

Traffic Impact Study

30 Queen Street East

Edenshaw Queen Developments Limited 07 March 2022

→ The Power of Commitment

Executive summary

GHD Limited was retained by Edenshaw Queen Developments Limited to prepare a Traffic Impact Study report for the proposed mixed-use development located at 30 Queen Street East in the City of Mississauga.

This report determines the site related traffic and subsequent traffic related impacts on the adjacent road network during the weekday a.m. and p.m. peak hours. These impacts are based on the projected future background traffic and road network conditions derived for a 2026 future planning horizon year.

The proposed site plan prepared by Core Architects, dated February 2022, consists of two separate mixed-use buildings with the following characteristics:

- In total, the mixed-use development proposes 1,139 mixed-use units and 1,765 m² of commercial GFA.
 - Tower A, a 40-storey mixed-use building with 551 residential units;
 - Tower B, a 42-storey mixed-use building with 588 residential units;

Access to the development is proposed via a full-move driveway located on Ann Street, North of Park Street East.

The subject site is expected to generate a total of 261 new two-way trips consisting of 109 inbound and 152 outbound trips during the weekday a.m. peak hour and 336 new two-way trips consisting of 177 inbound and 159 outbound trips during the weekday p.m. peak hour.

The overall impact of the development generated traffic is negligible to the operation of the study area intersections and traffic flow along Hurontario Street, Park Street East and Ann Street with no geometric improvements required to accommodate the proposed development.

Under future total traffic conditions, the signal timings for the intersection of Hurontario Street and Park Street East were optimized as needed to reduce v/c ratios and delays. An eastbound left-turn phase was also added during all future a.m. peak scenarios and only the p.m. future total scenario to reduce v/c ratios and delays for that approach.

Application of the current City of Mississauga By-Law parking rates to the subject site results in a requirement of 1,795 parking spaces. The subject site provides a total of 474 spaces resulting in a deficit of 1,321 parking spaces.

Recognizing the transit-supportive vision for the Port Credit Community, the recommendation in the City's Transportation Master Plan to provide reduced transit supportive parking rates and reduced parking rates that have been approved for other developments in the recent past, the subject site is proposing a parking supply of 0.32 spaces per unit for residents and 0.10 spaces per unit for visitor which will be shared with the commercial GFA.

The proposed parking supply is based on the expected future market demand for the area and is meant to provide an opportunity to introduce transit-oriented development in the area as transit becomes more attractive and convenient. Reducing the parking supply at time of construction will lead to households and individuals making residential location and travel choice decisions jointly at time of purchase and is therefore expected to help the city achieve the envisioned transportation context for this area including future transit modal split targets.

We trust that this satisfies your requirements, but do not hesitate to contact the undersigned if you have any questions.

Sincerely,

GHD

William Maria, P. Eng.

Transportation Planning Lead

Contents

1.	Introd	duction	1
	1.1	Retainer and Objective	1
	1.2	Study Team	1
2.	Site C	Characteristics	2
	2.1	Study Area	2
	2.2	Proposed Development Content	2
3.	Existi	ing Conditions	3
	3.1	Existing Road Network	3
	3.2	Pedestrian and Bicycle Routes	3
	3.3	Transit Services	3
	3.4	Existing Traffic Data	5
4.	Netwo	ork Improvements	€
	4.1	Future Hurontario LRT Line	6
	4.2	Pedestrian and Cycling Network	7
5.	Futur	e Background Traffic	8
	5.1	Study Horizon Year	8
	5.2	Corridor Growth	8
	5.3	Background Development Traffic	g
	5.4	Future Background Traffic Volumes	10
6.	Site C	Generated Traffic	12
	6.1	Site Traffic Generation	12
	6.2	Site Traffic Distribution and Assignment	13
7.	Futur	e Total Traffic	17
8.	Capa	city Analysis	17
	8.1	Hurontario Street and Park Street East	18
	8.2	Ann Street and Park Street East	19
	8.3	Ann Street and the Proposed Site Access	20
9.	Vehic	ele Swept Path Analysis	21
10.	Parki	ng Review	21
	10.1	Existing City of Mississauga Zoning By-law	21
	10.2	Proposed Site Parking	21
	10.3	Mississauga Parking Regulations Study	22
	10.4	Approved Rates at Surrounding Developments	22
	10.5	Approved Parking Rates Near High Order Transit	
	10.6	Parking Assessment	24
11.	Trave	el Demand Management	24
	11.1	Travel Demand Management	24

	11.2	Existing	g TDM Opportunities	25
		11.2.1	Walking	25
		11.2.2	Transit	25
	11.3	Future	TDM Opportunities	26
		11.3.1	Cycling Strategy	26
		11.3.2	Transit Strategy	26
		11.3.3	Parking Strategy	27
		11.3.4	Carshare/Bikeshare Strategy	27
		11.3.5	Wayfinding and Travel Planning Strategy	27
12.	Concl	usion		27

Table index

Table 1	Background Development Traffic	9
Table 2	2016 TTS Modal Split Data for Planning Districts 3642, 3877, and 3878	12
Table 3	2015 and 2031 Modal Split/Non-Auto Trip Reduction (Port Credit Go Station TMP)	12
Table 4	Projected 2026 Modal Split	13
Table 5	Estimated Site Trips	13
Table 6	2016 TTS Data Directional Split	14
Table 7	Capacity analysis of Hurontario Street and Park Street East	18
Table 8	Capacity analysis of Ann Street and Park Street East	19
Table 9	Capacity analysis of Ann Street and the Proposed Site Access	20
Table 10	Approved Parking Rates in Surrounding Developments	22

Figure index

Figure 1	Site Location	
Figure 2	Site Plan	2
Figure 3	MiWay Transit Map within the Study and Surrounding Areas (MiWay)	4
Figure 4	Lakeshore West Train Map (GO Transit)	5
Figure 5	Projected 2021 Traffic Volumes	6
Figure 6	Future Hurontario LRT Map (Metrolinx)	7
Figure 7	Hurontario LRT – Road Plan (AECOM, February 2017)	8
Figure 8	Total Background Development Site Traffic	10
Figure 9	2026 Future Background Traffic Volumes	11
Figure 10	Trip Distribution - Residential	14
Figure 11	Trip Distribution – Commercial	15
Figure 12	Total Site Trips – Residential	15
Figure 13	Total Site Trips - Commercial	16
Figure 14	2026 Future Total Traffic Volumes	17
Figure 15	Transit Stops and Pedestrian Routes	25

Appendices

Appendix A	Traffic Data
Appendix B	Transportation Tomorrow Survey 2016
Appendix C	Synchro Outputs
Appendix D	Site Plan
Appendix E	AutoTURN Circulation Review
Appendix F	Background Developments

1. Introduction

1.1 Retainer and Objective

GHD Limited was retained by Edenshaw Queen Developments Limited to prepare a Transportation Impact Study in support of a proposed mixed-use development located at 30 Queen Street East in the City of Mississauga.

The site location is illustrated in Figure 1.

The purpose of this study is to:

- Establish baseline traffic conditions for the study area in 2021 and determine future background operating conditions for a future planning horizon in 2026.
- Utilizing Institute of Transportation Engineer's (ITE) Trip Generation data and first principles to estimate the site trips generated by the proposed development and distribute the traffic to the adjacent road network.
- Determine future operating traffic conditions during the weekday peek periods through intersection capacity analysis.
- Analyze and review the number of proposed parking spaces

1.2 Study Team

The GHD team involved in the preparation of the study are:

- William Maria, P. Eng., Transportation Planning Lead
- Rafael Andrenacci, B.Eng., Transportation Planner

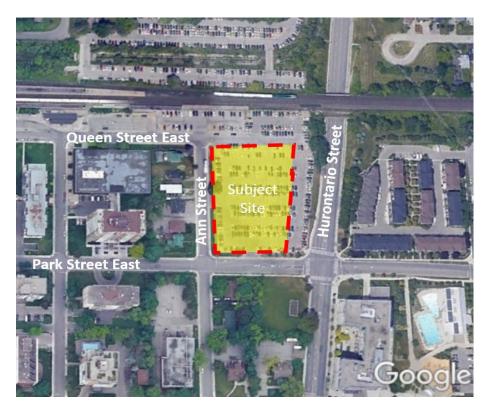


Figure 1 Site Location

2. Site Characteristics

2.1 Study Area

The following intersections were included in the study area:

- Hurontario Street and Park Street East
- Park Street East and Ann Street
- Ann Street and the site driveway

2.2 Proposed Development Content

A site plan prepared by Core Architects, dated February 2022, is shown in **Figure 2** and provided in **Appendix C**. It consists of two buildings with the following characteristics:

- In total, the mixed-use development proposes 1,139 residential units and 1,765 m² of commercial GFA.
 - Tower A, a 40-storey mixed-use building with 551 residential units;
 - Tower B, a 42-storey mixed-use building with 588 residential units;

Access to the subject site is proposed via a full-move driveway on Ann Street, north of Park Street East.

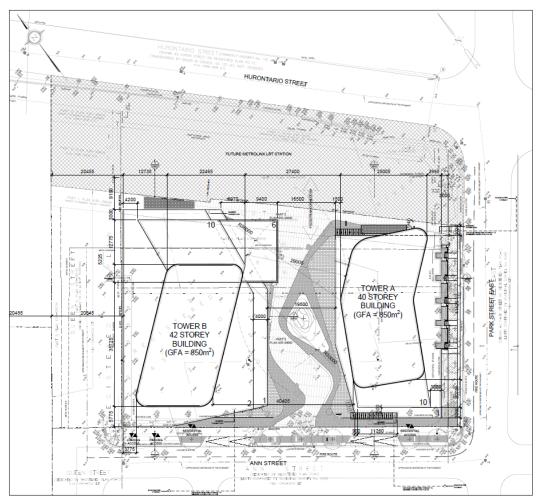


Figure 2 Site Plan

3. Existing Conditions

3.1 Existing Road Network

Hurontario Street is a north-south arterial road under the jurisdiction of the City of Mississauga. In the study area it has a four-lane urban cross section. The intersection of Hurontario Street and Park Street East is signalized, with a left-turn, through lane and a right-turn lane in the both the northbound and southbound directions. The posted speed limit on Hurontario Street is 50 km/h.

Ann Street is an east-west minor collector road under the jurisdiction of the City of Mississauga. In the study area it has a two-lane urban cross section and its intersection with Park Street East is unsignalized. The assumed posted speed limit on Ann Street is 50 km/h.

Park Street East is an east-west local road under the jurisdiction of the City of Mississauga. In the study area it has a two-lane urban cross section. Its intersection with Ann Street is unsignalized, with a through-left and a right-turn lane in the westbound direction. Its intersection with Hurontario Street is signalized, with a through-right and a left-turn lane in both the eastbound and westbound directions. The assumed posted speed limit on Park Street East is 50 km/h.

3.2 Pedestrian and Bicycle Routes

Pedestrian sidewalks are available on both sides of all roads throughout the study area with the exception of the west side of Hurontario Street due to the ongoing Hurontario LRT construction.

There are no bicycle provisions on any of the roads within the study area. South of the study area, the Waterfront trail connects a series of park trails, signed bike routes and multi-use trails, and is part of the Great Lakes Waterfront Trail. This trail continues to the east into the City of Toronto, and to the west into the Town of Oakville. A signed bike route along Elizabeth Street North is part of the "Trail-to-GO" network, described as a route connecting the GO Train Lakeshore Line to the Waterfront Trail

3.3 Transit Services

Within the study area, GO Transit and MiWay Transit operate the following routes:

GO Transit's Port Credit Station operates trains along the **Lakeshore West Line**. During weekdays, the eastern terminus of the train line is Union Station and various western terminuses (Oakville, Aldershot and West Harbour). Trains operate with a 15-minute headway in both eastbound and westbound directions. The 15-minute headway in the westbound direction is shared amongst the trips towards the three terminal stations. Trains travelling towards Oakville GO Station have a 30-minute headway and trains travelling towards the West Harbour and Aldershot GO stations have an hour headway. GO Transit also offers one round-trip to Niagara Falls per day (1 outbound during the a.m. peak and 1 inbound during the p.m. peak) and four trips in a day on weekends. The Lakeshore West map is provided in **Figure 4**

Bus Route 2 (Hurontario) operates both ways along Hurontario Street between the Port Credit GO Station and City Centre Transit Terminal at Square One. The route runs on a 10-minute headway from 6 a.m. to 10 p.m. and a 20-minute or better headway outside of that period.

Bus Route 8 (Cawthra) operates generally along Cawthra Road between Port Credit GO Station and the City Centre Transit Terminal at Square One. The route runs with a 30-minute headway from 5 a.m. to 5 p.m.

Bus Route 14 (Lorne Park) operates generally in the east-west direction along Indian Road and Truscott Drive between Port Credit and Clarkson GO Stations. The route runs on a 45-minute headway from 5 a.m. to 4 p.m.

Bus Route 14A (Lorne Park - Industrial) operates during the Rush Hour period only and follows the same route as Route 14. However, it continues south from the Clarkson GO Station along Southdown Road and continues along

Lakeshore Road West, Winston Churchill Boulevard and Royal Windsor Drive before arriving at Clarkson GO Station again.

Bus Route 23 (Lakeshore) operates in both directions along Lakeshore Road West between Clarkson and Long Branch GO Stations. The route runs on a 20-minute or better headway from 4 a.m. to 9 p.m.

The GO Transit Port Credit Station and the MiWay bus stops are located within walking distance of the proposed development, approximately 150 metres and 200 metres respectively from the proposed site driveway. The transit map with the bus routes operating within the study area is provided in **Figure 3**.

Figure 3 MiWay Transit Map within the Study and Surrounding Areas (MiWay)

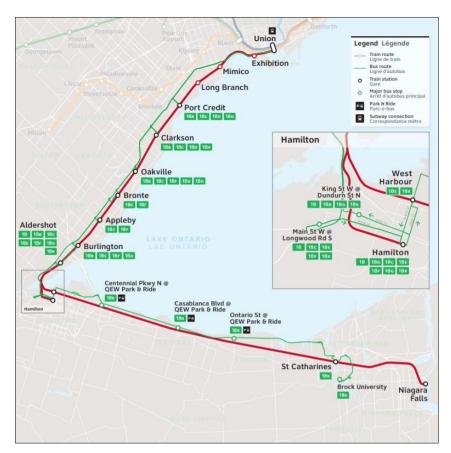


Figure 4 Lakeshore West Train Map (GO Transit)

3.4 Existing Traffic Data

Historic turning movement counts were provided to GHD from previous traffic impact studies completed within the surrounding area. Turning movement counts for the intersection of Hurontario Street and Park Street East, conducted in December 2019, were extracted from the Transportation Impact Study prepared for the proposed residential development at 42-46 Park Street East & 23 Elizabeth Street North by LEA Consulting Ltd. dated May 2020. Turning movement counts for the intersection of Ann Street at Park Street East were conducted in November 2018 and were extracted from the report for the proposed residential development at 22-28 Ann Street & 78 Park Street East completed by LEA Consulting Ltd in April 2019. Traffic volumes along Hurontario Street were grown by the growth rates provided by the City, and further discussed in **Section 5.2.**

The projected baseline 2021 traffic volumes for the a.m. and p.m. peak hours are summarized in **Figure 5**, with the most recent turning movement count data from LEA Consulting Ltd. provided in **Appendix A**. The signal timing plan was also extracted from the Transportation Impact Study completed in May 2020 and provided in **Appendix A**.

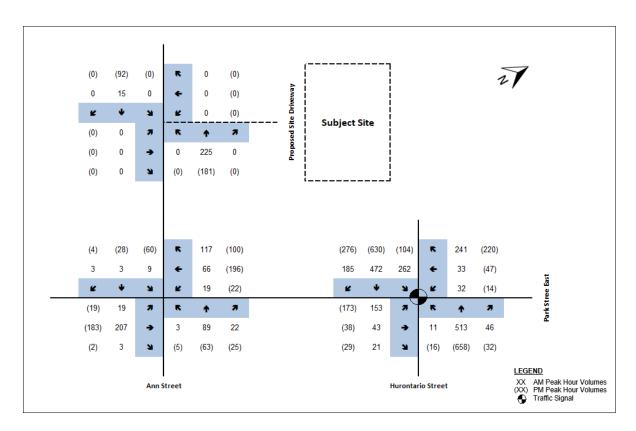


Figure 5 Projected 2021 Traffic Volumes

4. Network Improvements

4.1 Future Hurontario LRT Line

The future Hurontario LRT, with an expected completion of Fall 2024, will have its southern terminus at Port Credit Station located in the northwest corner of Hurontario Street and Park Street East (as seen in **Figure 7** below). The Hurontario LRT will include 19 stations (four major transit hubs) and run 18 kilometers from the Port Credit Station to the Brampton Gateway Terminal at Hurontario Street and Steeles Avenue. The future LRT map is provided in **Figure 6**.

Figure 6 Future Hurontario LRT Map (Metrolinx)

4.2 Pedestrian and Cycling Network

According to AECOM's Road Plan map, dated February 2017, and provided in **Figure 7**, the sidewalk that was located on the west side of Hurontario Street will be relocated to the west side of the proposed LRT tracks and Port Credit LRT Station.

In addition to the relocation of the sidewalk, a multi-use trail will be provided on the east side of Hurontario Street. The City of Mississauga Cycling Master Plan includes this road segment as a proposed multi-use trail as well, connecting it to the existing multi-use trail that runs along Hurontario Street from Inglewood Drive to North Service Road. The City's Cycling Master Plan proposes extending the multi-use trail north to the Queensway and transition into a Cycle Track/Separated Bike Lane all the way to the northern limit of Hurontario Street within the City of Mississauga. The extension of the cycling network along Hurontario will allow for greater and safer access to the rest of the City of Mississauga's existing and proposed cycling facilities

Within the study area, Park Street East is proposed to be a Shared Route and will provide connection to the Waterfront Trail via other local roads classified as Shared Routes. Lakeshore Road is also proposed to be a Cycle

Track/Separated Bike Lane along the entirety of the road within the City of Mississauga and can serve as an alternative to the existing Waterfront Trail.

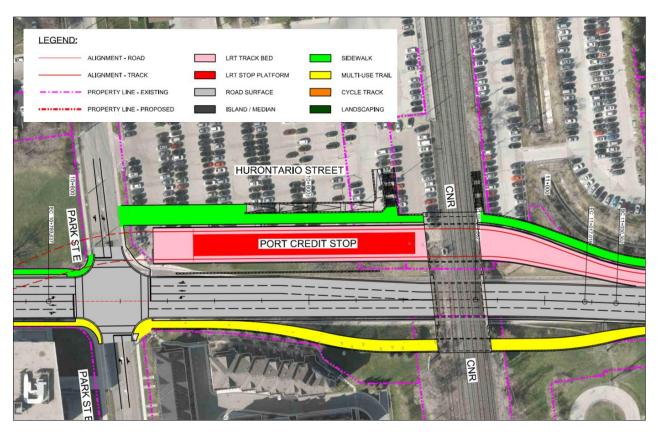


Figure 7 Hurontario LRT – Road Plan (AECOM, February 2017)

5. Future Background Traffic

5.1 Study Horizon Year

A future horizon year of 2026 was selected for the analysis of future traffic conditions, corresponding with the City's Transportation Impact Study Guidelines of a five-year period from the date of the Transportation Impact Study Report.

5.2 Corridor Growth

GHD applied the following growth rates to the study area roads depending on the peak period and direction of travel, consistent with traffic impact studies previously completed in the surrounding area. During the a.m. peak hour, no growth rate was applied to northbound volumes on Hurontario Street and a 1.5% compounded annually growth rate was applied to southbound movements. During the p.m. peak hour, a 0.5% growth rate was applied to northbound movements and a 1% growth rate was applied for southbound movements, compounded annually.

5.3 Background Development Traffic

GHD reviewed the city's development application web portal to determine which planned or approved background developments located near the subject site would contribute to traffic volumes at the study intersections. GHD located three sites including:

- 42-46 Park Street East & 23 Elizabeth Street North
- 22-28 Ann Street & 78 Park Street East
- 6, 8, 10 Ann Street

The proposed trip generation from each background development is summarized in the table below, with the trip distribution for each site provided in **Appendix F**. The total site trips from each of the three background developments are provided in **Figure 8**.

Table 1 Background Development Traffic

			Peak Hour Trips					
Background Development	GFA	Year	Weekday AM			Weekday PM		
			In	Out	Total	In	Out	Total
42-46 Park Street East & 23 Elizabeth Street North (LEA Consulting)	258 Residential Units	2020	13	50	63	45	28	73
22-28 Ann Street & 78 Park Street East 316 Residential Ur (LEA Consulting)		2019	18	59	77	52	26	78
6, 8, 10 Ann Street (GHD)	69 Residential Units	2014	5	24	29	22	11	33

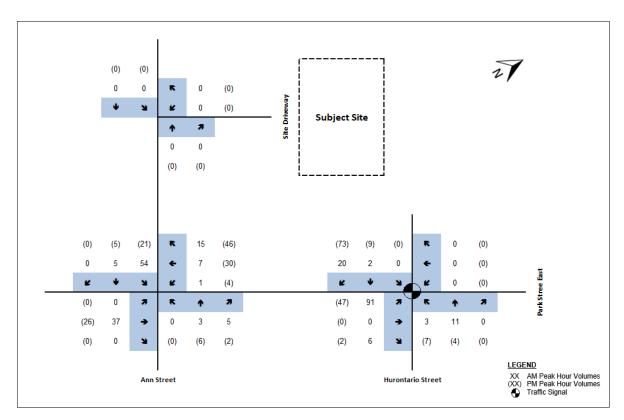


Figure 8 Total Background Development Site Traffic

5.4 Future Background Traffic Volumes

The background traffic volumes for the 2026 horizon year were derived by applying the respective growth rates to Hurontario Street and adding the total background development site traffic from **Figure 8**. The resulting 2026 future background traffic volumes are summarized in **Figure 9**.

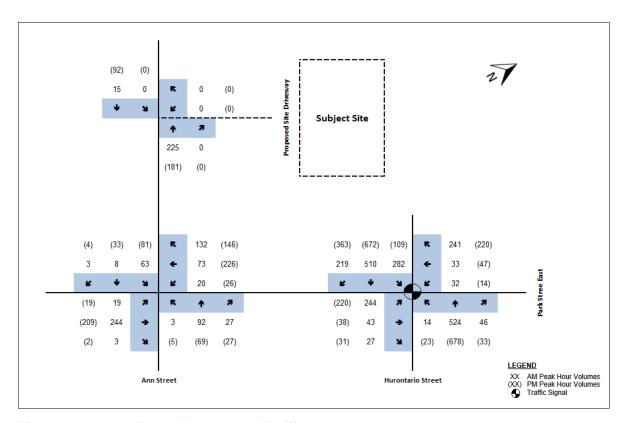


Figure 9 2026 Future Background Traffic Volumes

6. Site Generated Traffic

6.1 Site Traffic Generation

The subject site consists of two buildings, a 40-storey mixed-use building with 551 residential units and a 42-storey mixed-use building with 588 residential units. The subject site also includes 1,756 m² (18,998 ft²) of commercial GFA.

The trip generation for the residential uses was calculated using rates provided in the Institute of Transportation Engineer's (ITE) Trip Generation Manual, 11th Edition using Land Use Code (LUC) 222 (Multifamily Housing – High-Rise) for the residential portion of the proposed development and LUC 822 Strip Retail Plaza for the commercial portion.

A transit modal split was applied only to site trips generated by the residential portion of the development. With the Hurontario LRT having expected completion in Fall 2024, the transit modal split was applied to the estimated residential site trips using data from both the 2016 Transportation Tomorrow Survey (TTS) (**Table 2**) and the 2015 and 2031 Modal Split/Non-Auto Trip Reduction provided in the Port Credit GO Station Southeast Area Master Plan Study dated October 2015 (**Table 3**).

A base transit modal split was set for 2016 using the data extracted from the Transportation Tomorrow Survey and included data only from apartment buildings within the planning district of the proposed development (3877), along with two neighbouring planning districts (3642 and 3878). The data was also generated using only trips starting during the a.m. (7:00-9:00) and p.m. (16:00-19:00) peak periods Monday through Friday. The modal split for 2016 can be found in **Table 2**

A linear interpolation was derived from the 2015 and 2031 Modal Split provided in the area's Transportation Master Plan, provided in **Table 3**, to determine the projected modal split in 2026. With the splits provided in the Master Plan, it was determined that non-auto trips would increase by 0.94% a year during the a.m. peak hour and 1.25% during the p.m. peak hour for the 2026 Horizon period. The projected 2026 modal split is provided in **Table 4**.

No modal split reductions were applied to the commercial development with the assumption that only local trips will be generated by this portion of the proposed development.

Table 2 2016 TTS Modal Split Data for Planning Districts 3642, 3877, and 3878

	Percentage Split					
Transportation Mode	А	M	PM			
IVIOGE	in	out	in	out		
Transit	2%	21%	16%	2%		
Auto driver	67%	62%	67%	71%		
Auto passenger	22%	13%	9%	9%		
Walk	9%	4%	7%	18%		
TOTAL	100%	100%	100%	100%		

Table 3 2015 and 2031 Modal Split/Non-Auto Trip Reduction (Port Credit Go Station TMP)

Peak Period	Primary Mode o	of Travel in 2015	Primary Mode of Travel in 2031		
	Auto Driver	Non-Auto Trip	Auto Driver	Non-Auto Trip	
AM Peak	65%	35%	50%	50%	
PM Peak	75%	25%	55%	45%	

Table 4 Projected 2026 Modal Split

	Percentage Split					
Transportation Mode	А	M	PM			
Ivioue	in	out	in	out		
Transit	11%	30%	29%	15%		
Auto driver	57%	53%	54%	59%		
Auto passenger	22%	13%	9%	9%		
Walk	9%	4%	7%	18%		
TOTAL	100%	100%	100%	100%		

Table 5 below summarizes the estimated trip generation for the proposed development.

Table 5 Estimated Site Trips

	GFA	Parameters	Peak Hour					
Land Uses	(Dwelling		Weekday AM			Weekday PM		
	Units)		In	Out	Total	In	Out	Total
		Trip Ratio	34%	66%	100%	56%	44%	100%
		Gross Trips	104	203	307	179	140	319
Multifamily Housing	1,139 units	Modal Split	20%	34%	-	36%	33%	-
(High-Rise) (LUC 222)		Modal Split Reduction	21	70	91	65	46	111
		Total New Trips	83	133	216	114	94	208
Strip Potoil Plaza (40k)		Trip Ratio	60%	40%	100%	50%	50%	100%
Strip Retail Plaza (<40k) (LUC 822)	18,998 ft ²	Total New Trips	26	19	45	63	62	125
	Tota	al Primary Trips	109	152	261	177	159	336

The residential and commercial uses proposed at the subject site are expected to generate a total of 261 new two-way trips consisting of 109 inbound and 152 outbound trips during weekday a.m. peak hour and 336 new two-way trips consisting of 177 inbound and 159 outbound trips during the weekday p.m. peak hour.

6.2 Site Traffic Distribution and Assignment

The site generated traffic for the residential development was primarily distributed based on a review of the 2016 Transportation Tomorrow Survey (TTS) and the existing traffic patterns. Trips were assigned to the study area intersections based on reasonable routes for vehicles to minimize the travel time and distance under the existing road network.

The site generated traffic for the commercial development within the subject site was assumed to have a more local trip distribution, with trips assigned more evenly throughout the study area roads.

The directional split based on the 2016 Transportation Tomorrow Survey date for the residential site traffic distribution is provided in **Table 6** with the full calculation sheets provided in **Appendix B**. The site traffic distribution percentages for passenger vehicles for both land uses within the subject site are provided in **Figure 10** and **Figure 11** with the site generated traffic assignment to the study area road network for the weekday a.m. and p.m. peak hours provided in **Figure 12** and **Figure 13**.

Table 6 2016 TTS Data Directional Split

Peak Period	Direction	North	South	East	West
A N 4	Inbound	65%	0%	17%	18%
AM	Outbound	70%	0%	15%	15%
D1.4	Inbound	71%	0%	15%	14%
PM	Outbound	66%	0%	16%	18%

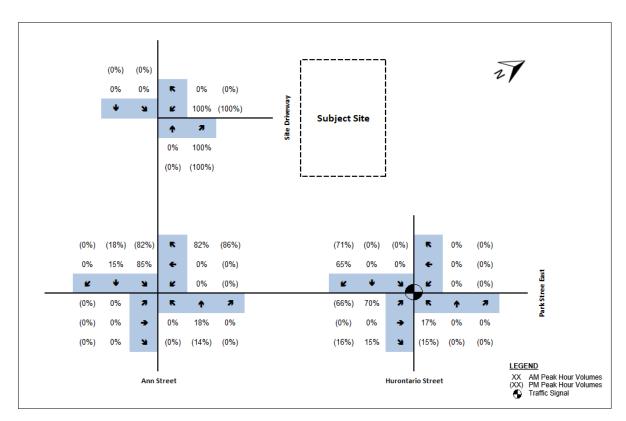


Figure 10 Trip Distribution - Residential

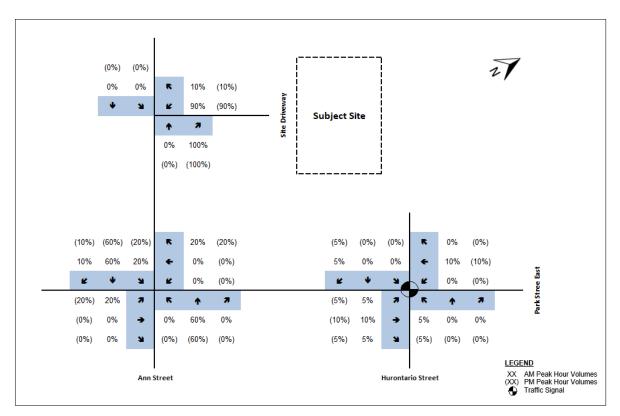


Figure 11 Trip Distribution – Commercial

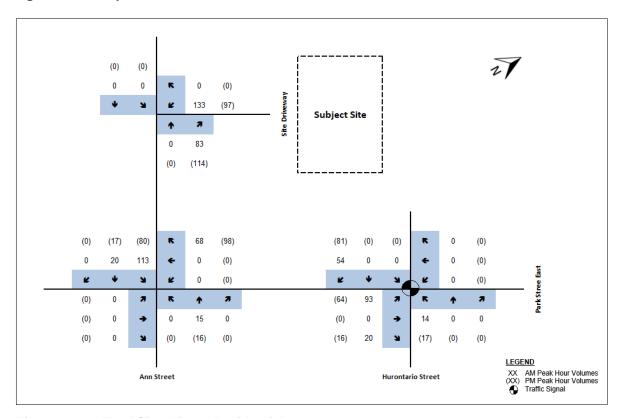


Figure 12 Total Site Trips – Residential

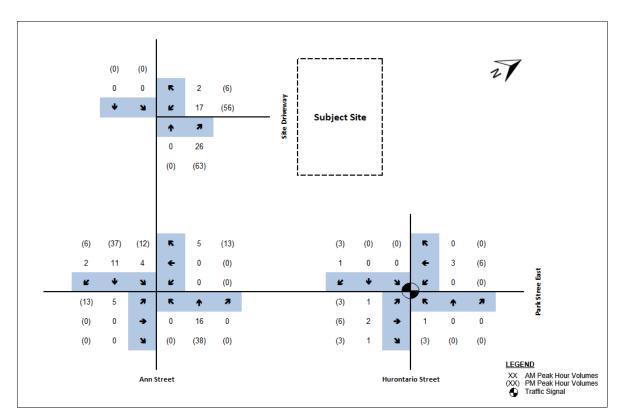


Figure 13 Total Site Trips - Commercial

7. Future Total Traffic

The future total traffic conditions in the weekday a.m. and p.m. peak hours for the 2026 planning horizon was derived by combining the projected future background traffic with the corresponding estimated site generated traffic. The resulting traffic volumes are presented in **Figure 14**

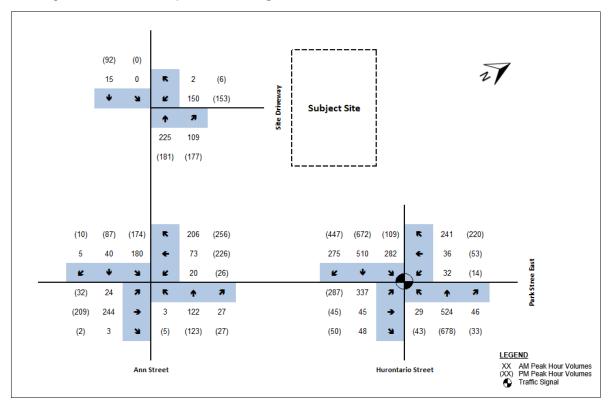


Figure 14 2026 Future Total Traffic Volumes

8. Capacity Analysis

The capacity analysis identifies how well the intersections and driveways are operating. The analysis contained within this report utilized the Highway Capacity Manual (HCM) 2000 procedure within the Synchro Version 10 Software package. The reported intersection volume-to-capacity ratios (v/c) are a measure of the saturation volume for each turning movement, while the levels-of-service (LOS) are a measure of the average delay for each turning movement. Queuing characteristics are reported as the predicted 95th percentile queue for each turning movement. Both pedestrian crossing volumes and heavy vehicle proportions are included in the analyses. The peak hour factors from the historic counts were used to analyze existing and future traffic conditions.

The analysis includes identification and required modifications and improvements (if any) at intersections where the addition of background growth or background growth plus site-generated traffic volumes causes the following:

'Critical' intersections and movements for a signalized intersection include:

- V/C ratios for overall intersections operations, through movements, or shared through/turning movements increase to 0.85 or above;
- V/C ratios for exclusive movements increase to 0.90 or above; or

- 95th percentile queue length for individual movements that are projected to, or exceed, the storage length.
- 'Critical' intersections and movements for an unsignalized intersection include:
 - Level of Services (LOS), based on average delay per vehicle, on individual movements is LOS "E" or greater; or
 - Queue length for individual movements that exceeds the lesser of 5 vehicles or the available queue storage.

The following tables summarize the HCM capacity results for the study intersections during the weekday a.m. and p.m. peak hours under existing (2021), future background (2026) and future total (2026) traffic conditions. The detailed calculation sheets are provided in **Appendix C**.

8.1 Hurontario Street and Park Street East

Capacity analysis at this intersection during the weekday a.m. and p.m. peak hours for the existing, future background, and future total traffic conditions are summarized in the following table.

Table 7 Capacity analysis of Hurontario Street and Park Street East

	Am Pe	eak Hour	PM Peak Hour		
Scenario	V/C (LOS) seconds	95 th % Que.	V/C (LOS) seconds	95 th % Que	
	Overall: 0.77 (C) 30		Overall: 0.62 (C) 20		
	EBL = 1.00 (F) 116	EBL = 90 m	EBL = 0.95 (F) 87	EBL = 65 m	
	EBTR = 0.12 (D) 37	EBTR = 25 m	EBTR = 0.11 (C) 29	EBTR = 15 m	
	WBL = 0.10 (D) 37	WBL = 15 m	WBL = 0.04 (C) 28	WBL = 5 m	
Existing 2021	WBTR = 0.33 (D) 40	WBTR = 30 m	WBTR = 0.46 (C) 32	WBTR = 45 m	
	NBL = 0.05 (C) 20	NBL = 10 m	NBL = 0.06 (A) 8	NBL = 5 m	
	NBTR = 0.42 (C) 25	NBTR = 80 m	NBTR = 0.36 (B) 10	NBTR = 65 m	
	SBL = 0.63 (B) 16	SBL = 50 m	SBL = 0.30 (B) 12	SBL = 30 m	
	SBTR = 0.40 (B) 14	SBTR = 60 m	SBTR = 0.47 (B) 12	SBTR = 80 m	
	Overall: 0.59 (C) 27		Overall: 0.63 (B) 20		
	EBL = 0.71 (D) 50	EBL = 70 m	EBL = 0.92 (E) 74	EBL = 70 m	
	EBTR = 0.11 (D) 39	EBTR = 20 m	EBTR = 0.10 (C) 28	EBTR = 15 m	
Future	WBL = 0.28 (E) 61	WBL = 20 m	WBL = 0.04 (C) 27	WBL = 5 m	
Background	WBTR = 0.42 (E) 63	WBTR = 40 m	WBTR = 0.36 (C) 30	WBTR = 35 m	
2026	NBL = 0.05 (B) 18	NBL = 10 m	NBL = 0.09 (A) 10	NBL = 10 m	
	NBTR = 0.34 (C) 21	NBTR = 80 m	NBTR = 0.34 (B) 11	NBTR = 60 m	
	SBL = 0.51 (B) 13	SBL = 55 m	SBL = 0.28 (B) 12	SBL = 25 m	
	SBTR = 0.36 (B) 13	SBTR = 70 m	SBTR = 0.50 (B) 13	SBTR = 85 m	
	Overall: 0.68 (C) 32		Overall: 0.71 (C) 23		
	EBL = 0.91 (E) 70	EBL = 105 m	EBL = 0.94 (E) 69	EBL = 100 m	
	EBTR = 0.12 (D) 37	EBTR = 20 m	EBTR = 0.11 (C) 24	EBTR = 20 m	
Future Total	WBL = 0.27 (E) 60	WBL = 20 m	WBL = 0.03 (C) 23	WBL = 5 m	
2026	WBTR = 0.51 (E) 63	WBTR = 45 m	WBTR = 0.32 (C) 26	WBTR = 40 m	
	NBL = 0.11 (C) 21	NBL = 15 m	NBL = 0.23 (B) 15	NBL = 15 m	
	NBTR = 0.35 (C) 24	NBTR = 80 m	NBTR = 0.38 (B) 14	NBTR = 60 m	
	SBL = 0.53 (B) 14	SBL = 55 m	SBL = 0.32 (B) 16	SBL = 25 m	
	SBTR = 0.4 (B) 15	SBTR = 75 m	SBTR = 0.58 (B) 17	SBTR = 85 m	

Scenario	Am Pe	ak Hour	PM Pe	PM Peak Hour					
Scenario	V/C (LOS) seconds	95 th % Que.	V/C (LOS) seconds	95 th % Que					
Future Total 2026 (Further Optimized)	Overall: 0.67 (C) 31 EBL = 0.88 (E) 64 EBTR = 0.11 (D) 36 WBL = 0.27 (E) 60 WBTR = 0.49 (E) 63 NBL = 0.11 (C) 21 NBTR = 0.36 (C) 24	EBL = 100 m EBTR = 20 m WBL = 20 m WBTR = 45 m NBL = 15 m NBTR = 85 m	Overall: 0.71 (C) 23 EBL = 0.87 (D) 50 EBTR = 0.11 (C) 25 WBL = 0.07 (D) 37 WBTR = 0.74 (D) 53 NBL = 0.22 (B) 14 NBTR = 0.37 (B) 13	EBL = 65 m EBTR = 15 m WBL = 10 m WBTR = 55 m NBL = 15 m NBTR = 60 m					
	SBL = 0.53 (B) 15 SBTR = 0.40 (B) 15	SBL = 60 m SBTR = 75 m	SBL = 0.31 (B) 15 SBTR = 0.58 (B) 16	SBL = 30 m SBTR = 95 m					

Under existing traffic conditions, the overall intersection has a reported v/c ratio of 0.77 LOS C and 0.62 LOS C during the a.m. and p.m. peak hours respectively. The intersection is operating with acceptable levels of delay for all individual movements with the exception of a critical movement in the eastbound left-turn approach during both peak periods. The approach is reporting a v/c ratio of 1.00 LOS F (116 seconds of delay) during the a.m. peak hour and 0.95 LOS F (87 seconds of delay) during the p.m. peak hour.

With the addition of corridor growth along Hurontario Street and the background developments during the 2026 future background horizon period and signal optimization, the overall reported v/c of the intersection is expected to decrease to 0.59 LOS C during the a.m. peak hour and increase to 0.63 LOS B during the p.m. peak hour. The eastbound left-turn approach remains a critical movement only during the p.m. peak hour (0.92 LOS E).

Under the 2026 future total traffic condition, with the addition of site traffic, the intersection continues to operate at satisfactory levels with the overall v/c ratio of the intersection increasing to 0.68 LOS C and 0.71 LOS C during the a.m. and p.m. peak hour respectively. The eastbound left-turn is once again critical during both peak periods, reporting a v/c ratio of 0.91 LOS E during the a.m. peak hour and 0.94 LOS E during the p.m. peak hour. With further signal timing improvements, there are only improvements to the overall v/c ratio in the a.m. peak (0.68 to 0.67 LOS C) with the eastbound left-turn approach reported to be below critical levels. During the a.m. peak hour, the v/c ratio is reduced from 0.91 LOS E to 0.88 LOS E and reduced from 0.92 LOS E to 0.87 LOS D during the p.m. peak hour.

No geometric improvements were identified at this intersection to accommodate the proposed development, with only the signal timing improvements and the addition of an eastbound left-turn phase..

8.2 Ann Street and Park Street East

Capacity analysis for this intersection during the weekday a.m. and p.m. peak hours for the existing, future background, and future total traffic conditions are summarized in the following table.

Table 8 Capacity analysis of Ann Street and Park Street East

Scenario	Am Pe	ak Hour	PM Peak Hour					
	V/C (LOS) seconds	95 th % Que.	V/C (LOS) seconds	95 th % Que				
	EBTLR = 0.35 (B) 10	EBTLR = 0 m	EBTLR = 0.33 (B) 11	EBTLR = 0 m				
	WBTL = 0.15 (A) 8	WBTL = 0 m	WBTL = 0.38 (A) 11	WBTL = 0 m				
Eviation 2004	WBR = 0.17 (A) 7	WBR = 0 m	WBR = 0.21 (A) 8	WBR = 0 m				
Existing 2021	NBTLR = 0.19 (A) 10	NBTLR = 0 m	NBTLR = 0.18 (B) 10	NBTLR = 0 m				
	SBTLR = 0.02 (A) 8	SBTLR = 0 m	SBTLR = 0.20 (B) 10	SBTLR = 0 m				

Scenario	Am Pe	ak Hour	PM Peak Hour						
Scenario	V/C (LOS) seconds	95 th % Que.	V/C (LOS) seconds	95 th % Que					
	EBTLR = 0.36 (B) 11	EBTLR = 0 m	EBTLR = 0.33 (B) 11	EBTLR = 0 m					
	WBTL = 0.14 (A) 8	WBTL = 0 m	WBTL = 0.39 (A) 11	WBTL = 0 m					
Future	WBR = 0.17 (A) 7	WBR = 0 m	WBR = 0.19 (A) 8	WBR = 0 m					
Background 2026	NBTLR = 0.18 (A) 10	NBTLR = 0 m	NBTLR = 0.16 (B) 10	NBTLR = 0 m					
2020	SBTLR = 0.11 (A) 9	SBTLR = 0 m	SBTLR = 0.19 (A) 10	SBTLR = 0 m					
	EBTLR = 0.43 (B) 13	EBTLR = 0 m	EBTLR = 0.42 (B) 14	EBTLR = 0 m					
	WBTL = 0.16 (A) 9	WBTL = 0 m	WBTL = 0.45 (B) 14	WBTL = 0 m					
Future Total	WBR = 0.31 (A) 10	WBR = 0 m	WBR = 0.40 (A) 11	WBR = 0 m					
2026	NBTLR = 0.26 (B) 11	NBTLR = 0 m	NBTLR = 0.3 (B) 13	NBTLR = 0 m					
	SBTLR = 0.36 (B) 12	SBTLR = 0 m	SBTLR = 0.48 (C) 15	SBTLR = 0 m					

Under the existing condition, the intersection of Park Street East and Ann Street operates at satisfactory levels with a delay of 10 seconds or less for each approach during the a.m. peak and 11 seconds or less during the p.m. peak hour.

With the addition of background traffic during the 2026 future background traffic condition there are marginal increases and decreases for each approach, with the largest increase occurring in the southbound approach with a reported v/c ratio increasing from 0.02 LOS A to 0.11 LOS A. All approaches now operate with an 11 second or less delay during both peak periods.

With the addition of site traffic under the 2026 future total traffic condition, the v/c ratio for all approaches continue to increase but remain well below critical levels.

No improvements are recommended at this intersection as a result of the proposed development.

8.3 Ann Street and the Proposed Site Access

Capacity analysis for this intersection during the weekday a.m. and p.m. peak hours for the existing, future background, and future total traffic conditions are summarized in the following table.

Table 9 Capacity analysis of Ann Street and the Proposed Site Access

Scenario	Am Pe	ak Hour	PM Peak Hour						
	V/C (LOS) seconds	95 th % Que.	V/C (LOS) seconds	95 th % Que					
Future Background 2026	NBTR = 0.13 (A) 0 SBTL = 0 (A) 0	NBTR = 0 m SBTL = 0 m	NBTR = 0.11 (A) 0 SBTL = 0 (A) 0	NBTR = 0 m SBTL = 0 m					
Future Total 2026	WBLR = 0.22 (B) 12 NBTR = 0.20 (A) 0 SBTL = 0 (A) 0	WBLR = 10 m NBTR = 0 m SBTL = 0 m	WBLR = 0.25 (B) 12 NBTR = 0.21 (A) 0 SBTL = 0 (A) 0	WBLR = 10 m NBTR = 0 m SBTL = 0 m					

Under all future traffic conditions, this intersection is expected to continue to operate satisfactorily with LOS A on Ann Street and only a 12 second delay for vehicles exiting the site driveway. No improvements are recommended at this intersection as a result of the proposed development.

9. Vehicle Swept Path Analysis

GHD undertook a Vehicle Swept Path Analysis to assess the proposed site plan's ability to accommodate the required turning movements of a Medium Sized Unit (MSU) Loading Vehicle, TAC Passenger Vehicle, Waste Collection Truck, and Emergency Vehicle. The results of the analysis, which are provided in **Appendix E**, illustrate that the site can sufficiently accommodate the aforementioned design vehicles.

10. Parking Review

10.1 Existing City of Mississauga Zoning By-law

The subject site is governed by the City of Mississauga's Zoning By-law 0225-2007, with the minimum parking requirement found in Section 3.1.2.1 for Condominium Apartments and 3.1.2.2 for the commercial land use. The minimum By-law requirement for each land use is as follows:

- Condominium, Apartment
 - o 1.00 resident space per studio unit
 - o 1.25 resident space per one-bedroom unit
 - o 1.40 resident space per two-bedroom unit
 - 1.75 resident space per three-bedroom unit
 - 0.20 visitor space per unit
- Retail Store
 - o 5.4 spaces per 100 m² GFA

The minimum parking required for the proposed development is as follow:

- 813 one-bedroom units x (1.25 spaces/unit) = 1,016 spaces
- 326 two-bedroom units x (1.40 spaces/unit) = 456 spaces
- 1,139 units x (0.2 spaces/unit) = 228 spaces
- 1,765 m2 x (5.4 spaces per 100 m² GFA) = 95 spaces

In total, 1,795 spaces are required under the City's By-law 0225-2007.

10.2 Proposed Site Parking

The following parking supply is proposed for the 1,139 residential units and 1,765 m² of commercial GFA:

- Resident parking spaces provided: 360 spaces. (0.32 spaces/unit)
- Shared residential visitor and commercial parking spaces provided: 114 spaces. (0.1 spaces/unit).

The development is proposing a total of 474 vehicular parking spaces, which is a shortfall of 1,321 parking spaces compared to the By-law requirement,

10.3 Mississauga Parking Regulations Study

The Parking Regulations, Draft Policy Directions for Consultation Study, dated May 2021, a study that followed the City of Mississauga's first Parking Master Plan and Implementation Strategy that was completed and approved by City Council in June 2019 aimed to adjust the minimum required parking for different areas of the city based on context and a price responsive approach in the most urbanized areas. The report evaluated areas based on a set of criteria and assigned them to one of four precincts based on how they scored on the criteria evaluation. The criteria evaluated elements related to Transit (rapid transit terminal/station locations, rapid transit interconnectivity), Public Parking, Planning Area (being an urban growth centre or intensification area), Land Use and Density (a mix of land uses as well as high density uses), and Active Transportation (walkability, cycling facilities and public bike share potential). With the area surrounding the proposed development answering yes to the criteria, as well as the high walkability score and being highly accessible to cyclist, it was assigned to Precinct 1. Within Precinct 1, the following minimum parking rates are proposed:

- Apartment
 - 0.80 Resident spaces per unit
 - 0.15 Visitor spaces per unit
- Retail Store
 - 3.0 spaces per 100 m² GFA
 - For visitor parking, a shared arrangement between the visitor/non-residential parking can be used with the greater of the two being the required number of spaces to be provided.

The minimum parking required for the proposed development based on the proposed rate is as follow:

- 1,139 units x (0.8 spaces/unit) = 911 spaces
- 1,139 units x (0.15 spaces/unit) = 171 spaces
- 1,765 m2 x (3.0 spaces per 100 m² GFA) = 53 spaces

In total, 1,082 spaces are required under the City's Draft Parking Regulations Study, a reduction of 713 spaces in comparison to the number of spaces required under the current City of Mississauga's Zoning By-law.

The subject site is deficient by 608 parking spaces compared to the rates provided in Parking Regulations Study report for a development in Precinct 1.

10.4 Approved Rates at Surrounding Developments

The following table summarizes the proposed parking rate at 28 Ann Street (formerly 22-28 Ann Street & 78 Park Street East).

Table 10 Approved Parking Rates in Surrounding Developments

Location	Unit Type	Approved Rate
22 20 Ame Change 9 70 Doub	1-Bedroom	0.5
22-28 Ann Street & 78 Park Street East	2-Bedroom	0.8
Street Last	Visitor and Retail	0.1

The minimum parking required for the subject site as per the approved rates for 22-28 Ann Street & 78 Park Street is as follows:

• 813 one-bedroom units x (0.5 spaces/unit) = 407 spaces

- 326 two-bedroom units x (0.8 spaces/unit) = 261 spaces
- 1,139 units x (0.1 spaces/unit) = 114 spaces

In total, 782 spaces are required using reduced rates recently approved in the area, a reduction of 1,013 spaces in comparison to the number of spaces required under the current City of Mississauga's Zoning By-law.

The subject site is deficient by 308 parking spaces compared to the rates approved for 28 Ann Street.

10.5 Approved Parking Rates Near High Order Transit

City of Ottawa

The City of Ottawa in December of 2019 officially opened the Confederation Line which runs through the downtown area. The City's Zoning By-Law parking requirements were revised to eliminate minimum parking requirements for developments within 600 metres of an LRT station and instead adopt a maximum parking allowance. As a result, residential developments near LRT stations are not required to provide any resident parking and are required to only provide visitor parking at a rate of 0.10 spaces per unit.

City of Brampton

In April of 2021 the City of Brampton passed By-Law 45-2021 for Parking Requirements in the Downtown, Central Area and a portion of the Hurontario-Main Corridor to amend the parking requirements and eliminate minimum parking requirements for specific uses. In recognition of Queen Street being the busiest transit corridor in Brampton and population and employment anticipated to grow by 40 to 50 percent over the next 25 years, the city is planning for rapid transit on Queen Street which aligns with their overall regional transportation plan. The passing of this By-Law is the first step in supporting the future rapid transit system and transit mode targets by allowing developers to provide parking based on market research and to market units to prospective residents who are looking to live in a walkable transit-oriented community where vehicle ownership is not required.

City of Toronto

In December of 2021 the City of Toronto adopted a new Zoning Bylaw Amendment that will remove most minimum parking requirements for new developments, including mixed-use buildings, and instead replaced it with a maximum parking space requirement. These changes are in alignment with the City's climate action strategy that will encourage residents to use alternative travel modes to the car, such as walking, cycling and public transit. The maximum parking rates in the draft Zoning By-Law for areas in Parking Zone A, which include areas near public transit, are as follows:

- 0.3 spaces per bachelor unit up to 45 ft²,
- 1.0 per bachelor unit greater than 45 ft²,
- 0.5 per one-bedroom unit
- 0.8 per two-bedroom units
- 1.0 per three or more bedroom units

North Oakville (Town of Oakville)

The Town of Oakville passed Zoning By-Law 2009-189, which provides parking requirements for the area of North Oakville. Included in this By-Law is a maximum requirement rate for parking spaces in certain residential land uses, such as apartment buildings with more than 4 storeys (up to 1.25 spaces per dwelling unit for residents, 0.2 for visitors). This By-Law is in line with the North Oakville Parking Strategy study, prepared in November 2009, which provided the Town with a strategy to create a pedestrian friendly and a more transit oriented suburb by encouraging a more efficient use of private and public parking resources and provide a reduced parking requirement to reflect transit planning goals.

10.6 Parking Assessment

Providing off-street residential parking influences a commuter choice on whether to drive or choose alternate forms of transportation. Providing more parking in general leads to a higher percentage of auto ownership and auto usage as well. Changing travel behaviour is best done when a prospective buyer is looking to purchase a unit and providing the opportunity for a prospective buyer to easily purchase a parking space either through making it affordable, at no additional cost, or having an excess in number of spaces available to purchase can introduce travel behaviour into an area that once established is hard to change.

As demonstrated in sections above, municipalities including Mississauga have begun to assist developers in helping to change travel behaviour by reducing or eliminating minimum parking requirements altogether for areas adjacent to high order transit stations. This approach is supportive of City of Mississauga policies to provide less parking than required given future envisioned built form and anticipating that those who choose to live in the Port Credit areas will use GO Transit, MiWay and the future Hurontario LRT services instead of a personal vehicle.

The proposed development will be heavily marketed to prospective purchasers who are looking to live in a walkable transit-oriented community where a vehicle is not required for commuting or discretionary trips and the limited number of parking spaces will be explicitly noted in any promotional material. Consequently, the subject site provides an excellent opportunity to introduce a significant population to the Port Credit area that is transit-oriented and supportive of the expected non-auto mode share of 50% for the a.m. peak hour and 45% for the p.m. peak hour in 2031 identified in the Port Credit GO Station Southeast Area Master Plan Study.

The development is proposing Travel Demand Management (TDM), as outlined in Section 11 of the report including planning and design, walking and cycling, transit, parking, carshare/bikeshare, wayfinding and trip planning, education and promotion that can be adopted to make alternatives more competitive to driving, reducing the dependency on auto trips, and the need to provide an excessive supply of parking.

11. Travel Demand Management

11.1 Travel Demand Management

Travel Demand Management (TDM) refers to a variety of strategies to reduce congestion, minimize the number of singleoccupant vehicles, encourage non-auto modes of travel, and reduce vehicle dependency to create a sustainable transportation system. TDM strategies have multiple benefits including the following:

- Reduced auto-related emissions to improve air quality;
- Decreased traffic congestion to reduce travel time;
- Increased travel options for businesses and commuters;
- Reduced personal transportation costs and energy consumptions; and
- Support Provincial smart growth objectives.

The combined benefits listed above will assist in creating a more active and livable community through improvements to overall active transportation standards for the local businesses and surrounding community.

11.2 Existing TDM Opportunities

11.2.1 Walking

Sidewalks are currently provided throughout the study area and the surrounding neighbourhood. Signalized pedestrian crosswalks are currently provided on all approaches along Hurontario Street at Park Street East, High Street East and Lakeshore Road East. These pedestrian crosswalks allow for a safer crossing for pedestrians to access the various amenities east of Hurontario Street (institutional and recreational). Pedestrian crossings are also provided along Lakeshore Road East at Hurontario Street and Elizabeth Street giving access to the many day to day amenities, shops, resturants and parks located along Lakeshore and to the waterfront.

MiWay Transit bus stops and the Port Credit GO Station are all within walking distance to the proposed development, reducing the need for a car to drive to the nearest public transit.

Figure 15 Transit Stops and Pedestrian Routes

11.2.2 Transit

GO Transit offers train service eastbound towards Union Station with a 15-minute headway from 5:00 a.m. until 7:30 p.m. A 15-minute headway train service is also offered in the westbound direction, with various terminal stations (Oakville GO, Aldershot GO and West Harbour GO).

MiWay Transit also offers bus service along various roads near the study area, with all buses servicing the stop at the Port Credit GO station. These routes include bus route 2 (to the north along Hurontario Street), 8 (to the north along Cawthra Road), 14 (to the west towards Clarkson GO Station along various collector roads) and 23 (east towards Clarkson GO and West towards Long Branch Go Station along Lakeshore Road East).

11.3 Future TDM Opportunities

11.3.1 Cycling Strategy

A minimum of 0.6 long-term bicycle parking spaces and 0.05 short-term bicycle parking spaces (with a minimum of 6 spaces being provided) per unit are required for the subject site. An additional 0.1 long-term and 0.2 short term parking spaces are required for every 100 m² of retail space are proposed for the subject site. The proposed development is providing 683 long-term and 57 short-term bicycle parking spaces for the residential development and 3 long-term and 4 short-term parking spaces for the retail portion of the development.

The City of Mississauga has outlined in their TDM Strategy and Implementation Plan a recommended minimum bike parking requirement based on land use. They state that many municipalities have established bicycle parking (both short-term and long-term parking) requirements to ensure that site user's have access to bike parking. The TDM Plan recommends a bike parking rate of 0.8 long-term parking spaces per unit and a minimum of 6 spaces for visitors (short-term) for residential uses and 0.5 a space and 1 space per 500 m² for long-term and short-term respectively for retail land uses. It also mentions that the City may wish to consider offering incentives to developers who wish to offer bicycle parking above and beyond this rate in lieu of conventional vehicle parking.

Bicycle repair stations can also be provided in a secure area and can provide residents the necessary bicycle maintenance tools and supplies (i.e., bicycle pumps, wrenches, lubricant, wrenches, screwdrivers, etc.).

As identified in the City of Mississauga's Parking Regulations Study as well as the city's Cycling Master Plan, Port Credit has been recommended as an area for Mississauga's Bike Share program. The many benefits of bike share programs include the access to a bicycle without having to worry about maintenance and theft, the flexibility of only using a bike for a portion of the trip and can help address the "first and last mile" challenges that public transit faces. As mentioned in the city's Cycling Master Plan, the success of a bike share program helps to build and promote a culture of cycling in the city.

The proposed development is located near many existing and proposed cycling routes within Mississauga. For example, the existing Waterfront Trail and the future Cycle Track/Separated Bike Lane proposed for Lakeshore Road will serve as a cycling arterial connecting Toronto and Burlington. A multi-use trail is also proposed on Hurontario Street that will connect the subject site to the existing and proposed cycling infrastructure that will run all along Hurontario Street from the waterfront to the northern limit of the city. The cycling infrastructure along Hurontario Street will provide a connection to the rest of the City of Mississauga's existing and proposed facilities provided in the city's Cycling Master Plan. The combination of more bicycle infrastructure along with a bike share program will only help to increase the cycling culture in the city and further promote a more active lifestyle

11.3.2 Transit Strategy

The proposed development is immediately adjacent to the future Port Credit Hurontario LRT station, which has an expected completion for Fall 2024. The LRT will travel 18 kilometers from the Port Credit LRT Station to the Brampton Gateway Terminal at Hurontario Street and Steeles Avenue. The line will service 19 stations, including stops at Cooksville GO Station and Mississauga City Centre (near Square One Shopping Centre). The proposed development is also adjacent to the Port Credit GO Station and will provide a pedestrian connection to the GO Station. Service along the Lakeshore West Line will allow residents to travel between the subject site and Downtown Toronto in approximately 30 minutes.

Transit screens can be placed in the building lobby to provide them information on the next bus/train at the nearby transit stops and would allow them to wait indoors until their preferred mode of public transit is nearby. This strategy will allow residents and visitors to stay in the lobby when the weather is not favourable (rain, snow, cold, windy, humid, etc.).

Transit maps and signage indicating where the local public transit stops are located can also be placed in the lobby to inform residents and visitors about the various public transit options available for shorter trips instead of using a car.

11.3.3 Parking Strategy

Unbundled parking can be used to separate the purchase of a property from a parking space to provide residents with the true cost of the parking space. Unbundled parking gives residents the choice between paying for a parking space or using another mode of transportation, with the latter encouraging other modes of transportation.

The subject site is also considering to provide 10% of parking spaces as EV Charger Ready Spaces within the parking spaces provided.

11.3.4 Carshare/Bikeshare Strategy

Carshare programs allow members to have access to various vehicles provided by the company without the financial and maintenance responsibilities that comes with car-ownership. Carshare companies offer their services at various rates (i.e., hourly, daily, etc.). These programs are seen as an alternative to car ownership or the need to purchase a second car and can be a benefit to the residents of the building and for the surrounding community as well. The provision of car share spaces will be explored in the future.

Bikeshare programs provide a more sustainable mode of transportation to residents and the community for short distance trips by encouraging people to find an alternative to car-use for shorter trips. The participation in bikeshare programs will also be explored in the future.

11.3.5 Wayfinding and Travel Planning Strategy

Information packages can be given out to new residents, including the GO Transit and MiWay maps and schedules along with cycling maps and other active transportation opportunities in the surrounding area. A map of the future Hurontario LRT line can also be handed out to new residents as an opportunity to promote this new mode of transportation in the surrounding area.

12. Conclusion

The proposed site plan prepared by Core Architects, dated February 2022, consists of two separate mixed-use buildings with the following characteristics:

- In total, the mixed-use development proposes 1,139 residential units and 1,765 m² of commercial GFA.
 - Tower A, a 40-storey mixed-use building with 551 residential units;
 - Tower B, a 42-storey mixed-use building with 588 residential units;

Access to the development is proposed via a full-move driveway located on Ann Street, north of Park Street East.

The subject site is expected to generate a total of 261 new two-way trips consisting of 109 inbound and 152 outbound trips during weekday a.m. peak hour and 336 new two-way trips consisting of 177 inbound and 159 outbound trips during the weekday p.m. peak hour.

The overall impact of the development generated traffic is negligible to the operation of the study area intersections and traffic flow along Hurontario Street, Park Street East and Ann Street with no geometric improvements required to accommodate the proposed development.

Under future total traffic conditions, the signal timings for the intersection of Hurontario Street and Park Street East were optimized as needed to reduce v/c ratios and delays. An eastbound left-turn phase was also added during all future a.m. peak scenarios and only the p.m. future total scenario to reduce v/c ratios and delays for that approach.

Application of the current City of Mississauga By-Law parking rates to the subject site results in a requirement of 1,795 parking spaces. The subject site provides a total of 474 spaces resulting in a deficit of 1,321 parking spaces.

The proposed site will be within walking distance to both the Port Credit GO station as well as the Port Credit transit stop on the future Hurontario LRT line, as such, providing parking based on market research and promoting multimodal alternatives through the proposed TDM measures to increase transit, walking and biking in the city will encourage residents to choose transit as an alternative to owning a vehicle.

Recognizing the growing trend within the GTA and within the Port Credit Area to reduce auto dependency as evidenced by the recommendations of the Mississauga Parking Regulations Study, reduced parking rates approved within the area and the intent to market these units to people place a high importance on transit and walking accessibility when choosing a place to live, it is our opinion that the reduced parking rates provided for the proposed site is adequate to meet the future resident demand of the site.

Appendices

Appendix A Traffic Data

LEA CONSULTING LTD

625 Cochrane Drive 9th Floor Markham, Ontario, L3R 9R9

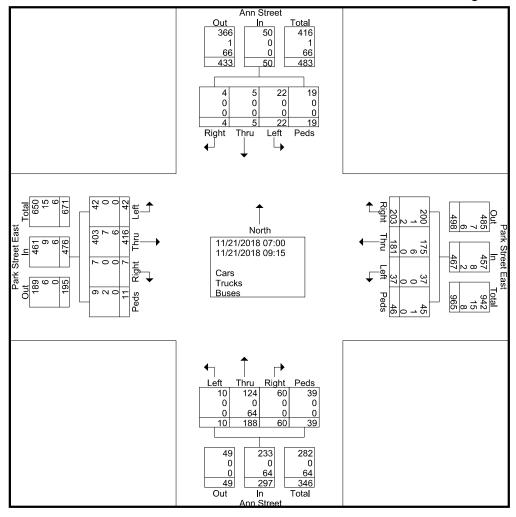
Project No.: 19244

Location: Ann St & Park St E Weather: Light Rain / Snow Surveyor(s): Natalie Law File Name: Ann&Park-AM

Site Code : 19244016 Start Date : 11/21/2018

Page No : 1

Groups Printed- Cars - Trucks - Buses

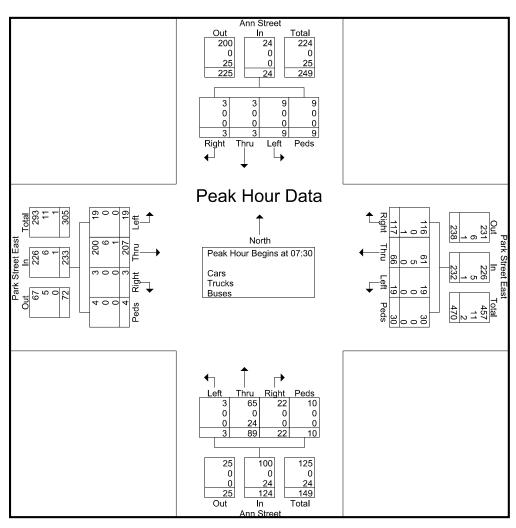

	Ann Street Park Street East							Ann Street Park Street East													
			Southbound Westbound					Northbound					Eastbound								
Start Time	Left	Thru	Right	Peds		Left					1 6										let Tetal
	Leit				App. Total					App. Total	Leit				App. Total					App. Total	Int. Total
07:00	1	0	0	0	1	8	3	20	3	34	1	30	5	3	39	8	38	0	2	48	122
07:15	1	0	0	2	3	1	8	(4	20	0	15	15	3	33	4	45	0	1	50	106
07:30	1	0	1	2	4	4	17	34	9	64	0	24	8	3	35	5	52	2	0	59	162
07:45	1	1_	0	1	3	9	17_	30_	5_	61	0	23_	4_	2_	29	3_	51	0	1_	55	148_
Total	4	1	1	5	11	22	45	91	21	179	1	92	32	11	136	20	186	2	4	212	538
08:00	2	1	0	6	9	3	23	31	9	66	2	29	6	1	38	8	53	0	3	64	177
08:15	5	1	2	0	8	3	9	22	7	41	1	13	4	4	22	3	51	1	0	55	126
08:30	0	0	0	3	3	1	25	21	3	50	3	14	8	1	26	4	27	3	2	36	115
08:45	4	0	1	4	9	2	32	17	3	54	1	11	4	12	28	2	39	0	1	42	133
Total	11	2	3	13	29	9	89	91	22	211	7	67	22	18	114	17	170	4	6	197	551
					'																
09:00	4	2	0	1	7	3	23	14	2	42	2	17	4	9	32	4	26	0	1	31	112
09:15	3	0	0	0	3	3	24	7	1	35	0	12	2	1	15	1	34	1	0	36	89
Grand Total	22	5	4	19	50	37	181	203	46	467	10	188	60	39	297	42	416	7	11	476	1290
Apprch %	44	10	8	38		7.9	38.8	43.5	9.9		3.4	63.3	20.2	13.1		8.8	87.4	1.5	2.3		
Total %	1.7	0.4	0.3	1.5	3.9	2.9	14	15.7	3.6	36.2	0.8	14.6	4.7	3	23	3.3	32.2	0.5	0.9	36.9	
Cars	22	5	4	19	50	37	175	200	45	457	10	124	60	39	233	42	403	7	9	461	1201
% Cars	100	100	100	100	100	100	96.7	98.5	97.8	97.9	100	66	100	100	78.5	100	96.9	100	81.8	96.8	93.1
Trucks	0	0	0	0	0	0	6	1	1	8	0	0	0	0	0	0	7	0	2	9	17
% Trucks	ő	0	0	0	0	n	3.3	0.5	2.2	1.7	0	0	0	0	0	0	1.7	0	18.2	1.9	1.3
Buses	0	0		0	0		<u> </u>	2	0	2		64	0	0	64	0	6	0	0	6	72
	0	0	0	0	0	0	0	4	0		0	34	0	0		0	_	0	0	1.3	5.6
% Buses	ı U	U	U	U	U	U	U	I	U	0.4	U	34	U	U	21.5	U	1.4	U	U	1.3	0.0

625 Cochrane Drive 9th Floor Markham, Ontario, L3R 9R9

File Name: Ann&Park-AM

Site Code : 19244016 Start Date : 11/21/2018

Page No : 2


625 Cochrane Drive 9th Floor Markham, Ontario, L3R 9R9

File Name: Ann&Park-AM

Site Code : 19244016 Start Date : 11/21/2018

Page No : 3

		Α	nn Str	eet			Park	Stree	t East			Α	nn Str	eet			Park	Stree	t East		
		Sc	outhbo	und			V	/estbo	und			N	orthbo	und			E	astbou	ınd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	to 09:	15 - Pea	k 1 of	1														
Peak Hour fo	r Entir	e Inter	sectior	n Begir	ns at 07:	30															
07:30	1	0	1	2	4	4	17	34	9	64	0	24	8	3	35	5	52	2	0	59	162
07:45	1	1	0	1	3	9	17	30	5	61	0	23	4	2	29	3	51	0	1	55	148
08:00	2	1	0	6	9	3	23	31	9	66	2	29	6	1	38	8	53	0	3	64	177
08:15	5	1_	2	0	8	3	9	22	7	41	1_	13	4	4	22	3	51	1_	0	55	126_
Total Volume	9	3	3	9	24	19	66	117	30	232	3	89	22	10	124	19	207	3	4	233	613
% App. Total	37.5	12.5	12.5	37.5		8.2	28.4	50.4	12.9		2.4	71.8	17.7	8.1		8.2	88.8	1.3	1.7		
PHF	.450	.750	.375	.375	.667	.528	.717	.860	.833	.879	.375	.767	.688	.625	.816	.594	.976	.375	.333	.910	866_
Cars	9	3	3	9	24	19	61	116	30	226	3	65	22	10	100	19	200	3	4	226	576
% Cars	100	100	100	100	100	100	92.4	99.1	100	97.4	100	73.0	100	100	80.6	100	96.6	100	100	97.0	94.0
Trucks	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	6	0	0	6	11
% Trucks	0	0	0	0	0	0	7.6	0	0	2.2	0	0	0	0	0	0	2.9	0	0	2.6	1.8
Buses	0	0	0	0	0	0	0	1	0	1	0	24	0	0	24	0	1	0	0	1	26
% Buses	0	0	0	0	0	0	0	0.9	0	0.4	0	27.0	0	0	19.4	0	0.5	0	0	0.4	4.2

625 Cochrane Drive 9th Floor Markham, Ontario, L3R 9R9

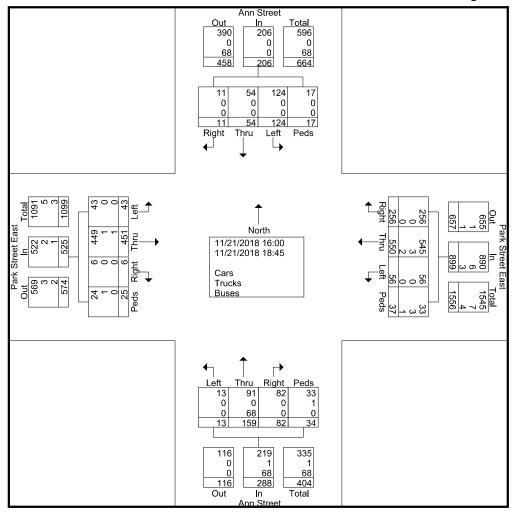
Project No.: 19244

Location: Ann St & Park St E Weather: Light Rain / Snow Surveyor(s): Natalie Law File Name: Ann&Park-PM

Site Code : 19244016 Start Date : 11/21/2018

Page No : 1

Groups Printed- Cars - Trucks - Buses

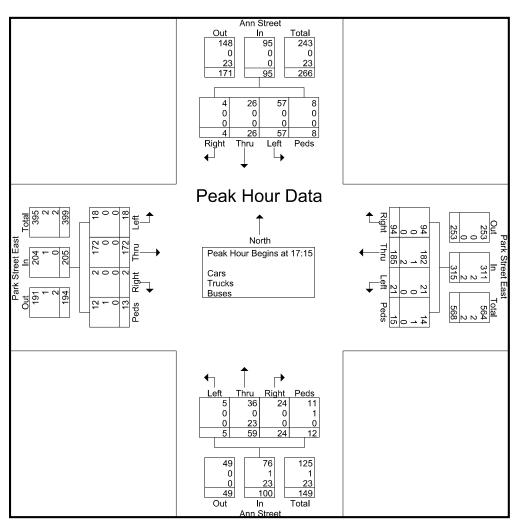

								Group	s Printe	ed- Cars	s - Truc	<u>cks - B</u>	uses								
		Α	ınn Str	eet			Park	Stree	t East			А	ınn Str	eet			Park	Stree	t East		
		Sc	<u>outhbo</u>	und			W	/estbo	und			N	orthbo	und			E	astbou	ınd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
16:00	5	6	1	2	14	7	41	14	3	65	0	12	5	3	20	6	40	0	1	47	146
16:15	7	1	1	1	10	3	38	19	2	62	0	11	10	3	24	2	28	1	1	32	128
16:30	4	0	0	0	4	2	35	19	4	60	1	10	19	1	31	0	45	1	0	46	141
16:45	14	3	3	3	23	7	50	17	1_	75	0	13	5	0	18	4	29	0	0	33	149
Total	30	10	5	6	51	19	164	69	10	262	1	46	39	7	93	12	142	2	2	158	564
17:00	12	5	2	3	22	5	55	20	7	87	3	14	7	5	29	2	33	0	4	39	177
17:15	14	4	1	2	21	4	55	16	5	80	1	8	6	3	18	3	42	1	1	47	166
17:30	15	6	0	2	23	4	50	31	3	88	1	17	9	4	31	4	39	1	8	52	194
17:45	12	5	2	1	20	9	38	17	1	65	1	18	1	4	24	3	46	0	0	49	158
Total	53	20	5	8	86	22	198	84	16	320	6	57	23	16	102	12	160	2	13	187	695
18:00	16	11	1	3	31	4	42	30	6	82	2	16	8	1	27	8	45	0	4	57	197
18:15	6	4	0	0	10	4	47	18	3	72	2	13	4	5	24	3	34	0	2	39	145
18:30	1	2	0	0	3	5	63	29	1	98	1	18	3	3	25	2	23	0	3	28	154
18:45	18	7	0	0	25	2	36	26	1	65	1	9	5	2	17	6	47	2	1	56	163
Total	41	24	1	3	69	15	188	103	11	317	6	56	20	11	93	19	149	2	10	180	659
Grand Total	124	54	11	17	206	56	550	256	37	899	13	159	82	34	288	43	451	6	25	525	1918
Apprch %	60.2	26.2	5.3	8.3		6.2	61.2	28.5	4.1		4.5	55.2	28.5	11.8		8.2	85.9	1.1	4.8		
Total %	6.5	2.8	0.6	0.9	10.7	2.9	28.7	13.3	1.9	46.9	0.7	8.3	4.3	1.8	15	2.2	23.5	0.3	1.3	27.4	
Cars	124	54	11	17	206	56	545	256	33	890	13	91	82	33	219	43	449	6	24	522	1837
% Cars	100	100	100	100	100	100	99.1	100	89.2	99	100	57.2	100	97.1	76	100	99.6	100	96	99.4	95.8
Trucks	0	0	0	0	0	0	3	0	3	6	0	0	0	1	1	0	1	0	1	2	9
% Trucks	0	0	0	0	0	0	0.5	0	8.1	0.7	0	0	0	2.9	0.3	0	0.2	0	4	0.4	0.5
Buses	0	0	0	0	0	0	2	0	1	3	0	68	0	0	68	0	1	0	0	1	72
% Buses	0	0	0	0	0	0	0.4	0	2.7	0.3	0	42.8	0	0	23.6	0	0.2	0	0	0.2	3.8

625 Cochrane Drive 9th Floor Markham, Ontario, L3R 9R9

File Name: Ann&Park-PM

Site Code : 19244016 Start Date : 11/21/2018

Page No : 2


625 Cochrane Drive 9th Floor Markham, Ontario, L3R 9R9

File Name: Ann&Park-PM

Site Code : 19244016 Start Date : 11/21/2018

Page No : 3

		Α	nn Str	eet			Park	Stree	t East			Α	nn Str	eet			Park	Stree	t East		
		Sc	outhbo	und			V	/estboi	und			N	orthbo	und			Е	astbou	ınd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	16:00	to 18:4	45 - Pea	ık 1 of	1														
Peak Hour fo	r Entir	e Inter	sectior	n Begir	ns at 17:	15															
17:15	14	4	1	2	21	4	55	16	5	80	1	8	6	3	18	3	42	1	1	47	166
17:30	15	6	0	2	23	4	50	31	3	88	1	17	9	4	31	4	39	1	8	52	194
17:45	12	5	2	1	20	9	38	17	1	65	1	18	1	4	24	3	46	0	0	49	158
18:00	16	11_	1	3	31	4	42	30	6	82	2	16	8	1	27	8	45	0	4	57	197
Total Volume	57	26	4	8	95	21	185	94	15	315	5	59	24	12	100	18	172	2	13	205	715
% App. Total	60	27.4	4.2	8.4		6.7	58.7	29.8	4.8		5	59	24	12		8.8	83.9	1_	6.3		
PHF	.891	.591	.500	.667	.766	.583	.841	.758	.625	.895	.625	.819	.667	.750	.806	.563	.935	.500	.406	.899	.907
Cars	57	26	4	8	95	21	182	94	14	311	5	36	24	11	76	18	172	2	12	204	686
% Cars	100	100	100	100	100	100	98.4	100	93.3	98.7	100	61.0	100	91.7	76.0	100	100	100	92.3	99.5	95.9
Trucks	0	0	0	0	0	0	1	0	1	2	0	0	0	1	1	0	0	0	1	1	4
% Trucks	0	0	0	0	0	0	0.5	0	6.7	0.6	0	0	0	8.3	1.0	0	0	0	7.7	0.5	0.6
Buses	0	0	0	0	0	0	2	0	0	2	0	23	0	0	23	0	0	0	0	0	25
% Buses	0	0	0	0	0	0	1.1	0	0	0.6	0	39.0	0	0	23.0	0	0	0	0	0	3.5

Count Name: 20248_HurontarioSt&ParkStE-AM Site Code: 20248_Start Date: 12/05/2019 Page No: 3

> Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 Klo@LEA.ca

Turning Movement Peak Hour Data (8:00 AM)

•					•	-	20	200		ואוסיפווופותו פמר ווסמו במנמ (סיסס ביות)	2) () ()	(1)								
		Η	Hurontario Street	+			Par	Park Street East				Hur	Hurontario Street				Par	Park Street East	+	-	
T troto		0)	Southbound				>	Westbound				Z	Northbound				-	Eastbound		•	
Start IIMe	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
8:00 AM	44	92	44	16	183	0	6	31	5	40	3	141	9	8	150	36	13	2	10	54	427
8:15 AM	74	91	49	17	214	5	5	99	4	76	1	115	12	12	128	20	14	3	9	67	485
8:30 AM	109	147	52	6	308	13	7	87	2	107	4	114	23	9	141	32	10	7	3	49	902
8:45 AM	35	139	40	11	214	14	12	22	4	83	3	143	2	17	151	35	9	9	2	47	495
Total	262	472	185	53	919	32	33	241	15	306	11	513	46	43	570	153	43	21	21	217	2012
Approach %	28.5	51.4	20.1			10.5	10.8	78.8			1.9	90.0	8.1		-	70.5	19.8	9.7			
Total %	13.0	23.5	9.5		45.7	1.6	1.6	12.0		15.2	0.5	25.5	2.3	-	28.3	9.7	2.1	1.0		10.8	
PHF	0.601	0.803	0.889		0.746	0.571	0.688	0.693	-	0.715	0.688	0.897	0.500	-	0.944	0.765	0.768	0.750		0.810	0.831
Lights	253	435	182		870	32	33	219		284	6	479	46		534	151	42	21		214	1902
% Lights	9.96	92.2	98.4	,	94.7	100.0	100.0	6.06		92.8	81.8	93.4	100.0		93.7	98.7	7.76	100.0	,	98.6	94.5
Buses	6	25	1		35	0	0	20		20	2	22	0		24	2	0	0	,	2	81
% Buses	3.4	5.3	0.5		3.8	0.0	0.0	8.3		6.5	18.2	4.3	0.0	,	4.2	1.3	0.0	0.0	,	6.0	4.0
Trucks	0	12	2		14	0	0	2		2	0	12	0		12	0	0	0	,	0	28
% Trucks	0.0	2.5	1.1		1.5	0.0	0.0	0.8		0.7	0.0	2.3	0.0		2.1	0.0	0.0	0.0		0.0	1.4
Bicycles on Road	0	0	0		0	0	0	0		0	0	0	0		0	0	1	0		1	1
% Bicycles on Road	0.0	0.0	0.0		0.0	0.0	0.0	0.0	,	0.0	0.0	0.0	0.0	,	0.0	0.0	2.3	0.0	,	0.5	0.0
Bicycles on Crosswalk				0	-				0				٠	0					0		
% Bicycles on Crosswalk	-		-	0.0	1	-	-	-	0.0	-	-		-	0.0	-	-	-		0.0	-	-
Pedestrians				53					15	•				43					21		
% Pedestrians				100.0					100.0					100.0					100.0		

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 Klo@LEA.ca

Count Name: 20248_HurontarioSt&ParkStE-AM Site Code: 20248 Start Date: 12/05/2019 Page No: 4

	Park Street East [E] Out In Total 341 284 625 9 20 29 0 2 2 1 0 1 0 0 0 351 306 657 219 33 32 0 20 0 0 0 2 0 0 0 0 0 0 0 0 0 15 241 33 32 15 R T L P	
Hurontaino Street [N]	12092019 800 AM 12092019 8	479 4 122 12 12 12 12 0 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 0 10 0 0 0
	[W]	

Turning Movement Peak Hour Data Plot (8:00 AM)

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 Klo@LEA.ca

Count Name: 20248_HurontarioSt&ParkStE-PM Site Code: 20248 Start Date: 12/05/2019 Page No: 3

Turning Movement Peak Hour Data (5:00 PM)

		Ē	Hurontario Street	ŧ	_	-	ກ <u>ເ</u>	Park Street Fast	5	Dark Street Fast Hirontario Street	5	1 ±	Hurontario Street				Dag	Dark Street Fast			
į			Southbound				>	Westbound		-		z	Northbound					Eastbound		•	
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
5:00 PM	24	152	28	6	234	4	10	99	3	80	3	158	6	6	170	31	5	4	6	40	524
5:15 PM	31	153	75	9	259	3	16	47	10	99	2	188	6	6	199	20	12	3	10	65	589
5:30 PM	23	162	64	9	249	4	10	46	7	09	3	134	5	7	142	20	4	2	2	26	477
5:45 PM	22	139	89	17	229	2	6	52	7	63	7	152	8	14	167	65	16	19	6	100	559
Total	100	909	265	38	971	13	45	211	27	569	15	632	31	39	879	166	37	28	30	231	2149
Approach %	10.3	62.4	27.3			4.8	16.7	78.4	-		2.2	93.2	4.6	-	-	71.9	16.0	12.1	-		
Total %	4.7	28.2	12.3		45.2	9.0	2.1	9.8		12.5	0.7	29.4	1.4		31.5	7.7	1.7	1.3	-	10.7	
PHF	908.0	0.935	0.883	,	0.937	0.813	0.703	0.799	-	0.841	0.536	0.840	0.861	-	0.852	0.638	0.578	0.368		0.578	0.912
Lights	86	591	264		953	13	45	210		268	15	614	31		099	165	37	27		229	2110
% Lights	0.86	97.5	9.66		98.1	100.0	100.0	99.5	-	9.66	100.0	97.2	100.0		97.3	99.4	100.0	96.4		99.1	98.2
Buses	1	14	-		16	0	0	0		0	0	13	0		13	1	0	0		1	30
% Buses	1.0	2.3	0.4		1.6	0.0	0.0	0.0		0.0	0.0	2.1	0.0	,	1.9	9.0	0.0	0.0		0.4	1.4
Trucks		_	0		2	0	0	0	-	0	0	5	0		5	0	0	1		1	8
% Trucks	1.0	0.2	0.0		0.2	0.0	0.0	0.0	-	0.0	0.0	8.0	0.0		0.7	0.0	0.0	3.6		0.4	0.4
Bicycles on Road	0	0	0		0	0	0	1		1	0	0	0		0	0	0	0		0	1
% Bicycles on Road	0.0	0.0	0.0	1	0.0	0.0	0:0	0.5	1	0.4	0.0	0.0	0.0	1	0.0	0.0	0.0	0.0		0.0	0.0
Bicycles on Crosswalk	-			2			٠		_					0	1				0		
% Bicycles on Crosswalk		•		5.3	-	-	-		3.7		•		-	0.0	-			1	0.0		1
Pedestrians	-			36		-	•		26					39					30		
% Pedestrians	_			94.7		_			96.3					100.0					100.0		

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 Klo@LEA.ca

Count Name: 20248_HurontarioSt&ParkStE-PM Site Code: 20248 Start Date: 12/05/2019 Page No: 4

	Park Street East [E] Out In Total 166 268 434 1 0 1 1 0 1 1 0 1 0 0 0 168 269 437 210 45 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 27 R T L P	
Huonitain Sir Huonitain Sir 889 953 14 16 5 2 2 2 5 2 0 0 0 0 1009 971 14 16 10 0 0 0 10	Peak Hour Data Peak	13 13 13 13 13 13 13 13

Turning Movement Peak Hour Data Plot (5:00 PM)

Signal Timing Report

Runtime: 2019-11-28 13:42:19

		0704						Runtime:	2019-11-28 13:42:19
Region Mississ		evice: 0704 Signal ID: 0	704	Lo	cation: HUR	ONTARIO STRE	ET N at Park S	treet	
•		•							•
Phase	Units	1	2	3	4	5	6	7	8
Walk	Sec	0	9	0	10	0	9	0	10
Ped Clear Min Green	Sec	0 0	17 8	0	21 8	0 5	17 8	0	21 8
Passage	Sec Sec	0.0	3.0	0.0	3.0	2.0	3.0	0.0	3.0
Maximum 1	Sec	0.0	30	0.0	30	15	3.0	0.0	30
Maximum 2	Sec	0	30	0	30	15	30	0	30
Yellow Change	Sec	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0
Red Clearance	Sec	0.0	3.0	0.0	3.0	0.0	3.0	0.0	3.0
Red Revert	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before	Veh	0	0	0	0	0	0	0	0
Time To Reduce	Sec	0	0	0	0	0	0	0	0
Reduce By	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[P2] Start Up	Enum	other	redClear	other	phaseNotOn	phaseNotOn	redClear	other	phaseNotOn
[P2] Options	Bit	0	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	0	Enabled Non Lock Det Dual Entry	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	0	Enabled Non Lock Det Dual Entry
[P2] Ring	Ring	0	1	0	1	2	2	0	2
[P2] Concurrency	Phase (,)	()	(5,6)	()	(8)	(2)	(2)	()	(4)
Coord Pattern	Units	1	2	3	4	5	6	7	8
Cycle Time	Sec	105	100	100	140	100	0	0	0
Offset	Sec	2	16	96	97	19	0	0	0
Split	Split	1	2	3	4	5	0	0	0
Sequence	Sequence	1	1	1	1	1	0	0	0
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode	Enum	none	none	none	none	phaseOmitted	none	none	none
Split 1 - Time	Sec	0	63	0	42	0	63	0	42
Split 1 - Coord	Enum	false	true	false	false	false	true	false	false
Split 2 - Mode	Enum	none	none	none	none	phaseOmitted	none	none	none
Split 2 - Time	Sec	0	62	0	38	0	62	0	38
Split 2 - Coord	Enum	false	true	false	false	false	true	false	false
Split 3 - Mode	Enum	none	none	none	none	phaseOmitted	none	none	none
Split 3 - Time	Sec	0	57	0	43	0	57	0	43
Split 3 - Coord	Enum	false	true	false	false	false	true	false	false
Split 4 - Mode	Enum	none	none	none	pedRecall	none	none	none	none
Split 4 - Time	Sec	0	91	0	49	25	66	0	49
Split 4 - Coord	Enum	false	true	false	false	false	true	false	false
Split 5 - Mode	Enum	none	none	none	pedRecall	none	none	none	none
Split 5 - Time	Sec	0	60	0	40	23	37	0	40
Split 5 - Coord	Enum	false	true	false	false	false	true	false	false
TB Schedule	Units	1	2	3	4	5	6	7	8
Month	Bit	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND		-F	A	, M	J
Day of Week	Bit	-MTWTF-	S	S	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	12345678901234	12345678901234	12345678901234	1	8	9		
·	ы	56789012345678 901	56789012345678 901	56789012345678 901					
Day Plan	Number	1	3	2	3	3	3	3	3
TB Schedule	Units	9	10	11	12	13	14	15	16
Month	Bit	A	S	O	D	D	D	0	0
Day of Week	Bit	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	5 	-2	4 	5	-6	4	· ·	0
Day Plan	Number	3	3	3	3	3	3	0	0
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	6	7	9	15	16	19	3
Plan 1 Minute	Min	0	0	0	30	0	30	30	0
Plan 1 Action	Number	8	1	4	2	5	3	2	7
Plan 2 Hour	Hour	0	7	3	0	0	0	0	0
Plan 2 Minute	Min	0	0	0	0	0	0	0	0
Plan 2 Action	Number	8	2	7	0	0	0	0	0
Plan 3 Hour	Hour	0	8	23	3	0	0	0	0
Plan 3 Minute	Min	0	0	0	0	0	0	0	0
Plan 3 Action	Number	8	2	8	7	0	0	0	0
TB Action	Units	1	2	3	4	5	6	7	8
Pattern	Enum	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Free	Free
Aux. Functions	Bit	0	0	0	0	0	0	0	0
Spec. Functions	Bit	0	0	0	0	0	0	0	0

Signal Timing Report

8080

Device:

Runtime: 2019-11-28 13:44:54

	D	evice: 0808							
Region Missis	sauga	Signal ID: 0	808	Lo	cation: LA	KESHORE ROAD	E at Elizabetl	n Street	
: Phase	Units	1	2	3	4	5	6	7	8
Walk	Sec	0	8	0	8	0	0	0	0
Ped Clear	Sec	0	13	0	13	0	0	0	0
Min Green	Sec	5	8	0	8	0	0	0	0
Passage	Sec	2.0	3.0	0.0	3.0	0.0	0.0	0.0	0.0
Maximum 1	Sec	10	80	0	30	0	0	0	0
Maximum 2	Sec	10	80	0	30	0	0	0	0
Yellow Change	Sec	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0
Red Clearance	Sec	0.0	2.0	0.0	2.5	0.0	0.0	0.0	0.0
Red Revert	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before	Veh	0	0	0	0	0	0	0	0
Time To Reduce	Sec	0	0	0	0	0	0	0	0
Reduce By	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[P2] Start Up	Enum	phaseNotOn	redClear	other	phaseNotOn	other	other	other	other
[P2] Options	Bit	Enabled	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Act Rest In Walk	0	Enabled Non Lock De	0 t	0	0	0
[P2] Ring	Ring	1	1	0	1	0	0	0	0
[P2] Concurrency	Phase (,)	()	0	()	()	0	()	0	0
Coord Pattern	Units	1	2	3	4	5	6	7	8 8
Cycle Time	Sec	140	120	120	120	0	0	0	0
Offset	Sec	104	116	47	47	0	0	0	0
Split	Split	1	2	3	4	0	0	0	0
Sequence	Sequence	1	1	1	1	0	0	0	0
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode	Enum	maxVehRecall		none			none		none
Split 1 - Time	Sec	10	none 98	0	none 32	none 0	0	none 0	0
Split 1 - Coord	Enum	false	true	false	false	false	false	false	false
Split 2 - Mode	Enum	maxVehRecall	none	none	none	none	none	none	none
Split 2 - Time	Sec	10	80	0	30	0	0	0	0
Split 2 - Coord	Enum	false	true	false	false	false	false	false	false
Split 3 - Mode	Enum	maxVehRecall	none	none	none	none	none	none	none
Split 3 - Time	Sec	10	80	0	30	0	0	0	0
Split 3 - Coord	Enum	false	true	false	false	false	false	false	false
Split 4 - Mode	Enum	none	none	none	pedRecall	none	none	none	none
Split 4 - Time	Sec	0	90	0	30	0	0	0	0
Split 4 - Coord	Enum	false	true	false	false	false	false	false	false
TB Schedule	Units	1	2	3	4	5	6	7	8
Month	Bit	JFMAMJJASOND	JFMAMJJASOND		-	-F	A	M	J
Day of Week	Bit	-MTWTF-	S	S	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	12345678901234 56789012345678 901		12345678901234 56789012345678 901	1		(1
Day Plan	Number	1	3	2	3	3	3	3	3
TB Schedule	Units	9	10	11	12	13	14	15	16
Month Day of Week Day of Month	Bit Bit Bit	A SMTWTFS 5	S SMTWTFS -2	SMTWTFS	SMTWTFS	D SMTWTFS	SMTWTFS	0 SMTWTFS 0	0 SMTWTFS 0
Day or month	Dit	3	-2		5	6	4	·	J
Day Plan	Number	3	3	3	3	3	3	0	0
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	6	9	15	16	18	19	3
Plan 1 Minute	Min	0	0	30	0	30	0	30	0
Plan 1 Action	Number	8	1	2	3	4	3	2	7
Plan 2 Hour	Hour	0	7	3	0	0	0	0	0
Plan 2 Minute	Min	0	0	0	0	0	0	0	0
Plan 2 Action	Number	8	2	7	0	0	0	0	0
Plan 3 Hour	Hour	0	8	23	3	0	0	0	0
Plan 3 Minute	Min	0	0	0	0	0	0	0	0
Plan 3 Action	Number	8	2	8	7	0	0	0	0
TB Action	Units	1	2	3	4	5	6	7	8
Pattern	Enum	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Free	Free
Aux. Functions	Bit	0	0	0	0	0	0	0	0
Spec. Functions	Bit	0	0	0	0	0	0	0	0

Appendix B

Transportation Tomorrow Survey 2016

AM outbound

Fri Dec 10 2021 11:18:46 GMT-0500 (Eastern Standard Time) - Run Time: 2658ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: Planning district of destination - pd_dest Column: 2006 GTA zone of origin - gta06_orig

RowG:

ColG:(3642,3877,3878)

ThIG

Filters:

Start time of trip - start_time In 600-900

Trip 2016 Table:

	N	S	E	W		N Trips	S Trips	Е	Trips	W Trips
PD 1 of Toronto	779	1				779		0	0	0
PD 2 of Toronto	66	1				66		0	0	0
PD 3 of Toronto	68	1				68		0	0	0
PD 4 of Toronto	196	1				196		0	0	0
PD 6 of Toronto	33	1				33		0	0	0
PD 7 of Toronto	95	0.5		0.5		47.5		0	47.5	0
PD 8 of Toronto	422	1				422		0	0	0
PD 9 of Toronto	62	1				62		0	0	0
PD 10 of Toron	100	1				100		0	0	0
Newmarket	27	1				27		0	0	0
Richmond Hill	18	1				18		0	0	0
King	23	1				23		0	0	0
Vaughan	35	1				35		0	0	0
Caledon	41	1				41		0	0	0
Brampton	120	1				120		0	0	0
Mississauga	3266	0.5		0.25	0.25	1633		0	816.5	816.5
Oakville	97	0.5			0.5	48.5		0	0	48.5
Glanbrook	138	1				138		0	0	0
Hamilton	47	1				47		0	0	0
Grey	23	1				23		0	0	0
Brantford	22	1				22		0	0	0
						3949		0	864	865
						70%	(0%	15%	15%

AM inbound

Fri Dec 10 2021 11:21:24 GMT-0500 (Eastern Standard Time) - Run Time: 3778ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: Planning district of origin - pd_orig

Column: 2006 GTA zone of destination - gta06_dest

RowG:

ColG:(3642,3877,3878)

ThIG:

Filters:

Start time of trip - start_time In 600-900

Trip 2016 Table:

	N	S	E	W		N Trips	S Trips		E Trips	W Trips
PD 1 of Torontc	62	1				62		0	0	0
PD 2 of Toronto	47	1				47		0	0	0
PD 3 of Toronto	7	1				7		0	0	0
PD 5 of Torontc	23	1				23		0	0	0
PD 6 of Toronto	20	1				20		0	0	0
PD 7 of Torontc	95	0.5		0.5		48		0	48	0
PD 8 of Torontc	158	1				158		0	0	0
PD 11 of Toron	19	1				19		0	0	0
PD 16 of Toron	15	1				15		0	0	0
Richmond Hill	10	1				10		0	0	0
Markham	33	1				33		0	0	0
Vaughan	31	1				31		0	0	0
Brampton	301	1				301		0	0	0
Mississauga	3117	0.66		0.25	0.25	2057		0	779	779
Halton Hills	56	1				56		0	0	0
Milton	34	1				34		0	0	0
Oakville	148	0.5			0.5	74		0	0	74
Burlington	73	1				73		0	0	0
Flamborough	33	1				33		0	0	0
Stoney Creek	16	1				16		0	0	0
Centre Wellingt	20	1				20		0	0	0
Orangeville	17	1				17		0	0	0
Brantford	26	1				26		0	0	0
						3180		0	827	853
						65%	(0%	17%	18%

PM outbound

Fri Dec 10 2021 11:22:15 GMT-0500 (Eastern Standard Time) - Run Time: 2518ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: Planning district of destination - pd_dest Column: 2006 GTA zone of origin - gta06_orig

RowG:

ColG:(3642,3877,3878)

TblG

Filters:

Start time of trip - start_time In 1600-1900

Trip 2016 Table:

	N	S	E	w		N Trips	S Trips	Е	Trips	W Trips
PD 1 of Torontc	181	1				181		0	0	0
PD 2 of Torontc	11	1				11		0	0	0
PD 3 of Torontc	7	1				7		0	0	0
PD 5 of Torontc	9	1				9		0	0	0
PD 7 of Torontc	106	0.5		0.5		53		0	53	0
PD 8 of Torontc	223	1				223		0	0	0
PD 9 of Torontc	10	1				10		0	0	0
PD 11 of Toron	100	1				100		0	0	0
PD 16 of Toron	15	1				15		0	0	0
Whitby	39	1				39		0	0	0
Richmond Hill	43	1				43		0	0	0
Vaughan	31	1				31		0	0	0
Caledon	17	1				17		0	0	0
Brampton	273	1				273		0	0	0
Mississauga	3205	0.66		0.25	0.25	2115		0	801	801
Halton Hills	15	1				15		0	0	0
Milton	34	1				34		0	0	0
Oakville	239	0.5			0.5	120		0	0	120
Burlington	9	1				9		0	0	0
Flamborough	33	1				33		0	0	0
Stoney Creek	16	1				16		0	0	0
Orangeville	17	1				17		0	0	0
Peterborough	31	1				31		0	0	0
						3402		0	854	921
						66%	()%	16%	18%

2016 TTS Trip Distribution

		North	South	East	West
	INBOUND	65%	0%	17%	18%
AM	OUTBOUN	70%	0%	15%	15%
	INBOUND	71%	0%	15%	14%
PM	OUTBOUN	66%	0%	16%	18%

PM inbound

Fri Dec 10 2021 11:22:46 GMT-0500 (Eastern Standard Time) - Run Time: 2345ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: Planning district of origin - pd_orig

Column: 2006 GTA zone of destination - gta06_dest

RowG:

CoIG:(3642,3877,3878)

THG:

Filters:

Start time of trip - start_time In 1600-1900

Trip 2016

Table:

	N	S	Е	w		N Trips	S Trips		E Trips	W Trips
PD 1 of Toronto	854	1				854		0	0	0
PD 2 of Toronto	67	1				67		0	0	0
PD 3 of Toronto	66	1				66		0	0	0
PD 4 of Toronto	192	1				192		0	0	0
PD 5 of Toronto	22	1				22		0	0	0
PD 6 of Toronto	33	1				33		0	0	0
PD 7 of Toronto	262	0.5		0.5		131		0	131	0
PD 8 of Toronto	520	1				520		0	0	0
PD 9 of Toronto	43	1				43		0	0	0
PD 10 of Toron	56	1				56		0	0	0
PD 11 of Toron	13	1				13		0	0	0
Newmarket	27	1				27		0	0	0
King	23	1				23		0	0	0
Vaughan	49	1				49		0	0	0
Brampton	259	1				259		0	0	0
Mississauga	3993	0.66		0.25	0.25	2635		0	998	998
Oakville	182	0.5			0.5	91		0	0	91
Burlington	54	1				54		0	0	0
Hamilton	185	1				185		0	0	0
Grey	48	1				48		0	0	0
Perth	6	1				6		0	0	0
Brantford	35	1				35		0	0	0
						5409		0	1129	1089
						71%	0	%	15%	14%

AM Inbound Mon Dec 13 2021 23:18:18 GMT-0500 (Eastern Standard Time) - Run Time: 2756ms	AM Outbound Mon Dec 13 2021 23:17.47 GMT-0500 (Eastern Standard Time) - Run Time: 2682ms	PM Inbound Mon Dec 13 2021 23:12:08 GMT-0500 (Eastern Standard Time) - Run Time: 2485ms	PM Outbound Mon Dec 13 2021 23:16:50 GMT-0500 (Eastern Standard Time) - Run Time: 2844/ms
Cross Tabulation Query Form - Trip - 2016 v1.1	Cross Tabulation Query Form - Trip - 2016 v1.1	Cross Tabulation Query Form - Trip - 2016 v1.1	Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Primary travel mode of trip - mode_prime Column: 2006 GTA zone of destination - gta06_dest	Row: Primary travel mode of trip - mode_prime Column: 2006 GTA zone of origin - gta06_orig	Row. Primary travel mode of trip - mode_prime Column: 2006 GTA zone of destination - gta06_dest	Row: Primary travel mode of trip - mode_prime Column: 2006 GTA zone of origin - gta06_orig
RowG: ColG-(3642.3877.3878) TNIG:	RowG: ColG:(3842,3877,3878) TblG:	RowG: ColG;(3642,3877,3878) TblG:	RowG: CalG:(3942,3877,3878) TblG:
Filters: Start time of trip - start_time in 700-900	Filters: Start time of trip - start_time in 700-900	Fillers: Start time of trip - start_time in 1600-1900	Filters: Start time of bip - start_time in 1600-1900
and Type of dwelling unit - dwell_type In 2 and	and Type of dwelling unit - dwell_type in 2 and	and Type of dwelling unit - dwell_type In 2 and	and Type of dwelling unit - dwell_type in 2 and
Day of week trip data were collected - trip_day In 1, 2, 3, 4, 5,	Day of week trip data were collected - trip_day in 1, 2, 3, 4, 5,	Day of week trip data were collected - trip_day In 1, 2, 3, 4, 5,	Day of week trip data were collected - trip_day In 1, 2, 3, 4, 5,
Trip 2016 Table:	Trip 2016 Table:	Trip 2016 Table:	Trip 2016 Table:
.1 Transit excludir 17 2% Auto driver 673 67% 0%	.1 Transit excludir 306 9% Auto driver 2130 62% GO rail only 225 7%	.1 Transit excludir 315 7% Auto driver 3005 67% OO rail only 314 7%	.1 Transit excludir 23 1% Auto driver 1467 72% 0%
0% O% Auto passenger 181 18% School bus 45 4%	Joint CO rail ar 188 5% Auto passenger 370 11% School bus 72 2%	Olar GO rail ar 157 4%	Joint GO rail ar 65 3% Auto passengel 205 10% 0%
0% Walk 96 9% 1012 1	0% Walk 144 4% 3435 1	Paid rideshare 56 1% Walk 286 6% 4472 1	0% Walk 286 14% 2046 1

From Transportation Master Plan 2015

2015

Deal, seried	Auta Deirea
Peak period	Auto Driver
AM	65%
PM	75%

2031

Peak period	Auto Driver
AM	50%
PM	55%

Non-Auto Growth/Year

Peak period	Auto Driver
AM	0.94%
PM	1.25%

TTS 2016 Modal Split

	Percentage Split								
Transportation Mode	А	M	P	M					
	in	out	in	out					
Transit	2%	21%	18%	4%					
Auto driver	67%	62%	67%	72%					
Auto passenger	22%	13%	9%	10%					
Walk	9%	4%	6%	14%					
TOTAL	100%	100%	100%	100%					

Projected 2026 Modal Split

Projected 2020 Modal Split										
	Percentage Split									
Transportation Mode	А	M	PM							
	in	out	in	out						
Transit	11%	30%	30%	17%						
Auto driver	57%	53%	55%	59%						
Auto passenger	22%	13%	9%	10%						
Walk	9%	4%	6%	14%						
TOTAL	100%	100%	100%	100%						

2026 Non-Auto Modal split

		•	-					
Α	M	PM						
in	out	in	out					
21%	34%	36%	31%					

Appendix C Synchro Outputs

	۶	→	•	•	—	•	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	f)		¥	f)		×	†		7	†	
Traffic Volume (vph)	153	43	21	32	33	241	11	513	46	262	472	185
Future Volume (vph)	153	43	21	32	33	241	11	513	46	262	472	185
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	39.0		0.0	37.0		0.0	33.0		0.0	19.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.99	0.99		0.97	0.97		0.95	0.99		0.97	0.95	
Frt		0.951			0.868			0.988			0.958	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1807	1803	0	1825	1502	0	1547	3352	0	1772	3141	0
Flt Permitted	0.344			0.707			0.352			0.316		
Satd. Flow (perm)	648	1803	0	1324	1502	0	546	3352	0	571	3141	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		18			266			8			74	
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		100.6			74.4			99.5			177.7	
Travel Time (s)		7.5			5.6			7.5			13.3	
Confl. Peds. (#/hr)	15		21	21		15	53		43	43		53
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (%)	1%	0%	0%	0%	0%	9%	18%	7%	0%	3%	8%	2%
Adj. Flow (vph)	184	52	25	39	40	290	13	618	55	316	569	223
Shared Lane Traffic (%)												
Lane Group Flow (vph)	184	77	0	39	330	0	13	673	0	316	792	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	۶	-	7	· •	•	1	†	-	1	Ţ	4
Lane Group	EBL	EBT	EBR W	BL WB	Γ WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA	Pe	m N	4	Perm	NA		pm+pt	NA	
Protected Phases		4			3		6		5	2	
Permitted Phases	4			8		6			2		
Detector Phase	4	4		8	3	6	6		5	2	
Switch Phase											
Minimum Initial (s)	8.0	8.0		.0 8.		8.0	8.0		4.0	8.0	
Minimum Split (s)	38.0	38.0		.0 38.		33.0	33.0		8.0	33.0	
Total Split (s)	49.0	49.0		.0 49.		66.0	66.0		25.0	91.0	
Total Split (%)	35.0%	35.0%	35.0			47.1%	47.1%		17.9%	65.0%	
Maximum Green (s)	42.0	42.0	42			59.0	59.0		22.0	84.0	
Yellow Time (s)	4.0	4.0		.0 4.		4.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0		.0 3.		3.0	3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0		.0 0.		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0	7	7.0 7.)	7.0	7.0		3.0	7.0	
Lead/Lag						Lag	Lag		Lead		
Lead-Lag Optimize?						Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		.0 3.		3.0	3.0		3.0	3.0	
Recall Mode	None	None	No			C-Max	C-Max		None	C-Max	
Walk Time (s)	10.0	10.0		.0 10.		9.0	9.0			9.0	
Flash Dont Walk (s)	21.0	21.0	21	.0 21.		17.0	17.0			17.0	
Pedestrian Calls (#/hr)	0	0)	0	0			0	
Act Effct Green (s)	39.9	39.9		.9 39.		66.5	66.5		90.1	86.1	
Actuated g/C Ratio	0.28	0.28	0.			0.48	0.48		0.64	0.62	
v/c Ratio	1.00	0.15	0.			0.05	0.42		0.62	0.40	
Control Delay	115.3	28.2		.4 12.		23.7	26.0		17.0	13.4	
Queue Delay	0.0	0.0		.0 0.		0.0	0.0		0.0	0.0	
Total Delay	115.3	28.2	36	.4 12.		23.7	26.0		17.0	13.4	
LOS	F	С			3	С	С		В	В	
Approach Delay		89.6		14.			25.9			14.4	
Approach LOS		F		l	3		С			В	

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 97 (69%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.00 Intersection Signal Delay: 25.8 Intersection Capacity Utilization 86.5%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: Hurontario Street & Park Street East

1: Hurontario Street & Park Street East

	۶	→	1	•	4	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	184	77	39	330	13	673	316	792	
v/c Ratio	1.00	0.15	0.10	0.53	0.05	0.42	0.62	0.40	
Control Delay	115.3	28.2	36.4	12.0	23.7	26.0	17.0	13.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	115.3	28.2	36.4	12.0	23.7	26.0	17.0	13.4	
Queue Length 50th (m)	50.0	11.9	7.8	13.0	2.0	64.3	37.3	52.7	
Queue Length 95th (m)	#86.1	22.1	15.7	30.9	6.1	77.9	47.8	58.6	
Internal Link Dist (m)		76.6		50.4		75.5		153.7	
Turn Bay Length (m)	39.0		37.0		33.0		19.0		
Base Capacity (vph)	194	553	397	636	259	1595	556	1959	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.95	0.14	0.10	0.52	0.05	0.42	0.57	0.40	
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	•	•	1	†	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	7>		×	f)		7	↑ ↑		Y	†	
Traffic Volume (vph)	153	43	21	32	33	241	11	513	46	262	472	185
Future Volume (vph)	153	43	21	32	33	241	11	513	46	262	472	185
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.97		1.00	0.99		1.00	0.95	
Flpb, ped/bikes	0.99	1.00		0.97	1.00		0.95	1.00		0.99	1.00	
Frt	1.00	0.95		1.00	0.87		1.00	0.99		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1790	1804		1778	1502		1473	3351		1755	3140	
Flt Permitted	0.34	1.00		0.71	1.00		0.35	1.00		0.32	1.00	
Satd. Flow (perm)	647	1804		1323	1502		546	3351		584	3140	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	184	52	25	39	40	290	13	618	55	316	569	223
RTOR Reduction (vph)	0	13	0	0	190	0	0	4	0	0	28	0
Lane Group Flow (vph)	184	64	0	39	140	0	13	669	0	316	764	0
Confl. Peds. (#/hr)	15		21	21		15	53		43	43		53
Heavy Vehicles (%)	1%	0%	0%	0%	0%	9%	18%	7%	0%	3%	8%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			6		5	2	
Permitted Phases	4			8			6			2		
Actuated Green, G (s)	39.9	39.9		39.9	39.9		66.5	66.5		86.1	86.1	
Effective Green, g (s)	39.9	39.9		39.9	39.9		66.5	66.5		86.1	86.1	
Actuated g/C Ratio	0.28	0.28		0.28	0.28		0.48	0.48		0.61	0.61	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	184	514		377	428		259	1591		498	1931	
v/s Ratio Prot		0.04			0.09			0.20		c0.08	0.24	
v/s Ratio Perm	c0.28			0.03			0.02			c0.32		
v/c Ratio	1.00	0.12		0.10	0.33		0.05	0.42		0.63	0.40	
Uniform Delay, d1	50.0	37.1		36.9	39.5		19.8	24.1		13.9	13.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	66.3	0.1		0.1	0.4		0.4	0.8		2.6	0.6	
Delay (s)	116.4	37.2		37.0	39.9		20.1	24.9		16.5	14.3	
Level of Service	F	D		D	D		С	С		В	В	
Approach Delay (s)		93.0			39.6			24.8			14.9	
Approach LOS		F			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			29.9	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	y ratio		0.77									
Actuated Cycle Length (s)			140.0		ım of lost				17.0			
Intersection Capacity Utilization	n		86.5%	IC	U Level c	of Service			Е			
Analysis Period (min)			15									

	۶	→	*	•	←	•	1	1	~	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7		4			4	
Traffic Volume (vph)	19	207	3	19	66	117	3	89	22	9	3	3
Future Volume (vph)	19	207	3	19	66	117	3	89	22	9	3	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		10.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998				0.850		0.974			0.975	
Flt Protected		0.996			0.989			0.999			0.970	
Satd. Flow (prot)	0	1859	0	0	1785	1617	0	1543	0	0	1817	0
Flt Permitted		0.996			0.989			0.999			0.970	
Satd. Flow (perm)	0	1859	0	0	1785	1617	0	1543	0	0	1817	0
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		36.6			100.6			45.4			96.7	
Travel Time (s)		2.7			7.5			3.4			7.3	
Confl. Peds. (#/hr)	30		4	4		30	9		10	10		9
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	0%	3%	0%	1%	8%	1%	0%	27%	0%	0%	0%	0%
Adj. Flow (vph)	22	238	3	22	76	134	3	102	25	10	3	3
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	263	0	0	98	134	0	130	0	0	16	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
	Other											

Area Type: Othe

Control Type: Unsignalized

Intersection Capacity Utilization 42.7%

ICU Level of Service A

Analysis Period (min) 15

	٠	→	*	1	←	•	4	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	19	207	3	19	66	117	3	89	22	9	3	3
Future Volume (vph)	19	207	3	19	66	117	3	89	22	9	3	3
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	22	238	3	22	76	134	3	102	25	10	3	3
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total (vph)	263	98	134	130	16							
Volume Left (vph)	22	22	0	3	10							
Volume Right (vph)	3	0	134	25	3							
Hadj (s)	0.06	0.22	-0.68	0.25	0.01							
Departure Headway (s)	4.7	5.4	4.5	5.3	5.3							
Degree Utilization, x	0.35	0.15	0.17	0.19	0.02							
Capacity (veh/h)	738	642	772	628	606							
Control Delay (s)	10.2	8.1	7.1	9.6	8.4							
Approach Delay (s)	10.2	7.5		9.6	8.4							
Approach LOS	В	Α		Α	Α							
Intersection Summary												
Delay			9.1									
Level of Service			Α									
Intersection Capacity Utilizat	ion		42.7%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Lane Group WBL WBR NBT NBR SBL SBT Lane Configurations Y Image: Configuration of the part of the pa		•	•	1	/	1	Ţ
Traffic Volume (vph)	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Volume (vph) 0 0 225 0 0 15 Future Volume (vph) 0 0 225 0 0 15 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt Fit Protected Satd. Flow (perm) 1883 0 1883 0 0 1883 Fit Permitted Satd. Flow (perm) 1883 0 1883 0 0 1883 Fit Permitted Satd. Flow (perm) 1883 0 1883 0 0 1883 Link Speed (k/h) 48 48 48 48 Link Speed (k/h) 48 48 48 Link Speed (k/h) 22.1 7.3 2.1 2.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92		W		13			स
Ideal Flow (vphpl) 1900 1883 1883 0 1883 0 1883 0 1883 1883 0 1883 1883 0 1883 1883 0 1883 1883 1883 0 1883 </td <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td>			0		0	0	
Lane Util. Factor 1.00 <td></td> <td>0</td> <td>0</td> <td>225</td> <td>0</td> <td>0</td> <td>15</td>		0	0	225	0	0	15
Frt Flt Protected Satd. Flow (prot) 1883 0 1883 0 0 1883 Flt Permitted Satd. Flow (perm) 1883 0 1883 0 0 1883 Satd. Flow (perm) 1883 0 1883 0 0 1883 Link Speed (k/h) 48 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 0 0 245 0 0 16 Shared Lane Traffic (%) 2 2 245 0 0 16 Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection No No <td></td> <td>1900</td> <td>1900</td> <td>1900</td> <td>1900</td> <td>1900</td> <td>1900</td>		1900	1900	1900	1900	1900	1900
Fit Protected Satd. Flow (prot) 1883 0 1883 0 0 1883 Fit Permitted Satd. Flow (perm) 1883 0 1883 0 0 1883 Link Speed (k/h) 48 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 0 0 245 0 0 16 Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection No No No No No No Lane Alignment Left Right Left Right Left Left Median Width(m) 3.7 0.0 Link Offset(m) 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 0.99 0.99 0.99 0.99 0.99 0.99 Turning Speed (k/h) 24 14 14 24 Sign Control Stop Free Free	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Satd. Flow (prot) 1883 0 1883 0 1883 Flt Permitted Satd. Flow (perm) 1883 0 1883 0 0 1883 Link Speed (k/h) 48 48 48 48 48 Link Distance (m) 27.4 96.7 28.3 2.1 7.3 2.1 28.3 2.1 7.3 2.1 2.1 Peak Hour Factor 0.92 0.93 0.93 0.93 0.93 0.99 0.99 0.99 0.99 0.99	Frt						
Fit Permitted Satd. Flow (perm) 1883 0 1883 0 0 1883 Link Speed (k/h) 48 48 48 48 48 Link Distance (m) 27.4 96.7 28.3 23.3 2.1 7.3 2.1 28.3 2.1 7.3 2.1 2.1 2.1 2.2 2.1 2.2 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	Flt Protected						
Fit Permitted Satd. Flow (perm) 1883 0 1883 0 0 1883 Link Speed (k/h) 48 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 0 0 245 0 0 16 Shared Lane Traffic (%) 2 0 0 245 0 0 16 Enter Blocked Intersection No <	Satd. Flow (prot)	1883	0	1883	0	0	1883
Link Speed (k/h) 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 0 0 245 0 0 16 Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection No							
Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 0 0 245 0 0 16 Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection No	Satd. Flow (perm)	1883	0	1883	0	0	1883
Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 0 0 245 0 0 16 Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection No No </td <td> ,</td> <td>48</td> <td></td> <td>48</td> <td></td> <td></td> <td>48</td>	,	48		48			48
Peak Hour Factor 0.92 0.93 0.93 0.90 0.90 0.99		27.4		96.7			28.3
Adj. Flow (vph) 0 0 245 0 0 16 Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection No No </td <td>Travel Time (s)</td> <td>2.1</td> <td></td> <td>7.3</td> <td></td> <td></td> <td>2.1</td>	Travel Time (s)	2.1		7.3			2.1
Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection Lane Alignment No		0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection No No<	Adj. Flow (vph)	0	0	245	0	0	16
Lane Group Flow (vph) 0 0 245 0 0 16 Enter Blocked Intersection No No </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Enter Blocked Intersection No No <th< td=""><td></td><td>0</td><td>0</td><td>245</td><td>0</td><td>0</td><td>16</td></th<>		0	0	245	0	0	16
Median Width(m) 3.7 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 0.99 0.99 0.99 0.99 0.99 Turning Speed (k/h) 24 14 14 24 Sign Control Stop Free Free		No	No	No	No	No	No
Median Width(m) 3.7 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 0.99 0.99 0.99 0.99 0.99 Turning Speed (k/h) 24 14 14 24 Sign Control Stop Free Free	Lane Alignment	Left	Right	Left	Right	Left	Left
Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane 4.9 4.9 4.9 Headway Factor 0.99 0.99 0.99 0.99 0.99 Turning Speed (k/h) 24 14 14 24 Sign Control Stop Free Free							0.0
Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 0.99 0.99 0.99 0.99 0.99 Turning Speed (k/h) 24 14 14 24 Sign Control Stop Free Free	\	0.0		0.0			0.0
Two way Left Turn Lane Headway Factor 0.99 <td>. ,</td> <td>4.9</td> <td></td> <td>4.9</td> <td></td> <td></td> <td>4.9</td>	. ,	4.9		4.9			4.9
Headway Factor 0.99 0.99 0.99 0.99 0.99 0.99 Turning Speed (k/h) 24 14 14 24 Sign Control Stop Free Free	\ <i>\</i>						
Turning Speed (k/h) 24 14 24 Sign Control Stop Free Free		0.99	0.99	0.99	0.99	0.99	0.99
Sign Control Stop Free Free							
		Stop		Free			Free
	Intersection Summary						
Area Type: Other		Other					
Control Type: Unsignalized	7 F -	Julei					

ICU Level of Service A

Intersection Capacity Utilization 15.2%
Analysis Period (min) 15

	•	•	†	~	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		₽			ર્ન
Traffic Volume (veh/h)	0	0	225	0	0	15
Future Volume (Veh/h)	0	0	225	0	0	15
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	245	0	0	16
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	261	245			245	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	261	245			245	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	728	794			1321	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	0	245	16			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1700	1321			
Volume to Capacity	0.00	0.14	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	A	0.0	0.0			
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	0.0 A	0.0	0.0			
	٨					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utilization	ation		15.2%	IC	CU Level of	of Service
Analysis Period (min)			15			

	۶	→	•	•	←	•	4	1	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1		*	f)		*	†		*	†	
Traffic Volume (vph)	172	38	29	13	46	219	15	657	32	104	630	275
Future Volume (vph)	172	38	29	13	46	219	15	657	32	104	630	275
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	39.0		0.0	37.0		0.0	33.0		0.0	19.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.98	0.98		0.97	0.97		0.99	1.00		0.98	0.97	
Frt		0.935			0.876			0.993			0.954	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1807	1735	0	1825	1632	0	1825	3509	0	1789	3343	0
Flt Permitted	0.413			0.709			0.244			0.339		
Satd. Flow (perm)	774	1735	0	1326	1632	0	463	3509	0	624	3343	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		32			132			7			98	
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		100.6			74.4			99.5			177.7	
Travel Time (s)		7.5			5.6			7.5			13.3	
Confl. Peds. (#/hr)	26		30	30		26	36		39	39		36
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles (%)	1%	0%	4%	0%	0%	0%	0%	3%	0%	2%	2%	0%
Adj. Flow (vph)	189	42	32	14	51	241	16	722	35	114	692	302
Shared Lane Traffic (%)												
Lane Group Flow (vph)	189	74	0	14	292	0	16	757	0	114	994	0
Enter Blocked Intersection	No	No	No									
Lane Alignment	Left	Left	Right									
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	•	→	•	•	←	•	1	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			6			2	
Permitted Phases	4			8			6			2		
Detector Phase	4	4		8	8		6	6		2	2	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	43.0	43.0		43.0	43.0		57.0	57.0		57.0	57.0	
Total Split (s)	43.0	43.0		43.0	43.0		57.0	57.0		57.0	57.0	
Total Split (%)	43.0%	43.0%		43.0%	43.0%		57.0%	57.0%		57.0%	57.0%	
Maximum Green (s)	36.0	36.0		36.0	36.0		50.0	50.0		50.0	50.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	10.0	10.0		10.0	10.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	25.6	25.6		25.6	25.6		60.4	60.4		60.4	60.4	
Actuated g/C Ratio	0.26	0.26		0.26	0.26		0.60	0.60		0.60	0.60	
v/c Ratio	0.95	0.16		0.04	0.57		0.06	0.36		0.30	0.48	
Control Delay	88.8	16.2		23.8	20.1		12.1	11.8		14.9	12.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	88.8	16.2		23.8	20.1		12.1	11.8		14.9	12.1	
LOS	F	В		С	С		В	В		В	В	
Approach Delay		68.4			20.3			11.8			12.3	
Approach LOS		Е			С			В			В	
Intersection Summary												

Intersection Summary

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95 Intersection Signal Delay: 19.2 Intersection Capacity Utilization 89.2%

Intersection LOS: B
ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: Hurontario Street & Park Street East

	۶	-	1	•	4	†	1	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	189	74	14	292	16	757	114	994	
v/c Ratio	0.95	0.16	0.04	0.57	0.06	0.36	0.30	0.48	
Control Delay	88.8	16.2	23.8	20.1	12.1	11.8	14.9	12.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	88.8	16.2	23.8	20.1	12.1	11.8	14.9	12.1	
Queue Length 50th (m)	35.9	6.2	2.0	26.0	1.2	36.1	10.0	47.2	
Queue Length 95th (m)	#62.3	14.5	5.8	44.3	5.2	61.0	26.8	80.2	
Internal Link Dist (m)		76.6		50.4		75.5		153.7	
Turn Bay Length (m)	39.0		37.0		33.0		19.0		
Base Capacity (vph)	278	645	477	672	279	2120	376	2056	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.68	0.11	0.03	0.43	0.06	0.36	0.30	0.48	
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

۶	→	*	•	←	•	1	†	~	-	†	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
*	1		7	₽		*	^		7	†	
172			13	46	219	15	657		104	630	275
											275
		1900			1900			1900			1900
											0.91
											302
											0
	50			194			754			955	0
											36
1%	0%	4%	0%	0%	0%	0%	3%	0%	2%	2%	0%
Perm	NA		Perm	NA		Perm	NA		Perm	NA	
	4			8			6			2	
4											
198			339			279			376		
	0.03			0.12			0.21			c0.29	
F			С			Α			В		
	E			С			В			В	
			H	CM 2000	Level of S	Service		С			
y ratio											
n			IC	U Level c	f Service			E			
		15									
	EBL 172 172 1900 7.0 1.00 1.00 0.99 1.00 0.95 1780 0.41 774 0.91 189 0 189 26 1% Perm	EBL EBT 172 38 172 38 1900 1900 7.0 7.0 1.00 1.00 1.00 0.98 0.99 1.00 1.00 0.94 0.95 1.00 1780 1735 0.41 1.00 774 1735 0.91 0.91 189 42 0 24 189 50 26 1% 0% Perm NA 4 25.6 25.6 25.6 25.6 0.26 7.0 7.0 3.0 3.0 198 444 0.03 c0.24 0.95 0.11 36.6 28.5 1.00 1.00 50.6 F C 70.7 E	EBL EBT EBR 172 38 29 172 38 29 1900 1900 1900 7.0 7.0 1.00 1.00 1.00 0.98 0.99 1.00 1.00 0.94 0.95 1.00 1780 1735 0.41 1.00 774 1735 0.91 0.91 0.91 189 42 32 0 24 0 189 50 0 26 30 1% 0% 4% Perm NA 4 25.6 25.6 25.6 25.6 0.26 0.26 7.0 7.0 3.0 3.0 198 444 0.03 c0.24 0.95 0.11 36.6 28.5 1.00 1.00 50.6 0.1 87.2 28.6 F C 70.7 E	EBL EBT EBR WBL 172 38 29 13 172 38 29 13 1900 1900 1900 1900 7.0 7.0 7.0 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.97 1.00 0.94 1.00 0.95 1.00 0.95 1780 1735 1777 0.41 1.00 0.71 774 1735 1326 0.91 0.91 0.91 0.91 189 42 32 14 0 24 0 0 189 50 0 14 26 30 30 1% 0% 4% 0% Perm NA Perm 4 8 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 0.26 0.26 7.0 7.0 7.0 3.0 3.0 3.0 198 444 339 0.03 c0.24 0.01 0.95 0.11 0.04 36.6 28.5 28.0 1.00 1.00 1.00 50.6 0.1 0.1 87.2 28.6 28.0 F C C 70.7 E	EBL EBT EBR WBL WBT 172 38 29 13 46 172 38 29 13 46 1900 1900 1900 1900 1900 7.0 7.0 7.0 7.0 7.0 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.97 0.99 1.00 0.94 1.00 0.88 0.95 1.00 0.95 1.00 1780 1735 1777 1632 0.41 1.00 0.71 1.00 774 1735 1326 1632 0.91 0.91 0.91 0.91 0.91 189 42 32 14 51 0 24 0 0 98 189 50 0 14 194 26 30 30 1% 0% 4% 0% 0% Perm NA Perm NA 4 8 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 0.26 0.26 0.26 0.26 7.0 7.0 7.0 7.0 7.0 3.0 3.0 3.0 3.0 198 444 339 417 0.03 0.12 c0.24 0.01 0.95 0.11 0.04 0.46 36.6 28.5 28.0 31.4 1.00 1.00 1.00 1.00 50.6 0.1 0.1 0.8 87.2 28.6 28.0 32.2 F C C C 70.7 32.0 E CC 20.2 HCM 2000 y ratio 0.62 100.0 Sum of lost ICU Level of the composite of the comp	EBL EBT EBR WBL WBT WBR 172 38 29 13 46 219 172 38 29 13 46 219 1900 1900 1900 1900 1900 1900 7.0 7.0 7.0 7.0 7.0 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.97 0.99 1.00 0.97 1.00 1.780 1735 1777 1632 0.41 1.00 0.71 1.00 774 1735 1326 1632 0.91 0.91 0.91 0.91 0.91 0.91 189 42 32 14 51 241 0 24 0 0 98 0 189 50 0 14 194 0 26 30 30 266 1% 0% 4% 0% 0% 0% Perm NA Perm NA 4 8 25.6 25.6 25.6 25.6 25.6 0.26 0.26 0.26 0.26 7.0 7.0 7.0 7.0 7.0 3.0 3.0 3.0 3.0 198 444 339 417 0.03 0.12 0.24 0.91	EBL EBT EBR WBL WBT WBR NBL	EBL EBT EBR WBL WBT WBR NBL NBT 172 38 29 13 46 219 15 657 1900 1900 1900 1900 1900 1900 1900 1900	BBL EBT EBR WBL WBT WBR NBL NBT NBR 172 38 29 13 46 219 15 657 32 172 38 29 13 46 219 15 657 32 1900 1900 1900 1900 1900 1900 1900 1900 7.0 7.0 7.0 7.0 7.0 7.0 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.98 1.00 0.97 1.00 0.99 1.00 1.00 0.94 1.00 0.88 1.00 0.99 1.00 1.00 0.94 1.00 0.88 1.00 0.99 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.780 1735 1777 1632 1799 3509 0.41 1.00 0.71 1.00 0.24 1.00 774 1735 1326 1632 463 3509 0.91 0.91 0.91 0.91 0.91 0.91 0.91 189 42 32 14 51 241 16 722 35 0 24 0 0 98 0 0 3 0 189 50 0 14 194 0 16 754 0 26 30 30 26 36 39 196 0% 4% 0% 0% 0% 0% 3% 0% Perm NA	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 172 38 29 13 46 219 15 657 32 104 1900 1900 1900 1900 1900 1900 1900 1900	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 172 38 29 13 46 219 15 657 32 104 630 172 38 29 13 46 219 15 657 32 104 630 1900 1900 1900 1900 1900 1900 1900 190

	٠	→	*	•	←	•	1	1	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7		4			4	
Traffic Volume (vph)	19	182	2	22	196	99	5	62	25	60	27	4
Future Volume (vph)	19	182	2	22	196	99	5	62	25	60	27	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		10.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999				0.850		0.964			0.995	
Flt Protected		0.995			0.995			0.998			0.968	
Satd. Flow (prot)	0	1910	0	0	1878	1633	0	1461	0	0	1850	0
Flt Permitted		0.995			0.995			0.998			0.968	
Satd. Flow (perm)	0	1910	0	0	1878	1633	0	1461	0	0	1850	0
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		36.6			100.6			45.4			96.7	
Travel Time (s)		2.7			7.5			3.4			7.3	
Confl. Peds. (#/hr)	15		13	13		15	8		12	12		8
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles (%)	0%	0%	0%	0%	2%	0%	0%	39%	0%	0%	0%	0%
Adj. Flow (vph)	21	200	2	24	215	109	5	68	27	66	30	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	223	0	0	239	109	0	100	0	0	100	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type:	Other											

Area Type: Othe

Control Type: Unsignalized

Intersection Capacity Utilization 44.3%

ICU Level of Service A

Analysis Period (min) 15

	۶	-	*	1	←		4	†	-	/	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	19	182	2	22	196	99	5	62	25	60	27	4
Future Volume (vph)	19	182	2	22	196	99	5	62	25	60	27	4
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	21	200	2	24	215	109	5	68	27	66	30	4
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total (vph)	223	239	109	100	100							
Volume Left (vph)	21	24	0	5	66							
Volume Right (vph)	2	0	109	27	4							
Hadj (s)	0.01	80.0	-0.70	0.30	0.11							
Departure Headway (s)	5.0	5.4	4.6	5.7	5.5							
Degree Utilization, x	0.31	0.36	0.14	0.16	0.15							
Capacity (veh/h)	676	640	745	570	584							
Control Delay (s)	10.3	10.2	7.2	9.8	9.5							
Approach Delay (s)	10.3	9.2		9.8	9.5							
Approach LOS	В	Α		Α	Α							
Intersection Summary												
Delay			9.7									
Level of Service			Α									
Intersection Capacity Utilizat	ion		44.3%	IC	U Level c	of Service			Α			
Analysis Period (min)			15									

	1	4	†	-	1	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1			ર્ન
Traffic Volume (vph)	0	0	181	0	0	92
Future Volume (vph)	0	0	181	0	0	92
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	1883	0	1883	0	0	1883
Flt Permitted						
Satd. Flow (perm)	1883	0	1883	0	0	1883
Link Speed (k/h)	48		48			48
Link Distance (m)	27.4		96.7			28.3
Travel Time (s)	2.1		7.3			2.1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	197	0	0	100
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	197	0	0	100
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.7	<u> </u>	0.0	Ţ.		0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.9		4.9			4.9
Two way Left Turn Lane						
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	14		14	24	
Sign Control	Stop		Free			Free
Intersection Summary						
	Other					
Control Type: Unsignalized	Culoi					
Intersection Capacity Utiliza	tion 12 9%			IC	Ulevelo	of Service
Analysis Period (min) 15	1011 12.370			- 10	O LOVOI C) OCIVIO
Analysis i enou (IIIII) 13						

Synchro 10 Report Page 7

	•	•	†	~	/	Ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		₽			र्स
Traffic Volume (veh/h)	0	0	181	0	0	92
Future Volume (Veh/h)	0	0	181	0	0	92
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	197	0	0	100
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	297	197			197	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	297	197			197	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	694	844			1376	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	0	197	100			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1700	1376			
Volume to Capacity	0.00	0.12	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	A					
Intersection Summary						
Average Delay						
Intersection Capacity Utiliza	ation		12.9%	IC	U Level o	f Service
Analysis Period (min)	VII		15	.0	2 2010, 0	. 55. 1105
randiyolo i onod (iiiii)			10			

	۶	-	*	•	•	•	1	1	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	7		7	1		×	†		×	†	
Traffic Volume (vph)	244	43	27	32	33	241	14	524	46	282	510	219
Future Volume (vph)	244	43	27	32	33	241	14	524	46	282	510	219
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	39.0		0.0	37.0		0.0	33.0		0.0	19.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.99	0.98		0.97	0.97		0.95	0.99		0.96	0.95	
Frt		0.942			0.868			0.988			0.955	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1807	1782	0	1825	1502	0	1547	3352	0	1772	3125	0
Flt Permitted	0.267			0.711			0.375			0.379		
Satd. Flow (perm)	503	1782	0	1331	1502	0	579	3352	0	682	3125	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		27			241			6			65	
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		100.6			74.4			99.5			177.7	
Travel Time (s)		7.5			5.6			7.5			13.3	
Confl. Peds. (#/hr)	15		21	21		15	53		43	43		53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	0%	0%	0%	0%	9%	18%	7%	0%	3%	8%	2%
Adj. Flow (vph)	244	43	27	32	33	241	14	524	46	282	510	219
Shared Lane Traffic (%)												
Lane Group Flow (vph)	244	70	0	32	274	0	14	570	0	282	729	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		<u>-</u> .			<u>-</u> /			J			<u>-</u> ^	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		0.0			0.0			0.0			0.0	

	۶	→	*	1	←	•	1	†	-	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases	7	4			8			6		5	2	
Permitted Phases	4			8			6			2		
Detector Phase	7	4		8	8		6	6		5	2	
Switch Phase												
Minimum Initial (s)	4.0	8.0		8.0	8.0		8.0	8.0		4.0	8.0	
Minimum Split (s)	8.0	38.0		38.0	38.0		33.0	33.0		8.0	33.0	
Total Split (s)	28.0	66.0		38.0	38.0		42.0	42.0		32.0	74.0	
Total Split (%)	20.0%	47.1%		27.1%	27.1%		30.0%	30.0%		22.9%	52.9%	
Maximum Green (s)	25.0	59.0		31.0	31.0		35.0	35.0		29.0	67.0	
Yellow Time (s)	3.0	4.0		4.0	4.0		4.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	3.0		3.0	3.0		3.0	3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	
Walk Time (s)		10.0		10.0	10.0		9.0	9.0			9.0	
Flash Dont Walk (s)		21.0		21.0	21.0		17.0	17.0			17.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	41.6	37.6		12.0	12.0		70.4	70.4		92.4	88.4	
Actuated g/C Ratio	0.30	0.27		0.09	0.09		0.50	0.50		0.66	0.63	
v/c Ratio	0.68	0.14		0.28	0.79		0.05	0.34		0.50	0.37	
Control Delay	48.7	23.2		63.8	27.0		24.5	23.5		14.1	12.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	48.7	23.2		63.8	27.0		24.5	23.5		14.1	12.7	
LOS	D	С		Е	С		С	С		В	В	
Approach Delay		43.0			30.9			23.5			13.1	
Approach LOS		D			С			С			В	

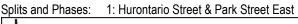
Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green


Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79 Intersection Signal Delay: 22.5 Intersection Capacity Utilization 90.2%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

1: Hurontario Street & Park Street East

	٠	-	1	←	4	†	1	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	244	70	32	274	14	570	282	729	
v/c Ratio	0.68	0.14	0.28	0.79	0.05	0.34	0.50	0.37	
Control Delay	48.7	23.2	63.8	27.0	24.5	23.5	14.1	12.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	48.7	23.2	63.8	27.0	24.5	23.5	14.1	12.7	
Queue Length 50th (m)	55.3	9.0	8.7	8.9	1.9	47.1	29.2	42.8	
Queue Length 95th (m)	70.9	18.8	17.9	37.2	7.6	78.7	54.0	68.6	
Internal Link Dist (m)		76.6		50.4		75.5		153.7	
Turn Bay Length (m)	39.0		37.0		33.0		19.0		
Base Capacity (vph)	382	766	294	520	291	1687	675	1997	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.64	0.09	0.11	0.53	0.05	0.34	0.42	0.37	
Intersection Summary									

	۶	→	•	•	←	•	1	†	~	-	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	£		7	4		7	†		*	↑ ↑	
Traffic Volume (vph)	244	43	27	32	33	241	14	524	46	282	510	219
Future Volume (vph)	244	43	27	32	33	241	14	524	46	282	510	219
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.97		1.00	0.99		1.00	0.95	
Flpb, ped/bikes	1.00	1.00		0.97	1.00		0.95	1.00		0.99	1.00	
Frt	1.00	0.94		1.00	0.87		1.00	0.99		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1803	1782		1778	1502		1466	3351		1746	3125	
FIt Permitted	0.27	1.00		0.71	1.00		0.37	1.00		0.38	1.00	
Satd. Flow (perm)	506	1782		1331	1502		578	3351		696	3125	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	244	43	27	32	33	241	14	524	46	282	510	219
RTOR Reduction (vph)	0	20	0	0	220	0	0	3	0	0	24	0
Lane Group Flow (vph)	244	50	0	32	54	0	14	567	0	282	705	0
Confl. Peds. (#/hr)	15		21	21		15	53		43	43		53
Heavy Vehicles (%)	1%	0%	0%	0%	0%	9%	18%	7%	0%	3%	8%	2%
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases	7	4			8			6		5	2	
Permitted Phases	4			8			6			2		
Actuated Green, G (s)	37.6	37.6		12.0	12.0		70.4	70.4		88.4	88.4	
Effective Green, g (s)	37.6	37.6		12.0	12.0		70.4	70.4		88.4	88.4	
Actuated g/C Ratio	0.27	0.27		0.09	0.09		0.50	0.50		0.63	0.63	
Clearance Time (s)	3.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	345	478		114	128		290	1685		551	1973	
v/s Ratio Prot	c0.11	0.03			0.04			0.17		c0.05	0.23	
v/s Ratio Perm	c0.08			0.02			0.02			c0.27		
v/c Ratio	0.71	0.11		0.28	0.42		0.05	0.34		0.51	0.36	
Uniform Delay, d1	43.8	38.5		60.0	60.7		17.7	20.8		11.9	12.3	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	6.5	0.1		1.3	2.2		0.3	0.5		0.8	0.5	
Delay (s)	50.3	38.6		61.3	62.9		18.0	21.4		12.7	12.8	
Level of Service	D	D		Е	Е		В	С		В	В	
Approach Delay (s)		47.7			62.7			21.3			12.8	
Approach LOS		D			Е			С			В	
Intersection Summary												
HCM 2000 Control Delay			26.9	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Cap	acity ratio		0.59									
Actuated Cycle Length (s)			140.0		um of lost				20.0			
Intersection Capacity Utiliz	ation		90.2%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	•	←	•	1	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			स	7		4			4	
Traffic Volume (vph)	19	244	3	20	73	132	3	92	27	63	8	3
Future Volume (vph)	19	244	3	20	73	132	3	92	27	63	8	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		10.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998				0.850		0.970			0.995	
Flt Protected		0.996			0.989			0.999			0.959	
Satd. Flow (prot)	0	1858	0	0	1784	1617	0	1547	0	0	1833	0
Flt Permitted		0.996			0.989			0.999			0.959	
Satd. Flow (perm)	0	1858	0	0	1784	1617	0	1547	0	0	1833	0
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		36.6			100.6			45.4			96.7	
Travel Time (s)		2.7			7.5			3.4			7.3	
Confl. Peds. (#/hr)	30		4	4		30	9		10	10		9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	3%	0%	1%	8%	1%	0%	27%	0%	0%	0%	0%
Adj. Flow (vph)	19	244	3	20	73	132	3	92	27	63	8	3
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	266	0	0	93	132	0	122	0	0	74	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
	Other											

Control Type: Unsignalized

Intersection Capacity Utilization 45.2%

ICU Level of Service A

	•	→	*	1	+	•	4	†	-	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7		4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	19	244	3	20	73	132	3	92	27	63	8	3
Future Volume (vph)	19	244	3	20	73	132	3	92	27	63	8	3
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	19	244	3	20	73	132	3	92	27	63	8	3
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total (vph)	266	93	132	122	74							
Volume Left (vph)	19	20	0	3	63							
Volume Right (vph)	3	0	132	27	3							
Hadj (s)	0.05	0.22	-0.68	0.22	0.15							
Departure Headway (s)	4.9	5.5	4.6	5.4	5.4							
Degree Utilization, x	0.36	0.14	0.17	0.18	0.11							
Capacity (veh/h)	700	617	736	610	597							
Control Delay (s)	10.6	8.3	7.4	9.6	9.1							
Approach Delay (s)	10.6	7.7		9.6	9.1							
Approach LOS	В	Α		Α	Α							
Intersection Summary												
Delay			9.3									
Level of Service			Α									
Intersection Capacity Utilization	tion		45.2%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	1	-	-	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		13			ર્ન	
Traffic Volume (vph)	0	0	225	0	0	15	
Future Volume (vph)	0	0	225	0	0	15	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt							
Flt Protected							
Satd. Flow (prot)	1883	0	1883	0	0	1883	
Flt Permitted							
Satd. Flow (perm)	1883	0	1883	0	0	1883	
Link Speed (k/h)	48		48			48	
Link Distance (m)	27.4		96.7			28.3	
Travel Time (s)	2.1		7.3			2.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Adj. Flow (vph)	0	0	225	0	0	15	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	225	0	0	15	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	3.7		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.9		4.9			4.9	
Two way Left Turn Lane							
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	
Turning Speed (k/h)	24	14		14	24		
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Later and Company of Light				10			

Intersection Capacity Utilization 15.2% Analysis Period (min) 15

	•	*	†	~	1	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		7			र्स
Traffic Volume (veh/h)	0	0	225	0	0	15
Future Volume (Veh/h)	0	0	225	0	0	15
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	225	0	0	15
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	240	225			225	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	240	225			225	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	748	814			1344	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	0	225	15			
Volume Left	0	0	0			
	0	0	0			
Volume Right cSH	1700	1700	1344			
Volume to Capacity	0.00	0.13	0.00			
	0.00	0.13	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)		0.0	0.0			
Lane LOS	A	0.0	0.0			
Approach Delay (s) Approach LOS	0.0 A	0.0	0.0			
• •	А					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utili	zation		15.2%	IC	U Level c	f Service
Analysis Period (min)			15			

	۶	→	*	•	←	•	1	1	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		×	1		×	†		*	†	
Traffic Volume (vph)	219	38	31	13	46	219	23	678	33	109	671	362
Future Volume (vph)	219	38	31	13	46	219	23	678	33	109	671	362
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	39.0		0.0	37.0		0.0	33.0		0.0	19.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.98	0.98		0.97	0.97		0.99	1.00		0.98	0.97	
Frt		0.933			0.876			0.993			0.947	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1807	1729	0	1825	1632	0	1825	3508	0	1789	3307	0
Flt Permitted	0.471			0.712			0.227			0.357		
Satd. Flow (perm)	881	1729	0	1332	1632	0	431	3508	0	656	3307	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		31			149			7			143	
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		100.6			74.4			99.5			177.7	
Travel Time (s)		7.5			5.6			7.5			13.3	
Confl. Peds. (#/hr)	26		30	30		26	36		39	39		36
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	0%	4%	0%	0%	0%	0%	3%	0%	2%	2%	0%
Adj. Flow (vph)	219	38	31	13	46	219	23	678	33	109	671	362
Shared Lane Traffic (%)												
Lane Group Flow (vph)	219	69	0	13	265	0	23	711	0	109	1033	0
Enter Blocked Intersection	No	No	No									
Lane Alignment	Left	Left	Right									
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	۶	→	*	1	•	*	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			6			2	
Permitted Phases	4			8			6			2		
Detector Phase	4	4		8	8		6	6		2	2	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	43.0	43.0		43.0	43.0		57.0	57.0		57.0	57.0	
Total Split (s)	43.0	43.0		43.0	43.0		57.0	57.0		57.0	57.0	
Total Split (%)	43.0%	43.0%		43.0%	43.0%		57.0%	57.0%		57.0%	57.0%	
Maximum Green (s)	36.0	36.0		36.0	36.0		50.0	50.0		50.0	50.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	10.0	10.0		10.0	10.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	26.9	26.9		26.9	26.9		59.1	59.1		59.1	59.1	
Actuated g/C Ratio	0.27	0.27		0.27	0.27		0.59	0.59		0.59	0.59	
v/c Ratio	0.92	0.14		0.04	0.48		0.09	0.34		0.28	0.51	
Control Delay	76.6	15.5		23.1	14.8		13.0	12.1		14.8	12.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	76.6	15.5		23.1	14.8		13.0	12.1		14.8	12.4	
LOS	Е	В		С	В		В	В		В	В	
Approach Delay		61.9			15.2			12.2			12.6	
Approach LOS		E			В			В			В	
Intersection Summary												
Δrea Tyne·	Other											

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 18.6 Intersection Capacity Utilization 95.9%

Intersection LOS: B
ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 1: Hurontario Street & Park Street East

	۶	→	1	←	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	219	69	13	265	23	711	109	1033	
v/c Ratio	0.92	0.14	0.04	0.48	0.09	0.34	0.28	0.51	
Control Delay	76.6	15.5	23.1	14.8	13.0	12.1	14.8	12.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	76.6	15.5	23.1	14.8	13.0	12.1	14.8	12.4	
Queue Length 50th (m)	40.8	5.4	1.9	17.5	1.8	34.9	9.9	50.0	
Queue Length 95th (m)	#69.1	13.7	5.6	35.0	6.9	56.6	25.1	81.4	
nternal Link Dist (m)		76.6		50.4		75.5		153.7	
Turn Bay Length (m)	39.0		37.0		33.0		19.0		
Base Capacity (vph)	317	642	479	682	254	2074	387	2011	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.69	0.11	0.03	0.39	0.09	0.34	0.28	0.51	
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	٠	→	*	•	•	4	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1→		7	₽		7	†		7	† 1>	
Traffic Volume (vph)	219	38	31	13	46	219	23	678	33	109	671	362
Future Volume (vph)	219	38	31	13	46	219	23	678	33	109	671	362
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.97		1.00	1.00		1.00	0.97	
Flpb, ped/bikes	0.98	1.00		0.97	1.00		0.99	1.00		0.97	1.00	
Frt	1.00	0.93		1.00	0.88		1.00	0.99		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1778	1728		1777	1632		1801	3509		1743	3309	
Flt Permitted	0.47	1.00		0.71	1.00		0.23	1.00		0.36	1.00	
Satd. Flow (perm)	882	1728		1332	1632		431	3509		655	3309	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	219	38	31	13	46	219	23	678	33	109	671	362
RTOR Reduction (vph)	0	23	0	0	109	0	0	3	0	0	58	0
Lane Group Flow (vph)	219	46	0	13	156	0	23	708	0	109	975	0
Confl. Peds. (#/hr)	26		30	30		26	36		39	39		36
Heavy Vehicles (%)	1%	0%	4%	0%	0%	0%	0%	3%	0%	2%	2%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			6			2	
Permitted Phases	4			8			6			2		
Actuated Green, G (s)	26.9	26.9		26.9	26.9		59.1	59.1		59.1	59.1	
Effective Green, g (s)	26.9	26.9		26.9	26.9		59.1	59.1		59.1	59.1	
Actuated g/C Ratio	0.27	0.27		0.27	0.27		0.59	0.59		0.59	0.59	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	237	464		358	439		254	2073		387	1955	
v/s Ratio Prot		0.03			0.10			0.20			c0.29	
v/s Ratio Perm	c0.25			0.01			0.05			0.17		
v/c Ratio	0.92	0.10		0.04	0.36		0.09	0.34		0.28	0.50	
Uniform Delay, d1	35.6	27.5		27.0	29.5		8.8	10.5		10.0	11.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	38.1	0.1		0.0	0.5		0.7	0.4		1.8	0.9	
Delay (s)	73.7	27.6		27.0	30.0		9.5	10.9		11.8	12.8	
Level of Service	Е	С		С	С		Α	В		В	В	
Approach Delay (s)		62.6			29.9			10.9			12.7	
Approach LOS		E			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			20.0	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.63									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			14.0			
Intersection Capacity Utiliz	ation		95.9%	IC	U Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	•	•	*	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7		4			4	
Traffic Volume (vph)	19	208	2	26	226	145	5	68	27	81	32	4
Future Volume (vph)	19	208	2	26	226	145	5	68	27	81	32	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		10.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999				0.850		0.964			0.995	
Flt Protected		0.996			0.995			0.998			0.967	
Satd. Flow (prot)	0	1912	0	0	1878	1633	0	1461	0	0	1848	0
Flt Permitted		0.996			0.995			0.998			0.967	
Satd. Flow (perm)	0	1912	0	0	1878	1633	0	1461	0	0	1848	0
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		36.6			100.6			45.4			96.7	
Travel Time (s)		2.7			7.5			3.4			7.3	
Confl. Peds. (#/hr)	15		13	13		15	8		12	12		8
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	0%	2%	0%	0%	39%	0%	0%	0%	0%
Adj. Flow (vph)	19	208	2	26	226	145	5	68	27	81	32	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	229	0	0	252	145	0	100	0	0	117	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type: (Other											

Control Type: Unsignalized
Intersection Capacity Utilization 46.7%
Analysis Period (min) 15

ICU Level of Service A

	•	→	*	1	+	•	4	†	-	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7		4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	19	208	2	26	226	145	5	68	27	81	32	4
Future Volume (vph)	19	208	2	26	226	145	5	68	27	81	32	4
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	19	208	2	26	226	145	5	68	27	81	32	4
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total (vph)	229	252	145	100	117							
Volume Left (vph)	19	26	0	5	81							
Volume Right (vph)	2	0	145	27	4							
Hadj (s)	0.01	0.08	-0.70	0.30	0.12							
Departure Headway (s)	5.2	5.5	4.7	5.9	5.7							
Degree Utilization, x	0.33	0.39	0.19	0.16	0.19							
Capacity (veh/h)	659	630	732	542	570							
Control Delay (s)	10.7	10.7	7.6	10.1	10.0							
Approach Delay (s)	10.7	9.6		10.1	10.0							
Approach LOS	В	Α		В	Α							
Intersection Summary												
Delay			10.0									
Level of Service			Α									
Intersection Capacity Utiliza	tion		46.7%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	1	•	†	-	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		13			स
Traffic Volume (vph)	0	0	181	0	0	92
Future Volume (vph)	0	0	181	0	0	92
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	1883	0	1883	0	0	1883
Flt Permitted						
Satd. Flow (perm)	1883	0	1883	0	0	1883
Link Speed (k/h)	48		48			48
Link Distance (m)	27.4		96.7			28.3
Travel Time (s)	2.1		7.3			2.1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	0	0	181	0	0	92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	181	0	0	92
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.7		0.0			0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.9		4.9			4.9
Two way Left Turn Lane						
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	14		14	24	
Sign Control	Stop		Free			Free
Intersection Summary						
, , , , , , , , , , , , , , , , , , ,	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 12.9%			IC	U Level c	of Service

	•	•	†	~	\	Ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		7	.,_,,		4
Traffic Volume (veh/h)	0	0	181	0	0	92
Future Volume (Veh/h)	0	0	181	0	0	92
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	181	0	0	92
Pedestrians						<u> </u>
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			TVOTIC			NOTIC
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	273	181			181	
vC1, stage 1 conf vol	210	101			101	
vC2, stage 2 conf vol						
vCu, unblocked vol	273	181			181	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			4.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	716	862			1394	
					1394	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	0	181	92			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1700	1394			
Volume to Capacity	0.00	0.11	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	Α					
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliz	zation		12.9%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	→	*	•	+	•	1	1	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ»		7	f)		*	†		*	†	
Traffic Volume (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Future Volume (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	39.0		0.0	37.0		0.0	33.0		0.0	19.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.99	0.98		0.97	0.97		0.95	0.99		0.96	0.94	
Frt		0.922			0.869			0.988			0.948	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1807	1734	0	1825	1505	0	1547	3352	0	1772	3085	0
Flt Permitted	0.252			0.697			0.355			0.371		
Satd. Flow (perm)	474	1734	0	1305	1505	0	550	3352	0	668	3085	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		48			227			6			97	
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		100.6			74.4			99.5			177.7	
Travel Time (s)		7.5			5.6			7.5			13.3	
Confl. Peds. (#/hr)	15		21	21		15	53		43	43		53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	0%	0%	0%	0%	9%	18%	7%	0%	3%	8%	2%
Adj. Flow (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Shared Lane Traffic (%)												
Lane Group Flow (vph)	337	92	0	32	276	0	29	570	0	282	784	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		•									•	

Δ	M	Pea	k

	۶	-	7	-	*	1	†	1	1	Ţ	4
Lane Group	EBL	EBT	EBR WBI	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA	Pern	n NA		Perm	NA		pm+pt	NA	
Protected Phases	7	4		8			6		5	2	
Permitted Phases	4		;	}		6			2		
Detector Phase	7	4	8	8		6	6		5	2	
Switch Phase											
Minimum Initial (s)	4.0	8.0	8.0			8.0	8.0		4.0	8.0	
Minimum Split (s)	8.0	38.0	38.0			33.0	33.0		8.0	33.0	
Total Split (s)	28.0	66.0	38.0	38.0		42.0	42.0		32.0	74.0	
Total Split (%)	20.0%	47.1%	27.1%			30.0%	30.0%		22.9%	52.9%	
Maximum Green (s)	25.0	59.0	31.0			35.0	35.0		29.0	67.0	
Yellow Time (s)	3.0	4.0	4.0			4.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	3.0	3.0			3.0	3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.0	7.0	7.0		7.0	7.0		3.0	7.0	
Lead/Lag	Lead		Lag	g Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes		Ye			Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None			C-Max	C-Max		None	C-Max	
Walk Time (s)		10.0	10.0			9.0	9.0			9.0	
Flash Dont Walk (s)		21.0	21.0	21.0		17.0	17.0			17.0	
Pedestrian Calls (#/hr)		0	(0		0	0			0	
Act Effct Green (s)	44.5	40.5	12.9	12.9		67.0	67.0		89.5	85.5	
Actuated g/C Ratio	0.32	0.29	0.09			0.48	0.48		0.64	0.61	
v/c Ratio	0.88	0.17	0.27			0.11	0.35		0.51	0.41	
Control Delay	63.3	18.1	61.8			26.6	25.4		15.4	13.6	
Queue Delay	0.0	0.0	0.0			0.0	0.0		0.0	0.0	
Total Delay	63.3	18.1	61.8	30.4		26.6	25.4		15.4	13.6	
LOS	Е	В	E			С	С		В	В	
Approach Delay		53.6		33.6			25.4			14.1	
Approach LOS		D		С			С			В	

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 26.5 Intersection Capacity Utilization 95.4%

Intersection LOS: C ICU Level of Service F

Analysis Period (min) 15

1: Hurontario Street & Park Street East Splits and Phases:

١	M	П	Р	Α.	a	k

	•	→	1	•	4	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	337	92	32	276	29	570	282	784	
v/c Ratio	0.88	0.17	0.27	0.80	0.11	0.35	0.51	0.41	
Control Delay	63.3	18.1	61.8	30.4	26.6	25.4	15.4	13.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	63.3	18.1	61.8	30.4	26.6	25.4	15.4	13.6	
Queue Length 50th (m)	79.9	9.1	8.5	13.2	4.2	48.5	30.3	47.0	
Queue Length 95th (m)	#102.5	20.1	17.7	42.2	13.5	80.7	55.7	74.8	
Internal Link Dist (m)		76.6		50.4		75.5		153.7	
Turn Bay Length (m)	39.0		37.0		33.0		19.0		
Base Capacity (vph)	388	758	288	509	263	1606	655	1921	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.87	0.12	0.11	0.54	0.11	0.35	0.43	0.41	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	٠	-	•	•	•	•	1	†	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1		7	1		1	†		7	↑ ↑	
Traffic Volume (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Future Volume (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.97		1.00	0.99		1.00	0.94	
Flpb, ped/bikes	1.00	1.00		0.97	1.00		0.95	1.00		0.99	1.00	
Frt	1.00	0.92		1.00	0.87		1.00	0.99		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1803	1734		1779	1505		1472	3351		1747	3084	
Flt Permitted	0.25	1.00		0.70	1.00		0.35	1.00		0.37	1.00	
Satd. Flow (perm)	477	1734		1306	1505		550	3351		683	3084	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	337	44	48	32	35	241	29	524	46	282	510	274
RTOR Reduction (vph)	0	34	0	0	206	0	0	3	0	0	38	0
Lane Group Flow (vph)	337	58	0	32	70	0	29	567	0	282	746	0
Confl. Peds. (#/hr)	15		21	21		15	53		43	43		53
Heavy Vehicles (%)	1%	0%	0%	0%	0%	9%	18%	7%	0%	3%	8%	2%
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases	7	4			8			6		5	2	
Permitted Phases	4			8			6			2		
Actuated Green, G (s)	40.5	40.5		12.9	12.9		67.0	67.0		85.5	85.5	
Effective Green, g (s)	40.5	40.5		12.9	12.9		67.0	67.0		85.5	85.5	
Actuated g/C Ratio	0.29	0.29		0.09	0.09		0.48	0.48		0.61	0.61	
Clearance Time (s)	3.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	370	501		120	138		263	1603		534	1883	
v/s Ratio Prot	c0.16	0.03			0.05			0.17		c0.06	0.24	
v/s Ratio Perm	c0.10			0.02			0.05			c0.26		
v/c Ratio	0.91	0.12		0.27	0.51		0.11	0.35		0.53	0.40	
Uniform Delay, d1	44.1	36.6		59.1	60.5		20.1	22.9		13.3	14.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	25.9	0.1		1.2	2.9		0.8	0.6		0.9	0.6	
Delay (s)	70.0	36.7		60.3	63.4		20.9	23.5		14.2	14.6	
Level of Service	Е	D		Е	Е		С	С		В	В	
Approach Delay (s)		62.8			63.1			23.4			14.5	
Approach LOS		Е			Е			С			В	
Intersection Summary												
HCM 2000 Control Delay			31.6	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Cap	acity ratio		0.68									
Actuated Cycle Length (s)			140.0		um of lost	. ,			20.0			
Intersection Capacity Utiliz	ation		95.4%	IC	CU Level of	of Service			F			
Analysis Period (min)			15									
o Critical Lana Croup												

	۶	→	*	•	←	•	1	1	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ન	7		4			4	
Traffic Volume (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Future Volume (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		10.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999				0.850		0.976			0.998	
Flt Protected		0.996			0.989			0.999			0.961	
Satd. Flow (prot)	0	1861	0	0	1784	1617	0	1540	0	0	1842	0
Flt Permitted		0.996			0.989			0.999			0.961	
Satd. Flow (perm)	0	1861	0	0	1784	1617	0	1540	0	0	1842	0
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		36.6			100.6			45.4			96.7	
Travel Time (s)		2.7			7.5			3.4			7.3	
Confl. Peds. (#/hr)	30		4	4		30	9		10	10		9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	3%	0%	1%	8%	1%	0%	27%	0%	0%	0%	0%
Adj. Flow (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	271	0	0	93	205	0	152	0	0	222	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type:	Othor											

Area Type: Othe

Control Type: Unsignalized

Intersection Capacity Utilization 53.3%

ICU Level of Service A

	٠	→	*	1	•	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			स्	7		4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Future Volume (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total (vph)	271	93	205	152	222							
Volume Left (vph)	24	20	0	3	179							
Volume Right (vph)	3	0	205	27	4							
Hadj (s)	0.06	0.22	-0.68	0.27	0.15							
Departure Headway (s)	5.7	6.3	5.4	6.1	5.9							
Degree Utilization, x	0.43	0.16	0.31	0.26	0.36							
Capacity (veh/h)	591	534	623	520	561							
Control Delay (s)	12.9	9.3	9.5	11.3	12.2							
Approach Delay (s)	12.9	9.5		11.3	12.2							
Approach LOS	В	Α		В	В							
Intersection Summary												
Delay			11.4									
Level of Service			В									
Intersection Capacity Utilizat	tion		53.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

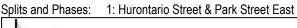
Lane Group WBL WBR NBT NBR SBL SBT
Lane Configurations 7
Traffic Volume (vph) 150 1 225 109 0 15
Future Volume (vph) 150 1 225 109 0 15
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00
Frt 0.999 0.956
Flt Protected 0.953
Satd. Flow (prot) 1793 0 1801 0 0 1883
Flt Permitted 0.953
Satd. Flow (perm) 1793 0 1801 0 0 1883
Link Speed (k/h) 48 48 48
Link Distance (m) 27.4 96.7 28.3
Travel Time (s) 2.1 7.3 2.1
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00
Adj. Flow (vph) 150 1 225 109 0 15
Shared Lane Traffic (%)
Lane Group Flow (vph) 151 0 334 0 0 15
Enter Blocked Intersection No No No No No No
Lane Alignment Left Right Left Right Left Left
Median Width(m) 3.7 0.0 0.0
Link Offset(m) 0.0 0.0 0.0
Crosswalk Width(m) 4.9 4.9 4.9
Two way Left Turn Lane
Headway Factor 0.99 0.99 0.99 0.99 0.99
Turning Speed (k/h) 24 14 14 24
Sign Control Stop Free Free
Intersection Summary
Area Type: Other
Control Type: Unsignalized

Intersection Capacity Utilization 33.5% Analysis Period (min) 15

	•	•	†	~	-	 	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y	•	ĵ⇒	_		ર્લ	
Traffic Volume (veh/h)	150	1	225	109	0	15	
Future Volume (Veh/h)	150	1	225	109	0	15	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	150	1	225	109	0	15	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	294	280			334		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	294	280			334		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	78	100			100		
cM capacity (veh/h)	696	759			1225		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	151	334	15				
Volume Left	150	0	0				
Volume Right	1	109	0				
cSH	697	1700	1225				
Volume to Capacity	0.22	0.20	0.00				
Queue Length 95th (m)	6.2	0.0	0.0				
Control Delay (s)	11.6	0.0	0.0				
Lane LOS	В						
Approach Delay (s)	11.6	0.0	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			3.5				
Intersection Capacity Utiliza	ation		33.5%	IC	U Level o	f Service	
Analysis Period (min)	 -		15	.0		2 2	
raidy old i ollou (illiii)			10				

	۶	-	*	•	•	•	1	1	~	/	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1		7	1		*	†		×	↑ ↑	
Traffic Volume (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Future Volume (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	39.0		0.0	37.0		0.0	33.0		0.0	19.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.98	0.98		0.97	0.97		0.99	1.00		0.98	0.96	
Frt		0.920			0.879			0.993			0.940	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1807	1693	0	1825	1639	0	1825	3508	0	1789	3271	0
Flt Permitted	0.501			0.696			0.181			0.344		
Satd. Flow (perm)	938	1693	0	1303	1639	0	344	3508	0	632	3271	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		50			149			7			226	
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		100.6			74.4			99.5			177.7	
Travel Time (s)		7.5			5.6			7.5			13.3	
Confl. Peds. (#/hr)	26		30	30		26	36		39	39		36
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	0%	4%	0%	0%	0%	0%	3%	0%	2%	2%	0%
Adj. Flow (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Shared Lane Traffic (%)												
Lane Group Flow (vph)	286	94	0	13	272	0	43	711	0	109	1117	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		<u>-</u> .			<u>-</u> /			J			<u>-</u> /	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		0.0			0.0			0.0			0.0	

Turn Type	1: Hurontario Stre	et & Par	K Stree	t East								P	M Peak
Turn Type		•	-	*	1	←	*	1	†	1	1	Ţ	4
Protected Phases	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Detector Phase	Protected Phases		4			8			6			2	
Switch Phase	Permitted Phases	4			8			6			2		
Minimum Initial (s) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	Detector Phase	4	4		8	8		6	6		2	2	
Minimum Split (s)	Switch Phase												
Total Split (s)	Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Total Split (%)	Minimum Split (s)	43.0	43.0		38.0	38.0		33.0	33.0		33.0	33.0	
Maximum Green (s) 36.0 36.0 36.0 36.0 50.0 50.0 50.0 50.0 Yellow Time (s) 4.0 </td <td>Total Split (s)</td> <td>43.0</td> <td>43.0</td> <td></td> <td>43.0</td> <td>43.0</td> <td></td> <td>57.0</td> <td>57.0</td> <td></td> <td>57.0</td> <td>57.0</td> <td></td>	Total Split (s)	43.0	43.0		43.0	43.0		57.0	57.0		57.0	57.0	
Yellow Time (s) 4.0 Alo	Total Split (%)	43.0%	43.0%		43.0%	43.0%		57.0%	57.0%		57.0%	57.0%	
All-Red Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Maximum Green (s)	36.0	36.0		36.0	36.0		50.0	50.0		50.0	50.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Total Lost Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	All-Red Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.5 3.5 53.5 53.5 53.5 53.5 53.5	Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Lead-Lag Optimize? Vehicle Extension (s) 3.0 <td>Total Lost Time (s)</td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td>	Total Lost Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Vehicle Extension (s) 3.0	Lead/Lag												
Recall Mode None None None None C-Max C-Max C-Max C-Max Walk Time (s) 10.0 10.0 10.0 10.0 9.0 0 <t< td=""><td>Lead-Lag Optimize?</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Lead-Lag Optimize?												
Walk Time (s) 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 Flash Dont Walk (s) 21.0 21.0 21.0 21.0 17.0 17.0 17.0 17.0 17.0 Pedestrian Calls (#/hr) 0	Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Flash Dont Walk (s) 21.0 21.0 21.0 21.0 17.0 17.0 17.0 17.0 17.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Pedestrian Calls (#/hr) 0 <td>Walk Time (s)</td> <td>10.0</td> <td>10.0</td> <td></td> <td>10.0</td> <td>10.0</td> <td></td> <td>9.0</td> <td>9.0</td> <td></td> <td>9.0</td> <td>9.0</td> <td></td>	Walk Time (s)	10.0	10.0		10.0	10.0		9.0	9.0		9.0	9.0	
Act Effct Green (s) 32.5 32.5 32.5 32.5 53.5 53.5 53.5 53.5	Flash Dont Walk (s)	21.0	21.0		21.0	21.0		17.0	17.0		17.0	17.0	
Actuated g/C Ratio 0.32 0.32 0.32 0.32 0.54 0.54 0.54 0.54 v/c Ratio 0.94 0.16 0.03 0.43 0.23 0.38 0.32 0.60 Control Delay 71.8 12.2 21.2 13.0 18.4 14.9 17.9 14.6 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
v/c Ratio 0.94 0.16 0.03 0.43 0.23 0.38 0.32 0.60 Control Delay 71.8 12.2 21.2 13.0 18.4 14.9 17.9 14.6 Queue Delay 0.0 <td< td=""><td>Act Effct Green (s)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>53.5</td><td></td><td></td><td></td><td></td><td></td></td<>	Act Effct Green (s)							53.5					
Control Delay 71.8 12.2 21.2 13.0 18.4 14.9 17.9 14.6 Queue Delay 0.0	Actuated g/C Ratio		0.32			0.32		0.54				0.54	
Queue Delay 0.0 <td< td=""><td>v/c Ratio</td><td></td><td></td><td></td><td></td><td>0.43</td><td></td><td>0.23</td><td></td><td></td><td>0.32</td><td></td><td></td></td<>	v/c Ratio					0.43		0.23			0.32		
Total Delay 71.8 12.2 21.2 13.0 18.4 14.9 17.9 14.6 LOS E B C B B B B Approach Delay 57.1 13.3 15.1 14.9 Approach LOS E B B B B Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100	Control Delay	71.8	12.2		21.2	13.0		18.4	14.9		17.9	14.6	
LOS E B C B B B B B Approach Delay 57.1 13.3 15.1 14.9 Approach LOS E B	Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Approach Delay 57.1 13.3 15.1 14.9 Approach LOS E B B B Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100	Total Delay	71.8	12.2		21.2	13.0		18.4	14.9		17.9	14.6	
Approach LOS E B B B Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100	LOS	Е	В		С	В		В	В		В	В	
Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100	Approach Delay		57.1			13.3			15.1			14.9	
Area Type: Other Cycle Length: 100 Actuated Cycle Length: 100	Approach LOS		Е			В			В			В	
Cycle Length: 100 Actuated Cycle Length: 100	Intersection Summary												
Actuated Cycle Length: 100	Area Type:	Other											
	Actuated Cycle Length: 10	00											


Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94 Intersection Signal Delay: 20.8 Intersection Capacity Utilization 102.6%

Intersection LOS: C ICU Level of Service G

	۶	→	1	←	1	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	286	94	13	272	43	711	109	1117	
v/c Ratio	0.94	0.16	0.03	0.43	0.23	0.38	0.32	0.60	
Control Delay	71.8	12.2	21.2	13.0	18.4	14.9	17.9	14.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	71.8	12.2	21.2	13.0	18.4	14.9	17.9	14.6	
Queue Length 50th (m)	50.5	5.6	1.6	16.3	4.6	43.0	12.2	63.7	
Queue Length 95th (m)	#97.0	16.0	5.6	36.6	12.6	56.6	25.4	85.0	
Internal Link Dist (m)		76.6		50.4		75.5		153.7	
Turn Bay Length (m)	39.0		37.0		33.0		19.0		
Base Capacity (vph)	337	641	469	685	184	1880	338	1855	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.85	0.15	0.03	0.40	0.23	0.38	0.32	0.60	
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	٠	→	•	•	•	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ.		7	f)		×	†		7	†	
Traffic Volume (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Future Volume (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.97		1.00	1.00		1.00	0.96	
Flpb, ped/bikes	0.98	1.00		0.97	1.00		0.99	1.00		0.97	1.00	
Frt	1.00	0.92		1.00	0.88		1.00	0.99		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1778	1694		1779	1639		1806	3509		1744	3272	
Flt Permitted	0.50	1.00		0.70	1.00		0.18	1.00		0.34	1.00	
Satd. Flow (perm)	937	1694		1303	1639		344	3509		632	3272	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	286	44	50	13	53	219	43	678	33	109	671	446
RTOR Reduction (vph)	0	34	0	0	101	0	0	3	0	0	105	0
Lane Group Flow (vph)	286	60	0	13	171	0	43	708	0	109	1012	0
Confl. Peds. (#/hr)	26		30	30		26	36		39	39		36
Heavy Vehicles (%)	1%	0%	4%	0%	0%	0%	0%	3%	0%	2%	2%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			6			2	
Permitted Phases	4			8			6			2		
Actuated Green, G (s)	32.5	32.5		32.5	32.5		53.5	53.5		53.5	53.5	
Effective Green, g (s)	32.5	32.5		32.5	32.5		53.5	53.5		53.5	53.5	
Actuated g/C Ratio	0.32	0.32		0.32	0.32		0.54	0.54		0.54	0.54	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	304	550		423	532		184	1877		338	1750	
v/s Ratio Prot		0.04			0.10			0.20			c0.31	
v/s Ratio Perm	c0.31			0.01			0.13			0.17		
v/c Ratio	0.94	0.11		0.03	0.32		0.23	0.38		0.32	0.58	
Uniform Delay, d1	32.8	23.6		23.0	25.4		12.4	13.5		13.1	15.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	36.1	0.1		0.0	0.4		3.0	0.6		2.5	1.4	
Delay (s)	68.9	23.7		23.0	25.8		15.3	14.1		15.6	17.1	
Level of Service	Е	С		С	С		В	В		В	В	
Approach Delay (s)		57.7			25.7			14.2			16.9	
Approach LOS		Е			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			23.0	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.71									
Actuated Cycle Length (s)			100.0	Sı	um of lost	t time (s)			14.0			
Intersection Capacity Utiliz	ation		102.6%			of Service			G			
Analysis Period (min)			15									
o Critical Lana Croup												

	۶	→	•	1	•	*	1	†	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7		4			4	
Traffic Volume (vph)	31	208	2	26	226	256	5	122	27	173	87	10
Future Volume (vph)	31	208	2	26	226	256	5	122	27	173	87	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		10.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999				0.850		0.976			0.995	
Flt Protected		0.994			0.995			0.998			0.969	
Satd. Flow (prot)	0	1908	0	0	1878	1633	0	1430	0	0	1852	0
Flt Permitted		0.994			0.995			0.998			0.969	
Satd. Flow (perm)	0	1908	0	0	1878	1633	0	1430	0	0	1852	0
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		36.6			100.6			45.4			96.7	
Travel Time (s)		2.7			7.5			3.4			7.3	
Confl. Peds. (#/hr)	15		13	13		15	8		12	12		8
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	0%	2%	0%	0%	39%	0%	0%	0%	0%
Adj. Flow (vph)	31	208	2	26	226	256	5	122	27	173	87	10
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	241	0	0	252	256	0	154	0	0	270	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type: (Other											

Area Type: Control Type: Unsignalized

Intersection Capacity Utilization 64.6%

ICU Level of Service C

	٠	→	*	•	•	1	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7		4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	31	208	2	26	226	256	5	122	27	173	87	10
Future Volume (vph)	31	208	2	26	226	256	5	122	27	173	87	10
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	31	208	2	26	226	256	5	122	27	173	87	10
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total (vph)	241	252	256	154	270							
Volume Left (vph)	31	26	0	5	173							
Volume Right (vph)	2	0	256	27	10							
Hadj (s)	0.02	80.0	-0.70	0.43	0.11							
Departure Headway (s)	6.3	6.5	5.7	7.0	6.4							
Degree Utilization, x	0.42	0.45	0.40	0.30	0.48							
Capacity (veh/h)	528	532	606	458	524							
Control Delay (s)	13.8	13.5	11.3	12.9	15.1							
Approach Delay (s)	13.8	12.4		12.9	15.1							
Approach LOS	В	В		В	С							
Intersection Summary												
Delay			13.4									
Level of Service			В									
Intersection Capacity Utilizat	tion		64.6%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

Lane Group WBL WBR NBT NBR SBL SBT Lane Configurations ↑
Traffic Volume (vph) 152 6 181 177 0 92 Future Volume (vph) 152 6 181 177 0 92 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.995 0.933 0.933 0.933 0.933 0.933 0.933 0.934
Future Volume (vph) 152 6 181 177 0 92 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.995 0.933
Ideal Flow (vphpl) 1900 1883 184 183 183 184 183 183 184 183 184<
Lane Util. Factor 1.00
Frt 0.995 0.933 Flt Protected 0.954 Satd. Flow (prot) 1788 0 1757 0 0 1883 Flt Permitted 0.954 0 1757 0 0 1883 Link Speed (k/h) 48 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 152 6 181 177 0 92 Shared Lane Traffic (%) 2 2 358 0 0 92 Enter Blocked Intersection No No No No No No Lane Alignment Left Right Left Right Left Left Median Width(m) 3.7 0.0 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 0.0
Fit Protected 0.954 Satd. Flow (prot) 1788 0 1757 0 0 1883 Fit Permitted 0.954 0 1757 0 0 1883 Satd. Flow (perm) 1788 0 1757 0 0 1883 Link Speed (k/h) 48 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 152 6 181 177 0 92 Shared Lane Traffic (%) 2 2 181 177 0 92 Enter Blocked Intersection No No No No No No Lane Alignment Left Right Left Right Left
Satd. Flow (prot) 1788 0 1757 0 0 1883 Flt Permitted 0.954 <t< td=""></t<>
Fit Permitted 0.954 Satd. Flow (perm) 1788 0 1757 0 0 1883 Link Speed (k/h) 48 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 152 6 181 177 0 92 Shared Lane Traffic (%) 2 2 358 0 0 92 Enter Blocked Intersection No No No No No No Lane Alignment Left Right Left Right Left Left Median Width(m) 3.7 0.0 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9
Satd. Flow (perm) 1788 0 1757 0 0 1883 Link Speed (k/h) 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 152 6 181 177 0 92 Shared Lane Traffic (%) 2 2 2 2 2 2 2 2 2 2 2 2 358 0 0 92 2 2 2 358 0 0 92 2 2 358 0 0 92 3 358 0 0 92 3 3 0
Link Speed (k/h) 48 48 48 Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 152 6 181 177 0 92 Shared Lane Traffic (%) Lane Group Flow (vph) 158 0 358 0 0 92 Enter Blocked Intersection No No No No No No No No Lane Alignment Left Right Left Right Left Left Left Median Width(m) 3.7 0.0 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9
Link Distance (m) 27.4 96.7 28.3 Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 152 6 181 177 0 92 Shared Lane Traffic (%) Lane Group Flow (vph) 158 0 358 0 0 92 Enter Blocked Intersection No No <t< td=""></t<>
Travel Time (s) 2.1 7.3 2.1 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 152 6 181 177 0 92 Shared Lane Traffic (%) Lane Group Flow (vph) 158 0 358 0 0 92 Enter Blocked Intersection No No <t< td=""></t<>
Peak Hour Factor 1.00 92 Shared Lane Traffic (%) Lane Group Flow (vph) 158 0 358 0 0 92 Enter Blocked Intersection No
Adj. Flow (vph) 152 6 181 177 0 92 Shared Lane Traffic (%) Lane Group Flow (vph) 158 0 358 0 0 92 Enter Blocked Intersection No No <t< td=""></t<>
Shared Lane Traffic (%) Lane Group Flow (vph) 158 0 358 0 0 92 Enter Blocked Intersection No
Lane Group Flow (vph) 158 0 358 0 0 92 Enter Blocked Intersection No
Enter Blocked Intersection No No <th< td=""></th<>
Lane Alignment Left Right Left Right Left Left Median Width(m) 3.7 0.0 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9
Median Width(m) 3.7 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9
Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9
Crosswalk Width(m) 4.9 4.9 4.9
Two way Left Turn Lane
Headway Factor 0.99 0.99 0.99 0.99 0.99
Turning Speed (k/h) 24 14 14 24
Sign Control Stop Free Free
Intersection Summary
Area Type: Other
Control Type: Unsignalized

Intersection Capacity Utilization 35.8% Analysis Period (min) 15

	•	•	†	~	1	 	4
Movement	WBL	WBR	NBT	NBR	SBL	SBT	ļ
Lane Configurations	¥		₽			र्स	
Traffic Volume (veh/h)	152	6	181	177	0	92	
Future Volume (Veh/h)	152	6	181	177	0	92	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	152	6	181	177	0	92	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	362	270			358		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	362	270			358		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	76	99			100		
cM capacity (veh/h)	638	769			1201		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	158	358	92				
Volume Left	152	0	0				
Volume Right	6	177	0				
cSH	642	1700	1201				
Volume to Capacity	0.25	0.21	0.00				
Queue Length 95th (m)	7.3	0.0	0.0				
Control Delay (s)	12.4	0.0	0.0				
Lane LOS	В	3.0	3.5				
Approach Delay (s)	12.4	0.0	0.0				
Approach LOS	В	0.0	3.0				
Intersection Summary							
Average Delay			3.2				
Intersection Capacity Utiliza	ition		35.8%	10	U Level c	of Sarvice	
Analysis Period (min)	IIIOH		15	iC	O LEVEL	N OEI VICE	
Analysis Feliou (IIIII)			15				

	۶	→	•	•	←	•	4	†	~	/	ţ	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	₽		*	1>		*	†		*	†	
Traffic Volume (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Future Volume (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	39.0	,,,,,	0.0	37.0	1000	0.0	33.0		0.0	19.0	,,,,,	0.0
Storage Lanes	1		0.0	1		0.0	1		0.0	1		0.0
Taper Length (m)	7.6			7.6			7.6		•	7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.99	0.98	1.00	0.97	0.97	1.00	0.95	0.99	0.00	0.96	0.94	0.00
Frt	0.00	0.922		0.01	0.869		0.00	0.988		0.00	0.948	
Flt Protected	0.950	0.022		0.950	0.000		0.950	0.000		0.950	0.010	
Satd. Flow (prot)	1807	1734	0	1825	1505	0	1547	3352	0	1772	3085	0
Flt Permitted	0.253	1701	J	0.697	1000	J	0.355	0002	· ·	0.370	0000	J
Satd. Flow (perm)	476	1734	0	1305	1505	0	550	3352	0	665	3085	0
Right Turn on Red	170	1701	Yes	1000	1000	Yes	000	0002	Yes	000	0000	Yes
Satd. Flow (RTOR)		48	100		230	100		6	100		95	100
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		100.6			74.4			99.5			177.7	
Travel Time (s)		7.5			5.6			7.5			13.3	
Confl. Peds. (#/hr)	15	1.0	21	21	5.0	15	53	1.5	43	43	10.0	53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	0%	0%	0%	0%	9%	18%	7%	0%	3%	8%	2%
Adj. Flow (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Shared Lane Traffic (%)	001	77	70	02	00	271	25	0Z-T	70	202	310	217
Lane Group Flow (vph)	337	92	0	32	276	0	29	570	0	282	784	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	20.0	3.7	, agaic	2010	3.7	rugiit	2010	3.7	, agaic	2010	3.7	i agin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	0.00	14	24	0.00	14	24	0.00	14	24	0.00	14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OI LA	OI - EX		OI LX	OI - EX		OI LX	OI ZX		OI LX	OI - EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		OI LX			OI ' LX			OI. LX			OI LX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Delector 2 Exterior (9)		0.0			0.0			0.0			0.0	

	•	\rightarrow	7 1	•	•	1	†	1	1	Ţ	4
Lane Group	EBL	EBT	EBR WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA	Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases	7	4		8			6		5	2	
Permitted Phases	4		8			6			2		
Detector Phase	7	4	8	8		6	6		5	2	
Switch Phase											
Minimum Initial (s)	4.0	8.0	8.0	8.0		8.0	8.0		4.0	8.0	
Minimum Split (s)	8.0	38.0	38.0	38.0		33.0	33.0		8.0	33.0	
Total Split (s)	29.0	68.0	39.0	39.0		44.0	44.0		28.0	72.0	
Total Split (%)	20.7%	48.6%	27.9%	27.9%		31.4%	31.4%		20.0%	51.4%	
Maximum Green (s)	26.0	61.0	32.0	32.0		37.0	37.0		25.0	65.0	
Yellow Time (s)	3.0	4.0	4.0	4.0		4.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	3.0	3.0	3.0		3.0	3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.0	7.0	7.0		7.0	7.0		3.0	7.0	
Lead/Lag	Lead		Lag	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes		Yes	Yes		Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None		C-Max	C-Max		None	C-Max	
Walk Time (s)		10.0	10.0	10.0		9.0	9.0			9.0	
Flash Dont Walk (s)		21.0	21.0	21.0		17.0	17.0			17.0	
Pedestrian Calls (#/hr)		0	0	0		0	0			0	
Act Effct Green (s)	45.1	41.1	12.8	12.8		66.2	66.2		88.9	84.9	
Actuated g/C Ratio	0.32	0.29	0.09	0.09		0.47	0.47		0.64	0.61	
v/c Ratio	0.86	0.17	0.27	0.80		0.11	0.36		0.52	0.41	
Control Delay	59.6	17.8	62.3	29.7		27.2	25.9		15.7	14.0	
Queue Delay	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	59.6	17.8	62.3	29.7		27.2	25.9		15.7	14.0	
LOS	Е	В	E	С		С	С		В	В	
Approach Delay		50.7		33.1			26.0			14.5	
Approach LOS		D		С			С			В	

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 26.2 Intersection Capacity Utilization 95.4%

Intersection LOS: C
ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 1: Hurontario Street & Park Street East

	•	-	1	•	4	†	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	337	92	32	276	29	570	282	784	
v/c Ratio	0.86	0.17	0.27	0.80	0.11	0.36	0.52	0.41	
Control Delay	59.6	17.8	62.3	29.7	27.2	25.9	15.7	14.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	59.6	17.8	62.3	29.7	27.2	25.9	15.7	14.0	
Queue Length 50th (m)	79.2	9.0	8.6	12.4	4.2	49.2	30.8	47.7	
Queue Length 95th (m)	#99.3	20.0	17.7	41.3	13.7	81.6	56.5	75.9	
Internal Link Dist (m)		76.6		50.4		75.5		153.7	
Turn Bay Length (m)	39.0		37.0		33.0		19.0		
Base Capacity (vph)	400	782	298	521	260	1589	619	1907	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.84	0.12	0.11	0.53	0.11	0.36	0.46	0.41	
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	٠	→	•	•	•	•	1	1	~	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1→		7	1→		7	↑ ↑		7	1	
Traffic Volume (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Future Volume (vph)	337	44	48	32	35	241	29	524	46	282	510	274
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.97		1.00	0.99		1.00	0.94	
Flpb, ped/bikes	1.00	1.00		0.97	1.00		0.95	1.00		0.99	1.00	
Frt	1.00	0.92		1.00	0.87		1.00	0.99		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1803	1734		1779	1505		1472	3351		1747	3084	
Flt Permitted	0.25	1.00		0.70	1.00		0.35	1.00		0.37	1.00	
Satd. Flow (perm)	480	1734		1306	1505		550	3351		680	3084	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	337	44	48	32	35	241	29	524	46	282	510	274
RTOR Reduction (vph)	0	34	0	0	209	0	0	3	0	0	37	0
Lane Group Flow (vph)	337	58	0	32	67	0	29	567	0	282	747	0
Confl. Peds. (#/hr)	15		21	21		15	53		43	43		53
Heavy Vehicles (%)	1%	0%	0%	0%	0%	9%	18%	7%	0%	3%	8%	2%
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases	7	4			8			6		5	2	
Permitted Phases	4			8			6			2		
Actuated Green, G (s)	41.2	41.2		12.8	12.8		66.2	66.2		84.8	84.8	
Effective Green, g (s)	41.2	41.2		12.8	12.8		66.2	66.2		84.8	84.8	
Actuated g/C Ratio	0.29	0.29		0.09	0.09		0.47	0.47		0.61	0.61	
Clearance Time (s)	3.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	381	510		119	137		260	1584		530	1868	
v/s Ratio Prot	c0.16	0.03			0.04			0.17		c0.06	0.24	
v/s Ratio Perm	c0.10			0.02			0.05			c0.26		
v/c Ratio	0.88	0.11		0.27	0.49		0.11	0.36		0.53	0.40	
Uniform Delay, d1	43.5	36.1		59.2	60.5		20.5	23.4		13.6	14.4	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	20.9	0.1		1.2	2.7		0.9	0.6		1.0	0.6	
Delay (s)	64.3	36.2		60.5	63.2		21.4	24.0		14.6	15.0	
Level of Service	Е	D		Е	Е		С	С		В	В	
Approach Delay (s)		58.3			62.9			23.9			14.9	
Approach LOS		Е			Е			С			В	
Intersection Summary												
HCM 2000 Control Delay			31.1	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Cap	acity ratio		0.67									
Actuated Cycle Length (s)	,		140.0	Sı	um of lost	time (s)			20.0			
Intersection Capacity Utiliz	ation		95.4%		U Level o				F			
Analysis Period (min)			15		,,							
0 111 11												

	۶	→	*	•	←	•	1	1	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ન	7		4			4	
Traffic Volume (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Future Volume (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		10.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999				0.850		0.976			0.998	
Flt Protected		0.996			0.989			0.999			0.961	
Satd. Flow (prot)	0	1861	0	0	1784	1617	0	1540	0	0	1842	0
Flt Permitted		0.996			0.989			0.999			0.961	
Satd. Flow (perm)	0	1861	0	0	1784	1617	0	1540	0	0	1842	0
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		36.6			100.6			45.4			96.7	
Travel Time (s)		2.7			7.5			3.4			7.3	
Confl. Peds. (#/hr)	30		4	4		30	9		10	10		9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	3%	0%	1%	8%	1%	0%	27%	0%	0%	0%	0%
Adj. Flow (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	271	0	0	93	205	0	152	0	0	222	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type:	Othor											

Area Type: Other

Control Type: Unsignalized Intersection Capacity Utilization 53.3%

ICU Level of Service A

	٠	→	•	1	•	•	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			स्	7		4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Future Volume (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	24	244	3	20	73	205	3	122	27	179	39	4
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total (vph)	271	93	205	152	222							
Volume Left (vph)	24	20	0	3	179							
Volume Right (vph)	3	0	205	27	4							
Hadj (s)	0.06	0.22	-0.68	0.27	0.15							
Departure Headway (s)	5.7	6.3	5.4	6.1	5.9							
Degree Utilization, x	0.43	0.16	0.31	0.26	0.36							
Capacity (veh/h)	591	534	623	520	561							
Control Delay (s)	12.9	9.3	9.5	11.3	12.2							
Approach Delay (s)	12.9	9.5		11.3	12.2							
Approach LOS	В	Α		В	В							
Intersection Summary												
Delay			11.4									
Level of Service			В									
Intersection Capacity Utilizat	tion		53.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	†	-	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		₽			4
Traffic Volume (vph)	150	1	225	109	0	15
Future Volume (vph)	150	1	225	109	0	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.999		0.956			
Flt Protected	0.953					
Satd. Flow (prot)	1793	0	1801	0	0	1883
Flt Permitted	0.953					
Satd. Flow (perm)	1793	0	1801	0	0	1883
Link Speed (k/h)	48		48			48
Link Distance (m)	27.4		96.7			28.3
Travel Time (s)	2.1		7.3			2.1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	150	1	225	109	0	15
Shared Lane Traffic (%)						
Lane Group Flow (vph)	151	0	334	0	0	15
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.7		0.0			0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.9		4.9			4.9
Two way Left Turn Lane						
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	14		14	24	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: (Other					
O 1 1 T 11 1						

Control Type: Unsignalized Intersection Capacity Utilization 33.5% Analysis Period (min) 15

	1	•	†	~	/	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		₽			र्स
Traffic Volume (veh/h)	150	1	225	109	0	15
Future Volume (Veh/h)	150	1	225	109	0	15
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	150	1	225	109	0	15
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	294	280			334	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	294	280			334	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	78	100			100	
cM capacity (veh/h)	696	759			1225	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	151	334	15			
Volume Left			0			
	150 1	100				
Volume Right		1700	1225			
CSH Valume to Canacity	697	1700	1225			
Volume to Capacity	0.22	0.20	0.00			
Queue Length 95th (m)	6.2	0.0	0.0			
Control Delay (s)	11.6	0.0	0.0			
Lane LOS	В	0.0	0.0			
Approach Delay (s)	11.6	0.0	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			3.5			
Intersection Capacity Utilizati	ion		33.5%	IC	CU Level o	of Service
Analysis Period (min)			15			

	۶	→	*	•	—	•	1	1	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1		7	1		×	†		×	†	
Traffic Volume (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Future Volume (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	39.0		0.0	37.0		0.0	33.0		0.0	19.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.99	0.98		0.97	0.97		0.99	1.00		0.98	0.96	
Frt		0.920			0.879			0.993			0.940	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1807	1693	0	1825	1639	0	1825	3508	0	1789	3271	0
Flt Permitted	0.231			0.696			0.185			0.347		
Satd. Flow (perm)	433	1693	0	1303	1639	0	353	3508	0	639	3271	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		50			114			6			182	
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		100.6			74.4			99.5			177.7	
Travel Time (s)		7.5			5.6			7.5			13.3	
Confl. Peds. (#/hr)	26		30	30		26	36		39	39		36
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	0%	4%	0%	0%	0%	0%	3%	0%	2%	2%	0%
Adj. Flow (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Shared Lane Traffic (%)												
Lane Group Flow (vph)	286	94	0	13	272	0	43	711	0	109	1117	0
Enter Blocked Intersection	No	No	No									
Lane Alignment	Left	Left	Right									
Median Width(m)		3.7			3.7	, i		3.7	Ŭ		3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	· ·	· ·			· ·		· ·				· ·	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7		- 0.0	28.7			28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		OI / LX			OI? EX			OI · LX			OI - LX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		0.0			0.0			0.0			0.0	

	۶	→	•	1	•	•	4	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	7	4			8			6			2	
Permitted Phases	4			8			6			2		
Detector Phase	7	4		8	8		6	6		2	2	
Switch Phase												
Minimum Initial (s)	4.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	8.0	43.0		38.0	38.0		33.0	33.0		33.0	33.0	
Total Split (s)	17.0	55.0		38.0	38.0		45.0	45.0		45.0	45.0	
Total Split (%)	17.0%	55.0%		38.0%	38.0%		45.0%	45.0%		45.0%	45.0%	
Maximum Green (s)	14.0	48.0		31.0	31.0		38.0	38.0		38.0	38.0	
Yellow Time (s)	3.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	0.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)		10.0		10.0	10.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)		21.0		21.0	21.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	
Act Effct Green (s)	35.3	31.3		14.3	14.3		54.7	54.7		54.7	54.7	
Actuated g/C Ratio	0.35	0.31		0.14	0.14		0.55	0.55		0.55	0.55	
v/c Ratio	0.83	0.17		0.07	0.82		0.22	0.37		0.31	0.60	
Control Delay	45.4	12.3		34.3	43.0		17.9	14.3		17.3	14.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	45.4	12.3		34.3	43.0		17.9	14.3		17.3	14.9	
LOS	D	В		С	D		В	В		В	В	
Approach Delay		37.2			42.6			14.5			15.1	
Approach LOS		D			D			В			В	
Intersection Summary												

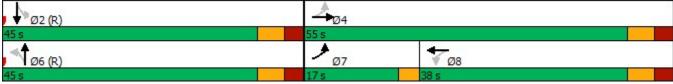
Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83 Intersection Signal Delay: 21.1 Intersection Capacity Utilization 100.1%

Intersection LOS: C ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 1: Hurontario Street & Park Street East

	٠	→	•	•	1	†	/	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	286	94	13	272	43	711	109	1117
v/c Ratio	0.83	0.17	0.07	0.82	0.22	0.37	0.31	0.60
Control Delay	45.4	12.3	34.3	43.0	17.9	14.3	17.3	14.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.4	12.3	34.3	43.0	17.9	14.3	17.3	14.9
Queue Length 50th (m)	42.5	6.1	2.2	30.4	4.0	38.0	10.8	59.3
Queue Length 95th (m)	#61.8	15.1	6.9	53.5	13.3	60.8	27.2	95.6
Internal Link Dist (m)		76.6		50.4		75.5		153.7
Turn Bay Length (m)	39.0		37.0		33.0		19.0	
Base Capacity (vph)	344	838	403	586	193	1922	349	1872
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.83	0.11	0.03	0.46	0.22	0.37	0.31	0.60

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	*	•	•	•	4	†	~	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	7		7	↑		7	↑ ↑	
Traffic Volume (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Future Volume (vph)	286	44	50	13	53	219	43	678	33	109	671	446
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.97		1.00	1.00		1.00	0.96	
Flpb, ped/bikes	1.00	1.00		0.97	1.00		0.99	1.00		0.97	1.00	
Frt	1.00	0.92		1.00	0.88		1.00	0.99		1.00	0.94	
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1802	1694		1779	1639		1806	3509		1744	3272	
FIt Permitted	0.23	1.00		0.70	1.00		0.19	1.00		0.35	1.00	
Satd. Flow (perm)	439	1694		1303	1639		352	3509		637	3272	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	286	44	50	13	53	219	43	678	33	109	671	446
RTOR Reduction (vph)	0	34	0	0	98	0	0	3	0	0	82	0
Lane Group Flow (vph)	286	60	0	13	174	0	43	708	0	109	1035	0
Confl. Peds. (#/hr)	26		30	30		26	36		39	39		36
Heavy Vehicles (%)	1%	0%	4%	0%	0%	0%	0%	3%	0%	2%	2%	0%
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	7	4			8			6			2	
Permitted Phases	4			8			6			2		
Actuated Green, G (s)	31.3	31.3		14.3	14.3		54.7	54.7		54.7	54.7	
Effective Green, g (s)	31.3	31.3		14.3	14.3		54.7	54.7		54.7	54.7	
Actuated g/C Ratio	0.31	0.31		0.14	0.14		0.55	0.55		0.55	0.55	
Clearance Time (s)	3.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	328	530		186	234		192	1919		348	1789	
v/s Ratio Prot	c0.12	0.04			0.11			0.20			c0.32	
v/s Ratio Perm	c0.15			0.01			0.12			0.17		
v/c Ratio	0.87	0.11		0.07	0.74		0.22	0.37		0.31	0.58	
Uniform Delay, d1	28.9	24.5		37.1	41.1		11.7	12.9		12.4	15.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	21.5	0.1		0.2	12.1		2.7	0.5		2.3	1.4	
Delay (s)	50.4	24.6		37.3	53.2		14.4	13.4		14.7	16.4	
Level of Service	D	С		D	D		В	В		В	В	
Approach Delay (s)		44.0			52.5			13.5			16.2	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			23.3	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.71									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utiliza	ation		100.1%	IC	U Level o	of Service			G			
Analysis Period (min)			15									

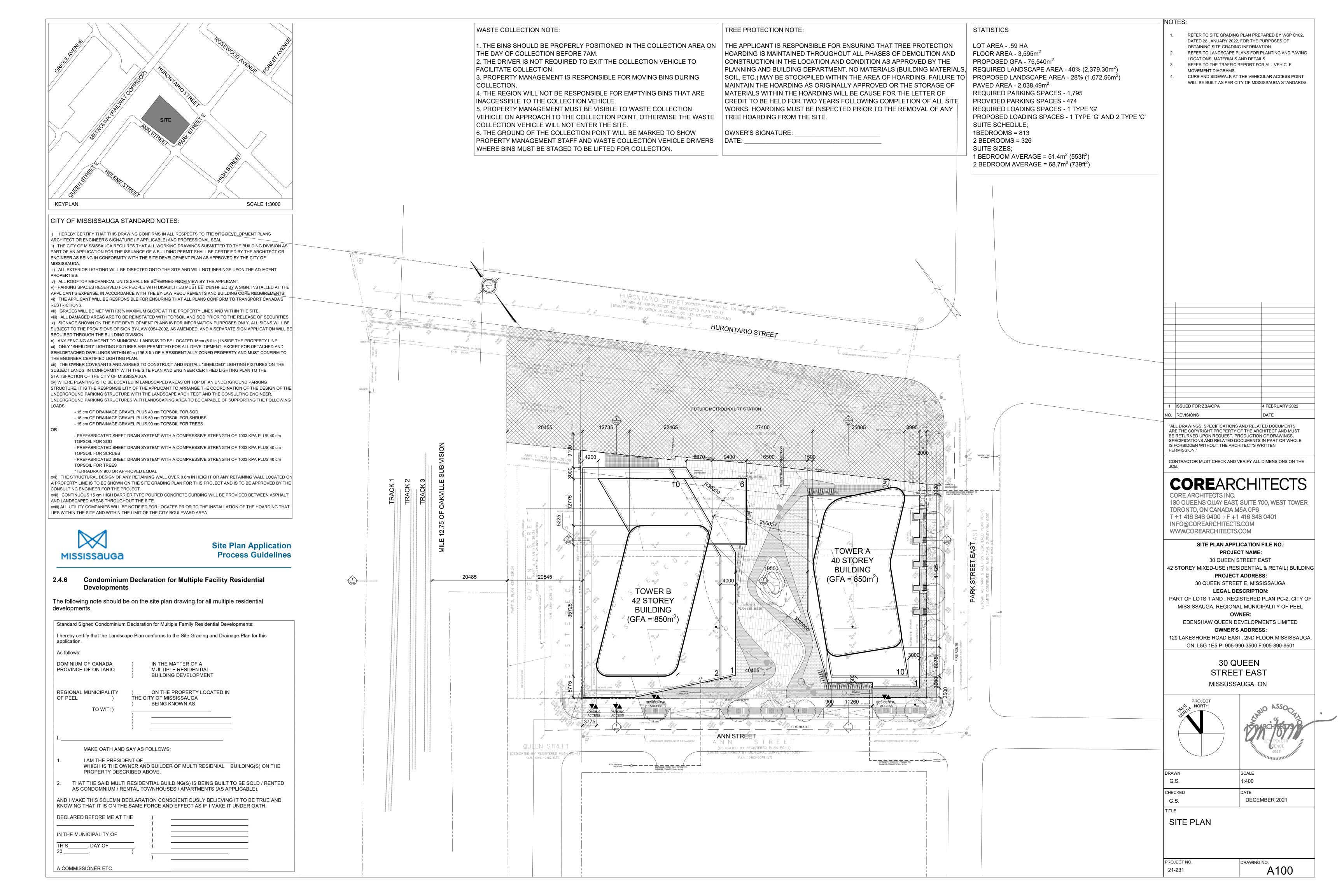
	٠	→	*	•	•	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4			4	
Traffic Volume (vph)	31	182	2	26	196	256	5	122	27	173	87	10
Future Volume (vph)	31	182	2	26	196	256	5	122	27	173	87	10
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		10.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		1	0		0	0		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.999				0.850		0.976			0.995	
Flt Protected		0.993			0.994			0.998			0.969	
Satd. Flow (prot)	0	1906	0	0	1876	1633	0	1430	0	0	1852	0
Flt Permitted		0.993			0.994			0.998			0.969	
Satd. Flow (perm)	0	1906	0	0	1876	1633	0	1430	0	0	1852	0
Link Speed (k/h)		48			48			48			48	
Link Distance (m)		36.6			100.6			45.4			96.7	
Travel Time (s)		2.7			7.5			3.4			7.3	
Confl. Peds. (#/hr)	15		13	13		15	8		12	12		8
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	0%	2%	0%	0%	39%	0%	0%	0%	0%
Adj. Flow (vph)	31	182	2	26	196	256	5	122	27	173	87	10
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	215	0	0	222	256	0	154	0	0	270	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												

Area Type: Other

Control Type: Unsignalized Intersection Capacity Utilization 62.7% Analysis Period (min) 15

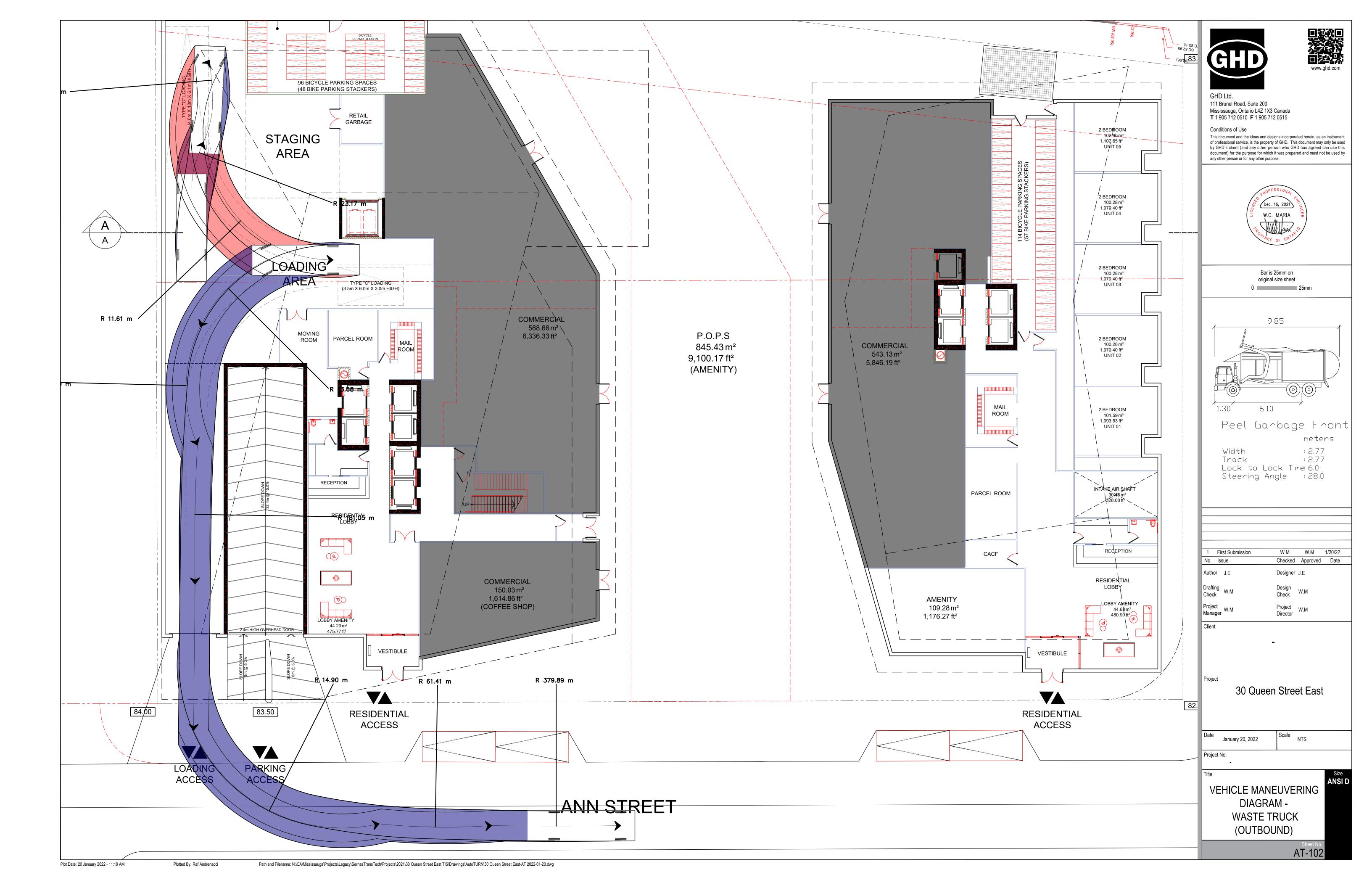
ICU Level of Service B

	•	→	*	1	—	•	4	†	~	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	31	182	2	26	196	256	5	122	27	173	87	10
Future Volume (vph)	31	182	2	26	196	256	5	122	27	173	87	10
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	31	182	2	26	196	256	5	122	27	173	87	10
Direction, Lane #	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total (vph)	215	222	256	154	270							
Volume Left (vph)	31	26	0	5	173							
Volume Right (vph)	2	0	256	27	10							
Hadj (s)	0.02	0.09	-0.70	0.43	0.11							
Departure Headway (s)	6.2	6.4	5.6	6.8	6.2							
Degree Utilization, x	0.37	0.39	0.39	0.29	0.46							
Capacity (veh/h)	533	538	615	474	541							
Control Delay (s)	12.8	12.2	10.9	12.5	14.4							
Approach Delay (s)	12.8	11.5		12.5	14.4							
Approach LOS	В	В		В	В							
Intersection Summary												
Delay			12.6									
Level of Service			В									
Intersection Capacity Utiliza	tion		62.7%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

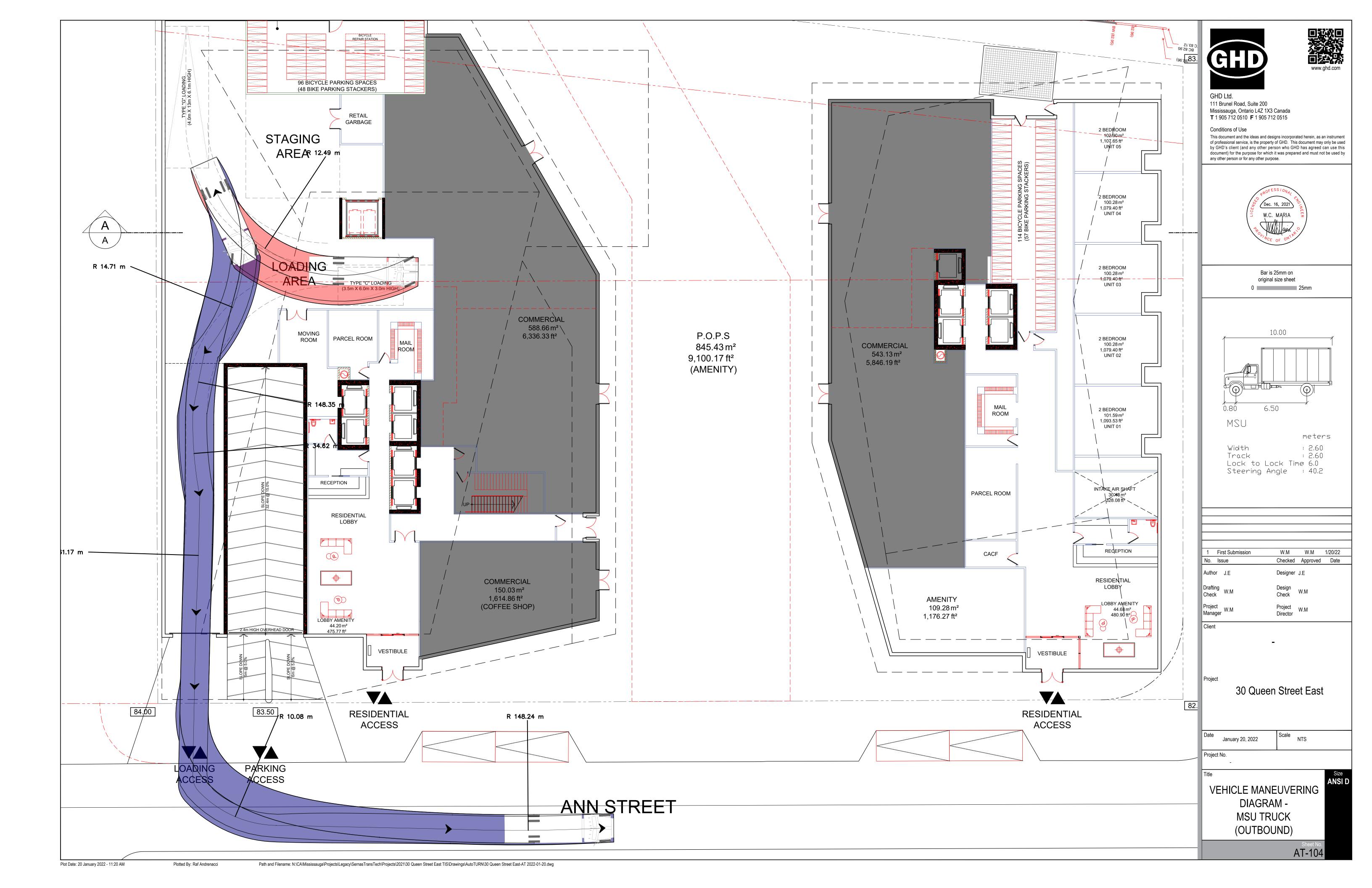

	1	•	†	1	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		f			र्स
Traffic Volume (vph)	152	6	181	177	0	92
Future Volume (vph)	152	6	181	177	0	92
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.995		0.933			
Flt Protected	0.954					
Satd. Flow (prot)	1788	0	1757	0	0	1883
Flt Permitted	0.954					
Satd. Flow (perm)	1788	0	1757	0	0	1883
Link Speed (k/h)	48		48			48
Link Distance (m)	27.4		96.7			28.3
Travel Time (s)	2.1		7.3			2.1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	152	6	181	177	0	92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	158	0	358	0	0	92
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.7		0.0			0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.9		4.9			4.9
Two way Left Turn Lane						
Headway Factor	0.99	0.99	0.99	0.99	0.99	0.99
Turning Speed (k/h)	24	14		14	24	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Tyne:	Other					

Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 35.8%
Analysis Period (min) 15

ICU Level of Service A


	•	•	†	~	-	
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1>			र्स
Traffic Volume (veh/h)	152	6	181	177	0	92
Future Volume (Veh/h)	152	6	181	177	0	92
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	152	6	181	177	0	92
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	362	270			358	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	362	270			358	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	76	99			100	
cM capacity (veh/h)	638	769			1201	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	158	358	92			
Volume Left	152	0	0			
Volume Right	6	177	0			
cSH	642	1700	1201			
Volume to Capacity	0.25	0.21	0.00			
Queue Length 95th (m)	7.3	0.0	0.0			
Control Delay (s)	12.4	0.0	0.0			
Lane LOS	В	0.0				
Approach Delay (s)	12.4	0.0	0.0			
Approach LOS	В		<u> </u>			
Intersection Summary						
Average Delay			3.2			
Intersection Capacity Utiliza	ation		35.8%	IC	U Level c	f Service
Analysis Period (min)	AO.I.		15	10		. 551 1100
Analysis i Gilou (IIIII)			IJ			

Appendix D Site Plan



Appendix E AutoTURN Circulation Review

Appendix F

Background Developments

Figure 1 Background Development Locations

Table 1 42-46 Park Street East & 23 Elizabeth Street North Site Trips

		Year	Peak Hour Trips									
Background Development	Units		W	eekday A	М	Weekday PM						
			In	Out	Total	In	Out	Total				
42-46 Park Street East & 23 Elizabeth Street North (LEA Consulting)	258 Residential Units	2020	13	50	63	45	28	73				

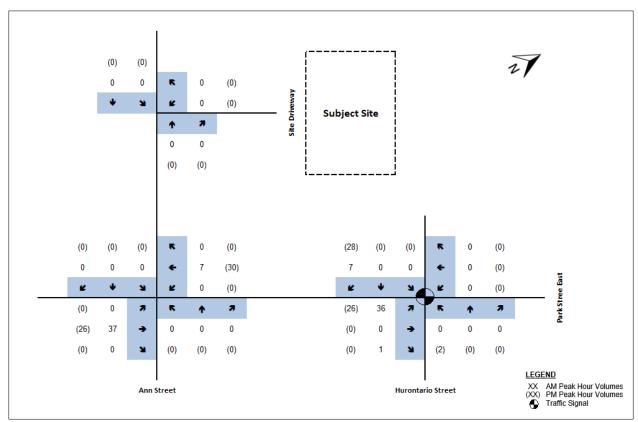


Figure 2 42-46 Park Street East & 23 Elizabeth Street North Site Trips within Study Area

Table 2 22-28 Ann Street & 78 Park Street East Site Trips

		Year	Peak Hour Trips									
Background Development	Units		W	eekday A	М	Weekday PM						
			ln	Out	Total	ln	Out	Total				
22-28 Ann Street & 78 Park Street East	316 Residential Units	2019	18	59	77	52	26	78				
(LEA Consulting)												

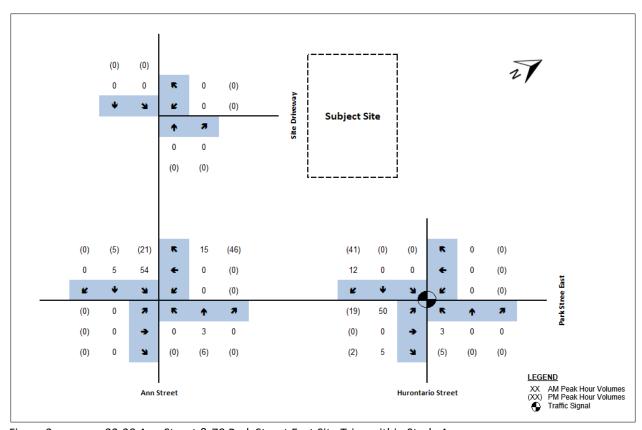


Figure 3 22-28 Ann Street & 78 Park Street East Site Trips within Study Area

Table 3 6, 8, 10 Ann Street Site Trips

			Peak Hour Trips								
Background Development	Units	Year	W	eekday A	М	Weekday PM					
			In	Out	Total	In	Out	Total			
6, 8, 10 Ann Street (GHD)	69 Residential Units	2014	5	24	29	22	11	33			

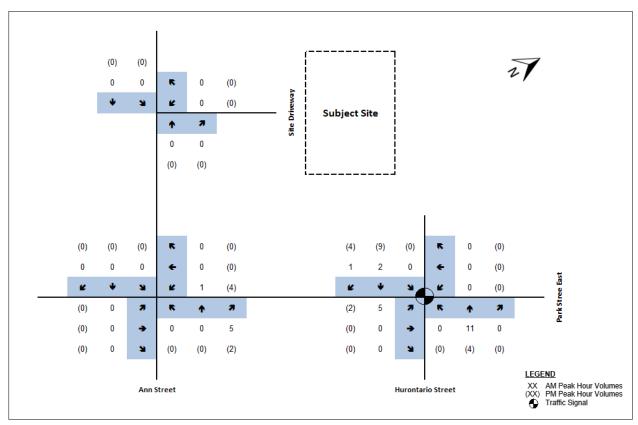


Figure 4 6, 8, 10 Ann Street Site Trips within Study Area

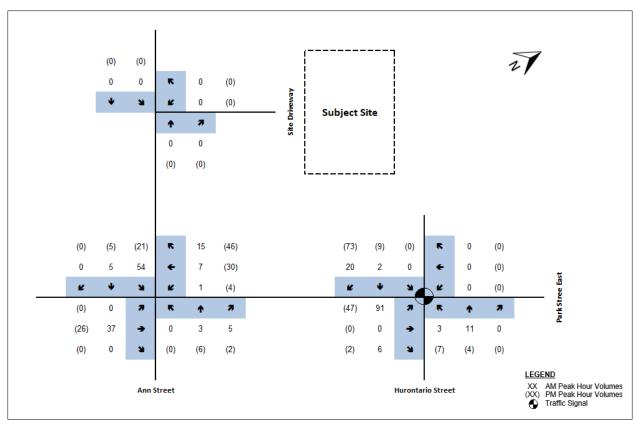


Figure 5 Total Background Development Traffic

