              | 4    | 4      |                                          |                                    |                                        |                        |                                         | 200      | 2221                                 |                            | 3113                | 1            |                 |
| 11/4/14                                                                         |           | 301116 | Sand and graver, very sun to haid, grey                                | 100             |      | :      |                                          |                                    |                                        |                        |                                         | 202      |                                      |                            |                     | 1            |                 |
|                                                                                 |           | _      |                                                                        |                 |      | :      |                                          |                                    | i i i i i i i i i i i i i i i i i i i  |                        |                                         | 3111     |                                      |                            | 3813                | M            |                 |
| L02.G                                                                           |           | -      |                                                                        | -               |      | 5      |                                          |                                    | 21:12                                  |                        |                                         | \$1.75   |                                      |                            |                     | Μ            |                 |
| GWG                                                                             |           | -      |                                                                        | -               |      | -      | 33131<br>5313                            | :1381:<br>-1381:                   | 18138<br>18138                         | 32.13                  |                                         | 01.30    | -3-2-4-4-<br>-3-2-4-1-               | (1) (1) (1)<br>(1) (1) (1) | 3 2-1-3<br>-5 2-1-5 | 1            |                 |
| 9G A                                                                            |           | _      |                                                                        |                 |      | :      | 3213                                     | :(1381)                            | Siss                                   | 3810                   | :(:)\$(:                                | 8(:)3    | 35(3)                                | (13)                       | 3013                | 1            |                 |
| 77                                                                              |           |        |                                                                        |                 |      | :      |                                          |                                    |                                        |                        |                                         |          | ×                                    |                            |                     | M            |                 |
| A) G                                                                            |           | -      |                                                                        | i <del>co</del> |      | 1      | 3613                                     | ilasii                             | i didi                                 | i i i i i              | iii si                                  | 3133     |                                      |                            | \$213               | $\mathbb{N}$ |                 |
| ARE                                                                             |           | =      |                                                                        | 199             | -  : | 7 :    |                                          |                                    |                                        | 2211                   | 11111                                   | 2112     |                                      |                            |                     | П            |                 |
| KING                                                                            |           | _      |                                                                        |                 |      | :      |                                          |                                    |                                        |                        |                                         |          |                                      |                            | 3313                |              |                 |
| PAR                                                                             |           |        |                                                                        |                 |      | 1      |                                          |                                    |                                        |                        |                                         | 3003     |                                      |                            | 3013                | M            |                 |
| SICAF                                                                           |           |        |                                                                        | -               | 8    | 8      |                                          |                                    |                                        | 3313                   |                                         |          |                                      | 1131                       | 31.13<br>33.13      | Μ            |                 |
| HAN                                                                             |           | 2      |                                                                        | -               |      | Ė      | 5 (0 1 · 5 ·<br>5 (0 1 · 5 ·             | -1-23314<br>-1-5341-               | 0130                                   | -53-1-1-<br>-54-1-1-   | - 1-1-2-1-                              | 2010     | -3-0-4-1-                            | · (-1 · ) (-)              | 3613                | 1            |                 |
| SGS (                                                                           |           | 2      |                                                                        |                 | 9    | :      | (%)                                      | :::381:                            | /50 mm                                 | 3313<br>2012           | ::::::::::::::::::::::::::::::::::::::: | 3633     |                                      | 0100                       | 3(1)3               | 1            |                 |
| LOG A GWGL02 2.3_007-BOREHOLE LOGS (HANDICAP PARKING AREA).GPJ LOG A GWGL02.GDT | 2/1/2     |        | Terminated at 9.2 m                                                    | 90.4            | -    |        | ***                                      | 11111                              |                                        | 11111                  |                                         | *****    | 11111                                | 11111                      | ×                   | -            |                 |
| 띪                                                                               |           | Boreh  | ole advanced using continuous flight                                   |                 |      |        |                                          |                                    |                                        |                        |                                         |          |                                      |                            |                     | Н            |                 |
| P P                                                                             |           | hollow | v stem augering equipment on<br>er 23, 2014 by Determination Drilling. |                 |      |        |                                          |                                    |                                        |                        |                                         |          |                                      |                            |                     | П            |                 |
| 3 00                                                                            |           | COLOR  | er 20, 2014 by Determination Dilling.                                  |                 |      | 2555   |                                          |                                    |                                        |                        |                                         |          |                                      |                            |                     |              |                 |
| 02 2                                                                            |           |        |                                                                        |                 |      | 20152  |                                          |                                    |                                        |                        |                                         |          |                                      |                            |                     |              |                 |
| WGL                                                                             |           |        |                                                                        |                 |      | 2000   |                                          |                                    |                                        |                        |                                         |          |                                      |                            |                     |              |                 |
| S A G                                                                           |           |        |                                                                        |                 |      | 201826 |                                          |                                    |                                        |                        |                                         |          |                                      |                            |                     |              |                 |
| ğ                                                                               |           |        |                                                                        |                 |      |        |                                          | 1111                               |                                        |                        |                                         |          | Hill                                 | 11111                      |                     | Ш            |                 |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 1,5                   | none                    |

#### LOG OF BOREHOLE No. 04-14

|                                                                                 | Project                      | No.            | P-0004553-0-01-007                                                                                                           |                   |                                        |                                                        |                                             |                     |                  |                       |                      |                                                      | DRAV                                                                                        | VING N                                 | o. <u>E</u>      | 3H-(         | 04-14                              |
|---------------------------------------------------------------------------------|------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|--------------------------------------------------------|---------------------------------------------|---------------------|------------------|-----------------------|----------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|------------------|--------------|------------------------------------|
|                                                                                 | Project                      | :              | Metrolinx Port Credit GO Sta                                                                                                 | tion              |                                        |                                                        |                                             |                     |                  |                       |                      |                                                      | _                                                                                           | Sheet N                                | o                | 1_0          | of _1_                             |
|                                                                                 | Locatio                      | n:             | East Parking Lot, About 10 m                                                                                                 | South o           | of I                                   | North                                                  | h C                                         | urb                 | , 7 m            | East                  | of We                | st Cu                                                | ırb                                                                                         |                                        |                  |              |                                    |
|                                                                                 | Date D<br>Drill Ty<br>Datum: | pe:            | 10/24/2014 Hollow Stem Augers Assumed                                                                                        |                   | ====================================== | Split S<br>Auger<br>SPT (N<br>Dynam<br>Shelby<br>Shear | Samp<br>N) Val<br>nic Co<br>y Tube<br>Stren | ole<br>ue<br>ine Ti | esl              |                       |                      | Natural<br>Atterbe<br>Undrain<br>% Strain<br>Shear S | stible Vap<br>Moisture<br>rg Limils<br>led Triaxia<br>n at Failu<br>Strength b<br>ometer Te | al at<br>re                            | ling<br><b>I</b> | 15           | * X                                |
| ř                                                                               | T o                          |                |                                                                                                                              |                   | _                                      | Vane 1                                                 |                                             | ard Do              | netration 1      | ♣S                    | 110                  |                                                      |                                                                                             | our Readin                             | a (ppm)          | 181          |                                    |
| 1                                                                               | G&L<br>G&L                   |                | SOIL DESCRIPTION                                                                                                             | ELEV<br>m<br>98.9 | DMDFT                                  |                                                        | 20<br>r Stree                               |                     |                  | 80 t                  | 30<br>kPa            | 2                                                    | 50 5                                                                                        | 00 7:<br>lure Contei<br>s (% Dry W     | 50               | SMI-102>0    | Natural<br>Unit<br>Weight<br>kN/m³ |
| Ī                                                                               | 50                           |                | HALT CONCRETE (110 mm)  D AND GRAVEL (Granular                                                                               | <b>7</b> 98.8     | 0                                      | 331                                                    |                                             |                     | 8138             | 3813                  |                      | ×                                                    | 11361                                                                                       | 8138                                   | 3613             | M            |                                    |
|                                                                                 |                              | SANE<br>clay a | /Subbase, 510 mm): brown, moist DY SILT: some organic matter, trace and gravel, compact to dense, brown,                     | <b>7</b> 98.3     | 1                                      |                                                        | 8                                           |                     |                  |                       |                      |                                                      | ×                                                                                           |                                        |                  | M            |                                    |
|                                                                                 |                              | very r         | moist                                                                                                                        | -                 |                                        | :65:1:<br>24:1:                                        |                                             |                     |                  |                       |                      |                                                      |                                                                                             |                                        |                  |              |                                    |
|                                                                                 |                              | -              |                                                                                                                              | 96.6              | 2                                      | 3 5 1 :                                                |                                             |                     | 0120<br>0120     | 12 (12)<br>13 (13)    |                      | *******<br>******                                    |                                                                                             | <b>X</b> 100                           | 3013             | X            |                                    |
|                                                                                 |                              | SILTY          | CLAY, TILL: stiff to hard, grey, moist                                                                                       | 30.0              |                                        | 333                                                    | •                                           |                     | 3138             | 3813                  | :01:00               | 2013                                                 | ×                                                                                           | 18188<br>• 6146                        | 3013             | M            |                                    |
|                                                                                 |                              |                |                                                                                                                              | -                 | 3                                      | 301                                                    |                                             | 101                 | 8138             | 3813                  | 11121                | \$ (1) \$<br>\$ \$ \$ 1 \$ \$                        | 13(1)                                                                                       | 10100                                  | 3013             |              |                                    |
|                                                                                 |                              | ()<br>         |                                                                                                                              |                   |                                        |                                                        | •                                           |                     | \$1.50<br>2.1.50 | 14-1-1                | 11121                |                                                      | ×                                                                                           | 6136                                   | 3013             | X            |                                    |
|                                                                                 |                              | -8             |                                                                                                                              |                   | 4                                      | 201                                                    |                                             |                     |                  | 2010                  |                      |                                                      |                                                                                             |                                        | 2012             | Ħ            |                                    |
|                                                                                 |                              |                |                                                                                                                              |                   |                                        |                                                        |                                             | •                   | 2132             |                       |                      |                                                      | X:::::::                                                                                    |                                        | 2013             | $\mathbb{N}$ |                                    |
| 11/4/17                                                                         |                              | =8             |                                                                                                                              |                   | 5                                      |                                                        | ٠                                           |                     | 2192             | 3813                  |                      |                                                      | ×                                                                                           |                                        | 2012             | M            |                                    |
| TGD.                                                                            | Z                            |                |                                                                                                                              | 93.6              |                                        |                                                        |                                             |                     |                  |                       |                      |                                                      |                                                                                             |                                        |                  | $\mathbb{H}$ |                                    |
| VGL02                                                                           |                              |                |                                                                                                                              |                   |                                        | 331                                                    |                                             |                     | (2126)<br>(2138) |                       |                      | 01:10<br> 81:18                                      | ×                                                                                           | :::::::::::::::::::::::::::::::::::::: | 2612<br>3613     | W            |                                    |
| NG LOT) GPJ LOG A GWGL02 GDT 11/4/14                                            |                              |                |                                                                                                                              |                   | ľ                                      | 381                                                    |                                             |                     | /100 mm          | 38(3)<br>36(3)        | (1) (1<br>(4) (5) (4 | 2 ( ) 2<br>K                                         | ×                                                                                           |                                        | 3013             | M            |                                    |
| PD LO                                                                           |                              |                |                                                                                                                              | 7                 |                                        | 281                                                    |                                             |                     |                  |                       |                      |                                                      |                                                                                             |                                        |                  | H            |                                    |
| OT).G                                                                           |                              | - )            |                                                                                                                              | 7                 | 7                                      | 381:                                                   |                                             |                     | 0128             |                       |                      | 200                                                  |                                                                                             |                                        | 3013             |              |                                    |
|                                                                                 |                              | _              |                                                                                                                              | 7                 |                                        | 331                                                    |                                             |                     | /75 mm           |                       |                      | \$111\$<br>\$111\$                                   |                                                                                             |                                        |                  | $\mathbb{H}$ |                                    |
| TPAR                                                                            |                              | _              |                                                                                                                              | -                 | 8                                      |                                                        |                                             |                     |                  | 3313                  |                      |                                                      | 1311                                                                                        |                                        | 3013             | M            |                                    |
| S (EAS                                                                          |                              | -              |                                                                                                                              | -                 |                                        | -24-1-                                                 |                                             |                     |                  |                       |                      | 01.10                                                |                                                                                             | 6106                                   | 2012             | 1            |                                    |
| LOG                                                                             |                              | -              |                                                                                                                              | 89.7              | 9                                      | 2212                                                   |                                             |                     | /50 mm           | .) ( [.).<br>:) ( [.) |                      | 2000                                                 | 010001:<br>0100 <b>%</b>                                                                    | 10120                                  | 2012             |              |                                    |
| LOG A GWGL02 2.4_007-BOREHOLE LOGS (EAST PARK                                   |                              | hollow         | Terminated at 9.2 m ole advanced using continuous flight vistem augering equipment on er 24, 2014 by Determination Drilling. |                   |                                        |                                                        |                                             |                     |                  |                       |                      |                                                      |                                                                                             |                                        |                  |              |                                    |
| 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |                              |                |                                                                                                                              |                   |                                        |                                                        |                                             | ::                  |                  |                       |                      |                                                      |                                                                                             |                                        |                  |              |                                    |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 5.3                   | none                    |

#### LOG OF BOREHOLE No. 05-14

| Ρ           | roject N  | No.                           | P-0004553-0-01-007                                                                                                          |                                              |                         |                                 |                |      |                                         |          |     |       | DRAWING No. BH-05-14          |                                     |         |             |            |                                    |  |
|-------------|-----------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|---------------------------------|----------------|------|-----------------------------------------|----------|-----|-------|-------------------------------|-------------------------------------|---------|-------------|------------|------------------------------------|--|
| Р           | roject:   |                               | Metrolinx Port Credit GO Sta                                                                                                | tion                                         |                         |                                 |                |      |                                         |          |     |       |                               | _ 8                                 | Sheet N | o           | 1_         | of1_                               |  |
| Lo          | ocation   | 1:                            | East Parking Lot, About 6 m                                                                                                 | South of                                     | N                       | orth C                          | Curt           | o, ( | ).5 m                                   | We       | est | of Ea | ast Cu                        | nrp                                 |         |             |            |                                    |  |
|             | ate Dri   |                               | 10/22/2014                                                                                                                  |                                              |                         | Split Spo<br>Auger S<br>SPT (N) | oon S<br>ample | amp  |                                         |          |     |       | Combus<br>Natural<br>Atterber | ling                                | -       | *<br>×<br>• |            |                                    |  |
| D           | rill Type | e:                            | Hollow Stem Augers                                                                                                          |                                              |                         | Dynamic                         | Con            |      | st                                      | -        | =   |       | Undrain                       | ed Triaxia<br>at Failur             |         |             | •          | o<br>5⊕5                           |  |
| D           | atum:     |                               | Assumed                                                                                                                     |                                              | 2                       | Shelby 1<br>Shear S             | lrengt         | h by |                                         |          | •   |       | Shear S                       | trength b<br>meter Te               | у       |             |            | 10                                 |  |
| _           |           |                               |                                                                                                                             |                                              | _                       | Vane Te                         |                | 10   | - Feet 2 - 2                            |          | hS  |       |                               | stible Vapo                         |         |             | Tel        |                                    |  |
| G<br>W<br>L | SYMBOL    |                               | SOIL DESCRIPTION                                                                                                            | ELEV,<br>m                                   | DEPTH .                 | Shear S                         | 20             | . 4  | etration 7                              | 60<br>50 | 80  | kPa   | 2                             | 50 50<br>bural Moist<br>berg Limits | 00 75   | 50          | ) < Sp mo  | Natural<br>Unit<br>Weight<br>kN/m³ |  |
|             |           | SANI<br>Base<br>SANI<br>brown | Terminated at 9.5 m  Ole advanced using continuous flight verm augering equipment on er 22, 2014 by Determination Drilling. | 98.5<br>- 98.5<br>- 97.4<br>- 95.8<br>- 99.3 | 1 2 2 3 3 4 4 5 6 6 9 9 | Shear                           | Streng<br>50   |      | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          | 200 | 2     | Atterf                        | erg Limits 0 2 X                    | X       | eight)<br>O |            |                                    |  |
|             |           |                               |                                                                                                                             |                                              |                         |                                 |                |      |                                         |          |     |       |                               |                                     |         |             | * (******) |                                    |  |

| Time       | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|------------|-----------------------|-------------------------|
| 24/10/2014 | 1.4                   | none                    |

## LOG OF BOREHOLE No. 06-14

|                                                                                   | Project No.   | P-0004553-0-01-007                                                                                         |              |       |                      |                  |       |                  |          |                     | DRAV                   | VING N                                          | o. <u>B</u> | H-(       | 06-14                              |
|-----------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------|--------------|-------|----------------------|------------------|-------|------------------|----------|---------------------|------------------------|-------------------------------------------------|-------------|-----------|------------------------------------|
|                                                                                   | Project:      | Metrolinx Port Credit GO Stati                                                                             | on           |       |                      |                  |       |                  |          |                     | _                      | Sheet N                                         | o. <u>1</u> | _ c       | of _1_                             |
|                                                                                   | Location:     | East Parking Lot, About 45 m                                                                               | West o       | f E   | East C               | urb, 3           | 30 m  | South            | of No    | orth C              | urb                    |                                                 |             |           |                                    |
|                                                                                   |               |                                                                                                            |              | _     | Split Spr            | oon Sam          | ple   |                  |          | Combus              | tible Vap              | our Read                                        | ling        |           | *                                  |
|                                                                                   | Date Drilled: | 10/23/2014                                                                                                 |              |       | Auger S              |                  |       |                  |          | Natural<br>Atterber | Moislure               | Content                                         |             |           | <b>X</b><br>⊕                      |
|                                                                                   | Drill Type:   | Hollow Stem Augers                                                                                         |              |       |                      | Cone Te          | est   | _                |          | Undrain             | ed Triaxia             |                                                 | '           | 15        | <b>⊕</b> ₅                         |
|                                                                                   | Datum:        | Assumed                                                                                                    |              |       | Shelby T<br>Shear St | ube<br>trength b | y     |                  |          | Shear S             | at Failui<br>trength b | У                                               |             |           | 10                                 |
| _                                                                                 |               |                                                                                                            |              | _     | Vane Te              | sl               |       | <b>♣</b> S       |          |                     | meter Te               |                                                 |             | 101       |                                    |
|                                                                                   | S Y M B O L   | SOIL DESCRIPTION                                                                                           | ELEV,<br>m   | DMPLH | Shear S              | 20 4             | 10    |                  | 0<br>kPa | 2                   | 50 5                   | our Readin<br>00 7:<br>ure Conter<br>s (% Dry W | 50          | NAT-THE   | Natural<br>Unit<br>Weight<br>kN/m³ |
| t                                                                                 | ASP           | HALT CONCRETE (100 mm)                                                                                     | 98,6<br>98,5 | 0     | 33.13                | . i . i . i .    | 14111 | 50 20            | 11111    | 34.13               | Ŭ4H                    |                                                 | 3444        | Ň         | _                                  |
|                                                                                   | SAN<br>Base   | D AND GRAVEL (Granular<br>e/Subbase, 320 mm): light brown, moist                                           | 00.0         |       | 2012                 |                  |       | 10000            |          |                     |                        | 11111                                           |             | Δ         |                                    |
|                                                                                   | SAN           | DY SILT: some clay and gravel, loose,                                                                      | 98,2         |       | 1111                 |                  |       | <del>     </del> |          | HIII                |                        |                                                 | 444         | 11        |                                    |
| - 1                                                                               | dark          | grey, moist, hydrocarbon odour                                                                             |              |       | 2010                 | 1000             |       |                  |          |                     |                        |                                                 |             | Ц         |                                    |
|                                                                                   |               |                                                                                                            |              | l.    | •                    |                  | Hill  |                  |          | r.                  | ×                      |                                                 |             | M         |                                    |
|                                                                                   |               | ē                                                                                                          |              | 1     |                      |                  |       |                  |          |                     |                        |                                                 |             | H         |                                    |
|                                                                                   |               |                                                                                                            |              |       | 0010                 |                  | 9199  |                  | 11121    |                     |                        | 1::::                                           |             | ] [       |                                    |
| -                                                                                 | SILT          | Y CLAY, TILL: very stiff, brown, moist,                                                                    | 97.1         |       | 33.13                |                  | 11111 | 3.51.            |          | 11111               | 13333                  | 11111                                           | 33.13       | $\forall$ |                                    |
|                                                                                   | hydro         | ocarbon odour                                                                                              |              |       | 1113                 |                  | ***   | 1200             |          | ÷:                  | ×                      |                                                 | 1111        | IXI:      |                                    |
|                                                                                   |               | Terminated at 2.0 m                                                                                        | 96.6         | L     | 4414                 |                  |       |                  |          |                     |                        |                                                 | ****        | /\        |                                    |
| LOG A GWGL02 24_007-BOREHOLE LOGS (EAST PARKING LOT),GPJ LOG A GWGL02,GDT 11/4/14 | hollo         | hole advanced using continuous flight w stem augering equipment on ber 23, 2014 by Determination Drilling. |              |       |                      |                  |       |                  |          |                     |                        |                                                 |             |           |                                    |
| LOG A GWG                                                                         |               |                                                                                                            |              |       |                      |                  |       |                  |          |                     |                        |                                                 |             |           |                                    |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | none                  | none                    |

## LOG OF BOREHOLE No. <u>07-14</u>

| i                                             | Project  | No.      | P-0004553-0-01-007                                                |               |      |                 |              |                    |                                           |                          |                     |                | DRAV                                | VING N                                   | o. <u>E</u>          | H-0                     | )7-1 <u>4</u>               |
|-----------------------------------------------|----------|----------|-------------------------------------------------------------------|---------------|------|-----------------|--------------|--------------------|-------------------------------------------|--------------------------|---------------------|----------------|-------------------------------------|------------------------------------------|----------------------|-------------------------|-----------------------------|
|                                               | Project  | :        | Metrolinx Port Credit GO Sta                                      | ition         |      |                 |              |                    |                                           |                          |                     |                | _ 8                                 | Sheet N                                  | o                    | <u> </u>                | f _1_                       |
| l)                                            | Locatio  | n:       | East Parking Lot, About 3 m                                       | West of       | W    | est C           | Curl         | b, 7               | m No                                      | orth of                  | Sou                 | th Cu          | rb                                  |                                          |                      |                         |                             |
|                                               |          |          |                                                                   |               |      | Split S         |              |                    |                                           | $\boxtimes$              |                     |                | stible Vap                          | our Read                                 | ling                 |                         | *                           |
| ı                                             | Date D   | rilled:  | 10/24/2014                                                        |               |      | Auger           | Sam          | ple                |                                           |                          |                     | Natural        | Moisture                            |                                          |                      |                         | ×                           |
| ı                                             | Drill Ty | pe:      | Hollow Stem Augers                                                |               |      | SPT (N<br>Dynam |              |                    | st                                        |                          |                     | Undrair        | rg Limits<br>ned Triaxia            |                                          | ı                    | 15                      | <b>⊕</b>                    |
|                                               | Datum:   |          | Assumed                                                           |               |      | Shelby<br>Shear |              |                    | ,                                         |                          |                     | Shear S        | n at Failur<br>Strength b           | у                                        |                      | 10                      | 10                          |
|                                               |          |          |                                                                   |               | =    | Vane T          |              | 3···-/             |                                           | <b>♣</b> S               |                     | Penetro        | meter Te                            | st                                       |                      |                         |                             |
|                                               | S Y      |          | SOIL DESCRIPTION                                                  | ELEV          | DHIP | S               | Standa<br>20 |                    |                                           | Test N Valu              | 0                   | 2              | ustible Vapo<br>250 50              | 00 75                                    | 50                   | SAMP                    | Natural<br>Unit             |
|                                               | M BOL    |          | SOIL DESCRIPTION                                                  | m<br>97.5     | Įή   | Shear           |              | ngth               |                                           | 50 2                     | kPa                 | 1              | itural Moist<br>berg Limits<br>10 2 | (% Dry W                                 | eight)               | S I                     | Weight<br>kN/m <sup>3</sup> |
|                                               | XXXII    |          | SOIL (250 mm) Y CLAY, TILL: trace sand and gravel,                | 97.3          | 0    | <b>3</b> €1     |              | 321                | 2122                                      | 33(3)                    | 11121               | <b>*</b> ::::: | <b>X</b> 333                        |                                          | 3013                 | X                       |                             |
|                                               |          | stiff to | o hard, brown, moist                                              | ; <del></del> |      | 371             |              |                    | 31:33                                     | 3313                     | 11131               | 31113          |                                     |                                          | 3713                 | Ц                       |                             |
|                                               |          | <b>-</b> |                                                                   | ;             | 1    | •               |              |                    |                                           |                          |                     |                |                                     | κ                                        | 2013                 | $\mathbb{M}$            |                             |
|                                               |          |          |                                                                   | _             | l    | 331             |              |                    | ****                                      |                          |                     |                |                                     |                                          |                      | $\mathbb{H}$            |                             |
|                                               |          |          |                                                                   | Patie         | ,    | 331             |              |                    | 800                                       |                          | 1021                |                | × 5                                 |                                          |                      | M                       |                             |
|                                               |          | Γ        |                                                                   |               | ľ    | 33317<br>33317  |              | 90.i.              | 01:30                                     | 1-2-6-1-4-<br>1-2-6-1-1- | 11121               | 21:10          | 13.261                              | :0120<br>:0120                           | 2012                 | $\mathbb{H}$            |                             |
|                                               |          | _grey    |                                                                   | -             |      | 2012            | 8            |                    | \$122                                     |                          | 10121               | *::::          | ×                                   | :(:125                                   | 3912                 | X                       |                             |
|                                               |          | -        |                                                                   | -             | 3    | 321:            | 2   1        | 481:<br>381:       | 2138                                      | 38(3)                    | 11:10:10            | 2013           | 3381                                | 18138                                    | 3313                 | Ð                       |                             |
|                                               |          |          |                                                                   | _             | L    | 371             |              |                    | 31110                                     |                          |                     | *              | ×                                   | 30133                                    | 3713                 | 1                       |                             |
|                                               |          |          |                                                                   |               |      | *> (*1*         |              | 2 (* 1)<br>2 (* 1) |                                           | 2017                     |                     |                |                                     |                                          | 2012                 | Ħ                       |                             |
| -                                             |          |          |                                                                   |               |      | 3813            |              |                    | 2133                                      |                          | 11121               | 1300           | <b>F</b> izzii                      | 6136                                     |                      | M                       |                             |
| 4/14                                          |          |          |                                                                   | -             | ľ    | 351             |              |                    |                                           |                          |                     |                |                                     |                                          |                      | $\overline{M}$          |                             |
| 11/                                           |          | -        |                                                                   | -             | 5    | 33.1            |              | •                  |                                           |                          |                     |                |                                     |                                          |                      | $\mathbb{N}$            |                             |
| 12.GD                                         |          | _        |                                                                   | -             | L    | 3813            |              | 331:<br>341:       | 2138                                      | 38(3)                    | 11121               | 81113          |                                     | (C) (C)                                  | 2 2 1 2<br>  3 3 1 3 | $\overline{\mathbb{M}}$ |                             |
| ING LOT), GPJ LOG A GWGL02, GDT 11/4/14       |          |          |                                                                   |               | 6    | 331             |              |                    | i di i di i                               | 3813                     |                     | 8000           | (distri                             | 1010                                     | 3813                 | $\mathbb{N}$            |                             |
| A G                                           | z 🧱      |          |                                                                   | 91.1          | ľ    | 331             |              |                    | 2132                                      |                          |                     |                | ×                                   |                                          | 3 (1)                | M                       |                             |
| ol l                                          |          |          |                                                                   |               | l    | 381             |              |                    |                                           |                          |                     | 3000           | 1000                                | 1120                                     |                      | $\mathbb{N}$            |                             |
| D.GP.                                         |          |          |                                                                   | -             | 7    | ****            |              |                    | :::::::<br>:::::::::::::::::::::::::::::: |                          |                     |                |                                     |                                          |                      | 1                       |                             |
| G LO                                          |          | _        |                                                                   | 14            | L    |                 |              |                    |                                           |                          |                     |                |                                     |                                          |                      | U                       |                             |
| N KIN                                         |          |          |                                                                   |               | 8    | 3313            |              | 186                | 8138                                      | 3813                     |                     | 3(13           | ×                                   | 19138                                    | 3613                 | M                       |                             |
| STPA                                          |          |          |                                                                   |               | ľ    | 2010            |              |                    |                                           |                          |                     |                |                                     |                                          |                      | M                       |                             |
| S (EA                                         |          |          |                                                                   | -             | Г    | 2010            |              |                    | 2000                                      | 2010                     |                     |                | 1201                                |                                          | 2012                 | 1                       |                             |
| Log                                           |          |          |                                                                   | 88.4          | 9    | 2010            |              | 9 (4 (4<br>3 (4 (4 | /25 mm                                    | (3813)<br>(2812)         | · ( · ) · ( · ( · ) | 2112           |                                     | · (• (• (• (• (• (• (• (• (• (• (• (• (• | 0000                 | 1                       |                             |
| LOG A GWGL02 2.4 007-BOREHOLE LOGS (EAST PARK |          |          | Terminated at 9.2 m                                               |               |      |                 |              |                    |                                           |                          |                     |                |                                     |                                          |                      |                         |                             |
| SORE                                          |          |          | nole advanced using continuous flight vstem augering equipment on |               |      |                 |              |                    |                                           |                          |                     |                |                                     |                                          |                      | П                       |                             |
| -200                                          |          | Octob    | per 24, 2014 by Determination Drilling.                           |               |      |                 |              |                    |                                           |                          |                     |                |                                     |                                          |                      | $\  \ $                 |                             |
| 2 2.4                                         |          |          |                                                                   |               |      |                 |              |                    |                                           |                          |                     |                |                                     |                                          |                      |                         |                             |
| VGLO                                          |          |          |                                                                   |               |      |                 |              |                    |                                           |                          |                     |                |                                     |                                          |                      |                         |                             |
| A GV                                          |          |          |                                                                   |               |      |                 |              |                    |                                           |                          |                     |                |                                     |                                          |                      |                         |                             |
| Log                                           |          |          |                                                                   |               |      |                 |              |                    |                                           |                          |                     | iiiii          |                                     |                                          |                      | Ш                       |                             |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 6.4                   | 0.0                     |

#### LOG OF BOREHOLE No. 08-14

P-0004553-0-01-007 DRAWING No. BH-08-14 Project No. Sheet No. \_\_1\_ of \_\_1\_ Metrolinx Port Credit GO Station Project: East Parking Lot, About 6 m North of South Curb, 7 m West of East Curb Location: Split Spoon Sample Combustible Vapour Reading × Auger Sample Natural Moisture Content 10/23/2014 Date Drilled: 0 SPT (N) Value Atterberg Limits Hollow Stem Augers Dynamic Cone Test Undrained Triaxial at Drill Type: 15 🕀 5 % Strain at Failure Shelby Tube Shear Strength by Assumed Datum: Shear Strength by Penetrometer Test Vane Test Combustible Vapour Reading (ppm) ELEV. 250 500 750 SOIL DESCRIPTION Weight kN/m³ m ASPHALT CONCRETE (90 mm) 97.5 SAND AND GRAVEL (Granular 97.2 Base/Subbase, 250 mm): light brown, moist SANDY SILT: some organic matter, trace clay and gravel, compact, brown, moist some clay, dense 95.3 SILTY CLAY, TILL: very stiff to hard, grey, moist . . . . . . . . . . . . . . . . 8818\$1881 91.6 361324334 361314334 \$(3) 3333 Terminated at 9.6 m Borehole advanced using continuous flight hollow stem augering equipment on October 24, 2014 by Determination Drilling.

007-BOREHOLE LOGS (EAST PARKING LOT).GPJ LOG A GWGL02.

2.4

LOG A GWGL02

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 7.6                   | none                    |
| 24/10/2014      | 5,9                   | none                    |
| 25/10/2014      | 5,8                   | none                    |
|                 |                       |                         |
|                 |                       |                         |

## LOG OF BOREHOLE No. 09-14

|                                               | Project           | No.       | P-0004553-0-01-007                                              |        |      |                  |                            |      |                         |            |                                                         |        |                          | DRAV                    | VING N          | o. <u>, B</u>                 | H-(       | 09-14      |
|-----------------------------------------------|-------------------|-----------|-----------------------------------------------------------------|--------|------|------------------|----------------------------|------|-------------------------|------------|---------------------------------------------------------|--------|--------------------------|-------------------------|-----------------|-------------------------------|-----------|------------|
|                                               | Project:          | :         | Metrolinx Port Credit GO Sta                                    | ation  |      |                  |                            |      |                         |            |                                                         |        |                          | {                       | Sheet N         | o. <u>1</u>                   |           | of _1_     |
|                                               | Location          | n:        | North End of Site, About 15                                     | m Sout | h of | f S              | out                        | h (  | Curl                    | of E       | aglev                                                   | vood I | Orive,                   | 5 m                     | West            | of W                          | est       |            |
|                                               |                   |           | Curb of Oriole Avenue                                           |        |      |                  |                            | poon | Sam                     | ple        | ×                                                       |        |                          |                         |                 |                               |           | *          |
|                                               | Date Dr           | rilled:   | 10/21/2014 Hollow Stem Augers                                   |        |      |                  | uger \$                    | Sam  | ple                     |            |                                                         |        | Natural Moisture Content |                         |                 |                               |           | ×          |
|                                               | Drill Typ         | oe:       |                                                                 |        |      |                  | PT (N<br>ynam              |      | iue<br>one Te           | est        | _                                                       | · Si   | Undrain                  | ed Triaxia              |                 | -                             | 11        | <b>⊕</b> ₅ |
|                                               | Datum:            |           | Assumed                                                         |        |      |                  | helby<br>hear S            |      | e<br>ngth b             | v          |                                                         | L      | Shear S                  | ı at Failu<br>Irength b | у               |                               |           | 10         |
|                                               |                   |           | 2                                                               |        |      |                  | ane T                      | est  |                         |            | <b>♣</b> S                                              |        | Penetrometer Test        |                         |                 |                               |           |            |
| Ì                                             | SY<br>M<br>B<br>O |           | SOIL DESCRIPTION                                                | ELE    | v. [ | T Shear Strength |                            |      | 80<br>80                | 2          | bustible Vapour Reading (ppm<br>250 500 750             |        |                          | SAM                     | Natural<br>Unit |                               |           |            |
|                                               | G&T               |           | SOIL DESCRIPTION                                                | 99,4   | 1    |                  |                            |      |                         | kPa<br>200 | Natural Moisture Content 9 Atterberg Limits (% Dry Weig |        |                          | eight)<br>0             | LES             | Weight<br>kN/m³               |           |            |
| 1                                             | 3/2               |           | SOIL (300 mm)                                                   | 99,1   | ľ    | Ĭ                | ٠.                         |      | 444<br>441              |            | -3 & 1 -3<br>-3 & 1 -3                                  |        | *****                    | -2-2-6-1                | ×               | 2112                          | M         |            |
|                                               |                   | SILT      | Y CLAY, TILL: stiff to very stiff, brown,                       | -      |      |                  |                            | #    | ***                     | 2100       | 3 2 1 1 1<br>3 1 1 1 1 1                                |        | ****                     |                         | 1000            | 4.1.4                         | П         |            |
|                                               |                   | Avendance |                                                                 |        |      | :                | (4.14)<br>(4.14)           |      | 3 0 1<br>2 0 1<br>3 0 1 |            |                                                         |        | 01110                    |                         |                 |                               | $\forall$ |            |
|                                               |                   |           |                                                                 | -      |      | 1 -              |                            |      | <b>a</b> .              |            |                                                         |        | *                        | ×                       |                 |                               | X         |            |
| - 1                                           |                   |           |                                                                 | _      |      |                  |                            |      |                         |            | •) (-1-)                                                |        |                          |                         |                 |                               | H         |            |
| -                                             |                   |           |                                                                 |        |      |                  |                            |      |                         | 8          |                                                         |        |                          |                         |                 |                               | M         |            |
|                                               |                   | grey      |                                                                 | -      | 1    | 2                |                            |      | · · · · ·               | 22.5       |                                                         |        |                          |                         |                 |                               | Μ         |            |
| ľ                                             |                   |           |                                                                 |        |      |                  |                            |      |                         |            | 3 3 1 1                                                 |        |                          |                         |                 |                               | H         |            |
|                                               |                   |           |                                                                 | 10-    |      |                  |                            |      | 10                      | 4144       |                                                         |        | · · · ×                  |                         |                 |                               | XI        |            |
|                                               |                   | _         |                                                                 | -      |      | 3                |                            |      |                         |            | ****                                                    |        | ****                     |                         |                 | ****                          | Ħ         |            |
| 4                                             |                   |           |                                                                 |        |      |                  |                            |      | 8                       |            |                                                         |        | 3                        |                         |                 |                               | M         |            |
| 11/4/14                                       |                   | -         |                                                                 | 3      |      |                  |                            | ti   |                         | 2132       | 3011                                                    |        |                          |                         |                 | 04-1-5                        | Μ         |            |
|                                               |                   |           |                                                                 |        |      | 4                |                            |      |                         | /25 mm     |                                                         | 111111 |                          |                         |                 |                               | М         |            |
| GWGL02.GD1                                    |                   | hard      |                                                                 |        |      |                  | (4.1.)<br>(4.1.)<br>(4.1.) |      |                         |            | -3-0-1-3<br>-3-0-1-3<br>-3-0-1-3                        |        | 0100                     | 2000                    | 10100           | -04-1-0<br>-04-1-0<br>-04-1-0 | М         |            |
| A GWC                                         |                   | Ē         |                                                                 | 94.8   |      |                  |                            | #    |                         | 21.33      | 2713<br>3343                                            |        | 21.12                    |                         | 1000            | 3 1 1 1 1                     | Ц         |            |
| 106/                                          |                   |           |                                                                 |        |      |                  | (-1-)<br>(-1-)             |      |                         |            | ******<br>******<br>*****                               |        | * ×                      |                         |                 |                               | И         |            |
| GP.                                           |                   |           |                                                                 | 1      | 1.5  | 5                |                            | ÷    | 331                     | 3133       |                                                         |        | \$0.5                    |                         |                 | 3333                          | 1         |            |
| SITE).                                        |                   | _         |                                                                 | _      |      |                  | ( - 1 - 1<br>( - 1 - 1     | 4    |                         | 2132       |                                                         | 11121  | ×                        |                         | 10.00           | 3613                          | M         |            |
| Р.                                            |                   |           |                                                                 |        |      |                  |                            |      |                         | 3133       | 3211                                                    |        |                          |                         |                 |                               |           |            |
| HEN                                           |                   |           | Terminated at 6.1 m                                             | 93.3   | 6    | 6                |                            | #    |                         | /130 mm    |                                                         |        | 11111                    | ×                       | 10120           | 10010<br>1111<br>1111         | H         |            |
| NOR                                           |                   | Darri     |                                                                 |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               | П         |            |
| 36S (                                         |                   | hollow    | ole advanced using continuous flight stem augering equipment on |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               | П         |            |
| ),EL                                          |                   | Octob     | per 21, 2014 by Determination Drilling.                         |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               | Н         |            |
| REHC                                          |                   |           |                                                                 |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               | П         |            |
| 07-80                                         |                   |           |                                                                 |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               | П         |            |
| 2,5 0                                         |                   |           |                                                                 |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               | П         |            |
| 31.02                                         |                   |           |                                                                 |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               |           |            |
| GWC                                           |                   |           |                                                                 |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               |           |            |
| LOG A GWGL02 2.5_007-BOREHOLE LOGS (NORTH END |                   |           |                                                                 |        |      |                  |                            |      |                         |            |                                                         |        |                          |                         |                 |                               | П         |            |
|                                               |                   |           |                                                                 |        |      | Γ.               |                            | 1.   | 2.00                    |            |                                                         |        |                          |                         |                 |                               | -         |            |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 5.3                   | none                    |
| 25/10/2014      | 4.6                   | none                    |

#### LOG OF BOREHOLE No. 10-14

| Project No.                                                                                     | P-0004553-0-01-007                                                     |           | •    |                                  |                   | DRAWING No.                                                            | BH-              | 10-14           |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|------|----------------------------------|-------------------|------------------------------------------------------------------------|------------------|-----------------|
| Project:                                                                                        | Metrolinx Port Credit GO Stat                                          | ion       |      |                                  |                   | Sheet No.                                                              | _1_0             | of _1_          |
| Location:                                                                                       | North Parking Lot, About 10 n                                          | n South   | of   | North Curb, 7                    | m East of W       | est Curb                                                               | 10               |                 |
|                                                                                                 |                                                                        |           | =0   | Split Spoon Sample Auger Sample  | ⊠<br>□            | Combustible Vapour Reading                                             | ı                | *<br>×          |
| Date Drilled:                                                                                   | 10/22/2014                                                             |           |      | SPT (N) Value                    | •                 | Atterberg Limits                                                       | -                | ⊕               |
| Drill Type:                                                                                     | Hollow Stem Augers                                                     |           |      | Dynamic Cone Test<br>Shelby Tube |                   | Undrained Triaxial at<br>% Strain at Failure                           | 130              | 5 0 5           |
| Datum:                                                                                          | Assumed                                                                |           |      | Shear Strength by                | <b>-</b> c        | Shear Strength by<br>Penetrometer Test                                 |                  | <b>A</b>        |
|                                                                                                 |                                                                        |           | _    | Vane Test                        | ion Tool Ni Value |                                                                        | nem) [e]         |                 |
| S<br>Y<br>M<br>B<br>O                                                                           | SOIL DESCRIPTION                                                       | ELEV.     | DEPT | Standard Penetrat                | 60 80             | Combustible Vapour Reading (p<br>250 500 750                           | 101              | Natural<br>Unit |
| lï B                                                                                            | SOL SESSIVII FISIV                                                     | m<br>99.6 | H    | Shear Strength                   | kPa<br>150 200    | Natural Moisture Content %<br>Atterberg Limits (% Dry Weig<br>10 20 30 | ht)              | Weight<br>kN/m³ |
| TOF                                                                                             | PSOIL (300 mm)                                                         | 99.3      | 10   | 321311321131                     |                   |                                                                        |                  |                 |
| SILT                                                                                            | TY CLAY, TILL: stiff to hard, brown, st                                | =         |      |                                  |                   | e:::::::::::::::::::::::::::::::::::::                                 | $=$ $\downarrow$ |                 |
|                                                                                                 |                                                                        |           |      |                                  |                   |                                                                        | Ħ                |                 |
|                                                                                                 |                                                                        | 7         | 1    |                                  |                   | e                                                                      |                  |                 |
|                                                                                                 |                                                                        |           | l    |                                  |                   |                                                                        |                  |                 |
| grey                                                                                            |                                                                        |           | l    |                                  |                   |                                                                        | $\mathbb{M}$     |                 |
|                                                                                                 | 6                                                                      | -         | 2    | -> 01-9-1-> 01 01                |                   |                                                                        | $\mathbb{H}$     |                 |
|                                                                                                 |                                                                        |           | l    | 3717717717                       |                   |                                                                        |                  |                 |
|                                                                                                 | 9                                                                      | -         | 1    | 3013111                          |                   |                                                                        | X                |                 |
|                                                                                                 |                                                                        |           | ,    |                                  |                   |                                                                        | :::: <u>/</u> \  |                 |
|                                                                                                 |                                                                        |           |      | 2012-1201-01                     |                   |                                                                        |                  |                 |
| 11/4/14                                                                                         | 9                                                                      | _         | L    | •                                |                   | · X                                                                    | Х                |                 |
| Ē                                                                                               |                                                                        |           | l    |                                  |                   |                                                                        |                  |                 |
| LOG A GWGL02.GDT                                                                                | a                                                                      | -         | 4    | 301301321401                     | 00.001001001      |                                                                        | - $M$            |                 |
| 3MGL                                                                                            |                                                                        |           |      |                                  |                   |                                                                        | \<br>            |                 |
| GAG                                                                                             | 3                                                                      | =         | l    | *********                        |                   | \$115 35000131                                                         |                  |                 |
| I III IMMONIXI                                                                                  | 3                                                                      | _         | 5    |                                  |                   | r <b>x</b>                                                             | X                |                 |
| 1) GP                                                                                           |                                                                        |           | L    |                                  |                   |                                                                        | <u>/</u>         |                 |
| O NING FO                                                                                       | a a                                                                    | 94,1      |      | 20121121121                      |                   |                                                                        | -                |                 |
|                                                                                                 |                                                                        |           |      | 301301301001                     |                   | F X                                                                    | $\mathbb{N}$     |                 |
| 불표                                                                                              | 4                                                                      |           | 6    | 144144444444                     |                   |                                                                        | $\Box$           |                 |
| ğ <b>XX</b>                                                                                     |                                                                        |           |      | 381341381481                     |                   | ×                                                                      | ::::: <b>!</b> X |                 |
| 8                                                                                               | Tominated at 6.7 m                                                     | 92.9      | L    |                                  |                   |                                                                        | /\               |                 |
| LOG A GWGL02 2.6 007-BOREHOLE LOGS (NORTH PARK OCTO OCTO Olgo olgo olgo olgo olgo olgo olgo olg | Terminated at 6.7 m                                                    |           |      |                                  |                   |                                                                        |                  |                 |
| 문 Bore                                                                                          | chole advanced using continuous flight<br>w stem augering equipment on |           |      |                                  |                   |                                                                        |                  |                 |
| Octo                                                                                            | ober 22, 2014 by Determination Drilling,                               |           |      |                                  |                   |                                                                        |                  |                 |
| 90 9                                                                                            |                                                                        |           |      |                                  |                   |                                                                        |                  |                 |
| 102 2                                                                                           |                                                                        |           |      |                                  |                   |                                                                        |                  |                 |
| GWG                                                                                             |                                                                        |           |      |                                  |                   |                                                                        |                  |                 |
| - P                                                                                             |                                                                        |           |      |                                  |                   |                                                                        |                  |                 |
| 기                                                                                               |                                                                        |           |      | [1111]1111]11                    |                   |                                                                        | i i i i i        |                 |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 6.1                   | none                    |
| 25/10/2014      | 5.5                   | none                    |

# LOG OF BOREHOLE No. 11-14

| Project: Metrolinx Port Credit GO Station  Location: North Parking Lot, About 90 m West of East Curb, 7 m South of North Curb    Date Drilled: 10/21/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Date Drilled: 10/21/2014  Drill Type: Hollow Stem Augers  Datum: Assumed  Spit Spoon Sample Auger Sample Natural Moisture Content Sprt (N) Value Pynamic Cone Test Shelby Tube Shear Strength by Vane Test  Spear Strength by Vane Test  Spear Strength by Vane Test Natural Moisture Content Shear Strength by Vane Test  Spear Strength by Vane Test Natural Moisture Content Shear Strength Shear Strengt | 1_  |
| Date Drilled: 10/21/2014  Drill Type: Hollow Stem Augers  Datum: Assumed  Auger Sample SPT (N) Value  Dynamic Cone Test Shear Strength by Vane Test  Shear Strength by Vane Test  Soll DESCRIPTION  ELEV. May Strain at Failure  Shear Strength by Vane Test  Soll DESCRIPTION  ELEV. May Strain at Failure  Shear Strength by Penetrometer Test  TOPSOIL (300 mm)  SANDY SILT: some clay, compact, brown, moist  SILTY CLAY, TILL: stiff to hard, grey, moist  Auger Sample Natural Moisture Content  SPT (N) Value  Dynamic Cone Test Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Strength by Penetrometer Test  Shear Str | _   |
| Datum: Assumed  Service Properties Assumed Penetration Test N Value  250 500 750  Natural Mosture Content % Asterberg Limits (% Dry Weight)  Service Properties Assumed Penetration Test N Value  250 500 750  Natural Mosture Content % Atterberg Limits (% Dry Weight)  Shear Strength   |     |
| Drill Type: Hollow Stem Augers  Datum: Assumed  Assumed  Shear Strength by Vane Test  Combustible Vapour Reading (ppm)  Shear Strength by Vane Test  TOPSOIL (300 mm)  SANDY SILT: some clay, compact, brown, moist  SILTY CLAY, TILL: stiff to hard, grey, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Datum: Assumed  Shear Strength by Vane Test  Standard Penetration Test N Value  250 500 750  Natural Moisture Content % Atterberg Limits (% Dry Weight)  Shear Strength by Penetrometer Test  Standard Penetration Test N Value  220 40 60 80  Natural Moisture Content % Atterberg Limits (% Dry Weight)  Shear Strength by Penetrometer Test  Natural Moisture Content % Atterberg Limits (% Dry Weight)  Shear Strength by Penetrometer Test  Topsolit (300 mm)  98.9  98.9  98.5  Shear Strength by Penetrometer Test  Combustible Vapour Reading (ppm)  250 500 750  Natural Moisture Content % Atterberg Limits (% Dry Weight)  Shear Strength by Penetrometer Test  Yellow Topsolit (300 mm)  98.9  98.5  Shear Strength by Penetrometer Test  Combustible Vapour Reading (ppm)  250 500 750  Natural Moisture Content % Atterberg Limits (% Dry Weight)  Note Test  10 10 20 30  Natural Moisture Content % Atterberg Limits (% Dry Weight)  Note Test  Yellow Topsolit (300 mm)  98.9  98.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Solid Description  Solid Descrip |     |
| TOPSOIL (300 mm) SANDY SILT: some clay, compact, brown, moist SILTY CLAY, TILL: stiff to hard, grey, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nit |
| TOPSOIL (300 mm)  SANDY SILT: some clay, compact, brown, moist  SILTY CLAY, TILL: stiff to hard, grey, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| moist SILTY CLAY, TILL: stiff to hard, grey, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 800X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| <b>■</b> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 25 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 93.3 6 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93.3 1 93 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 9 11 150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 모 S9.8 S9.8 Terminated at 9.4 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Terminated at 9.4 m  Borehole advanced using continuous flight hollow stem augering equipment on October 21, 2014 by Determination Drilling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| GROUPE 21, 2014 by Determination Drining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Name of the state  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 9.1                   | none                    |
| 25/10/2014      | 5.9                   | none                    |

#### LOG OF BOREHOLE No. 12-14

| Project No.                             | P-0004553-0-01-007                                                                                                                                                                                                                                                                                                                                                                                   | 212                                                     |       |                                           | 100                                  |         |       |          |                                                        | DRAV                                                                                    | /ING N                | o. <u>B</u> | H-       | 12-14                              |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------|-------------------------------------------|--------------------------------------|---------|-------|----------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|-------------|----------|------------------------------------|
| Project:                                | Metrolinx Port Credit GO Stati                                                                                                                                                                                                                                                                                                                                                                       | on                                                      |       |                                           |                                      |         |       |          |                                                        | _ 9                                                                                     | Sheet N               | o. <u>1</u> | _ (      | of _1_                             |
| Location:                               | North Addition to East Parking                                                                                                                                                                                                                                                                                                                                                                       | Lot, Ab                                                 | 0     | ut 6 m                                    | n Sou                                | th of I | North | Curb,    | o, 7 m West of East Curb                               |                                                                                         |                       |             |          |                                    |
| Date Drilled:<br>Drill Type:<br>Datum:  | Hollow Stem Augers Assumed                                                                                                                                                                                                                                                                                                                                                                           |                                                         |       | Auger S<br>SPT (N)<br>Dynamic<br>Shelby T | Value<br>Cone To<br>ube<br>trength b | est     |       |          | Natural<br>Atterber<br>Undraine<br>% Strain<br>Shear S | lible Vap<br>Moisture<br>g Limits<br>ed Triaxia<br>at Failur<br>trength by<br>meter Tes | Conlent<br>II al<br>e | ling<br>F   | 16       | <b>★ X ⊕ 0 0 1 1 1</b>             |
| S M B O L                               | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                     | ELEV.<br>m                                              | HHOMO | Shear                                     | 20<br>Strength                       |         | 8 06  | 0<br>kPa | 2                                                      | stible Vapo<br>50 50<br>ural Moisto<br>erg Limits                                       | 00 7                  | 50          | SAMP JEG | Natural<br>Unit<br>Weight<br>kN/m³ |
| ASA SA | SPHALT CONCRETE ( 60 mm) AND AND GRAVEL (Granular ise/Subbase, 240 mm): brown, moist SPHALT CONCRETE (120 mm) AND AND GRAVEL (Granular ise/Subbase, 210 mm): brown, moist SPHALT CONCRETE (110 mm) LTY CLAY, TILL: stiff to hard, brown, very poist to moist  Terminated at 6.4 m  Terhole advanced using continuous flight low stem augering equipment on tober 24, 2014 by Determination Drilling. | 100.1<br>7100.0<br>99.8<br>99.7<br>99.5<br>99.4<br>98.6 | 3 3 6 |                                           | 50                                   | 00 1    | 50 20 |          |                                                        | <u> </u>                                                                                | O 3                   | 0           |          | KIWITT                             |

| Time            | Water<br>Level<br>(m) | Depth to<br>Cave<br>(m) |
|-----------------|-----------------------|-------------------------|
| Upon Completion | 1.5                   | попе                    |