

Executive Summary

Grounded Engineering Inc. (Grounded) was retained by ACLP - Dundas Street E to conduct a Hydrogeological Review for the proposed redevelopment of 60 Dundas St E in Mississauga, Ontario. The conclusions of the investigation are summarized as follows:

Development Information

Current Development					
			Belov	v Grade Levels	
Development Phase	Above Grade	Lowest Finished Floor			Approximate
·	Levels	Level #	Depth (m)	Elevation (masl)	Base of Footings (masl)
60 Dundas St E	1	0	0	111.0 (approx.)	Unknown

Proposed Development							
		Below Grade Levels					
Development Phase	Above Grade		Lowest F	Approximate			
	Levels	Level #	Depth (m)	oth (m) Elevation (masl)	Base of Footings (masl)		
60 Dundas St E – Tower A	40 35						
60 Dundas St E – Tower B		P5	17	94.0 (approx.)	93.0 (approx.)		
60 Dundas St E - Tower C	32	-					

Site Conditions

Site Stratigraphy					
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)	
Earth Fill	Aquifer	0.1 - 4.0	110.8 – 106.0	1.0 x 10 ⁻⁵ **	
Clayey Silt Glacial Till	Aquitard	1.7 - 6.3	108.9 - 103.9	4.1 x 10 ⁻⁸ *	
Weathered Bedrock	Aquifer	6.1 - 6.3***	104.6 - 103.5***	1.0 x 10 ⁻⁷ **	
Sound Bedrock	Aquitard	Below 6.3***	Below 103.5***	1.0 x 10 ⁻⁸ **	

^{*}Indicates conductivity was calculated by geometric mean of Slug Test

^{***}Inferred based on drilling observations. To be confirmed through additional rock coring at a later date

Maximum Groundwater Elevation				
Monitoring Well ID	Depth Below Grade (m)	Elevation (masl)		
101	3.2	107.7		
102	3.8	106.2		
103	4.0	105.4		

^{**} Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979) and knowledge of adjacent site conditions

Groundwater Qualit	ty			
Sample ID	Sample Date	Sample Expiry Date	City of Mississauga Storm Sewer Limits	Region of Peel Sanitary Sewer Limits
SW-UF-BH101	10 May 2021	10 Feb 2022	Exceeds	Meets

Groundwater Control

Stored Groundwater (pre-excavation/dewatering)
Otorou orounanator (pro executation, dematering,

Volume of	Excavation Below	ne of Excavation Below		Volume of Available Groundwater	
Excavation (m ³)		(m³)	(L)	(m³)	(L)
180,264	148,109	13,300	13,300,000	8,700	8,700,000

Short Term (Construction) Groundwater Quantity – Safety Factor of 1.5 Used					
Groundwate	er Seepage	Design Rainfall Event (25mm)		Total Daily Water Takings	
L/day	L/min	L/day	L/min	L/day	L/min
10,000	6.9	244,000	169.4	254,000	176.4

Long Term (Permanent) Groundwater Quantity - Safety Factor of 1.5 Used						
Groundwater Seepage Infiltration Design Rainfall Event (25mm)			Total Daily W	ater Takings		
L/day	L/min	L/day	L/min	L/day	L/min	
10,000	6.9	21,000	14.6	31,000	21.5	

Regulatory Requirements	
Environmental Activity and Sector Registry (EASR) Posting	Required
Short Term Permit to Take Water (PTTW)	Not Required
Long Term Permit to Take Water (PTTW)	Not Required
Short Term Discharge Agreement City of Mississauga/Region of Peel	Required
Long Term Discharge Agreement City of Mississauga/Region of Peel	Required

TABLE OF CONTENTS

1	INTRODUCTION1						
2	STUDY ARI	EA MAP	3				
3	GEOLOGY	GEOLOGY AND PHYSICAL HYDROGEOLOGY					
4	MONITORI	NG WELL INFORMATION	4				
5	GROUNDW	/ATER ELEVATIONS	4				
6	AQUIFER T	ESTING	4				
	6.1 SING	ELE WELL RESPONSE TEST (SLUG TEST)	4				
	6.2 Soil	GRAIN SIZE DISTRIBUTION	5				
	6.3 LITER	RATURE	5				
7	WATER QU	JALITY	6				
8	PROPOSED	CONSTRUCTION METHOD	6				
9	PRIVATE W	VATER DRAINAGE SYSTEM (PWDS)	7				
10	GROUNDW	ATER EXTRACTION AND DISCHARGE	7				
11	EVALUATIO	ON OF IMPACT	9				
	11.1	Zone of Influence (ZOI)	9				
	11.2	LAND STABILITY	10				
	11.3	CITY'S SEWAGE WORKS	10				
	11.4	Natural Environment	11				
	11.5	LOCAL DRINKING WATER WELLS	11				
	11.6	CONTAMINATION SOURCE	11				
12	PROPOSED	MITIGATION MEASURES AND MONITORING PLAN	11				
13	LIMITATIO	NS	12				
	13.1	REPORT USE	12				
14	CLOSURE.		12				

FIGURES

Figure 1 - Study Area Map

Figure 2 - Borehole and Monitoring Well Location Plan

Figure 3 - Hydrological Cross-Section

APPENDICES

Appendix A - Borehole Logs

Appendix B - Aquifer Response Tests

Appendix C - Grain Size Analysis

Appendix D - HydrogeoSieveXL Data

Appendix E – Laboratory Certificate of Analysis

Appendix F – Finite Element Model

Appendix G - Dewatering Calculations

1 Introduction

ACLP - Dundas Street E has retained Grounded Engineering Inc. ("Grounded") to provide hydrogeological engineering design advice for their proposed development at 60 Dundas St E, in Mississauga, Ontario.

Property Information	
Location of Property	60 Dundas St E, Mississauga, Ontario, L5A 1W4
Ownership of Property	Gold Star Plaza Ltd.
Property Dimensions (m)	110 x 114 (irregular shape)
Property Area (m²)	10,724

Existing Development	
Number of Building Structures	1
Number of Above Grade Levels	1
Number of Underground Levels	0
Sub-Grade Depth of Development (m)	0
Sub-Grade Area (m²)	0
Land Use Classification	Commercial

Proposed Development	
Number of Building Structures	3
Number of Above Grade Levels	Building A = 40 Building B = 35 Building C = 32
Number of Underground Levels	5
Sub-Grade Depth of Development (m)	17
Sub-Grade Area (m²)	9,685
Land Use Classification	Residential

Qualified Person and Hydrogeological Review Information			
Qualified Person	Matthew Bielaski, P.Eng., QP _{ESA-RA}		
Consulting Firm	Grounded Engineering Inc.		
Date of Hydrogeological Review	February 24, 2022		
	Review of MECP Water Well Records for the area		
	 Review of geological information for the area 		
	 Review of topographic information for the area 		
	 Advancement of 3 boreholes to a depth of 5.1 to 7.4 m, which were instrumented with monitoring wells 		
0 (1)	 Completion of slug tests in all available monitoring wells 		
Scope of Work	 Ground water elevation monitoring once after drilling and once at least three months after to capture seasonal fluctuations 		
	 Ground water sampling and analysis to the City of Mississauga and Region of Peel Sewer Use Limits 		
	 Assessment of groundwater controls and potential impacts 		
	 Report preparation in accordance with Ontario Water Resources Act, Ontario Regulation 387/04 		

General Hydrogeological Characterization			
Property Topography	The site has an approximate ground surface elevation of 111.0 masl.		
Local Physiographic Features	The site is composed of earth fill and clayey silt till.		
Regional Physiographic Features	The West St Lawrence Lowland consists of a limestone plain (elevation 200–250 masl) that is separated by a broad, shale lowland from a broader dolomite and limestone plateau west of Lake Ontario. This plateau is bounded by the Niagara Escarpment. From the escarpment the plateau slopes gently southwest to lakes Huron and Erie (elevation 173 masl). Glaciation has mantled this region with several layers of glacial till (i.e., an unsorted mixture of clay, sand, etc.), the youngest forming extensive, undulating till plains, often enclosing rolling drumlin fields.		
Watershed	The site is located within the Credit River Watershed. Locally, groundwater is anticipated to flow southeast towards Lake Ontario.		
Surface Drainage	Surface water is expected to flow towards municipal catch basins located on the site.		

2 Study Area Map

A map has been enclosed which shows the following information:

- All monitoring wells identified on site
- All monitoring wells identified off site within the study area
- All boreholes identified on site
- All buildings identified on site and within the study area
- The property boundaries of the site
- Any watercourses and drainage features within the study area.

3 Geology and Physical Hydrogeology

The site stratigraphy, including soil materials, composition and texture are presented in detail on the borehole logs in Appendix A. A summary of stratigraphic units that were encountered at the site are as follows:

Site Stratigraphy				
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Earth Fill	Aquifer	0.1 - 4.0	110.8 – 106.0	1.0 x 10 ⁻⁵
Clayey Silt Glacial Till	Aquitard	1.7 - 6.3	108.9 - 103.9	4.1 x 10 ⁻⁸

Bedrock			
Stratum	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Weathered	6.1 - 6.3*	104.6 - 103.5*	1.0 x 10 ⁻⁷
Sound	Below 6.3*	Below 103.5*	1.0 x 10 ⁻⁸

^{*} Inferred based on drilling observations. To be confirmed through additional rock coring at a later date

Surface Water		
Surface Water Body	Distance from site (m)	Hydraulically Connected to Property (yes/no)
Cooksville Creek	Adjacent to east boundary of site	No – the creek has been channelized hydraulically cut off from the site by a concrete retaining wall

4 Monitoring Well Information

Well ID	Well Diameter (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit
101	50	110.9	106.3	104.8	Clayey Silt Glacial Till
102	50	110.0	105.4	103.9	Clayey Silt Glacial Till
103	50	109.4	106.0	104.5	Clayey Silt Glacial Till

5 Groundwater Elevations

Well	Groundwater Elevation (masl)			
ID _	May 4, 2021	May 6, 2021	May 10, 2021	May 21, 2021
101	106.2	107.4	107.6	107.7
102	105.3	106.0	106.2	106.2
103	104.8	105.3	105.3	105.4

The groundwater table fluctuates from about 3.2 to 4.7 metres below grade, in the clayey silt till at Elev. 104.8 to 107.7 m with the groundwater sloping downwards from the west to the east towards Cooksville Creek. For design purposes, the groundwater table is assumed to be at Elev. 107.7 m. This deposit has a very low permeability and will yield only minor seepage in the long term. There is also water within discrete fractures in the bedrock.

Groundwater levels fluctuate with time depending on the amount of precipitation and surface runoff and may be influenced by known or unknown dewatering activities at nearby sites.

6 Aquifer Testing

6.1 Single Well Response Test (Slug Test)

The hydraulic conductivities from the monitoring wells were determined based on slug tests (single-well response tests). These tests involve rapid removal of water or addition of a "slug" which displaces a known volume of water from a single well, and then monitoring the water level in the well until it recovers. The results of the slug tests were analyzed using the Bouwer and Rice method (1976).

The hydraulic properties of the strata applicable to the site are as follows:

Well ID	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)
101	106.3 - 104.8	Clayey Silt Till	6.8 x 10 ⁻⁸
102	105.4 - 103.9	Clayey Silt Till	1.7 x 10 ⁻⁸
103	106.0 - 104.5	Clayey Silt Till	6.2 x 10 ⁻⁸

A design hydraulic conductivity value of 4.1×10^{-8} m/s was used for the clayey silt till unit as a product of the geometric mean of the three hydraulic conductivity measurements achieved from the well response tests conducted.

6.2 Soil Grain Size Distribution

The hydraulic conductivities of various soil types can also be estimated from grain size analyses. An assessment of the grain sizes was conducted using the excel-based tool, HydrogeoSieve XL (HydrogeoSieve XL ver.2.2, J.F. Devlin, University of Kansas, 2015). HydrogeoSieve XL compares the results of the grain size analyses against fifteen (15) different analytical methods.

Given our experience in the area as well as published literature, some of the geometric means provided for the soil were biased low by one or more methods. In these instances, the values determined by these methods were excluded from the mean. The table below illustrates the hydraulic conductivity values estimated from the mean of the analytical methods where the soil met the applicable analysis criteria.

Sample ID	Soil Description	Applicable Analysis Methods	Hydraulic Conductivity (m/s)
BH103-SS4	Clayey Silt Till	Alyamani and Sen, Barr, Sauerbrei	4.2 x 10 ⁻⁹

The results of the analyses are presented in Appendix D.

6.3 Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Stratum/Formation	Hydraulic Conductivity (m/s)
Earth Fill	1 x 10 ⁻³ to 1 x 10 ⁻⁷
Clayey Silt Glacial Till	1 x 10 ⁻⁷ to 1 x 10 ⁻¹⁰
Weathered Shale Bedrock	1 x 10 ⁻⁶ to 1 x 10 ⁻¹²
Sound Shale Bedrock	1 x 10 ⁻⁷ to 1 x 10 ⁻¹²

7 Water Quality

One (1) unfiltered groundwater sample was collected and analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and or Canadian Association for Laboratory Accreditation.

The sample was collected directly from monitoring well BH101 on May 10, 2021. The sample was analyzed for the following parameters:

- City of Mississauga Storm Sewer By-Law 259-05 Limits for Storm Sewers Discharge
- Region of Peel By-Law 53-2010 Table 1 Limits for Sanitary Sewer Discharge

The groundwater sample exceeded the Limits for Storm Sewer Discharge for the following parameters:

- Total Suspended Solids (Limit 15 mg/L, Result 38.2 mg/L)
- Total Kjeldahl Nitrogen (Limit 1 mg/L, Result 1.83 mg/L)
- E. Coli (Limit 200 CFU/100mL, Result 270 CFU/100mL)
- Phosphorus (Limit 0.4 mg/L, Result <0.50 mg/L)

The groundwater sample met the Limits for Sanitary and Combined Sewer Discharge for all parameters analyzed.

A true copy of the analysis report, Certificate of Analysis and a chain of custody record for the sample are enclosed.

8 Proposed Construction Method

The proposed shoring methodology at the site is currently undetermined. For the purposes of this report, numerical analyses were conducted employing conventional soldier piling and lagging in order to determine a "worst-case scenario" with respect to dewatering volumes and groundwater seepage at the site.

For design purposes, the stabilized groundwater table is at about Elev. 107.7± m. The water table is present in the clayey silt till soil units. The lowest (P5) FFE is at about Elev. 94 m. Therefore,

- Bulk excavation will extend down to the elevation of the prevailing groundwater table;
- Foundation excavations will extend below the prevailing groundwater table; and
- Foundation excavations will penetrate sound bedrock yielding minor seepage.

The groundwater table is in the clayey silt till deposits and bedrock. Dewatering will take some time to accomplish prior to the start of excavation. Stored water within the excavation will need to be considered prior to excavation/dewatering. The clayey silt till deposit has a very low permeability and will yield minor seepage. Positive dewatering of soils may not be feasible at this site due to permeability of the soils present. Dewatering may be achieved through conventional sump pump arrangements. Dewatering of the bedrock is not required, seepage can be allowed to

drain into the excavation and pumped accordingly. Failure to dewater prior to excavation may result in unrecoverable disturbance of the subgrade, which will render advice provided for undisturbed subgrade conditions inapplicable.

It is recommended that a professional dewatering contractor be consulted to review the subsurface conditions and to design a site-specific dewatering system. It is the dewatering contractor's responsibility to assess the factual data and to provide recommendations on dewatering system requirements.

The proposed structures will consist of drained foundations.

The City of Mississauga and/or the Region of Peel will require Discharge Agreements in the short and long terms, if any water is to be discharged to the storm or sanitary sewers. It should be noted that securing a permit to take water on a permanent basis may not be supported by regulatory agencies.

9 Private Water Drainage System (PWDS)

If the proposed development consists of drained foundations, then a private water drainage system will be required. The total sub floor drain area will be approximately 9,685 m² based on the drawings which have been provided.

If the development is designed with a private water drainage system, the drainage system is a critical structural element since it keeps water pressure from acting on the basement walls and floor slab. As such, the sump that ensures the performance of this system must have a duplexed pump arrangement for 100% pumping redundancy and these pumps must be on emergency power. The size of the sump should be adequate to accommodate the estimated groundwater seepage. It is anticipated that the groundwater seepage can be controlled with typical, widely available, commercial/residential sump pumps.

If the proposed development is designed as a leak tight structure, then a private water drainage system will not be required. However, the structure must then be designed to resist hydrostatic pressure and uplift forces.

10 Groundwater Extraction and Discharge

Numerical analyses were conducted for both short term and long term dewatering scenarios. The modeling was conducted using computer software, which deploys the finite element modelling method. The Finite Element Model (FEM) for groundwater seepage indicates the short term (construction) and long term (permanent) dewatering requirements as provided below. The finite element model results are presented in Appendix E.

The groundwater seepage estimates, which have been provided, represent the steady state groundwater seepage. There will be an initial drawdown of the groundwater before a steady state

condition is reached. The rate of the initial drawdown, and therefore discharge, is dependent on the dewatering contractor and how the groundwater is being dealt with at the site. An estimated initial volume of stored groundwater which will require removal before steady state is reached has been provided below.

Please note that if excavation is exposed to the elements, storm water will have to be managed. The short term control of groundwater should consider stormwater management from rainfall events. A dewatering system should be designed to consider the removal of rainfall from excavation. A design storm of 25 mm has been used in the quantity estimates.

As required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of storm water from a 100-year storm. The additional volume that will be generated in the occurrence of a 100-year storm event is approximately 916,000 L.

Stored Groundwater (pre-excavation/dewatering)					
Volume of	Volume of Excavation Below	Volume of Sto	red Groundwater	Volume of Avail	able Groundwater
Excavation (m ³)	Water Table (m³)	(m³)	(L)	(m³)	(L)
180,264	148,109	13,300	13,300,000	8,700	8,700,000

Short Term (Construction) Groundwater Quantity – Safety Factor of 2.0 Used					
Groundwater Seepage Design Rainfall Event (25mm) Total Daily Water Takings					
L/day	L/min	L/day	L/min	L/day	L/min
10,000	6.9	244,000	169.4	254,000	176.4

Long Term (Permanent) Groundwater Quantity - Safety Factor of 2.0 Used					
Groundwater Seepage Infiltration Design Rainfall Event (25mm)		Total Daily Water Takings			
L/day	L/min	L/day	L/min	L/day	L/min
10,000	6.9	21,000	14.6	31,000	21.5

Regulatory Requirements	
Environmental Activity and Sector Registry (EASR) Posting	Required
Short Term Permit to Take Water (PTTW)	Not Required

Regulatory Requirements	
Long Term Permit to Take Water (PTTW)	Not Required
Short Term Discharge Agreement City of Mississauga/Region of Peel	Required
Long Term Discharge Agreement City of Mississauga/Region of Peel	Required

Please note:

- The proposed pump schedule for short term construction dewatering has not been completed. As such, the actual peak short term discharge rate is not available at the time of writing this report. The pump schedule must be specified by either the dewatering contractor retained or the mechanical consultant.
- The proposed pump schedule for long term permanent drainage has not been completed.
 As such the actual peak long term discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant.
- A leak-tight structure (structure that has not included a private water drainage system)
 has not been considered as part of the proposed development at this time.
- On-site containment (infiltration gallery/dry well etc.) has not been considered as part of the proposed development at this time. If this option is considered, additional work will have to be conducted (i.e. infiltration testing).

11 Evaluation of Impact

11.1 Zone of Influence (ZOI)

The Zone of Influence (ZOI) with respect to groundwater was calculated based on the estimated groundwater taking rate and the hydraulic conductivity of the unit which water will be taken at the Property.

The ZOI was calculated using the Sichardt equation below.

Equation: $R_0 = 3000*dH*K^{0.5}$

Where:

dH is the dewatering thickness (m)

K is the hydraulic conductivity (m/s)

Calculation:

Geological Unit	dH (m)	K (m/s)	Z0I (m)
Fill	1.7	1.0 x 10 ⁻⁵	16
Clayey Silt Glacial Till	2.1	4.1 x 10 ⁻⁸	1

The ZOI with respect to groundwater seepage at the site is 17 m.

11.2 Land Stability

The impacts to land stability of the proposed short term and long term dewatering at the site on adjacent structures are summarized as follows:

- The proposed dewatering at the subject site locally lowers the groundwater table within the ZOI by a maximum of 3.8 m. This drawdown would create at increase in effective stress of approximately 38 kPa in the native soils.
- Based on the change in effective stress and the compressibility of the soil subjected to that change, the proposed dewatering activities will induce a theoretical maximum 8 mm of additional settlement in the adjacent soils.
- The maximum induced settlement occurs directly adjacent to the proposed excavation and decreases in a nonlinear fashion with distance away from the excavation.
- For the structures within the public realm adjacent to the site, the theoretical dewatering-induced settlement is calculated to be 3 mm or less (depending on the depth of the structure).

On this basis, the impact of the proposed dewatering on the existing adjacent structures is considered by Grounded to be within acceptable limits.

11.3 City's Sewage Works

Negative impacts to City's sewage works may occur in terms of the quantity or quality of the groundwater discharged. This report provided the estimated quantity of the water discharge. However, this report does not speak to the sewer capacities. The sewer capacity analysis is provided under a separate cover by the civil consultant.

The quality of the proposed groundwater discharge is provided in Section 7. As noted in that section, the groundwater sample exceeded the Limits for Storm Sewer Discharge and met the Limits for Sanitary and Combined Sewer Discharge.

As such additional treatment will be required before the water can be discharged to the Storm Sewer and additional treatment will not be required before the water can be discharged to the Sanitary and Combined Sewer, to avoid impacts to the City's sewage works caused by groundwater quality.

11.4 Natural Environment

Cooksville Creek is located adjacent to east boundary of site but is hydraulically cut off from the site by a concrete retaining wall that appears to be bearing on bedrock. Therefore, the creek will likely not be affected by the proposed construction and long term dewatering. There are no other natural waterbodies within the ZOI that will be affected by the proposed construction dewatering or permanent drainage. Any groundwater which will be taken from the site will be discharged (if required) into the City's sewer systems and not into any natural water body. As such, there will be no impact to the natural environment caused by the water takings at the site.

11.5 Local Drinking Water Wells

The site is located within the municipal boundaries of the City of Mississauga. The site and surrounding area are provided with municipal piped water and sewer supply. There is no use of the groundwater for water supply in this area of Mississauga. As such, there will be no impact to drinking water wells.

11.6 Contamination Source

The site and immediately surrounding area currently consist mostly of residential and commercial areas. These land uses are anticipated to be a source of potential contamination and are expected to provide an Area of Potential Environmental Concern for the site. As such, the pumping of groundwater at the site is anticipated to facilitate the movement of potential contaminants onto the site. Evaluation of the environmental condition of the site has been completed under a separate cover.

12 Proposed Mitigation Measures and Monitoring Plan

The extent of the negative impact identified in previous sections will be limited to the ZOI caused by the groundwater taking at the site.

As a result of dewatering and draining the soil, changes in groundwater level have the potential to cause settlement based on the change in the effective stresses within the ZOI.

If adjacent buildings or municipal infrastructure are within the ZOI and will undergo settlement that may be considered unacceptable as identified the Land Stability Section, consideration should be given to implement a monitoring and mitigation program during dewatering activities.

Both the temporary construction dewatering system and the permanent building drainage system must be properly installed and screened to ensure sediments and fines will not be removed, which is typically a primary cause of dewatering related settlement.

13 Limitations

Natural occurrences, the passage of time, local construction, and other human activity all have the potential to directly or indirectly alter the subsurface conditions at or near the project site. Contractual obligations related to groundwater or stormwater control must be considered with attention and care as they relate this potential site alteration.

The hydrogeological engineering advice provided in this report is based on the factual observations made from the site investigations as reported. It is intended for use by the owner and their retained design team. If there are changes to the features of the development or to the scope, the interpreted subsurface information, geotechnical engineering design parameters, advice, and discussion on construction considerations may not be relevant or complete for the project. Grounded should be retained to review the implications of such changes with respect to the contents of this report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Grounded accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

13.1 Report Use

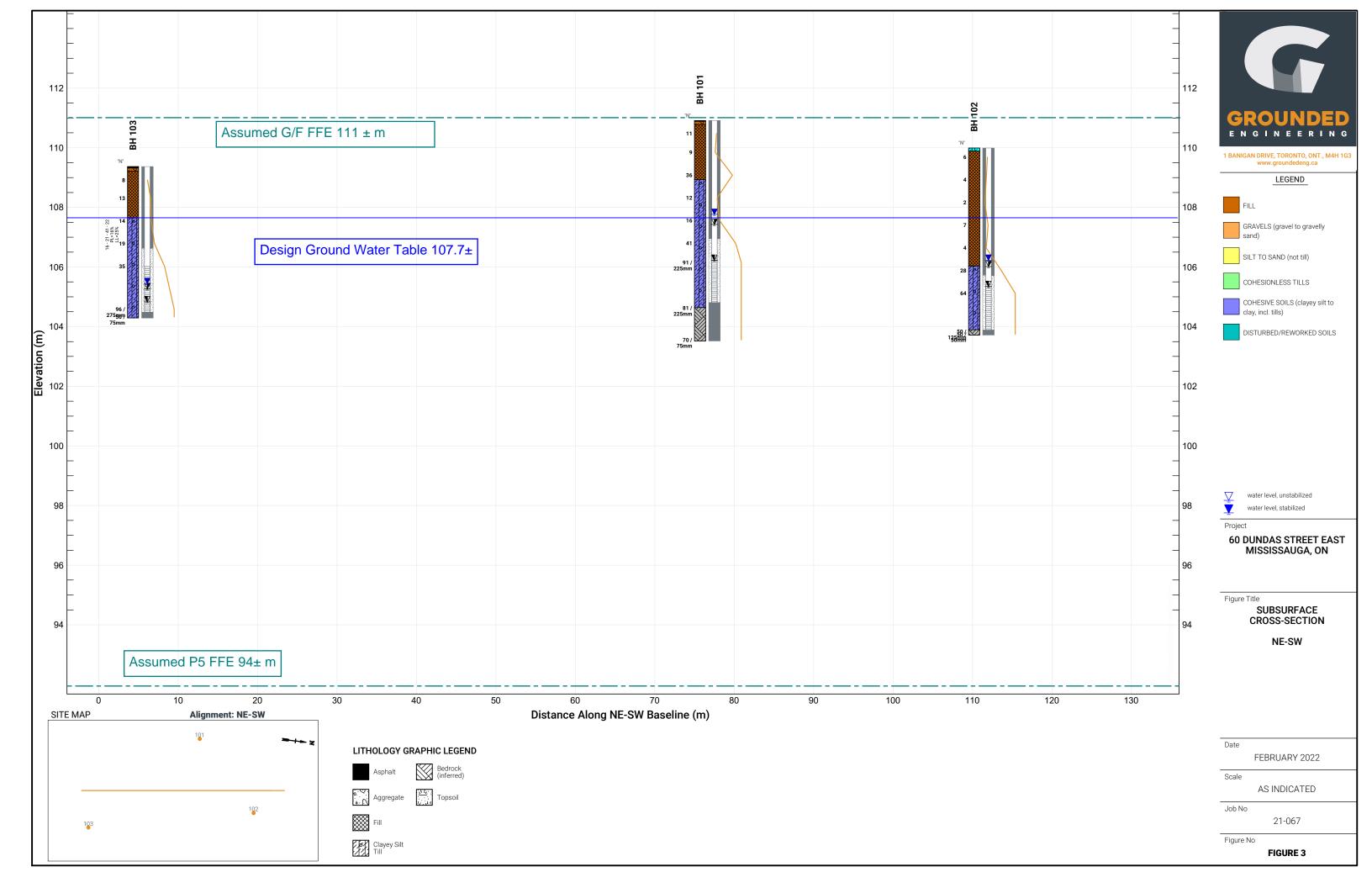
The authorized users of this report are ACLP - Dundas Street E and their design team, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc. The City of Mississauga may also make use of and rely upon this report, subject to the limitations as stated.

14 Closure

If there are any questions regarding the discussion and advice provided, please do not hesitate to contact our office. We trust that this report meets your requirements at present.

For and on behalf of our team,

Nico Piers, BASc, EIT


Matthew Bielaski, P.Eng., $QP_{\text{RA-ESA}}$ Principal

FIGURES

DUNDAS STREET EAST PIN 13157-0083 (LT) SEE ENLARGEMENT-5.18m. WIDENING BY TOWN OF MISSISSAUGA BY BY-LAW 8687, INST. No. 149202VS 1 BANIGAN DRIVE, TORONTO, ONT., M4H 163 www.groundedeng.ca 20.12 PLAN&SET BH102 LEGEND APPROXIMATE PROPERTY BOUNDARY **EXISTING BUILDING STRUCTURE** MONITORING WELL BY GROUNDED CATCHBASIN MH MAINTENANCE HOLE SHEPARD AVENUE REGISTERED PLAN E-19 LOT 20 PIN 13350-0024 (LT) Reference Survey Drawing no. 20-21-14108-00. Prepared by Aksan Piller Corporation Ltd. Dated April 5, 2021. **60 DUNDAS STREET** 60 Dundas EAST, MISSISSAUGA, ON Street East Figure Title **BOREHOLE AND MONITORING WELL LOCATION PLAN** Date FEBRUARY 2022 PART 2, PLAN 43R-16703 EASEMENT AS IN INST. No. R0934248 Scale PART 3, PLAN 43R-16703 EASEMENT AS IN INST. No. RO934248 PART 12, PLAN 43R-18106 PIN 13350-0019 (LT) -- PART 12, PLAN 43R-15808 AS INDICATED Job No PART 7, PLAN 43R-18106 PIN 13350-0022 (LT) PART 13, PLAN 43R-15808 PIN 13350-0024 (LT) 21-067 SUBJECT TO EASEMENT AS IN INST. No. LT1190861 No. 85 KING STREET EAST 10 STOREY STUCCO BUILDING Figure No FIGURE 2

APPENDIX A

SAMPLING/TESTING METHODS

SS: split spoon sample

AS: auger sample

GS: grab sample

FV: shear vane

DP: direct push

PMT: pressuremeter test

ST: shelby tube

CORE: soil coring RUN: rock coring

SYMBOLS & ABBREVIATIONS

MC: moisture content

LL: liquid limit

PL: plastic limit

NP: non-plastic

y: soil unit weight (bulk)

G_s: specific gravity

S_u: undrained shear strength

∪ unstabilized water level

1st water level measurement

2nd water level measurement most recent

water level measurement

ENVIRONMENTAL SAMPLES

M&I: metals and inorganic parameters

PAH: polycyclic aromatic hydrocarbon

PCB: polychlorinated biphenyl VOC: volatile organic compound

PHC: petroleum hydrocarbon

00115011/5

BTEX: benzene, toluene, ethylbenzene and xylene

PPM: parts per million

FIELD MOISTURE (based on tactile inspection)

DRY: no observable pore water

MOIST: inferred pore water, not observable (i.e. grey, cool, etc.)

WET: visible pore water

COHESIONLESS

Relative Density	N-Value
Very Loose	<4
Loose	4 - 10
Compact	10 - 30
Dense	30 - 50
Very Dense	>50

COHESIVE		
Consistency	N-Value	Su (kPa)
Very Soft	<2	<12

2-4 12 - 25 Soft Firm 4 - 8 25 - 5050 - 100 Stiff 8 - 15 100 - 200 Very Stiff 15 - 30

>30 >200 Hard

COMPOSITION

% by weight
<10
10 - 20
20 - 35
>35

ASTM STANDARDS

ASTM D1586 Standard Penetration Test (SPT)

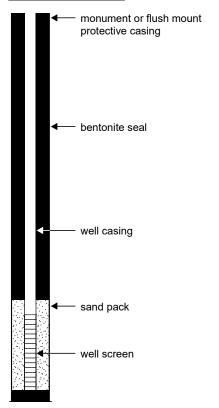
Driving a 51 mm O.D. split-barrel sampler ("split spoon") into soil with a 63.5 kg weight free falling 760 mm. The blows required to drive the split spoon 300 mm ("bpf") after an initial penetration of 150 mm is referred to as the N-Value.

ASTM D3441 Cone Penetration Test (CPT)

Pushing an internal still rod with a outer hollow rod ("sleeve") tipped with a cone with an apex angle of 60° and a cross-sectional area of 1000 mm² into soil. The resistance is measured in the sleeve and at the tip to determine the skin friction and the tip resistance.

ASTM D2573 Field Vane Test (FVT)

Pushing a four blade vane into soil and rotating it from the surface to determine the torque required to shear a cylindrical surface with the vane. The torque is converted to the shear strength of the soil using a limit equilibrium analysis.


ASTM D1587 Shelby Tubes (ST)

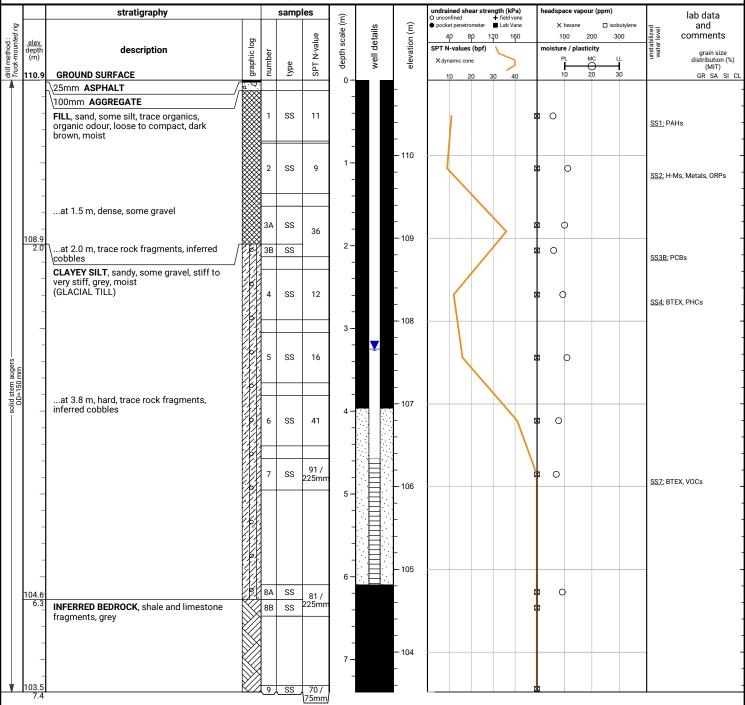
Pushing a thin-walled metal tube into the in-situ soil at the bottom of a borehole, removing the tube and sealing the ends to prevent soil movement or changes in moisture content for the purposes of extracting a relatively undisturbed sample.

ASTM D4719 Pressuremeter Test (PMT)

Place an inflatable cylindrical probe into a pre-drilled hole and expanding it while measuring the change in volume and pressure in the probe. It is inflated under either equal pressure increments or equal volume increments. This provides the stress-strain response of the soil.

WELL LEGEND

File No.: 21-067


Date Started: May 3, 2021

Position: E: 611836, N: 4826307 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 101

Project: 60 Dundas Street East, Mississauga, ON Client: Almega Asset Management

END OF BOREHOLE

Dry and open upon completion of drilling.

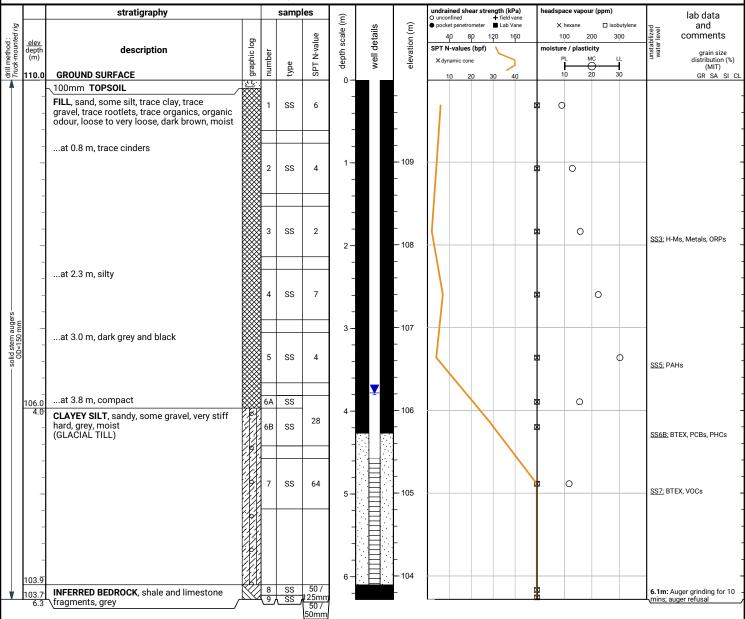
50 mm dia. monitoring well installed.

No. 10 screen

GROUNDWATER LEVELS

Date	Water Depth (m)	Elevation (m)
May 4, 2021	4.7	106.2
May 6, 2021	3.5	107.4
May 10, 2021	3.3	107.6

File No.: 21-067


Date Started: May 3, 2021

Position: E: 611879, N: 4826347 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 102

Client: Almega Asset Management Project: 60 Dundas Street East, Mississauga, ON

END OF BOREHOLE

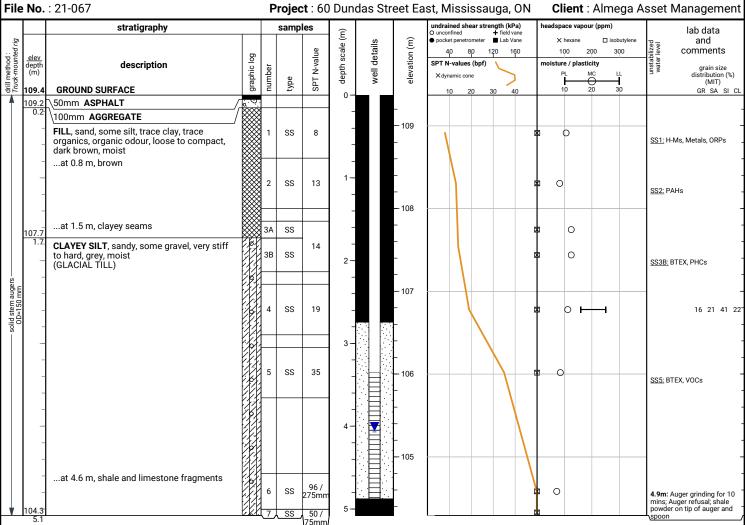
Auger refusal on inferred bedrock

Dry and open upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS Date Water Depth (m) Elevation (m) 4.7 105.3

May 4, 2021 May 6, 2021 May 10, 2021 4.0 106.0 106.2


Date Started: May 3, 2021

Position: E: 611901, N: 4826243 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 103

Client: Almega Asset Management Project: 60 Dundas Street East, Mississauga, ON

END OF BOREHOLE

Auger refusal on inferred bedrock

Dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

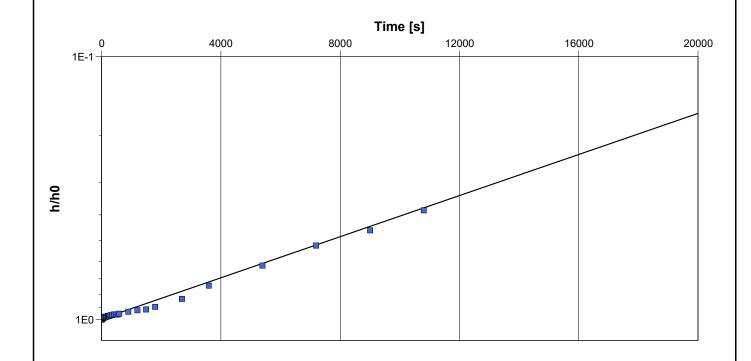
No. 10 screen

GROUNDWATER LEVELS

<u>Date</u>	Water Depth (m)	Elevation (m)
May 4, 2021	4.6	104.8
May 6, 2021	4.1	105.3
May 10, 2021	4.1	105.3

APPENDIX B

Slug Test Analysis Report


Project: 60 Dundas St E, Mississauga

Number: 21-067

Client:

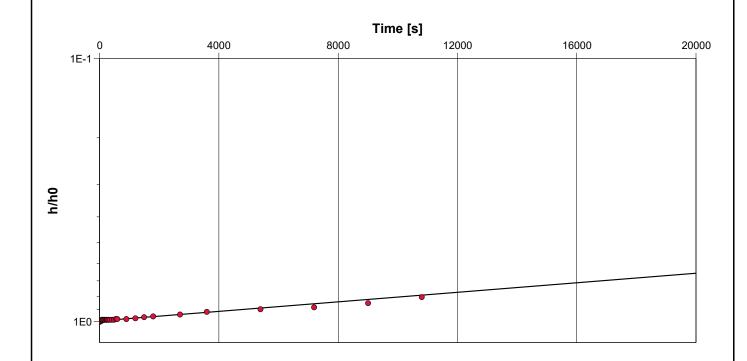
Location:	Slug Test: BH101	Test Well: BH101
Test Conducted by: OM		Test Date: 2021-05-10
Analysis Performed by: DK	RHT-BH101	Analysis Date: 2021-05-13

Aquifer Thickness: 6.30 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH101	6.78 × 10 ⁻⁸	

Slug Test Analysis Report


Project: 60 Dundas St E, Mississauga

Number: 21-067

Client:

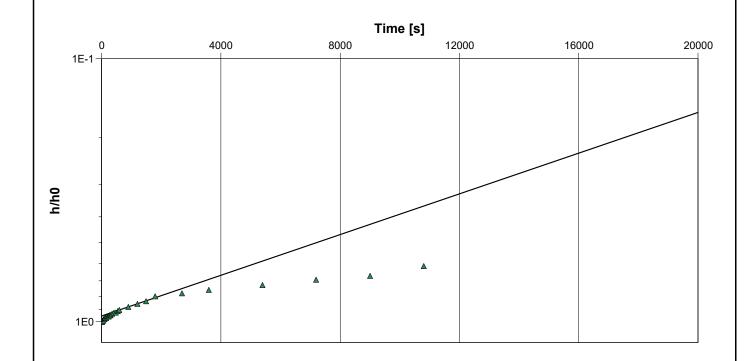
Location: Slug Test: BH102		Test Well: BH102
Test Conducted by: OM		Test Date: 2021-05-10
Analysis Performed by: DK	RHT-BH102	Analysis Date: 2021-05-13

Aquifer Thickness: 6.30 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH102	1.65 × 10 ⁻⁸	

Slug Test Analysis Report


Project: 60 Dundas St E, Mississauga

Number: 21-067

Client:

Location:	Slug Test: BH103	Test Well: BH103
Test Conducted by: OM		Test Date: 2021-05-11
Analysis Performed by: DK	RHT-BH103	Analysis Date: 2021-05-13

Aquifer Thickness: 6.30 m

Calculation using Bouwer & Rice

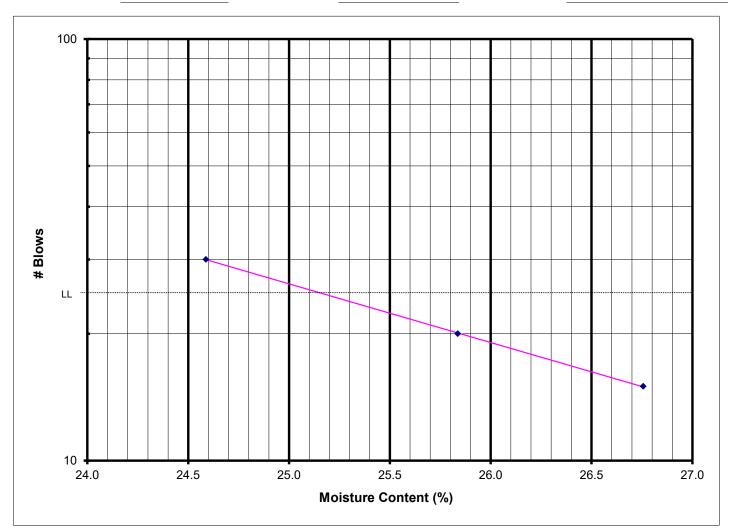
Observation Well	Hydraulic Conductivity	
	[m/s]	
BH103	6.23 × 10 ⁻⁸	

APPENDIX C

ATTERBERG LIMITS - LIQUID AND PLASTIC

LABORATORY NO.:	2102782 B	PROJECT NO.:	21TM720	DATE:	May 18, 2021
BOREHOLE NO.:	103	SAMPLE NO.:	SS4	TESTED BY:	L. Gowry
SAMPLE DEPTH:	7.5-9 ft	DESCRIPTION:		CHECKED BY:	J. Noor

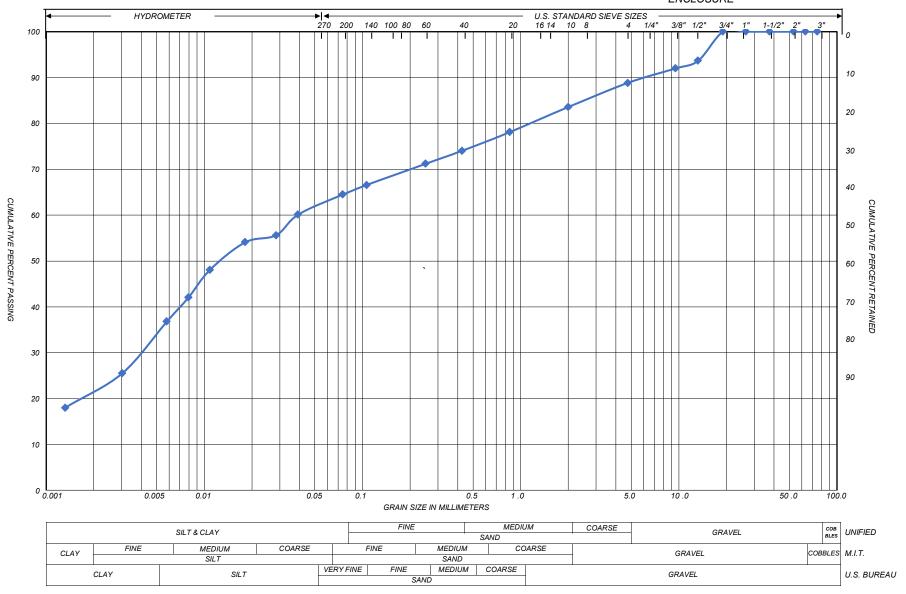
LIQUID LIMIT						
TRIAL	1	2	3	4	5	
NUMBER OF BLOWS	30	20	15			
TARE NUMBER	H1	P4	N4			
WT. TARE & WET SOIL	43.42	42.92	39.09			
WT. TARE & DRY SOIL	38.79	38.21	35.09			
WT. OF WATER	4.63	4.71	4.00			
WT. OF TARE	19.96	19.98	20.14			
WT. OF DRY SAMPLE	18.83	18.23	14.95			
MOISTURE CONTENT	24.6	25.8	26.8			


ATTERBERG LIMIT	S	PLASTIC LIMIT			
LIQUID LIMIT 25		TRIAL	1	2	
PLASTIC LIMIT	16	TARE NUMBER	P10	x23	
PLASTICITY INDEX	9	WT. TARE & WET SOIL	27.75	27.57	
		WT. TARE & DRY SOIL	26.65	26.53	
		WT. OF WATER	1.10	1.04	
		WT. OF TARE	19.83	20.03	
		WT. OF DRY SAMPLE	6.82	6.50	
		MOISTURE CONTENT	16.1	16.0	

LIQUID LIMIT BEST-LINE CALCULATION & ASSESSMENT						
LOG OF	MOISTURE		ERROR EVALUATION			
BLOWS	CONTENTS		BLOW	MOISTURE	DIFFERENCE	WITHIN
1.4771213	24.6		COUNT	CONTENT	DII I LINCL	1%?
1.30103	25.8		30	24.6	0.0	TRUE
1.1760913	26.8		20	25.8	0.0	TRUE
			15	26.7	0.0	TRUE
SLOPE	INTERCEPT					
-7.19268	35.20747		ERROR ASSESSMENT PASSE			PASSES

ATTERBERG LIMITS - LIQUID AND PLASTIC

PROJECT NO.: 21TM720 DATE: May 18, 2021 LABORATORY NO.: 2102782 B SS4 BOREHOLE NO.: SAMPLE NO.: TESTED BY: L. Gowry 103 SAMPLE DEPTH: 7.5-9 ft DESCRIPTION: CHECKED BY: J. Noor



PARTICLE SIZE DISTRIBUTION CHART

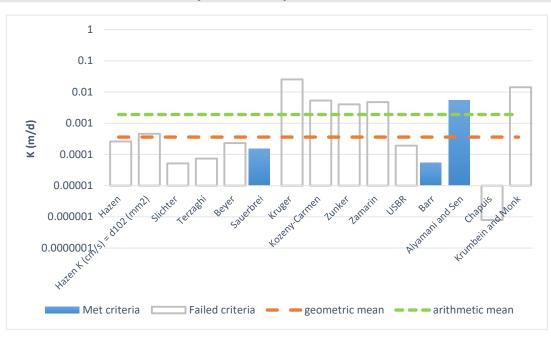
PML REF. REPORT NO. 21TM720

REPORT NO. ENCLOSURE

REMARKS Bore Hole 103, Sample No.SS4, Depth 7.5-9, Lab No.2102782-B,

APPENDIX D

K	from	Grain	Size	Anal	veie	Reno	rt
11	110111	Grain	SIZE	Alia.	v oio	1/CDO	ıι



Date: 20-May-21

Sample Name: BH103 SS4

Mass Sample (g): 100 T (oC) 20

Poorly sorted clay with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.0E-07	3.0E-09	0.00	
Hazen K (cm/s) = d_{10} (mm)	5.3E-07	5.3E-09	0.00	
Slichter	5.9E-08	5.9E-10	0.00	
Terzaghi	8.4E-08	8.4E-10	0.00	
Beyer	2.7E-07	2.7E-09	0.00	
Sauerbrei	1.8E-07	1.8E-09	0.00	
Kruger	3.0E-05	3.0E-07	0.03	
Kozeny-Carmen	6.1E-06	6.1E-08	0.01	
Zunker	4.7E-06	4.7E-08	0.00	
Zamarin	5.5E-06	5.5E-08	0.00	
USBR	2.2E-07	2.2E-09	0.00	
Barr	6.4E-08	6.4E-10	0.00	
Alyamani and Sen	6.4E-06	6.4E-08	0.01	
Chapuis	9.1E-10	9.1E-12	0.00	
Krumbein and Monk	1.6E-05	1.6E-07	0.01	
geometric mean	4.2E-07	4.2E-09	0.00	
arithmetic mean	2.2E-06	2.2E-08	0.00	

APPENDIX E

Grounded Engineering Inc

ATTN: DEEPAK KANRAJ

12 Banigan Drive

Toronto On M4H1E9

Date Received: 10-MAY-21

Report Date: 19-MAY-21 09:46 (MT)

Version: FINAL

Client Phone: 647-264-7928

Certificate of Analysis

Lab Work Order #: L2585834
Project P.O. #: NOT SUBMITTED

Job Reference: 21-067

C of C Numbers: Legal Site Desc:

Jennifer Barkshire-Paterson Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2585834 CONT'D.... Job Reference: 21-067 PAGE 2 of 22 19-MAY-21 09:46 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
(No pa	arameter exceedances)	el Sanitary Sewer (53-2010)				
Ontario Sev	wer use Bylaws - Ivils	sissauga Storm Sewer (259-05)				
L2585834-1	SEW- UF- BH 101	Physical Tests	Total Suspended Solids	38.2	15	mg/L
		Anions and Nutrients	Total Kjeldahl Nitrogen	1.83	1	mg/L
		Bacteriological Tests	E. Coli	270	200	CFU/100mL
		Total Metals	Phosphorus (P)-Total	<0.50	0.4	mg/L

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 3 of 22

19-MAY-21 09:46 (MT)

Physical Tests - WATER

i ilysicai iesis Whien			
	La	b ID	L2585834-1
	Sample I	Date	10-MAY-21
	Sampl	e ID	SEW- UF- BH
			101
	Guide Li	mits	
Analyte	Unit #1	#2	
pH	pH units 5.5-10	6-9	8.15
Total Suspended Solids	mg/L 350	15	38.2
	3		00.2

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 4 of 22

19-MAY-21 09:46 (MT)

Anions and Nutrients - WATER

		Sample		L2585834-1 10-MAY-21 SEW- UF- BH 101
Analyte	Unit	Guide #1	Limits #2	
Fluoride (F)	mg/L	10	-	0.73 DLDS
Total Kjeldahl Nitrogen	mg/L	100	1	1.83
Phosphorus, Total	mg/L	10	0.4	0.0173
Sulfate (SO4)	mg/L	1500	-	191 DLDS

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 5 of 22

19-MAY-21 09:46 (MT)

Cyanides - WATER

-,				
			Lab ID	L2585834-1
		Sampl	e Date	10-MAY-21
		Sam	ple ID	SEW- UF- BH
				101
		Guide	Limits	
Analyte	Unit	#1	#2	
Cyanide, Total	mg/L	2	0.02	0.0030

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 6 of 22

19-MAY-21 09:46 (MT)

Inorganic Parameters - WATER

			L	ab ID	L2585834-1
			Sample	e Date	10-MAY-21
			Sam	ple ID	SEW- UF- BH
					101
			Guide	Limits	
Analyte	ι	Jnit	#1	#2	
011 1 7 1		,			PEHR
Chlorine, Total	ļ	mg/L	-	1	<0.050 ^{PEHR}

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 7 of 22

19-MAY-21 09:46 (MT)

Bacteriological Tests - WATER

_	_ab ID	L2585834-1
200001	_	
Sample	e Date	10-MAY-21
Sam	ple ID	SEW- UF- BH
		101
Guide	Limits	
#1	#2	
-	200	270 DLM
	_30	210
	Guide #1	Guide Limits #1 #2

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D.... Job Reference: 21-067 PAGE 8 of 22 19-MAY-21 09:46 (MT)

Total Metals - WATER

 Lab ID
 L2585834-1

 Sample Date
 10-MAY-21

 Sample ID
 SEW- UF- BH

 101

				101
Analyte	Unit	Guide #1	Limits #2	
Aluminum (Al)-Total	mg/L	50	1.0	0.564 DLHC
Antimony (Sb)-Total	mg/L	5	-	0.0016 ^{DLHC}
Arsenic (As)-Total	mg/L	1	0.02	0.0021 ^{DLHC}
Barium (Ba)-Total	mg/L	-	-	0.0670 ^{DLHC}
Beryllium (Be)-Total	mg/L	-	-	<0.0010 DLHC
Bismuth (Bi)-Total	mg/L	-	-	< 0.00050 DLHC
Boron (B)-Total	mg/L	-	-	1.57 DLHC
Cadmium (Cd)-Total	mg/L	0.7	0.008	<0.000050
Calcium (Ca)-Total	mg/L	-	-	40.7 DLHC
Chromium (Cr)-Total	mg/L	5	0.08	< 0.0050 DLHC
Cobalt (Co)-Total	mg/L	5	-	<0.0010 DLHC
Copper (Cu)-Total	mg/L	3	0.04	< 0.0050 DLHC
Iron (Fe)-Total	mg/L	-	-	0.68 DLHC
Lead (Pb)-Total	mg/L	3	0.120	< 0.00050 DLHC
Lithium (Li)-Total	mg/L	-	-	0.104 DLHC
Magnesium (Mg)-Total	mg/L	-	-	9.69 DLHC
Manganese (Mn)-Total	mg/L	5	0.05	0.0352 ^{DLHC}
Mercury (Hg)-Total	mg/L	0.01	0.0004	<0.000050
Molybdenum (Mo)-Total	mg/L	5	-	0.0118 ^{DLHC}
Nickel (Ni)-Total	mg/L	3	0.08	< 0.0050 DLHC
Phosphorus (P)-Total	mg/L	10	0.4	<0.50 DLHC
Potassium (K)-Total	mg/L	-	-	28.1 DLHC
Selenium (Se)-Total	mg/L	1	0.02	< 0.00050 DLHC
Silicon (Si)-Total	mg/L	-	-	4.0 DLHC
Silver (Ag)-Total	mg/L	5	0.12	< 0.00050 DLHC
Sodium (Na)-Total	mg/L	-	-	252 DLHC
Strontium (Sr)-Total	mg/L	-	-	1.77 DLHC
Sulfur (S)-Total	mg/L	-	-	61.0 DLHC
Thallium (TI)-Total	mg/L	-	-	<0.00010 DLHC
Tin (Sn)-Total	mg/L	5	-	0.0040 ^{DLHC}

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 9 of 22

19-MAY-21 09:46 (MT)

Total Metals - WATER

		Sampl	Lab ID e Date iple ID	L2585834-1 10-MAY-21 SEW- UF- BH 101
Analyte	Unit	Guide #1	Limits #2	
Titanium (Ti)-Total	mg/L	5	-	<0.0060 ^{DLUI}
Tungsten (W)-Total	mg/L	-	-	<0.0010 DLHC
Uranium (U)-Total	mg/L	-	-	0.00287 DLHC
Vanadium (V)-Total	mg/L	-	-	<0.0050 DLHC
Zinc (Zn)-Total	mg/L	3	0.04	< 0.030 DLHC
Zirconium (Zr)-Total	mg/L	-	-	<0.0020 DLHC

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 10 of 22

19-MAY-21 09:46 (MT)

Speciated Metals - WATER

			Lab ID	L2585834-1
		Sample	e Date	10-MAY-21
		Sam	ple ID	SEW- UF- BH
				101
		Guide	Limits	
Analyte	Unit	#1	#2	
Chromium, Hexavalent	mg/L	-	0.04	< 0.00050

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

Analyte BOD

BOD Carbonaceous
Oil and Grease, Total

Animal/Veg Oil & Grease

Mineral Oil and Grease

Phenols (4AAP)

ANALYTICAL REPORT

L2585834 CONT'D....

Job Reference: 21-067

PAGE 11 of 22

19-MAY-21 09:46 (MT)

Aggregate Organics - WATER

	Sample	e Date	L2585834-1 10-MAY-21 SEW- UF- BH 101	
Unit	Guide #1	Limits #2		
mg/L	300	15	<3.0 BODL	
mg/L	300	-	< 3.0 BODL	

0.008

5.8

5.8

<2.5

0.0024

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

mg/L

mg/L

mg/L

mg/L

150

15

1

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D.... Job Reference: 21-067 PAGE 12 of 22 19-MAY-21 09:46 (MT)

Volatile Organic Compounds - WATER

 Lab ID
 L2585834-1

 Sample Date
 10-MAY-21

 Sample ID
 SEW- UF- BH

 101

		Guide I		
Analyte	Unit	#1	#2	
Acetone	ug/L	-	-	<20
Benzene	ug/L	10	2	<0.50
Bromodichloromethane	ug/L	-	-	<1.0
Bromoform	ug/L	-	-	<1.0
Bromomethane	ug/L	-	-	<0.50
Carbon Disulfide	ug/L	-	-	<1.0
Carbon tetrachloride	ug/L	-	-	<0.20
Chlorobenzene	ug/L	-	-	<0.50
Dibromochloromethane	ug/L	-	-	<1.0
Chloroethane	ug/L	-	-	<1.0
Chloroform	ug/L	40	-	<1.0
Chloromethane	ug/L	-	-	<1.0
1,2-Dibromoethane	ug/L	-	-	<0.20
1,2-Dichlorobenzene	ug/L	50	-	<0.50
1,3-Dichlorobenzene	ug/L	-	-	<0.50
1,4-Dichlorobenzene	ug/L	80	-	<0.50
Dichlorodifluoromethane	ug/L	-	-	<1.0
1,1-Dichloroethane	ug/L	-	-	<0.50
1,2-Dichloroethane	ug/L	-	-	<0.50
1,1-Dichloroethylene	ug/L	-	-	<0.50
cis-1,2-Dichloroethylene	ug/L	4000	-	<0.50
trans-1,2-Dichloroethylene	ug/L	-	-	<0.50
Dichloromethane	ug/L	2000	-	<2.0
1,2-Dichloropropane	ug/L	-	-	<0.50
cis-1,3-Dichloropropene	ug/L	-	-	<0.30
trans-1,3-Dichloropropene	ug/L	140	-	< 0.30
Ethylbenzene	ug/L	160	2	<0.50
n-Hexane	ug/L	-	-	<0.50
2-Hexanone	ug/L	-	-	<20
Methyl Ethyl Ketone	ug/L	8000	-	<20

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 13 of 22

19-MAY-21 09:46 (MT)

Volatile Organic Compounds - WATER

 Lab ID
 L2585834-1

 Sample Date
 10-MAY-21

 Sample ID
 SEW- UF- BH 101

	Unit	Guide	Limits #2	
Analyte	Unit	#1	#4	
Methyl Isobutyl Ketone	ug/L	-	-	<20
MTBE	ug/L	-	-	<0.50
Styrene	ug/L	200	-	<0.50
1,1,1,2-Tetrachloroethane	ug/L	-	-	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1400	-	<0.50
Tetrachloroethylene	ug/L	1000	-	<0.50
Toluene	ug/L	270	2	<0.40
				<0.50
1,1,1-Trichloroethane	ug/L	-	-	<0.50
1,1,2-Trichloroethane	ug/L	-	-	<0.50
Trichloroethylene	ug/L	400	-	<0.50
Trichlorofluoromethane	ug/L	-	-	<1.0
Vinyl chloride	ug/L	-	-	<0.50
o-Xylene	ug/L	-	-	<0.50
				< 0.30
m+p-Xylenes	ug/L	-	-	<1.0
				<0.40
Xylenes (Total)	ug/L	1400	4.4	<0.50
Surrogate: 4-Bromofluorobenzene	%	-	-	100.9
Surrogate: 1,4-Difluorobenzene	%	-	-	99.7

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 14 of 22

19-MAY-21 09:46 (MT)

Polycyclic Aromatic Hydrocarbons - WATER

 Lab ID
 L2585834-1

 Sample Date
 10-MAY-21

 Sample ID
 SEW- UF- BH

 101

			Limits	
Analyte	Unit	#1	#2	
Acenaphthene	ug/L	-	-	<0.020
Acenaphthylene	ug/L	-	-	<0.020
Anthracene	ug/L	-	-	<0.020
Benzo(a)anthracene	ug/L	-	-	<0.020
Benzo(a)pyrene	ug/L	-	-	<0.0050
Benzo(b&j)fluoranthene	ug/L	-	-	<0.020
Benzo(g,h,i)perylene	ug/L	-	-	<0.020
Benzo(k)fluoranthene	ug/L	-	-	<0.020
Chrysene	ug/L	-	-	<0.020
Dibenz(a,h)anthracene	ug/L	-	-	<0.020
Fluoranthene	ug/L	-	-	<0.020
Fluorene	ug/L	-	-	<0.020
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.020
Naphthalene	ug/L	-	-	<0.020
Phenanthrene	ug/L	-	-	<0.020
Pyrene	ug/L	-	-	<0.020
Surrogate: Naphthalene d8	%	-	-	95.4
Surrogate: Phenanthrene d10	%	-	-	101.8
Total PAHs	ug/L	-	2	<0.078

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 15 of 22

19-MAY-21 09:46 (MT)

Phthalate Esters - WATER

			Lab ID	L2585834-1
		Sampl		10-MAY-21
		Sam	ple ID	SEW- UF- BH
				101
		Guide	Limits	
Analyte	Unit	#1	#2	
Bis(2-ethylhexyl)phthalate	ug/L	12	-	<2.0
Surrogate: 2-fluorobiphenyl	%	-	-	82.8
Surrogate: p-Terphenyl d14	%	-	-	84.9

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 16 of 22

19-MAY-21 09:46 (MT)

Semi-Volatile Organics - WATER

		I Sample	ab ID	L2585834-1 10-MAY-21
			SEW- UF- BH	
Analyte	Unit	Guide #1	Limits #2	
Di-n-butylphthalate	ug/L	80	-	<1.0
Surrogate: 2-Fluorobiphenyl	%	-	-	82.8
Surrogate: p-Terphenyl d14	%	-	-	84.9

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D....

Job Reference: 21-067

PAGE 17 of 22

19-MAY-21 09:46 (MT)

Polychlorinated Biphenyls - WATER

		Lab ID Sample Date					
	Sample ID						
			Limits				
Analyte	Unit	#1	#2				
Aroclor 1242	ug/L	-	-	<0.020			
Aroclor 1248	ug/L	-	-	<0.020			
Aroclor 1254	ug/L	-	-	<0.020			
Aroclor 1260	ug/L	-	-	<0.020			
Surrogate: Decachlorobiphenyl	%	-	-	87.5			
Total PCBs	ug/L	1	-	<0.040			

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

Surrogate: Tetrachloro-m-xylene

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

95.8

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

Analyte
Bisphenol A
Nonylphenol

Octylphenol

Nonylphenol Diethoxylates
Total Nonylphenol Ethoxylates

Octylphenol Diethoxylates

Nonylphenol Monoethoxylates

Total Octylphenol Ethoxylates

Octylphenol Monoethoxylates

ANALYTICAL REPORT

L2585834 CONT'D....

Job Reference: 21-067

PAGE 18 of 22

19-MAY-21 09:46 (MT)

Organic Parameters - WATER

	Sample		L2585834-1 10-MAY-21 SEW- UF- BH 101
Unit	Guide #1	Limits #2	
ug/L	-	-	<0.20
ug/L	20	-	<1.0
ug/L	-	-	<0.10
ug/L	200	-	<10

<10 DLM

<1.0 <0.50 DLM

<10 DLM

Guide Limit #1: Peel Sanitary Sewer (53-2010) Guide Limit #2: Mississauga Storm Sewer (259-05)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

ug/L

ug/L

ug/L

ug/L

ug/L

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585834 CONT'D.... Job Reference: 21-067 PAGE 19 of 22 19-MAY-21 09:46 (MT)

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.
DLUI	Detection Limit Raised: Unknown Interference generated an apparent false positive test result.
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample tested.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

BOD-C-WT

CN-TOT-WT

_	momous ziotea (ii appiieaa			
	ALS Test Code	Matrix	Test Description	Method Reference**
	625-BIS-2-PHTH-WT	Water	Bis(2-ethylhexyl)phthalate	SW846 8270
	Aqueous samples are ext	racted and ext	racts are analyzed on GC/MSD.	
	625-DNB-PHTH-WT	Water	Di-n-Butyl Phthalate	SW846 8270
	Aqueous samples are ext	racted and ext	racts are analyzed on GC/MSD.	

This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation.

APHA 5210 B (CBOD)

BOD-WT Water BOD APHA 5210 B

This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation.

BTX-HS-WT Water BTEX by Headspace SW846 8260 (HEADSPACE)

BOD Carbonaceous

BTX is determined by analyzing by headspace-GC/MS.

Water

Water

CL2-TOTAL-WT Water Total Residual Chlorine APHA 4500-CL G

Cvanide. Total

Chlorine (residual), as free or total, is analyzed using the DPD colourimetric method. The recommended hold time for these tests is 15 minutes; field testing is recommended for best results. Chlorine can be rapidly consumed by organic matter, if present, and dissipates rapidly into headspace.

can be rapidly consumed by organic matter, if present, and dissipates rapidly into headspace.

Total cyanide is determined by the combination of UV digestion and distillation. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

ISO 14403-2

When using this method, high levels of thiocyanate in samples can cause false positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, ALS recommends analysis for thiocyanate to check for this potential interference

CR-CR6-IC-WT Water Chromium +6 EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

L2585834 CONT'D.... Job Reference: 21-067 PAGE 20 of 22 19-MAY-21 09:46 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference**

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-SCREEN-WT

Water

Conductivity Screen (Internal Use

APHA 2510

Only)

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WW-MF-WT

Water

E. Coli

SM 9222D

A 100 mL volume of sample is filtered through a membrane, the membrane is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200

F-IC-N-WT

Water

Fluoride in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

HG-T-CVAA-WT

Water

Total Mercury in Water by CVAAS

EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WT

Water

Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

NP, NPE-LCMS-WT

Water

Nonylphenols and Ethoxylates by

J. Chrom A849 (1999) p.467-482

LC/MS-MS

Water samples are filtered and analyzed on LCMS/MS by direct injection.

OGG-SPEC-CALC-WT

Water

Speciated Oil and Grease A/V Calc

CALCULATION

Sample is extracted with hexane, sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

OGG-SPEC-WT

Water

Speciated Oil and Grease-Gravimetric APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

P-T-COL-WT

Water

Total P in Water by Colour

APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.

PAH-SUM-CALC-WT

Water

TOTAL PAH's

CALCULATION

Total PAH represents the sum of all PAH analytes reported for a given sample. Note that regulatory agencies and criteria differ in their definitions of Total PAH in terms of the individual PAH analytes to be included.

PAH-WT

Water

Polyaromatic Hydrocarbons (PAHs)

SW846 8270

L2585834 CONT'D....
Job Reference: 21-067
PAGE 21 of 22
19-MAY-21 09:46 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Aqueous samples, fortified with surrogates, are extracted using liquid/liquid extraction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(i)fluoranthene, if also present in the sample.

PCB-WT Water Polychlorinated Biphenyls EPA 8082

PCBs are extracted from an aqueous sample at neutral pH with aliquots of dichloromethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.

PH-WT Water pH APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

samples under this regulation is 28 days

PHENOLS-4AAP-WT Water Phenol (4AAP) EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured

colorimetrically.

SO4-IC-N-WT Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TSS-WT Water Suspended solids APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved.

TKN-F-WT Water TKN in Water by Fluorescence J. ENVIRON. MONIT., 2005,7,37-42,RSC

Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection

VOC-ROU-HS-WT Water Volatile Organic Compounds SW846 8260

Aqueous samples are analyzed by headspace-GC/MS.

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

L2585834 CONT'D....
Job Reference: 21-067
PAGE 22 of 22
19-MAY-21 09:46 (MT)

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Qualifier

Workorder: L2585834 Report Date: 19-MAY-21 Page 1 of 20

RPD

Limit

Analyzed

Units

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Matrix

Reference

Result

Contact: DEEPAK KANRAJ

Test

Test	Watiix	Reference	Result	Qualifier	Ullits	KFD	Lillin	Analyzeu
625-BIS-2-PHTH-WT	Water							
Batch R5457563								
WG3533089-2 LCS Bis(2-ethylhexyl)phthalat	te		121.1		%		50-140	14-MAY-21
WG3533089-1 MB	.•				,,		30-140	14-WA 1-21
Bis(2-ethylhexyl)phthalat	te		<2.0		ug/L		2	14-MAY-21
Surrogate: 2-fluorobiphe	nyl		66.4		%		40-130	14-MAY-21
Surrogate: p-Terphenyl o	d14		111.6		%		40-130	14-MAY-21
625-DNB-PHTH-WT	Water							
Batch R5457563								
WG3533089-2 LCS			112.2		9/		50.450	44.14.14.04
Di-n-butylphthalate			113.3		%		50-150	14-MAY-21
WG3533089-1 MB Di-n-butylphthalate			<1.0		ug/L		1	14-MAY-21
Surrogate: 2-Fluorobiphe	enyl		66.4		%		40-130	14-MAY-21
Surrogate: p-Terphenyl o			111.6		%		40-130	14-MAY-21
BOD-C-WT	Water							
Batch R5458772								
WG3532885-2 DUP		L2585458-1						
BOD Carbonaceous		7.8	8.0		mg/L	1.5	30	11-MAY-21
WG3532885-3 LCS BOD Carbonaceous			103.5		%		85-115	11-MAY-21
WG3532885-1 MB			100.0		70		03-113	11-WA1-21
BOD Carbonaceous			<2.0		mg/L		2	11-MAY-21
BOD-WT	Water							
Batch R5458785								
WG3532884-6 DUP		L2585851-1			,,			
BOD		<3.0	<3.0	RPD-NA	mg/L	N/A	30	11-MAY-21
WG3532884-7 LCS BOD			102.5		%		85-115	11-MAY-21
WG3532884-5 MB			102.0		70		00-110	1 1-1VIA 1-2 1
BOD			<2.0		mg/L		2	11-MAY-21
BTX-HS-WT	Water							
Batch R5459623								
WG3536576-4 DUP		WG3536576-3			,,			
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
m+p-Xylenes		<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
İ								

Workorder: L2585834 Report Date: 19-MAY-21 Page 2 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-HS-WT		Water							
Batch R5	459623								
WG3536576-4	DUP		WG3536576-3						
o-Xylene			<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
Toluene			<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
WG3536576-1 Benzene	LCS			101.6		%		70-130	19-MAY-21
Ethylbenzene				105.5		%		70-130	19-MAY-21
m+p-Xylenes				107.7		%		70-130	19-MAY-21
o-Xylene				115.3		%		70-130	19-MAY-21
Toluene				103.6		%		70-130	19-MAY-21
WG3536576-2 Benzene	MB			<0.50		ug/L		0.5	19-MAY-21
Ethylbenzene				<0.50		ug/L		0.5	19-MAY-21
m+p-Xylenes				<1.0		ug/L		1	19-MAY-21
o-Xylene				<0.50		ug/L		0.5	19-MAY-21
Toluene				<0.50		ug/L		0.5	19-MAY-21
Surrogate: 1,4-D	Difluorob	enzene		100.5		%		50-150	19-MAY-21
Surrogate: 4-Bro	omofluor	obenzene		100.9		%		50-150	19-MAY-21
WG3536576-5	MS		WG3536576-3						
Benzene				101.4		%		50-150	19-MAY-21
Ethylbenzene				105.0		%		50-150	19-MAY-21
m+p-Xylenes				107.2		%		50-150	19-MAY-21
o-Xylene				115.0		%		50-150	19-MAY-21
Toluene				103.2		%		50-150	19-MAY-21
CL2-TOTAL-WT		Water							
Batch R5	455873								
WG3532773-3 Chlorine, Total	DUP		L2585549-1 0.350	0.360		mg/L	2.8	15	11-MAY-21
WG3532773-2 Chlorine, Total	LCS			98.2		%		75-125	11-MAY-21
WG3532773-1 Chlorine, Total	МВ			<0.050		mg/L		0.05	11-MAY-21
WG3532773-4 Chlorine, Total	MS		L2585549-1	N/A	MS-B	%		-	11-MAY-21
CN-TOT-WT		Water							

Workorder: L2585834 Report Date: 19-MAY-21 Page 3 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CN-TOT-WT Batch R5455737	Water							
WG3532538-3 DUP Cyanide, Total		WG3532538-5 <0.0020	<0.0020	RPD-NA	mg/L	N/A	20	11-MAY-21
WG3532538-2 LCS Cyanide, Total			96.1		%		80-120	11-MAY-21
WG3532538-1 MB Cyanide, Total			<0.0020		mg/L		0.002	11-MAY-21
WG3532538-4 MS Cyanide, Total		WG3532538-5	88.6		%		70-130	11-MAY-21
CR-CR6-IC-WT	Water							
Batch R5456236								
WG3532698-4 DUP Chromium, Hexavalent		WG3532698-3 <0.00050	<0.00050	RPD-NA	mg/L	N/A	20	11-MAY-21
WG3532698-2 LCS Chromium, Hexavalent			102.1		%		80-120	11-MAY-21
WG3532698-1 MB Chromium, Hexavalent			<0.00050		mg/L		0.0005	11-MAY-21
WG3532698-5 MS Chromium, Hexavalent		WG3532698-3	101.4		%		70-130	11-MAY-21
EC-WW-MF-WT	Water							
Batch R5456430 WG3532402-3 DUP E. Coli		L2585779-2	<2	RPD-NA	CFU/100mL	N/A	65	11-MAY-21
WG3532402-1 MB E. Coli			0		CFU/100mL		1	11-MAY-21
F-IC-N-WT	Water							
Batch R5457120 WG3533744-10 DUP		L2585390-5						
Fluoride (F)		0.112	0.111		mg/L	1.2	20	12-MAY-21
WG3533744-7 LCS Fluoride (F)			102.2		%		90-110	12-MAY-21
WG3533744-6 MB Fluoride (F)			<0.020		mg/L		0.02	12-MAY-21
WG3533744-9 MS Fluoride (F)		L2585390-5	99.2		%		75-125	12-MAY-21
HG-T-CVAA-WT	Water							

Report Date: 19-MAY-21 Workorder: L2585834 Page 4 of 20

Grounded Engineering Inc Client:

12 Banigan Drive

Toronto On M4H1E9

Contact: DEEPAK KANRAJ

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-CVAA-WT	Water							
Batch R5456856 WG3533406-4 DUP Mercury (Hg)-Total		WG3533406-3 <0.0000050	<0.000005	C RPD-NA	mg/L	N/A	20	13-MAY-21
WG3533406-2 LCS Mercury (Hg)-Total			104.0		%		80-120	13-MAY-21
WG3533406-1 MB Mercury (Hg)-Total			<0.000005	С	mg/L		0.000005	13-MAY-21
WG3533406-6 MS Mercury (Hg)-Total		WG3533406-5	104.3		%		70-130	13-MAY-21
MET-T-CCMS-WT	Water							
Batch R5455629								
WG3532214-4 DUP Aluminum (Al)-Total		WG3532214-3 0.355	0.331		ma/l	6.0	20	44 MAN/ 04
Antimony (Sb)-Total		<0.0010	<0.0010	RPD-NA	mg/L mg/L	6.9 N/A	20 20	11-MAY-21 11-MAY-21
Arsenic (As)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A N/A	20	11-MAY-21 11-MAY-21
Barium (Ba)-Total		0.0350	0.0342	RPD-NA	mg/L	2.2	20	11-MAY-21
Beryllium (Be)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	11-MAY-21
Bismuth (Bi)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	11-MAY-21
Boron (B)-Total		<0.10	<0.10	RPD-NA	mg/L	N/A	20	11-MAY-21
Cadmium (Cd)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	11-MAY-21
Calcium (Ca)-Total		64.4	62.7	141 2 1474	mg/L	2.8	20	11-MAY-21
Chromium (Cr)-Total		0.0051	0.0052		mg/L	1.9	20	11-MAY-21
Cobalt (Co)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	11-MAY-21
Copper (Cu)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	11-MAY-21
Iron (Fe)-Total		0.42	0.40		mg/L	4.3	20	11-MAY-21
Lead (Pb)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	11-MAY-21
Lithium (Li)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	11-MAY-21
Magnesium (Mg)-Total		9.60	9.34		mg/L	2.7	20	11-MAY-21
Manganese (Mn)-Total		0.0435	0.0449		mg/L	3.0	20	11-MAY-21
Molybdenum (Mo)-Total		0.00861	0.00827		mg/L	4.0	20	11-MAY-21
Nickel (Ni)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	11-MAY-21
Phosphorus (P)-Total		<0.50	<0.50	RPD-NA	mg/L	N/A	20	11-MAY-21
Potassium (K)-Total		19.0	18.7		mg/L	1.3	20	11-MAY-21
Selenium (Se)-Total		0.00070	0.00065		mg/L	6.8	20	11-MAY-21
Silicon (Si)-Total		2.9	2.8		mg/L	3.0	20	11-MAY-21
Silver (Ag)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	11-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 5 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

MET-T-CCMS-WT Batch R5455629 WG3552214-3 76.5 mg/L 2.1 2.0 11-MAY-21 2.0 11-MAY-21 2.0 11-MAY-21 3.1 3.0 mg/L 4.1 2.0 11-MAY-21 3.0 3.0 mg/L 4.1 2.0 3.0	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Mo3532214-4 DUP Mo3532214-1 Sodium (Na)-Total 78.2 76.5 mg/L 2.1 2.0 11-MAY-21 2.0 2	MET-T-CCMS-WT	Water							
Sodium (Na)-Total 78.2 76.5 mg/L 2.1 20 11-MAY-21	Batch R5455629								
Stronium (Sr)-Total 0.411 0.406 mg/L 1.2 20 11-MAY-21 Sulfur (S)-Total 31.2 30.0 mg/L 4.1 20 11-MAY-21 Thallium (T)-Total <0.00010						ma/l	2.1	20	11-MAV-21
Sulfur (S)-Total 31.2 30.0 mg/L 4.1 20 11-MAY-21 Thallium (TI)-Total <0.00010	, ,								
Thallium (TI)-Total <0.00010 <0.00010 RPD-NA mg/L N/A 20 11-MAY-21 Tin (Sn)-Total <0.0010						•			
Tin (Sn)-Total <0.0010 <0.0010 RPD-NA mg/L N/A 20 11-MAY-21 Titanium (Ti)-Total 0.0118 0.0116 mg/L 2.0 20 11-MAY-21 Tungsten (W)-Total <0.0010					RPD-NA	•			
Titanium (Ti)-Total 0.0118 0.0116 mg/L 2.0 20 11-MAY-21 Tungsten (W)-Total <0.0010	,					•			
Tungsten (W)-Total					INI DINA	•			
Uranium (U)-Total 0.00038 0.00039 mg/L 3.7 20 11-MAY-21 Vanadium (V)-Total 0.0054 0.0051 mg/L 6.1 20 11-MAY-21 Zinc (Zn)-Total <0.030	` ,				RPD-NA	•			
Vanadium (V)-Total 0.0054 0.0051 mg/L 6.1 20 11-MAY-21 Zinc (Zn)-Total <0.030					INI D-INA	-			
Zinc (Zn)-Total <0.030 <0.030 RPD-NA mg/L N/A 20 11-MAY-21 Zirconium (Zr)-Total <0.0020 <0.0020 RPD-NA mg/L N/A 20 11-MAY-21 WG3532214-2 LCS 80-120 11-MAY-21 Aluminum (Al)-Total 99.9 % 80-120 11-MAY-21 Antimony (Sb)-Total 104.3 % 80-120 11-MAY-21 Arsenic (As)-Total 101.9 % 80-120 11-MAY-21 Barium (Ba)-Total 103.3 % 80-120 11-MAY-21 Beryllium (Be)-Total 103.6 % 80-120 11-MAY-21 Bismuth (Bi)-Total 97.4 % 80-120 11-MAY-21 Boron (B)-Total 103.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 94.6 % 80-120 11-MAY-21 Calcium (Ca)-Total 103.7 % 80-120 11-MAY-21 Choper (Cu)-Total						•			
Zirconium (Zr)-Total <0.0020 RPD-NA mg/L N/A 20 11-MAY-21 WG3532214-2 LCS Aluminum (Al)-Total 99.9 % 80-120 11-MAY-21 Antimony (Sb)-Total 104.3 % 80-120 11-MAY-21 Arsenic (As)-Total 101.9 % 80-120 11-MAY-21 Barium (Ba)-Total 103.3 % 80-120 11-MAY-21 Beryllium (Be)-Total 97.4 % 80-120 11-MAY-21 Beryllium (B)-Total 103.6 % 80-120 11-MAY-21 Boron (B)-Total 94.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 94.6 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Cobalt (Co)-Total 100.8 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 <td>` ,</td> <td></td> <td></td> <td></td> <td>RDD-NIΔ</td> <td></td> <td></td> <td></td> <td></td>	` ,				RDD-NIΔ				
WG35322142 LCS Aluminum (Al)-Total 99.9 % 80-120 11-MAY-21 Antimony (Sb)-Total 104.3 % 80-120 11-MAY-21 Arsenic (As)-Total 101.9 % 80-120 11-MAY-21 Barium (Ba)-Total 103.3 % 80-120 11-MAY-21 Beryllium (Be)-Total 97.4 % 80-120 11-MAY-21 Bismuth (Bi)-Total 103.6 % 80-120 11-MAY-21 Boron (B)-Total 94.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 103.7 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 100.7 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % <td< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td></td<>						•			
Aluminum (Al)-Total 99.9 % 80-120 11-MAY-21 Antimony (Sb)-Total 104.3 % 80-120 11-MAY-21 Arsenic (As)-Total 101.9 % 80-120 11-MAY-21 Barium (Ba)-Total 103.3 % 80-120 11-MAY-21 Beryllium (Be)-Total 97.4 % 80-120 11-MAY-21 Bismuth (Bi)-Total 103.6 % 80-120 11-MAY-21 Born (B)-Total 94.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 103.7 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120			10.0020	10.0020	INI DINA	9/ =	11//5	20	11-181/41-21
Arsenic (As)-Total 101.9 % 80-120 11-MAY-21 Barium (Ba)-Total 103.3 % 80-120 11-MAY-21 Beryllium (Be)-Total 97.4 % 80-120 11-MAY-21 Bismuth (Bi)-Total 103.6 % 80-120 11-MAY-21 Bismuth (Bi)-Total 103.6 % 80-120 11-MAY-21 Boron (B)-Total 94.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 103.7 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 100.8 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Magnesium (Mg)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21				99.9		%		80-120	11-MAY-21
Barium (Ba)-Total 103.3 % 80-120 11-MAY-21 Beryllium (Be)-Total 97.4 % 80-120 11-MAY-21 Bismuth (Bi)-Total 103.6 % 80-120 11-MAY-21 Bismuth (Bi)-Total 103.6 % 80-120 11-MAY-21 Boron (B)-Total 94.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 103.7 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Magnese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 70-130 11-MAY-21	Antimony (Sb)-Total			104.3		%		80-120	11-MAY-21
Beryllium (Be)-Total 97.4 % 80-120 11-MAY-21 Bismuth (Bi)-Total 103.6 % 80-120 11-MAY-21 Boron (B)-Total 94.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 103.7 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.1 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130	Arsenic (As)-Total			101.9		%		80-120	11-MAY-21
Bismuth (Bi)-Total 103.6 % 80-120 11-MAY-21 Boron (B)-Total 94.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 103.7 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 100.8 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Barium (Ba)-Total			103.3		%		80-120	11-MAY-21
Boron (B)-Total 94.6 % 80-120 11-MAY-21 Cadmium (Cd)-Total 103.7 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.1 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Beryllium (Be)-Total			97.4		%		80-120	11-MAY-21
Cadmium (Cd)-Total 103.7 % 80-120 11-MAY-21 Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Bismuth (Bi)-Total			103.6		%		80-120	11-MAY-21
Calcium (Ca)-Total 98.9 % 80-120 11-MAY-21 Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Boron (B)-Total			94.6		%		80-120	11-MAY-21
Chromium (Cr)-Total 99.9 % 80-120 11-MAY-21 Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Cadmium (Cd)-Total			103.7		%		80-120	11-MAY-21
Cobalt (Co)-Total 101.6 % 80-120 11-MAY-21 Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Calcium (Ca)-Total			98.9		%		80-120	11-MAY-21
Copper (Cu)-Total 100.8 % 80-120 11-MAY-21 Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Chromium (Cr)-Total			99.9		%		80-120	11-MAY-21
Iron (Fe)-Total 102.5 % 80-120 11-MAY-21 Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Cobalt (Co)-Total			101.6		%		80-120	11-MAY-21
Lead (Pb)-Total 104.7 % 80-120 11-MAY-21 Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Copper (Cu)-Total			100.8		%		80-120	11-MAY-21
Lithium (Li)-Total 95.9 % 80-120 11-MAY-21 Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Iron (Fe)-Total			102.5		%		80-120	11-MAY-21
Magnesium (Mg)-Total 103.6 % 80-120 11-MAY-21 Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Lead (Pb)-Total			104.7		%		80-120	11-MAY-21
Manganese (Mn)-Total 100.1 % 80-120 11-MAY-21 Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Lithium (Li)-Total			95.9		%		80-120	11-MAY-21
Molybdenum (Mo)-Total 100.5 % 80-120 11-MAY-21 Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Magnesium (Mg)-Total			103.6		%		80-120	11-MAY-21
Nickel (Ni)-Total 100.9 % 80-120 11-MAY-21 Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Manganese (Mn)-Total			100.1		%		80-120	11-MAY-21
Phosphorus (P)-Total 100.8 % 70-130 11-MAY-21	Molybdenum (Mo)-Total			100.5		%		80-120	11-MAY-21
	Nickel (Ni)-Total			100.9		%		80-120	11-MAY-21
Potassium (K)-Total 101.8 % 80-120 11-MAY-21	Phosphorus (P)-Total			100.8		%		70-130	11-MAY-21
	Potassium (K)-Total			101.8		%		80-120	11-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 6 of 20

Client: Grounded Engineering Inc

12 Banigan Drive Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5455629								
WG3532214-2 LCS			00.4		0/			
Selenium (Se)-Total			99.1		%		80-120	11-MAY-21
Silicon (Si)-Total			103.3		%		60-140	11-MAY-21
Silver (Ag)-Total			104.5		%		80-120	11-MAY-21
Sodium (Na)-Total			100.9		%		80-120	11-MAY-21
Strontium (Sr)-Total			102.1		%		80-120	11-MAY-21
Sulfur (S)-Total			98.9		%		80-120	11-MAY-21
Thallium (TI)-Total			104.8		%		80-120	11-MAY-21
Tin (Sn)-Total			103.9		%		80-120	11-MAY-21
Titanium (Ti)-Total			97.4		%		80-120	11-MAY-21
Tungsten (W)-Total			102.6		%		80-120	11-MAY-21
Uranium (U)-Total			110.6		%		80-120	11-MAY-21
Vanadium (V)-Total			101.9		%		80-120	11-MAY-21
Zinc (Zn)-Total			101.5		%		80-120	11-MAY-21
Zirconium (Zr)-Total			101.6		%		80-120	11-MAY-21
WG3532214-1 MB Aluminum (Al)-Total			<0.0050		mg/L		0.005	11-MAY-21
Antimony (Sb)-Total			<0.0001		mg/L		0.0001	11-MAY-21
Arsenic (As)-Total			<0.00010		mg/L		0.0001	11-MAY-21
Barium (Ba)-Total			<0.00010		mg/L		0.0001	11-MAY-21
Beryllium (Be)-Total			<0.00010		mg/L		0.0001	11-MAY-21
Bismuth (Bi)-Total			<0.00016		mg/L		0.00005	11-MAY-21
Boron (B)-Total			<0.010	•	mg/L		0.01	11-MAY-21
Cadmium (Cd)-Total			<0.00000	50	mg/L		0.000005	11-MAY-21
Calcium (Ca)-Total			<0.050		mg/L		0.05	11-MAY-21
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	11-MAY-21
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	11-MAY-21
Copper (Cu)-Total			<0.00050		mg/L		0.0005	11-MAY-21
Iron (Fe)-Total			<0.010		mg/L		0.01	11-MAY-21
Lead (Pb)-Total			<0.0005	0	mg/L		0.00005	11-MAY-21
Lithium (Li)-Total			<0.0010	~	mg/L		0.000	11-MAY-21
Magnesium (Mg)-Total			<0.0010		mg/L		0.005	11-MAY-21 11-MAY-21
Manganese (Mn)-Total			<0.0050		mg/L		0.0005	11-MAY-21
Molybdenum (Mo)-Total			<0.00030		mg/L		0.0005	
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	11-MAY-21
INICKEI (INI)-10tai			<u> </u>		ilig/L		0.0000	11-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 7 of 20

Client: Grounded Engineering Inc

12 Banigan Drive Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5455629								
WG3532214-1 MB Phosphorus (P)-Total			<0.050		mg/L		0.05	44 MAY 04
Potassium (K)-Total			<0.050		mg/L		0.05	11-MAY-21 11-MAY-21
Selenium (Se)-Total			<0.00050		mg/L		0.00005	
Silicon (Si)-Total			<0.10		mg/L		0.00003	11-MAY-21
Silver (Ag)-Total			<0.000050		mg/L		0.00005	11-MAY-21
Sodium (Na)-Total			<0.050		mg/L		0.05	11-MAY-21 11-MAY-21
Strontium (Sr)-Total			<0.0010		mg/L		0.001	11-MAY-21
Sulfur (S)-Total			<0.50		mg/L		0.5	
Thallium (TI)-Total			<0.000010		mg/L		0.00001	11-MAY-21 11-MAY-21
Tin (Sn)-Total			<0.00010		mg/L		0.0001	11-MAY-21
Titanium (Ti)-Total			<0.00030		mg/L		0.0001	11-MAY-21
Tungsten (W)-Total			<0.00010		mg/L		0.0001	11-MAY-21
Uranium (U)-Total			<0.00010		mg/L		0.00001	11-MAY-21
Vanadium (V)-Total			<0.00050		mg/L		0.0005	11-MAY-21
Zinc (Zn)-Total			<0.0030		mg/L		0.003	11-MAY-21
Zirconium (Zr)-Total			<0.00020		mg/L		0.0002	11-MAY-21
WG3532214-5 MS		WG3532214-3			J			
Aluminum (Al)-Total			N/A	MS-B	%		-	11-MAY-21
Antimony (Sb)-Total			105.7		%		70-130	11-MAY-21
Arsenic (As)-Total			101.8		%		70-130	11-MAY-21
Barium (Ba)-Total			N/A	MS-B	%		-	11-MAY-21
Beryllium (Be)-Total			95.6		%		70-130	11-MAY-21
Bismuth (Bi)-Total			103.4		%		70-130	11-MAY-21
Boron (B)-Total			74.4		%		70-130	11-MAY-21
Cadmium (Cd)-Total			100.9		%		70-130	11-MAY-21
Calcium (Ca)-Total			N/A	MS-B	%		-	11-MAY-21
Chromium (Cr)-Total			95.9		%		70-130	11-MAY-21
Cobalt (Co)-Total			101.4		%		70-130	11-MAY-21
Copper (Cu)-Total			96.5		%		70-130	11-MAY-21
Iron (Fe)-Total			N/A	MS-B	%		-	11-MAY-21
Lead (Pb)-Total			103.6		%		70-130	11-MAY-21
Lithium (Li)-Total			79.9		%		70-130	11-MAY-21
Magnesium (Mg)-Total			N/A	MS-B	%		-	11-MAY-21
Manganese (Mn)-Total			N/A	MS-B	%		-	11-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 8 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5455629 WG3532214-5 MS		WG3532214-3						
Molybdenum (Mo)-Total		11000002214-0	94.9		%		70-130	11-MAY-21
Nickel (Ni)-Total			99.2		%		70-130	11-MAY-21
Phosphorus (P)-Total			108.3		%		70-130	11-MAY-21
Potassium (K)-Total			N/A	MS-B	%		-	11-MAY-21
Selenium (Se)-Total			97.5		%		70-130	11-MAY-21
Silicon (Si)-Total			N/A	MS-B	%		-	11-MAY-21
Silver (Ag)-Total			104.2		%		70-130	11-MAY-21
Sodium (Na)-Total			N/A	MS-B	%		-	11-MAY-21
Strontium (Sr)-Total			N/A	MS-B	%		-	11-MAY-21
Sulfur (S)-Total			N/A	MS-B	%		-	11-MAY-21
Thallium (TI)-Total			103.2		%		70-130	11-MAY-21
Tin (Sn)-Total			101.0		%		70-130	11-MAY-21
Titanium (Ti)-Total			95.4		%		70-130	11-MAY-21
Tungsten (W)-Total			101.1		%		70-130	11-MAY-21
Uranium (U)-Total			N/A	MS-B	%		-	11-MAY-21
Vanadium (V)-Total			98.0		%		70-130	11-MAY-21
Zinc (Zn)-Total			97.6		%		70-130	11-MAY-21
Zirconium (Zr)-Total			91.8		%		70-130	11-MAY-21
NP,NPE-LCMS-WT	Water							
Batch R5457482								
WG3533128-3 DUP Nonylphenol		L2585322-1 <1.0	<1.0	RPD-NA	ug/L	N/A	30	12-MAY-21
Nonylphenol Monoethoxy	ylates	<2.0	<2.0	RPD-NA	ug/L	N/A	30	12-MAY-21
Nonylphenol Diethoxylate	es	0.18	0.21		ug/L	15	30	12-MAY-21
Octylphenol		<1.0	<1.0	RPD-NA	ug/L	N/A	30	12-MAY-21
Octylphenol Monoethoxy	lates	<10	<10	RPD-NA	ug/L	N/A	30	12-MAY-21
Octylphenol Diethoxylate	es .	8.7	8.7		ug/L	0.4	30	12-MAY-21
Bisphenol A		0.71	0.78		ug/L	8.9	30	12-MAY-21
WG3533128-2 LCS Nonylphenol			86.7		%		75-125	12-MAY-21
Nonylphenol Monoethoxy	ylates		96.8		%		75-125	12-MAY-21
Nonylphenol Diethoxylate			97.1		%		75-125	12-MAY-21
Octylphenol			93.2		%		75-125	12-MAY-21
Octylphenol Monoethoxy	lates		111.8		%		75-125	12-MAY-21
			-		-		10 120	. = 170 (1 = 1

Workorder: L2585834 Report Date: 19-MAY-21 Page 9 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NP,NPE-LCMS-WT Water	r						
Batch R5457482							
WG3533128-2 LCS		405.4		0/			
Octylphenol Diethoxylates		105.1		%		75-125	12-MAY-21
Bisphenol A		123.0		%		75-125	12-MAY-21
WG3533128-1 MB Nonylphenol		<1.0		ug/L		1	12-MAY-21
Nonylphenol Monoethoxylates		<2.0		ug/L		2	12-MAY-21
Nonylphenol Diethoxylates		<0.10		ug/L		0.1	12-MAY-21
Octylphenol		<1.0		ug/L		1	12-MAY-21
Octylphenol Monoethoxylates		<2.0		ug/L		2	12-MAY-21
Octylphenol Diethoxylates		<0.10		ug/L		0.1	12-MAY-21
Bisphenol A		<0.20		ug/L		0.2	12-MAY-21
WG3533128-4 MS	L2585322-1						
Nonylphenol		116.8		%		50-150	12-MAY-21
Nonylphenol Monoethoxylates		128.0		%		50-150	12-MAY-21
Nonylphenol Diethoxylates		101.3		%		50-150	12-MAY-21
Octylphenol		113.7		%		50-150	12-MAY-21
Octylphenol Monoethoxylates		105.4		%		50-150	12-MAY-21
Octylphenol Diethoxylates		N/A	MS-B	%		-	12-MAY-21
Bisphenol A		98.5		%		50-150	12-MAY-21
OGG-SPEC-WT Water	r						
Batch R5457613							
WG3534233-2 LCS Oil and Grease, Total		96.9		%		70 120	13-MAY-21
Mineral Oil and Grease		93.3		%		70-130	
		93.3		76		70-130	13-MAY-21
WG3534233-1 MB Oil and Grease, Total		<5.0		mg/L		5	13-MAY-21
Mineral Oil and Grease		<2.5		mg/L		2.5	13-MAY-21
P-T-COL-WT Water	r						
Batch R5458652							
WG3535029-3 DUP	WG3535029-5						
Phosphorus, Total	0.229	0.230		mg/L	0.4	20	17-MAY-21
WG3535029-2 LCS Phosphorus, Total		102.0		%		80-120	17-MAY-21
WG3535029-1 MB Phosphorus, Total		<0.0030		mg/L		0.003	17-MAY-21
WG3535029-4 MS	WG3535029-5						

Contact:

Quality Control Report

Report Date: 19-MAY-21 Workorder: L2585834 Page 10 of 20

Grounded Engineering Inc Client:

12 Banigan Drive Toronto On M4H1E9

DEEPAK KANRAJ

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
P-T-COL-WT	Water							_
Batch R5458652 WG3535029-4 MS Phosphorus, Total		WG3535029-5	N/A	MS-B	%		-	17-MAY-21
PAH-WT	Water							
Batch R5456395								
WG3533111-2 LCS Acenaphthene			98.3		%		50-140	12-MAY-21
Acenaphthylene			93.9		%		50-140	12-MAY-21
Anthracene			96.4		%		50-140	12-MAY-21
Benzo(a)anthracene			97.9		%		50-140	12-MAY-21
Benzo(a)pyrene			98.2		%		60-130	12-MAY-21
Benzo(b&j)fluoranthene			105.4		%		60-130	12-MAY-21
Benzo(g,h,i)perylene			116.2		%		50-140	12-MAY-21
Benzo(k)fluoranthene			102.3		%		50-140	12-MAY-21
Chrysene			93.8		%		50-140	12-MAY-21
Dibenz(a,h)anthracene			101.8		%		50-140	12-MAY-21
Fluoranthene			100.2		%		50-140	12-MAY-21
Fluorene			96.8		%		50-140	12-MAY-21
Indeno(1,2,3-cd)pyrene			118.9		%		50-140	12-MAY-21
Naphthalene			88.3		%		50-130	12-MAY-21
Phenanthrene			103.4		%		50-140	12-MAY-21
Pyrene			99.9		%		50-140	12-MAY-21
WG3533111-1 MB								
Acenaphthene			<0.020		ug/L		0.02	12-MAY-21
Acenaphthylene			<0.020		ug/L		0.02	12-MAY-21
Anthracene			<0.020		ug/L		0.02	12-MAY-21
Benzo(a)anthracene			<0.020		ug/L		0.02	12-MAY-21
Benzo(a)pyrene			<0.0050		ug/L		0.005	12-MAY-21
Benzo(b&j)fluoranthene			<0.020		ug/L		0.02	12-MAY-21
Benzo(g,h,i)perylene			<0.020		ug/L		0.02	12-MAY-21
Benzo(k)fluoranthene			<0.020		ug/L		0.02	12-MAY-21
Chrysene			<0.020		ug/L		0.02	12-MAY-21
Dibenz(a,h)anthracene			<0.020		ug/L		0.02	12-MAY-21
Fluoranthene			<0.020		ug/L		0.02	12-MAY-21
Fluorene			<0.020		ug/L		0.02	12-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 11 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-WT	Water							
Batch R5456395 WG3533111-1 MB Indeno(1,2,3-cd)pyrene			<0.020		ug/L		0.02	12-MAY-21
Naphthalene			<0.020		ug/L		0.02	12-MAY-21
Phenanthrene			<0.020		ug/L		0.02	12-MAY-21
Pyrene			<0.020		ug/L		0.02	12-MAY-21
Surrogate: Naphthalene	d8		88.7		%		60-140	12-MAY-21
Surrogate: Phenanthren			96.3		%		60-140	12-MAY-21
PCB-WT	Water							
Batch R5456890	Truto:							
WG3532307-2 LCS								
Aroclor 1242			95.4		%		65-130	13-MAY-21
Aroclor 1248			82.1		%		65-130	13-MAY-21
Aroclor 1254			94.0		%		65-130	13-MAY-21
Aroclor 1260			99.8		%		65-130	13-MAY-21
WG3532307-1 MB Aroclor 1242			<0.020		ug/L		0.02	13-MAY-21
Aroclor 1248			<0.020		ug/L		0.02	13-MAY-21
Aroclor 1254			<0.020		ug/L		0.02	13-MAY-21
Aroclor 1260			<0.020		ug/L		0.02	13-MAY-21
Surrogate: Decachlorob	iphenyl		105.3		%		50-150	13-MAY-21
Surrogate: Tetrachloro-r			83.3		%		50-150	13-MAY-21
PH-WT	Water							
Batch R5457078								
WG3533512-4 DUP pH		WG3533512-3 8.09	7.98	J	pH units	0.11	0.2	12-MAY-21
WG3533512-2 LCS pH			7.01		pH units		6.9-7.1	12-MAY-21
PHENOLS-4AAP-WT	Water							
Batch R5459152								
WG3535134-3 DUP Phenols (4AAP)		L2585912-9 <0.0010	0.0015	RPD-NA	mg/L	N/A	20	17-MAY-21
WG3535134-2 LCS Phenols (4AAP)			97.8		%		85-115	17-MAY-21
WG3535134-1 MB Phenols (4AAP)			<0.0010		mg/L		0.001	17-MAY-21
WG3535134-4 MS		L2585912-9						

Qualifier

Workorder: L2585834 Report Date: 19-MAY-21 Page 12 of 20

RPD

Limit

Analyzed

Units

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Matrix

Reference

Result

Contact: DEEPAK KANRAJ

Test

Test	WIALITA	Reference	Result	Qualifier	Units	KFU	LIIIII	Allalyzeu
PHENOLS-4AAP-WT Batch R5459152 WG3535134-4 MS	Water	L2585912-9						
Phenols (4AAP)		L2303912-9	106.8		%		75-125	17-MAY-21
SO4-IC-N-WT	Water							
Batch R5457120 WG3533744-10 DUP Sulfate (SO4)		L2585390-5 10.6	10.6		mg/L	0.0	20	12-MAY-21
WG3533744-7 LCS Sulfate (SO4)			102.5		%		90-110	12-MAY-21
WG3533744-6 MB Sulfate (SO4)			<0.30		mg/L		0.3	12-MAY-21
WG3533744-9 MS Sulfate (SO4)		L2585390-5	105.8		%		75-125	12-MAY-21
SOLIDS-TSS-WT	Water							
Batch R5456790								
WG3533256-3 DUP Total Suspended Solids		L2585878-1 223	198		mg/L	12	20	13-MAY-21
WG3533256-2 LCS Total Suspended Solids			103.0		%		85-115	13-MAY-21
WG3533256-1 MB Total Suspended Solids			<3.0		mg/L		3	13-MAY-21
TKN-F-WT	Water							
Batch R5458555								
WG3535044-3 DUP		WG3535044-5	4.04			0.5	00	.=
Total Kjeldahl Nitrogen		1.65	1.61		mg/L	2.5	20	17-MAY-21
WG3535044-2 LCS Total Kjeldahl Nitrogen			99.5		%		75-125	17-MAY-21
WG3535044-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	17-MAY-21
WG3535044-4 MS Total Kjeldahl Nitrogen		WG3535044-5	98.4		%		70-130	17-MAY-21
VOC-ROU-HS-WT	Water							
Batch R5459623								
WG3536576-4 DUP 1,1,1,2-Tetrachloroethan		WG3536576-3 <0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,1,2,2-Tetrachloroethan	е	<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,1,1-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 13 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R5459623	3							
WG3536576-4 DUP		WG3536576-			4			
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	19-MAY-21
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
1,4-Dichlorobenzene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
2-Hexanone		<20	<20	RPD-NA	ug/L	N/A	30	19-MAY-21
Acetone		<20	<20	RPD-NA	ug/L	N/A	30	19-MAY-21
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
Bromodichloromethane)	<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Bromoform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Bromomethane		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
Carbon Disulfide		<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	19-MAY-21
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
Chloroethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Chloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
cis-1,2-Dichloroethylen	е	<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
cis-1,3-Dichloropropend	е	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	19-MAY-21
Dibromochloromethane	e	<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Dichlorodifluoromethan	ie	<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
m+p-Xylenes		<0.40	< 0.40	RPD-NA	ug/L	N/A	30	19-MAY-21
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	19-MAY-21
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	19-MAY-21
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
MTBE		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
o-Xylene		<0.30	< 0.30		ug/L			19-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 14 of 20

Client: Grounded Engineering Inc

12 Banigan Drive Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R545962	23							
WG3536576-4 DUP	•	WG3536576-						
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	19-MAY-21
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
Toluene		<0.40	<0.40	RPD-NA	ug/L	N/A	30	19-MAY-21
trans-1,2-Dichloroethy	/lene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
trans-1,3-Dichloroprop	oene	< 0.30	< 0.30	RPD-NA	ug/L	N/A	30	19-MAY-21
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
Trichlorofluoromethan	ie	<1.0	<1.0	RPD-NA	ug/L	N/A	30	19-MAY-21
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-MAY-21
WG3536576-1 LCS 1,1,1,2-Tetrachloroeth			102.8		%		70.400	40.1417.04
1,1,2,2-Tetrachloroeth			102.8		%		70-130	19-MAY-21 19-MAY-21
1,1,1-Trichloroethane	iarie		104.9		%		70-130	-
1,1,2-Trichloroethane			102.6		%		70-130	19-MAY-21
1,2-Dibromoethane			99.9		%		70-130	19-MAY-21
1,1-Dichloroethane			103.4		%		70-130	19-MAY-21
1,1-Dichloroethylene			105.4		%		70-130 70-130	19-MAY-21 19-MAY-21
1,2-Dichlorobenzene			107.6		%		70-130	19-MAY-21
1,2-Dichloroethane			107.0		%		70-130	
1,2-Dichloropropane			104.4		%		70-130	19-MAY-21 19-MAY-21
1,3-Dichlorobenzene			107.4		%			19-MAY-21
1,4-Dichlorobenzene			107.4		%		70-130 70-130	19-MAY-21
2-Hexanone			104.8		%		60-140	19-MAY-21
Acetone			118.9		%		60-140	19-MAY-21
Benzene			101.6		%		70-130	19-MAY-21
Bromodichloromethan	ne		109.1		%		70-130	19-MAY-21
Bromoform	.0		107.2		%		70-130	19-MAY-21
Bromomethane			99.8		%		60-140	19-MAY-21
Carbon Disulfide			100.4		%		70-130	19-MAY-21
Carbon tetrachloride			105.4		%		70-130 70-130	19-MAY-21 19-MAY-21
Chlorobenzene			103.1		%			19-MAY-21 19-MAY-21
Chloroethane			118.5		%		70-130	19-MAY-21 19-MAY-21
Chloroform			105.7		%		70-130	
CHIOTOTOTITI			103.7		/0		70-130	19-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 15 of 20

Client: Grounded Engineering Inc

12 Banigan Drive Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R5459623								
WG3536576-1 LCS			400.0		0/		00.440	
Chloromethane cis-1,2-Dichloroethylene			106.9 105.4		%		60-140	19-MAY-21
•			99.1		%		70-130	19-MAY-21
cis-1,3-Dichloropropene Dibromochloromethane			98.4		%		70-130	19-MAY-21
Dichlorodifluoromethane			98.2		% %		70-130	19-MAY-21
Dichloromethane					%		50-140	19-MAY-21
			112.2		%		70-130	19-MAY-21
Ethylbenzene			105.5 107.7				70-130	19-MAY-21
m+p-Xylenes			107.7		%		70-130	19-MAY-21
Methyl Ethyl Ketone					%		60-140	19-MAY-21
Methyl Isobutyl Ketone			107.2		%		50-150	19-MAY-21
n-Hexane			104.5		%		70-130	19-MAY-21
MTBE			104.1		%		70-130	19-MAY-21
o-Xylene			115.3		%		70-130	19-MAY-21
Styrene			109.6		%		70-130	19-MAY-21
Tetrachloroethylene			99.8		%		70-130	19-MAY-21
Toluene			103.6		%		70-130	19-MAY-21
trans-1,2-Dichloroethyler			110.3		%		70-130	19-MAY-21
trans-1,3-Dichloroproper	ne		98.7		%		70-130	19-MAY-21
Trichloroethylene			103.0		%		70-130	19-MAY-21
Trichlorofluoromethane			104.6		%		60-140	19-MAY-21
Vinyl chloride			110.5		%		60-140	19-MAY-21
WG3536576-2 MB 1,1,1,2-Tetrachloroethan	10		<0.50		ug/L		0.5	19-MAY-21
1,1,2,2-Tetrachloroethan			<0.50		ug/L		0.5	
1,1,1-Trichloroethane	i C		<0.50		ug/L		0.5	19-MAY-21
1,1,2-Trichloroethane			<0.50		ug/L		0.5	19-MAY-21
1,2-Dibromoethane			<0.20		ug/L		0.2	19-MAY-21
1,1-Dichloroethane			<0.50				0.2	19-MAY-21
1,1-Dichloroethane			<0.50		ug/L ug/L		0.5	19-MAY-21
1,1-Dichloroethylene 1,2-Dichlorobenzene								19-MAY-21
1,2-Dichlorobenzene			<0.50		ug/L		0.5	19-MAY-21
			<0.50		ug/L		0.5	19-MAY-21
1,2-Dichloropropane			<0.50		ug/L		0.5	19-MAY-21
1,3-Dichlorobenzene			<0.50		ug/L		0.5	19-MAY-21
1,4-Dichlorobenzene			<0.50		ug/L		0.5	19-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 16 of 20

Client: Grounded Engineering Inc

12 Banigan Drive Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R5459623 WG3536576-2 MB								
2-Hexanone			<20		ug/L		20	19-MAY-21
Acetone			<20		ug/L		20	19-MAY-21
Benzene			<0.50		ug/L		0.5	19-MAY-21
Bromodichloromethane			<1.0		ug/L		1	19-MAY-21
Bromoform			<1.0		ug/L		1	19-MAY-21
Bromomethane			<0.50		ug/L		0.5	19-MAY-21
Carbon Disulfide			<1.0		ug/L		1	19-MAY-21
Carbon tetrachloride			<0.20		ug/L		0.2	19-MAY-21
Chlorobenzene			<0.50		ug/L		0.5	19-MAY-21
Chloroethane			<1.0		ug/L		1	19-MAY-21
Chloroform			<1.0		ug/L		1	19-MAY-21
Chloromethane			<1.0		ug/L		1	19-MAY-21
cis-1,2-Dichloroethylene			< 0.50		ug/L		0.5	19-MAY-21
cis-1,3-Dichloropropene			<0.30		ug/L		0.3	19-MAY-21
Dibromochloromethane			<1.0		ug/L		1	19-MAY-21
Dichlorodifluoromethane			<1.0		ug/L		1	19-MAY-21
Dichloromethane			<2.0		ug/L		2	19-MAY-21
Ethylbenzene			< 0.50		ug/L		0.5	19-MAY-21
m+p-Xylenes			<0.40		ug/L		0.4	19-MAY-21
Methyl Ethyl Ketone			<20		ug/L		20	19-MAY-21
Methyl Isobutyl Ketone			<20		ug/L		20	19-MAY-21
n-Hexane			< 0.50		ug/L		0.5	19-MAY-21
MTBE			<0.50		ug/L		0.5	19-MAY-21
o-Xylene			<0.30		ug/L		0.3	19-MAY-21
Styrene			<0.50		ug/L		0.5	19-MAY-21
Tetrachloroethylene			<0.50		ug/L		0.5	19-MAY-21
Toluene			<0.40		ug/L		0.4	19-MAY-21
trans-1,2-Dichloroethyler	ne		<0.50		ug/L		0.5	19-MAY-21
trans-1,3-Dichloropropen	ne		<0.30		ug/L		0.3	19-MAY-21
Trichloroethylene			<0.50		ug/L		0.5	19-MAY-21
Trichlorofluoromethane			<1.0		ug/L		1	19-MAY-21
Vinyl chloride			<0.50		ug/L		0.5	19-MAY-21
Surrogate: 1,4-Difluorobe	enzene		100.5		%		70-130	19-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 17 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R545962	23							
WG3536576-2 MB			100.0		0/		70.400	
Surrogate: 4-Bromofl			100.9		%		70-130	19-MAY-21
WG3536576-5 MS 1,1,1,2-Tetrachloroet		WG3536576-	3 103.7		%		50-150	19-MAY-21
1,1,2,2-Tetrachloroet	hane		107.4		%		50-150	19-MAY-21
1,1,1-Trichloroethane)		101.9		%		50-150	19-MAY-21
1,1,2-Trichloroethane)		102.8		%		50-150	19-MAY-21
1,2-Dibromoethane			102.7		%		50-150	19-MAY-21
1,1-Dichloroethane			103.1		%		50-150	19-MAY-21
1,1-Dichloroethylene			102.7		%		50-150	19-MAY-21
1,2-Dichlorobenzene			108.2		%		50-150	19-MAY-21
1,2-Dichloroethane			105.5		%		50-150	19-MAY-21
1,2-Dichloropropane			106.8		%		50-150	19-MAY-21
1,3-Dichlorobenzene			107.2		%		50-150	19-MAY-21
1,4-Dichlorobenzene			107.6		%		50-150	19-MAY-21
2-Hexanone			107.6		%		50-150	19-MAY-21
Acetone			121.7		%		50-150	19-MAY-21
Benzene			101.4		%		50-150	19-MAY-21
Bromodichlorometha	ne		111.1		%		50-150	19-MAY-21
Bromoform			109.2		%		50-150	19-MAY-21
Bromomethane			97.0		%		50-150	19-MAY-21
Carbon Disulfide			96.3		%		50-150	19-MAY-21
Carbon tetrachloride			103.7		%		50-150	19-MAY-21
Chlorobenzene			104.9		%		50-150	19-MAY-21
Chloroethane			114.3		%		50-150	19-MAY-21
Chloroform			106.4		%		50-150	19-MAY-21
Chloromethane			99.0		%		50-150	19-MAY-21
cis-1,2-Dichloroethyle	ene		105.9		%		50-150	19-MAY-21
cis-1,3-Dichloroprope	ene		103.1		%		50-150	19-MAY-21
Dibromochlorometha	ne		99.7		%		50-150	19-MAY-21
Dichlorodifluorometha	ane		85.0		%		50-150	19-MAY-21
Dichloromethane			112.7		%		50-150	19-MAY-21
Ethylbenzene			105.0		%		50-150	19-MAY-21
m+p-Xylenes			107.2		%		50-150	19-MAY-21
Methyl Ethyl Ketone			114.0		%		50-150	19-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21 Page 18 of 20

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R545962	3							
WG3536576-5 MS		WG3536576-3	3					
Methyl Isobutyl Ketone	9		110.2		%		50-150	19-MAY-21
n-Hexane			101.1		%		50-150	19-MAY-21
MTBE			104.1		%		50-150	19-MAY-21
o-Xylene			115.0		%		50-150	19-MAY-21
Styrene			110.2		%		50-150	19-MAY-21
Tetrachloroethylene			97.6		%		50-150	19-MAY-21
Toluene			103.2		%		50-150	19-MAY-21
trans-1,2-Dichloroethy	lene		109.1		%		50-150	19-MAY-21
trans-1,3-Dichloroprop	ene		103.1		%		50-150	19-MAY-21
Trichloroethylene			102.6		%		50-150	19-MAY-21
Trichlorofluoromethan	е		100.4		%		50-150	19-MAY-21
Vinyl chloride			103.2		%		50-150	19-MAY-21

Workorder: L2585834 Report Date: 19-MAY-21

Grounded Engineering Inc Client:

12 Banigan Drive Toronto On M4H1E9

Contact: DEEPAK KANRAJ

Legend:

ALS Control Limit (Data Quality Objectives) Limit DUP **Duplicate** RPD Relative Percent Difference N/A Not Available LCS Laboratory Control Sample SRM Standard Reference Material MS Matrix Spike MSD Matrix Spike Duplicate ADE Average Desorption Efficiency MB Method Blank

Internal Reference Material IRM CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Page 19 of 20

Workorder: L2585834 Report Date: 19-MAY-21

Client: Grounded Engineering Inc

12 Banigan Drive Toronto On M4H1E9

Contact: DEEPAK KANRAJ

Page 20 of 20

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Inorganic Parameters							
Total Residual Chlorine							
	1	10-MAY-21 10:00	11-MAY-21 15:00	0.25	29	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2585834 were received on 10-MAY-21 13:10.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

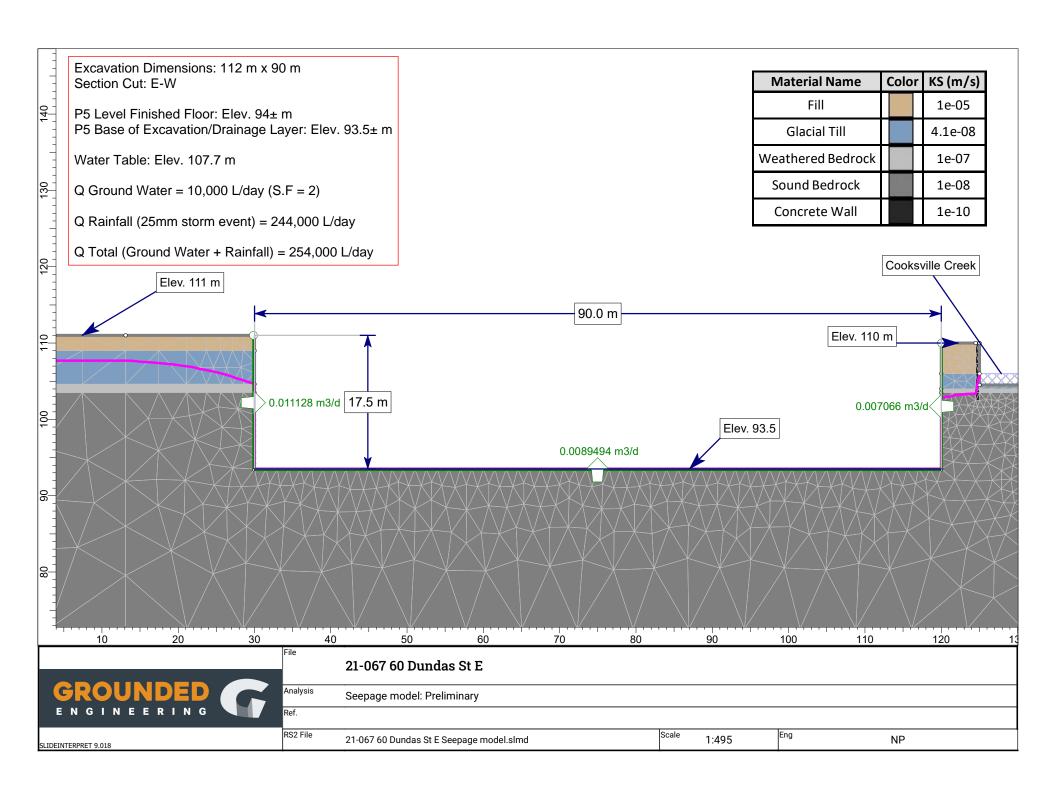
The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

L2585834-COFC

of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878


COC Number: 20 - 888177

			· · · · · · · · · · · · · · · · · · ·										PROPERTY			a	171. 20.
Report To	Contact and company name below will appe			s / Recipients	<u> </u>	 _		rnaround 1									AR.
Company:	Coounted engine	<u> </u>		F EXCEL E			tine (R) if recei										
Contact:	Deepak Kanra.		ge QC/QCI Reports with CC		_	_	ay [P4] if receiv						AFFD	(ALS BAF	RCODE L	NBEL HE	SRE
Phone:			ompare Results to Criteria on Repo				ay [P3] if recein ay [P2] if recein								use only	1125 516 2250 18	
	Company address below will appear on the fina	report Select		IL MAIL			ay [E] if receive										
Street:	12 Banison DR		1 or Fax & Kay 11 A	16 grounde	deng.ca	☐ San	ne day [E2] if re yapply to rush re	ceived by 10a	m M-S - 2	00% rush s	ırcharge. Ad	ditional fees			1.4	V.	*
City/Province:	toronto on	Email	2			— ma	y apply to rush re	equests on w	ekends, sta	tutory holida	eys and non-	routine tests					
Postal Code:	MAH IF9	Email				1	Date and Time I	Required fo	all E&P T	ATs:	<u> </u>	1,	dhin i				
Invoice To	Same as Report To DY YES [NO	Invoic	e Recipients		<u> </u>		For all te	sts with rush	TATs requ	ested, please	e contact you	: AM to confi	m availabilit	у.		
	Copy of Invoice with Report TYPES [NO Select	Invoice Distribution:	BMAIL MAIL] FAX	<u> </u>					nalysis R			<u> </u>			
Company:			1 or Fax			18		Indicate Filte	red (F), Pre	served (P)	or Filtered	and Preserve	d (F/P) belo	.w			es)
Contact:		· Email				ᅵ빛ㅏ	1					_		\longrightarrow	_	5	5
	Project Information			ired Fields (client u	se)	CONTAINERS	4 E 2								ء ا د	REQUIRED	9
ALS Account # /			st Center:	PO#		151	100								E C	ן א א	
_	-067		inor Code:	Routing Code:		121	1 mit	6							Ĭ	: S	\ <u>A</u>
PO / AFE:			sitioner:	Ac 880		유 	200	الد							2	STORAGE	¥
LSD:		Locati	on:				1 2 1	2								S S	5
ALS Lab Worl	Order# (ALS use only): / 25%	SSOU ALSO	Contact:	Sampler;		NUMBER	A vos								SAMPLES		SUSPECTED HAZARD (see notes)
ALS Sample (* (ALS use dely)	Sample Identification		Date (dd-mmm-yy	Time (hh:mm)	Sample Type	N S		2							N V	EXTEND	USP
	(This description will a	appear on the report)				-	9	_	++	_	++			+		/ "	+"
	9EW-9F-137 10	<u> </u>	OMY	10:00	Oh	\vdash	17				+		+-+	\dashv	\dashv	_	lacksquare
						$\downarrow \downarrow \downarrow$								\rightarrow	$-\!\!\!\!+$		\perp
															L		
													İ				
		****														\top	\Box
			****		 			-	++		╅╌┼		 -	-		+	+
						++	\dashv		++		++-	-	\vdash		+	+	+
									++		+		├ ──├	+	-		-
33.00													<u> </u>				
																1	
	-																
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specify Limits	for result evaluation by sele	cting from drop-down	below					LE REC	IPT DET	AILS (AL	S use onl	y) /		3.5	793
		·	(Excel COC only)			Coolin	g Method:	□ NON		ICE 🛛	ACE PACKS	5 <u>□</u> FR	.OZEN	Pa	JOLING INI	TIATED	
	from a Regulated DW System?			·		Submi	ssion Comm	ents ident	fied on S	ample R	eceipt No	tification:		□ ¥	_ □ % 0	215	
_	tt no					Coole	Custody Se]N/A S	ample Cu				YES [] NVA
	man consumption/ use?					4		OOLER TE	IPERATUR	ES°C			FINAL COC	LER TEMP	ERATURE	s°C _	-3/4
☐ YES	<u>M</u> №					<u> </u>	13.	1 4		Barrier .		1.7		4			
Released by:	SHIPMENT RELEASE (client use)		INITIAL SHIPM	RECEPTION (A	LS use only)	TWG Z.A.	-		THE PERSON NAMED IN	MALL SHI	PMENT	REGEPTIC	IN (ALS	ise only)	- 1=		
released by.	1 Supplied Mar	7 1021 Time: Recei		NA -CIT	N -21	18	KO Kecen	red by:	1	W		//h	M		lir	172	<i>\</i> }
REFER TO BACK P	AGE FOR ALS LOCATIONS AND SAMPLING INF			WHITE - LABORATORY	COPY YELLO		NT COPY	المت السيد م				11571	4		سلسند	ALIC	2020 FRONT

APPENDIX F

APPENDIX G

	SHORT TE	RM - PERMEABLE S	HORING	
Excavation Di	imensions [m]		Rainfall Data	
N-S	112	Year	2	100
E-W	87	Hour	3	12
Area (m2)	9744	Depth (mm)	25	94
Perimeter (m)	398	Depth (m)	0.025	0.094
	-	•		
S	ection	Flow [m3/day]	Length [m]	Volume [L/day]
	Base	0.009	112	1,008
;	Sides	0.01	398	3,980
	Total			4,988
Factor of	of Safety 2.	0		9,976
			-	
Storm Events		Summary	L/day	L/min
2 Year [L/day]	100 Year [L/day]	Groundwater	10,000	6.9
243,600	916,000	Rainfall	244,000	169.4
		Total	254,000	176.4

	LONG TERM	/ - DRAINED FOUND	ATIONS	
Excavation Di	mensions [m]		Rainfall Data	
N-S	112	Year	2	100
E-W	90	Hour	3	12
Area (m2)	10080	Depth (mm)	25	94
Perimeter (m)	404	Depth (m)	0.025	0.094
		'-	_	
S	ection	Flow [m3/day]	Length [m]	Volume [L/day]
	Base	0.009	112	1,008
!	Sides	0.01	398	3,980
	Total			4,988
Factor o	of Safety 2.	0		9,976
			-	
Infiltratio	on [L/day]	Summary	L/day	L/min
	20319	Groundwater	10,000	6.9
		Infiltration	21,000	14.6
		Total	31,000	21.5