

Ahmed Developments Inc. 230 - 2000 Argentia Road Plaza 4 Mississauga, Ontario, L5N 1W1

Attention: Mr. Moe Ahmed,

President

Re: Hydrogeological Assessment

1000 & 1024 Dundas Street East, Mississauga, Ontario

Pinchin File: 275471.004

Pinchin Ltd. (Pinchin) has been retained by Ahmed Developments Inc. (Client) to provide a hydrogeological assessment for the proposed redevelopment of the property located at 1000 & 1024 Dundas Street East (Site), in the City of Mississauga (City), Ontario.

E-mail: m@ahmed.group

A hydrogeological assessment was conducted at the Site to support the Development Application process for the proposed re-development. This letter provides a summary of soil and groundwater conditions at the Site and a conservative estimate of the volume of water that may require management during the construction and operations phases of the re-development of the Site. An evaluation of the quality of groundwater that could theoretically be discharged as part of the potential Site dewatering is also provided.

1.0 INTRODUCTION AND BACKGROUND

The Site is located on the southeast side of Dundas Street East, approximately 70 m northeast of the intersection of Dundas Street East and Tomken Road, and is bounded by the Dundas Street East road allowance and roadway to the northwest and by commercial properties to the northeast, southeast and southwest. The approximate site location is shown in Figure 1.

The Site comprises a total area of approximately 8,700 m² or 2.15 acres, and consists of two parcels of land identified as 1000 and 1024 Dundas Street East, Mississauga. The Site is currently occupied by two commercial buildings, at-grade asphalt parking lot and landscaped areas.

It is Pinchin's understanding that the Client intends to re-develop the Site to construct two mixed-used tower buildings with two levels of common underground parking, with a portion of the Site adjacent to Dundas Street East to be conveyed to the City.

Pinchin File: 275471.004

1.1 Purpose

The purpose of this hydrogeological assessment was to characterize the soil and groundwater conditions of the Site, evaluate the dewatering requirements for the proposed construction and operations phases of the development, evaluate the groundwater quality of potential discharge water, assess any potential impacts on the surrounding environment due to the proposed development, and provide recommendations concerning mitigative measures, if required.

1.2 Proposed Development Parameters

It is Pinchin's understanding that the existing structures will be demolished to facilitate the redevelopment of the Site to include a 16-storey and a 20-storey tower building (Towers A and B) on a 4-storey podium, with a single two-level underground parking structure.

Architectural Site Plans A-200 to A-202 and A-401 dated May 24, 2022, prepared by WZMH Architects, are provided in Appendix I.

For the purpose of dewatering estimates, the following parameters have been assumed:

- The site development area is 8,115.12 m²;
- The P2 underground parking will be 7.1 m below the ground level;
- The footprint of the underground levels is approximately 8,040.7 m².

It is understood that conventional spread footing foundations will be designed for the proposed buildings. Based on the available topographic data, the topographic elevation in the development area is between 120 meters above sea level (masl) and 125 masl. The established grade in Architectural Site Plan A-410 – Building Section is 122.05 masl.

1.3 Previous and Current Investigations

Concurrent with this investigation, Pinchin completed a Phase One Environmental Site Assessment (ESA) and Geotechnical Investigation at the Site. There are no other known subsurface investigations at the Site.

The geologic data obtained from the Geotechnical Investigation was used in this hydrogeological assessment.

2.0 METHODOLOGY

The hydrogeological assessment was conducted at the Site concurrently with a geotechnical investigation, during which six boreholes (BH1 to BH6) were advanced at the Site to depths of approximately 9.1 meters below existing ground surface (mbgs), and completed as monitoring wells identified as BH/MW1 to BH/MW6. The approximate monitoring well locations are shown in Figure 2.

© 2022 Pinchin Ltd. Page 2 of 13

Ahmed Developments Inc.

May 25, 2022

Pinchin File: 275471.004

The scope of work for the hydrogeological assessment consisted of the following tasks:

- A review of well installation details obtained from the geotechnical investigation;
- A desktop water well inventory survey using data from the MECP Water Well Information
 System (WWIS) database within 250 m of the Site property boundaries;
- A Review and summary of the regional geology and hydrogeology, and its linkage to the site-specific geology and hydrogeology;
- Water Level monitoring every two weeks for a period of one month after well installation in November 2021, and subsequently in December 2021, and February, March, April, and May of 2022 (a total of seven monitoring rounds) to capture the seasonal variation in the groundwater table;
- Rising Head Hydraulic Conductivity testing of five selected monitoring wells;
- Preparation of local scale geologic cross-sections, groundwater elevation contours and flow directions;
- Background groundwater quality analysis for Peel Region Sewer Use By-law parameters;
- A review of the conceptual/architectural design and details of the proposed redevelopment, and completion of a dewatering assessment for the construction and operations phases of the proposed re-development;
- Potential impact assessment with mitigative measures, if required; and
- Preparation of a hydrogeological assessment report summarizing the findings of the investigation.

3.0 WATER WELL RECORDS

Water well records from within a 250 m radius of the Site were accessed from the Ontario Ministry of the Environment, Conservation and Parks (MECP) Water Well Information System (WWIS).

Based on a review of the water well database, a total of 12 water well records were found within a radius of 250 m from the Site. The MECP water well records are provided in Appendix II. All of the available records are related to test holes, observation wells or monitoring wells, and there are no water supply wells. The approximate MECP water well locations are presented on Figure 3.

Based on the water well records, shallow bedrock was encountered at the well locations at depths ranging from 0.3 mbgs to 2.1 mbgs.

© 2022 Pinchin Ltd. Page 3 of 13

Pinchin File: 275471.004

4.0 GEOLOGY

Based on data from the Ontario Geological Survey, the Site is located in the Iroquois Plain physiographic region, which is described as a sand plain physiographic landform, covered by coarse-textured glaciolacustrine, foreshore and basinal deposits comprised of sand, gravel, with minor silt and clay and underlain by the Upper Ordovician Georgian Bay Formation consisting of shale and limestone.

5.0 SURFACE WATER AND TOPOGRAPHY

The Site is located in the Lake Ontario Shoreline East Tributaries Subwatershed within the Credit River Watershed, which is under the jurisdiction of Credit Valley Conservation (CVC). No open water body is located on or near the Site. Lake Ontario is located approximately 4.5 km southeast of the Site.

The topographic contours shown on Figure 3 indicated that the Site generally slopes towards the southeast.

6.0 RESULTS

Six boreholes and monitoring wells were completed at the Site as part of the concurrent geotechnical and hydrogeological investigations. The data and information obtained from the geotechnical field programs was incorporated into this report. The six monitoring wells were utilized for the groundwater level monitoring, sampling and hydraulic conductivity testing during this hydrogeological assessment.

The approximate borehole/monitoring well locations are shown on Figure 2. The borehole logs for the boreholes/monitoring wells are provided in Appendix III.

6.1 Soil Stratigraphy

In general, the soil stratigraphy at the drilling locations consists of fill materials under an asphaltic pavement structure, underlain by bedrock or sand and bedrock.

The encountered main stratigraphic units are detailed as follows:

<u>Fill Materials:</u> encountered in all the boreholes, extending to a maximum depth of approximately 4.6 mbgs, and generally consists of sand and gravel, gravelly sand, sand, silt and/or clayey silt.

Sand: encountered only in BH/MW5, with a thickness of approximately 2.3 m.

Shale Bedrock

The shale bedrock was encountered in all the borehole locations at the depths ranging from approximately 3 mbgs to 4.6 mbgs.

The details of the soil descriptions and stratigraphy are presented in the Borehole Logs provided in Appendix III. A cross-section showing the stratigraphy across the Site is provided on Figure 4 of this report.

© 2022 Pinchin Ltd. Page 4 of 13

Pinchin File: 275471.004

6.2 Water Level Elevations and Groundwater Flow Regime

Six monitoring wells were completed at the Site. The approximate monitoring well locations are shown in Figure 2 and the monitoring well construction details are presented in Table 1.

Water level measurements were undertaken on eight occasions between November 15, 2021 and May 16, 2022. The groundwater level data is presented in Table 2 of this letter report.

The groundwater levels measured after well development ranged from 3.19 mbgs at BH/MW2 (March 14, 2022) to 6.17 mbgs at BH/MW5 (May 16, 2022), and groundwater level elevations ranged from 114.67 masl at BH/MW5 (May 16, 2022) to 117.39 masl at BH/MW1 (March 14, 2022). It should be noted that the water levels measured prior to well development on November 11, 2021 are not representative of the static water level, since water was used for rock coring during the well installation activities.

The highest water levels to date across the Site were measured on March 14, 2022. Water levels in April and May 2022 have been successively decreasing since the March 2022 event.

Based on the groundwater elevations obtained on November 23, 2021, groundwater elevation contours were prepared and are presented on Figure 5. The groundwater flow directions across the Site were inferred to be generally towards the south.

6.3 Hydraulic Conductivity Estimates

Rising head hydraulic conductivity (K-) tests were conducted at five of the monitoring wells (BH/MW1, BH/MW3, BH/MW4, BH/MW5 and BH/MW6) on November 15, 2021. The results of K tests and data processing records are provided in Appendix IV.

The estimated hydraulic conductivities (K-values) for the tested/screened intervals at the five tested on-Site wells are as follows:

MWs	Screen Interval (mbgs)	Screened Soil	K-Estimate (cm/sec)
BH/MW1	6.1 - 9.1	Shale	5.8 X 10 ⁻⁵
BH/MW3	6.1 - 9.1	Shale	1.3 X 10 ⁻⁵
BH/MW4	6.1 - 9.1	Shale	3.5 X 10 ⁻⁵
BH/MW5	6.1 - 9.1	Shale	2.3 X 10 ⁻⁴
BH/MW6	6.1 - 9.1	Shale	1.5 X 10 ⁻⁴

The estimated hydraulic conductivities (K-values) at the Site ranged from a high of 2.3×10^{-4} cm/sec (BH/MW5) to a low of 1.5×10^{-5} cm/sec (BH/MW3), with a geometric mean of 6.2×10^{-5} cm/sec.

© 2022 Pinchin Ltd. Page 5 of 13

Pinchin File: 275471.004

7.0 DEWATERING ESTIMATES

Based on the Site Plans provided in Appendix I, the proposed development will have a two-level common underground parking structure. The P2 level is assumed to be at approximately 7.1 m below the ground floor elevation. As mentioned, the elevations surveyed for the six monitoring well locations range from 120.0 masl to 122.2 masl. For the purpose of the dewatering assessment, the established grade from Plan A-410 is 122.05 masl. Therefore, the P2 level floor elevation will be at approximately 114.95 masl.

It is understood that the shale bedrock at the Site is anticipated at depths ranging from 3 mbgs to 4.6 mbgs, and the buildings will be founded on conventional spread footings on bedrock.

Based on the measured static groundwater levels, the groundwater elevations ranged from approximately 114.7 masl to 117.4 masl, which are above the P2 level elevation. Groundwater control will be required during construction and operations phases of the buildings.

7.1 Short-Term Construction Dewatering Assessment

7.1.1 Groundwater Inflow

Given the proposed design provided in Appendix I, shoring and excavation of almost the entire site area is assumed for the underground structure. A conservative groundwater dewatering scenario during construction was undertaken that employed the following parameters and assumptions.

- The site development area is 8,115.12 m² (Note: the underground footprint area is approximately 8,040.7 m²)
- The lowest slab elevation of the two-level underground structure is approximately 114.95 masl. Assuming that the excavation will extend to 1 meter below the underground parking concrete slab for the footing/foundation construction, the excavation bottom will be at 113.95 masl. The excavation will cut through the fill materials and overburden deposits and into the shale bedrock.
- The initial groundwater level will be assumed to be 117.5 masl (highest static groundwater level measured up to date is 117.39 masl at BH/MW1).
- The target water level will be lowered to 0.5 m below the excavation bottom, or 113.45 masl.
- The hydraulic conductivity is 6.2 x 10⁻⁵ cm/sec (the average of the hydraulic conductivity estimates from the five tested monitoring wells).

© 2022 Pinchin Ltd. Page 6 of 13

Pinchin File: 275471.004

Based on the above assumptions, the short-term construction dewatering rate and zone of influence were estimated and are presented below.

Excavation Area (m²)	Initial Water Level (masl)	Target Water Level (masl)	K- Estimate (cm/sec)	Estimated Zone of Influence (m from Edge of Excavation)	Dewatering Rate (without Safety Factor) (L/day)	Dewatering Rate Estimate with Safety Factor of 2 or 100% (L/day)
8,115	117.5	113.45	6.2 x 10 ⁻⁵	10	19,951	39,902

The dewatering estimates are indicative of moderate-permeability formations. It should be noted that the application of a Safety Factor provides a more conservative assessment for planning purposes to account for potential variabilities in the hydraulic conductivities in the soil and bedrock across the Site. In addition, during the initial stages of the construction dewatering, the dewatering volumes would be greater than those under a steady state condition, because the water stored in the soils is also being removed.

The above total volume estimate, assuming that one bulk excavation will be undertaken for the underground structure, and including a Safety Factor of 2, or 100%, is below the threshold for an Environmental Activity Sector Registration (EASR) requirement for construction dewatering of more than 50,000 L/day (50 m³/day) and less than 400,000 L/day (400 m³/day).

7.1.2 Stormwater Inflow

A significant amount of the dewatering demand from any construction project is the volume of water that is derived from stormwater that is generated during and after precipitation events.

For planning purposes, dewatering estimates are developed assuming the potential occurrence of extreme storm events, which are based upon events that have an observed "return period" or period of recurrence.

In the case of the proposed development, it will be necessary to handle stormwater that will accumulate within the excavation footprint.

Based on Canadian Climatic Normals 1981-2010 Station Data for Toronto Pearson International Airport Station, the days which had precipitation rate between 10 mm/day and 25 mm/day vary from 0.77 to 2.6 days per year, with an average of 1.9 days per year, and the days which had a precipitation rate greater than 25 mm/day vary from 0.07 to 0.9 days per year, with an average of 0.4 days per year.

The volume of water that can be generated within the Site at the full excavation extent of the underground levels of approximately 8,115 m² was estimated for a 30 mm/day high-precipitation storm event.

© 2022 Pinchin Ltd. Page 7 of 13

Pinchin File: 275471.004

The estimated stormwater inflow is summarized below:

Excavation Area (m²)	Precipitation Rate (mm/day)	Stormwater Volume (L/day)
8,115	30	243,450

The dewatering requirement from a high-precipitation storm with a rate of 30 mm/day was estimated to be 243,450 L/day. It should be noted that the above estimate does not take into account any infiltration or evaporation in the excavation area. However, it should also be noted that, for infrequent extreme storm events, the great majority of the generated stormwater becomes run-off or accumulates in the excavation area, due to the fixed assimilative capacity of the soils and the minimal evaporation until the cessation of the event.

7.1.3 Summary of Construction Dewatering Estimates

Based on the short-term construction dewatering calculations discussed above, the estimated construction phase dewatering rates are summarized below.

Construction Dewatering	Total Volume without Safety Factor for Groundwater (L/day)	Total Volume with Safety Factor of 2 for Groundwater (L/day)
Discharge of Groundwater	19,951	39,902
Discharge of Stormwater	243,450	243,450
Discharge of Groundwater and Stormwater	263,401	283,352

The volume estimates for the total short-term dewatering rate are above the threshold for an Environmental Activity Sector Registration (EASR) requirement for construction dewatering of more than 50,000 L/day (50 m³/day) and less than 400,000 L/day (400 m³/day). However, they are below the threshold limit of 400,000 L/day for a permit-to-take-water (PTTW) from the MECP.

An EASR registration will be required for the construction dewatering activities for the proposed development.

7.2 Long-Term Dewatering Estimate - Operations

The same calculation methodology for short-term dewatering estimate was used for the long-term dewatering estimate, except for employing different target groundwater levels and drainage area.

© 2022 Pinchin Ltd. Page 8 of 13

Hydrogeological Assessment

1000 & 1024 Dundas Street East, Mississauga, Ontario Ahmed Developments Inc.

May 25, 2022 Pinchin File: 275471.004

The following parameters were employed:

Building Footprint Area: 8,040.7 m²; and

Target Water Level: 113.7 m (0.2 m below P2 concrete slab).

The estimated long-term dewatering rate and zone of influence are presented below.

Footprint Area (m²)	Initial Water Level (masl)	Target Water Level (masl)	K- Estimate (cm/sec)	Estimated Zone of Influence (m from edge of Excavation)	Dewatering Rate (without safety factor) (L/day)	Dewatering Rate Estimate with safety factor of 2 or 100% (L/day)
8,040.7	117.5	114.75	6.2 X 10 ⁻⁵	6	10,532	21,065

The total dewatering volume estimated for long-term building operations, including a Safety Factor of 2, is below the threshold for long-term dewatering of 50,000 L/day (50 m³/day) that triggers a PTTW requirement from the MECP. A PTTW will not be required for the proposed building operations.

8.0 GROUNDWATER QUALITY

Two groundwater samples were obtained on November 15, 2021 from BH/MW1 and BH/MW4 to evaluate the water quality with reference to the Peel Region Sewer Use By-Law parameter criteria, for storm sewer and sanitary sewer discharge.

The groundwater samples were submitted to and analyzed by Bureau Veritas Laboratories (BV). BV has been accredited by Canadian Association For Laboratory Accreditation Inc. (CALA). The laboratory Certificate of Analysis is provided in Appendix V.

The analytical results were compared with the Peel Region Sewer Use Bylaw – Sanitary and Storm Sewer Discharge Limits. Exceedances of the Sanitary Sewer Discharge limits were not detected for any of the analyzed parameters in either of the groundwater samples. However, exceedances of the Storm Sewer Discharge Limits were measured in the analyzed water samples for 4 parameters, including Total Kjeldahl Nitrogen (TKN), total manganese, total suspended solids (TSS) and total cyanide (BH/MW1 only), which are listed below.

© 2022 Pinchin Ltd. Page 9 of 13

Hydrogeological Assessment

May 25, 2022

Pinchin File: 275471.004

The average cyanide concentration from the two sampled wells was below the Sewer Use criterion of 0.020 mg/L (0.0143 mg/L).

Monitoring Well	Parameter	Unit Storm Water Guideline Value		Sanitary Sewer Guideline Value	Measured Concentration
	TKN	mg/L	1	100	1.8
BH/MW1	TSS	mg/L	<u>15</u>	350	160
DII/IVIVV I	Manganese	mg/L	0.05	5	1.6
	Cyanide	mg/L	0.02	2	0.028
	TKN	mg/L	1	100	2.5
BH/MW4	TSS	mg/L	<u>15</u>	350	86
	Manganese	mg/L	0.05	5	0.63

It is considered that the exceedances of the sewer use discharge limits are attributed to sediment within the sample and may be reduced to acceptable levels following treatment for TSS prior to discharge. It should be noted, however, that manganese is commonly present in elevated concentrations in shallow groundwater in the Greater Toronto Area. Sampling and analysis of a filtered groundwater sample for metals and TKN should be considered to evaluate the affect of filtering discharge groundwater on the concentrations of these parameters.

9.0 CONCLUSIONS

Pinchin provides the following conclusions arising out of the Hydrogeology Assessment activities to date:

- The Site is located in the Iroquois Plain physiographic region, which is described as a sand plain physiographic landform, covered by coarse-textured glaciolacustrine, foreshore and basinal deposits comprised of sand, gravel, with minor silt and clay and underlain by the Upper Ordovician Georgian Bay Formation consisting of shale and limestone.
- The Site is located in the Lake Ontario Shoreline East Tributaries Subwatershed within the Credit River Watershed, which is under the jurisdiction of Credit Valley Conservation (CVC). No open water body is located on or near the Site. Lake Ontario is located approximately 4.5 km southeast of the Site.
- The soil stratigraphy at the drilling locations generally consists of fill materials under an asphaltic pavement structure, underlain by bedrock or sand and bedrock. Shale bedrock was encountered at depths ranging from approximately 3 mbgs to 4.6 mbgs;

© 2022 Pinchin Ltd. Page 10 of 13

1000 & 1024 Dundas Street East, Mississauga, Ontario Ahmed Developments Inc.

• Water level measurements completed in November 2021 indicated that the measured static groundwater levels ranged from 3.62 mbgs to 6.15 mbgs, with groundwater level elevations ranging from 114.72 masl to 117.30 masl. The groundwater flow direction was inferred to be generally towards the south;

May 25, 2022

Pinchin File: 275471.004

- The hydraulic conductivities (K-values) estimated from five monitoring well locations ranged from a high of 2.3 x 10⁻⁴ cm/sec (BH/MW5) to a low of 1.5 x 10⁻⁵ cm/sec (BH/MW3), with a geometric mean of 6.2 x 10⁻⁵ cm/sec;
- The short-term dewatering rate that was estimated for the construction phase, incorporating a Safety Factor of 2, is 39,902 L/day for dewatering from groundwater, with an estimated maximum discharge of 283,352 L over a 24-hr. period from groundwater plus a high-precipitation storm rate of 30 mm/day.
- The long-term dewatering rate estimated for the building operations phase, incorporating a Safety Factor of 2, is 21,065 L/day;
- A PTTW will not be required either for the short-term or long-term dewatering. However, an EASR registration will be required for the short-term construction dewatering; and
- A groundwater quality assessment completed as per the Peel Region Sewer Use Bylaw indicated that the water generated at the Site could be discharged to the sanitary sewer system. However, it cannot be discharged directly into the storm sewer system without appropriate treatment for TSS, and potentially, manganese and TKN.

10.0 RECOMMENDATIONS

Pinchin present the following recommendations to support detailed design of the proposed development:

1) Sampling and analysis of a filtered groundwater sample for metals and TKN is recommended to evaluate the effect of filtering discharge groundwater on the concentrations of these parameters.

11.0 LIMITATIONS

Conclusions derived are specific to the immediate area of study and cannot be extrapolated extensively away from sample or testing locations. Samples have been analyzed for a limited number of parameters, and the absence of information relating to a specific contaminant does not indicate that it is not present.

This report was prepared for the exclusive use of the Client and the City of Mississauga, subject to the terms, conditions and limitations contained within the duly authorized proposal for this project. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the sole responsibility of such third parties. Pinchin accepts no responsibility for damages suffered by any third party as a result of decisions made or actions conducted.

© 2022 Pinchin Ltd. Page 11 of 13

Hydrogeological Assessment

1000 & 1024 Dundas Street East, Mississauga, Ontario Ahmed Developments Inc.

May 25, 2022 Pinchin File: 275471.004

If additional parties require reliance on this report, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed. Furthermore, this report should not be construed as legal advice. Pinchin will not provide results or information to any party unless disclosure by Pinchin is required by law.

Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

Pinchin will not be responsible for any consequential or indirect damages. Pinchin will only be liable for damages resulting from negligence or wilful misconduct of Pinchin. All claims by the Client shall be deemed relinquished if not made within two years after last date of services provided.

Information provided by Pinchin is intended for Client use only. Pinchin will not provide results or information to any party other than the Client, unless the Client, in writing, requests information to be provided to a third party or unless disclosure by Pinchin is required by law. Any use by a third party, of reports or documents authored by Pinchin, or any reliance by a third party on or decisions made by a third party based on the findings described in said documents, is the sole responsibility of such third parties. Pinchin accepts no responsibility for damages suffered by any third party as a result of decisions made or actions conducted.

© 2022 Pinchin Ltd. Page 12 of 13

Hydrogeological Assessment

1000 & 1024 Dundas Street East, Mississauga, Ontario Ahmed Developments Inc.

May 25, 2022

Pinchin File: 275471.004

12.0 CLOSING REMARKS

We trust that the information provided in this letter meets your requirements. If you have any questions, or require additional information, please do not hesitate to contact either of the undersigned.

Yours truly,

Pinchin Ltd.

Prepared by:

Reviewed by:

Craig S. Kelly, B.Sc., P.Geo.

Senior Geoscientist

cxkelly@pinchin.com

289.971.8372

Bujing Guan, M.A.Sc., P.Geo. Hydrogeologist 437.993.1832

bguan@pinchin.com

Encl.: Figures

Table 1 – Monitoring Well Construction Details

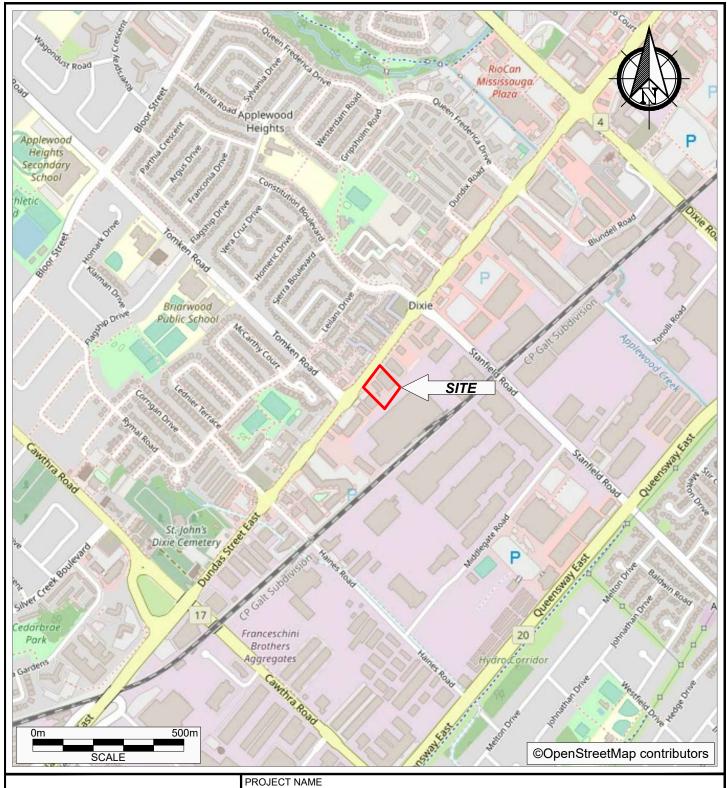
Table 2 – Water Level Summary Table

Appendix I – Site Plans

Appendix II – Water Well Records

Appendix III - Borehole Logs

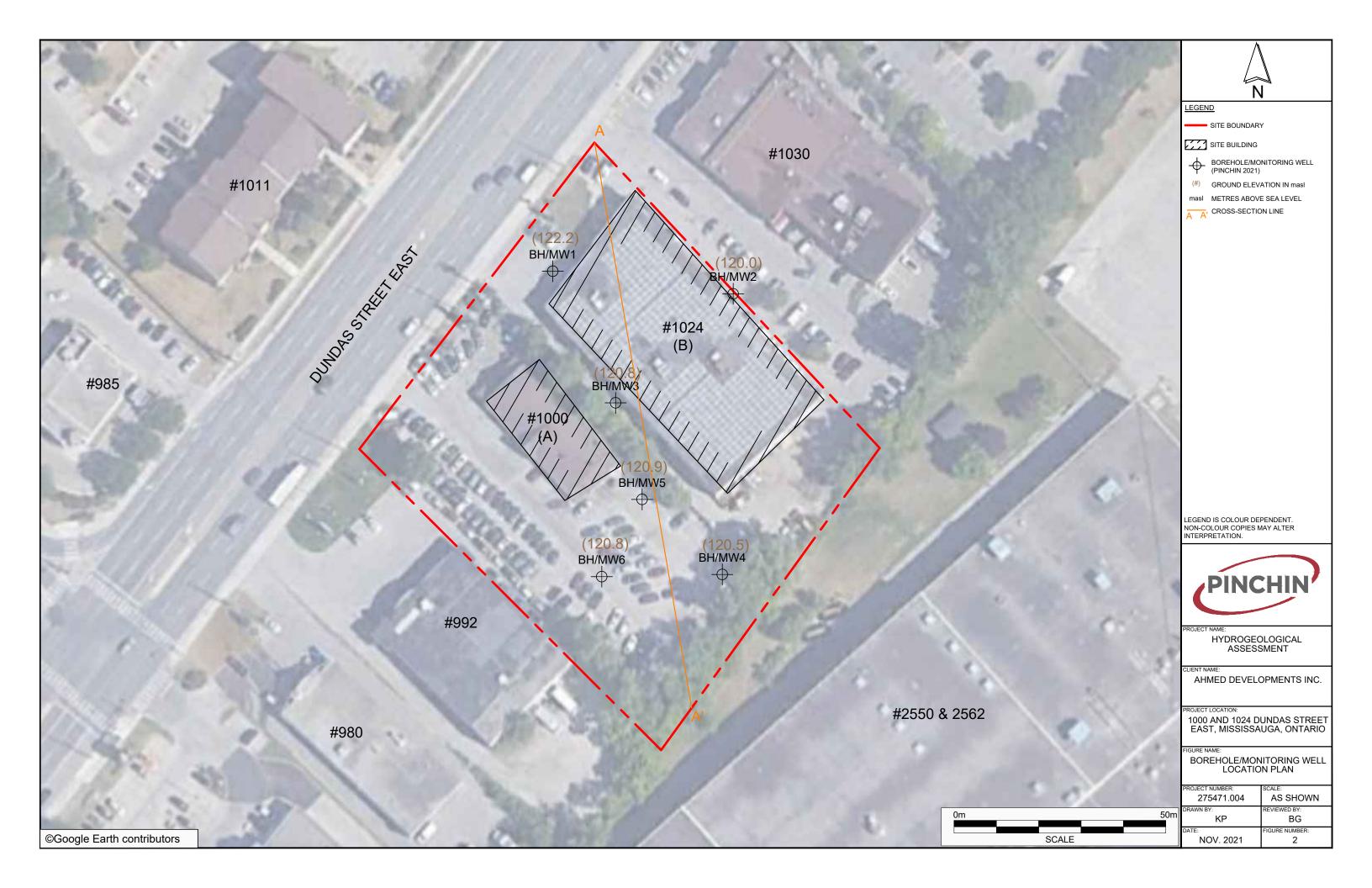
Appendix IV - Rising Head Hydraulic Conductivity Test Curves

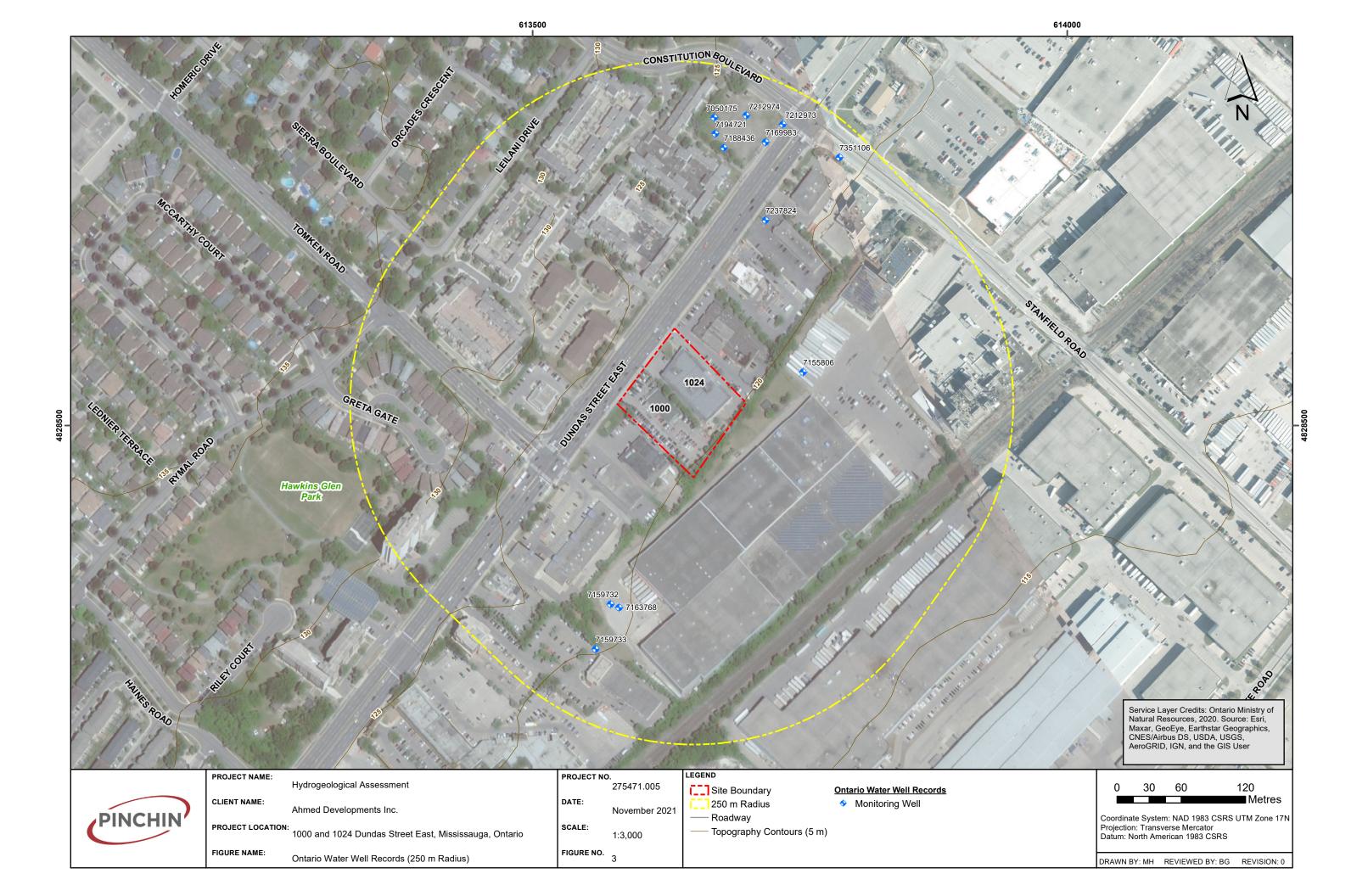

Appendix V – Laboratory Certificate of Analysis

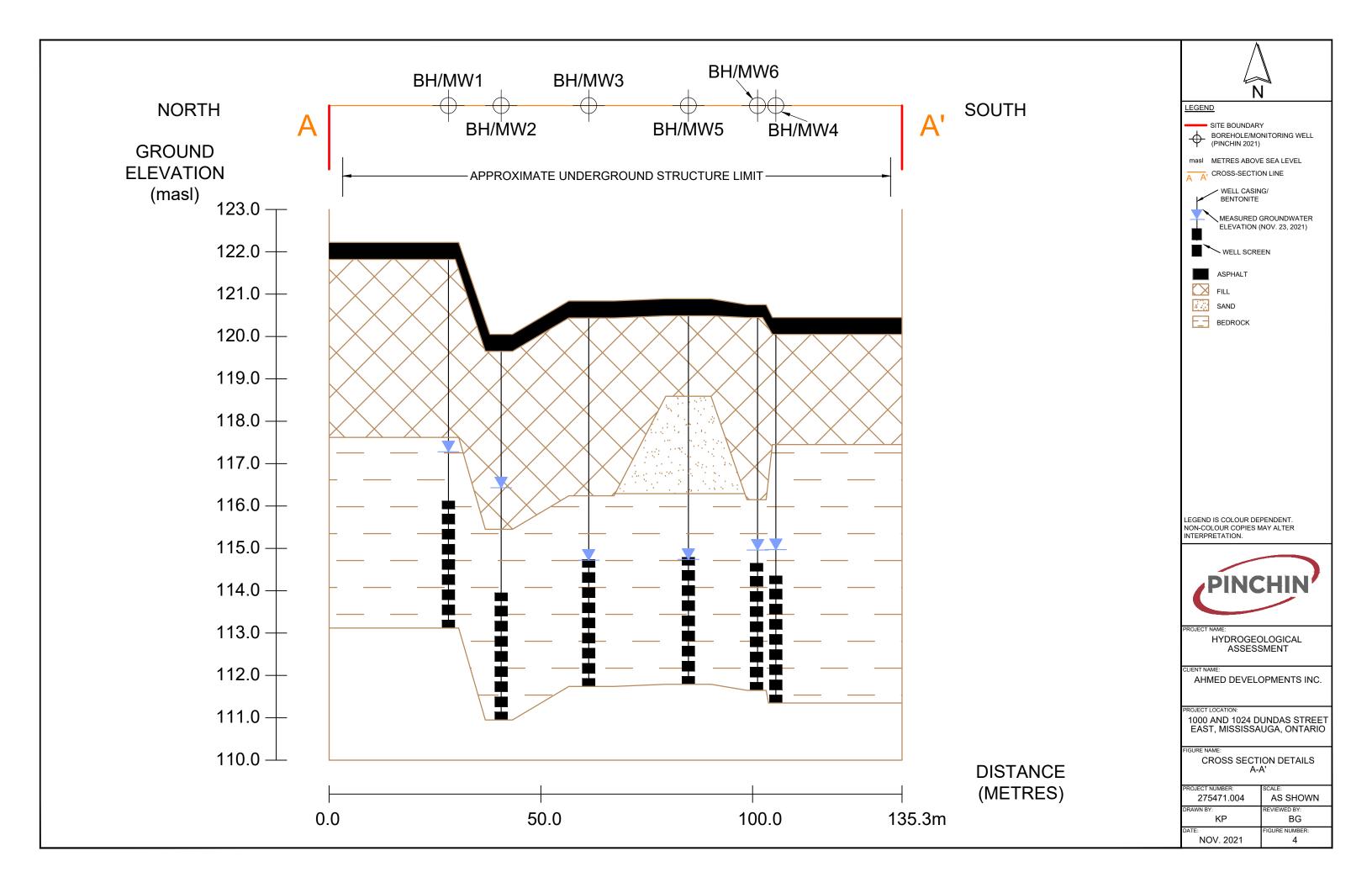
275471.004 Hydrogeology Assessment 1000 &1024 Dundas Street East Mississauga ON May 25 2022.docx

© 2022 Pinchin Ltd. Page 13 of 13

HYDROGEOLOGICAL ASSESSMENT


CLIENT NAME


AHMED DEVELOPMENTS INC.


PROJECT LOCATION

1000 AND 1024 DUNDAS STREET EAST, MISSISSAUGA, ONTARIO

FIGURE NAME			FIGURE NO.
	KEY MAP		
SCALE	PROJECT NO.	DATE	1 1
AS SHOWN	275471.004	NOV. 2021	

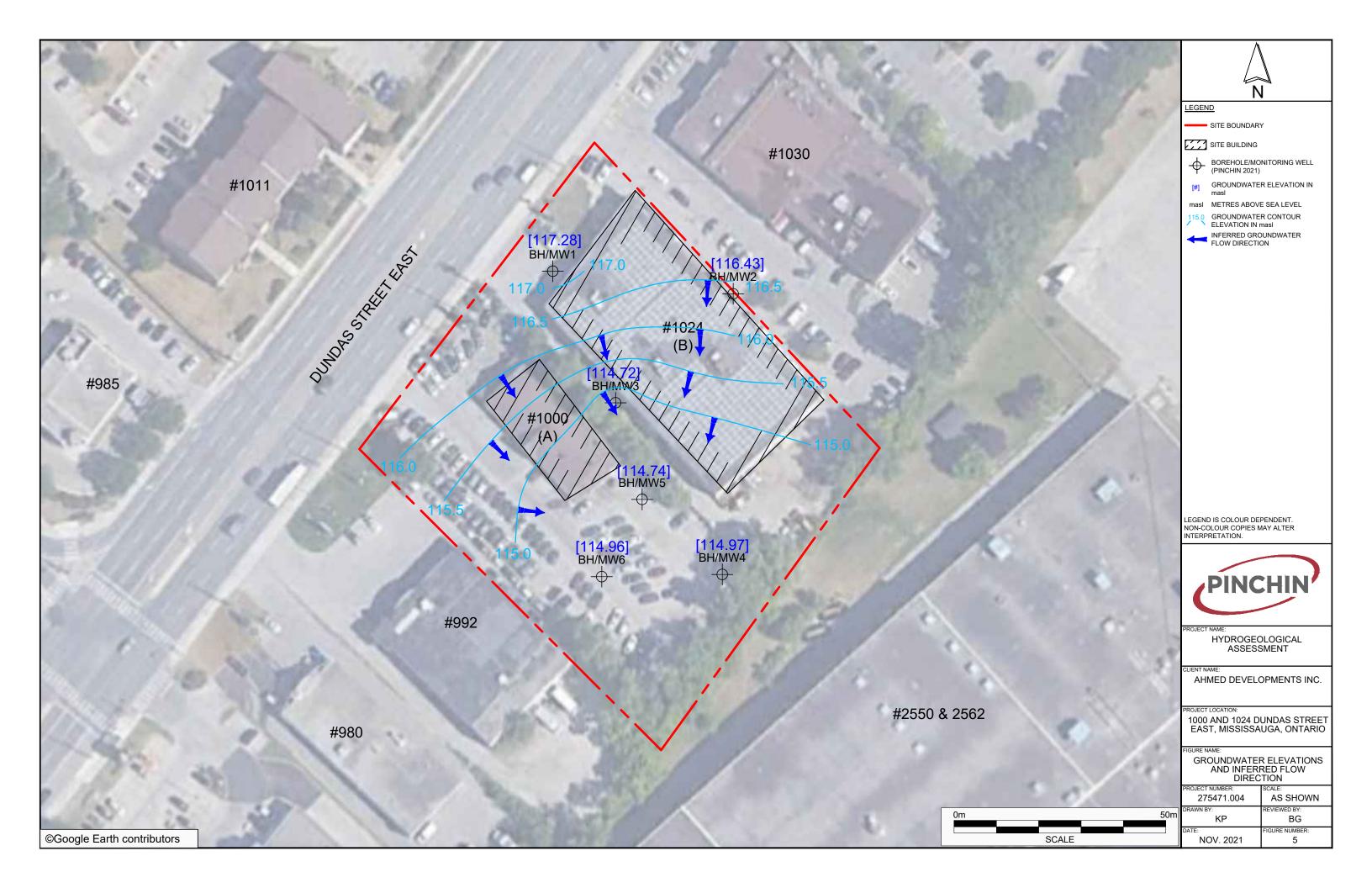


Table 1
MONITORING WELL CONSTRUCTION DETAILS

Ahmed Developments Inc.

1000 & 1024 Dundas Street East, Mississauga, Ontario

	TOP		Ground		Well Construction Details						
Monitoring Well	Elevation (masl)	Borehole Depth (mbgs)	Surface Elevation (masl)	Well Depth (mbgs)	Stick-Up Height (metres)	Well Diameter (centimetres)	Monitoring Well Screen Interval (mbgs)	Screened Soil			
BH/MW1	122.15	9.1	122.22	9.1	-0.07	5.1	6.1 - 9.1	shale with limestone/dolostone stringers			
BH/MW2	119.98	9.1	120.05	9.1	-0.07	5.1	6.1 - 9.1	shale with limestone/dolostone stringers			
BH/MW3	120.75	9.1	120.84	9.1	-0.09	5.1	6.1 - 9.1	shale with limestone/dolostone stringers			
BH/MW4	120.39	9.1	120.45	9.1	-0.06	5.1	6.1 - 9.1	shale with limestone/dolostone stringers			
BH/MW5	120.82	9.1	120.89	9.1	-0.07	5.1	6.1 - 9.1	shale with limestone/dolostone stringers			
BH/MW6	120.68	9.1	120.75	9.1	-0.07	5.1	6.1 - 9.1	shale with limestone/dolostone stringers			

Notes:

TOP Top of Pipe masl metres above sea level mbgs metres below ground surface

Page 1 of 1 Pinchin File: 275471.004

TABLE 2 **GROUNDWATER ELEVATION DATA**

Ahmed Developments Inc. 1000 & 1024 Dundas Street East, Mississauga, Ontario

							November 11, 2021		November 15, 2021			November 23, 2021		21
Well Number	TOP Elevation (masl)	Surveyed Ground Elevation (masl)	Well Depth (mbgs)	Screen Interval (mbgs)	Screen Interval Stratigraphy	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)
BH/MW1	122.15	122.22	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	4.03	4.10	118.12	4.85	4.92	117.30	4.87	4.94	117.28
BH/MW2	119.98	120.05	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	3.10	3.17	116.88	-	-	-	3.55	3.62	116.43
BH/MW3	120.75	120.84	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	5.11	5.20	115.64	6.00	6.09	114.75	6.03	6.12	114.72
BH/MW4	120.39	120.45	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	3.20	3.26	117.19	5.07	5.13	115.32	5.42	5.48	114.97
BH/MW5	120.82	120.89	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	5.23	5.30	115.59	6.07	6.14	114.75	6.08	6.15	114.74
BH/MW6	120.68	120.75	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	2.23	2.30	118.45	5.58	5.65	115.10	5.72	5.79	114.96

Notes:

masl Metres Above Sea Level

TOP Top of Pipe

m Metres

mbgs Metres Below Ground Surface

Page 1 of 3 Pinchin File: 275471.004

TABLE 2

GROUNDWATER ELEVATION DATA

Ahmed Developments Inc.

1000 & 1024 Dundas Street East, Mississauga, Ontario

					December 7, 2021			December 22, 2021			February 15, 2022		2	
Well Number	TOP Elevation (masl)	Surveyed Ground Elevation (masl)	Well Depth (mbgs)	Screen Interval (mbgs)	Screen Interval Stratigraphy	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)
BH/MW1	122.15	122.22	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	4.89	4.82	117.26	4.88	4.81	117.27	4.96	4.89	117.19
BH/MW2	119.98	120.05	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	3.44	3.37	116.54	3.42	3.35	116.56	3.50	3.43	116.48
BH/MW3	120.75	120.84	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	6.01	5.92	114.74	5.95	5.86	114.81	5.94	5.85	114.81
BH/MW4	120.39	120.45	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	5.34	5.28	115.05	4.74	4.68	115.65	4.76	4.70	115.63
BH/MW5	120.82	120.89	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	6.07	6.00	114.75	6.01	5.94	114.81	6.11	6.04	114.71
BH/MW6	120.68	120.75	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	5.42	5.35	115.27	5.26	5.19	115.42	5.19	5.12	115.49

Notes:

masl Metres Above Sea Level

TOP Top of Pipe

m Metres

mbgs Metres Below Ground Surface

Page 2 of 3 Pinchin File: 275471.004

TABLE 2

GROUNDWATER ELEVATION DATA

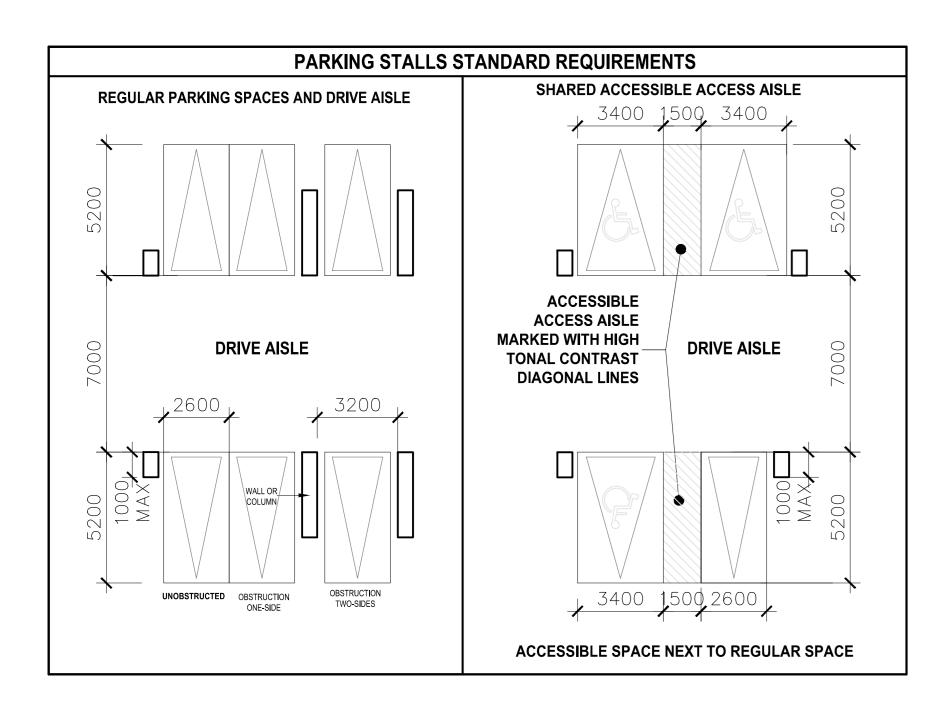
Ahmed Developments Inc.

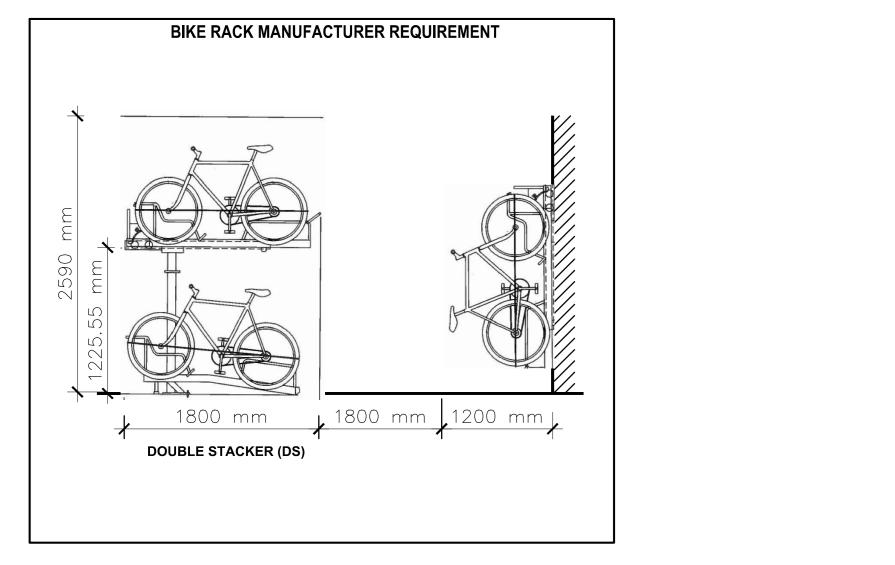
1000 & 1024 Dundas Street East, Mississauga, Ontario

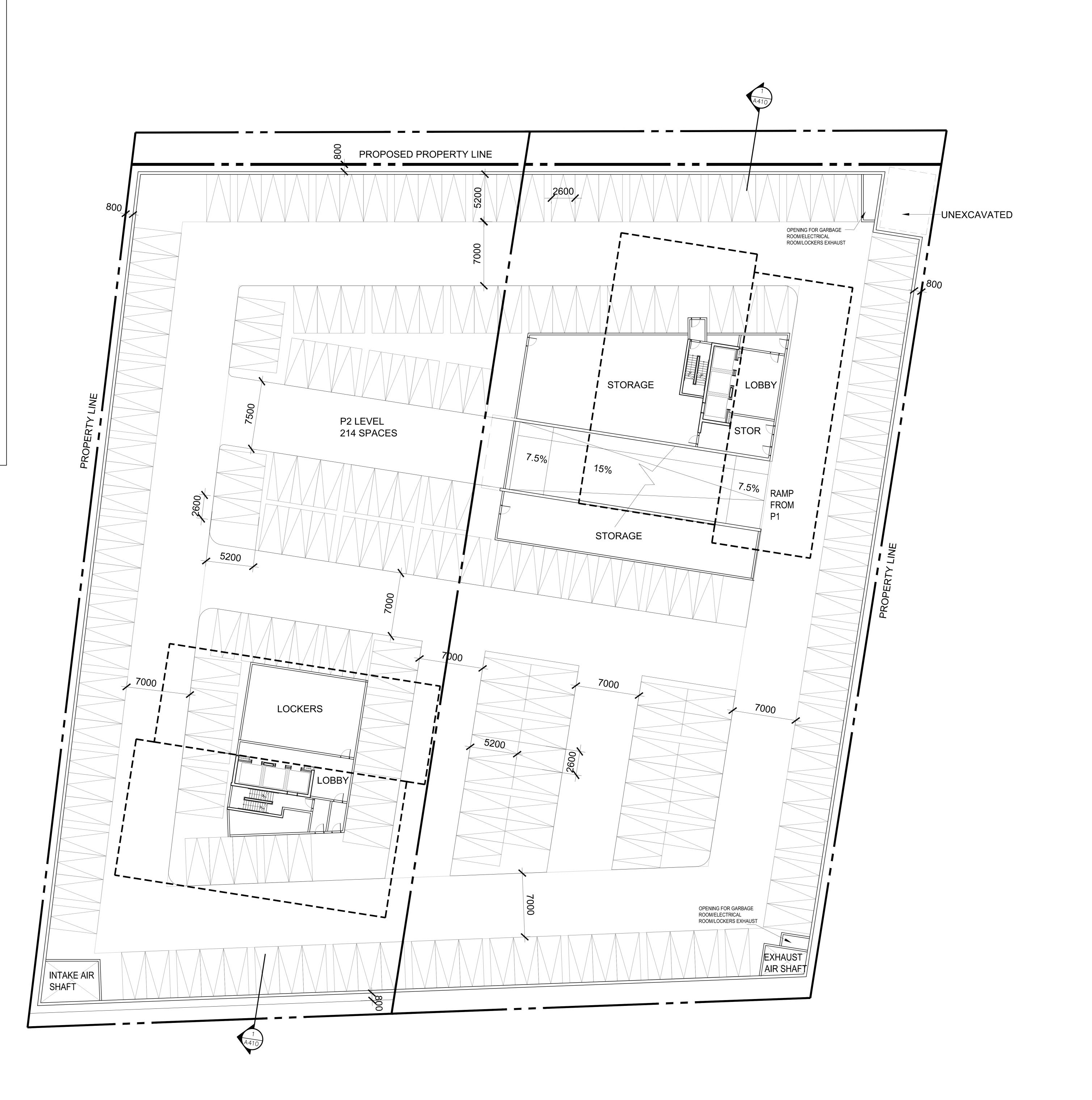
							March 14, 2022			April 14, 2022			May 16, 2022	
Well Number	TOP Elevation (masl)	Surveyed Ground Elevation (masl)	Well Depth (mbgs)	Screen Interval (mbgs)	Screen Interval Stratigraphy	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)	Water Level from TOP (m)	Water Level from Ground (mbgs)	Calculated Water Level Elevation (masl)
BH/MW1	122.15	122.22	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	4.76	4.69	117.39	4.77	4.84	117.38	4.91	4.98	117.24
BH/MW2	119.98	120.05	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	3.26	3.19	116.72	3.28	3.35	116.70	3.28	3.35	116.70
BH/MW3	120.75	120.84	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	5.79	5.70	114.96	5.86	5.95	114.89	6.08	6.17	114.67
BH/MW4	120.39	120.45	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	4.39	4.33	116.00	4.43	4.49	115.96	4.46	4.52	115.93
BH/MW5	120.82	120.89	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	5.94	5.87	114.88	5.96	6.03	114.86	6.04	6.11	114.78
BH/MW6	120.68	120.75	9.1	6.1 - 9.1	shale with limestone/dolostone stringers	5.04	4.97	115.65	5.10	5.17	115.58	5.20	5.26	115.49

Notes:

masl Metres Above Sea Level


TOP Top of Pipe


m Metres


mbgs Metres Below Ground Surface

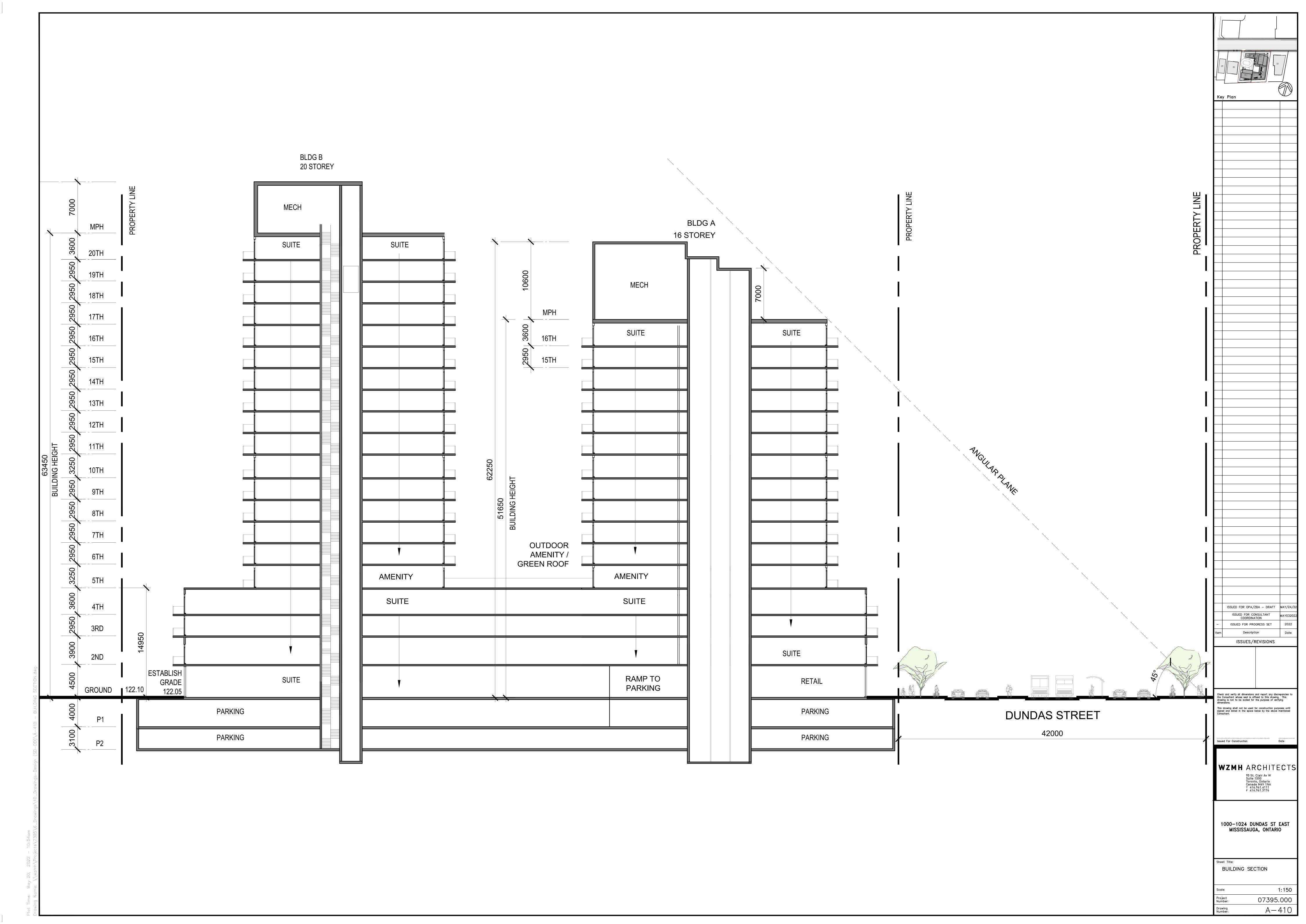
Page 3 of 3 Pinchin File: 275471.004

APPENDIX I Site Plans

ISSUED FOR OPA/ZBA - DRAFT MAY/24/2 ISSUED FOR CONSULTANT COORDINATION ISSUED FOR PROGRESS SET ISSUES/REVISIONS

Check and verify all dimensions and report any discrepancies to the Consultant whose seal is affixed to this drawing. This drawing is not to be scaled for the purpose of verifying dimensions.

This drawing shall not be used for construction purposes until signed and dated in the space below by the above mentioned Consultant.


Issued For Construction

WZMH ARCHITECTS 95 St. Clair Av W Suite 1500 Toronto, Ontario Canada M4V 1N6 T 416.961.4111 F 416.961.3176

1000-1024 DUNDAS ST EAST MISSISSAUGA, ONTARIO

P2 LEVEL

1:150 07395.000 A-104

APPENDIX II
Water Well Records

MECP Water Well Records

Well ID *	Well Record Information	Well Tag # (since 2003) ♀	Audit # \$	Contractor Lic# \$	Well Depth (m) \$	Date of Completion (MM/DD/YYYY) *
7050175	HTML	A054706	Z60444	6607	4.5	08/14/2007
7155806	PDF HTML	A107665	M07597	7241	19.0	11/14/2010
7159732	PDF HTML	A113563	Z128731	7241	11.9	02/02/2011
7159733	PDF HTML	A112676	Z128732	7241	10.1	02/02/2011
7163768	PDF HTML	A086590	M10625	7241	N/A	05/19/2011
7169983	PDF HTML	A117968	Z133755	7215	6.1	09/28/2011
7188436	HTML	A054706	C17941	6607	N/A	04/23/2012
7194721	HTML	A141645	C19177	6607	N/A	12/19/2012
7212973	HTML	A141645	C23513	7215	N/A	10/23/2013
7212974	HTML	A141645	C23517	7215	N/A	10/24/2013
7237824	HTML	A159012	C24522	6946	N/A	12/24/2014
7351106	HTML	A258469	C43816	7437	N/A	08/26/2019

Showing 1 to 12 of 12 entries First Previous 1 Next Last

Updated: October 18, 2021 Published: March 20, 2014

Well #: 7050175

General Colour	Most Common Material	Other Materials	General Description	Depth	Depth
				From	То
BRWN	SAND	SILT		0 m	1.5 m
GREY	SHLE		WTHD	1.5 m	4.5 m

Observation well

Well #: 7155806

General Colour	Most Common Material	Other Materials	General Description	Depth	Depth
				From	То
BRWN	LOAM	ROCK	LOOS	0 m	5 m
GREY	GRVL	ROCK		5 m	12 m
GREY	CLAY		WBRG	12 m	19 m

Test hole

Well #: 7159732

General Colour	Most Common Material	Other Materials	General Description	Depth	Depth
				From	То
BRWN	FILL			0 ft	1 ft
GREY	SHLE			1 ft	39 ft

Observation well

Well #: 7159733

General Colour	Most Common Material	Other Materials	General Description	Depth	Depth
				From	То
BRWN	FILL			0 ft	2 ft
GREY	SHLE			2 ft	33 ft

Observation well

Well #: 7163768; no well details available

Well #: 7169983

General Colour	Most Common Material	Other Materials	General Description	Depth	Depth
				From	То
BRWN	FILL			0 ft	7 ft
GREY	SHLE	LMSN		7 ft	20 ft

Well #: 7188436; no well details available

Well #: 7194721; no well details available

Well #: 7212973; no well details available

Well #: 7212974; no well details available

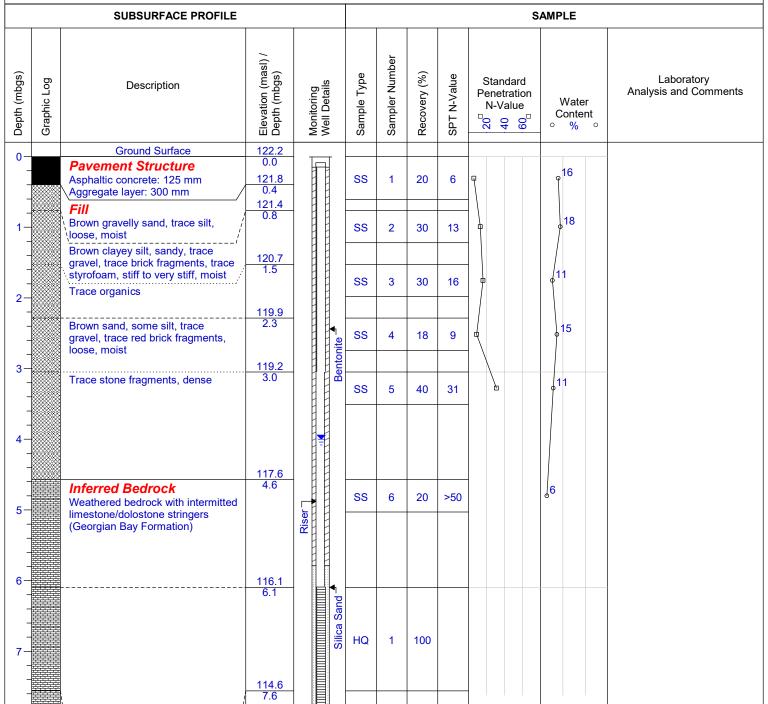
Well #: 7237824; no well details available

Well #: 7351106; no well details available

APPENDIX III
Borehole Logs

Log of Borehole: BH1 (MW)

Project #: 275471.003


Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 20, 2021 Project Manager: MYB

Rig Type: Track-mount

Grade Elevation: 122.2 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 1 of 2

Log of Borehole: BH1 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 20, 2021 Project Manager: MYB

		SUBSURFACE PROFILE			SAMPLE							
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ° % °	Laboratory Analysis and Comments	
10- 11- 12- 13- 14- 15-		Georgian Bay Formation Grey shale, very thinly bedded to thinly bedded, weak, joints are horizontal, closed, planar; interbedded with limestone, light grey, strong Total Core Recovery: 100% Solid Core Recovery: 88% Rock Quality Designation: 30% -5% Limestone End of Borehole Borehole terminated at approximately 9.1 mbgs. Water level and cave were not measured due to the presence of drill fluid. Water Level Reading Date Water Depth (mbgs) Nov. 11, 2021 4.1	9.1	Screen	HQ	2	100					

Rig Type: Track-mount

Grade Elevation: 122.2 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 2 of 2

Log of Borehole: BH2 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 20, 2021 Project Manager: MYB

SUBSURFACE PROFILE						SAMPLE							
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ° % °	Laboratory Analysis and Comments		
0-		Ground Surface	120.0										
-		Pavement Structure Asphaltic concrete: 100 mm Aggregate layer: 300 mm	0.0 119.6 0.4		SS	1	60	25		_{\oldsymbol{\text{\gamma}}6}			
1-		Fill Brown sand and gravel, trace silt, /compact, moist	119.3 0.8		SS	2	50	8	-	8			
2-		Brown sand, trace to some silt, pockets of clayey silt, loose, moist	447.0		SS	3	50	8		6			
-		Brown gravelly sand, trace silt, very dense, moist	117.8 2.3 117.0		Bentonite S	4	20	>50		6			
3-		Inferred Bedrock Weathered bedrock with intermitted limestone/dolostone stringers (Georgian Bay Formation)	3.0		SS	5	10	>50		5			
4-			115.5										
5-		Georgian Bay Formation Grey shale, very thinly bedded to thinly bedded, weak, joints are horizontal, closed, planar; interbedded with limestone, light grey, strong	4.6	Riser	НО	1	90						
6-		Total Core Recovery: 90% Solid Core Recovery: 90% Rock Quality Designation: 25%	113.9 6.1		- pur								
7-		~3% Limestone Total Core Recovery: 98% Solid Core Recovery: 93% Rock Quality Designation: 78% ~5% Limestone	112.4 7.6		Silica Sand DH	2	98						

Rig Type: Track-mount

Grade Elevation: 120.0 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 1 of 2

Log of Borehole: BH2 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 20, 2021 Project Manager: MYB

		SUBSURFACE PROFILE							S	AMPLE	
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ○ % ○	Laboratory Analysis and Comments
8 — - - - - 9 —		Total Core Recovery: 100% Solid Core Recovery: 100% Rock Quality Designation: 80% ~5% Limestone	110.9	Screen	HQ	3	100				
10-		End of Borehole Borehole terminated at approximately 9.1 mbgs. Water level and cave were not measured due to the presence of drill fluid.	9.1								
11-		Water Level Reading Date Water Depth (mbgs) Nov. 11, 2021 3.2									
- 12- - -											
13-											
14											

Rig Type: Track-mount

Grade Elevation: 120.0 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 2 of 2

Log of Borehole: BH3 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 19, 2021 Project Manager: MYB

SUBSURFACE PROFILE						SAMPLE						
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ○ % ○	Laboratory Analysis and Comments	
0-		Ground Surface	120.8									
-		Pavement Structure Asphaltic concrete: 150 mm Aggregate layer: 300 mm	0.0 120.4 0.4 120.1		SS	1	30	19		10		
1-		Fill Brown gravelly sand, trace silt, / trace red brick fragments, pockets / of clayey silt, compact, moist	0.8		SS	2	30	12		18		
2-		Brown clayey silt, some sand to sandy, trace gravel, trace stone fragments, trace brick fragments, stiff, moist	119.3 1.5		SS	3	20	3		25		
		dark brown, trace organics, soft	118.6									
-		Brown sand, trace silt, trace gravel, pockets of clayey silt, compact to dense, moist	2.3	Bentonite	SS	4	30	21		15		
3-		Some silt, trace stone fragments, grey, wet	3.0	Ber	SS	5	30	40		7		
4-			116.3									
5-		Inferred Bedrock Weathered bedrock with intermitted limestone/dolostone stringers	4.6	Riser	SS	6	10	>50		13		
6-		(Georgian Bay Formation)	114.7									
- - - 7-			6.1	Silica Sand	HQ	1	98					
-			113.3 7.5									

Rig Type: Track-mount

Grade Elevation: 120.8 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 1 of 2

Log of Borehole: BH3 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 19, 2021 Project Manager: MYB

	SUBSURFACE PROFILE				SAMPLE						
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ° % °	Laboratory Analysis and Comments
8		Georgian Bay Formation Grey shale, very thinly bedded to thinly bedded, weak, joints are horizontal, closed, planar; interbedded with limestone, light grey, strong Total Core Recovery: 98%		Screen	HQ	2	94				
9-		Solid Core Recovery: 78% Rock Quality Designation: 37% 2% Limestone Total Core Recovery: 94%	9.1	8							
10-		Solid Core Recovery: 83% Rock Quality Designation: 37% ~2% Limestone End of Borehole									
11-		Borehole terminated at approximately 9.1 mbgs. Water level and cave were not measured due to the presence of drill fluid.									
12-		Water Level Reading Date Water Depth (mbgs) Nov. 11, 2021 5.2									
13-											
14											
15-											

Rig Type: Track-mount

Grade Elevation: 120.8 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 2 of 2

Log of Borehole: BH4 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 18, 2021 Project Manager: MYB

		SUBSURFACE PROFILE								S	AMPLE	
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring	well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ○ % ○	Laboratory Analysis and Comments
0-		Ground Surface	120.5									
-		Pavement Structure Asphaltic concrete: 80 mm Aggregate layer: 300 mm	0.0 120.1 0.4			SS	1	10	20		_o 12	
1-		Fill Dark brown sand and gravel, some / silt, compact, moist	119.7 0.8			SS	2	40	13		₀ 12	
-		Trace silt, trace gravel, pockets of clayey silt Trace brick fragments, loose, dark	119.0 1.5			SS	2		40		12	
2-		brown	118.2		-	55	3	5	10	. \		
-		Trace stone fragments, wet	2.3		nite →	ss	4	30	16		18	
3-		Inferred Bedrock Weathered bedrock with intermitted limestone/dolostone stringers (Georgian Bay Formation)	117.5 3.0)	Bentonite	SS	5	50	>50		17	
-		Georgian Bay Formation	115.9 4.6									
5		Grey shale, very thinly bedded to thinly bedded, weak, joints are horizontal, closed, planar; interbedded with limestone, light grey, strong		Riser		HQ	1	95				
6-		Total Core Recovery: 95% Solid Core Recovery: 80% Rock Quality Designation: 10%	114.4 6.1		- put							
7-		Total Core Recovery: 100% Solid Core Recovery: 95% Rock Quality Designation: 30%			Silica Sand	HQ	2	100				
_		~5% Limestone	112.9 7.6									

Rig Type: Track-mount

Grade Elevation: 120.5 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 1 of 2

Log of Borehole: BH4 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 18, 2021 Project Manager: MYB

	SUBSURFACE PROFILE								S	AMPLE	
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content · % ·	Laboratory Analysis and Comments
8-		Total Core Recovery: 100% Solid Core Recovery: 100% Rock Quality Designation: 40% ~5% Limestone		Screen	HQ	3	100				
10-		End of Borehole Borehole terminated at approximately 9.1 mbgs. Water level and cave were not measured due to the presence of drill fluid. Water Level Reading	9.1	Ø [
- 11 — - - -		Date Water Depth (mbgs) Nov. 11, 2021 3.3									
12-											
13-											
14											

Rig Type: Track-mount

Grade Elevation: 120.5 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 2 of 2

Log of Borehole: BH5 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 18, 2021 Project Manager: MYB

		SUBSURFACE PROFILE						S	AMPLE		
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ○ % ○	Laboratory Analysis and Comments
		Ground Surface	120.9								
0-		Pavement Structure Asphaltic concrete: 100 mm Aggregate layer: 300 mm	0.0 120.5 0.4		SS	1	40	4	7	9	
1— 1—		Fill Brown gravelly sand, some silt, pockets of clayey silt, loose, moist	120.1 0.8		SS	2	50	19		12	
2-		Brown sand, trace to some silt, trace clay, trace red brick fragments, trace organics, pockets of clayey silt, loose to compact, moist	118.6		SS	3	5	7		6	
- - -		Sand Brown sand, some silt, compact, wet	2.3	Bentonite *	SS	4	50	21		15	
3-		Some gravel, grey	3.0	Ben	SS	5	50	22	-	13	
4- - -			116.3								
5- -		Inferred Bedrock Weathered bedrock with intermitted limestone/dolostone stringers (Georgian Bay Formation)	4.6	Riser	SS	6	50	>50		6	
- - - 6-		, , , ,	114.8								
- - - 7-			6.1	→ pres esiis	HQ	1	100				
- - -			113.3 7.6						-		

Rig Type: Track-mount

Grade Elevation: 120.9 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 1 of 2

Log of Borehole: BH5 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 18, 2021 Project Manager: MYB

	SUBSURFACE PROFILE								S	AMPLE	
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ○ % ○	Laboratory Analysis and Comments
9 - 10 - 11 - 12 - 13 - 14 - 14 - 1	Grand Control of the	Georgian Bay Formation Grey shale, very thinly bedded to thinly bedded, weak, joints are horizontal, closed, planar; interbedded with limestone, light grey, strong Total Core Recovery: 100% Solid Core Recovery: 80% Rock Quality Designation: 10% -10% Limestone Total Core Recovery: 100% Solid Core Recovery: 95% Rock Quality Designation: 40% -13% Limestone End of Borehole Borehole terminated at approximately 9.1 mbgs. Water level and cave were not measured due to the presence of drill fluid. Water Level Reading Date Water Depth (mbgs) Nov. 11, 2021 5.3	9 1 9.1	Screen	PH San	eS 2	100	dS	20, 40, 40, 40, 40, 40, 40, 40, 40, 40, 4		
15-											

Rig Type: Track-mount

Grade Elevation: 120.9 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 2 of 2

Log of Borehole: BH6 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

Drill Date: October 19, 2021 Project Manager: MYB

		SUBSURFACE PROFILE			SAMPLE						
Depth (mbgs)	Graphic Log	Description	Elevation (masl) / Depth (mbgs)	Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ° % °	Laboratory Analysis and Comments
0-		Ground Surface	120.8								
-		Pavement Structure Asphaltic concrete: 100 mm Aggregate layer: 200 mm	0.0 120.5 0.3		SS	1	50	9		φ14	
1-		Fill Brown gravelly sand, some silt, loose, moist	0.8		SS	2	30	2		16	
-		Brown clayey silt, sandy, trace gravel, soft, moist Brown sand, some gravel, trace / silt, very loose, moist	119.3 1.5		SS	3	5	2		13	
2-		Dark brown clayey silt, sandy, trace gravel, trace red brick fragments, soft to stiff, moist	118.5 2.3			4	5	11		14	
3-		Trace concrete pieces Brown sand, some silt, trace	117.8 3.0		Bentonite					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-		gravel, trace organics, loose, wet			SS	5	60	5	<u></u>) 20	
4-			116.2								
5-		Inferred Bedrock Weathered bedrock with intermitted limestone/dolostone stringers (Georgian Bay Formation)	4.6	Riser	SS	6	20	>50		√ 10	
6-		(Coorgian Bay Formation)	114.7								
-			6.1	•	Silica Sand						
7-			113.2		∯ HQ	1	100				
_			113.2 7.6								

Rig Type: Track-mount

Grade Elevation: 120.8 masl.

Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

Top of Casing Elevation: N/A

Well Diameter: 51 mm

Sheet: 1 of 2

Log of Borehole: BH6 (MW)

Project #: 275471.003

Logged By: KS

Project: Geotechnical Investigation - Proposed Residential Development

Client: Ahmed Developments Inc.

Location: 1000 and 1024 Dundas Street East, Mississauga, Ontario

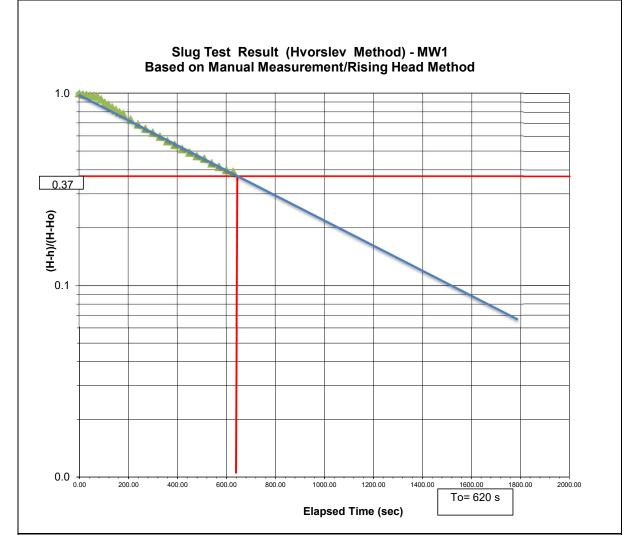
Drill Date: October 19, 2021 Project Manager: MYB

9 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Georgian Bay Formation Grey shale, very thinly bedded to thinly bedded, weak, joints are horizontal, closed, planar; interbedded with limestone, light grey, strong Total Core Recovery: 100% Solid Core Recovery: 100% Rock Quality Designation: 40% ~8% Limestone	Elevation (masl) / Depth (mbgs)	Screen Monitoring Monitoring Well Details	Sample Type	Sampler Number	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Water Content ° % °	Laboratory Analysis and Comments
9	Grey shale, very thinly bedded to thinly bedded, weak, joints are horizontal, closed, planar; interbedded with limestone, light grey, strong Total Core Recovery: 100% Solid Core Recovery: 100% Rock Quality Designation: 40%	111.7								
12-	Total Core Recovery: 100% Solid Core Recovery: 100% Rock Quality Designation: 50% ~10% Limestone End of Borehole Borehole terminated at approximately 9.2 mbgs. Water level and cave were not measured due to the presence of drill fluid. Water Level Reading Date Water Depth (mbgs) Nov. 11, 2021 2.3	9.1	Scree	HQ	2	100				
13-										

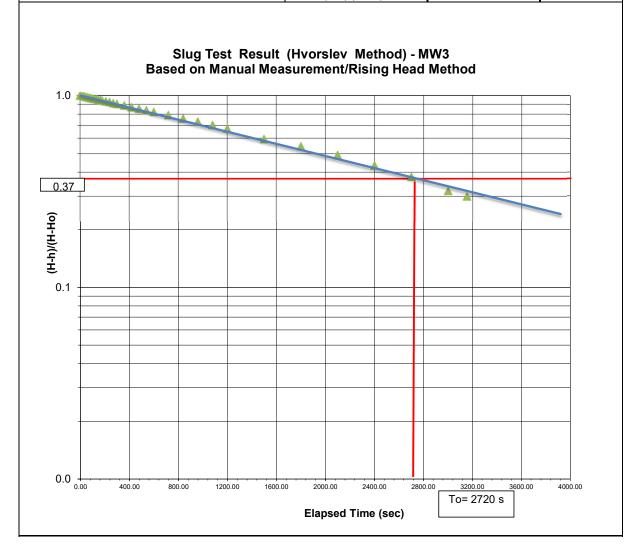
Rig Type: Track-mount

Grade Elevation: 120.8 masl.

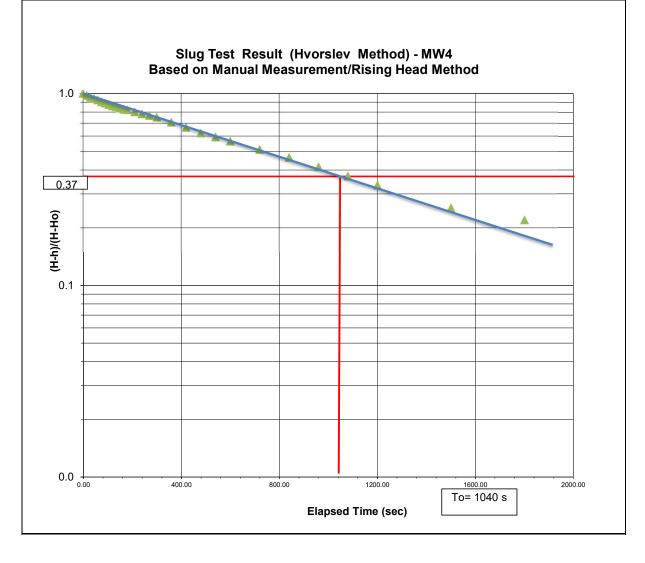
Drilling Method: Split Spoon / Hollow Stem Auger, HQ-Rock Coring

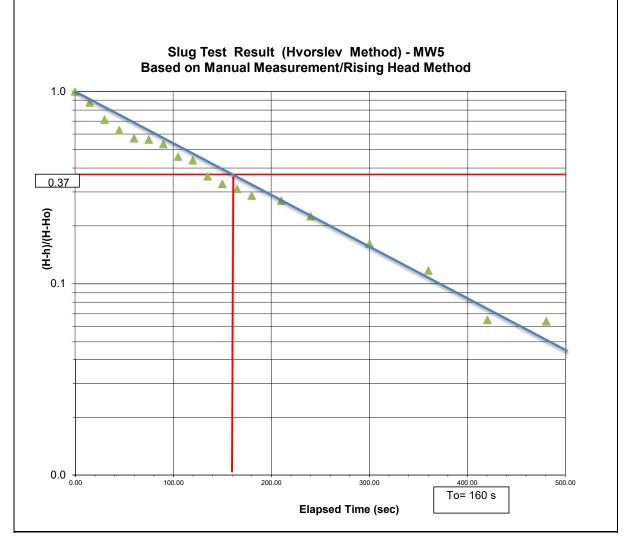

Top of Casing Elevation: N/A

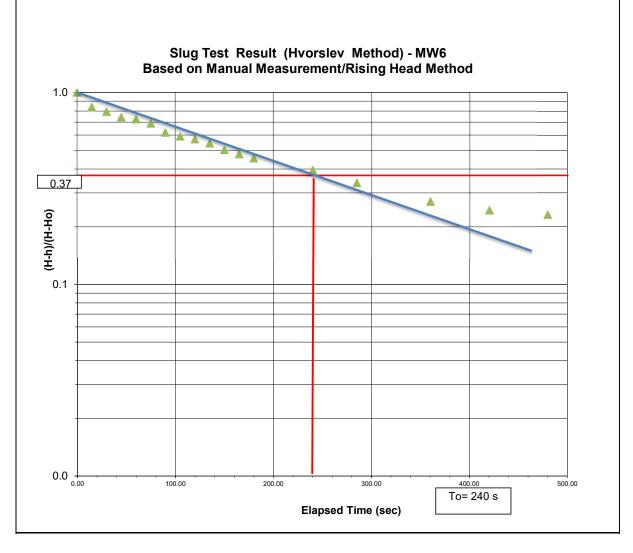
Well Diameter: 51 mm


Sheet: 2 of 2

APPENDIX IV
Rising Head Hydraulic Conductivity Test Curves


Slug Test: MW1		Project No.:	275471							
Project Location: 1000 & 10	24 Dundas Street I	East, Mississauga, Ontar	io							
Data Source: based on Manu	Data Source: based on Manual Measurement as per Rising Head Method dated November 15, 2021									
Conducted by: Yorgan Pitt										
Interpretted by:	Bujing Guan	H =	Initial Water Head price	or to test						
Processing Date: 11/22/2021 Ho = Water Head at time = 0										
Screen Depth (mBGS):	6.1 - 9.1	h =	Water Head/Level at t	ime t						
Screened Soil:	shale with limestone	e/dolostone stringers								
Well Diameter:	2.0" ID	L =	305	cm						
Static Water Level (mBGS):	4.92	R =	10.2	cm						
Initial Reading (mTOC)	nitial Reading (mTOC) 4.85 r = 2.54 cm									
Test Start Reading (mTOC) 5.894 To = 620 sec										
Test End Reading (mTOC)	5.257	$K = r^2 \ln(L/R)/(2LTo) =$	5.8E-05	cm/s						


Slug Test: MW3		Project No.:	275471							
Project Location: 1000 & 1	024 Dundas Street	East, Mississauga, Ontar	io							
Data Source: based on Man Conducted by:	Data Source: based on Manual Measurement as per Rising Head Method dated November 15, 2021 Conducted by: Yorgan Pitt									
Interpretted by:	Bujing Guan	H =	Initial Water Head price	or to test						
Processing Date:	11/22/2021	Ho =	Water Head at time =	0						
Screen Depth (mBGS):	6.1 - 9.1	h =	Water Head/Level at t	ime t						
Screened Soil:	shale with limestone	e/dolostone stringers								
Well Diameter:	2.0" ID	L =	305	cm						
Static Water Level (mBGS):	6.08	R =	10.2	cm						
Initial Reading (mTOC)	6	r =	2.54	cm						
Test Start Reading (mTOC)	7	To=	2720	sec						
Test End Reading (mTOC)	6.3	$K = r^2 \ln(L/R)/(2LTo) =$	1.3E-05	cm/s						


Slug Test: MW4		Project No.:	275471							
Project Location: 1000 & 10	Project Location: 1000 & 1024 Dundas Street East, Mississauga, Ontario									
	Data Source: based on Manual Measurement as per Rising Head Method dated November 15, 2021									
Conducted by: Yorgan Pitt										
Interpretted by:	Bujing Guan	H =	Initial Water Head price	or to test						
Processing Date: 11/22/2021 Ho = Water Head at time = 0										
Screen Depth (mBGS):	6.1 - 9.1	h =	Water Head/Level at t	ime t						
Screened Soil:	shale with limestone	e/dolostone stringers								
Well Diameter:	2.0" ID	L =	305	cm						
Static Water Level (mBGS):	5.13	R =	10.2	cm						
Initial Reading (mBGS) 5.13 r = 2.54 cm										
Test Start Reading (mBGS)	6.92	To=	1040	sec						
Test End Reading (mBGS)	5.486	$K = r^2 ln(L/R)/(2LTo) =$	3.5E-05	cm/s						

Slug Test: MW5		Project No.	.: 275471							
Project Location: 1000 & 10	Project Location: 1000 & 1024 Dundas Street East, Mississauga, Ontario									
Data Source: based on Manual Measurement as per Rising Head Method dated November 15, 2021 Conducted by: Yorgan Pitt										
Interpretted by:	Bujing Guan	H =	Initial Water H	ead prior to test						
Processing Date:	11/22/2021	Ho =	Water Head at time = 0							
Screen Depth (mBGS):	Screen Depth (mBGS): 6.1 - 9.1			evel at time t						
Screened Soil:	shale with limestone	e/dolostone stringers								
Well Diameter:	2.0" ID	L =	296	cm						
Static Water Level (mBGS):	6.14	R =	10.2	cm						
Initial Reading (mTOC)	6.07	r =	2.54	cm						
Test Start Reading (mTOC)	7.01	To=	160	sec						
Test End Reading (mTOC)	6.073	$K = r^2 ln(L/R)/(2LTo) =$	2.3E-04	cm/s						

Slug Test: MW6		Project No.:	275471						
Project Location: 1000 & 10	24 Dundas Street	East, Mississauga, Ontari	io						
Data Source: based on Manual Measurement as per Rising Head Method dated November 15, 2021 Conducted by: Yorgan Pitt									
Interpretted by:	Bujing Guan	H =	Initial Water Head price	or to test					
Processing Date: 11/22/2021 Ho = Water Head at time = 0									
Screen Depth (mBGS):	6.1 - 9.1	h =	Water Head/Level at t	ime t					
Screened Soil:	shale with limestone	e/dolostone stringers							
Well Diameter:	2.0" ID	L =	305	cm					
Static Water Level (mBGS):	5.65	R =	10.2	cm					
Initial Reading (mTOC) 5.58 r = 2.54 cm									
Test Start Reading (mTOC) 6.584 To = 240 sec									
Test End Reading (mTOC)	5.741	$K = r^2 ln(L/R)/(2LTo) =$	1.5E-04	cm/s					

APPENDIX V

Laboratory Certificate of Analysis

Your Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Your C.O.C. #: 856631-01-01

Attention: Craig Kelly

Pinchin Ltd
2360 Meadowpine Blvd
Unit # 2
Mississauga, ON
CANADA L5N 6S2

Report Date: 2021/12/10

Report #: R6915003 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1X5947 Received: 2021/11/15, 17:23

Sample Matrix: Water # Samples Received: 2

# Janiples Neceived. 2					
Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	2	2021/11/17	2021/11/18	CAM SOP-00301	EPA 8270 m
Carbonaceous BOD	2	2021/11/16	2021/12/08	CAM SOP-00427	SM 23 5210B m
Total Cyanide	2	2021/11/17	2021/11/17	CAM SOP-00457	OMOE E3015 5 m
Fluoride	2	2021/11/16	2021/11/17	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	2	2021/11/17	2021/11/17	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2021/11/18	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2021/12/10	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	2	N/A	2021/11/15	CAM SOP-00552	MOE LSB E3371
Total Nonylphenol in Liquids by HPLC	2	2021/11/18	2021/11/19	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	2	2021/11/18	2021/11/19	CAM SOP-00313	BV Labs Method
Animal and Vegetable Oil and Grease	2	N/A	2021/11/20	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	2	2021/11/20	2021/11/20	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	2	2021/11/16	2021/11/17	CAM SOP-00309	EPA 8082A m
pH	2	2021/11/16	2021/11/17	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	2	N/A	2021/11/16	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	2	N/A	2021/11/17	CAM SOP-00464	EPA 375.4 m
Total Kjeldahl Nitrogen in Water	2	2021/11/17	2021/11/19	CAM SOP-00938	OMOE E3516 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	2	2021/11/20	2021/11/20	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	2	2021/11/17	2021/11/18	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	2	N/A	2021/11/22	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Your C.O.C. #: 856631-01-01

Attention: Craig Kelly

Pinchin Ltd
2360 Meadowpine Blvd
Unit # 2
Mississauga, ON
CANADA L5N 6S2

Report Date: 2021/12/10 Report #: R6915003

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1X5947 Received: 2021/11/15, 17:23

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager Email: Antonella.Brasil@bureauveritas.com Phone# (905)817-5817

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				RFU707			
Sampling Date				2021/11/15 11:45			
COC Number				856631-01-01			
	UNITS	Criteria	Criteria-2	MW4 1000 DUNDAS ST E	RDL	MDL	QC Batch
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	-	150	<0.50	0.50	0.10	7700791
Inorganics		- I	<u> </u>			l.	
Total Carbonaceous BOD	mg/L	15	300	2	2	0.2	7702814
Fluoride (F-)	mg/L	-	10	0.14	0.10	0.020	7704513
Total Kjeldahl Nitrogen (TKN)	mg/L	1	100	2.5	0.20	0.12	7705860
рН	рН	6.0:9.0	5.5:10.0	7.49			7704530
Phenols-4AAP	mg/L	0.008	1	<0.0010	0.0010	0.00030	7703544
Total Suspended Solids	mg/L	15	350	86	10	2.0	7704415
Dissolved Sulphate (SO4)	mg/L	-	1500	99	1.0	0.10	7704654
Total Cyanide (CN)	mg/L	0.02	2	<0.0050	0.0050	0.00010	7705467
Petroleum Hydrocarbons		•			•		
Total Oil & Grease	mg/L	-	-	<0.50	0.50	0.10	7713111
TPH - Heavy Oils	mg/L	-	15	<0.50	0.50	0.10	7713113
Miscellaneous Parameters							
Nonylphenol Ethoxylate (Total)	mg/L	-	0.2	<0.025	0.025	0.005	7709126
Nonylphenol (Total)	mg/L	-	0.02	<0.001	0.001	0.0002	7709096
Metals		•	•		•	•	
Mercury (Hg)	mg/L	0.0004	0.01	0.00015	0.00010	0.000050	7705465
Total Aluminum (Al)	ug/L	-	50000	7800	4.9	2.0	7708001
Total Antimony (Sb)	ug/L	-	5000	0.70	0.50	0.30	7708001
Total Arsenic (As)	ug/L	20	1000	4.3	1.0	0.50	7708001
Total Cadmium (Cd)	ug/L	8	700	<0.090	0.090	0.090	7708001
Total Chromium (Cr)	ug/L	80	5000	11	5.0	5.0	7708001
Total Cobalt (Co)	ug/L	-	5000	7.2	0.50	0.10	7708001
Total Copper (Cu)	ug/L	50	3000	11	0.90	0.50	7708001
Total Lead (Pb)	ug/L	120	3000	2.1	0.50	0.10	7708001

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				RFU707			
Sampling Date				2021/11/15			
. 0				11:45			
COC Number				856631-01-01			
	UNITS	Criteria	Criteria-2	MW4 1000 DUNDAS ST E	RDL	MDL	QC Batch
Total Manganese (Mn)	ug/L	50	5000	630	2.0	0.50	7708001
Total Molybdenum (Mo)	ug/L	-	5000	4.5	0.50	0.20	7708001
Total Nickel (Ni)	ug/L	80	3000	15	1.0	0.50	7708001
Total Phosphorus (P)	ug/L	-	10000	320	100	30	7708001
Total Selenium (Se)	ug/L	20	1000	<2.0	2.0	0.50	7708001
Total Silver (Ag)	ug/L	120	5000	<0.090	0.090	0.070	7708001
Total Tin (Sn)	ug/L	-	5000	<1.0	1.0	0.50	7708001
Total Titanium (Ti)	ug/L	-	5000	75	5.0	4.0	7708001
Total Zinc (Zn)	ug/L	40	3000	31	5.0	3.0	7708001
Semivolatile Organics							
Bis(2-ethylhexyl)phthalate	ug/L	8.8	12	<2.0	2.0	0.10	7705118
Di-N-butyl phthalate	ug/L	15	80	<2.0	2.0	0.10	7705118
Volatile Organics							
Benzene	ug/L	2	10	<0.40	0.40	0.040	7705568
Chloroform	ug/L	2	40	<0.40	0.40	0.10	7705568
1,2-Dichlorobenzene	ug/L	5.6	50	<0.80	0.80	0.10	7705568
1,4-Dichlorobenzene	ug/L	6.8	80	<0.80	0.80	0.10	7705568
cis-1,2-Dichloroethylene	ug/L	5.6	4000	<1.0	1.0	0.10	7705568
trans-1,3-Dichloropropene	ug/L	5.6	140	<0.80	0.80	0.10	7705568
Ethylbenzene	ug/L	2	160	<0.40	0.40	0.020	7705568
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	<4.0	4.0	0.20	7705568
Methyl Ethyl Ketone (2-Butanone)	ug/L	-	8000	<20	20	1.0	7705568
Styrene	ug/L	-	200	<0.80	0.80	0.10	7705568
1,1,2,2-Tetrachloroethane	ug/L	17	1400	<0.80	0.80	0.10	7705568
Tetrachloroethylene	ug/L	4.4	1000	<0.40	0.40	0.10	7705568
Toluene	ug/L	2	270	<0.40	0.40	0.020	7705568
Trichloroethylene	ug/L	8	400	<0.40	0.40	0.10	7705568

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				RFU707			
Sampling Date				2021/11/15			
Sampling Date				11:45			
COC Number				856631-01-01			
	UNITS	Criteria	Criteria-2	MW4 1000 DUNDAS ST E	RDL	MDL	QC Batch
p+m-Xylene	ug/L	-	-	<0.40	0.40	0.020	7705568
o-Xylene	ug/L	-	-	<0.40	0.40	0.020	7705568
Total Xylenes	ug/L	4.4	1400	<0.40	0.40	0.020	7705568
PCBs							
Total PCB	ug/L	0.4	1	<0.05	0.05	0.01	7704149
Microbiological							
Escherichia coli	CFU/100mL	200	-	<10	10	N/A	7702068
Surrogate Recovery (%)	·	·	•		•	•	•
2,4,6-Tribromophenol	%	-	-	69			7705118
2-Fluorobiphenyl	%	-	-	78			7705118
2-Fluorophenol	%	-	-	40			7705118
D14-Terphenyl	%	-	-	91			7705118
D5-Nitrobenzene	%	-	-	80			7705118
D5-Phenol	%	-	-	28			7705118
Decachlorobiphenyl	%	-	-	58 (1)			7704149
4-Bromofluorobenzene	%	-	-	81			7705568
D4-1,2-Dichloroethane	%	-	-	106			7705568
D8-Toluene	%	-	-	101			7705568

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

N/A = Not Applicable

(1) Surrogate recovery is below the control limit stipulated by Ont Reg 153, however, this recovery is still within Bureau Veritas performance based limits. Results reported with recoveries within this range are still valid but may have a low bias.

reau Veritas Job #: C1X594/ Pinch

Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				RFU708			
Sampling Date				2021/11/15			
Sampling Date				14:30			
COC Number				856631-01-01			
	UNITS	Criteria	Criteria-2	MW1 1024 DUNDAS ST E	RDL	MDL	QC Batch
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	-	150	<0.50	0.50	0.10	7700791
Inorganics					•		
Total Carbonaceous BOD	mg/L	15	300	<2	2	0.2	7702814
Fluoride (F-)	mg/L	-	10	<0.10	0.10	0.020	7704513
Total Kjeldahl Nitrogen (TKN)	mg/L	1	100	1.8	0.20	0.12	7705860
рН	рН	6.0:9.0	5.5:10.0	7.33			7704530
Phenols-4AAP	mg/L	0.008	1	<0.0010	0.0010	0.00030	7703544
Total Suspended Solids	mg/L	15	350	160	10	2.0	7704415
Dissolved Sulphate (SO4)	mg/L	-	1500	180	1.0	0.10	7704654
Total Cyanide (CN)	mg/L	0.02	2	0.028	0.0050	0.00010	7705467
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	-	-	<0.50	0.50	0.10	7713111
TPH - Heavy Oils	mg/L	-	15	<0.50	0.50	0.10	7713113
Miscellaneous Parameters							
Nonylphenol Ethoxylate (Total)	mg/L	-	0.2	<0.025	0.025	0.005	7709126
Nonylphenol (Total)	mg/L	-	0.02	<0.001	0.001	0.0002	7709096
Metals							
Mercury (Hg)	mg/L	0.0004	0.01	<0.00010	0.00010	0.000050	7705465
Total Aluminum (Al)	ug/L	-	50000	2400	4.9	2.0	7708001
Total Antimony (Sb)	ug/L	-	5000	<0.50	0.50	0.30	7708001
Total Arsenic (As)	ug/L	20	1000	2.2	1.0	0.50	7708001
Total Cadmium (Cd)	ug/L	8	700	<0.090	0.090	0.090	7708001
Total Chromium (Cr)	ug/L	80	5000	<5.0	5.0	5.0	7708001
Total Cobalt (Co)	ug/L	-	5000	4.8	0.50	0.10	7708001
Total Copper (Cu)	ug/L	50	3000	6.1	0.90	0.50	7708001
Total Lead (Pb)	ug/L	120	3000	1.0	0.50	0.10	7708001

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				RFU708			
Sampling Date				2021/11/15			
Jamping Date				14:30			
COC Number				856631-01-01			
	UNITS	Criteria	Criteria-2	MW1 1024 DUNDAS ST E	RDL	MDL	QC Batch
Total Manganese (Mn)	ug/L	50	5000	1600	2.0	0.50	7708001
Total Molybdenum (Mo)	ug/L	-	5000	6.2	0.50	0.20	7708001
Total Nickel (Ni)	ug/L	80	3000	9.2	1.0	0.50	7708001
Total Phosphorus (P)	ug/L	-	10000	130	100	30	7708001
Total Selenium (Se)	ug/L	20	1000	<2.0	2.0	0.50	7708001
Total Silver (Ag)	ug/L	120	5000	<0.090	0.090	0.070	7708001
Total Tin (Sn)	ug/L	-	5000	<1.0	1.0	0.50	7708001
Total Titanium (Ti)	ug/L	-	5000	27	5.0	4.0	7708001
Total Zinc (Zn)	ug/L	40	3000	8.9	5.0	3.0	7708001
Semivolatile Organics							
Bis(2-ethylhexyl)phthalate	ug/L	8.8	12	<2.0	2.0	0.10	7705118
Di-N-butyl phthalate	ug/L	15	80	<2.0	2.0	0.10	7705118
Volatile Organics							
Benzene	ug/L	2	10	<0.40	0.40	0.040	7705568
Chloroform	ug/L	2	40	<0.40	0.40	0.10	7705568
1,2-Dichlorobenzene	ug/L	5.6	50	<0.80	0.80	0.10	7705568
1,4-Dichlorobenzene	ug/L	6.8	80	<0.80	0.80	0.10	7705568
cis-1,2-Dichloroethylene	ug/L	5.6	4000	<1.0	1.0	0.10	7705568
trans-1,3-Dichloropropene	ug/L	5.6	140	<0.80	0.80	0.10	7705568
Ethylbenzene	ug/L	2	160	<0.40	0.40	0.020	7705568
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	<4.0	4.0	0.20	7705568
Methyl Ethyl Ketone (2-Butanone)	ug/L	-	8000	<20	20	1.0	7705568
Styrene	ug/L	-	200	<0.80	0.80	0.10	7705568
1,1,2,2-Tetrachloroethane	ug/L	17	1400	<0.80	0.80	0.10	7705568
Tetrachloroethylene	ug/L	4.4	1000	<0.40	0.40	0.10	7705568
Toluene	ug/L	2	270	<0.40	0.40	0.020	7705568
Trichloroethylene	ug/L	8	400	<0.40	0.40	0.10	7705568

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

itas Job #: C1X5947 Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				RFU708			
Sampling Data				2021/11/15			
Sampling Date				14:30			
COC Number				856631-01-01			
	UNITS	Criteria	Criteria-2	MW1 1024 DUNDAS ST E	RDL	MDL	QC Batch
p+m-Xylene	ug/L	-	-	<0.40	0.40	0.020	7705568
o-Xylene	ug/L	-	-	<0.40	0.40	0.020	7705568
Total Xylenes	ug/L	4.4	1400	<0.40	0.40	0.020	7705568
PCBs							
Total PCB	ug/L	0.4	1	<0.05	0.05	0.01	7704149
Microbiological	<u> </u>						
Escherichia coli	CFU/100mL	200	-	<10	10	N/A	7702068
Surrogate Recovery (%)							
2,4,6-Tribromophenol	%	_	=	58			7705118
2-Fluorobiphenyl	%		-	72			7705118
2-Fluorophenol	%	-	-	33			7705118
D14-Terphenyl	%	-	-	100			7705118
D5-Nitrobenzene	%	-	-	81			7705118
D5-Phenol	%	-	-	29			7705118
Decachlorobiphenyl	%	-	-	58 (1)			7704149
4-Bromofluorobenzene	%	-	-	81			7705568
D4-1,2-Dichloroethane	%	-	-	106			7705568
D8-Toluene	%	-	-	101			7705568

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

N/A = Not Applicable

(1) Surrogate recovery is below the control limit stipulated by Ont Reg 153, however, this recovery is still within Bureau Veritas performance based limits. Results reported with recoveries within this range are still valid but may have a low bias.

By-Law Number 53-2010.

Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID					RFU708			
Compling Date					2021/11/15			
Sampling Date					14:30			
COC Number					856631-01-01			
					MW1 1024 DUNDAS			
		UNITS	Criteria	Criteria-2	ST E	RDL	MDL	QC Batch
					Lab-Dup			
Miscellaneous Para	meters							
Nonylphenol Ethoxy	mg/L	-	0.2	<0.025	0.025	0.005	7709126	
No Fill	No Exceedance							
Grey	Exceeds 1 criteria	policy/level						
Black	Exceeds both crite	eria/levels						
RDL = Reportable De	etection Limit							
QC Batch = Quality (Control Batch							
Lab-Dup = Laborato	ry Initiated Duplicate							
Criteria: The Regional Municipality of Peel Storm Sewer Discharge.								
By-Law Number 53-2	2010.							
Criteria-2: The Regio	nal Municipality of P	eel Sanitary S	Sewer Dis	charge.				

Report Date: 2021/12/10

Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

TEST SUMMARY

Bureau Veritas ID: RFU707

Sample ID: MW4 1000 DUNDAS ST E

Matrix: Water

Collected: 2021/11/15 Shipped: **Received:** 2021/11/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ABN Compounds in Water by GC/MS	GC/MS	7705118	2021/11/17	2021/11/18	Anh Lieu
Carbonaceous BOD	DO	7702814	2021/11/16	2021/12/08	Prakash Piya
Total Cyanide	SKAL/CN	7705467	2021/11/17	2021/11/17	Aditiben Patel
Fluoride	ISE	7704513	2021/11/16	2021/11/17	Surinder Rai
Mercury in Water by CVAA	CV/AA	7705465	2021/11/17	2021/11/17	Medhat Nasr
Total Metals Analysis by ICPMS	ICP/MS	7708001	N/A	2021/11/18	Azita Fazaeli
E.coli, (CFU/100mL)	PL	7702068	N/A	2021/11/15	Sirimathie Aluthwala
Total Nonylphenol in Liquids by HPLC	LC/FLU	7709096	2021/11/18	2021/11/19	Furneesh Kumar
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	7709126	2021/11/18	2021/11/19	Furneesh Kumar
Animal and Vegetable Oil and Grease	BAL	7700791	N/A	2021/11/20	Automated Statchk
Total Oil and Grease	BAL	7713111	2021/11/20	2021/11/20	Saumya Modh
Polychlorinated Biphenyl in Water	GC/ECD	7704149	2021/11/16	2021/11/17	Dawn Howard
рН	AT	7704530	2021/11/16	2021/11/17	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7703544	N/A	2021/11/16	Deonarine Ramnarine
Sulphate by Automated Colourimetry	KONE	7704654	N/A	2021/11/17	Avneet Kour Sudan
Total Kjeldahl Nitrogen in Water	SKAL	7705860	2021/11/17	2021/11/19	Massarat Jan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	7713113	2021/11/20	2021/11/20	Saumya Modh
Total Suspended Solids	BAL	7704415	2021/11/17	2021/11/18	Shaneil Hall
Volatile Organic Compounds in Water	GC/MS	7705568	N/A	2021/11/22	Manpreet Sarao

Bureau Veritas ID: RFU708

Sample ID: MW1 1024 DUNDAS ST E

Matrix: Water

Collected: 2021/11/15

Shipped: **Received:** 2021/11/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ABN Compounds in Water by GC/MS	GC/MS	7705118	2021/11/17	2021/11/18	Anh Lieu
Carbonaceous BOD	DO	7702814	2021/11/16	2021/12/08	Prakash Piya
Total Cyanide	SKAL/CN	7705467	2021/11/17	2021/11/17	Aditiben Patel
Fluoride	ISE	7704513	2021/11/16	2021/11/17	Surinder Rai
Mercury in Water by CVAA	CV/AA	7705465	2021/11/17	2021/11/17	Medhat Nasr
Total Metals Analysis by ICPMS	ICP/MS	7708001	N/A	2021/12/10	Azita Fazaeli
E.coli, (CFU/100mL)	PL	7702068	N/A	2021/11/15	Sirimathie Aluthwala
Total Nonylphenol in Liquids by HPLC	LC/FLU	7709096	2021/11/18	2021/11/19	Furneesh Kumar
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	7709126	2021/11/18	2021/11/19	Furneesh Kumar
Animal and Vegetable Oil and Grease	BAL	7700791	N/A	2021/11/20	Automated Statchk
Total Oil and Grease	BAL	7713111	2021/11/20	2021/11/20	Saumya Modh
Polychlorinated Biphenyl in Water	GC/ECD	7704149	2021/11/16	2021/11/17	Dawn Howard
рН	AT	7704530	2021/11/16	2021/11/17	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7703544	N/A	2021/11/16	Deonarine Ramnarine
Sulphate by Automated Colourimetry	KONE	7704654	N/A	2021/11/17	Avneet Kour Sudan
Total Kjeldahl Nitrogen in Water	SKAL	7705860	2021/11/17	2021/11/19	Massarat Jan
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	7713113	2021/11/20	2021/11/20	Saumya Modh
Total Suspended Solids	BAL	7704415	2021/11/17	2021/11/18	Shaneil Hall
Volatile Organic Compounds in Water	GC/MS	7705568	N/A	2021/11/22	Manpreet Sarao

Bureau Veritas Job #: C1X5947 Report Date: 2021/12/10 Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

TEST SUMMARY

Bureau Veritas ID: RFU708 Dup

Sample ID: MW1 1024 DUNDAS ST E

Matrix: Water

Collected: 2021/11/15 Shipped:

Received: 2021/11/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	7709126	2021/11/18	2021/11/19	Furneesh Kumar

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

	Package 1	10.0°C
Ī	Package 2	6.0°C

All 40 ml vials contained visible sediment.

All 250mL plastic General and solid bottles contained visible sediment.

All 125mL plastic bottles contained visible sediment.

All 120mL plastic bottle for metal analysis contained visible sediment.

All 100mL clear glass bottles contained visible sediment.

All 1L amber glass bottles contained visible sediment.

All 500mL amber glass bottles contained visible sediment.

All 120mL preserved Nutrients plastic bottle contained visible sediment.

All 120mL amber glass bottle for phenols analysis contained visible sediment.

All 120mL plastic bottles contained visible sediment.

All 300mL Sterilized bottles for Microanalysis analysis contained visible sediment

Sample RFU707 [MW4 1000 DUNDAS ST E]: VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample RFU708 [MW1 1024 DUNDAS ST E]: VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7704149	Decachlorobiphenyl	2021/11/17	99	60 - 130	81	60 - 130	77	%				
7705118	2,4,6-Tribromophenol	2021/11/17	92	10 - 130	92	10 - 130	79	%				
7705118	2-Fluorobiphenyl	2021/11/17	63	30 - 130	68	30 - 130	57	%				
7705118	2-Fluorophenol	2021/11/17	48	10 - 130	49	10 - 130	49	%				
7705118	D14-Terphenyl	2021/11/17	96	30 - 130	92	30 - 130	84	%				
7705118	D5-Nitrobenzene	2021/11/17	88	30 - 130	91	30 - 130	85	%				
7705118	D5-Phenol	2021/11/17	36	10 - 130	34	10 - 130	33	%				
7705568	4-Bromofluorobenzene	2021/11/21	92	70 - 130	91	70 - 130	87	%				
7705568	D4-1,2-Dichloroethane	2021/11/21	107	70 - 130	103	70 - 130	105	%				
7705568	D8-Toluene	2021/11/21	104	70 - 130	105	70 - 130	99	%				
7702814	Total Carbonaceous BOD	2021/12/08					<2	mg/L	17	30	96	85 - 115
7703544	Phenols-4AAP	2021/11/16	91	80 - 120	99	80 - 120	<0.0010	mg/L	NC	20		
7704149	Total PCB	2021/11/17	97	60 - 130	100	60 - 130	<0.05	ug/L	NC	40		
7704415	Total Suspended Solids	2021/11/18					<10	mg/L	NC	25	95	85 - 115
7704513	Fluoride (F-)	2021/11/17	65 (1)	80 - 120	102	80 - 120	<0.10	mg/L	0.96	20		
7704530	рН	2021/11/17			102	98 - 103			0.99	N/A		
7704654	Dissolved Sulphate (SO4)	2021/11/17	127 (1)	75 - 125	106	80 - 120	<1.0	mg/L	0.060	20		
7705118	Bis(2-ethylhexyl)phthalate	2021/11/18	98	30 - 130	95	30 - 130	<2.0	ug/L	NC	40		
7705118	Di-N-butyl phthalate	2021/11/18	97	30 - 130	95	30 - 130	<2.0	ug/L	NC	40		
7705465	Mercury (Hg)	2021/11/17	97	75 - 125	96	80 - 120	<0.00010	mg/L	NC	20		
7705467	Total Cyanide (CN)	2021/11/17	96	80 - 120	98	80 - 120	<0.0050	mg/L	NC	20		
7705568	1,1,2,2-Tetrachloroethane	2021/11/22	116	70 - 130	99	70 - 130	<0.40	ug/L	NC	30		
7705568	1,2-Dichlorobenzene	2021/11/22	100	70 - 130	92	70 - 130	<0.40	ug/L	NC	30		
7705568	1,4-Dichlorobenzene	2021/11/22	114	70 - 130	106	70 - 130	<0.40	ug/L	NC	30		
7705568	Benzene	2021/11/22	94	70 - 130	86	70 - 130	<0.20	ug/L	8.6	30		
7705568	Chloroform	2021/11/22	107	70 - 130	98	70 - 130	<0.20	ug/L	NC	30		
7705568	cis-1,2-Dichloroethylene	2021/11/22	106	70 - 130	97	70 - 130	<0.50	ug/L	8.3	30		
7705568	Ethylbenzene	2021/11/22	91	70 - 130	86	70 - 130	<0.20	ug/L	NC	30		
7705568	Methyl Ethyl Ketone (2-Butanone)	2021/11/22	113	60 - 140	93	60 - 140	<10	ug/L	NC	30		
7705568	Methylene Chloride(Dichloromethane)	2021/11/22	115	70 - 130	105	70 - 130	<2.0	ug/L	NC	30		
7705568	o-Xylene	2021/11/22	89	70 - 130	85	70 - 130	<0.20	ug/L	NC	30		

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7705568	p+m-Xylene	2021/11/22	94	70 - 130	88	70 - 130	<0.20	ug/L	NC	30		
7705568	Styrene	2021/11/22	106	70 - 130	101	70 - 130	<0.40	ug/L	NC	30		
7705568	Tetrachloroethylene	2021/11/22	88	70 - 130	84	70 - 130	<0.20	ug/L	NC	30		
7705568	Toluene	2021/11/22	93	70 - 130	87	70 - 130	<0.20	ug/L	NC	30		
7705568	Total Xylenes	2021/11/22					<0.20	ug/L	NC	30		
7705568	trans-1,3-Dichloropropene	2021/11/22	110	70 - 130	102	70 - 130	<0.40	ug/L	NC	30		
7705568	Trichloroethylene	2021/11/22	102	70 - 130	96	70 - 130	<0.20	ug/L	NC	30		
7705860	Total Kjeldahl Nitrogen (TKN)	2021/11/18	98	80 - 120	95	80 - 120	<0.10	mg/L	2.9	20	99	80 - 120
7708001	Total Aluminum (AI)	2021/11/18	101	80 - 120	100	80 - 120	<4.9	ug/L	4.6	20		,
7708001	Total Antimony (Sb)	2021/11/18	101	80 - 120	99	80 - 120	<0.50	ug/L				
7708001	Total Arsenic (As)	2021/11/18	98	80 - 120	98	80 - 120	<1.0	ug/L				
7708001	Total Cadmium (Cd)	2021/11/18	97	80 - 120	98	80 - 120	<0.090	ug/L	NC	20		
7708001	Total Chromium (Cr)	2021/11/18	97	80 - 120	95	80 - 120	<5.0	ug/L	NC	20		
7708001	Total Cobalt (Co)	2021/11/18	97	80 - 120	96	80 - 120	<0.50	ug/L				
7708001	Total Copper (Cu)	2021/11/18	98	80 - 120	99	80 - 120	<0.90	ug/L	3.9	20		
7708001	Total Lead (Pb)	2021/11/18	93	80 - 120	93	80 - 120	<0.50	ug/L	1.7	20		
7708001	Total Manganese (Mn)	2021/11/18	98	80 - 120	97	80 - 120	<2.0	ug/L				
7708001	Total Molybdenum (Mo)	2021/11/18	101	80 - 120	100	80 - 120	<0.50	ug/L				
7708001	Total Nickel (Ni)	2021/11/18	95	80 - 120	95	80 - 120	<1.0	ug/L	NC	20		
7708001	Total Phosphorus (P)	2021/11/18	97	80 - 120	103	80 - 120	<100	ug/L				
7708001	Total Selenium (Se)	2021/11/18	102	80 - 120	101	80 - 120	<2.0	ug/L				
7708001	Total Silver (Ag)	2021/11/18	98	80 - 120	97	80 - 120	<0.090	ug/L				
7708001	Total Tin (Sn)	2021/11/18	99	80 - 120	100	80 - 120	<1.0	ug/L				
7708001	Total Titanium (Ti)	2021/11/18	96	80 - 120	94	80 - 120	<5.0	ug/L				
7708001	Total Zinc (Zn)	2021/11/18	98	80 - 120	99	80 - 120	<5.0	ug/L	1.1	20		
7709096	Nonylphenol (Total)	2021/11/19	NC (2)	50 - 130	98	50 - 130	<0.001	mg/L	NC	40		
7709126	Nonylphenol Ethoxylate (Total)	2021/11/19	78	50 - 130	82	50 - 130	<0.025	mg/L	NC	40		
7713111	Total Oil & Grease	2021/11/20			97	85 - 115	<0.50	mg/L	2.3	25		

Bureau Veritas Job #: C1X5947 Report Date: 2021/12/10

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7713113	TPH - Heavy Oils	2021/11/20			92	85 - 115	<0.50	mg/L	3.8	25		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (2) The recovery of the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation.

FUNDAMENTAL LABORATORY ACCEPTANCE GUIDELINE

Bureau Veritas Job #:

C1X5947

Invoice To:					Date Received:	2021/11/15
Pinchin Ltd					Your C.O.C. #:	856631-01-01
ATTN: Accounts Payable					Your Project #:	275471.004
2360 Meadowpine Blvd					Bureau Veritas Project Manager:	Antonella Brasil
Unit # 2					Quote #:	A70927
Mississauga, ON						
CANADA L5N 6S2						
Client Contact:						
Craig Kelly						
No discrepancies noted.						
Report Comments						
Received Date:	2021/11/15	Time:	17:23	By:		
Inspected Date:		- Time:		— By:		
mspected bate.		-		by.		
FLAG Created Date:		Time:		By:		

eau Veritas Job #: C1X5947 Pinchin Ltd

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Eva Praffic R

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Sirimathie Aluthwala, Team Lead

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

VERITA		INVOICE TO:				ت معدي						THE PARTY OF THE P						
mpany Name	#3103 Pinch				lo.	REPO	RT TO:					NT SAME	INFORMATION:					
mpany Name ention:	Accounts Pay	100000000000	BWILL	Compa	ny Name: Craid	Kelly	- Ulgar	192		Quotation	#:	A7092	7			15-Nov-2		ler #:
dress:		pine Blvd Unit # 2		Addres					(28)	P.O. #: Project:		27547	1.004		- A	ntonella Brasi	1	IIIII
	Mississauga (177					Project Na	me:			-	111111		11111	nager:
ail;	(905) 363-067 ap@pinchin.c	78 Fax: (90	05) 363-0681	Tel:	-	363-1352	Fax:			Site #:						C1X5947		Brasil
SAID		KING WATER OR WATER	INTENDED	Email:		lly@pinchin.con	n;bguan@pi	ncnin.com	**	Sampled B	,	DI 5 4 0 5 0		8011	1/DI	L EXIV.	AOO Time (TAT) Required.	Drasii
WOL IVE	SUBMITTED O	N THE BUREAU VERITA	S DRINKING	WATER CHAI	ONSUMPTIC NOFCUSTOE	N MUST BE		6	AN	ALYSIS REC	QUESTED ((PLEASE BI	E SPECIFIC)		NE STANKS	Turnaround Please provide ad	Time (TA1) Required. vance notice for rush project	5
Regula	ation 153 (2011)	C	Other Regulation	is	Specia	I Instructions	rcle):	(53-201		1 1					and the same of th	Standard) TAT:		F.
THE CONTRACT OF	TO SECURITION AND SECURITION OF THE PERSON NAMED IN COLUMN 2 1997	edium/Fine CCME	Sanitary Sewe	r Bylaw	A STEEL		≥ Se Cii	je ,							The second second second	lied if Rush TAT is not spec AT = 5-7 Working days for		
	Ind/Comm Co Agri/Other Fo	r RSC Reg 558.	Nunicipality	Bylaw			Field Filtered (please circle): Metals / Hg / Cr VI	Se							Please note	Standard TAT for certain	tests such as BOD and Dioxin	s/Furans are >
Table			Reg 406 Tabl) pau	Stori								act your Project Manager fo		
		Other					Filte	ary &							Date Requi	fic Rush TAT (if applies ed:	to entire submission) Time Required:	
	110000000000000000000000000000000000000	teria on Certificate of Anai	lysis (Y/N)? _	4	All The		p ≥	Sanit	E.						Rush Confi	rmation Number.	(call lab for #)	
Samj	ple Barcode Label	Sample (Location) Ide		Date Sampled	Time Sample	d Matrix	_	Peel							# of Bottles		Comments	
M	W4	1024 Dunda	SSFE	Nov 15/2	11:45	GW		V	1						18			
m	WI	1024 Dondo	asste	Nov 15/	, 14:36	GW		V	1				i		18	3	***************************************	
									3									
			*				Kilen I											
						-										1.3		
- 10	RELINQUISHED BY	: (Signature/Print)	Date: (YY/I	MM/DD)	Fime 0	RECEIVED	BY: (Signature/	Print)	Date: (YY	/MM/DD)	Tir	me	# jars used and		Labo	ratory Use Only		
anda	n Pitt	youngen Jam	21/11	115 17	:18 8	SHANA	104 KEE	R	21/11/1	5	17:		not submitted	Time Sen	sitive Tempera	ature (°C) on Recei	Custody Seal	Yeş N
0		1 1							NS. SIGNING OF						5	.8.5	Present Intact	/

Bureau Veritas Canada (2019) Inc.

Client Project #: 275471.004

Site Location: 1000 & 1024 Dundas Street East, Mississauga

Sampler Initials: YP

Exceedance Summary Table – Peel Region Storm 2010 Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
MW4 1000 DUNDAS ST E	RFU707-08	Total Kjeldahl Nitrogen (TKN)	1	2.5	0.20	mg/L
MW4 1000 DUNDAS ST E	RFU707-09	Total Manganese (Mn)	50	630	2.0	ug/L
MW4 1000 DUNDAS ST E	RFU707-06	Total Suspended Solids	15	86	10	mg/L
MW1 1024 DUNDAS ST E	RFU708-08	Total Kjeldahl Nitrogen (TKN)	1	1.8	0.20	mg/L
MW1 1024 DUNDAS ST E	RFU708-09	Total Manganese (Mn)	50	1600	2.0	ug/L
MW1 1024 DUNDAS ST E	RFU708-06	Total Suspended Solids	15	160	10	mg/L
MW1 1024 DUNDAS ST E	RFU708-10	Total Cyanide (CN)	0.02	0.028	0.0050	mg/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Exceedance Summary Table – Peel Region Sanitary 2010 Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary tab	le is for information purp	oses only and should not	be considered a comprehe	nsive listing o	or statement of co	onformance to

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.