

# PHASE II ENVIRONMENTAL SITE ASSESSMENT

PREPARED FOR:

Almega Asset Management 2811 Dufferin St Mississauga, ON

**ATTENTION:** Spencer Shafran

60 Dundas Street East | Mississauga, Ontario

**Grounded Engineering Inc. File No.** 21-067

**Issued** June 30, 2021



## **TABLE OF CONTENTS**

| 1 | EXE      | ECUTIVE SUMMARY 4                                                          |    |  |  |
|---|----------|----------------------------------------------------------------------------|----|--|--|
| 2 | INTF     | RODUCTION                                                                  | 5  |  |  |
|   | 2.1      | SITE DESCRIPTION                                                           | 5  |  |  |
|   | 2.2      | PROPERTY OWNERSHIP                                                         | 5  |  |  |
|   | 2.3      | CURRENT AND PROPOSED FUTURE USES                                           | 5  |  |  |
|   | 2.4      | APPLICABLE SITE CONDITION STANDARD                                         | 5  |  |  |
| 3 | BAC      | KGROUND INFORMATION                                                        | 6  |  |  |
|   | 3.1      | Physical Setting                                                           | 6  |  |  |
|   | 3.2      | PAST INVESTIGATIONS                                                        | 7  |  |  |
| 4 | SITE     | INVESTIGATION METHODOLOGY                                                  | 9  |  |  |
| • | 4.1      | Overview of Site Investigation                                             |    |  |  |
|   | 4.2      | INVESTIGATION METHOD                                                       |    |  |  |
|   |          | 4.2.1 General                                                              |    |  |  |
|   |          | 4.2.2 Drilling                                                             |    |  |  |
|   |          | 4.2.3 Groundwater – Monitoring Well Installation                           | 10 |  |  |
|   | 4.3      | GROUNDWATER - SAMPLING                                                     | 11 |  |  |
|   | 4.4      | ANALYTICAL TESTING                                                         | 11 |  |  |
| 5 | FINDINGS |                                                                            |    |  |  |
|   | 5.1      | GEOLOGY                                                                    | 11 |  |  |
|   |          | 5.1.1 Material in Geological Units                                         | 12 |  |  |
|   |          | 5.1.2 Properties of Aquifers and Aquitards                                 |    |  |  |
|   | 5.2      | GROUNDWATER: ELEVATIONS AND FLOW DIRECTION                                 | 13 |  |  |
|   | 5.3      | SOIL – QUALITY                                                             | 13 |  |  |
|   |          | 5.3.1 Field Screening                                                      | 13 |  |  |
|   |          | 5.3.2 Location and Depth of Samples                                        |    |  |  |
|   |          | 5.3.3 Comparison to Applicable Standards                                   |    |  |  |
|   |          | 5.3.3.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1)) |    |  |  |
|   | 5.4      | GROUND – WATER QUALITY                                                     | 17 |  |  |
|   |          | 5.4.1 Location and Depth of Samples                                        |    |  |  |
|   |          | 5.4.2 Comparison to Applicable Standards                                   |    |  |  |
|   |          | 5.4.2.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1)) | 18 |  |  |
| 6 | EVA      | EVALUATION OF FINDINGS                                                     |    |  |  |
|   | 6.1      | SUMMARY OF FINDINGS                                                        |    |  |  |
|   |          | 6.1.1 Contaminants of Concern                                              |    |  |  |
|   |          | 6.1.2 Contamination Impact on Other Media                                  |    |  |  |
|   |          | 6.1.3 Presence of Light or Dense Non-Aqueous Phase Liquids                 |    |  |  |
|   | 6.2      | QUALITY ASSURANCE AND QUALITY CONTROL RESULTS                              | 20 |  |  |
| 7 | CON      | ICLUSIONS AND RECOMMENDATIONS                                              | 20 |  |  |
|   | 7.1      | SIGNATURES                                                                 | 20 |  |  |



| 8 | REFERENCES                   | 22 |
|---|------------------------------|----|
|   |                              |    |
| 9 | LIMITATIONS AND RESTRICTIONS | 24 |
|   | 9.1 REPORT USE               |    |

## **FIGURES**

| Figure | 1 | <ul><li>Site</li></ul> | Location | Ρ | lan |
|--------|---|------------------------|----------|---|-----|
|--------|---|------------------------|----------|---|-----|

Figure 2 – Borehole and Monitoring Well Location Plan

Figure 3 - PHC Exceedances in Soil

Figure 4 – PAH Exceedances in Groundwater

Figure 5 - Subsurface Cross-Section A-A'

## **APPENDICES**

Appendix A - Sampling Plan

Appendix B - Borehole Logs

Appendix C - Laboratory Certificates of Analysis



## 1 Executive Summary

Almega Asset Management retained Grounded Engineering Inc. to complete a Phase II Environmental Site Assessment (ESA) of the property located at 60 Dundas Street East, Mississauga, Ontario (Property). The Phase II ESA was conducted for due diligence purposes and to investigate the Areas of Potential Environmental Concern (APECs) that have been identified on the Property based on the findings of the Phase I ESA.

The results of the Phase II ESA are summarized below:

| Applicable Site Condition Standards                                                         | MECP Table 8 RPIICC                                       |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Soil Contaminants of Potential Concern (CoPCs) Investigated  Groundwater CoPCs Investigated | <ul> <li>Metals</li> <li>Hydride-forming Metals</li></ul> |
| Applicable Site Condition<br>Standards Met for Soil?<br>(Yes/No)                            | No  • MECP Table 8 exceeded for PHCs in the native soil.  |
| Applicable Site Condition<br>Standards Met for<br>Groundwater? (Yes/No)                     | Yes                                                       |

A Record of Site Condition (RSC) is not required for the site for continued commercial use.



### 2 Introduction

### 2.1 Site Description

Almega Asset Management retained Grounded Engineering Inc. to complete a Phase II Environmental Site Assessment (ESA) of the property located at 60 Dundas Street East, Mississauga, Ontario (Property). The Phase II ESA was conducted to investigate the Areas of Potential Environmental Concern (APECs) that have been identified on the Property. The site location is presented in Figure 1.

The Property is approximately rectangular in shape, with an approximate area of 1.07 ha. The site is currently developed with a one-storey commercial plaza with associated asphalt surface parking and landscape areas. The Phase II ESA has been prepared for due diligence purposes only and in general accordance with CSA Standard Z768-01 and CSA Standard Z769-00.

## 2.2 Property Ownership

The Property information is provided below:

| Municipal Address                                                              | 60 Dundas Street East, Mississauga, Ontario                                               |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| PIN(s)                                                                         | 13350-0021 (LT)                                                                           |
| Current Land Use                                                               | Commercial                                                                                |
| Property Owner Information                                                     | Gold Star Plaza Ltd.                                                                      |
| Person who has engaged the<br>Qualified Person to conduct the<br>Phase One ESA | Spencer Shafran Almega Asset Management 25 Watline Ave. Suite 501 Mississauga ON, L4Z 2Z1 |

## 2.3 Current and Proposed Future Uses

The Property is considered to be in commercial land use by the Ontario Ministry of the Environment, Conservation and Parks (MECP). It is understood that the Phase II Property will be developed with three (3) new residential towers on 3-5 storey podiums, with a common four-level underground parking structure beneath the entire site.

## 2.4 Applicable Site Condition Standard

The applicable site condition standard for the Phase II Property is determined to be Table 8 Site Condition Standard for Residential/Parkland/Institutional/Industrial/Commercial/Community land use in potable groundwater condition for fine textured soil due to the following reason:



| Current Land Use                                                                                          | Commercial                                                                      |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Future Land Use                                                                                           | Residential                                                                     |
| Soil Texture                                                                                              | Medium to fine. Based on grain size analysis performed on the soil (Appendix B) |
| Potable Water Source                                                                                      | Lake Ontario                                                                    |
| Bedrock Depth                                                                                             | Bedrock is located at a depth of greater than 2 m.                              |
| Property located within 30 m of a surface water body (Yes/No)                                             | Yes                                                                             |
| Property located in or adjacent<br>to a provincial park or an Area<br>of Natural Significance<br>(Yes/No) | No                                                                              |

## 3 Background Information

## 3.1 Physical Setting

The Ministry of Natural Resources and Forestry (MNRF) and Ministry of Energy, Northern Development and Mines (MENDM) database were searched to obtain topographic and geological maps of Ontario for review. The information obtained are summarized below:

| Records          | Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Topographic Maps | The approximate elevation of the Property is 111 metres above sea level (masl) and is gently sloping towards Cooksville Creek to the east.                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Hydrology        | The nearest body of water is Cooksville Creek, located adjacent northeast of the Property. Lake Ontario is located approximately 4 km southwest of the Property. Surface water flow is expected to flow to the municipal catch basins located on the Property or the adjacent roadway. Groundwater is expected to flow northeast towards Cooksville Creek and ultimately southeast towards Lake Ontario.                                                                                                                                                                                |  |  |
| Geological Maps  | Overburden: Halton Till consisting of stratified clayey silt to silt to sandy silt across the north to east portion of the Property. Deltaic and Lacustrine Deposits consisting of silty sand to gravelly sand across the western portion of the Property.  Bedrock: Georgian Bay Formation comprised of shale, limestone, dolostone, and siltstone Depth to Bedrock: Bedrock was encountered based on nearby subsurface investigations at approximately 6 m bgs. Based on the drift thickness map of the area (Lawrence et al., 1969), bedrock was located 107 m below ground surface. |  |  |



Maps from MNRF were reviewed to determine if water bodies were present on the Property and within the Study Area. The Ontario Ministry of Natural Resources National Heritage Information Centre database for Areas of Natural or Scientific Interest (ANSIs) was also reviewed as part of the Phase I ESA. The information is summarized below:

| Water Bodies | Phase I Property:                                                                                                                              |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|              | No water bodies are located on the Property.                                                                                                   |  |  |
|              | Study Area:                                                                                                                                    |  |  |
|              | Cooksville Creek is located adjacent northeast of the Property.                                                                                |  |  |
| Wetlands     | Phase I Property:                                                                                                                              |  |  |
|              | <ul> <li>No Provincially Significant, Non-Provincially Significant, and Unevaluated wetlands are<br/>located on the Property.</li> </ul>       |  |  |
|              | Study Area:                                                                                                                                    |  |  |
|              | <ul> <li>No Provincially Significant, Non-Provincially Significant, and Unevaluated wetlands are<br/>located within the Study Area.</li> </ul> |  |  |
| ANSIs        | Phase I Property:                                                                                                                              |  |  |
|              | <ul> <li>No Provincially Significant Life Science and Earth Science ANSIs are located on the<br/>Property.</li> </ul>                          |  |  |
|              | Study Area:                                                                                                                                    |  |  |
|              | <ul> <li>No Provincially Significant Life Science and Earth Science ANSIs are located within the<br/>Study Area.</li> </ul>                    |  |  |

## 3.2 Past Investigations

The following environmental report was provided for review for the Property. The findings of the report are summarized below:

| Title and File No.                              | Due Diligence Phase I Environmental Assessment – 60 Dundas Street East, Mississauga,<br>Ontario. Project Number: GOR-00212908-AO                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Report Date May 31, 2013                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Prepared By                                     | exp Services Inc. (exp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Prepared for Gold Star Plaza Ltd.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Description of Data,<br>Analysis or<br>Findings | <ul> <li>exp conducted a Phase I ESA for the site located at 60 Dundas Street East, Mississauga, ON for due diligence purposes. The Phase I ESA was completed to the Canadian Standards Association (CSA) Z768 Guideline.</li> <li>The Site was developed for mixed commercial and residential use since 1939, which two (2) residential buildings and one (1) commercial building used as an inn (Crovton Villa). The Site was developed into a commercial plaza from primarily residential use in 1978 and has remained in commercial use since then.</li> </ul> |  |  |



| • | A previous Phase I ESA prepared by Barenco Inc. was prepared on August 21,        |
|---|-----------------------------------------------------------------------------------|
|   | 2008. No PCAs were identified on the Property or in the surrounding properties in |
|   | the report.                                                                       |

- Potentially Contaminating Activities (PCAs) that were identified include:
  - A former dry cleaner was located at 131 Dundas St. E., 180 m northeast of the Site.
  - A retail fuel storage tank with a capacity of 41,927L was present at 86 Dundas St. E., 35m northeast of the Site.
  - A retail fuel storage tank with a capacity of 99,800L was present at 8 Dundas St. E., 140m southwest of the Site.
  - A spill of 100L of hydraulic oil was present at 55 Dundas St. E., 20m northwest of the Site.
  - A spill of an unknown volume and contents causing a sheen was present at 100 Dundas St. E., 70m northeast of the Site.
  - A spill of 100L of diesel fuel was present at 120 Dundas St. E., 130m northeast of the Site.
  - An above ground storage tank containing oil from a restaurant operating on-Site was present. Staining of 2 m<sup>2</sup> of asphalt was noted.
    - Based on the current investigation, it was noted that the contents were composed of waste food oil and were not further considered as a potentially contaminating activity.
- No PCAs that would result in an APEC were identified in the report.
- Potential asbestos containing materials were identified in the vinyl floor and ceiling tiles located in the units that may be of concern during demolition or renovation.

| Title and File No.                              | 60 Dundas Street East, Mississauga, Ontario, Phase I ESA<br>File No. 21-067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Report Date                                     | May 21, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Prepared By                                     | Grounded Engineering Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Prepared for                                    | Almega Asset Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Description of Data,<br>Analysis or<br>Findings | <ul> <li>A review of the previous Phase I Environmental Assessment was conducted ahead of preparing a Phase II Environmental Site Assessment for due diligence purposes.</li> <li>The Phase I ESA identified 12 Areas of Potential Environmental Concern (APECs):         <ul> <li>APEC 1 (Entire Phase I Property) – Based on the development of the Property, fill materials of unknown quality were likely present throughout the Property.</li> <li>APEC 2 (Entire Phase I Property) – An asphalt parking lot was present on the Property since development.</li> <li>APEC 3 (Entire Phase I Property) – A former dry cleaner was present on the Property between 1984 and 2000.</li> <li>APEC 4 (Northern and Western Portion of the Phase I Property) – A former autobody shop was present 15 m southwest of the Property.</li> <li>APEC 5 (Northern and Western Portion of the Phase I Property) – A former dry cleaner was present 15 m southwest of the Property.</li> <li>APEC 6 (Northern Portion of the Phase I Property) – A former fuel oil tank was present 59 m northwest of the Property.</li> <li>APEC 7 (Northern Portion of the Phase I Property) – PCB use with waste generation was recorded 59 m northwest of the Property.</li> </ul> </li> </ul> |  |  |



| <ul> <li>APEC 8 (Northern Portion of the Phase I Property) – A former dry cleaner<br/>was present 61 m northwest of the Property.</li> </ul>               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>APEC 9 (Northern Portion of the Phase I Property) – A former auto garage<br/>was present 70 m northwest of the Property.</li> </ul>               |
| <ul> <li>APEC 10 (Northwestern Property of the Phase I Property) – A former<br/>gasoline station was present 94 m west of the Property.</li> </ul>         |
| <ul> <li>APEC 11 (Northwestern Property of the Phase I Property) – An substantial volume of oil spill was recorded 101 m west of the Property</li> </ul>   |
| <ul> <li>APEC 12 (Western Portion of the Phase I Property) – A service station and<br/>auto centre was present 140 m southwest of the Property.</li> </ul> |
| <ul> <li>A Phase II ESA was recommended to assess the soil and groundwater quality on<br/>site to address the identified APECs on the Property.</li> </ul> |

## 4 Site Investigation Methodology

## 4.1 Overview of Site Investigation

The scope of the Phase II ESA is as follow:

| Boreholes and<br>Monitoring Wells             | <ul> <li>Advancing of three (3) boreholes (BH101 to BH103) to depths of 5.1 to 7.4 m below ground surface (m bgs)</li> <li>Installation of three (3) of monitoring wells</li> <li>Soil sampling from the newly advanced boreholes</li> <li>Groundwater sampling of all three (3) monitoring wells</li> </ul>                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters<br>Investigated for<br>Soil        | <ul> <li>Metals</li> <li>Hydride-forming Metals         <ul> <li>Antimony (Sb), Arsenic (As), Selenium (Se)</li> </ul> </li> <li>Selected Other Regulated Parameters (ORPs)         <ul> <li>Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), Boron-hot water soluble (B-HWS), Cyanide (CN-), Mercury (Hg), Hexavalent Chromium (Cr(VI))</li> </ul> </li> <li>Polycyclic Aromatic Hydrocarbons (PAHs)</li> <li>Petroleum Hydrocarbons (PHCs)</li> <li>Volatile Organic Compounds I (VOCs)</li> <li>Volatile Organic Compounds II (BTEX)</li> <li>Polychlorinated Biphenyls (PCBs)</li> </ul> |
| Parameters<br>Investigated for<br>Groundwater | <ul> <li>Metals</li> <li>Hydride-forming Metals <ul> <li>Sb, As, Se</li> </ul> </li> <li>Selected ORPs <ul> <li>CN-, Chloride (Cl), Hg, Cr(VI), pH</li> </ul> </li> <li>Sodium (Na)</li> <li>PAHs</li> <li>PHCs</li> <li>VOCs</li> <li>BTEX</li> <li>PCBs</li> </ul>                                                                                                                                                                                                                                                                                                                                     |

- One (1) soil sample was submitted for grain size analysis and soil classification.
- All boreholes and monitoring wells were surveyed to a geodetic benchmark.
- All monitoring wells were developed and sampled.



Groundwater level measurements were conducted in all monitoring wells to determine groundwater elevation on the Property.

## 4.2 Investigation Method

#### 4.2.1 General

The Phase II ESA followed the methods outlined in the Ontario Ministry of the Environment, Conservation, and Parks "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996).

The methods used in the Phase II ESA did not differ from the associated standard operating procedures. The sampling plan is provided in Appendix A.

#### 4.2.2 Drilling

The Phase II ESA drilling information is provided below:

| Boreholes                                             | BH101 to BH103                                                                                          |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Date of Work                                          | May 03, 2021                                                                                            |
| Name of the Contractor(s)                             | Sonic Soil Sampling Inc.                                                                                |
| Equipment Used                                        | Truck-mounted rig, solid stem augers, 2-inch split spoon soil sampling device.                          |
| Measures for<br>Cross-<br>contamination<br>Prevention | The split spoon sampling device was washed between each sample to prevent potential cross-contamination |
| Sampling<br>Frequency                                 | Please refer to the borehole logs in Appendix B for the sampling frequency                              |

The borehole locations are provided in Figure 2.

## 4.2.3 Groundwater – Monitoring Well Installation

The Phase II ESA monitoring well installation information is provided below:

| Monitoring Wells | BH101, BH102, and BH103 |
|------------------|-------------------------|
| Date of Work     | May 03, 2021            |



| Well Construction | The wells were constructed with [50 mm (2 in.) ID PVC screens and risers]. Filter sand was placed around the well screen to approximately 0.3 to 0.6 m above the top of the screen. The wells were then backfilled with bentonite to approximately 0.3 m below ground surface (m bgs). The wells were finished with flush mounts.                                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well Development  | The monitoring wells were developed on May 04, 2021. Well development was conducted with a Low Density Polyethylene (LDPE) tubing and foot valve. A total volume of 27 L of water was removed during the well development. Stabilization of parameters (pH, conductivity, temperature, etc.) of the purged water was monitored before a sample to ensure the samples are representative of the formation water. |

The monitoring well locations are provided in Figure 2.

## 4.3 Groundwater - Sampling

The monitoring well was purged using dedicated LDPE tubing on May 04, 2021 and sampled using a bladder pump on May 07, 2021. Additional groundwater sampling events were conducted on June 9, 2021, and June 14, 2021, to dispute previous exceedances detected during the first monitoring event.

Sampling methodology from the Ontario Ministry of the Environment, Conservation and Parks (MECP) "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites In Ontario", MECP "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" and MECP "Protocol for Analytical Methods Used in the Assessment of Properties under Par XV.1 of the Environmental Protection Act" were followed in the collection of the groundwater samples.

## 4.4 Analytical Testing

Analytical Testing of all soil and groundwater samples was conducted by ALS Canada Ltd.

## 5 Findings

## 5.1 Geology

Detailed geological information for the Property is presented on the borehole logs in Appendix B. The geology at the Property is summarized below.

| Geological Unit Thickness (Estimate) |                     |  |  |  |  |
|--------------------------------------|---------------------|--|--|--|--|
| Borehole                             | BH101 to BH103      |  |  |  |  |
| borenoie                             | Thickness Range (m) |  |  |  |  |
| Earth Fill                           | 1.6 to 3.9 m        |  |  |  |  |



| Geological Unit Thickness (Estimate) |                                      |  |  |  |  |  |
|--------------------------------------|--------------------------------------|--|--|--|--|--|
| Borehole                             | BH101 to BH103                       |  |  |  |  |  |
| boleliole                            | Thickness Range (m)                  |  |  |  |  |  |
| Clayey Silt (Glacial Till)           | 2.1 to 4.3 m                         |  |  |  |  |  |
| Bedrock                              | Encountered between 5.2 to 6.3 m bgs |  |  |  |  |  |

| Geological Unit Elevations |                        |                                                                                                     |  |  |  |  |  |
|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Borehole                   | BH101 to BH103         |                                                                                                     |  |  |  |  |  |
| Богенове                   | Elev. Top Range (masl) | Elev. Bottom Range (masl)                                                                           |  |  |  |  |  |
| Earth Fill                 | 109.2 to 110.8         | 108.9 to 106.0                                                                                      |  |  |  |  |  |
| Clayey Silt (Glacial Till) | 108.9 to 106.0         | 104.6 to 103.9                                                                                      |  |  |  |  |  |
| Bedrock                    | 104.6 to 103.9         | Bottom of bedrock not<br>encountered. Investigation<br>terminated from 104.3 masl to<br>103.5 masl. |  |  |  |  |  |

## 5.1.1 Material in Geological Units

| Geological Units    | Description                                                                                                                                                                                                                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surficial Materials | BH101 and BH103 encountered a pavement structure consisting of 25 to 50 mm asphaltic concrete underlain by 100 mm of aggregate.  BH102 encountered 100 mm of topsoil.                                                                                                                              |
| Earth Fill          | Earth fill was encountered at all borehole locations underlying the surficial materials. The Earth Fill extended to a depth of 1.7 to 4.0 mbgs (Elev. 108.9 to 106.0 m). The Earth Fill generally consisted of sand with some silt to silty sand with trace amounts of clay, gravel, and organics. |
| Native Glacial Till | Clayey Silt till with trace amounts of gravel and sand was encountered at all borehole locations underlying the Earth Fill. The till was found between Elev. 108.9 to 103.9 m.                                                                                                                     |
| Bedrock             | Inferred bedrock consisting of shale and limestone fragments were encountered at BH101 and BH102. The top of bedrock was inferred at Elev. 104.6 to 103.9 m.                                                                                                                                       |



### 5.1.2 Properties of Aquifers and Aquitards

| Aquifers/Aquitards | Description                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Earth Fill         | The Earth Fill on the Property is considered to be an unconfined aquifer. The groundwater table on the Property is located within the glacial till. The earth fill is considered to be hydraulically connected to the native soil layer composed mainly of clayey silt glacial till. Any water within the fill is expected to migrate downwards into the native soil. |
| Glacial Till       | The native soil consisting of cohesive glacial till deposits is considered to be an aquitard due to the low permeability of the soils.                                                                                                                                                                                                                                |

#### 5.2 Groundwater: Elevations and Flow Direction

The most recent groundwater level data collected on May 10, 2021, as a part of this Phase II ESA, is summarized as follows:

| Monitoring<br>Well ID | Screen Dep | oth Interval  | Screen Strata    | Depth to Ground | Ground Water<br>Elevation (masl) |  |
|-----------------------|------------|---------------|------------------|-----------------|----------------------------------|--|
|                       | mbgs       | masl          | Screen Strata    | Water (mbgs)    |                                  |  |
| BH101                 | 4.6 - 6.1  | 106.3 - 104.8 | Clayey Silt Till | 3.3             | 107.6                            |  |
| BH102                 | 4.6 - 6.1  | 105.4 - 103.9 | Clayey Silt Till | 3.8             | 106.2                            |  |
| BH103                 | 3.4 - 4.9  | 106.0 - 104.5 | Clayey Silt Till | 4.1             | 105.3                            |  |

Based on the groundwater elevations measured on the Property, the groundwater was determined to flow locally to the south to southeast. Regional groundwater flow is expected to flow to the southeast towards Cooksville Creek. Groundwater elevation is provided on the borehole logs in Appendix B.

It is unlikely that the bedding materials for the underground utilities would serve as preferential pathways for the migration of PCoC. Water levels taken from site monitoring wells varied between 3.3 m to 4.1 m below ground surface. Therefore, it is unlikely that any existing utilities would intersect the water table.

Interface probe measurements were taken and no light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected. No free-flowing products were encountered on the Property.

## 5.3 Soil – Quality

#### 5.3.1 Field Screening

Hydrocarbon vapour concentrations were screened in each soil sampling, using an RKI Eagle 2 gas monitor. The monitor is calibrated to *n*-hexane prior to field screening as per the calibration procedure outlined by RKI Instruments in "Eagle 2 Operator's Manual, Part Number:71-0154RK"



released March 12, 2019. The monitor has a range of 0 to 40,000 parts per million (ppm) and an accuracy of +/- 5%

Based on field screening measurements and visual and olfactory examination of all soil samples, selected samples were submitted for volatile organic compounds (VOCs) and petroleum hydrocarbon (PHCs) laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix B.

#### 5.3.2 Location and Depth of Samples

| Sample ID mbgs | pth          | Strata           | Metals              | H-       | ORPs     | PAHs     | VOCs/    | PHCs     | PCBs | ВТЕХ     |          |
|----------------|--------------|------------------|---------------------|----------|----------|----------|----------|----------|------|----------|----------|
|                | mbgs         | masl             | Strata              | Metals   | Metals   | URPS     | PAHS     | THMs     | PHUS | PCBS     | BIEX     |
| BH101<br>SS1   | 0.1 -<br>0.7 | 110.8 -<br>110.2 | Fill                |          |          |          | <b>✓</b> |          |      |          |          |
| BH101<br>SS2   | 0.8 -<br>1.4 | 110.1 -<br>109.5 | Fill                | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |          |      |          |          |
| DUP 1          |              |                  |                     |          |          |          |          |          |      |          |          |
| BH101<br>SS3B  | 2.0 -<br>2.1 | 108.9 -<br>108.8 | Clayey<br>Silt Till |          |          |          |          |          |      | ·        |          |
| DUP 2          |              |                  |                     |          |          |          |          |          |      |          |          |
| BH101<br>SS4   | 2.3 -<br>2.9 | 108.6 -<br>108.0 | Clayey<br>Silt Till |          |          |          |          |          | ✓ ·  |          | <b>√</b> |
| DUP 3          |              |                  |                     |          |          |          |          |          |      |          |          |
| BH101<br>SS7   | 4.6 -<br>5.0 | 106.3 -<br>106.0 | Clayey<br>Silt Till |          |          |          |          | <b>✓</b> |      |          | ✓        |
| BH102<br>SS3   | 1.5 -<br>2.1 | 108.5 -<br>107.9 | Fill                | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |          |      |          |          |
| BH102<br>SS5   | 3.0 -<br>3.7 | 106.9 -<br>106.3 | Fill                |          |          |          | <b>✓</b> |          |      |          |          |
| BH102<br>SS6B  | 4.0 -<br>4.4 | 106.0 -<br>105.6 | Clayey<br>Silt Till |          |          |          |          |          | ~    | <b>√</b> | <b>√</b> |
| BH102<br>SS7   | 4.6 -<br>5.2 | 105.4 -<br>104.8 | Clayey<br>Silt Till |          |          |          |          | <b>✓</b> |      |          | <b>√</b> |
| DUP 4          |              |                  |                     |          |          |          |          |          |      |          | _        |
| BH103<br>SS1   | 0.2 -<br>0.8 | 109.2 -<br>108.6 | Fill                | <b>√</b> | <b>√</b> | <b>√</b> |          |          |      |          |          |



| Sample<br>ID  | Depth        |                  | - Strata            | Matala | H-     | ORPs | PAHs     | VOCs/ | PHCs     | PCBs | ВТЕХ     |
|---------------|--------------|------------------|---------------------|--------|--------|------|----------|-------|----------|------|----------|
|               | mbgs         | masl             | Strata              | Metals | Metals | UKPS | РАПЗ     | THMs  | PHUS     | PCDS | DIEX     |
| BH103<br>SS2  | 0.8 -<br>1.4 | 108.6 -<br>108.0 | Fill                |        |        |      | <b>✓</b> |       |          |      |          |
| DUP 5         |              |                  |                     |        |        |      |          |       |          |      |          |
| BH103<br>SS3B | 1.7 -<br>2.1 | 107.6 -<br>107.2 | Clayey<br>Silt Till |        |        |      |          |       | <b>✓</b> |      | <b>√</b> |
| BH103<br>SS5  | 3.0 -<br>3.7 | 106.3 -<br>105.7 | Clayey<br>Silt Till |        |        |      |          | ✓     |          |      | <b>√</b> |

#### 5.3.3 Comparison to Applicable Standards

Selected soil samples were analyzed for Contaminants of Potential Concern (CoPCs) of the following:

- Metals (M)
- Metals, Hydride-Forming: As, Se & Sb (H-M)
- Other Regulated Parameters (ORPs):
  - Boron, hot water soluble (HWS)
  - o Cyanide
  - Electrical Conductivity (EC)
  - Hexavalent Chromium
  - Mercury
  - Sodium Adsorption Ratio (SAR)
- Petroleum Hydrocarbons (PHCs)
- Polycyclic Aromatic Hydrocarbons (PAHs)
- Volatile Organic Compounds I (VOCs)
- Volatile Organic Compounds II: Benzene, Toluene, Ethylbenzene, Xylene (BTEX)
- Polychlorinated Biphenyls (PCBs)

The results of the analysis were compared to the applicable Site Condition Standard for the Phase II Property (Table 8 RPIICC). The laboratory certificates of analysis are provided in Appendix C.



| Comparison Table (Table 8 RPIICC Standard) |             |                                                                     |  |  |  |
|--------------------------------------------|-------------|---------------------------------------------------------------------|--|--|--|
| Parameter Analyzed                         | Exceed/Meet | Note:                                                               |  |  |  |
| Metals                                     | Meet        | None                                                                |  |  |  |
| Hydride-forming Metals                     | Meet        | None                                                                |  |  |  |
| ORPs                                       | Exceeds     | Refer to section 5.3.3.1                                            |  |  |  |
| PHCs                                       | Exceeds     | BH101-SS4:  PHC F2  DUP 3 (BH101-SS4):  PHC F2  BH103-SS3B:  PHC F2 |  |  |  |
| PAHs                                       | Meet        | None                                                                |  |  |  |
| втех                                       | Meet        | None                                                                |  |  |  |
| VOCs                                       | Meet        | None                                                                |  |  |  |
| PCBs                                       | Meet        | None                                                                |  |  |  |

#### 5.3.3.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1))

Chemical analysis of the soil indicates that there are exceedances of the MECP Table 8 RPIICC Standards for Electrical Conductivity and Sodium Adsorption Ratio (salt related compounds) within the upper soils.

The Property is bound by a municipal roadway to the northwest (Dundas Street East) and to the southwest (Shepard Avenue). The roadway has public sidewalks between the road and the Property boundary. The entire Property features car parking. The roadways, sidewalks, and parking area are all salted during the winter months for safety purposes.

The Qualified Person has determined, based on the Phase I Environmental Site Assessment and the Phase II Environmental Site Assessment, that a substance (salt) has been applied to surfaces of the roadway, sidewalks, driveway and parking area for the safety of vehicular and pedestrian traffic under conditions of snow or ice or both.

The applicable site condition standard is exceeded at the Property solely because of the reason as stated above (application of salt for safety purposes during winter months). As per O.Reg. 153/04 49.1 the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act.



## 5.4 Groundwater - Quality

## 5.4.1 Location and Depth of Samples

| Sample ID | Screen Depth |                     | Screen              |          | H-       | 000      | 5411 | VOCs/    | BUIG     | DOD  | DTEV     |
|-----------|--------------|---------------------|---------------------|----------|----------|----------|------|----------|----------|------|----------|
|           | mbgs         | masl                | Strata              | Metals   | Metals   | ORPs     | PAHs | THMs     | PHCs     | PCBs | BTEX     |
| BH101     | 4.6 -<br>6.1 | 106.3<br>-<br>104.8 | Clayey<br>Silt Till | <b>√</b> | <b>√</b> | ~        | ~    | ~        | <b>✓</b> | ~    | <b>√</b> |
| BH102     | 4.6 -        | 105.4               | Clayey              | <b>√</b> | ,        | <b>√</b> | ,    | ,        | ,        | ,    |          |
| DUP 1     | 6.1          | 103.9               | Silt Till           | •        | <b>~</b> | •        | _    | <b>~</b> | <b>✓</b> | _    | •        |
| BH103     | 3.4 -<br>4.9 | 106.0<br>-<br>104.5 | Clayey<br>Silt Till | <b>√</b> | <b>√</b> | <b>✓</b> | ~    | ~        | <b>√</b> | ~    | <b>√</b> |

## 5.4.2 Comparison to Applicable Standards

Selected groundwater samples were analyzed for Contaminants of Potential Concern (CoPCs) of the following:

- Metals
- Hydride-forming Metals: Sb, As, Se
- Selected ORPs
  - o CN-
  - o Chloride (CI)
  - o Hg
  - Cr(VI)
- Sodium (Na)
- PAHs
- PHCs
- VOCs
- BTEX
- PCBs

The results of the analysis were compared to the applicable Site Condition Standard for the Phase II Property (Table 8). The laboratory certificates of analysis are provided in Appendix C.



| Comparison Table (Table 8 Standard) |             |                          |  |  |  |
|-------------------------------------|-------------|--------------------------|--|--|--|
| Parameter Analyzed                  | Exceed/Meet | Note:                    |  |  |  |
| Metals                              | Meet        | None                     |  |  |  |
| Hydride-forming Metals              | Meet        | None                     |  |  |  |
| ORPs                                | Meet        | Refer to section 5.4.2.1 |  |  |  |
| Sodium                              | Meet        | Refer to section 5.4.2.1 |  |  |  |
| PHCs                                | Meet        | None                     |  |  |  |
| PAHs                                | Meet        | Refer to section 5.4.2.2 |  |  |  |
| втех                                | Meet        | None                     |  |  |  |
| VOCs                                | Meet        | None                     |  |  |  |
| PCBs                                | Meet        | None                     |  |  |  |

#### 5.4.2.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1))

Chemical analysis of the groundwater indicates that there are exceedances of the MECP Table 8 Standards for sodium and chloride (salt related compounds).

The Property is bound by a municipal roadway to the north (Dundas Street East) and to the west (Shepard Avenue). The roadway has public sidewalks between the road and the Property boundary. The entire Property features car parking. The roadways, sidewalks, and parking area are all salted during the winter months for safety purposes.

The Qualified Person has determined, based on the Phase I Environmental Site Assessment and the Phase II Environmental Site Assessment, that a substance (salt) has been applied to surfaces of the roadway, sidewalks, driveway and parking area for the safety of vehicular and pedestrian traffic under conditions of snow or ice or both. Based on the historical use of the Property as a parking lot, the Qualified Person has determined that the groundwater has been affected by the use of salt on the Property.

The applicable site condition standard is exceeded at the Property solely because of the reason as stated above (application of salt for safety purposes during winter months). As per O.Reg. 153/04 49.1 the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act.



#### 5.4.2.2 Explanation of PAH results

Initial exceedances were identified in the groundwater for Benzo(a)pyrene in BH103 sampled on May 7, 2021. A resample of this location was completed on June 9, 2021, and June14, 2021 with low-flow sampling protocol. The results of the sampling indicated concentrations below the applicable standard for the re-sample.

It is noted that sediment was observed in the groundwater sample on May 7, 2021. The Qualified Person has determined that the groundwater PAH quality has been biased by sediment in the initial sample. Two confirmatory rounds of groundwater sampling were performed on June 9 and June 14, 2021. The sampling methodology was conducted with low flow sampling protocol to minimize the sediment and provide more representative results. Both subsequent rounds of groundwater sampling returned non-detectable results and below the applicable standards.

The applicable site condition standard is exceeded at the Property solely because of the reason as stated above (sediment in the groundwater sample). The applicable site condition standard is deemed not to be exceeded.

## 6 Evaluation of Findings

## **6.1 Summary of Findings**

#### 6.1.1 Contaminants of Concern

No Contaminants of Concern were associated with the earth fill on the Property.

The Contaminants of Concern associated with the native soil on the Property are:

- PHCs:
  - o PHC F2

No Contaminants of Concern were associated with the groundwater on the Property.

#### 6.1.2 Contamination Impact on Other Media

The Contaminants of Concern identified within the native soil, which exceeded the applicable Site Condition Standards, can impact groundwater due to the nature of the contaminants.

#### 6.1.3 Presence of Light or Dense Non-Aqueous Phase Liquids

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected in the soil or groundwater on the Property.



## 6.2 Quality Assurance and Quality Control Results

Quality Assurance (QA) and Quality Control (QC) were maintained as per described in Section 5.12 above. In addition, laboratory results were compared to MECP standards for QA/QC under Ontario Regulation 153/04 which requires laboratory results to meet specific method detection limit (MDL) conditions. The sampling and analysis performed conformed with the following guidelines:

- 1. Ministry of the Environment, Conservation and Parks Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- 2. Protocol of Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act of Ontario.

Duplicate samples were submitted at a rate of 10% for both soil and groundwater samples.

All the samples collected and submitted for analysis adhered to the holding times, preservation methods, storage requirement and container type as specified by the guidelines listed above.

#### 7 Conclusions and Recommendations

The following conclusions and recommendations are presented based upon the Phase II ESA investigation.

Exceedances for PHC F2 were found in the native soil.

Based upon the nature of the exceedance and the current land use, no additional environmental investigation is recommended at this time for continued commercial use.

## 7.1 Signatures

The Phase II ESA has been completed in accordance with O. Reg. 153/04 by, Kim Pickett, C.E.T., LET, QP<sub>ESA</sub> under the direction and supervision of Jeremy Bobro, M<sub>ENVM</sub> and Matthew Bielaski, P.Eng., QP<sub>RA-ESA</sub>. The findings and conclusions presented in this report have been determined based on the information that was obtained and reviewed from previous investigations provided and on the current investigation for the Phase II Property.

We trust that this report meets your requirements at present.



## For and on behalf of our team,



Professional Engineers Ontario

Licensed Engineering Technologist

Name: K. L. PICKETT
Number: 100501338
Limitations: Environmental investigations of soil, groundwater, at and sediment products including Record of Site Conditions, soil management plans and completion of Phase I and Phase II Environmental Site Assessments, excluding design, construction and verification of site remediation.
Association of Professional Engineers of Ontario.
Kim Pickett, C.E.T, LET, QP ESA

Senior Environmental Consultant



Jeremy Bobro, MENVM Associate



Matthew Bielaski, P.Eng., QP RA-ESA Principal



#### 8 References

- 1. Ontario Ministry of the Environment, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.*
- 2. Ontario Ministry of the Environment, April 2011. Soil, Ground Water and Sediment Standards for use under Part XV. 1
- 3. Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04.
- 4. Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV. 1 of the Environmental Protection Act.
- 5. ArcGIS Interactive Maps. Retrieved from: http://www.arcgis.com/home/webmap/viewer.html
- 6. Armstrong, D.K. and Dodge, J.E.P. 2007. Paleozoic Geology Map of Southern Ontario. Ontario Geological Survey. Miscellaneous Release--Data 219.
- 7. Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey. Miscellaneous Release—Data 228.
- 8. City of Mississauga. Interactive Online Mapping Service. Retrieved from: https://www.mississauga.ca/portal/services/maps.
- 9. City of Mississauga. Zoning By-law 0225-2007 (in effect). Retrieved from: http://www.mississauga.ca/portal/residents/zoningbylaw.
- 10. Credit Valley Conservation Authority. Regulated Area Search. Retrieved from: https://cvc.ca/planning-permits/regulation-mapping/.
- 11. exp Services Inc. Due Diligence Phase I Environmental Assessment 60 Dundas Street East, Mississauga, Ontario. Project Number: GOR-00212908-AO. May 31, 2013.
- 12. Gao, C., Shirota, J., Kelly, R. I., Brunton, F.R., van Haaften, S. 2006. Bedrock topography and overburden thickness mapping, southern Ontario. Ontario Geological Survey. Miscellaneous Release—Data 207.
- 13. Grounded Engineering Inc. Phase I Environmental Site Assessment, 60 Dundas St. E., Mississauga, Ontario. Report Number: 21-067-201. May 21, 2021.
- 14. Lawrence, A.F., Douglass, D.P., and Thomson, J.E. Brampton Area; Drift Thickness Sheet; Ontario Department of Mines Map 2179. 1969.
- 15. Ministry of Environment, Conservation and Parks (MECP). Water Well Information System, Data Catalogue. Retrieved from: https://data.ontario.ca/dataset/well-records
- 16. Ministry of Environment, Conservation and Parks (MECP). Source Protection Information Atlas. Retrieved from:
  - https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-CA
- 17. Ministry of Natural Resources and Forestry (MNRF). Make A Map: Natural Heritage Areas. Retrieved from:
  - https://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR\_NHLUPS\_NaturalHeritage&viewer=NaturalHeritage&locale=en-US.
- 18. Natural Resources Canada. The Atlas of Canada Toporama. Retrieved from: https://atlas.gc.ca/toporama/en/index.html.



- 19. Ontario Geological Survey 2011. 1:250,000 scale bedrock geology of Ontario. Ontario Geological Survey. Miscellaneous Release---Data 126-Revision 1.
- 20. Ontario Geological Survey. 2010. Surficial geology of Southern Ontario. Ontario Geological Survey. Miscellaneous Release—Data 128-Revised.
- 21. Ontario Geological Survey. 2000. Quaternary geology, seamless coverage of the Province of Ontario. Ontario Geological Survey. Data Set 14---Revised.



### 9 Limitations and Restrictions

The Phase II ESA report was prepared for the purpose of identifying potential environmental concerns, including an assessment of the likelihood that the environmental quality of the soil and groundwater at the Property may have been adversely affected by past or present practices at the Property, and/or those of the adjacent properties prior to development of the Property. Any use of which a third party makes of this report, or any reliance on or decision to be made based on it, are the responsibility of such third parties. Grounded Engineering Inc. does not assume any responsibility for errors, omissions, damages or other limitation pertaining to third parties.

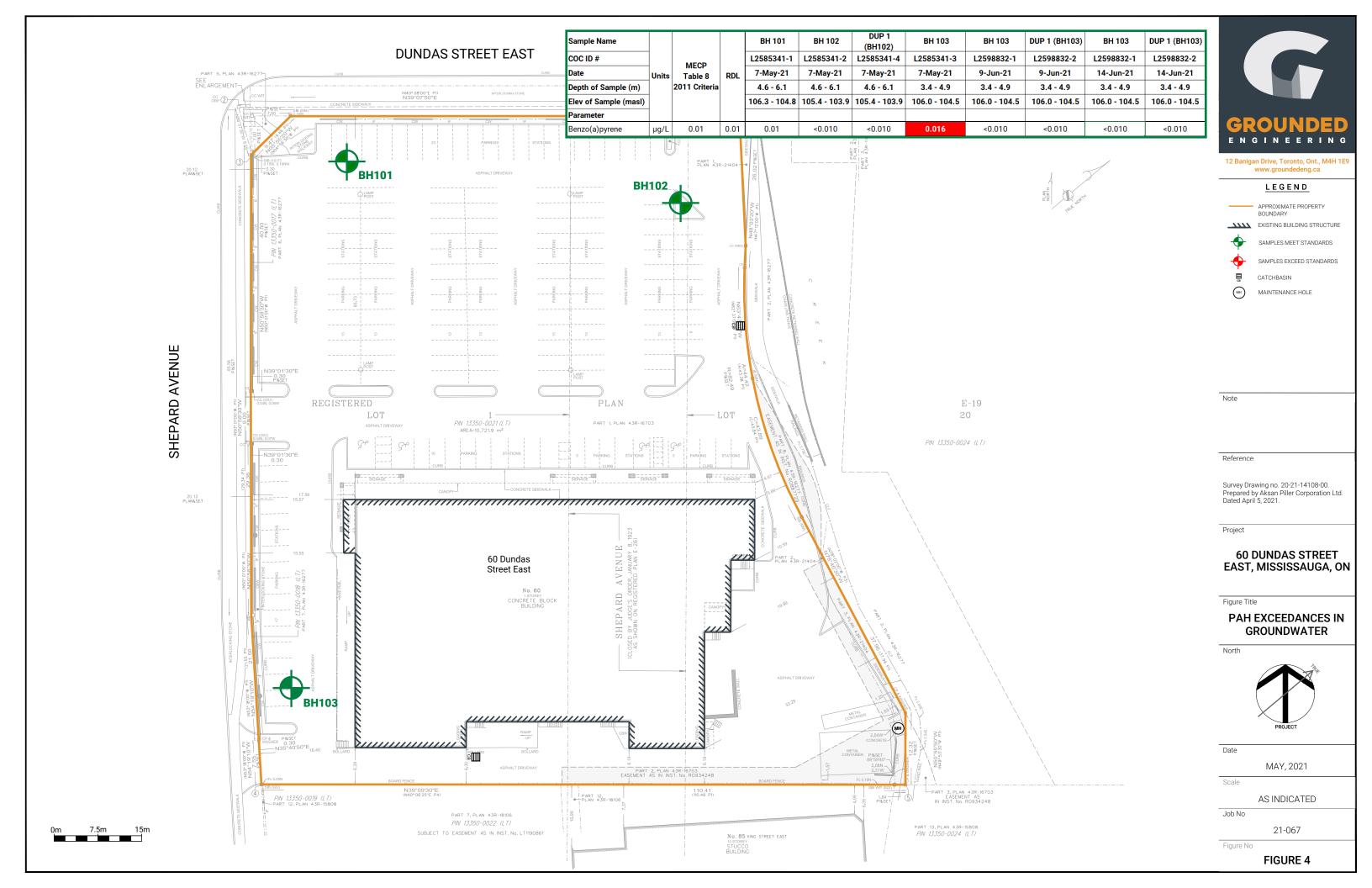
The information presented in this report is based on information collected during the completion of the subsurface investigation conducted by Grounded Engineering Inc. It is based on conditions at the Property at the time of the inspection. The subsurface conditions were assessed based on information collected at specific borehole and monitoring well locations. The actual subsurface conditions between sampling points may be different.

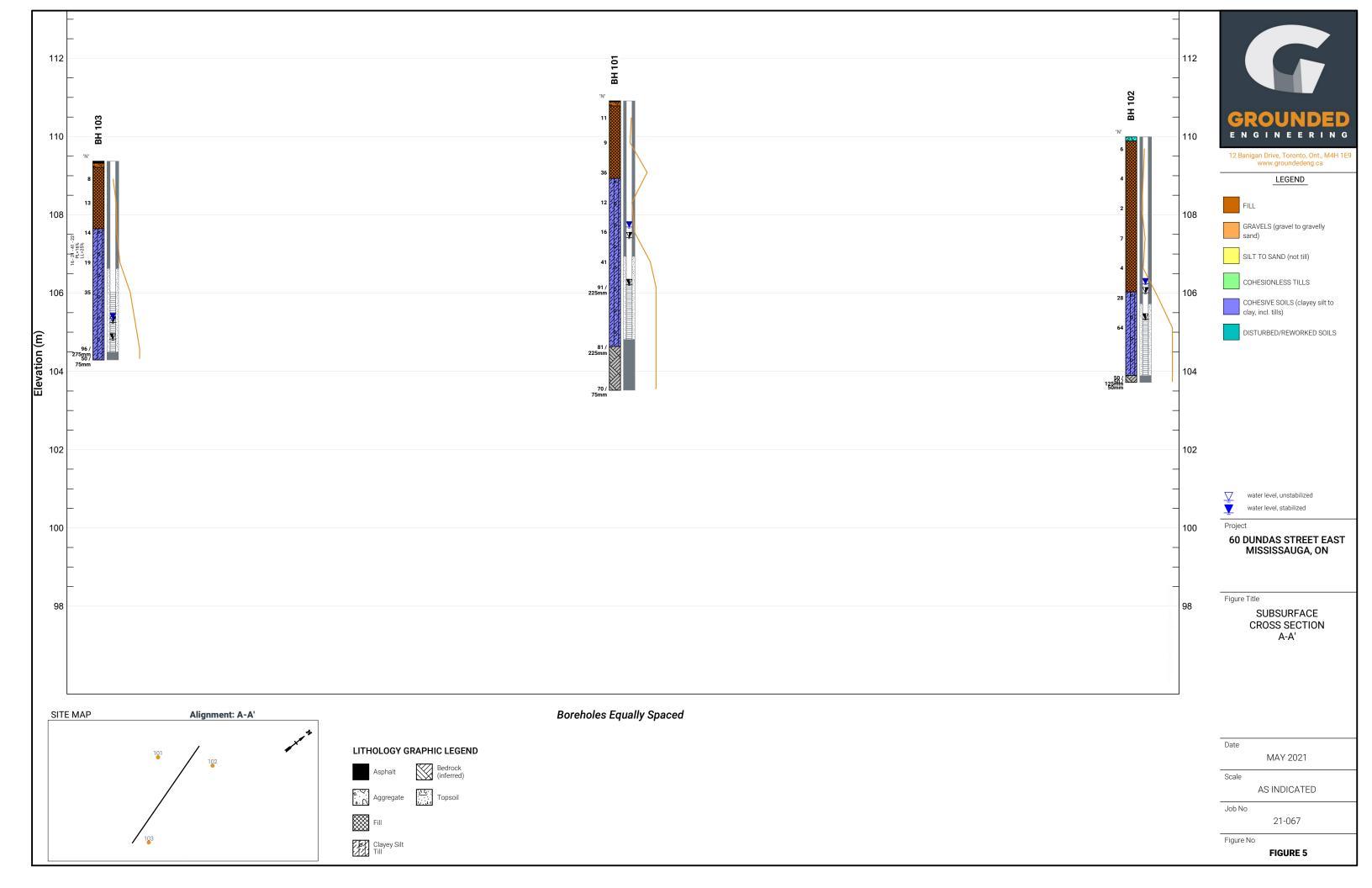
The conclusions presented in this report are based on work undertaken by trained professional and technical staff and are the product of professional care and competence. The report cannot be construed as legal advice or as an absolute guarantee.

If new information regarding the environmental condition of the Phase II Property is identified during future work, or outstanding responses from regulatory agencies indicate outstanding issues on file with respect to the Phase II Property, Grounded Engineering Inc. should be notified so that we may re-evaluate the findings of this assessment and provide amendments.

## 9.1 Report Use

The authorized users of this report are Almega Asset Management, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc.


# **FIGURES**






## **DUNDAS STREET EAST** PIN 13157-0083 (LT) 5.18m. WIDENING BY TOWN OF MISSISSAUGA BY BY-LAW 8687, INST. No. 149202VS 12 Banigan Drive, Toronto, Ont., M4H 1E9 www.groundedeng.ca 20.12 PLAN&SET BH102 LEGEND APPROXIMATE PROPERTY BOUNDARY **EXISTING BUILDING STRUCTURE** MONITORING WELL BY GROUNDED CATCHBASIN MAINTENANCE HOLE A - A CROSS SECTION LOCATION GROUNDWATER ELEVATION (MASL), MAY 10, 2021 SHEPARD AVENUE REGISTERED PLAN E-19 20 LOT PIN 13350-0024 (LT) Reference Survey Drawing no. 20-21-14108-00. Prepared by Aksan Piller Corporation Ltd. Dated April 5, 2021. **60 DUNDAS STREET** 60 Dundas EAST, MISSISSAUGA, ON Street East Figure Title **BOREHOLE AND MONITORING WELL LOCATION PLAN** Date MAY, 2021 PART 2, PLAN 43R-16703 EASEMENT AS IN INST. No. R0934248 Scale PART 3, PLAN 43R-16703 EASEMENT AS IN INST. No. R0934248 PIN 13350-0019 (LT) -- PART 12, PLAN 43R-15808 AS INDICATED Job No PART 7, PLAN 43R-18106 PIN 13350-0022 (LT) PART 13, PLAN 43R-15808 PIN 13350-0024 (LT) 21-067 SUBJECT TO EASEMENT AS IN INST. No. LT1190861 No. 85 KING STREET EAST 10 STOREY STUCCO BUILDING Figure No FIGURE 2

#### **DUNDAS STREET EAST** PIN 13157-0083 (LT) BH 101 SS4 BH 103 SS3B Sample Name BH 102 SS6B (BH 101 SS4) SEE ENLARGEMENT-MECP L2583177-16 L2583177-8 L2583177-12 COC ID # L2583177-4 Table 8 3-May-21 3-May-21 3-May-21 3-May-21 Units 2011 RDL 4.0 - 4.4 Depth of Sample (m) Criteria 2.3 - 2.9 2.3 - 2.9 1.7 - 2.1 RPIICC Elev of Sample (masl) 108.6 - 108.0 108.6 - 108.0 106.0 - 105.6 107.6 - 107.2 ENGINEERING Parameter 12 Banigan Drive, Toronto, Ont., M4H 1E9 www.groundedeng.ca F2 (C10 to C16) μg/g 10 10 14 21 20.12 PLAN&SET BH102 LEGEND APPROXIMATE PROPERTY **EXISTING BUILDING STRUCTURE** SAMPLES MEET STANDARDS SAMPLES EXCEED STANDARDS CATCHBASIN MH MAINTENANCE HOLE SHEPARD AVENUE REGISTERED PLAN E-19 20 LOT PIN 13350-0021 (LT) AREA=10,721.9 m<sup>2</sup> PIN 13350-0024 (LT) Reference Survey Drawing no. 20-21-14108-00. Prepared by Aksan Piller Corporation Ltd. Dated April 5, 2021. **60 DUNDAS STREET** 60 Dundas EAST, MISSISSAUGA, ON Street East Figure Title PHC EXCEEDANCES IN SOIL Date MAY, 2021 PART 2, PLAN 43R-16703 EASEMENT AS IN INST. No. R0934248 Scale PART 3, PLAN 43R-16703 EASEMENT AS IN INST. No. R0934248 PART 12, PLAN 43R-18106 PIN 13350-0019 (LT) -- PART 12, PLAN 43R-15808 AS INDICATED Job No PART 7, PLAN 43R-18106 PIN 13350-0022 (LT) PART 13, PLAN 43R-15808 PIN 13350-0024 (LT) 21-067 SUBJECT TO EASEMENT AS IN INST. No. LT1190861 No. 85 KING STREET EAST 10 STOREY STUCCO BUILDING Figure No FIGURE 3





# **APPENDIX A**





#### 1 Introduction

The sampling plan presents the sampling program for the property located at 60 Dundas Street East, Mississauga, Ontario (hereinafter referred to as the 'Property'). The recommended procedures and the quality assurance/ quality control (QA/QC) measures to be used for collecting data that is representative of the site conditions are summarized in this document.

#### 1.1 Objective of Sampling Plan

The purpose of the sampling plan is to ensure the uncertainty of the data collected from the Property is minimized such that decision making is not affected and maintain a quality that satisfies the requirements of a Phase II Environmental Site Assessment (ESA).

#### 2 Sampling Methods and Requirements

#### 2.1 Soil Sampling Methodology

Soil sampling is to be conducted via advancing boreholes into the subsurface at the Property. Soil samples should be collected for chemical analyses and characterization of the stratigraphy at the Property. Samples should be collected from the subsurface using split spoon samplers and details of the soil should be logged accordingly.

Field screening must be completed on all samples prior to chemical sampling. This should include but is not limited to observations for non-aqueous phase liquids, visual impacts, olfactory impacts, and screening probe measurements, and all findings should be recorded in the field logs. All soil samples collected must be screened using a calibrated combustible gas detector (gas-tech) and/or a photo-ionization detector (PID). Soil samples should be collected in resealable bags and allowed to reach ambient temperatures before inserting the detector probe into the bag to take measurements. The results of the field screening should be used to determine the required chemical analyses on select soil samples.

All soil samples to be submitted for chemical analyses should be collected in dedicated, clean laboratory supplied containers for each parameter required. Dedicated chemical resistant gloves are to be used to handle the soil samples to prevent cross contamination. The samples should be placed in clean insulated coolers with ice or equivalent cooling items that do not affect the environmental condition of the sample during storage and transport. Any samples to be collected for volatile organic compounds (VOCs), petroleum hydrocarbon F1 (PHCs F1), or benzene, toluene, ethylene, and xylene (BTEX) parameters are to be collected using dedicated soil core samplers to be placed in vials with methanol for preserving samples. All soil samples are assigned unique identification names with a date and location. Samples are then submitted to accredited laboratories with a Chain of Custody, following any holding time, temperature, and any other requirements that may affect the environmental condition of the sample.



Prior to any drilling activities, utility clearances are required from private and public locators to minimize the potential of striking buried utilities. If there is any uncertainty of the location of buried utilities or if drilling activities are required within 1 m of buried utilities, appropriate hand digging or daylighting activities are required to uncover the utility prior to drilling.

#### 2.2 Groundwater Sampling Methodology

All groundwater samples are to be collected from monitoring wells with screens intercepting the water table within the aquifer of interest. All monitoring wells are to be installed in general accordance to the Ontario Water Resources Act – R.R.O. 1990, Regulation 903 – Amended to Ontario Regulation 128/03, and must be installed by a licensed well contractor and have a valid well tag. All well components to be used should be covered until it is inserted in a borehole to minimize contamination. No lubricants or adhesives are allowed to be used at any monitoring well for installation or construction. Annular space at the well screens are to be backfilled with silica sand to at least 0.3 m above the top of the screen. Monitoring wells should be finished with a flushmount or a stick-up protective steel casing at ground surface, to be cemented in place.

Prior to groundwater sampling, all monitoring wells shall be developed to remove fines from the sand pack and well screen and to ensure that formation water is present within the well. Development should be completed using dedicated high or low density polyethylene tubing or bailers. Surge blocks should be used if turbidity does not improve based on visual observations. Field measurements of pH, conductivity, temperature, etc. should be collected using a multimeter instrument that is calibrated. Measurements should be collected for each wetted well volume removed from the monitoring well and documented accordingly. At a minimum, three (3) wetted well volumes are to be removed during development and shall be continued until the parameters stabilize based on field measurements and turbidity is deemed acceptable based on visual observations. To ensure groundwater samples collected are representative of formation water, stabilization of parameters shall be confirmed within 24 hours prior to sampling.

All groundwater samples to be submitted for chemical analyses should be collected in dedicated, clean laboratory supplied containers for each parameter required. Bladder pumps should be used for the collection of groundwater samples at the Property. All tubing used should be dedicated to each monitoring well to avoid cross contamination. Dedicated chemical resistant gloves are to be used to handle the groundwater samples to prevent cross contamination. The samples should be placed in clean insulated coolers with ice or equivalent cooling items that do not affect the environmental condition of the sample during storage and transport. When collecting samples for volatile contaminants, the vials shall not have any head space within the containers. All groundwater samples are assigned unique identification names with a date and location. Samples are then submitted to accredited laboratories with a Chain of Custody, following any holding time, temperature, and any other requirements that may affect the environmental condition of the sample.



#### 2.3 Quality Assurance/Quality Control

Clean laboratory supplied sample containers shall be used for all sampling conducted at the Property. Samples shall only be collected in the containers with preservatives specific to the parameter group required for analysis. Duplicate samples will be collected at a minimum of 10% of all samples rounded up.

For groundwater sampling, a trip blank prepared by the accredited laboratory will be submitted for chemical analyses to evaluate the potential for cross contamination during transportation.

#### 2.4 Equipment Cleaning

Dedicated equipment will be used for sampling at the Property for the majority of tasks such as collection of soil and groundwater samples. For equipment that must generally be reused, the following protocols shall be followed.

All split spoon sampling devices shall be cleaned and decontaminated between sampling intervals, auger flights, as well as borehole locations. Any residue generated during drilling operations such as soil cuttings and decontamination fluids shall be disposed in sealed drums that are labelled, to be disposed of off-site by the licensed well contractor or otherwise specified by the Client.

When installing monitoring wells, all construction parts should be covered until insertion into the borehole. When measuring field parameters, the probe shall be cleaned between monitoring wells. Water levels shall also be decontaminated between monitoring wells during well development and before groundwater sampling.

## 3 Sampling Rationale

#### 3.1 Areas of Potential Environmental Concern and Potential Contaminants of Concern

The following table summarizes the location of the Areas of Potential Environmental Concern (APECs) and the associated potential contaminants of concern (PCOCs) at the Proeprty. The media potentially impacted have also been identified.



| Areas of Potential Environmental Concern (APECs)                                        | Location of APECs<br>on Phase One<br>Property          | Location of PCA (onsite or off-site) | Potential<br>Contaminants of<br>Concern (PCoCs) | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|--|
| APEC 1:<br>#30 - Importation of Fill Material of<br>Unknown Quality                     | Entire Phase I<br>Property                             | Onsite                               | Metals As, Sb, Se CN- Hg Cr(VI) PAHs            | Soil & Groundwater                                                      |  |
| APEC 2:                                                                                 | Entire Phase I                                         | Onsite                               | EC<br>SAR                                       | Soil                                                                    |  |
| #01 - Other (De-icing Activities)                                                       | Property                                               |                                      | Cl<br>Na                                        | Groundwater                                                             |  |
| APEC 3:<br>#37(i) - Operation of Dry Cleaning<br>Equipment (where chemicals are used)   | Entire Phase I<br>Property                             | Onsite                               | VOCs                                            | Soil & Groundwater                                                      |  |
| APEC 4:<br>#10(i) - Commercial Autobody Shops                                           | Northern and<br>Western Portion of<br>Phase I Property | Off-site                             | Metals As, Sb, Se BTEX PHCs VOCs                | Groundwater                                                             |  |
| APEC 5:<br>#37(ii) - Operation of Dry Cleaning<br>Equipment (where chemicals are used)  | Northern and<br>Western Portion of<br>Phase I Property | Off-site                             | VOCs                                            | Groundwater                                                             |  |
| APEC 6:<br>#28(i) – Gasoline and Associated Products<br>Storage in Fixed Tanks          | Northern Portion of<br>Phase I Property                | Off-site                             | PHCs<br>BTEX                                    | Groundwater                                                             |  |
| APEC 7:<br>#03 - Other (PCB Use)                                                        | Northern Portion of<br>Phase I Property                | Off-site                             | PCBs                                            | Groundwater                                                             |  |
| APEC 8:<br>#37(iii) - Operation of Dry Cleaning<br>Equipment (where chemicals are used) | Northern Portion of<br>Phase I Property                | Off-site                             | VOCs                                            | Groundwater                                                             |  |
| APEC 9:<br>#10(ii) - Commercial Autobody Shops                                          | Northern Portion of<br>Phase I Property                | Off-site                             | Metals As, Sb, Se BTEX PHCs VOCs                | Groundwater                                                             |  |



| Areas of Potential Environmental Concern (APECs)                                 | Location of APECs<br>on Phase One<br>Property  | Location of PCA (onsite or off-site) | Potential<br>Contaminants of<br>Concern (PCoCs) | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |
|----------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|
| APEC 10:<br>#28(ii) – Gasoline and Associated Products<br>Storage in Fixed Tanks | Northwestern<br>Portion of Phase I<br>Property | Off-site                             | PHCs<br>BTEX                                    | Groundwater                                                             |
| APEC 11:<br>#02(i) – Other (Ontario Spills)                                      | Northwestern<br>Portion of Phase I<br>Property | Off-site                             | PHCs<br>BTEX                                    | Groundwater                                                             |
| APEC 12:<br>#10(iii) - Commercial Autobody Shops                                 | Western Portion of<br>Phase I Property         | Off-site                             | PHCs<br>VOCs                                    | Groundwater                                                             |

## 3.2 Proposed Borehole Location and Rationale

| Borehole | Rationale                                                                                                                                                                                              | APEC         | Chemical Analysis                                                |                                                                |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|----------------------------------------------------------------|--|
|          | Rauonale                                                                                                                                                                                               | Investigated | Soil                                                             | Groundwater                                                    |  |
| BH101    | Borehole to determine soil stratigraphy. Sample of fill material and native soils to determine soil quality. Borehole advanced at northwestern portion of Property to determine possible contaminants. | 1 to 12      | Metals As, Sb, Se CN- Hg EC SAR Cr(VI) B-HWS PAHs PHCs BTEX VOCs | Metals As, Sb, Se CN- Hg Cr(VI) Na CI PAHs PHCs BTEX VOCs PCBs |  |

# Appendix A: Sampling Plan



|          |                                                                                                                                                                                                        | APEC         | Chemic                                                           | al Analysis                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|----------------------------------------------------------------|
| Borehole | Rationale                                                                                                                                                                                              | Investigated | Soil                                                             | Groundwater                                                    |
| BH102    | Borehole to determine soil stratigraphy. Sample of fill material and native soils to determine soil quality. Borehole advanced at northeastern portion of Property to determine possible contaminants. | 1 to 9       | Metals As, Sb, Se CN- Hg EC SAR Cr(VI) B-HWS PAHS PHCS BTEX VOCS | Metals As, Sb, Se CN- Hg Cr(VI) Na CI PAHs PHCs BTEX VOCs PCBs |
| BH103    | Borehole to determine soil stratigraphy. Sample of fill material and native soils to determine soil quality. Borehole advanced at southwestern portion of Property to determine possible contaminants. | 1 to 5<br>12 | Metals As, Sb, Se CN- Hg EC SAR Cr(VI) B-HWS PAHs PHCs BTEX VOCs | Metals As, Sb, Se CN- Hg Cr(VI) Na CI PAHs PHCs BTEX VOCs      |

# **APPENDIX B**





Date Started: May 3, 2021

Position: E: 611836, N: 4826307 (UTM 17T)

Elev. Datum: Geodetic

## **BOREHOLE LOG 101**

File No.: 21-067 Project: 60 Dundas Street East, Mississauga, ON Client: Almega Asset Management undrained shear strength (kPa) headspace vapour (ppm) stratigraphy lab data

| 1                 |                      | stratigraphy                                                      |                                           |        | sampi | es            | Ē               |                                 | _                | O unconfined + field vane       | neadspace vapour (ppm)                            | lab data                |
|-------------------|----------------------|-------------------------------------------------------------------|-------------------------------------------|--------|-------|---------------|-----------------|---------------------------------|------------------|---------------------------------|---------------------------------------------------|-------------------------|
| d rig             | elev<br>depth<br>(m) |                                                                   |                                           |        |       | a)            | depth scale (m) | well details                    | elevation (m)    | pocket penetrometer    Lab Vane | X hexane ☐ isobutylene 100 200 300                | and<br>≧ comments       |
| ntec              | elev                 |                                                                   | go                                        |        |       | alue          | SCS             | ete                             | O                | 40 80 120 160                   |                                                   | ਦਿ ਙ                    |
| atho              | depth                | description                                                       | <u>.</u>                                  | er     |       | »<br>-        | 듔               | =                               | vati             | SPT N-values (bpf)              | moisture / plasticity  PL MC LL                   | grain size              |
| E &               | ()                   |                                                                   | graphic log                               | number | type  | SPT N-value   | dei             | ×                               | e e              | X dynamic cone                  | l <del>⊢                                   </del> | (MIT)                   |
| 윤년                | 110.9                | GROUND SURFACE                                                    | g                                         | 'n     | ty    | S             | 0 -             |                                 |                  | 10 20 30 40                     | 10 20 30                                          | GR SA SI CL             |
| 1 ↑               |                      | 25mm ASPHALT                                                      |                                           |        |       |               | ľ               |                                 | _                |                                 |                                                   |                         |
|                   | -                    | \100mm AGGREGATE /                                                | ₩                                         |        |       |               |                 |                                 |                  |                                 |                                                   |                         |
|                   | -                    | FILL, sand, some silt, trace organics,                            | $\bowtie$                                 | 1      | SS    | 11            |                 |                                 |                  |                                 |                                                   |                         |
|                   | ١.                   | organic odour, loose to compact, dark                             | ₩                                         |        |       |               | ١.              |                                 | -                |                                 |                                                   | SS1: PAHs               |
|                   |                      | brown, moist                                                      | $\bowtie$                                 |        |       |               |                 |                                 | _                |                                 |                                                   |                         |
|                   | -                    |                                                                   | ₩                                         |        |       |               |                 |                                 | <del>-</del> 110 |                                 |                                                   |                         |
|                   | -                    |                                                                   | ₩                                         |        | 00    | 9             | 1-              |                                 | - 110            |                                 | , 0                                               | -                       |
|                   |                      |                                                                   | ₩                                         | 2      | SS    | 9             |                 |                                 | -                |                                 |                                                   | SS2: H-Ms, Metals, ORPs |
|                   | '                    |                                                                   | $\ggg$                                    |        |       |               |                 |                                 | _                |                                 |                                                   |                         |
|                   | -                    |                                                                   | $\ggg$                                    |        |       |               |                 |                                 |                  |                                 |                                                   |                         |
|                   | -                    | at 1.5 m, dense, some gravel                                      | ₩                                         |        |       |               | ١.              |                                 | _                |                                 |                                                   |                         |
|                   |                      |                                                                   | XXX                                       | ЗА     | SS    |               |                 |                                 | _                |                                 |                                                   | -                       |
|                   | 108.9                |                                                                   | ₩                                         |        |       | 36            |                 |                                 | <del>-</del> 109 |                                 |                                                   | _                       |
|                   | 2.0                  | at 2.0 m, trace rock fragments, inferred                          |                                           | 3B     | SS    |               | 2-              |                                 |                  |                                 |                                                   |                         |
|                   | -                    | \cobbles \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                    | 11                                        |        |       |               |                 |                                 |                  | /    '                          |                                                   | SS3B: PCBs              |
|                   |                      | CLAYEY SILT, sandy, some gravel, stiff to very stiff, grey, moist | ***                                       |        |       |               |                 |                                 | -                |                                 |                                                   | -                       |
|                   | -                    | very stiff, grey, moist                                           |                                           |        |       |               |                 |                                 | _                |                                 |                                                   |                         |
|                   | -                    | (GLACIAL TILL)                                                    | 11                                        | 4      | SS    | 12            |                 |                                 |                  |                                 |                                                   | SS4: BTEX, PHCs         |
|                   |                      |                                                                   | 41                                        |        |       |               |                 |                                 | _                |                                 |                                                   | 334. BTEA, FRICS        |
|                   |                      |                                                                   |                                           |        |       |               | ,               |                                 | <del></del> 108  |                                 |                                                   | -                       |
|                   | -                    |                                                                   | 11                                        |        |       |               | 3 -             |                                 | _                |                                 |                                                   |                         |
|                   | -                    |                                                                   |                                           |        |       |               |                 | - <u>V</u>                      |                  |                                 |                                                   |                         |
| S I               | -                    |                                                                   | 11                                        | 5      | SS    | 16            |                 |                                 | _                |                                 |                                                   | -                       |
| inge mu           |                      |                                                                   | 11                                        |        |       |               |                 |                                 | -                |                                 |                                                   | -                       |
| me 201            | -                    |                                                                   |                                           |        |       |               |                 |                                 | _                |                                 |                                                   | _                       |
| solid stem augers | -                    | at 3.8 m, hard, trace rock fragments,                             | 4                                         |        |       |               |                 |                                 | 407              |                                 |                                                   |                         |
| soli              | Ί-                   | inferred cobbles                                                  | 11                                        |        |       |               | 4 -             | (1) (1) (1) (1) (1) (1) (1) (1) | <del></del> 107  |                                 |                                                   | -                       |
|                   |                      |                                                                   | \\\<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 6      | SS    | 41            |                 |                                 | ŀ                |                                 |                                                   |                         |
|                   |                      |                                                                   | 42                                        |        |       |               |                 |                                 | ļ.               |                                 |                                                   |                         |
|                   | -                    |                                                                   | 12                                        |        |       |               |                 |                                 | i                |                                 |                                                   |                         |
|                   | -                    |                                                                   | 11                                        |        |       |               |                 | ₽₩                              | ſ                |                                 |                                                   |                         |
|                   | Ι.                   |                                                                   | 11                                        | 7      | SS    | 91 /<br>225mm | Ι.              | J 📙 :                           | t                |                                 |                                                   |                         |
|                   |                      |                                                                   | ***                                       |        |       | 22311111      |                 |                                 | - 106            |                                 |                                                   | SS7: BTEX, VOCs         |
|                   | -                    |                                                                   | XX                                        |        |       |               | 5-              |                                 |                  |                                 |                                                   |                         |
|                   | -                    |                                                                   | 11                                        |        |       |               |                 | <b>∤∴</b>    ∴                  | -                |                                 |                                                   |                         |
|                   | Ι.                   |                                                                   | <b>₩</b>                                  |        |       |               | Ι.              | J 目:                            |                  |                                 |                                                   |                         |
|                   |                      |                                                                   |                                           |        |       |               |                 |                                 | ļ.               |                                 |                                                   |                         |
|                   | -                    |                                                                   | 11                                        |        |       |               |                 | 1::目::                          |                  |                                 |                                                   |                         |
|                   | -                    |                                                                   | 14                                        |        |       |               |                 |                                 | [                |                                 |                                                   |                         |
|                   |                      |                                                                   | $\mathcal{U}$                             |        |       |               | 6-              |                                 | <del>-</del> 105 |                                 |                                                   | -                       |
|                   | -                    |                                                                   | 11                                        |        |       |               | 0-              |                                 | L                |                                 |                                                   |                         |
|                   | 104.6                |                                                                   | JH.                                       | 8A     | SS    | 81 /          |                 |                                 |                  |                                 |                                                   |                         |
|                   | 6.3                  | INFERRED BEDROCK, shale and limestone                             | $\times\!\!\!\!/$                         | 8B     | SS    | 225mm         | ١.              |                                 |                  |                                 |                                                   | ,                       |
|                   | Ι.                   | fragments, grey                                                   | $\Rightarrow > >$                         |        |       |               | Ι.              |                                 | -                |                                 |                                                   |                         |
|                   |                      |                                                                   | $\langle\!\langle\!\rangle$               |        |       |               | ·               |                                 | _                |                                 |                                                   |                         |
|                   | -                    |                                                                   | $\gg$                                     |        |       |               | '               |                                 | 101              |                                 |                                                   |                         |
|                   | -                    |                                                                   | \//.                                      |        |       |               | 7 -             |                                 | <del></del> 104  |                                 |                                                   | ]                       |
|                   | 1                    |                                                                   | X                                         |        |       |               |                 |                                 | -                |                                 |                                                   | -                       |
| -   ↓             | 103.5                |                                                                   | ///                                       |        | 00    | 70 /          |                 |                                 | L                |                                 |                                                   |                         |
|                   | 7.4                  | ı N                                                               | <u> </u>                                  | ر و    | ss ,  | 70 /<br>75mm  |                 |                                 |                  |                                 | N                                                 | ı                       |
| 1                 |                      | END OF BODEHOLE                                                   |                                           |        |       |               |                 |                                 |                  |                                 |                                                   |                         |

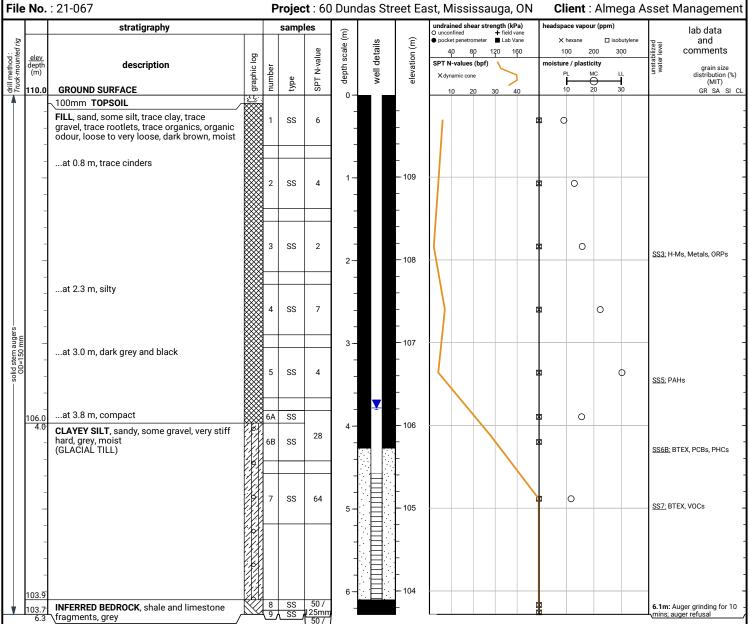
**END OF BOREHOLE** 

Dry and open upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

Date May 4, 2021 May 6, 2021 May 10, 2021




Date Started: May 3, 2021

Position: E: 611879, N: 4826347 (UTM 17T)

Elev. Datum: Geodetic

## **BOREHOLE LOG 102**

Project: 60 Dundas Street East, Mississauga, ON Client: Almega Asset Management



#### **END OF BOREHOLE**

Auger refusal on inferred bedrock

Dry and open upon completion of drilling.

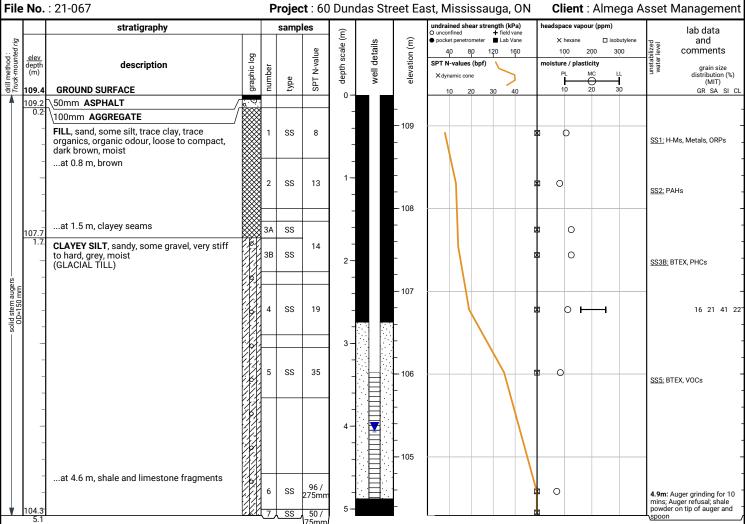
50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS\_

| Water Depth (m) | Elevation (m |
|-----------------|--------------|
| 4.7             | 105.3        |
| 4.0             | 106.0        |
| 3.8             | 106.2        |
|                 | 4.0          |

50mm




Date Started: May 3, 2021

Position: E: 611901, N: 4826243 (UTM 17T)

Elev. Datum: Geodetic

## **BOREHOLE LOG 103**

Client: Almega Asset Management Project: 60 Dundas Street East, Mississauga, ON



#### **END OF BOREHOLE**

Auger refusal on inferred bedrock

Dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

No. 10 screen

**GROUNDWATER LEVELS** 

| Date         | Water Depth (m) | Elevation (m) |
|--------------|-----------------|---------------|
| May 4, 2021  | 4.6             | 104.8         |
| May 6, 2021  | 4.1             | 105.3         |
| May 10, 2021 | 4.1             | 105.3         |

# **APPENDIX C**





Grounded Engineering Inc

ATTN: ZENITH WONG 12 Banigan Drive

TORONTO ON M4H 1E9

Date Received: 04-MAY-21

Report Date: 12-MAY-21 13:27 (MT)

Version: FINAL

Client Phone: 647-264-7932

# Certificate of Analysis

Lab Work Order #: L2583177
Project P.O. #: NOT SUBMITTED

Job Reference: 21-067

C of C Numbers: 20-888179, 20-888180

Legal Site Desc:

Jennifer Barkshire-Paterson Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2583177 CONT'D....

Job Reference: 21-067
PAGE 2 of 17
12-MAY-21 13:27 (MT)

## **Summary of Guideline Exceedances**

| Guideline   |                            |                                      |                                |        |                 |       |
|-------------|----------------------------|--------------------------------------|--------------------------------|--------|-----------------|-------|
| ALS ID      | Client ID                  | Grouping                             | Analyte                        | Result | Guideline Limit | Unit  |
| Ontario Reg | ulation 153/04 - April 15, | 2011 Standards - T8-Soil-Res/Park/Ir | nst/Ind/Com/Commu Property Use |        |                 |       |
| _2583177-2  | BH 101 SS2                 | Physical Tests                       | Conductivity                   | 0.921  | 0.7             | mS/cm |
|             |                            | Saturated Paste Extractables         | SAR                            | 17.6   | 5               | SAR   |
| .2583177-4  | BH 101 SS4                 | Hydrocarbons                         | F2 (C10-C16)                   | 13     | 10              | ug/g  |
| 2583177-6   | BH 102 SS3                 | Physical Tests                       | Conductivity                   | 1.37   | 0.7             | mS/cm |
|             |                            | Saturated Paste Extractables         | SAR                            | 23.1   | 5               | SAR   |
| 2583177-10  | BH 103 SS1                 | Physical Tests                       | Conductivity                   | 1.85   | 0.7             | mS/cm |
|             |                            | Saturated Paste Extractables         | SAR                            | 31.7   | 5               | SAR   |
| 2583177-12  | BH 103 SS3B                | Hydrocarbons                         | F2 (C10-C16)                   | 21     | 10              | ug/g  |
| 2583177-14  | DUP 1                      | Physical Tests                       | Conductivity                   | 1.15   | 0.7             | mS/cm |
|             |                            | Saturated Paste Extractables         | SAR                            | 20.2   | 5               | SAR   |
| 2583177-16  | DUP 3                      | Hydrocarbons                         | F2 (C10-C16)                   | 14     | 10              | ug/g  |



L2583177 CONT'D.... Job Reference: 21-067 PAGE 3 of 17 12-MAY-21 13:27 (MT)

**Physical Tests - SOIL** 

| ,            |          |              |            |            |             |            |            |            |            |             |            |
|--------------|----------|--------------|------------|------------|-------------|------------|------------|------------|------------|-------------|------------|
|              |          | Lab ID       | L2583177-1 | L2583177-2 | L2583177-3  | L2583177-4 | L2583177-5 | L2583177-6 | L2583177-7 | L2583177-8  | L2583177-9 |
|              | (        | Sample Date  | 03-MAY-21  | 03-MAY-21  | 03-MAY-21   | 03-MAY-21  | 03-MAY-21  | 03-MAY-21  | 03-MAY-21  | 03-MAY-21   | 03-MAY-21  |
|              |          | Sample ID    | BH 101 SS1 | BH 101 SS2 | BH 101 SS3B | BH 101 SS4 | BH 101 SS7 | BH 102 SS3 | BH 102 SS5 | BH 102 SS6B | BH 102 SS7 |
|              |          |              |            |            |             |            |            |            |            |             |            |
|              | ,        | Guide Limits | 1          |            |             |            |            |            |            |             |            |
| Analyte      | Unit     | #1 #2        | •          |            |             |            |            |            |            |             |            |
|              |          |              | _          |            |             |            |            |            |            |             |            |
| Conductivity | mS/cm    | 0.7 -        |            | 0.921      |             |            |            | 1.37       |            |             |            |
| % Moisture   | %        |              | 9.80       | 9.35       | 9.70        | 9.41       | 7.72       | 5.77       | 22.8       | 8.55        | 7.05       |
| рН           | pH units |              |            | 7.62       |             |            |            | 7.91       |            |             |            |
|              |          |              |            |            |             |            |            |            |            |             |            |

#### Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

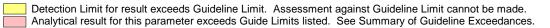


L2583177 CONT'D....
Job Reference: 21-067
PAGE 4 of 17
12-MAY-21 13:27 (MT)

**Physical Tests - SOIL** 

| i ilyalcai i cata doil |      |                       |             |             |             |             |              |             |             |             |             |
|------------------------|------|-----------------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|
|                        |      | Lab ID                | L2583177-10 | L2583177-11 | L2583177-12 | L2583177-13 | L2583177-14  | L2583177-15 | L2583177-16 | L2583177-17 | L2583177-18 |
|                        | S    | Sample Date           | 03-MAY-21   | 03-MAY-21   | 03-MAY-21   | 03-MAY-21   | 03-MAY-21    | 03-MAY-21   | 03-MAY-21   | 03-MAY-21   | 03-MAY-21   |
|                        |      | Sample ID             | BH 103 SS1  | BH 103 SS2  | BH 103 SS3B | BH 103 SS5  | DUP 1        | DUP 2       | DUP 3       | DUP 4       | DUP 5       |
|                        |      |                       |             |             |             |             |              |             |             |             |             |
| Analyte                | Unit | Guide Limits<br>#1 #2 |             |             |             |             |              |             |             |             |             |
| Analyte Conductivity   |      |                       | 1.85        |             |             |             | 1.15         |             |             |             |             |
|                        | Unit | #1 #2                 |             | 7.43        | 10.6        | 12.0        | 1.15<br>7.91 | 9.48        | 9.03        | 8.53        | 7.29        |

Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use




L2583177 CONT'D.... Job Reference: 21-067 PAGE 5 of 17 12-MAY-21 13:27 (MT)

#### Cyanides - SOIL

| Cyanide, Weak Acid Diss | ug/g | 0.051  | -      | <0.050     | <0.050     | <0.050      | <0.050      |
|-------------------------|------|--------|--------|------------|------------|-------------|-------------|
| Analyte                 | Unit | #1     | #2     |            |            |             |             |
|                         |      | Guide  | Limits |            |            |             |             |
|                         |      | Sam    | ple ID | BH 101 SS2 | BH 102 SS3 | BH 103 SS1  | DUP 1       |
|                         |      | Sample | e Date | 03-MAY-21  | 03-MAY-21  | 03-MAY-21   | 03-MAY-21   |
|                         |      | L      | ∟ab ID | L2583177-2 | L2583177-6 | L2583177-10 | L2583177-14 |

#### Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use





L2583177 CONT'D.... Job Reference: 21-067 PAGE 6 of 17 12-MAY-21 13:27 (MT)

#### **Saturated Paste Extractables - SOIL**

|                |      |       | Lab ID  | L2583177-2 | L2583177-6 | L2583177-10 | L2583177-14 |
|----------------|------|-------|---------|------------|------------|-------------|-------------|
|                |      | Sampl | e Date  | 03-MAY-21  | 03-MAY-21  | 03-MAY-21   | 03-MAY-21   |
|                |      | San   | iple ID | BH 101 SS2 | BH 102 SS3 | BH 103 SS1  | DUP 1       |
|                |      | Guide | Limits  |            |            |             |             |
| Analyte        | Unit | #1    | #2      |            |            |             |             |
| SAR            | SAR  | 5     | -       | 17.6       | 23.1       | 31.7        | 20.2        |
| Calcium (Ca)   | mg/L | -     | -       | 6.17       | 6.16       | 4.85        | 7.19        |
| Magnesium (Mg) | mg/L | -     | -       | 0.90       | 2.15       | 2.68        | 0.98        |
| Sodium (Na)    | mg/L | -     | -       | 177        | 261        | 350         | 218         |
|                |      |       |         |            |            |             |             |

#### Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use



L2583177 CONT'D.... Job Reference: 21-067 PAGE 7 of 17 12-MAY-21 13:27 (MT)

#### Metals - SOIL

| WELAIS - SOIL             |      |             |              |            |            |             |             |
|---------------------------|------|-------------|--------------|------------|------------|-------------|-------------|
|                           |      |             | Lab ID       | L2583177-2 | L2583177-6 | L2583177-10 | L2583177-14 |
|                           |      | •           | e Date       | 03-MAY-21  | 03-MAY-21  | 03-MAY-21   | 03-MAY-21   |
|                           |      | Sample ID   |              | BH 101 SS2 | BH 102 SS3 | BH 103 SS1  | DUP 1       |
| Analyte                   | Unit | Guide<br>#1 | Limits<br>#2 |            |            |             |             |
| Antimony (Sb)             | ug/g | 1.3         | -            | <1.0       | <1.0       | <1.0        | <1.0        |
| Arsenic (As)              | ug/g | 18          | -            | 3.2        | 2.6        | 3.6         | 3.4         |
| Barium (Ba)               | ug/g | 220         | -            | 33.7       | 34.4       | 42.4        | 41.7        |
| Beryllium (Be)            | ug/g | 2.5         | -            | <0.50      | <0.50      | <0.50       | <0.50       |
| Boron (B)                 | ug/g | 36          | -            | <5.0       | <5.0       | <5.0        | <5.0        |
| Boron (B), Hot Water Ext. | ug/g | 1.5         | -            | 0.14       | 0.14       | 0.23        | 0.14        |
| Cadmium (Cd)              | ug/g | 1.2         | -            | <0.50      | <0.50      | <0.50       | <0.50       |
| Chromium (Cr)             | ug/g | 70          | -            | 9.5        | 8.4        | 10.9        | 10.6        |
| Cobalt (Co)               | ug/g | 22          | -            | 4.2        | 3.9        | 4.3         | 4.4         |
| Copper (Cu)               | ug/g | 92          | -            | 19.2       | 10.8       | 21.0        | 17.2        |
| Lead (Pb)                 | ug/g | 120         | -            | 8.4        | 9.3        | 47.4        | 9.6         |
| Mercury (Hg)              | ug/g | 0.27        | -            | 0.0188     | 0.0241     | 0.0427      | 0.0217      |
| Molybdenum (Mo)           | ug/g | 2           | -            | <1.0       | <1.0       | <1.0        | <1.0        |
| Nickel (Ni)               | ug/g | 82          | -            | 9.2        | 7.5        | 9.0         | 8.9         |
| Selenium (Se)             | ug/g | 1.5         | -            | <1.0       | <1.0       | <1.0        | <1.0        |
| Silver (Ag)               | ug/g | 0.5         | -            | <0.20      | <0.20      | <0.20       | <0.20       |
| Thallium (TI)             | ug/g | 1           | -            | <0.50      | <0.50      | <0.50       | <0.50       |
| Uranium (U)               | ug/g | 2.5         | -            | <1.0       | <1.0       | <1.0        | <1.0        |
| Vanadium (V)              | ug/g | 86          | -            | 17.9       | 16.5       | 20.7        | 20.7        |
| Zinc (Zn)                 | ug/g | 290         | -            | 32.6       | 27.1       | 48.0        | 35.0        |
|                           |      |             |              |            |            |             |             |

Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use



L2583177 CONT'D.... Job Reference: 21-067 PAGE 8 of 17 12-MAY-21 13:27 (MT)

#### **Speciated Metals - SOIL**

|                      |      | Sample      | Lab ID<br>e Date<br>iple ID | L2583177-2<br>03-MAY-21<br>BH 101 SS2 | L2583177-6<br>03-MAY-21<br>BH 102 SS3 | L2583177-10<br>03-MAY-21<br>BH 103 SS1 | L2583177-14<br>03-MAY-21<br>DUP 1 |
|----------------------|------|-------------|-----------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------|
| Analyte              | Unit | Guide<br>#1 | Limits<br>#2                |                                       |                                       |                                        |                                   |
| Chromium, Hexavalent | ug/g | 0.66        |                             | 0.35                                  | 0.32                                  | 0.33                                   | 0.27                              |

#### Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use





L2583177 CONT'D.... Job Reference: 21-067 PAGE 9 of 17 12-MAY-21 13:27 (MT)

**Volatile Organic Compounds - SOIL** 

|                                   |      | Sampl       | Lab ID<br>e Date<br>ple ID | L2583177-4<br>03-MAY-21<br>BH 101 SS4 | L2583177-5<br>03-MAY-21<br>BH 101 SS7 | L2583177-8<br>03-MAY-21<br>BH 102 SS6B | L2583177-9<br>03-MAY-21<br>BH 102 SS7 | L2583177-12<br>03-MAY-21<br>BH 103 SS3B | L2583177-13<br>03-MAY-21<br>BH 103 SS5 | L2583177-16<br>03-MAY-21<br>DUP 3 | L2583177-17<br>03-MAY-21<br>DUP 4 |
|-----------------------------------|------|-------------|----------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------|-----------------------------------|
| Analyte                           | Unit | Guide<br>#1 | Limits<br>#2               |                                       |                                       |                                        |                                       |                                         |                                        |                                   |                                   |
| Acetone                           | ug/g | 0.5         | -                          |                                       | <0.50                                 |                                        | <0.50                                 |                                         | <0.50                                  |                                   | <0.50                             |
| Benzene                           | ug/g | 0.02        | -                          | <0.0068                               | <0.0068                               | <0.0068                                | <0.0068                               | <0.0068                                 | <0.0068                                | <0.0068                           | <0.0068                           |
| Bromodichloromethane              | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| Bromoform                         | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| Bromomethane                      | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| Carbon tetrachloride              | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | <0.050                            |
| Chlorobenzene                     | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| Dibromochloromethane              | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| Chloroform                        | ug/g | 0.05        | -                          |                                       | < 0.050                               |                                        | < 0.050                               |                                         | < 0.050                                |                                   | < 0.050                           |
| 1,2-Dibromoethane                 | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| 1,2-Dichlorobenzene               | ug/g | 0.05        | -                          |                                       | < 0.050                               |                                        | < 0.050                               |                                         | < 0.050                                |                                   | < 0.050                           |
| 1,3-Dichlorobenzene               | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| 1,4-Dichlorobenzene               | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| Dichlorodifluoromethane           | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | <0.050                            |
| 1,1-Dichloroethane                | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | <0.050                            |
| 1,2-Dichloroethane                | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | <0.050                            |
| 1,1-Dichloroethylene              | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | < 0.050                           |
| cis-1,2-Dichloroethylene          | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | <0.050                            |
| trans-1,2-Dichloroethylene        | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | < 0.050                           |
| Methylene Chloride                | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | <0.050                            |
| 1,2-Dichloropropane               | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | < 0.050                               |                                         | <0.050                                 |                                   | < 0.050                           |
| cis-1,3-Dichloropropene           | ug/g | -           | -                          |                                       | <0.030                                |                                        | <0.030                                |                                         | <0.030                                 |                                   | <0.030                            |
| trans-1,3-Dichloropropene         | ug/g | -           | -                          |                                       | <0.030                                |                                        | < 0.030                               |                                         | <0.030                                 |                                   | < 0.030                           |
| 1,3-Dichloropropene (cis & trans) | ug/g | 0.05        | -                          |                                       | <0.042                                |                                        | <0.042                                |                                         | <0.042                                 |                                   | <0.042                            |
| Ethylbenzene                      | ug/g | 0.05        | -                          | <0.018                                | <0.018                                | <0.018                                 | <0.018                                | <0.018                                  | <0.018                                 | <0.018                            | <0.018                            |
| n-Hexane                          | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | <0.050                            |
| Methyl Ethyl Ketone               | ug/g | 0.5         | -                          |                                       | <0.50                                 |                                        | <0.50                                 |                                         | <0.50                                  |                                   | <0.50                             |
| Methyl Isobutyl Ketone            | ug/g | 0.5         | -                          |                                       | <0.50                                 |                                        | <0.50                                 |                                         | <0.50                                  |                                   | <0.50                             |
| MTBE                              | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | <0.050                            |
| Styrene                           | ug/g | 0.05        | -                          |                                       | <0.050                                |                                        | <0.050                                |                                         | <0.050                                 |                                   | <0.050                            |

Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use



L2583177 CONT'D.... Job Reference: 21-067 PAGE 10 of 17 12-MAY-21 13:27 (MT)

**Volatile Organic Compounds - SOIL** 

|                                 |      | L           | _ab ID       | L2583177-4 | L2583177-5 | L2583177-8  | L2583177-9 | L2583177-12 | L2583177-13 | L2583177-16 | L2583177-17 |
|---------------------------------|------|-------------|--------------|------------|------------|-------------|------------|-------------|-------------|-------------|-------------|
|                                 |      | Sample      |              | 03-MAY-21  | 03-MAY-21  | 03-MAY-21   | 03-MAY-21  | 03-MAY-21   | 03-MAY-21   | 03-MAY-21   | 03-MAY-21   |
|                                 |      |             | ple ID       | BH 101 SS4 | BH 101 SS7 | BH 102 SS6B | BH 102 SS7 | BH 103 SS3B | BH 103 SS5  | DUP 3       | DUP 4       |
| Analyte                         | Unit | Guide<br>#1 | Limits<br>#2 |            |            |             |            |             |             |             |             |
| 1,1,1,2-Tetrachloroethane       | ug/g | 0.05        | -            |            | <0.050     |             | <0.050     |             | <0.050      |             | <0.050      |
| 1,1,2,2-Tetrachloroethane       | ug/g | 0.05        | -            |            | <0.050     |             | <0.050     |             | <0.050      |             | <0.050      |
| Tetrachloroethylene             | ug/g | 0.05        | -            |            | <0.050     |             | < 0.050    |             | <0.050      |             | <0.050      |
| Toluene                         | ug/g | 0.2         | -            | <0.080     | <0.080     | <0.080      | <0.080     | <0.080      | <0.080      | <0.080      | <0.080      |
| 1,1,1-Trichloroethane           | ug/g | 0.05        | -            |            | <0.050     |             | < 0.050    |             | < 0.050     |             | <0.050      |
| 1,1,2-Trichloroethane           | ug/g | 0.05        | -            |            | <0.050     |             | <0.050     |             | <0.050      |             | <0.050      |
| Trichloroethylene               | ug/g | 0.05        | -            |            | <0.010     |             | <0.010     |             | <0.010      |             | <0.010      |
| Trichlorofluoromethane          | ug/g | 0.25        | -            |            | <0.050     |             | <0.050     |             | <0.050      |             | <0.050      |
| Vinyl chloride                  | ug/g | 0.02        | -            |            | <0.020     |             | <0.020     |             | <0.020      |             | <0.020      |
| o-Xylene                        | ug/g | -           | -            | <0.020     | <0.020     | <0.020      | <0.020     | <0.020      | <0.020      | <0.020      | <0.020      |
| m+p-Xylenes                     | ug/g | -           | -            | <0.030     | <0.030     | <0.030      | < 0.030    | <0.030      | <0.030      | <0.030      | <0.030      |
| Xylenes (Total)                 | ug/g | 0.05        | -            | <0.050     | <0.050     | <0.050      | <0.050     | <0.050      | <0.050      | <0.050      | <0.050      |
| Surrogate: 4-Bromofluorobenzene | %    | -           | -            | 118.2      | 129.6      | 124.8       | 119.4      | 122.5       | 120.0       | 118.9       | 125.2       |
| Surrogate: 1,4-Difluorobenzene  | %    | -           | -            | 112.6      | 113.4      | 119.1       | 107.0      | 113.8       | 108.6       | 112.5       | 111.5       |
|                                 |      |             |              |            |            |             |            |             |             |             |             |

Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use



L2583177 CONT'D.... Job Reference: 21-067 PAGE 11 of 17 12-MAY-21 13:27 (MT)

#### **Hydrocarbons - SOIL**

| i iyurocarbons - SOIL              |      |             |              |            |             |             |             |
|------------------------------------|------|-------------|--------------|------------|-------------|-------------|-------------|
|                                    |      |             | Lab ID       | L2583177-4 | L2583177-8  | L2583177-12 | L2583177-16 |
|                                    |      | Sampl       | e Date       | 03-MAY-21  | 03-MAY-21   | 03-MAY-21   | 03-MAY-21   |
|                                    |      | Sam         | ple ID       | BH 101 SS4 | BH 102 SS6B | BH 103 SS3B | DUP 3       |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |            |             |             |             |
| F1 (C6-C10)                        | ug/g | 25          | -            | <5.0       | <5.0        | <5.0        | <5.0        |
| F1-BTEX                            | ug/g | 25          | -            | <5.0       | <5.0        | <5.0        | <5.0        |
| F2 (C10-C16)                       | ug/g | 10          | -            | 13         | <10         | 21          | 14          |
| F3 (C16-C34)                       | ug/g | 240         | -            | 50         | <50         | 67          | <50         |
| F4 (C34-C50)                       | ug/g | 120         | -            | <50        | <50         | <50         | <50         |
| Total Hydrocarbons (C6-C50)        | ug/g | -           | -            | <72        | <72         | 88          | <72         |
| Chrom. to baseline at nC50         |      | -           | -            | YES        | YES         | YES         | YES         |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 90.9       | 86.9        | 88.6        | 86.6        |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 106.4      | 124.0       | 95.6        | 81.2        |
|                                    |      |             |              |            |             |             |             |

Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use



L2583177 CONT'D.... Job Reference: 21-067 PAGE 12 of 17 12-MAY-21 13:27 (MT)

#### Polycyclic Aromatic Hydrocarbons - SOII

|                             |      |             | _ab ID       | L2583177-1 | L2583177-7 | L2583177-11 | L2583177-18 |
|-----------------------------|------|-------------|--------------|------------|------------|-------------|-------------|
|                             |      | Sample      |              | 03-MAY-21  | 03-MAY-21  | 03-MAY-21   | 03-MAY-21   |
|                             |      | Sam         | ple ID       | BH 101 SS1 | BH 102 SS5 | BH 103 SS2  | DUP 5       |
| Analyte                     | Unit | Guide<br>#1 | Limits<br>#2 |            |            |             |             |
| Acenaphthene                | ug/g | 0.072       | -            | <0.050     | <0.050     | <0.050      | <0.050      |
| Acenaphthylene              | ug/g | 0.093       | -            | <0.050     | < 0.050    | < 0.050     | <0.050      |
| Anthracene                  | ug/g | 0.22        | -            | <0.050     | <0.050     | < 0.050     | <0.050      |
| Benzo(a)anthracene          | ug/g | 0.36        | -            | <0.050     | 0.094      | < 0.050     | <0.050      |
| Benzo(a)pyrene              | ug/g | 0.3         | -            | <0.050     | 0.100      | < 0.050     | <0.050      |
| Benzo(b&j)fluoranthene      | ug/g | 0.47        | -            | <0.050     | 0.112      | < 0.050     | <0.050      |
| Benzo(g,h,i)perylene        | ug/g | 0.68        | -            | <0.050     | 0.078      | <0.050      | <0.050      |
| Benzo(k)fluoranthene        | ug/g | 0.48        | -            | <0.050     | 0.111      | < 0.050     | <0.050      |
| Chrysene                    | ug/g | 2.8         | -            | <0.050     | 0.115      | < 0.050     | <0.050      |
| Dibenz(a,h)anthracene       | ug/g | 0.1         | -            | <0.050     | < 0.050    | < 0.050     | <0.050      |
| Fluoranthene                | ug/g | 0.69        | -            | <0.050     | 0.214      | < 0.050     | <0.050      |
| Fluorene                    | ug/g | 0.19        | -            | < 0.050    | < 0.050    | < 0.050     | <0.050      |
| Indeno(1,2,3-cd)pyrene      | ug/g | 0.23        | -            | <0.050     | 0.076      | < 0.050     | < 0.050     |
| 1+2-Methylnaphthalenes      | ug/g | 0.59        | -            | <0.042     | <0.042     | < 0.042     | <0.042      |
| 1-Methylnaphthalene         | ug/g | 0.59        | -            | <0.030     | < 0.030    | < 0.030     | <0.030      |
| 2-Methylnaphthalene         | ug/g | 0.59        | -            | <0.030     | < 0.030    | < 0.030     | < 0.030     |
| Naphthalene                 | ug/g | 0.09        | -            | <0.013     | <0.013     | <0.013      | <0.013      |
| Phenanthrene                | ug/g | 0.69        | -            | <0.046     | 0.086      | <0.046      | <0.046      |
| Pyrene                      | ug/g | 1           | -            | <0.050     | 0.172      | <0.050      | <0.050      |
| Surrogate: 2-Fluorobiphenyl | %    | -           | -            | 81.6       | 86.1       | 82.0        | 78.9        |
| Surrogate: d14-Terphenyl    | %    | -           | -            | 82.3       | 89.0       | 82.2        | 78.5        |

Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use



L2583177 CONT'D.... Job Reference: 21-067 PAGE 13 of 17 12-MAY-21 13:27 (MT)

**Polychlorinated Biphenyls - SOIL** 

| . Ciyomomatoa Bipilonyio |      |       |              |             |             |             |
|--------------------------|------|-------|--------------|-------------|-------------|-------------|
|                          |      |       | Lab ID       | L2583177-3  | L2583177-8  | L2583177-15 |
|                          |      | Sampl | e Date       | 03-MAY-21   | 03-MAY-21   | 03-MAY-21   |
|                          |      | San   | ple ID       | BH 101 SS3B | BH 102 SS6B | DUP 2       |
| Analyte                  | Unit |       | Limits<br>#2 |             |             |             |
| Aroclor 1242             | ug/g | -     | -            | <0.010      | <0.010      | <0.010      |
| Aroclor 1248             | ug/g | -     | -            | <0.010      | <0.010      | <0.010      |
| Aroclor 1254             | ug/g | -     | -            | <0.010      | <0.010      | <0.010      |
| Aroclor 1260             | ug/g | -     | -            | <0.010      | <0.010      | <0.010      |
| Total PCBs               | ug/g | 0.3   | -            | <0.020      | <0.020      | <0.020      |
| Surrogate: d14-Terphenyl | %    | -     | -            | 94.7        | 93.3        | 92.8        |
|                          |      |       |              |             |             |             |

Guide Limit #1: T8-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

L2583177 CONT'D....
Job Reference: 21-067
PAGE 14 of 17
12-MAY-21 13:27 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

BTX-511-HS-WT Soil BTEX-O.Reg 153/04 (July 2011) SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Soil Cyanide (WAD)-O.Reg 153/04 (July MOE 3015/APHA 4500CN I-WAD

2011

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-WT Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT Soil Conductivity (EC) MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

L2583177 CONT'D.... Job Reference: 21-067 PAGE 15 of 17 12-MAY-21 13:27 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference\*\*

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10. C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011)

**CCME Tier 1** 

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane: acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

#### Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-200.2-CVAA-WT

Soil

Mercury in Soil by CVAAS

EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Soil

**ABN-Calculated Parameters** 

SW846 8270

**MOISTURE-WT** 

Soil

% Moisture

CCME PHC in Soil - Tier 1 (mod)

L2583177 CONT'D....
Job Reference: 21-067
PAGE 16 of 17
12-MAY-21 13:27 (MT)

Methods Listed (if applicable):

| ALS Test Code | Matrix | Test Description             | Method Reference** |
|---------------|--------|------------------------------|--------------------|
| PAH-511-WT    | Soil   | PAH-O Reg 153/04 (July 2011) | SW846 3510/8270    |

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking technique used to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**PCB-511-WT** Soil PCB-O.Reg 153/04 (July 2011) SW846 3510/8082

An aliquot of a solid sample is extracted with a solvent, extract is cleaned up and analyzed on the GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

PH-WT Soil pH MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**SAR-R511-WT** Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

 VOC-1,3-DCP-CALC-WT
 Soil
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-511-HS-WT
 Soil
 VOC-O.Reg 153/04 (July 2011)
 SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil Sum of Xylene Isomer Concentrations CALCULATION

Total xvlenes represents the sum of o-xylene and m&p-xylene.

| **ALS test methods may incorporate modifications from specified reference methods to improve performance. |                                                                                                                    |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Chain of Custody Numbers:                                                                                 |                                                                                                                    |  |  |  |  |  |  |  |
| 20-888179                                                                                                 | 20-888180                                                                                                          |  |  |  |  |  |  |  |
| The last two letters of the abo                                                                           | ve test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: |  |  |  |  |  |  |  |
| Laboratory Definition Code                                                                                | Laboratory Location                                                                                                |  |  |  |  |  |  |  |
| WT                                                                                                        | ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA                                                                      |  |  |  |  |  |  |  |

L2583177 CONT'D....
Job Reference: 21-067
PAGE 17 of 17
12-MAY-21 13:27 (MT)

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.



Workorder: L2583177 Report Date: 12-MAY-21 Page 1 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                        | Matrix        | Reference                   | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------------------|---------------|-----------------------------|---------|-----------|-------|-----|--------|-----------|
| B-HWS-R511-WT                               | Soil          |                             |         |           |       |     |        |           |
| Batch R54558                                |               |                             |         |           |       |     |        |           |
| <b>WG3532119-4 DU</b> Boron (B), Hot Wate   |               | <b>L2583187-5</b><br>0.17   | 0.15    |           | ug/g  | 9.9 | 30     | 11-MAY-21 |
| <b>WG3532119-2 IR</b> l Boron (B), Hot Wate |               | WT SAR4                     | 107.4   |           | %     |     | 70-130 | 11-MAY-21 |
| <b>WG3532119-3 LC</b> Boron (B), Hot Wate   | _             |                             | 101.0   |           | %     |     | 70-130 | 11-MAY-21 |
| <b>WG3532119-1 ME</b> Boron (B), Hot Wate   |               |                             | <0.10   |           | ug/g  |     | 0.1    | 11-MAY-21 |
| BTX-511-HS-WT                               | Soil          |                             |         |           |       |     |        |           |
| Batch R5456                                 | 196           |                             |         |           |       |     |        |           |
| WG3529385-4 DL<br>Benzene                   | JP            | <b>WG3529385-3</b> < 0.0068 | <0.0068 | RPD-NA    | ug/g  | N/A | 40     | 12-MAY-21 |
| Ethylbenzene                                |               | <0.018                      | <0.018  | RPD-NA    | ug/g  | N/A | 40     | 12-MAY-21 |
| m+p-Xylenes                                 |               | <0.030                      | <0.030  | RPD-NA    | ug/g  | N/A | 40     | 12-MAY-21 |
| o-Xylene                                    |               | <0.020                      | <0.020  | RPD-NA    | ug/g  | N/A | 40     | 12-MAY-21 |
| Toluene                                     |               | <0.080                      | <0.080  | RPD-NA    | ug/g  | N/A | 40     | 12-MAY-21 |
| WG3529385-2 LC<br>Benzene                   | cs            |                             | 106.7   |           | %     |     | 70-130 | 12-MAY-21 |
| Ethylbenzene                                |               |                             | 105.0   |           | %     |     | 70-130 | 12-MAY-21 |
| m+p-Xylenes                                 |               |                             | 105.1   |           | %     |     | 70-130 | 12-MAY-21 |
| o-Xylene                                    |               |                             | 105.4   |           | %     |     | 70-130 | 12-MAY-21 |
| Toluene                                     |               |                             | 106.2   |           | %     |     | 70-130 | 12-MAY-21 |
| WG3529385-1 MB<br>Benzene                   | 3             |                             | <0.0068 |           | ug/g  |     | 0.0068 | 12-MAY-21 |
| Ethylbenzene                                |               |                             | <0.018  |           | ug/g  |     | 0.018  | 12-MAY-21 |
| m+p-Xylenes                                 |               |                             | <0.030  |           | ug/g  |     | 0.03   | 12-MAY-21 |
| o-Xylene                                    |               |                             | <0.020  |           | ug/g  |     | 0.02   | 12-MAY-21 |
| Toluene                                     |               |                             | <0.080  |           | ug/g  |     | 0.08   | 12-MAY-21 |
| Surrogate: 1,4-Diflu                        | orobenzene    |                             | 121.5   |           | %     |     | 50-140 | 12-MAY-21 |
| Surrogate: 4-Bromo                          | fluorobenzene |                             | 123.9   |           | %     |     | 50-140 | 12-MAY-21 |
| <b>WG3529385-5 MS</b> Benzene               | 3             | WG3529385-3                 | 130.0   |           | %     |     | 60-140 | 12-MAY-21 |
| Ethylbenzene                                |               |                             | 120.2   |           | %     |     | 60-140 | 12-MAY-21 |
| m+p-Xylenes                                 |               |                             | 121.3   |           | %     |     | 60-140 | 12-MAY-21 |
| o-Xylene                                    |               |                             | 122.7   |           | %     |     | 60-140 | 12-MAY-21 |
| Toluene                                     |               |                             | 124.6   |           | %     |     | 60-140 | 12-MAY-21 |



Report Date: 12-MAY-21 Workorder: L2583177 Page 2 of 14

Grounded Engineering Inc Client:

12 Banigan Drive

TORONTO ON M4H 1E9

Contact: ZENITH WONG

| Test                                            | Matrix | Reference                 | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------------------------------|--------|---------------------------|---------|-----------|-------|-----|--------|-----------|
| CN-WAD-R511-WT                                  | Soil   |                           |         |           |       |     |        |           |
| Batch R5455638                                  |        |                           |         |           |       |     |        |           |
| WG3530885-7 DUP<br>Cyanide, Weak Acid Dis       | s      | <b>L2583177-6</b> <0.050  | <0.050  | RPD-NA    | ug/g  | N/A | 35     | 11-MAY-21 |
| WG3530885-6 LCS<br>Cyanide, Weak Acid Dis       | s      |                           | 90.0    |           | %     |     | 80-120 | 11-MAY-21 |
| <b>WG3530885-5 MB</b><br>Cyanide, Weak Acid Dis | s      |                           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| <b>WG3530885-8 MS</b><br>Cyanide, Weak Acid Dis | s      | L2583177-6                | 93.0    |           | %     |     | 70-130 | 11-MAY-21 |
| CR-CR6-IC-WT                                    | Soil   |                           |         |           |       |     |        |           |
| Batch R5455265                                  |        |                           |         |           |       |     |        |           |
| WG3531081-4 CRM<br>Chromium, Hexavalent         |        | WT-SQC012                 | 102.6   |           | %     |     | 70-130 | 10-MAY-21 |
| WG3531081-3 DUP<br>Chromium, Hexavalent         |        | <b>L2583177-6</b><br>0.32 | 0.30    |           | ug/g  | 7.4 | 35     | 10-MAY-21 |
| WG3531081-2 LCS<br>Chromium, Hexavalent         |        |                           | 99.7    |           | %     |     | 80-120 | 10-MAY-21 |
| WG3531081-1 MB<br>Chromium, Hexavalent          |        |                           | <0.20   |           | ug/g  |     | 0.2    | 10-MAY-21 |
| EC-WT                                           | Soil   |                           |         |           |       |     |        |           |
| Batch R5455853                                  |        |                           |         |           |       |     |        |           |
| WG3532227-4 DUP<br>Conductivity                 |        | <b>WG3532227-3</b> 0.326  | 0.317   |           | mS/cm | 2.8 | 20     | 11-MAY-21 |
| WG3532227-2 IRM<br>Conductivity                 |        | WT SAR4                   | 101.6   |           | %     |     | 70-130 | 11-MAY-21 |
| WG3532509-1 LCS<br>Conductivity                 |        |                           | 103.5   |           | %     |     | 90-110 | 11-MAY-21 |
| WG3532227-1 MB<br>Conductivity                  |        |                           | <0.0040 |           | mS/cm |     | 0.004  | 11-MAY-21 |
| F1-HS-511-WT                                    | Soil   |                           |         |           |       |     |        |           |
| Batch R5456196                                  |        |                           |         |           |       |     |        |           |
| <b>WG3529385-4 DUP</b> F1 (C6-C10)              |        | <b>WG3529385-3</b> <5.0   | <5.0    | RPD-NA    | ug/g  | N/A | 30     | 12-MAY-21 |
| <b>WG3529385-2 LCS</b> F1 (C6-C10)              |        |                           | 113.2   |           | %     |     | 80-120 | 12-MAY-21 |
| <b>WG3529385-1 MB</b> F1 (C6-C10)               |        |                           | <5.0    |           | ug/g  |     | 5      | 12-MAY-21 |
| Surrogate: 3,4-Dichlorote                       | oluene |                           | 119.2   |           | %     |     | 60-140 | 12-MAY-21 |



Report Date: 12-MAY-21 Workorder: L2583177 Page 3 of 14

Grounded Engineering Inc Client:

12 Banigan Drive

TORONTO ON M4H 1E9

Contact: ZENITH WONG

| Test                                                  |               | Matrix        | Reference                 | Result      | Qualifier | Units     | RPD | Limit        | Analyzed               |
|-------------------------------------------------------|---------------|---------------|---------------------------|-------------|-----------|-----------|-----|--------------|------------------------|
| F1-HS-511-WT  Batch R5  WG3529385-5  F1 (C6-C10)      | 456196<br>MS  | Soil          | WG3529385-3               | 112.2       |           | %         |     | 60-140       | 12-MAY-21              |
| F2-F4-511-WT                                          |               | Soil          |                           |             |           |           |     |              |                        |
| <b>Batch R5</b><br><b>WG3530882-3</b><br>F2 (C10-C16) | 455153<br>DUP |               | <b>WG3530882-5</b> <10    | <10         | RPD-NA    | ug/g      | N/A | 30           | 11-MAY-21              |
| F3 (C16-C34)                                          |               |               | <50                       | <50         | RPD-NA    | ug/g      | N/A | 30           | 11-MAY-21              |
| F4 (C34-C50)                                          |               |               | <50                       | <50         | RPD-NA    | ug/g      | N/A | 30           | 11-MAY-21              |
| <b>WG3530882-2</b> F2 (C10-C16)                       | LCS           |               |                           | 96.9        |           | %         |     | 80-120       | 10-MAY-21              |
| F3 (C16-C34)                                          |               |               |                           | 96.7        |           | %         |     | 80-120       | 10-MAY-21              |
| F4 (C34-C50)                                          |               |               |                           | 92.9        |           | %         |     | 80-120       | 10-MAY-21              |
| <b>WG3530882-1</b> F2 (C10-C16)                       | MB            |               |                           | <10         |           | ug/g      |     | 10           | 10-MAY-21              |
| F3 (C16-C34)                                          |               |               |                           | <50         |           | ug/g      |     | 50           | 10-MAY-21              |
| F4 (C34-C50)<br>Surrogate: 2-Br                       | omobenz       | zotrifluorida |                           | <50<br>93.8 |           | ug/g<br>% |     | 50<br>60-140 | 10-MAY-21              |
| <b>WG3530882-4</b><br>F2 (C10-C16)                    | MS            | Communice     | WG3530882-5               | 93.8        |           | %         |     | 60-140       | 10-MAY-21<br>11-MAY-21 |
| F3 (C16-C34)                                          |               |               |                           | 95.8        |           | %         |     | 60-140       | 11-MAY-21              |
| F4 (C34-C50)                                          |               |               |                           | 93.2        |           | %         |     | 60-140       | 11-MAY-21              |
| HG-200.2-CVAA-W                                       |               | Soil          |                           |             |           |           |     |              |                        |
| Batch R5<br>WG3532225-2<br>Mercury (Hg)               | 455781<br>CRM |               | WT-SS-2                   | 105.7       |           | %         |     | 70-130       | 11-MAY-21              |
| <b>WG3532225-6</b><br>Mercury (Hg)                    | DUP           |               | <b>WG3532225-5</b> 0.0827 | 0.0780      |           | ug/g      | 5.9 | 40           | 11-MAY-21              |
| <b>WG3532225-3</b><br>Mercury (Hg)                    | LCS           |               |                           | 107.5       |           | %         |     | 80-120       | 11-MAY-21              |
| <b>WG3532225-1</b><br>Mercury (Hg)                    | MB            |               |                           | <0.0050     |           | mg/kg     |     | 0.005        | 11-MAY-21              |
| MET-200.2-CCMS-                                       | WT            | Soil          |                           |             |           |           |     |              |                        |



Workorder: L2583177 Report Date: 12-MAY-21 Page 4 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                             | Matrix | Reference   | Result        | Qualifier | Units      | RPD | Limit    | Analyzed    |
|----------------------------------|--------|-------------|---------------|-----------|------------|-----|----------|-------------|
| MET-200.2-CCMS-WT                | Soil   |             |               |           |            |     |          |             |
| Batch R5456371                   |        |             |               |           |            |     |          |             |
| WG3532225-2 CRM                  |        | WT-SS-2     |               |           | 0.4        |     |          |             |
| Antimony (Sb)                    |        |             | 96.4          |           | %          |     | 70-130   | 11-MAY-21   |
| Arsenic (As)                     |        |             | 111.6         |           | %          |     | 70-130   | 11-MAY-21   |
| Barium (Ba)                      |        |             | 111.1         |           | %          |     | 70-130   | 11-MAY-21   |
| Beryllium (Be)                   |        |             | 104.5         |           | %          |     | 70-130   | 11-MAY-21   |
| Boron (B)                        |        |             | 8.4           |           | mg/kg      |     | 3.5-13.5 | 11-MAY-21   |
| Cadmium (Cd)                     |        |             | 108.0         |           | %          |     | 70-130   | 11-MAY-21   |
| Chromium (Cr)                    |        |             | 104.8         |           | %          |     | 70-130   | 11-MAY-21   |
| Cobalt (Co)                      |        |             | 111.1         |           | %          |     | 70-130   | 11-MAY-21   |
| Copper (Cu)                      |        |             | 114.9         |           | %          |     | 70-130   | 11-MAY-21   |
| Lead (Pb)                        |        |             | 104.1         |           | %          |     | 70-130   | 11-MAY-21   |
| Molybdenum (Mo)                  |        |             | 100.6         |           | %          |     | 70-130   | 11-MAY-21   |
| Nickel (Ni)                      |        |             | 114.1         |           |            |     | 70-130   | 11-MAY-21   |
| Selenium (Se)                    |        |             | 0.11<br>112.8 |           | mg/kg      |     | 0-0.34   | 11-MAY-21   |
| Silver (Ag)                      |        |             |               |           | %          |     | 70-130   | 11-MAY-21   |
| Thallium (TI)<br>Uranium (U)     |        |             | 0.073         |           | mg/kg<br>% |     |          | 9 11-MAY-21 |
| Vanadium (V)                     |        |             | 91.9<br>109.0 |           | %          |     | 70-130   | 11-MAY-21   |
| Zinc (Zn)                        |        |             | 109.0         |           | %          |     | 70-130   | 11-MAY-21   |
|                                  |        | WG3532225-5 |               |           | 70         |     | 70-130   | 11-MAY-21   |
| WG3532225-6 DUP<br>Antimony (Sb) |        | 0.19        | 0.18          |           | ug/g       | 5.1 | 30       | 11-MAY-21   |
| Arsenic (As)                     |        | 2.38        | 2.11          |           | ug/g       | 12  | 30       | 11-MAY-21   |
| Barium (Ba)                      |        | 44.9        | 42.1          |           | ug/g       | 6.5 | 40       | 11-MAY-21   |
| Beryllium (Be)                   |        | 0.28        | 0.24          |           | ug/g       | 14  | 30       | 11-MAY-21   |
| Boron (B)                        |        | <5.0        | <5.0          | RPD-NA    | ug/g       | N/A | 30       | 11-MAY-21   |
| Cadmium (Cd)                     |        | 0.063       | 0.058         |           | ug/g       | 8.8 | 30       | 11-MAY-21   |
| Chromium (Cr)                    |        | 14.1        | 12.5          |           | ug/g       | 12  | 30       | 11-MAY-21   |
| Cobalt (Co)                      |        | 4.99        | 4.37          |           | ug/g       | 13  | 30       | 11-MAY-21   |
| Copper (Cu)                      |        | 11.8        | 10.5          |           | ug/g       | 12  | 30       | 11-MAY-21   |
| Lead (Pb)                        |        | 13.5        | 12.3          |           | ug/g       | 9.4 | 40       | 11-MAY-21   |
| Molybdenum (Mo)                  |        | 0.17        | 0.18          |           | ug/g       | 6.6 | 40       | 11-MAY-21   |
| Nickel (Ni)                      |        | 10.4        | 9.32          |           | ug/g       | 11  | 30       | 11-MAY-21   |
| Selenium (Se)                    |        | <0.20       | <0.20         | RPD-NA    | ug/g       | N/A | 30       | 11-MAY-21   |
| Silver (Ag)                      |        | <0.10       | 0.12          | RPD-NA    | ug/g       | N/A | 40       | 11-MAY-21   |
|                                  |        |             |               |           |            |     |          |             |



Workorder: L2583177 Report Date: 12-MAY-21 Page 5 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                            | Matrix | Reference   | Result       | Qualifier | Units | RPD | Limit  | Analyzed               |
|---------------------------------|--------|-------------|--------------|-----------|-------|-----|--------|------------------------|
| MET-200.2-CCMS-WT               | Soil   |             |              |           |       |     |        |                        |
| Batch R54563                    |        |             |              |           |       |     |        |                        |
| WG3532225-6 DU                  | IP     | WG3532225-5 |              |           |       |     |        |                        |
| Thallium (TI)                   |        | 0.069       | 0.065        |           | ug/g  | 5.7 | 30     | 11-MAY-21              |
| Uranium (U)                     |        | 0.435       | 0.344        |           | ug/g  | 23  | 30     | 11-MAY-21              |
| Vanadium (V)                    |        | 19.7        | 17.5         |           | ug/g  | 12  | 30     | 11-MAY-21              |
| Zinc (Zn)                       |        | 31.9        | 29.0         |           | ug/g  | 9.5 | 30     | 11-MAY-21              |
| WG3532225-4 LC<br>Antimony (Sb) | S      |             | 106.6        |           | %     |     | 80-120 | 11-MAY-21              |
| Arsenic (As)                    |        |             | 102.1        |           | %     |     | 80-120 | 11-MAY-21              |
| Barium (Ba)                     |        |             | 100.6        |           | %     |     | 80-120 | 11-MAY-21              |
| Beryllium (Be)                  |        |             | 99.0         |           | %     |     | 80-120 | 11-MAY-21              |
| Boron (B)                       |        |             | 97.6         |           | %     |     | 80-120 | 11-MAY-21              |
| Cadmium (Cd)                    |        |             | 99.6         |           | %     |     | 80-120 | 11-MAY-21              |
| Chromium (Cr)                   |        |             | 100.6        |           | %     |     | 80-120 | 11-MAY-21              |
| Cobalt (Co)                     |        |             | 101.1        |           | %     |     | 80-120 | 11-MAY-21              |
| Copper (Cu)                     |        |             | 99.5         |           | %     |     | 80-120 | 11-MAY-21              |
| Lead (Pb)                       |        |             | 101.5        |           | %     |     | 80-120 | 11-MAY-21              |
| Molybdenum (Mo)                 |        |             | 100.3        |           | %     |     | 80-120 | 11-MAY-21              |
| Nickel (Ni)                     |        |             | 98.7         |           | %     |     | 80-120 | 11-MAY-21              |
| Selenium (Se)                   |        |             | 102.9        |           | %     |     | 80-120 | 11-MAY-21              |
| Silver (Ag)                     |        |             | 103.3        |           | %     |     | 80-120 | 11-MAY-21              |
| Thallium (TI)                   |        |             | 101.6        |           | %     |     | 80-120 | 11-MAY-21              |
| Uranium (U)                     |        |             | 98.5         |           | %     |     | 80-120 | 11-MAY-21              |
| Vanadium (V)                    |        |             | 102.8        |           | %     |     | 80-120 | 11-MAY-21              |
| Zinc (Zn)                       |        |             | 100.8        |           | %     |     | 80-120 | 11-MAY-21              |
| WG3532225-1 ME<br>Antimony (Sb) | 3      |             | <0.10        |           | mg/kg |     | 0.1    | 44 MAN 24              |
| Arsenic (As)                    |        |             | <0.10        |           | mg/kg |     | 0.1    | 11-MAY-21<br>11-MAY-21 |
| Barium (Ba)                     |        |             | <0.50        |           | mg/kg |     | 0.1    |                        |
| Beryllium (Be)                  |        |             | <0.30        |           | mg/kg |     | 0.5    | 11-MAY-21              |
| Boron (B)                       |        |             | <5.0         |           | mg/kg |     | 5      | 11-MAY-21<br>11-MAY-21 |
| Cadmium (Cd)                    |        |             | <0.020       |           | mg/kg |     | 0.02   | 11-MAY-21              |
| Chromium (Cr)                   |        |             | <0.50        |           | mg/kg |     | 0.52   | 11-MAY-21              |
| Cobalt (Co)                     |        |             | <0.10        |           | mg/kg |     | 0.1    | 11-MAY-21              |
| Copper (Cu)                     |        |             | <0.50        |           | mg/kg |     | 0.5    | 11-MAY-21              |
| Lead (Pb)                       |        |             | <0.50        |           | mg/kg |     | 0.5    |                        |
| Load (1 b)                      |        |             | <b>₹0.50</b> |           | mg/kg |     | 0.0    | 11-MAY-21              |



Report Date: 12-MAY-21 Workorder: L2583177 Page 6 of 14

Grounded Engineering Inc Client:

12 Banigan Drive

TORONTO ON M4H 1E9

Contact: ZENITH WONG

| Test                                                | Matrix | Reference                 | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|-----------------------------------------------------|--------|---------------------------|---------|-----------|-------|-----|--------|-----------|
| MET-200.2-CCMS-WT                                   | Soil   |                           |         |           |       |     |        |           |
| Batch R5456371<br>WG3532225-1 MB<br>Molybdenum (Mo) |        |                           | <0.10   |           | mg/kg |     | 0.1    | 11-MAY-21 |
| Nickel (Ni)                                         |        |                           | <0.50   |           | mg/kg |     | 0.5    | 11-MAY-21 |
| Selenium (Se)                                       |        |                           | <0.20   |           | mg/kg |     | 0.2    | 11-MAY-21 |
| Silver (Ag)                                         |        |                           | <0.10   |           | mg/kg |     | 0.1    | 11-MAY-21 |
| Thallium (TI)                                       |        |                           | <0.050  |           | mg/kg |     | 0.05   | 11-MAY-21 |
| Uranium (U)                                         |        |                           | < 0.050 |           | mg/kg |     | 0.05   | 11-MAY-21 |
| Vanadium (V)                                        |        |                           | <0.20   |           | mg/kg |     | 0.2    | 11-MAY-21 |
| Zinc (Zn)                                           |        |                           | <2.0    |           | mg/kg |     | 2      | 11-MAY-21 |
| MOISTURE-WT                                         | Soil   |                           |         |           |       |     |        |           |
| Batch R5454644                                      |        |                           |         |           |       |     |        |           |
| WG3530662-3 DUP<br>% Moisture                       |        | <b>L2583177-1</b><br>9.80 | 10.2    |           | %     | 4.0 | 20     | 07-MAY-21 |
| WG3530662-2 LCS<br>% Moisture                       |        |                           | 99.2    |           | %     |     | 90-110 | 07-MAY-21 |
| <b>WG3530662-1 MB</b><br>% Moisture                 |        |                           | <0.25   |           | %     |     | 0.25   | 07-MAY-21 |
| PAH-511-WT                                          | Soil   |                           |         |           |       |     |        |           |
| Batch R5455082                                      |        |                           |         |           |       |     |        |           |
| WG3530592-3 DUP                                     |        | WG3530592-5               |         |           |       |     |        |           |
| 1-Methylnaphthalene                                 |        | <0.030                    | <0.030  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| 2-Methylnaphthalene                                 |        | <0.030                    | <0.030  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Acenaphthene                                        |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Acenaphthylene                                      |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Anthracene                                          |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Benzo(a)anthracene                                  |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Benzo(a)pyrene                                      |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Benzo(b&j)fluoranthene                              |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Benzo(g,h,i)perylene                                |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Benzo(k)fluoranthene                                |        | <0.050                    | < 0.050 | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Chrysene                                            |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Dibenz(a,h)anthracene                               |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Fluoranthene                                        |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Fluorene                                            |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Indeno(1,2,3-cd)pyrene                              |        | <0.050                    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |



Workorder: L2583177 Report Date: 12-MAY-21 Page 7 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                   | Matrix | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------------------------|--------|-------------|--------|-----------|-------|-----|--------|-----------|
| PAH-511-WT                             | Soil   |             |        |           |       |     |        |           |
| Batch R5455082                         |        |             |        |           |       |     |        |           |
| WG3530592-3 DUP                        |        | WG3530592-5 |        |           |       |     |        |           |
| Naphthalene                            |        | <0.013      | <0.013 | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Phenanthrene                           |        | <0.046      | <0.046 | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Pyrene                                 |        | <0.050      | <0.050 | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| WG3530592-2 LCS<br>1-Methylnaphthalene |        |             | 88.0   |           | %     |     | 50-140 | 10-MAY-21 |
| 2-Methylnaphthalene                    |        |             | 85.9   |           | %     |     | 50-140 | 10-MAY-21 |
| Acenaphthene                           |        |             | 84.5   |           | %     |     | 50-140 | 10-MAY-21 |
| Acenaphthylene                         |        |             | 79.1   |           | %     |     | 50-140 | 10-MAY-21 |
| Anthracene                             |        |             | 73.9   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(a)anthracene                     |        |             | 82.2   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(a)pyrene                         |        |             | 72.6   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(b&j)fluoranthene                 |        |             | 71.0   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(g,h,i)perylene                   |        |             | 81.5   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(k)fluoranthene                   |        |             | 87.5   |           | %     |     | 50-140 | 10-MAY-21 |
| Chrysene                               |        |             | 85.8   |           | %     |     | 50-140 | 10-MAY-21 |
| Dibenz(a,h)anthracene                  |        |             | 80.5   |           | %     |     | 50-140 | 10-MAY-21 |
| Fluoranthene                           |        |             | 82.3   |           | %     |     | 50-140 | 10-MAY-21 |
| Fluorene                               |        |             | 83.5   |           | %     |     | 50-140 | 10-MAY-21 |
| Indeno(1,2,3-cd)pyrene                 |        |             | 85.4   |           | %     |     | 50-140 | 10-MAY-21 |
| Naphthalene                            |        |             | 84.3   |           | %     |     | 50-140 | 10-MAY-21 |
| Phenanthrene                           |        |             | 86.8   |           | %     |     | 50-140 | 10-MAY-21 |
| Pyrene                                 |        |             | 82.0   |           | %     |     | 50-140 | 10-MAY-21 |
| WG3530592-1 MB                         |        |             |        |           |       |     |        |           |
| 1-Methylnaphthalene                    |        |             | <0.030 |           | ug/g  |     | 0.03   | 10-MAY-21 |
| 2-Methylnaphthalene                    |        |             | <0.030 |           | ug/g  |     | 0.03   | 10-MAY-21 |
| Acenaphthene                           |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Acenaphthylene                         |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Anthracene                             |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Benzo(a)anthracene                     |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Benzo(a)pyrene                         |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Benzo(b&j)fluoranthene                 |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Benzo(g,h,i)perylene                   |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Benzo(k)fluoranthene                   |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Chrysene                               |        |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |



Workorder: L2583177 Report Date: 12-MAY-21 Page 8 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                  | Matrix       | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------------|--------------|-------------|--------|-----------|-------|-----|--------|-----------|
| PAH-511-WT                            | Soil         |             |        |           |       |     |        |           |
| Batch R5455082                        | 2            |             |        |           |       |     |        |           |
| WG3530592-1 MB                        |              |             | 0.050  |           |       |     | 0.05   |           |
| Dibenz(a,h)anthracene                 |              |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Fluoranthene                          |              |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Fluorene                              |              |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Indeno(1,2,3-cd)pyrene                | <del>)</del> |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Naphthalene                           |              |             | <0.013 |           | ug/g  |     | 0.013  | 10-MAY-21 |
| Phenanthrene                          |              |             | <0.046 |           | ug/g  |     | 0.046  | 10-MAY-21 |
| Pyrene                                |              |             | <0.050 |           | ug/g  |     | 0.05   | 10-MAY-21 |
| Surrogate: 2-Fluorobip                | -            |             | 83.2   |           | %     |     | 50-140 | 10-MAY-21 |
| Surrogate: d14-Terphe                 | nyl          |             | 81.7   |           | %     |     | 50-140 | 10-MAY-21 |
| WG3530592-4 MS<br>1-Methylnaphthalene |              | WG3530592-5 | 86.6   |           | %     |     | 50-140 | 10-MAY-21 |
| 2-Methylnaphthalene                   |              |             | 84.6   |           | %     |     | 50-140 | 10-MAY-21 |
| Acenaphthene                          |              |             | 84.2   |           | %     |     | 50-140 | 10-MAY-21 |
| Acenaphthylene                        |              |             | 81.6   |           | %     |     | 50-140 | 10-MAY-21 |
| Anthracene                            |              |             | 74.4   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(a)anthracene                    |              |             | 88.9   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(a)pyrene                        |              |             | 75.2   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(b&j)fluoranthene                | Э            |             | 72.8   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(g,h,i)perylene                  |              |             | 77.3   |           | %     |     | 50-140 | 10-MAY-21 |
| Benzo(k)fluoranthene                  |              |             | 98.9   |           | %     |     | 50-140 | 10-MAY-21 |
| Chrysene                              |              |             | 82.3   |           | %     |     | 50-140 | 10-MAY-21 |
| Dibenz(a,h)anthracene                 |              |             | 79.2   |           | %     |     | 50-140 | 10-MAY-21 |
| Fluoranthene                          |              |             | 82.7   |           | %     |     | 50-140 | 10-MAY-21 |
| Fluorene                              |              |             | 84.9   |           | %     |     | 50-140 | 10-MAY-21 |
| Indeno(1,2,3-cd)pyrene                | <b>)</b>     |             | 91.1   |           | %     |     | 50-140 | 10-MAY-21 |
| Naphthalene                           |              |             | 81.6   |           | %     |     | 50-140 | 10-MAY-21 |
| Phenanthrene                          |              |             | 83.2   |           | %     |     | 50-140 | 10-MAY-21 |
| Pyrene                                |              |             | 81.4   |           | %     |     | 50-140 | 10-MAY-21 |
| PCB-511-WT                            | Soil         |             |        |           |       |     |        |           |
| Batch R5455032                        | 2            |             |        |           |       |     |        |           |
| WG3530592-3 DUP                       |              | WG3530592-5 |        |           | ,     |     |        |           |
| Aroclor 1242                          |              | <0.010      | <0.010 | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Aroclor 1248                          |              | <0.010      | <0.010 | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |
| Aroclor 1254                          |              | <0.010      | <0.010 | RPD-NA    | ug/g  | N/A | 40     | 10-MAY-21 |



Workorder: L2583177 Report Date: 12-MAY-21 Page 9 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                    |               | Matrix | Reference                 | Result       | Qualifier | Units    | RPD  | Limit            | Analyzed  |
|-----------------------------------------|---------------|--------|---------------------------|--------------|-----------|----------|------|------------------|-----------|
| PCB-511-WT                              |               | Soil   |                           |              |           |          |      |                  |           |
| Batch R5<br>WG3530592-3<br>Aroclor 1260 | 455032<br>DUP |        | <b>WG3530592-5</b> <0.010 | <0.010       | RPD-NA    | ug/g     | N/A  | 40               | 10-MAY-21 |
| WG3530592-2                             | LCS           |        |                           |              | 2         |          |      |                  |           |
| Aroclor 1242<br>Aroclor 1248            |               |        |                           | 87.1<br>93.8 |           | %        |      | 60-140           | 10-MAY-21 |
| Aroclor 1254                            |               |        |                           | 92.3         |           | %        |      | 60-140           | 10-MAY-21 |
| Aroclor 1260                            |               |        |                           | 93.3         |           | %        |      | 60-140           | 10-MAY-21 |
| WG3530592-1                             | MD            |        |                           | 93.3         |           | 76       |      | 60-140           | 10-MAY-21 |
| Aroclor 1242                            | MB            |        |                           | <0.010       |           | ug/g     |      | 0.01             | 10-MAY-21 |
| Aroclor 1248                            |               |        |                           | <0.010       |           | ug/g     |      | 0.01             | 10-MAY-21 |
| Aroclor 1254                            |               |        |                           | <0.010       |           | ug/g     |      | 0.01             | 10-MAY-21 |
| Aroclor 1260                            |               |        |                           | <0.010       |           | ug/g     |      | 0.01             | 10-MAY-21 |
| Surrogate: d14-                         | Terphen       | yl     |                           | 87.2         |           | %        |      | 60-140           | 10-MAY-21 |
| <b>WG3530592-4</b><br>Aroclor 1242      | MS            |        | WG3530592-5               | 85.6         |           | %        |      | 60-140           | 10-MAY-21 |
| Aroclor 1254                            |               |        |                           | 87.8         |           | %        |      | 60-140           | 10-MAY-21 |
| Aroclor 1260                            |               |        |                           | 86.8         |           | %        |      | 60-140           | 10-MAY-21 |
| DU WT                                   |               | Soil   |                           |              |           |          |      | 00 1 10          | 10 10.00  |
| PH-WT<br>Batch R5                       | 454566        | 3011   |                           |              |           |          |      |                  |           |
| WG3530733-1<br>pH                       | DUP           |        | <b>WG3530733-2</b> 7.66   | 7.59         | J         | pH units | 0.07 | 0.3              | 07-MAY-21 |
| <b>WG3531033-1</b><br>pH                | LCS           |        |                           | 6.94         |           | pH units |      | 6.9-7.1          | 07-MAY-21 |
| SAR-R511-WT                             |               | Soil   |                           |              |           |          |      |                  |           |
|                                         | 455888        |        |                           |              |           |          |      |                  |           |
| <b>WG3532227-4</b> Calcium (Ca)         | DUP           |        | <b>WG3532227-3</b> 22.9   | 22.9         |           | mg/L     | 0.0  | 30               | 11-MAY-21 |
| Sodium (Na)                             |               |        | 41.5                      | 40.4         |           | mg/L     | 2.7  | 30               | 11-MAY-21 |
| Magnesium (Mg                           | g)            |        | 1.63                      | 1.59         |           | mg/L     | 2.5  | 30               | 11-MAY-21 |
| <b>WG3532227-2</b> Calcium (Ca)         | IRM           |        | WT SAR4                   | 91.1         |           | %        |      |                  |           |
| Sodium (Na)                             |               |        |                           | 94.3         |           | %        |      | 70-130           | 11-MAY-21 |
| Magnesium (Mg                           | r)            |        |                           | 94.9         |           | %        |      | 70-130<br>70-130 | 11-MAY-21 |
| WG3532227-5                             | LCS           |        |                           |              |           |          |      |                  | 11-MAY-21 |
| Calcium (Ca)                            |               |        |                           | 108.3        |           | %        |      | 80-120           | 11-MAY-21 |
| Sodium (Na)                             |               |        |                           | 101.6        |           | %        |      | 80-120           | 11-MAY-21 |



Workorder: L2583177 Report Date: 12-MAY-21 Page 10 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                               | Matrix | Reference  | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|------------------------------------|--------|------------|---------|-----------|-------|-----|--------|-----------|
| SAR-R511-WT                        | Soil   |            |         |           |       |     |        |           |
| Batch R545588                      | 38     |            |         |           |       |     |        |           |
| WG3532227-5 LCS                    | 3      |            |         |           |       |     |        |           |
| Magnesium (Mg)                     |        |            | 103.6   |           | %     |     | 80-120 | 11-MAY-21 |
| <b>WG3532227-1 MB</b> Calcium (Ca) |        |            | <0.50   |           | mg/L  |     | 0.5    | 11-MAY-21 |
| Sodium (Na)                        |        |            | <0.50   |           | mg/L  |     | 0.5    | 11-MAY-21 |
| Magnesium (Mg)                     |        |            | <0.50   |           | mg/L  |     | 0.5    | 11-MAY-21 |
| VOC-511-HS-WT                      | Soil   |            |         |           | J     |     |        |           |
| Batch R545559                      |        |            |         |           |       |     |        |           |
| WG3529872-4 DUF                    |        | WG3529872- | -3      |           |       |     |        |           |
| 1,1,1,2-Tetrachloroetl             | hane   | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,1,2,2-Tetrachloroetl             | hane   | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,1,1-Trichloroethane              |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,1,2-Trichloroethane              |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,1-Dichloroethane                 |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,1-Dichloroethylene               |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,2-Dibromoethane                  |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,2-Dichlorobenzene                |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,2-Dichloroethane                 |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,2-Dichloropropane                |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,3-Dichlorobenzene                |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| 1,4-Dichlorobenzene                |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Acetone                            |        | <0.50      | <0.50   | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Benzene                            |        | <0.0068    | <0.0068 | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Bromodichloromethar                | ne     | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Bromoform                          |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Bromomethane                       |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Carbon tetrachloride               |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Chlorobenzene                      |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Chloroform                         |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| cis-1,2-Dichloroethyle             | ene    | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| cis-1,3-Dichloroprope              | ne     | <0.030     | <0.030  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Dibromochlorometha                 | ne     | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Dichlorodifluorometha              | ane    | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
| Ethylbenzene                       |        | <0.018     | <0.018  | RPD-NA    | ug/g  | N/A | 40     | 11-MAY-21 |
|                                    |        |            |         |           |       |     |        |           |



Workorder: L2583177 Report Date: 12-MAY-21 Page 11 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Soli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test                     | Matrix | Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|-----------|--------|-----------|-------|-----|--------|-----------|
| WG3528872-4         DUP         WG3528872-3         Co.050         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VOC-511-HS-WT            | Soil   |           |        |           |       |     |        |           |
| n-Heksane         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Batch R5455597           |        |           |        |           |       |     |        |           |
| Methylene Chloride         < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |        |           |        | RPD-NA    | ua/a  | N/A | 40     | 11-MAV-21 |
| MTBE         <0.050         <0.050         RPD-NA         ug/g         N/A         40         11-MAY-21           m+p-Xylenes         <0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |        |           |        |           |       |     |        |           |
| m+p-Xylenes         <0.030         <0.030         RPD-NA         ug/g         N/A         40         11-MAY-21           Methyl Ethyl Ketone         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                        |        |           |        |           |       |     |        |           |
| Methyl Ethyl Ketone         <0.50         <0.50         RPD-NA         ug/g         N/A         40         11-MAY-21           Methyl Isobutyl Ketone         <0.50         <0.50         RPD-NA         ug/g         N/A         40         11-MAY-21           o-Xylene         <0.020         <0.020         RPD-NA         ug/g         N/A         40         11-MAY-21           Styrene         <0.050         <0.050         RPD-NA         ug/g         N/A         40         11-MAY-21           Tetrachloroethylene         <0.050         <0.050         RPD-NA         ug/g         N/A         40         11-MAY-21           Troluene         <0.080         <0.080         RPD-NA         ug/g         N/A         40         11-MAY-21           trans-1,2-Dichloroethylene         <0.050         <0.050         RPD-NA         ug/g         N/A         40         11-MAY-21           trans-1,3-Dichloroethylene         <0.010         <0.010         RPD-NA         ug/g         N/A         40         11-MAY-21           Trichloroethylene         <0.010         <0.050         RPD-NA         ug/g         N/A         40         11-MAY-21           Trichloroethane         <0.050         <0.050         RPD |                          |        |           |        |           |       |     |        |           |
| Methyl Isobutyl Ketone         <0.50         <0.50         RPD-NA         ug/g         N/A         40         11-MAY-21           o-Xylene         <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |        |           |        |           |       |     |        |           |
| o-Xylene         <0.020         <0.020         RPD-NA         Ug/g         N/A         40         11-MAY-21           Styrene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |        |           |        |           |       |     |        |           |
| Styrene         <0.050         <0.050         RPD-NA         ug/g         N/A         40         11-MAY-21           Tetrachloroethylene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |        |           |        |           |       |     |        |           |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |        |           |        |           |       |     |        |           |
| Toluene         <0.080         <0.080         RPD-NA         ug/g         N/A         40         11-MAY-21           trans-1,2-Dichloroethylene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                        |        |           |        |           |       |     |        |           |
| trans-1,2-Dichloroethylene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                        |        |           |        |           |       |     |        |           |
| trans-1,3-Dichloropropene         <0.030         <0.030         RPD-NA         ug/g         N/A         40         11-MAY-21           Trichloroethylene         <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | ne     |           |        |           |       |     |        |           |
| Trichloroethylene         <0.010         <0.010         RPD-NA         ug/g         N/A         40         11-MAY-21           Trichloroflluoromethane         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                        |        |           |        |           |       |     |        |           |
| Trichlorofluoromethane         <0.050         <0.050         RPD-NA         Ug/g         N/A         40         11-MAY-21           Vinyl chloride         <0.020         <0.020         RPD-NA         Ug/g         N/A         40         11-MAY-21           WG3529872-2         LCS           60-130         11-MAY-21           1,1,2-Tetrachloroethane         104.6         %         60-130         11-MAY-21           1,1,2-Trichloroethane         101.1         %         60-130         11-MAY-21           1,1,2-Trichloroethane         98.6         %         60-130         11-MAY-21           1,1-Dichloroethane         100.4         %         60-130         11-MAY-21           1,1-Dichloroethane         101.5         %         60-130         11-MAY-21           1,2-Dibloromoethane         98.3         %         70-130         11-MAY-21           1,2-Dichlorobenzene         96.7         %         70-130         11-MAY-21           1,2-Dichloroethane         93.7         %         60-130         11-MAY-21           1,2-Dichloroptopane         97.2         %         70-130         11-MAY-21           1,3-Dichlorobenzene         98.7         %         70-130                               |                          |        |           |        |           |       |     |        |           |
| Vinyl chloride         <0.020         <0.020         RPD-NA         ug/g         N/A         40         11-MAY-21           WG3529872-2         LCS           1,1,1,2-Tetrachloroethane         104.6         %         60-130         11-MAY-21           1,1,2-Tetrachloroethane         107.8         %         60-130         11-MAY-21           1,1,1-Trichloroethane         101.1         %         60-130         11-MAY-21           1,1,2-Trichloroethane         98.6         %         60-130         11-MAY-21           1,1-Dichloroethane         100.4         %         60-130         11-MAY-21           1,1-Dichloroethane         101.5         %         60-130         11-MAY-21           1,2-Dichloroethane         98.3         %         70-130         11-MAY-21           1,2-Dichlorobenzene         96.7         %         70-130         11-MAY-21           1,2-Dichloroethane         93.7         %         60-130         11-MAY-21           1,2-Dichloropropane         97.2         %         70-130         11-MAY-21           1,3-Dichlorobenzene         98.7         %         70-130         11-MAY-21           1,4-Dichlorobenzene         99.1         %         70-130                    | •                        |        |           |        |           |       |     |        |           |
| WG3529872-2       LCS         1,1,1,2-Tetrachloroethane       104.6       %       60-130       11-MAY-21         1,1,2,2-Tetrachloroethane       107.8       %       60-130       11-MAY-21         1,1,1-Trichloroethane       101.1       %       60-130       11-MAY-21         1,1-Dichloroethane       98.6       %       60-130       11-MAY-21         1,1-Dichloroethane       100.4       %       60-130       11-MAY-21         1,1-Dichloroethylene       101.5       %       60-130       11-MAY-21         1,2-Dibromoethane       98.3       %       70-130       11-MAY-21         1,2-Dichlorobenzene       96.7       %       70-130       11-MAY-21         1,2-Dichloroptane       93.7       %       60-130       11-MAY-21         1,2-Dichloroptopane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane                                                                                           | Vinyl chloride           |        |           |        |           |       |     |        |           |
| 1,1,1,2-Tetrachloroethane       104.6       %       60-130       11-MAY-21         1,1,2,2-Tetrachloroethane       107.8       %       60-130       11-MAY-21         1,1,1-Trichloroethane       101.1       %       60-130       11-MAY-21         1,1,2-Trichloroethane       98.6       %       60-130       11-MAY-21         1,1-Dichloroethane       100.4       %       60-130       11-MAY-21         1,1-Dichloroethylene       101.5       %       60-130       11-MAY-21         1,2-Dibromoethane       98.3       %       70-130       11-MAY-21         1,2-Dichlorobenzene       96.7       %       70-130       11-MAY-21         1,2-Dichloropthane       93.7       %       60-130       11-MAY-21         1,2-Dichloroptopane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140                                                                                    | •                        |        |           |        | 2         | 0.0   |     | .0     | = .       |
| 1,1,1-Trichloroethane       101.1       %       60-130       11-MAY-21         1,1,2-Trichloroethane       98.6       %       60-130       11-MAY-21         1,1-Dichloroethane       100.4       %       60-130       11-MAY-21         1,1-Dichloroethylene       101.5       %       60-130       11-MAY-21         1,2-Dibromoethane       98.3       %       70-130       11-MAY-21         1,2-Dichlorobenzene       96.7       %       70-130       11-MAY-21         1,2-Dichloroethane       93.7       %       60-130       11-MAY-21         1,2-Dichloropropane       97.2       %       70-130       11-MAY-21         1,2-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                           |                          | ie     |           | 104.6  |           | %     |     | 60-130 | 11-MAY-21 |
| 1,1,2-Trichloroethane       98.6       %       60-130       11-MAY-21         1,1-Dichloroethane       100.4       %       60-130       11-MAY-21         1,1-Dichloroethylene       101.5       %       60-130       11-MAY-21         1,2-Dibromoethane       98.3       %       70-130       11-MAY-21         1,2-Dichlorobenzene       96.7       %       70-130       11-MAY-21         1,2-Dichloroethane       93.7       %       60-130       11-MAY-21         1,2-Dichloropropane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                      | 1,1,2,2-Tetrachloroethan | ie     |           | 107.8  |           | %     |     | 60-130 | 11-MAY-21 |
| 1,1-Dichloroethane       100.4       %       60-130       11-MAY-21         1,1-Dichloroethylene       101.5       %       60-130       11-MAY-21         1,2-Dibromoethane       98.3       %       70-130       11-MAY-21         1,2-Dichlorobenzene       96.7       %       70-130       11-MAY-21         1,2-Dichloroethane       93.7       %       60-130       11-MAY-21         1,2-Dichloropropane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                    | 1,1,1-Trichloroethane    |        |           | 101.1  |           | %     |     | 60-130 | 11-MAY-21 |
| 1,1-Dichloroethylene       101.5       %       60-130       11-MAY-21         1,2-Dibromoethane       98.3       %       70-130       11-MAY-21         1,2-Dichlorobenzene       96.7       %       70-130       11-MAY-21         1,2-Dichloroethane       93.7       %       60-130       11-MAY-21         1,2-Dichloropropane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1,2-Trichloroethane    |        |           | 98.6   |           | %     |     | 60-130 | 11-MAY-21 |
| 1,2-Dibromoethane       98.3       %       70-130       11-MAY-21         1,2-Dichlorobenzene       96.7       %       70-130       11-MAY-21         1,2-Dichloroethane       93.7       %       60-130       11-MAY-21         1,2-Dichloropropane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1-Dichloroethane       |        |           | 100.4  |           | %     |     | 60-130 | 11-MAY-21 |
| 1,2-Dichlorobenzene       96.7       %       70-130       11-MAY-21         1,2-Dichloroethane       93.7       %       60-130       11-MAY-21         1,2-Dichloropropane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1-Dichloroethylene     |        |           | 101.5  |           | %     |     | 60-130 | 11-MAY-21 |
| 1,2-Dichloroethane       93.7       %       60-130       11-MAY-21         1,2-Dichloropropane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dibromoethane        |        |           | 98.3   |           | %     |     | 70-130 | 11-MAY-21 |
| 1,2-Dichloropropane       97.2       %       70-130       11-MAY-21         1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichlorobenzene      |        |           | 96.7   |           | %     |     | 70-130 | 11-MAY-21 |
| 1,3-Dichlorobenzene       98.7       %       70-130       11-MAY-21         1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-Dichloroethane       |        |           | 93.7   |           | %     |     | 60-130 | 11-MAY-21 |
| 1,4-Dichlorobenzene       99.1       %       70-130       11-MAY-21         Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-Dichloropropane      |        |           | 97.2   |           | %     |     | 70-130 | 11-MAY-21 |
| Acetone       104.3       %       60-140       11-MAY-21         Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,3-Dichlorobenzene      |        |           | 98.7   |           | %     |     | 70-130 | 11-MAY-21 |
| Benzene       97.4       %       70-130       11-MAY-21         Bromodichloromethane       103.4       %       50-140       11-MAY-21         Bromoform       115.4       %       70-130       11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,4-Dichlorobenzene      |        |           | 99.1   |           | %     |     | 70-130 | 11-MAY-21 |
| Bromodichloromethane         103.4         %         50-140         11-MAY-21           Bromoform         115.4         %         70-130         11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acetone                  |        |           | 104.3  |           | %     |     | 60-140 | 11-MAY-21 |
| Bromoform 115.4 % 70-130 11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzene                  |        |           | 97.4   |           | %     |     | 70-130 | 11-MAY-21 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bromodichloromethane     |        |           | 103.4  |           | %     |     | 50-140 | 11-MAY-21 |
| Bromomethane 95.2 % 50-140 11-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromoform                |        |           |        |           |       |     | 70-130 | 11-MAY-21 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bromomethane             |        |           | 95.2   |           | %     |     | 50-140 | 11-MAY-21 |



Workorder: L2583177 Report Date: 12-MAY-21 Page 12 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                      | Matrix | Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------|--------|-----------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT             | Soil   |           |        |           |       |     |        |           |
| Batch R5455597            |        |           |        |           |       |     |        |           |
| WG3529872-2 LCS           |        |           | 404.0  |           | 0/    |     |        |           |
| Carbon tetrachloride      |        |           | 104.9  |           | %     |     | 70-130 | 11-MAY-21 |
| Chlorobenzene             |        |           | 96.7   |           | %     |     | 70-130 | 11-MAY-21 |
| Chloroform                |        |           | 103.5  |           | %     |     | 70-130 | 11-MAY-21 |
| cis-1,2-Dichloroethylene  |        |           | 103.3  |           | %     |     | 70-130 | 11-MAY-21 |
| cis-1,3-Dichloropropene   |        |           | 93.8   |           | %     |     | 70-130 | 11-MAY-21 |
| Dibromochloromethane      |        |           | 102.3  |           | %     |     | 60-130 | 11-MAY-21 |
| Dichlorodifluoromethane   |        |           | 83.5   |           | %     |     | 50-140 | 11-MAY-21 |
| Ethylbenzene              |        |           | 100.2  |           | %     |     | 70-130 | 11-MAY-21 |
| n-Hexane                  |        |           | 95.2   |           | %     |     | 70-130 | 11-MAY-21 |
| Methylene Chloride        |        |           | 101.9  |           | %     |     | 70-130 | 11-MAY-21 |
| MTBE                      |        |           | 98.0   |           | %     |     | 70-130 | 11-MAY-21 |
| m+p-Xylenes               |        |           | 96.0   |           | %     |     | 70-130 | 11-MAY-21 |
| Methyl Ethyl Ketone       |        |           | 92.9   |           | %     |     | 60-140 | 11-MAY-21 |
| Methyl Isobutyl Ketone    |        |           | 102.1  |           | %     |     | 60-140 | 11-MAY-21 |
| o-Xylene                  |        |           | 107.5  |           | %     |     | 70-130 | 11-MAY-21 |
| Styrene                   |        |           | 106.5  |           | %     |     | 70-130 | 11-MAY-21 |
| Tetrachloroethylene       |        |           | 99.7   |           | %     |     | 60-130 | 11-MAY-21 |
| Toluene                   |        |           | 99.6   |           | %     |     | 70-130 | 11-MAY-21 |
| trans-1,2-Dichloroethyler | ne     |           | 102.0  |           | %     |     | 60-130 | 11-MAY-21 |
| trans-1,3-Dichloroproper  | ne     |           | 93.4   |           | %     |     | 70-130 | 11-MAY-21 |
| Trichloroethylene         |        |           | 97.0   |           | %     |     | 60-130 | 11-MAY-21 |
| Trichlorofluoromethane    |        |           | 102.0  |           | %     |     | 50-140 | 11-MAY-21 |
| Vinyl chloride            |        |           | 103.0  |           | %     |     | 60-140 | 11-MAY-21 |
| WG3529872-1 MB            |        |           |        |           |       |     |        |           |
| 1,1,1,2-Tetrachloroethan  |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,1,2,2-Tetrachloroethan  | е      |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,1,1-Trichloroethane     |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,1,2-Trichloroethane     |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,1-Dichloroethane        |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,1-Dichloroethylene      |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,2-Dibromoethane         |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,2-Dichlorobenzene       |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,2-Dichloroethane        |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,2-Dichloropropane       |        |           | <0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |



Workorder: L2583177 Report Date: 12-MAY-21 Page 13 of 14

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                      | Matrix   | Reference | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------|----------|-----------|---------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT             | Soil     |           |         |           |       |     |        |           |
| Batch R5455597            |          |           |         |           |       |     |        |           |
| WG3529872-1 MB            |          |           | 0.050   |           |       |     | 0.05   |           |
| 1,3-Dichlorobenzene       |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| 1,4-Dichlorobenzene       |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Acetone                   |          |           | <0.50   |           | ug/g  |     | 0.5    | 11-MAY-21 |
| Benzene                   |          |           | <0.0068 |           | ug/g  |     | 0.0068 | 11-MAY-21 |
| Bromodichloromethane      |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Bromoform                 |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Bromomethane              |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Carbon tetrachloride      |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Chlorobenzene             |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Chloroform                |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| cis-1,2-Dichloroethylene  |          |           | <0.050  |           | ug/g  |     | 0.05   | 11-MAY-21 |
| cis-1,3-Dichloropropene   |          |           | <0.030  |           | ug/g  |     | 0.03   | 11-MAY-21 |
| Dibromochloromethane      |          |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Dichlorodifluoromethane   |          |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Ethylbenzene              |          |           | <0.018  |           | ug/g  |     | 0.018  | 11-MAY-21 |
| n-Hexane                  |          |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Methylene Chloride        |          |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| MTBE                      |          |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| m+p-Xylenes               |          |           | < 0.030 |           | ug/g  |     | 0.03   | 11-MAY-21 |
| Methyl Ethyl Ketone       |          |           | <0.50   |           | ug/g  |     | 0.5    | 11-MAY-21 |
| Methyl Isobutyl Ketone    |          |           | < 0.50  |           | ug/g  |     | 0.5    | 11-MAY-21 |
| o-Xylene                  |          |           | <0.020  |           | ug/g  |     | 0.02   | 11-MAY-21 |
| Styrene                   |          |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Tetrachloroethylene       |          |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Toluene                   |          |           | <0.080  |           | ug/g  |     | 0.08   | 11-MAY-21 |
| trans-1,2-Dichloroethyler | ne       |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| trans-1,3-Dichloroproper  | ne       |           | < 0.030 |           | ug/g  |     | 0.03   | 11-MAY-21 |
| Trichloroethylene         |          |           | <0.010  |           | ug/g  |     | 0.01   | 11-MAY-21 |
| Trichlorofluoromethane    |          |           | < 0.050 |           | ug/g  |     | 0.05   | 11-MAY-21 |
| Vinyl chloride            |          |           | <0.020  |           | ug/g  |     | 0.02   | 11-MAY-21 |
| Surrogate: 1,4-Difluorobe | enzene   |           | 122.5   |           | %     |     | 50-140 | 11-MAY-21 |
| Surrogate: 4-Bromofluor   | obenzene |           | 134.7   |           | %     |     | 50-140 | 11-MAY-21 |
|                           |          |           |         |           |       |     |        |           |

Report Date: 12-MAY-21 Workorder: L2583177

Grounded Engineering Inc Client: Page 14 of 14

12 Banigan Drive

TORONTO ON M4H 1E9

Contact: ZENITH WONG

#### Legend:

Limit ALS Control Limit (Data Quality Objectives) DUP Duplicate RPD

Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

**MSD** Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

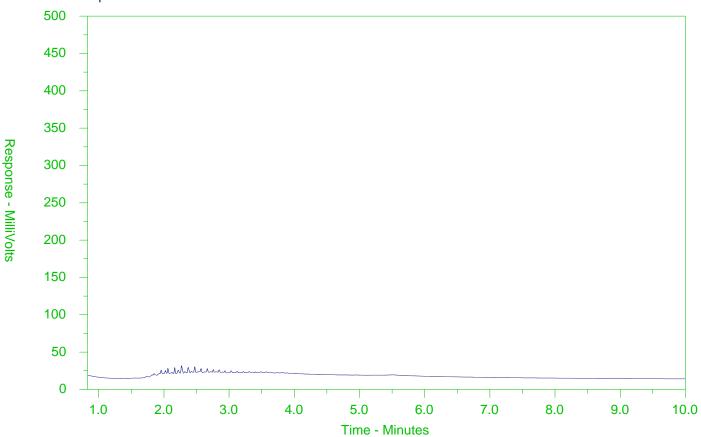
IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

#### **Sample Parameter Qualifier Definitions:**

| Qualifier | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                 |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit. |

#### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

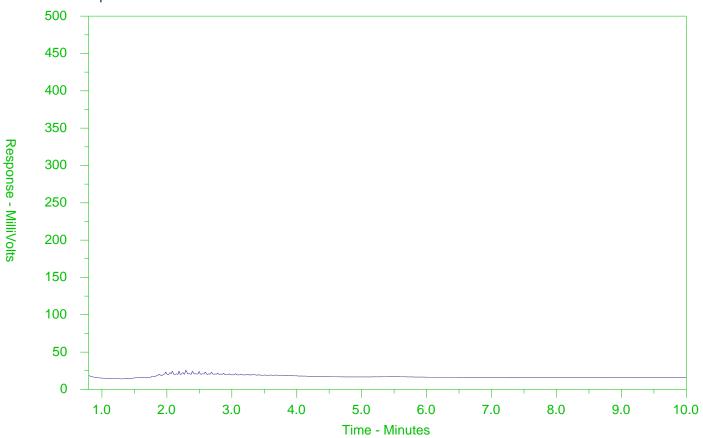
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



ALS Sample ID: L2583177-4 Client Sample ID: BH 101 SS4



| <b>←</b> -F2- | →←          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

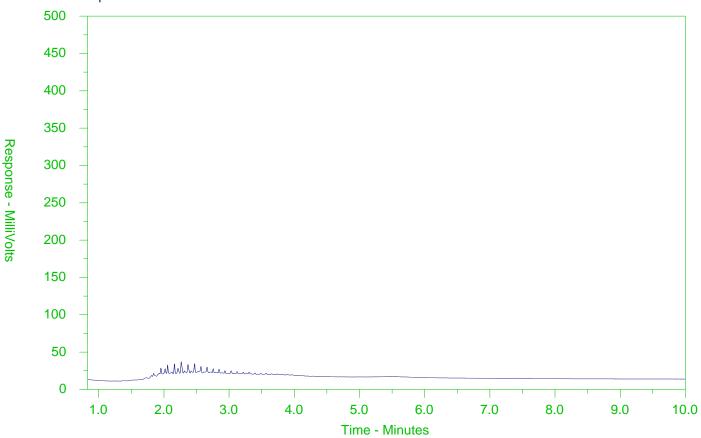
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2583177-8 Client Sample ID: BH 102 SS6B



| <b>←</b> -F2- | →←          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

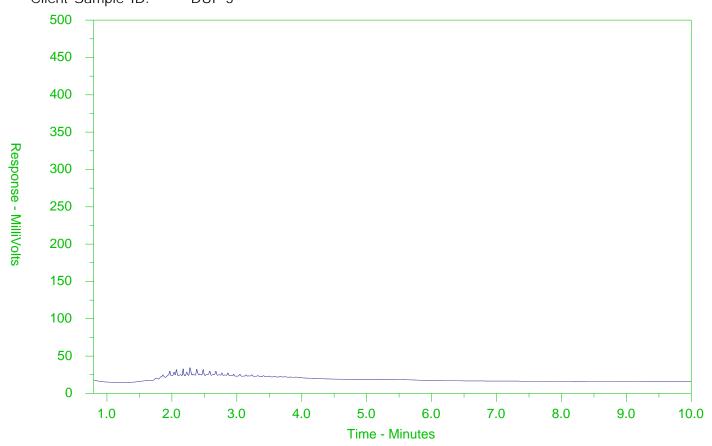
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2583177-12 Client Sample ID: BH 103 SS3B



| <b>←</b> -F2- | →←          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2583177-16
Client Sample ID: DUP 3



| <b>←</b> -F2- | →←          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

COC Number: 20 - 888180

in of Custody (COC) / Analytical Request Form Canada Toll Free: 1 800 668 9878 L2583177-COFC Reports / Recipients Report To Select Report Format: POF DECEL DEDD (DIGITAL) Company Merge QC/QCI Reports with COA ☐ YES ☐ NO ☐ N/A Contact: Compare Results to Criteria on Report - provide details below if box checked Phone: MAIL ☐ MAIL ☐ FAX Select Distribution: BANIAMA Driv TOTOMO Street: Email 1 or Fax 2 Email 2 City/Province: Email 3 Postal Code Invoice Recipients Invoice To Same as Report To AZ YES □ NO MAIL ☐ MAIL ☐ FAX Select Invoice Distribution: ☐ YES ☐ NO Copy of Invoice with Report Email 1 or Fax Company Email 2 Contact: Oil and Gas Required Fields (client use) **Project Information** PO# ALS Account # / Quote # AFE/Cost Center

Turnaround Time (TAT) Requested Routine [R] if received by 3pm M-F - no surcharges apply 4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum AFFIX ALS BARCODE LABEL HERE 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum (ALS use only) 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional fees may apply to rush requests on weekends, statutory holidays and non-routine test Date and Time Required for all E&P TATs: For all tests with rush TATs requested, please contact your AM to confirm availability **Analysis Request** CONTAINERS Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below REQUIRED SUSPECTED HAZARD (see notes) SAMPLES ON HOLD **EXTENDED STORAGE** Routing Code 11-064 Major/Minor Code: Job #: PO / AFE: Requisitioner: Я Location: LSD: NUMBER 24 ALS Contact: Sampler: ALS Lab Work Order # (ALS use only): Ø  $\mathcal{G}$ OQ Time Date Sample Identification and/or Coordinates ALS Sample # Ğ, Sample Type (ALS use only) (dd-mmm-yy) (hh:mm) (This description will appear on the report) 3 Soil 09 494 Mark dup 3 CLP SAMPLE RECEIPT DETAILS (ALS use only) Notes / Specify Limits for result evaluation by selecting from drop-down below Drinking Water (DW) Samples (client use) Cooling Method: None Lice Misse Packs | Frozen (Excel COC only) COOLING INITIATED Are samples taken from a Regulated DW System? Submission Comments identified on Sample Receipt Notification: ☐ YES □ NO ☐ YES ☐ NO Sample Custody Seals Intact Cooler Cus dy Seals Intact: ☐ YES ☐ N/A ☐ YES ☐ N/A FINAL COOLER TEMPERATURES °C WITIAL COOLER TEMPERATURES °C Are samples for human consumption/ use? ☐ YES ☐ NO FINAL SHIPMENT RECEPTION (ALS use only) SHIPMENT RELEASE (client use) NITIAL SHIPMEN RECEPTION (ALS use only) Time: Released by: M

YELLOW - CLIENT COPY WHITE - LABORATORY COPY

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.



## ustody (COC) / Analytical Request Form

COC Number: 20-888179 AV

Canada Toll Free: 1 800 668 9878 www.alsglobal.com

| Report To                              | Contact and company name below will appear          | on the final report |                   | Reports / R                            | ecipients                                        |                                                  | Т              |              | Turna            | round T                                 | ime (TA         | r) Reques                    | ted         |                |                 | - 180 m      | i a            | all C              |                | N.                                    | - 74                         |
|----------------------------------------|-----------------------------------------------------|---------------------|-------------------|----------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------|------------------|-----------------------------------------|-----------------|------------------------------|-------------|----------------|-----------------|--------------|----------------|--------------------|----------------|---------------------------------------|------------------------------|
| Company:                               | CONNITED ENG                                        | Sele                | ect Report Form   | at: 🗗 PDF 🛭                            | EXCEL   EDI                                      | (DIGITAL)                                        | ER             | outine [R    | if received      | by 3pm                                  | M-F - no        | surcharges                   | apply       |                | T <sub>ab</sub> |              | 1.1994.3       | l di               |                | *                                     |                              |
| Contact:                               | zenith wone                                         |                     | erge QC/QCI R     | eports with COA                        | YES [] NO                                        | □ N/A                                            |                | day [P4]     | if received      | by 3pm 1                                | 4-F - 20%       | rush surch                   | arge mini   | mum            |                 | AFEIV        | ALS BAR        | CODE               | 4              | LED                                   |                              |
| Phone:                                 | 1472 764 Y8 49                                      |                     |                   | to Criteria on Report - p              |                                                  |                                                  |                |              |                  |                                         |                 | 6 rush surc                  |             |                | 77              | AFFIX        |                | use on             |                | i i i i i i i i i i i i i i i i i i i |                              |
|                                        | Company address below will appear on the final re   | eport Sele          | ect Distribution: | <b>Ø</b> EMAIL                         | ☐ MAIL ☐                                         | AX                                               |                |              |                  |                                         |                 | 6 rush surc<br>6 rush surc   |             |                | l l             | 80.1         |                | neggi<br>Salatifin |                |                                       |                              |
| Street:                                | 12 Baniagh Driv                                     |                     | ail 1 or Fax Z    | WORB 6                                 | Stouht                                           | of engic                                         | <b>9</b>   🗌 s | ame day 1    | E2] if recei     | ed by 10a                               | m M-S -         | 200% rush s<br>atutory holid | urcharge.   | Additional     | fees<br>tests   | 12           | 4              |                    |                |                                       |                              |
| City/Province:                         | ON 150                                              |                     |                   |                                        |                                                  |                                                  | ╫              |              | d Time Re        |                                         |                 |                              | т_          |                |                 | ogmore, a    |                |                    | 13 Mag. 5 21   |                                       |                              |
| Postal Code:                           | MAH II-7                                            | Ema                 | 311 3             | Invoice Re                             |                                                  |                                                  | ╁              | Duto ai      | u 11110 110      |                                         |                 |                              | lested, ple | ase conta      | ict your Af     | I to confirr | n availability | у.                 |                |                                       | ヿ                            |
| Invoice To                             | Same as Report To  Copy of Invoice with Report  YES |                     | ect Invoice Distr |                                        | IAIL   MAIL                                      | FAY                                              | +              |              |                  |                                         |                 |                              | nalysis     |                |                 |              |                |                    |                |                                       | $\neg$                       |
| Company:                               | Copy of Invoice with Report YES                     |                     | ail 1 or Fax      | ibation. 4 B                           | MIL [] TOTAL []                                  | 100                                              | 100            | T            | Inc              | icate Filte                             | red (F), P      | reserved (P                  |             |                |                 | F/P) belov   | v              | $\neg$             |                | 副工                                    | (S)                          |
| Contact:                               |                                                     | Ema                 |                   |                                        |                                                  |                                                  | 一品             |              |                  |                                         | T               |                              |             |                |                 | $\Box$       |                | $\Box$             |                | ≝                                     | notes)                       |
| Contact.                               | Project Information                                 |                     |                   | and Gas Require                        | ields (client us                                 | e)                                               | 7 3            |              |                  |                                         |                 |                              |             |                |                 |              |                |                    | _              | REQUIRED                              | ě                            |
| ALS Account # /                        |                                                     | AFE/                | Cost Center:      |                                        | PO#                                              |                                                  | ٦₽             |              |                  |                                         |                 |                              |             |                |                 | - 1          |                |                    |                |                                       | (see                         |
|                                        | -067                                                | Major               | r/Minor Code:     |                                        | Routing Code:                                    |                                                  | ONTAINERS      |              | ļ                | 17                                      |                 |                              |             |                |                 |              |                | .                  | 면              | STORAGE                               | SUSPECTED HAZARD             |
| PO / AFE:                              |                                                     | <b>∖</b> Req        | uisitioner:       |                                        |                                                  |                                                  | ၂ ပ            |              | İ                | $ \mathcal{D} $                         |                 | 1                            |             |                |                 |              |                |                    | 8              | 8                                     | Ž                            |
| LSD:                                   |                                                     | Loca                | ation:            |                                        | -                                                |                                                  | გ              | 1            |                  | 1                                       |                 | Ì                            |             |                |                 |              |                |                    | SC             | ST                                    | 핆                            |
|                                        | \$ 1000°                                            | 2 7-4               |                   |                                        |                                                  |                                                  | $\neg$ $\cong$ |              | ۔ ا              | +                                       |                 |                              |             |                |                 |              |                |                    | ŭΙ             | 딦                                     |                              |
| ALS Lab Wor                            | k Order# (ALS use only); L258)                      | )//B                | S Contact:        |                                        | Sampler:                                         |                                                  | ╝              |              | 2                | ગ2                                      | 0               | ļ                            |             |                |                 |              |                |                    | ₫              |                                       | Ä                            |
| ALS Sample #                           | Sample Identification a                             | and/or Coordinates  |                   | Date                                   | Time                                             | Sample Typ                                       | NUMBER         | m            | 200              | HA                                      | \ \mathref{S}   |                              |             |                |                 |              |                |                    | SAMPLE         | EXTENDED                              | S                            |
| (ALS use only)                         | (This description will ap                           | pear on the report) |                   | (dd-mmm-yy)                            | (hh:mm)                                          |                                                  | Z              | 0            | <del>~</del>     |                                         |                 |                              |             |                |                 | —            | 4              | -+                 | <del>~</del> + | <u>"   </u>                           | <u>s</u>                     |
|                                        | BH 101 551                                          |                     |                   | 3 May                                  |                                                  | Goil                                             | 1,             |              | X                |                                         |                 |                              |             | ļ              |                 |              |                |                    | $\dashv$       |                                       |                              |
|                                        | Bn 101 552                                          | •                   |                   | 1                                      |                                                  |                                                  | 1              | X            |                  |                                         |                 |                              |             |                |                 |              |                | <del></del>        |                |                                       |                              |
|                                        | BN 101 493B                                         |                     |                   |                                        |                                                  |                                                  | $\perp L$      |              | 7                |                                         |                 |                              |             | ļ              |                 |              |                | $\sqcup$           |                | _                                     |                              |
|                                        | GH 101 594                                          |                     |                   |                                        |                                                  |                                                  | 3              |              |                  | 一×                                      |                 |                              |             |                |                 |              |                |                    | $\dashv$       |                                       |                              |
|                                        | BN 101 557                                          |                     |                   |                                        |                                                  |                                                  | 3              | )            |                  |                                         | X               |                              |             |                |                 |              |                |                    |                |                                       |                              |
|                                        | BH 102 553                                          |                     |                   |                                        |                                                  |                                                  | 1              | X            |                  |                                         |                 |                              |             |                |                 |              |                |                    |                |                                       |                              |
|                                        | BH 102 555                                          |                     |                   |                                        |                                                  |                                                  | ì              | 1            | X                |                                         |                 |                              |             |                |                 |              |                |                    |                |                                       |                              |
| -                                      | BM 102 4568                                         |                     |                   |                                        | <u> </u>                                         |                                                  | Ü              | 1            |                  |                                         | *               |                              |             |                |                 |              |                |                    |                |                                       |                              |
| - <del>- 18</del> -                    | BN 109 497                                          |                     |                   |                                        | <del>                                     </del> | 1 1                                              | 3              | <del> </del> | — <del> </del> Z |                                         | X               |                              |             | 1              |                 | _            |                |                    |                |                                       | i                            |
| <del> </del>                           |                                                     |                     |                   |                                        | -                                                | <del>                                     </del> | 1              | +            | _                |                                         | +               |                              | +           | 1              |                 | _            | +-             |                    | $\neg$         | $\neg$                                |                              |
|                                        | BH 103 451                                          |                     |                   |                                        | <u> </u>                                         | -                                                | 1,             | +            | X                |                                         | +-              |                              | -           | +              | -+              | _            | +              |                    | $\dashv$       |                                       |                              |
| 13 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | BU 103 492                                          |                     |                   |                                        |                                                  |                                                  | 1 -5           | -            | $\overline{}$    | -                                       | +               |                              | -           | <del>  -</del> | $\vdash$        |              | +              | $\vdash$           | -+             |                                       |                              |
| r A                                    | BM 103 96 30                                        |                     |                   |                                        |                                                  | \\ \b                                            | 12             | 200 34/20    | 807              | <u> X</u>                               |                 |                              |             |                | 2 744 0         | - L          |                |                    |                | i Kiri.                               | $\sqsubseteq_{\overline{A}}$ |
| Drinkin                                | g Water (DW) Samples <sup>1</sup> (client use)      | Notes / Specify Lim |                   | aluation by selecting<br>cel COC only) | ng from drop-down                                | below                                            |                | ling Me      | hodi             | д ш                                     |                 | PLE REC                      |             |                |                 |              |                | OOLING             | INCLES         | TEO.                                  | -                            |
|                                        | n from a Regulated DW System?                       |                     | (EX               | Cer Coc only                           |                                                  |                                                  |                | ACRES .      |                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Contract of the | Sample                       |             |                | 7. 10.00        | 7768         | ☐ YES          |                    | 138 T 1882 .   | 1 1                                   | 3                            |
|                                        | ES NO                                               | Ta ble              | 0 12              | -0 (1                                  |                                                  |                                                  | 4,000          | a            | ody Sea          |                                         |                 |                              |             |                | 1771 7772       | 400 C 172 C  | ıls Intact:    |                    | T YES          | , D                                   | N/A                          |
| _                                      | numan consumption/ use?                             |                     |                   |                                        |                                                  |                                                  | 300            |              | NICTIAL CO       | OLER TE                                 |                 |                              | <u></u>     |                | F               | NAL COC      | LER TEM        | PERATU             |                |                                       |                              |
| -                                      |                                                     |                     |                   |                                        |                                                  |                                                  |                | 176          | 7.<br>1581, 41   | 44                                      | ji yili         | er er                        | 1.46        | 18             | .3              |              |                | 7                  | ' I            | Š                                     | 11                           |
|                                        | SHIPMENT RELEASE (client use)                       |                     | 9 - 3/2 1         | NITIAL SHIPMEN                         | RECEPTION (A                                     | LS use only)                                     | W.             |              |                  |                                         |                 | INAL SI                      | (IPMEN      | TREC           | EPTION          | N (ALS       | use only       | 1                  | 419            | N.                                    |                              |
| Released by:                           |                                                     | Time: Re            | ceived by:        | 7 T V                                  | Date:                                            |                                                  | Tim            | е:           | Receive          | d by:                                   | a sabla:        | ¥-1#5                        | Dat         | 1.0            | 08              | 104          | 121            |                    | Time:          | 10                                    | PN                           |
| · · · · · · · · · · · · · · · · · · ·  | $n$ . De Date: $3M\alpha$                           | 2 400               | # · •             | 45                                     |                                                  |                                                  | Mark.          |              | (1               |                                         | <b>,</b> •      | 1 11 11                      |             |                | , ,             | 150 45       | <u>L</u>       | N. A.              |                | AUG                                   | 2020 EPON                    |

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with he Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.



Grounded Engineering Inc

ATTN: ZENITH WONG 12 Banigan Drive

TORONTO ON M4H 1E9

Date Received: 07-MAY-21

Report Date: 17-MAY-21 10:27 (MT)

Version: FINAL REV. 2

Client Phone: 647-264-7932

# Certificate of Analysis

Lab Work Order #: L2585341
Project P.O. #: NOT SUBMITTED

Job Reference: 21-067

C of C Numbers: Legal Site Desc:

Jennifer Barkshire-Paterson Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$ 

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2585341 CONT'D.... Job Reference: 21-067 PAGE 2 of 16 17-MAY-21 10:27 (MT)

## **Summary of Guideline Exceedances**

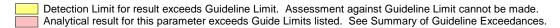
| Guideline<br>ALS ID | Client ID                 | Grouping                            | Analyte                        | Result | Guideline Limit | Unit |
|---------------------|---------------------------|-------------------------------------|--------------------------------|--------|-----------------|------|
| Ontario Reg         | gulation 153/04 - April 1 | 5, 2011 Standards - T8-Ground Wat   | er - All Types of Property Use |        |                 |      |
| _2585341-2          | BH 102                    | Anions and Nutrients                | Chloride (CI)                  | 1690   | 790             | mg/L |
|                     |                           | Dissolved Metals                    | Sodium (Na)-Dissolved          | 882000 | 490000          | ug/L |
| .2585341-3          | BH 103                    | Polycyclic Aromatic<br>Hydrocarbons | Benzo(a)pyrene                 | 0.016  | 0.01            | ug/L |
| 2585341-4           | DUP 1                     | Anions and Nutrients                | Chloride (CI)                  | 1440   | 790             | mg/L |
|                     |                           | Dissolved Metals                    | Sodium (Na)-Dissolved          | 950000 | 490000          | ug/L |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067


PAGE 3 of 16

17-MAY-21 10:27 (MT)

## **Physical Tests - WATER**

| 585341-1 L2585341-2 L2585341-3 L2585341-4<br>-MAY-21 07-MAY-21 07-MAY-21 07-MAY-21 |
|------------------------------------------------------------------------------------|
| -MAY-21 07-MAY-21 07-MAY-21 07-MAY-21                                              |
|                                                                                    |
| BH 101 BH 102 BH 103 DUP 1                                                         |
|                                                                                    |
|                                                                                    |
| 1.50 4.85 1.30 4.95                                                                |
| 8.19 7.57 8.17 7.61                                                                |
|                                                                                    |

Guide Limit #1: T8-Ground Water - All Types of Property Use

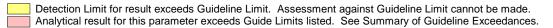


<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067


PAGE 4 of 16

17-MAY-21 10:27 (MT)

#### **Anions and Nutrients - WATER**

|               |      |        | Lab ID | L2585341-1 | L2585341-2 | L2585341-3 | L2585341-4 |
|---------------|------|--------|--------|------------|------------|------------|------------|
|               |      | Sample | e Date | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  |
|               |      | Sam    | ple ID | BH 101     | BH 102     | BH 103     | DUP 1      |
|               |      | Guide  | Limits |            |            |            |            |
| Analyte       | Unit | #1     | #2     |            |            |            |            |
| Chloride (CI) | mg/L | 790    |        | 284 DLHC   | 1690 DLHC  | 266 DLHC   | 1440 DLHC  |

Guide Limit #1: T8-Ground Water - All Types of Property Use



<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067

PAGE 5 of 16

17-MAY-21 10:27 (MT)

## **Cyanides - WATER**

|      | Lab ID             | L2585341-1                                          | L2585341-2                                         | L2585341-3                                                                    | L2585341-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|--------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sam  | ple Date           | 07-MAY-21                                           | 07-MAY-21                                          | 07-MAY-21                                                                     | 07-MAY-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sa   | mple ID            | BH 101                                              | BH 102                                             | BH 103                                                                        | DUP 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Guid | le Limits          |                                                     |                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| t #1 | #2                 |                                                     |                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _ 52 | -                  | 3.3                                                 | 2.6                                                | <2.0                                                                          | <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Sa<br>Guid<br>t #1 | Sample Date<br>Sample ID<br>Guide Limits<br>t #1 #2 | Sample Date 07-MAY-21 BH 101  Guide Limits t #1 #2 | Sample Date 07-MAY-21 07-MAY-21 Sample ID BH 101 BH 102  Guide Limits t #1 #2 | Sample Date Sample ID         07-MAY-21         08-MAY-21         08-MAY-21 |

Guide Limit #1: T8-Ground Water - All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067

PAGE 6 of 16

17-MAY-21 10:27 (MT)

#### **Dissolved Metals - WATER**

|                                       |      | Sample      | ab ID Date ple ID | L2585341-1<br>07-MAY-21<br>BH 101 | L2585341-2<br>07-MAY-21<br>BH 102 | L2585341-3<br>07-MAY-21<br>BH 103 | L2585341-4<br>07-MAY-21<br>DUP 1 |
|---------------------------------------|------|-------------|-------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|
| Analyte                               | Unit | Guide Limit |                   |                                   |                                   |                                   |                                  |
| Dissolved Mercury Filtration Location |      | -           | -                 | FIELD                             | FIELD                             | LAB                               | FIELD                            |
| Dissolved Metals Filtration Location  |      | -           | -                 | FIELD                             | FIELD                             | LAB                               | FIELD                            |
| Antimony (Sb)-Dissolved               | ug/L | 6           | -                 | 1.8 DLHC                          | <1.0 DLHC                         | 1.8 DLHC                          | <1.0 DLHC                        |
| Arsenic (As)-Dissolved                | ug/L | 25          | -                 | 2.6 DLHC                          | 1.0 DLHC                          | 2.5 DLHC                          | <1.0 DLH                         |
| Barium (Ba)-Dissolved                 | ug/L | 1000        | -                 | 62.8 DLHC                         | 155 DLHC                          | 45.7 DLHC                         | 171 DLH                          |
| Beryllium (Be)-Dissolved              | ug/L | 4           | -                 | <1.0 DLHC                         | <1.0 DLHC                         | <1.0 DLHC                         | <1.0 DLH                         |
| Boron (B)-Dissolved                   | ug/L | 5000        | -                 | 1530 DLHC                         | 1080 DLHC                         | 790 DLHC                          | 1040 DLH                         |
| Cadmium (Cd)-Dissolved                | ug/L | 2.1         | -                 | <0.050 <sup>DLHC</sup>            | <0.050 <sup>DLHC</sup>            | <0.050 <sup>DLHC</sup>            | <0.050 <sup>DLH</sup>            |
| Chromium (Cr)-Dissolved               | ug/L | 50          | -                 | <5.0 DLHC                         | <5.0 DLHC                         | <5.0 DLHC                         | <5.0 DLH                         |
| Cobalt (Co)-Dissolved                 | ug/L | 3.8         | -                 | <1.0 DLHC                         | <1.0 DLHC                         | <1.0 DLHC                         | <1.0 DLH                         |
| Copper (Cu)-Dissolved                 | ug/L | 69          | -                 | <2.0 DLHC                         | <2.0 DLHC                         | <2.0 DLHC                         | <2.0 DLH                         |
| Lead (Pb)-Dissolved                   | ug/L | 10          | -                 | <0.50 DLHC                        | <0.50 DLHC                        | <0.50 DLHC                        | <0.50 DLH                        |
| Mercury (Hg)-Dissolved                | ug/L | 0.29        | -                 | <0.0050                           | <0.0050                           | <0.0050                           | <0.0050                          |
| Molybdenum (Mo)-Dissolved             | ug/L | 70          | -                 | 14.7 DLHC                         | 6.91 DLHC                         | 20.1 DLHC                         | 6.95 DLH                         |
| Nickel (Ni)-Dissolved                 | ug/L | 100         | -                 | <5.0 DLHC                         | <5.0 DLHC                         | <5.0 DLHC                         | <5.0 DLH                         |
| Selenium (Se)-Dissolved               | ug/L | 10          | -                 | 0.66 DLHC                         | <0.50 DLHC                        | <0.50 DLHC                        | <0.50 DLH                        |
| Silver (Ag)-Dissolved                 | ug/L | 1.2         | -                 | <0.50 DLHC                        | <0.50 DLHC                        | <0.50 DLHC                        | <0.50 DLH                        |
| Sodium (Na)-Dissolved                 | ug/L | 490000      | -                 | 251000 <sup>DLHC</sup>            | 882000 <sup>DLHC</sup>            | 169000 <sup>DLHC</sup>            | 950000 <sup>DLH</sup>            |
| Thallium (TI)-Dissolved               | ug/L | 2           | -                 | <0.10 DLHC                        | <0.10 DLHC                        | <0.10 DLHC                        | <0.10 DLH                        |
| Uranium (U)-Dissolved                 | ug/L | 20          | -                 | 2.97 DLHC                         | 0.27 DLHC                         | 1.70 DLHC                         | 0.30 DLH                         |
| Vanadium (V)-Dissolved                | ug/L | 6.2         | -                 | <5.0 DLHC                         | <5.0 DLHC                         | <5.0 DLHC                         | <5.0 DLH                         |
| Zinc (Zn)-Dissolved                   | ug/L | 890         | -                 | <10 DLHC                          | <10 DLHC                          | <10 DLHC                          | <10 DLH                          |

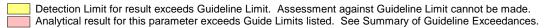
Guide Limit #1: T8-Ground Water - All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067


PAGE 7 of 16

17-MAY-21 10:27 (MT)

### **Speciated Metals - WATER**

|                      |      |       | Lab ID  | L2585341-1 | L2585341-2 | L2585341-3 | L2585341-4 |
|----------------------|------|-------|---------|------------|------------|------------|------------|
|                      |      | Sampl | le Date | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  |
|                      |      | San   | nple ID | BH 101     | BH 102     | BH 103     | DUP 1      |
|                      |      | Guide | Limits  |            |            |            |            |
| Analyte              | Unit | #1    | #2      |            |            |            |            |
| Chromium, Hexavalent |      |       |         |            |            |            |            |

Guide Limit #1: T8-Ground Water - All Types of Property Use



<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067

PAGE 8 of 16

17-MAY-21 10:27 (MT)

**Volatile Organic Compounds - WATER** 

|                                   |      | Sampl       | Lab ID<br>e Date<br>iple ID | L2585341-1<br>07-MAY-21<br>BH 101 | L2585341-2<br>07-MAY-21<br>BH 102 | L2585341-3<br>07-MAY-21<br>BH 103 | L2585341-4<br>07-MAY-21<br>DUP 1 | L2585341-5<br>07-MAY-21<br>TRIP BLANK |
|-----------------------------------|------|-------------|-----------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|
| Analyte                           | Unit | Guide<br>#1 | Limits<br>#2                |                                   |                                   |                                   |                                  |                                       |
| Acetone                           | ug/L | 2700        | -                           | <30 OWP                           | <30 OWP                           | <30 OWP                           | <30 OWP                          | <30                                   |
| Benzene                           | ug/L | 5           | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| Bromodichloromethane              | ug/L | 16          | -                           | <2.0 OWP                          | <2.0 OWP                          | <2.0 OWP                          | <2.0 OWP                         | <2.0                                  |
| Bromoform                         | ug/L | 25          | -                           | <5.0 OWP                          | <5.0 OWP                          | <5.0 OWP                          | <5.0 OWP                         | <5.0                                  |
| Bromomethane                      | ug/L | 0.89        | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| Carbon tetrachloride              | ug/L | 0.79        | -                           | <0.20 OWP                         | <0.20 OWP                         | <0.20 OWP                         | <0.20 OWP                        | <0.20                                 |
| Chlorobenzene                     | ug/L | 30          | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| Dibromochloromethane              | ug/L | 25          | -                           | <2.0 OWP                          | <2.0 OWP                          | <2.0 OWP                          | <2.0 OWP                         | <2.0                                  |
| Chloroform                        | ug/L | 2.4         | -                           | <1.0 OWP                          | <1.0 OWP                          | <1.0 OWP                          | <1.0 OWP                         | <1.0                                  |
| 1,2-Dibromoethane                 | ug/L | 0.2         | -                           | <0.20 OWP                         | <0.20 OWP                         | <0.20 OWP                         | <0.20 OWP                        | <0.20                                 |
| 1,2-Dichlorobenzene               | ug/L | 3           | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| 1,3-Dichlorobenzene               | ug/L | 59          | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| 1,4-Dichlorobenzene               | ug/L | 1           | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| Dichlorodifluoromethane           | ug/L | 590         | -                           | <2.0 OWP                          | <2.0 OWP                          | <2.0 OWP                          | <2.0 OWP                         | <2.0                                  |
| 1,1-Dichloroethane                | ug/L | 5           | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| 1,2-Dichloroethane                | ug/L | 1.6         | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| 1,1-Dichloroethylene              | ug/L | 1.6         | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| cis-1,2-Dichloroethylene          | ug/L | 1.6         | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| trans-1,2-Dichloroethylene        | ug/L | 1.6         | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| Methylene Chloride                | ug/L | 50          | -                           | <5.0 OWP                          | <5.0 OWP                          | <5.0 OWP                          | <5.0 OWP                         | <5.0                                  |
| 1,2-Dichloropropane               | ug/L | 5           | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| cis-1,3-Dichloropropene           | ug/L | -           | -                           | <0.30 OWP                         | <0.30 OWP                         | <0.30 OWP                         | <0.30 OWP                        | <0.30                                 |
| trans-1,3-Dichloropropene         | ug/L | -           | -                           | <0.30 OWP                         | <0.30 OWP                         | <0.30 OWP                         | <0.30 OWP                        | <0.30                                 |
| 1,3-Dichloropropene (cis & trans) | ug/L | 0.5         | -                           | <0.50                             | <0.50                             | <0.50                             | <0.50                            | <0.50                                 |
| Ethylbenzene                      | ug/L | 2.4         | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| n-Hexane                          | ug/L | 51          | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |
| Methyl Ethyl Ketone               | ug/L | 1800        | -                           | <20 OWP                           | <20 OWP                           | <20 OWP                           | <20 OWP                          | <20                                   |
| Methyl Isobutyl Ketone            | ug/L | 640         | -                           | <20 OWP                           | <20 OWP                           | <20 OWP                           | <20 OWP                          | <20                                   |
| MTBE                              | ug/L | 15          | -                           | <2.0 OWP                          | <2.0 OWP                          | <2.0 OWP                          | <2.0 OWP                         | <2.0                                  |
| Styrene                           | ug/L | 5.4         | -                           | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                         | <0.50 OWP                        | <0.50                                 |

Guide Limit #1: T8-Ground Water - All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067

PAGE 9 of 16

17-MAY-21 10:27 (MT)

**Volatile Organic Compounds - WATER** 

|                                 |      |             | Lab ID       | L2585341-1 | L2585341-2 | L2585341-3 | L2585341-4 | L2585341-5 |
|---------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|
|                                 |      | Sampl       | e Date       | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  |
|                                 |      | •           | ple ID       | BH 101     | BH 102     | BH 103     | DUP 1      | TRIP BLANK |
| Analyte                         | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |
| 1,1,1,2-Tetrachloroethane       | ug/L | 1.1         | -            | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50      |
| 1,1,2,2-Tetrachloroethane       | ug/L | 1           | -            | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50      |
| Tetrachloroethylene             | ug/L | 1.6         | -            | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50      |
| Toluene                         | ug/L | 22          | -            | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50      |
| 1,1,1-Trichloroethane           | ug/L | 200         | -            | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50      |
| 1,1,2-Trichloroethane           | ug/L | 4.7         | -            | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50      |
| Trichloroethylene               | ug/L | 1.6         | -            | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50      |
| Trichlorofluoromethane          | ug/L | 150         | -            | <5.0 OWP   | <5.0 OWP   | <5.0 OWP   | <5.0 OWP   | <5.0       |
| Vinyl chloride                  | ug/L | 0.5         | -            | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50 OWP  | <0.50      |
| o-Xylene                        | ug/L | -           | -            | <0.30 OWP  | <0.30 OWP  | <0.30 OWP  | <0.30 OWP  | <0.30      |
| m+p-Xylenes                     | ug/L | -           | -            | <0.40 OWP  | <0.40 OWP  | <0.40 OWP  | <0.40 OWP  | <0.40      |
| Xylenes (Total)                 | ug/L | 300         | -            | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| Surrogate: 4-Bromofluorobenzene | %    | -           | -            | 112.4      | 115.2      | 116.8      | 119.2      | 115.0      |
| Surrogate: 1,4-Difluorobenzene  | %    | -           | -            | 101.8      | 102.2      | 100.7      | 101.0      | 101.3      |

Guide Limit #1: T8-Ground Water - All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067

PAGE 10 of 16

17-MAY-21 10:27 (MT)

### **Hydrocarbons - WATER**

| Hydrocarbons - WATER               |      |             | Lab ID       | L2585341-1 | L2585341-2 | L2585341-3 | L2585341-4 |
|------------------------------------|------|-------------|--------------|------------|------------|------------|------------|
|                                    |      | Sampl       |              | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  | 07-MAY-21  |
|                                    |      |             | ple ID       | BH 101     | BH 102     | BH 103     | DUP 1      |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |
| F1 (C6-C10)                        | ug/L | 420         | -            | <25 OWP    | <25 OWP    | <25 OWP    | <25 OWP    |
| F1-BTEX                            | ug/L | 420         | -            | <25        | <25        | <25        | <25        |
| F2 (C10-C16)                       | ug/L | 150         | -            | <100 OWP   | <100       | <100 OWP   | <100       |
| F2-Naphth                          | ug/L | -           | -            | <100       | <100       | <100       | <100       |
| F3 (C16-C34)                       | ug/L | 500         | -            | <250 OWP   | <250       | <250 OWP   | <250       |
| F3-PAH                             | ug/L | -           | -            | <250       | <250       | <250       | <250       |
| F4 (C34-C50)                       | ug/L | 500         | -            | <250 OWP   | <250       | <250 OWP   | <250       |
| Total Hydrocarbons (C6-C50)        | ug/L | -           | -            | <370       | <370       | <370       | <370       |
| Chrom. to baseline at nC50         |      | -           | -            | YES        | YES        | YES        | YES        |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 87.1       | 89.7       | 92.6       | 94.7       |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 86.8       | 92.9       | 106.9      | 100.8      |
|                                    |      |             |              |            |            |            |            |

#### Guide Limit #1: T8-Ground Water - All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067

PAGE 11 of 16

17-MAY-21 10:27 (MT)

### **Polycyclic Aromatic Hydrocarbons - WATER**

|                             |      | Sampl       |              | L2585341-1<br>07-MAY-21 | L2585341-2<br>07-MAY-21 | L2585341-3<br>07-MAY-21 | L2585341-4<br>07-MAY-21 |
|-----------------------------|------|-------------|--------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                             |      | San         | ple ID       | BH 101                  | BH 102                  | BH 103                  | DUP 1                   |
| Analyte                     | Unit | Guide<br>#1 | Limits<br>#2 |                         |                         |                         |                         |
| Acenaphthene                | ug/L | 4.1         | -            | <0.020                  | <0.020                  | <0.020                  | <0.020                  |
| Acenaphthylene              | ug/L | 1           | -            | <0.020                  | <0.020                  | <0.020                  | <0.020                  |
| Anthracene                  | ug/L | 1           | -            | <0.020                  | <0.020                  | <0.020                  | <0.020                  |
| Benzo(a)anthracene          | ug/L | 1           | -            | <0.020                  | <0.020                  | <0.020                  | <0.020                  |
| Benzo(a)pyrene              | ug/L | 0.01        | -            | 0.010                   | <0.010                  | 0.016                   | <0.010                  |
| Benzo(b&j)fluoranthene      | ug/L | 0.1         | -            | <0.020                  | <0.020                  | 0.030                   | <0.020                  |
| Benzo(g,h,i)perylene        | ug/L | 0.2         | -            | <0.020                  | <0.020                  | <0.020                  | <0.020                  |
| Benzo(k)fluoranthene        | ug/L | 0.1         | -            | <0.020                  | <0.020                  | <0.020                  | <0.020                  |
| Chrysene                    | ug/L | 0.1         | -            | <0.020                  | <0.020                  | 0.028                   | <0.020                  |
| Dibenz(a,h)anthracene       | ug/L | 0.2         | -            | <0.020                  | <0.020                  | <0.020                  | <0.020                  |
| Fluoranthene                | ug/L | 0.41        | -            | 0.027                   | <0.020                  | 0.051                   | <0.020                  |
| Fluorene                    | ug/L | 120         | -            | <0.020                  | <0.020                  | 0.022                   | <0.020                  |
| Indeno(1,2,3-cd)pyrene      | ug/L | 0.2         | -            | <0.020                  | <0.020                  | <0.020                  | <0.020                  |
| 1+2-Methylnaphthalenes      | ug/L | 3.2         | -            | <0.028                  | <0.028                  | 0.066                   | <0.028                  |
| 1-Methylnaphthalene         | ug/L | 3.2         | -            | <0.020                  | <0.020                  | 0.029                   | <0.020                  |
| 2-Methylnaphthalene         | ug/L | 3.2         | -            | <0.020                  | <0.020                  | 0.037                   | <0.020                  |
| Naphthalene                 | ug/L | 11          | -            | <0.050                  | <0.050                  | <0.050                  | <0.050                  |
| Phenanthrene                | ug/L | 1           | -            | 0.024                   | <0.020                  | 0.083                   | <0.020                  |
| Pyrene                      | ug/L | 4.1         | -            | <0.020                  | <0.020                  | 0.053                   | <0.020                  |
| Surrogate: Naphthalene d8   | %    | -           | -            | 91.5                    | 89.2                    | 98.1                    | 95.1                    |
| Surrogate: Phenanthrene d10 | %    | -           | -            | 94.3                    | 93.6                    | 101.3                   | 98.8                    |

Guide Limit #1: T8-Ground Water - All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2585341 CONT'D....

Job Reference: 21-067

PAGE 12 of 16

17-MAY-21 10:27 (MT)

**Polychlorinated Biphenyls - WATER** 

|                                 |      |       | Lab ID | L2585341-1            | L2585341-2 | L2585341-4 |
|---------------------------------|------|-------|--------|-----------------------|------------|------------|
|                                 |      | Sampl | e Date | 07-MAY-21             | 07-MAY-21  | 07-MAY-21  |
|                                 |      | San   | ple ID | BH 101                | BH 102     | DUP 1      |
|                                 |      | Guido | Limits |                       |            |            |
| Analyte                         | Unit | #1    | #2     |                       |            |            |
| Aroclor 1242                    | ug/L | -     | -      | <0.020                | <0.020     | <0.020     |
| Aroclor 1248                    | ug/L | -     | -      | <0.020                | <0.020     | <0.020     |
| Aroclor 1254                    | ug/L | -     | -      | <0.020                | <0.020     | <0.020     |
| Aroclor 1260                    | ug/L | -     | -      | <0.040 <sup>RRR</sup> | <0.020     | <0.020     |
| Surrogate: Decachlorobiphenyl   | %    | -     | -      | 47.0 RRR              | 70.6       | 67.5       |
| Total PCBs                      | ug/L | 0.2   | -      | < 0.053 RRR           | <0.040     | <0.040     |
| Surrogate: Tetrachloro-m-xylene | %    | -     | -      | 86.6                  | 92.7       | 89.3       |
|                                 |      |       |        |                       |            |            |

Guide Limit #1: T8-Ground Water - All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2585341 CONT'D....
Job Reference: 21-067
PAGE 13 of 16
17-MAY-21 10:27 (MT)

#### **Additional Comments for Sample Listed:**

| Samplenum      | Matrix                | Report Remarks                                                                                                                 | Sample Comments                                                                                        |
|----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| L2585341-1     | Water                 | Note: RRR: Surrogate recovery is outside ALS DQO limits. Detection limits for affected compounds have been raised accordingly. |                                                                                                        |
| Qualifiers for | Individual Parameters | Listed:                                                                                                                        |                                                                                                        |
| Qualifier      | Description           |                                                                                                                                |                                                                                                        |
| OWP            | Organic water sample  | e contained visible sediment (must be included as part of a                                                                    | nalysis). Measured concentrations of organic substances in water can be biased high due to presence of |

L2585341 CONT'D....
Job Reference: 21-067
PAGE 14 of 16
17-MAY-21 10:27 (MT)

sediment.

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

RRR Refer to Report Remarks for issues regarding this analysis

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Water Cyanide (WAD)-O.Reg 153/04 APHA 4500CN I-Weak acid Dist Colorimet

Weak acid dissociable cyanide (WAD) is determined by undergoing a distillation procedure. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-R511-WT Water Hex Chrom-O.Reg 153/04 (July 2011) EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-R511-WT Water Conductivity-O.Reg 153/04 (July 2011) APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-SCREEN-WT Water Conductivity Screen (Internal Use APHA 2510

Only)

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

L2585341 CONT'D....
Job Reference: 21-067
PAGE 15 of 16
17-MAY-21 10:27 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

**F1-HS-511-WT** Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**F2-F4-511-WT** Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-D-UG/L-CVAA-WT Water Diss. Mercury in Water by CVAAS EPA 1631E (mod)

(ug/L)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Water PAH-Calculated Parameters SW846 8270

**PAH-511-WT** Water PAH-O. Reg 153/04 (July 2011) SW846 3510/8270

Aqueous samples, fortified with surrogates, are extracted using liquid/liquid extraction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**PCB-511-WT** Water PCB-O. Reg 153/04 (July 2011) SW846 3510/8082

Aqueous samples are extracted, then concentrated, reconstituted, and analyzed by GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

PH-WT Water pH APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

L2585341 CONT'D....
Job Reference: 21-067
PAGE 16 of 16
17-MAY-21 10:27 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 (July SW846 8260 2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.



Workorder: L2585341 Report Date: 17-MAY-21 Page 1 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                              | Matrix | Reference                 | Result           | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------------------------|--------|---------------------------|------------------|-----------|-------|-----|--------|-----------|
| CL-IC-N-WT                                        | Water  |                           |                  |           |       |     |        |           |
| Batch R5457074                                    |        |                           |                  |           |       |     |        |           |
| WG3533741-9 DUP<br>Chloride (CI)                  |        | <b>WG3533741-8</b> 24.6   | 24.7             |           | mg/L  | 0.5 | 20     | 12-MAY-21 |
| <b>WG3533741-7 LCS</b> Chloride (CI)              |        |                           | 100.6            |           | %     |     | 90-110 | 12-MAY-21 |
| WG3533741-6 MB<br>Chloride (CI)                   |        |                           | <0.50            |           | mg/L  |     | 0.5    | 12-MAY-21 |
| <b>WG3533741-10 MS</b> Chloride (CI)              |        | WG3533741-8               | 103.1            |           | %     |     | 75-125 | 12-MAY-21 |
| CN-WAD-R511-WT                                    | Water  |                           |                  |           |       |     |        |           |
| Batch R5455154                                    |        |                           |                  |           |       |     |        |           |
| WG3531791-15 DUP<br>Cyanide, Weak Acid Dis        | s      | <b>WG3531791-1</b> : <2.0 | <b>3</b> <2.0    | RPD-NA    | ug/L  | N/A | 20     | 10-MAY-21 |
| <b>WG3531791-12 LCS</b><br>Cyanide, Weak Acid Dis | s      |                           | 92.8             |           | %     |     | 80-120 | 10-MAY-21 |
| <b>WG3531791-11 MB</b><br>Cyanide, Weak Acid Dis  | s      |                           | <2.0             |           | ug/L  |     | 2      | 10-MAY-21 |
| WG3531791-14 MS<br>Cyanide, Weak Acid Dis         | s      | WG3531791-1               | <b>3</b><br>95.6 |           | %     |     | 75-125 | 10-MAY-21 |
| CR-CR6-IC-R511-WT                                 | Water  |                           |                  |           |       |     |        |           |
| Batch R5456215                                    |        |                           |                  |           |       |     |        |           |
| WG3532712-4 DUP<br>Chromium, Hexavalent           |        | <b>WG3532712-3</b> <0.50  | <0.50            | RPD-NA    | ug/L  | N/A | 20     | 11-MAY-21 |
| WG3532712-2 LCS<br>Chromium, Hexavalent           |        |                           | 101.3            |           | %     |     | 80-120 | 11-MAY-21 |
| WG3532712-1 MB<br>Chromium, Hexavalent            |        |                           | <0.50            |           | ug/L  |     | 0.5    | 11-MAY-21 |
| WG3532712-5 MS<br>Chromium, Hexavalent            |        | WG3532712-3               | 98.8             |           | %     |     | 70-130 | 11-MAY-21 |
| EC-R511-WT                                        | Water  |                           |                  |           | ••    |     | 70 100 |           |
| Batch R5457022                                    | Hatel  |                           |                  |           |       |     |        |           |
| WG3532414-4 DUP Conductivity                      |        | <b>WG3532414-3</b> 5.43   | 5.38             |           | mS/cm | 0.9 | 10     | 11-MAY-21 |
| WG3532414-2 LCS<br>Conductivity                   |        |                           | 102.9            |           | %     |     | 90-110 | 11-MAY-21 |
| WG3532414-1 MB<br>Conductivity                    |        |                           | <0.0030          |           | mS/cm |     | 0.003  | 11-MAY-21 |
| F1-HS-511-WT                                      | Water  |                           |                  |           |       |     |        |           |



Workorder: L2585341 Report Date: 17-MAY-21 Page 2 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                 |                         | Matrix       | Reference                  | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------------------|-------------------------|--------------|----------------------------|---------|-----------|-------|-----|--------|-----------|
| F1-HS-511-WT                         |                         | Water        |                            |         |           |       |     |        |           |
|                                      | 457674                  |              |                            |         |           |       |     |        |           |
| <b>WG3534801-4</b><br>F1 (C6-C10)    | DUP                     |              | <b>WG3534801-3</b> <25     | <25     | RPD-NA    | ug/L  | N/A | 30     | 17-MAY-21 |
| <b>WG3534801-1</b> F1 (C6-C10)       | LCS                     |              |                            | 87.5    |           | %     |     | 80-120 | 14-MAY-21 |
| <b>WG3534801-2</b> F1 (C6-C10)       | MB                      |              |                            | <25     |           | ug/L  |     | 25     | 14-MAY-21 |
| Surrogate: 3,4-                      | Dichloroto              | oluene       |                            | 98.7    |           | %     |     | 60-140 | 14-MAY-21 |
| <b>WG3534801-5</b><br>F1 (C6-C10)    | MS                      |              | WG3534801-3                | 98.9    |           | %     |     | 60-140 | 17-MAY-21 |
| F2-F4-511-WT                         |                         | Water        |                            |         |           |       |     |        |           |
| Batch R5                             | 456436                  |              |                            |         |           |       |     |        |           |
| WG3532299-2                          | LCS                     |              |                            | 00.0    |           | 0/    |     |        |           |
| F2 (C10-C16)                         |                         |              |                            | 96.8    |           | %     |     | 70-130 | 12-MAY-21 |
| F3 (C16-C34)                         |                         |              |                            | 97.7    |           | %     |     | 70-130 | 12-MAY-21 |
| F4 (C34-C50)                         |                         |              |                            | 99.4    |           | %     |     | 70-130 | 12-MAY-21 |
| <b>WG3532299-1</b> F2 (C10-C16)      | MB                      |              |                            | <100    |           | ug/L  |     | 100    | 12-MAY-21 |
| F3 (C16-C34)                         |                         |              |                            | <250    |           | ug/L  |     | 250    | 12-MAY-21 |
| F4 (C34-C50)                         |                         |              |                            | <250    |           | ug/L  |     | 250    | 12-MAY-21 |
| Surrogate: 2-Br                      | omobenz                 | otrifluoride |                            | 89.8    |           | %     |     | 60-140 | 12-MAY-21 |
| HG-D-UG/L-CVAA                       | -WT                     | Water        |                            |         |           |       |     |        |           |
| Batch R5                             | 455760                  |              |                            |         |           |       |     |        |           |
| <b>WG3532149-4</b><br>Mercury (Hg)-D | <b>DUP</b><br>Dissolved |              | <b>WG3532149-3</b> <0.0050 | <0.0050 | RPD-NA    | ug/L  | N/A | 20     | 11-MAY-21 |
| <b>WG3532149-2</b><br>Mercury (Hg)-D | LCS<br>dissolved        |              |                            | 98.3    |           | %     |     | 80-120 | 11-MAY-21 |
| <b>WG3532149-1</b><br>Mercury (Hg)-D | MB<br>dissolved         |              |                            | <0.0050 |           | ug/L  |     | 0.005  | 11-MAY-21 |
| <b>WG3532149-6</b><br>Mercury (Hg)-D | MS<br>dissolved         |              | WG3532149-5                | 94.4    |           | %     |     | 70-130 | 11-MAY-21 |
| Batch R5                             | 456415                  |              |                            |         |           |       |     |        |           |
| <b>WG3533161-4</b><br>Mercury (Hg)-D | <b>DUP</b><br>Dissolved |              | <b>WG3533161-3</b> <0.0050 | <0.0050 | RPD-NA    | ug/L  | N/A | 20     | 12-MAY-21 |
| <b>WG3533161-2</b><br>Mercury (Hg)-D | LCS<br>dissolved        |              |                            | 103.0   |           | %     |     | 80-120 | 12-MAY-21 |
| <b>WG3533161-1</b><br>Mercury (Hg)-D | MB<br>dissolved         |              |                            | <0.0050 |           | ug/L  |     | 0.005  | 12-MAY-21 |
|                                      |                         |              |                            |         |           |       |     |        |           |



Workorder: L2585341 Report Date: 17-MAY-21 Page 3 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                                       | Matrix | Reference                | Result  | Qualifier | Units | RPD    | Limit  | Analyzed  |
|------------------------------------------------------------|--------|--------------------------|---------|-----------|-------|--------|--------|-----------|
| HG-D-UG/L-CVAA-WT                                          | Water  |                          |         |           |       |        |        |           |
| Batch R5456415<br>WG3533161-6 MS<br>Mercury (Hg)-Dissolved |        | WG3533161-5              | 101.4   |           | %     |        | 70-130 | 12-MAY-21 |
| MET-D-UG/L-MS-WT                                           | Water  |                          |         |           |       |        |        |           |
| Batch R5456049                                             |        |                          |         |           |       |        |        |           |
| WG3531947-4 DUP<br>Antimony (Sb)-Dissolved                 | i      | <b>WG3531947-3</b> <0.10 | <0.10   | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Arsenic (As)-Dissolved                                     |        | 5.02                     | 4.96    |           | ug/L  | 1.2    | 20     | 11-MAY-21 |
| Barium (Ba)-Dissolved                                      |        | 165                      | 166     |           | ug/L  | 0.7    | 20     | 11-MAY-21 |
| Beryllium (Be)-Dissolved                                   | I      | <0.10                    | <0.10   | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Boron (B)-Dissolved                                        |        | 76                       | 76      |           | ug/L  | 0.0    | 20     | 11-MAY-21 |
| Cadmium (Cd)-Dissolved                                     | d      | 0.0065                   | 0.0051  | J         | ug/L  | 0.0014 | 0.01   | 11-MAY-21 |
| Chromium (Cr)-Dissolve                                     | d      | <0.50                    | <0.50   | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Cobalt (Co)-Dissolved                                      |        | <0.10                    | <0.10   | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Copper (Cu)-Dissolved                                      |        | <0.20                    | <0.20   | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Lead (Pb)-Dissolved                                        |        | <0.050                   | <0.050  | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Molybdenum (Mo)-Disso                                      | lved   | 4.46                     | 4.62    |           | ug/L  | 3.5    | 20     | 11-MAY-21 |
| Nickel (Ni)-Dissolved                                      |        | <0.50                    | <0.50   | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Selenium (Se)-Dissolved                                    | d      | 0.062                    | 0.056   |           | ug/L  | 9.6    | 20     | 11-MAY-21 |
| Silver (Ag)-Dissolved                                      |        | <0.050                   | < 0.050 | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Sodium (Na)-Dissolved                                      |        | 22600                    | 22300   |           | ug/L  | 1.7    | 20     | 11-MAY-21 |
| Thallium (TI)-Dissolved                                    |        | <0.010                   | <0.010  | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Uranium (U)-Dissolved                                      |        | 2.36                     | 2.40    |           | ug/L  | 1.5    | 20     | 11-MAY-21 |
| Vanadium (V)-Dissolved                                     |        | <0.50                    | <0.50   | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| Zinc (Zn)-Dissolved                                        |        | <1.0                     | <1.0    | RPD-NA    | ug/L  | N/A    | 20     | 11-MAY-21 |
| WG3531947-2 LCS<br>Antimony (Sb)-Dissolved                 | 1      |                          | 100.8   |           | %     |        | 80-120 | 11-MAY-21 |
| Arsenic (As)-Dissolved                                     | •      |                          | 101.2   |           | %     |        | 80-120 | 11-MAY-21 |
| Barium (Ba)-Dissolved                                      |        |                          | 100.6   |           | %     |        | 80-120 | 11-MAY-21 |
| Beryllium (Be)-Dissolved                                   | I      |                          | 93.3    |           | %     |        | 80-120 | 11-MAY-21 |
| Boron (B)-Dissolved                                        |        |                          | 89.3    |           | %     |        | 80-120 | 11-MAY-21 |
| Cadmium (Cd)-Dissolved                                     | d      |                          | 100.3   |           | %     |        | 80-120 | 11-MAY-21 |
| Chromium (Cr)-Dissolve                                     |        |                          | 97.9    |           | %     |        | 80-120 | 11-MAY-21 |
| Cobalt (Co)-Dissolved                                      |        |                          | 98.6    |           | %     |        | 80-120 | 11-MAY-21 |
| Copper (Cu)-Dissolved                                      |        |                          | 98.0    |           |       |        | 80-120 | ·         |



Workorder: L2585341 Report Date: 17-MAY-21 Page 4 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                    | Matrix | Reference   | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------|--------|-------------|---------|-----------|-------|-----|--------|-----------|
| MET-D-UG/L-MS-WT        | Water  |             |         |           |       |     |        |           |
| Batch R5456049          | )      |             |         |           |       |     |        |           |
| WG3531947-2 LCS         |        |             |         |           |       |     |        |           |
| Copper (Cu)-Dissolved   |        |             | 98.0    |           | %     |     | 80-120 | 11-MAY-21 |
| Lead (Pb)-Dissolved     |        |             | 103.1   |           | %     |     | 80-120 | 11-MAY-21 |
| Molybdenum (Mo)-Diss    | solved |             | 99.1    |           | %     |     | 80-120 | 11-MAY-21 |
| Nickel (Ni)-Dissolved   |        |             | 98.1    |           | %     |     | 80-120 | 11-MAY-21 |
| Selenium (Se)-Dissolve  | ed     |             | 96.8    |           | %     |     | 80-120 | 11-MAY-21 |
| Silver (Ag)-Dissolved   |        |             | 103.3   |           | %     |     | 80-120 | 11-MAY-21 |
| Sodium (Na)-Dissolved   |        |             | 96.1    |           | %     |     | 80-120 | 11-MAY-21 |
| Thallium (TI)-Dissolved |        |             | 102.5   |           | %     |     | 80-120 | 11-MAY-21 |
| Uranium (U)-Dissolved   |        |             | 105.8   |           | %     |     | 80-120 | 11-MAY-21 |
| Vanadium (V)-Dissolve   | d      |             | 99.0    |           | %     |     | 80-120 | 11-MAY-21 |
| Zinc (Zn)-Dissolved     |        |             | 103.4   |           | %     |     | 80-120 | 11-MAY-21 |
| WG3531947-1 MB          |        |             |         |           |       |     |        |           |
| Antimony (Sb)-Dissolve  | ed     |             | <0.10   |           | ug/L  |     | 0.1    | 11-MAY-21 |
| Arsenic (As)-Dissolved  |        |             | <0.10   |           | ug/L  |     | 0.1    | 11-MAY-21 |
| Barium (Ba)-Dissolved   |        |             | <0.10   |           | ug/L  |     | 0.1    | 11-MAY-21 |
| Beryllium (Be)-Dissolve | ed     |             | <0.10   |           | ug/L  |     | 0.1    | 11-MAY-21 |
| Boron (B)-Dissolved     |        |             | <10     |           | ug/L  |     | 10     | 11-MAY-21 |
| Cadmium (Cd)-Dissolv    | ed     |             | <0.0050 |           | ug/L  |     | 0.005  | 11-MAY-21 |
| Chromium (Cr)-Dissolv   | ed     |             | <0.50   |           | ug/L  |     | 0.5    | 11-MAY-21 |
| Cobalt (Co)-Dissolved   |        |             | <0.10   |           | ug/L  |     | 0.1    | 11-MAY-21 |
| Copper (Cu)-Dissolved   |        |             | <0.20   |           | ug/L  |     | 0.2    | 11-MAY-21 |
| Lead (Pb)-Dissolved     |        |             | < 0.050 |           | ug/L  |     | 0.05   | 11-MAY-21 |
| Molybdenum (Mo)-Diss    | solved |             | < 0.050 |           | ug/L  |     | 0.05   | 11-MAY-21 |
| Nickel (Ni)-Dissolved   |        |             | <0.50   |           | ug/L  |     | 0.5    | 11-MAY-21 |
| Selenium (Se)-Dissolve  | ed     |             | < 0.050 |           | ug/L  |     | 0.05   | 11-MAY-21 |
| Silver (Ag)-Dissolved   |        |             | <0.050  |           | ug/L  |     | 0.05   | 11-MAY-21 |
| Sodium (Na)-Dissolved   |        |             | <50     |           | ug/L  |     | 50     | 11-MAY-21 |
| Thallium (TI)-Dissolved |        |             | <0.010  |           | ug/L  |     | 0.01   | 11-MAY-21 |
| Uranium (U)-Dissolved   |        |             | <0.010  |           | ug/L  |     | 0.01   | 11-MAY-21 |
| Vanadium (V)-Dissolve   | d      |             | <0.50   |           | ug/L  |     | 0.5    | 11-MAY-21 |
| Zinc (Zn)-Dissolved     |        |             | <1.0    |           | ug/L  |     | 1      | 11-MAY-21 |
| WG3531947-5 MS          |        | WG3531947-3 |         |           |       |     |        |           |
| Antimony (Sb)-Dissolve  | ed     |             | 103.9   |           | %     |     | 70-130 | 11-MAY-21 |
| Arsenic (As)-Dissolved  |        |             | 102.7   |           | %     |     | 70-130 | 11-MAY-21 |



Workorder: L2585341 Report Date: 17-MAY-21 Page 5 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                     | Matrix | Reference                  | Result           | Qualifier | Units | RPD   | Limit  | Analyzed  |
|------------------------------------------|--------|----------------------------|------------------|-----------|-------|-------|--------|-----------|
| MET-D-UG/L-MS-WT                         | Water  |                            |                  |           |       |       |        |           |
| Batch R545604                            | 9      |                            |                  |           |       |       |        |           |
| WG3531947-5 MS                           |        | WG3531947-                 |                  |           |       |       |        |           |
| Barium (Ba)-Dissolved                    |        |                            | N/A              | MS-B      | %     |       | -      | 11-MAY-21 |
| Beryllium (Be)-Dissolv                   | ed     |                            | 95.6             |           | %     |       | 70-130 | 11-MAY-21 |
| Boron (B)-Dissolved                      |        |                            | N/A              | MS-B      | %     |       | -      | 11-MAY-21 |
| Cadmium (Cd)-Dissolv                     |        |                            | 99.9             |           | %     |       | 70-130 | 11-MAY-21 |
| Chromium (Cr)-Dissol                     |        |                            | 101.0            |           | %     |       | 70-130 | 11-MAY-21 |
| Cobalt (Co)-Dissolved                    |        |                            | 100.1            |           | %     |       | 70-130 | 11-MAY-21 |
| Copper (Cu)-Dissolved                    | d      |                            | 95.4             |           | %     |       | 70-130 | 11-MAY-21 |
| Lead (Pb)-Dissolved                      |        |                            | 102.2            |           | %     |       | 70-130 | 11-MAY-21 |
| Molybdenum (Mo)-Dis                      | solved |                            | 105.1            |           | %     |       | 70-130 | 11-MAY-21 |
| Nickel (Ni)-Dissolved                    |        |                            | 97.2             |           | %     |       | 70-130 | 11-MAY-21 |
| Selenium (Se)-Dissolv                    | red    |                            | 95.7             |           | %     |       | 70-130 | 11-MAY-21 |
| Silver (Ag)-Dissolved                    |        |                            | 101.2            |           | %     |       | 70-130 | 11-MAY-21 |
| Sodium (Na)-Dissolve                     |        |                            | N/A              | MS-B      | %     |       | =      | 11-MAY-21 |
| Thallium (TI)-Dissolve                   |        |                            | 102.9            |           | %     |       | 70-130 | 11-MAY-21 |
| Uranium (U)-Dissolved                    |        |                            | N/A              | MS-B      | %     |       | -      | 11-MAY-21 |
| Vanadium (V)-Dissolve                    | ed     |                            | 104.7            |           | %     |       | 70-130 | 11-MAY-21 |
| Zinc (Zn)-Dissolved                      |        |                            | 97.3             |           | %     |       | 70-130 | 11-MAY-21 |
| Batch R545639                            | 9      |                            |                  |           |       |       |        |           |
| WG3532233-4 DUP<br>Antimony (Sb)-Dissolv |        | <b>WG3532233</b> -<br>0.29 | <b>3</b><br>0.27 |           | ug/L  | 5.6   | 20     | 12-MAY-21 |
| Arsenic (As)-Dissolved                   | d      | 0.59                       | 0.57             |           | ug/L  | 2.0   | 20     | 12-MAY-21 |
| Barium (Ba)-Dissolved                    | d      | 177                        | 180              |           | ug/L  | 1.3   | 20     | 12-MAY-21 |
| Beryllium (Be)-Dissolv                   | ed     | <0.10                      | <0.10            | RPD-NA    | ug/L  | N/A   | 20     | 12-MAY-21 |
| Boron (B)-Dissolved                      |        | 94                         | 95               |           | ug/L  | 1.5   | 20     | 12-MAY-21 |
| Cadmium (Cd)-Dissolv                     | ved    | 0.0320                     | 0.0330           |           | ug/L  | 3.1   | 20     | 12-MAY-21 |
| Chromium (Cr)-Dissol                     | ved    | <0.50                      | <0.50            | RPD-NA    | ug/L  | N/A   | 20     | 12-MAY-21 |
| Cobalt (Co)-Dissolved                    |        | 0.81                       | 0.83             |           | ug/L  | 2.4   | 20     | 12-MAY-21 |
| Copper (Cu)-Dissolved                    | d      | 1.73                       | 1.71             |           | ug/L  | 1.3   | 20     | 12-MAY-21 |
| Lead (Pb)-Dissolved                      |        | 0.221                      | 0.158            | J         | ug/L  | 0.063 | 0.1    | 12-MAY-21 |
| Molybdenum (Mo)-Dis                      | solved | 1.45                       | 1.41             |           | ug/L  | 2.5   | 20     | 12-MAY-21 |
| Nickel (Ni)-Dissolved                    |        | 1.03                       | 1.02             |           | ug/L  | 1.1   | 20     | 12-MAY-21 |
| Selenium (Se)-Dissolv                    | red    | 1.08                       | 1.09             |           | ug/L  | 1.3   | 20     | 12-MAY-21 |
| Silver (Ag)-Dissolved                    |        | <0.050                     | <0.050           | RPD-NA    | ug/L  | N/A   | 20     | 12-MAY-21 |
|                                          |        |                            |                  |           |       |       |        |           |



Workorder: L2585341 Report Date: 17-MAY-21 Page 6 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                     | Matrix | Reference   | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|------------------------------------------|--------|-------------|---------|-----------|-------|-----|--------|-----------|
| MET-D-UG/L-MS-WT                         | Water  |             |         |           |       |     |        |           |
| Batch R545639                            |        |             |         |           |       |     |        |           |
| WG3532233-4 DUP                          |        | WG3532233-3 |         |           |       |     |        |           |
| Sodium (Na)-Dissolved                    | d      | 15500       | 15500   |           | ug/L  | 0.3 | 20     | 12-MAY-21 |
| Thallium (TI)-Dissolved                  | b      | 0.022       | 0.020   |           | ug/L  | 9.9 | 20     | 12-MAY-21 |
| Uranium (U)-Dissolved                    | d      | 0.740       | 0.736   |           | ug/L  | 0.7 | 20     | 12-MAY-21 |
| Vanadium (V)-Dissolve                    | ed     | 0.87        | 0.84    |           | ug/L  | 2.8 | 20     | 12-MAY-21 |
| Zinc (Zn)-Dissolved                      |        | 7.2         | 7.5     |           | ug/L  | 4.0 | 20     | 12-MAY-21 |
| WG3532233-2 LCS<br>Antimony (Sb)-Dissolv | ed     |             | 100.8   |           | %     |     | 80-120 | 12-MAY-21 |
| Arsenic (As)-Dissolved                   |        |             | 104.8   |           | %     |     | 80-120 | 12-MAY-21 |
| Barium (Ba)-Dissolved                    |        |             | 102.9   |           | %     |     | 80-120 | 12-MAY-21 |
| Beryllium (Be)-Dissolv                   |        |             | 98.5    |           | %     |     | 80-120 | 12-MAY-21 |
| Boron (B)-Dissolved                      |        |             | 95.2    |           | %     |     | 80-120 | 12-MAY-21 |
| Cadmium (Cd)-Dissolv                     | ved .  |             | 104.9   |           | %     |     | 80-120 | 12-MAY-21 |
| Chromium (Cr)-Dissol                     | ved    |             | 103.0   |           | %     |     | 80-120 | 12-MAY-21 |
| Cobalt (Co)-Dissolved                    |        |             | 103.2   |           | %     |     | 80-120 | 12-MAY-21 |
| Copper (Cu)-Dissolved                    | t      |             | 104.0   |           | %     |     | 80-120 | 12-MAY-21 |
| Lead (Pb)-Dissolved                      |        |             | 105.2   |           | %     |     | 80-120 | 12-MAY-21 |
| Molybdenum (Mo)-Dis                      | solved |             | 99.5    |           | %     |     | 80-120 | 12-MAY-21 |
| Nickel (Ni)-Dissolved                    |        |             | 100.9   |           | %     |     | 80-120 | 12-MAY-21 |
| Selenium (Se)-Dissolv                    | ed     |             | 99.2    |           | %     |     | 80-120 | 12-MAY-21 |
| Silver (Ag)-Dissolved                    |        |             | 103.3   |           | %     |     | 80-120 | 12-MAY-21 |
| Sodium (Na)-Dissolved                    | d      |             | 102.6   |           | %     |     | 80-120 | 12-MAY-21 |
| Thallium (TI)-Dissolved                  | d      |             | 105.1   |           | %     |     | 80-120 | 12-MAY-21 |
| Uranium (U)-Dissolved                    | d      |             | 111.0   |           | %     |     | 80-120 | 12-MAY-21 |
| Vanadium (V)-Dissolve                    | ed     |             | 103.8   |           | %     |     | 80-120 | 12-MAY-21 |
| Zinc (Zn)-Dissolved                      |        |             | 104.2   |           | %     |     | 80-120 | 12-MAY-21 |
| WG3532233-1 MB                           | ad     |             | .0.40   |           | /1    |     | 0.1    |           |
| Antimony (Sb)-Dissolv                    |        |             | <0.10   |           | ug/L  |     | 0.1    | 12-MAY-21 |
| Arsenic (As)-Dissolved                   |        |             | <0.10   |           | ug/L  |     | 0.1    | 12-MAY-21 |
| Barium (Ba)-Dissolved                    |        |             | <0.10   |           | ug/L  |     | 0.1    | 12-MAY-21 |
| Beryllium (Be)-Dissolved                 | eu     |             | <0.10   |           | ug/L  |     | 0.1    | 12-MAY-21 |
| Boron (B)-Dissolved                      | , a d  |             | <10     |           | ug/L  |     | 10     | 12-MAY-21 |
| Cadmium (Cd)-Dissolv                     |        |             | <0.0050 |           | ug/L  |     | 0.005  | 12-MAY-21 |
| Chromium (Cr)-Dissolv                    |        |             | <0.50   |           | ug/L  |     | 0.5    | 12-MAY-21 |
| Cobalt (Co)-Dissolved                    |        |             | <0.10   |           | ug/L  |     | 0.1    | 12-MAY-21 |



Workorder: L2585341 Report Date: 17-MAY-21 Page 7 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

Contact: ZENITH WONG

| Test                                        | Matrix | Reference   | Result       | Qualifier | Units | RPD | Limit    | Analyzed  |
|---------------------------------------------|--------|-------------|--------------|-----------|-------|-----|----------|-----------|
| MET-D-UG/L-MS-WT                            | Water  |             |              |           |       |     |          |           |
| Batch R54563                                | 99     |             |              |           |       |     |          |           |
| WG3532233-1 MB                              |        |             | 0.00         |           |       |     | 0.0      |           |
| Copper (Cu)-Dissolve                        |        |             | <0.20        |           | ug/L  |     | 0.2      | 12-MAY-21 |
| Lead (Pb)-Dissolved                         |        |             | <0.050       |           | ug/L  |     | 0.05     | 12-MAY-21 |
| Molybdenum (Mo)-Di                          |        |             | <0.050       |           | ug/L  |     | 0.05     | 12-MAY-21 |
| Nickel (Ni)-Dissolved                       |        |             | <0.50        |           | ug/L  |     | 0.5      | 12-MAY-21 |
| Selenium (Se)-Disso                         |        |             | <0.050       |           | ug/L  |     | 0.05     | 12-MAY-21 |
| Silver (Ag)-Dissolved                       |        |             | <0.050       |           | ug/L  |     | 0.05     | 12-MAY-21 |
| Sodium (Na)-Dissolv                         |        |             | <50          |           | ug/L  |     | 50       | 12-MAY-21 |
| Thallium (TI)-Dissolv                       | ed     |             | <0.010       |           | ug/L  |     | 0.01     | 12-MAY-21 |
| Uranium (U)-Dissolve                        | ed     |             | <0.010       |           | ug/L  |     | 0.01     | 12-MAY-21 |
| Vanadium (V)-Dissol                         | ved    |             | <0.50        |           | ug/L  |     | 0.5      | 12-MAY-21 |
| Zinc (Zn)-Dissolved                         |        |             | <1.0         |           | ug/L  |     | 1        | 12-MAY-21 |
| WG3532233-5 MS<br>Antimony (Sb)-Disso       |        | WG3532233-6 | 104.1        |           | %     |     | 70-130   | 12-MAY-21 |
| Arsenic (As)-Dissolve                       |        |             | 117.3        |           | %     |     | 70-130   | 12-MAY-21 |
| Barium (Ba)-Dissolve                        |        |             | N/A          | MS-B      | %     |     | 70-130   |           |
| Beryllium (Be)-Dissolve                     |        |             | 108.9        | IVIO-D    | %     |     | 70.400   | 12-MAY-21 |
| Boron (B)-Dissolved                         | iveu   |             | N/A          | MS-B      | %     |     | 70-130   | 12-MAY-21 |
| Cadmium (Cd)-Disso                          | alvod  |             | 108.7        | IVIO-D    | %     |     | - 70.420 | 12-MAY-21 |
| Chromium (Cr)-Disso                         |        |             | 105.6        |           | %     |     | 70-130   | 12-MAY-21 |
| Cobalt (Co)-Dissolve                        |        |             | 103.6        |           | %     |     | 70-130   | 12-MAY-21 |
| Copper (Cu)-Dissolve                        |        |             | 102.6<br>N/A | MS-B      | %     |     | 70-130   | 12-MAY-21 |
| Lead (Pb)-Dissolved                         |        |             | 103.7        | IVIO-D    | %     |     | -        | 12-MAY-21 |
| ` '                                         |        |             | 103.7        |           | %     |     | 70-130   | 12-MAY-21 |
| Molybdenum (Mo)-Di<br>Nickel (Ni)-Dissolved |        |             | 99.1         |           | %     |     | 70-130   | 12-MAY-21 |
|                                             |        |             |              |           | %     |     | 70-130   | 12-MAY-21 |
| Selenium (Se)-Disso                         |        |             | 121.4        |           | %     |     | 70-130   | 12-MAY-21 |
| Silver (Ag)-Dissolved                       |        |             | 101.5        | 140.5     |       |     | 70-130   | 12-MAY-21 |
| Sodium (Na)-Dissolv                         |        |             | N/A          | MS-B      | %     |     | -        | 12-MAY-21 |
| Thallium (TI)-Dissolv                       |        |             | 104.5        | 140.5     | %     |     | 70-130   | 12-MAY-21 |
| Uranium (U)-Dissolve                        |        |             | N/A          | MS-B      | %     |     | -        | 12-MAY-21 |
| Vanadium (V)-Dissol                         | ved    |             | 107.9        |           | %     |     | 70-130   | 12-MAY-21 |
| Zinc (Zn)-Dissolved                         |        |             | N/A          | MS-B      | %     |     | =        | 12-MAY-21 |

PAH-511-WT Water



Workorder: L2585341 Report Date: 17-MAY-21 Page 8 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                  | Matrix | Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------------|--------|-----------|--------|-----------|-------|-----|--------|-----------|
| PAH-511-WT                            | Water  |           |        |           |       |     |        |           |
| Batch R5457160                        |        |           |        |           |       |     |        |           |
| WG3532299-2 LCS                       |        |           | 404.0  |           | 0/    |     | 50.440 |           |
| 1-Methylnaphthalene                   |        |           | 104.6  |           | %     |     | 50-140 | 13-MAY-21 |
| 2-Methylnaphthalene                   |        |           | 97.8   |           | %     |     | 50-140 | 13-MAY-21 |
| Acenaphthene                          |        |           | 104.2  |           | %     |     | 50-140 | 13-MAY-21 |
| Acenaphthylene                        |        |           | 100.4  |           | %     |     | 50-140 | 13-MAY-21 |
| Anthracene                            |        |           | 101.5  |           | %     |     | 50-140 | 13-MAY-21 |
| Benzo(a)anthracene                    |        |           | 105.4  |           | %     |     | 50-140 | 13-MAY-21 |
| Benzo(a)pyrene                        |        |           | 103.8  |           | %     |     | 50-140 | 13-MAY-21 |
| Benzo(b&j)fluoranthene                |        |           | 111.0  |           | %     |     | 50-140 | 13-MAY-21 |
| Benzo(g,h,i)perylene                  |        |           | 117.4  |           | %     |     | 50-140 | 13-MAY-21 |
| Benzo(k)fluoranthene                  |        |           | 105.0  |           | %     |     | 50-140 | 13-MAY-21 |
| Chrysene                              |        |           | 105.4  |           | %     |     | 50-140 | 13-MAY-21 |
| Dibenz(a,h)anthracene                 |        |           | 103.9  |           | %     |     | 50-140 | 13-MAY-21 |
| Fluoranthene                          |        |           | 105.6  |           | %     |     | 50-140 | 13-MAY-21 |
| Fluorene                              |        |           | 102.7  |           | %     |     | 50-140 | 13-MAY-21 |
| Indeno(1,2,3-cd)pyrene                |        |           | 124.0  |           | %     |     | 50-140 | 13-MAY-21 |
| Naphthalene                           |        |           | 94.3   |           | %     |     | 50-140 | 13-MAY-21 |
| Phenanthrene                          |        |           | 108.4  |           | %     |     | 50-140 | 13-MAY-21 |
| Pyrene                                |        |           | 105.6  |           | %     |     | 50-140 | 13-MAY-21 |
| WG3532299-1 MB<br>1-Methylnaphthalene |        |           | <0.020 |           | ug/L  |     | 0.02   | 42 MAY 24 |
| 2-Methylnaphthalene                   |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
|                                       |        |           | <0.020 |           |       |     | 0.02   | 13-MAY-21 |
| Acenaphthylone                        |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Acenaphthylene Anthracene             |        |           |        |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Benzo(a)anthracene                    |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| ` '                                   |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Benzo(a)pyrene                        |        |           | <0.010 |           | ug/L  |     |        | 13-MAY-21 |
| Benzo(b&j)fluoranthene                |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Benzo(g,h,i)perylene                  |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Benzo(k)fluoranthene                  |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Chrysene                              |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Dibenz(a,h)anthracene                 |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Fluoranthene                          |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Fluorene                              |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |
| Indeno(1,2,3-cd)pyrene                |        |           | <0.020 |           | ug/L  |     | 0.02   | 13-MAY-21 |



Workorder: L2585341 Report Date: 17-MAY-21 Page 9 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                   | Matrix      | Reference                  | Result         | Qualifier | Units        | RPD  | Limit   | Analyzed               |
|----------------------------------------|-------------|----------------------------|----------------|-----------|--------------|------|---------|------------------------|
| PAH-511-WT                             | Water       |                            |                |           |              |      |         |                        |
| Batch R54571                           | 160         |                            |                |           |              |      |         |                        |
| WG3532299-1 ME<br>Naphthalene          | 3           |                            | <0.050         |           | ug/L         |      | 0.05    | 12 MAV 24              |
| Phenanthrene                           |             |                            | <0.050         |           | ug/L<br>ug/L |      | 0.03    | 13-MAY-21<br>13-MAY-21 |
| Pyrene                                 |             |                            | <0.020         |           | ug/L         |      | 0.02    | -                      |
| Surrogate: Naphthal                    | ene d8      |                            | 99.0           |           | ug/∟<br>%    |      | 60-140  | 13-MAY-21<br>13-MAY-21 |
| Surrogate: Phenanth                    |             |                            | 106.8          |           | %            |      | 60-140  |                        |
| -                                      |             |                            | 100.0          |           | 70           |      | 00-140  | 13-MAY-21              |
| PCB-511-WT                             | Water       |                            |                |           |              |      |         |                        |
| Batch R54566                           |             |                            |                |           |              |      |         |                        |
| <b>WG3531673-2 LC</b><br>Aroclor 1242  | 3           |                            | 118.5          |           | %            |      | 60-140  | 12-MAY-21              |
| Aroclor 1248                           |             |                            | 74.2           |           | %            |      | 60-140  | 12-MAY-21              |
| Aroclor 1254                           |             |                            | 101.2          |           | %            |      | 60-140  | 12-MAY-21              |
| Aroclor 1260                           |             |                            | 99.1           |           | %            |      | 60-140  | 12-MAY-21              |
| WG3531673-1 ME                         | 3           |                            |                |           |              |      |         |                        |
| Aroclor 1242                           |             |                            | <0.020         |           | ug/L         |      | 0.02    | 12-MAY-21              |
| Aroclor 1248                           |             |                            | <0.020         |           | ug/L         |      | 0.02    | 12-MAY-21              |
| Aroclor 1254                           |             |                            | <0.020         |           | ug/L         |      | 0.02    | 12-MAY-21              |
| Aroclor 1260                           |             |                            | <0.020         |           | ug/L         |      | 0.02    | 12-MAY-21              |
| Surrogate: Decachlo                    | robiphenyl  |                            | 108.3          |           | %            |      | 50-150  | 12-MAY-21              |
| Surrogate: Tetrachlo                   | ro-m-xylene |                            | 83.8           |           | %            |      | 50-150  | 12-MAY-21              |
| PH-WT                                  | Water       |                            |                |           |              |      |         |                        |
| Batch R54570                           | )22         |                            |                |           |              |      |         |                        |
| WG3532414-4 DU                         | IP          | WG3532414-                 |                |           |              |      |         |                        |
| рН                                     |             | 7.66                       | 7.72           | J         | pH units     | 0.06 | 0.2     | 11-MAY-21              |
| WG3532414-2 LC                         | S           |                            | 7.04           |           | nH unito     |      | 0074    | 44 140 / 64            |
| рН                                     |             |                            | 7.01           |           | pH units     |      | 6.9-7.1 | 11-MAY-21              |
| VOC-511-HS-WT                          | Water       |                            |                |           |              |      |         |                        |
| Batch R54576                           |             |                            |                |           |              |      |         |                        |
| WG3534801-4 DU<br>1,1,1,2-Tetrachloroe |             | <b>WG3534801-</b><br><0.50 | <b>3</b> <0.50 | RPD-NA    | ug/L         | N/A  | 30      | 17-MAY-21              |
| 1,1,2,2-Tetrachloroe                   |             | <0.50                      | <0.50          | RPD-NA    | ug/L         | N/A  | 30      | 17-MAY-21              |
| 1,1,1-Trichloroethan                   |             | <0.50                      | <0.50          | RPD-NA    | ug/L         | N/A  | 30      | 17-MAY-21              |
| 1,1,2-Trichloroethan                   |             | <0.50                      | <0.50          | RPD-NA    | ug/L         | N/A  | 30      | 17-MAY-21              |
| 1,1-Dichloroethane                     | ~           | <0.50                      | <0.50          | RPD-NA    | ug/L         | N/A  | 30      | 17-MAY-21              |
| 1,1-Dichloroethylene                   | <b>.</b>    | <0.50                      | <0.50          |           | ug/L         |      |         |                        |
| i, i-Dichiloroethylene                 | •           | <0.00                      | <0.00          | RPD-NA    | ug/L         | N/A  | 30      | 17-MAY-21              |



Workorder: L2585341 Report Date: 17-MAY-21 Page 10 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                     | Matrix | Reference  | Result | Qualifier | Units | RPD | Limit | Analyzed  |
|--------------------------|--------|------------|--------|-----------|-------|-----|-------|-----------|
| VOC-511-HS-WT            | Water  |            |        |           |       |     |       |           |
| Batch R5457674           |        |            |        |           |       |     |       |           |
| WG3534801-4 DUP          |        | WG3534801- |        |           |       |     |       |           |
| 1,2-Dibromoethane        |        | <0.20      | <0.20  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| 1,2-Dichlorobenzene      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| 1,2-Dichloroethane       |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| 1,2-Dichloropropane      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| 1,3-Dichlorobenzene      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| 1,4-Dichlorobenzene      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Acetone                  |        | <30        | <30    | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Benzene                  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Bromodichloromethane     |        | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Bromoform                |        | <5.0       | <5.0   | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Bromomethane             |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Carbon tetrachloride     |        | <0.20      | <0.20  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Chlorobenzene            |        | <0.50      | < 0.50 | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Chloroform               |        | <1.0       | <1.0   | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| cis-1,2-Dichloroethylene | e      | <0.50      | < 0.50 | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| cis-1,3-Dichloropropene  | )      | <0.30      | < 0.30 | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Dibromochloromethane     |        | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Dichlorodifluoromethan   | е      | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Ethylbenzene             |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| n-Hexane                 |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| m+p-Xylenes              |        | <0.40      | < 0.40 | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Methyl Ethyl Ketone      |        | <20        | <20    | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Methyl Isobutyl Ketone   |        | <20        | <20    | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Methylene Chloride       |        | <5.0       | <5.0   | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| MTBE                     |        | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| o-Xylene                 |        | < 0.30     | < 0.30 | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Styrene                  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Tetrachloroethylene      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Toluene                  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| trans-1,2-Dichloroethyle | ene    | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| trans-1,3-Dichloroprope  | ene    | <0.30      | <0.30  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Trichloroethylene        |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 17-MAY-21 |
| Trichlorofluoromethane   |        | <5.0       | <5.0   |           | ug/L  |     |       | 17-MAY-21 |
|                          |        |            |        |           |       |     |       |           |



Workorder: L2585341 Report Date: 17-MAY-21 Page 11 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                        | Matrix | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------------------|--------|-------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT                               | Water  |             |        |           |       |     |        |           |
| Batch R5457674                              |        |             |        |           |       |     |        |           |
| WG3534801-4 DUP                             |        | WG3534801-3 |        |           |       |     |        |           |
| Trichlorofluoromethane                      |        | <5.0        | <5.0   | RPD-NA    | ug/L  | N/A | 30     | 17-MAY-21 |
| Vinyl chloride                              |        | <0.50       | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 17-MAY-21 |
| WG3534801-1 LCS<br>1,1,1,2-Tetrachloroethai | ne     |             | 94.3   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,1,2,2-Tetrachloroetha                     | ne     |             | 117.1  |           | %     |     | 70-130 | 14-MAY-21 |
| 1,1,1-Trichloroethane                       |        |             | 87.8   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,1,2-Trichloroethane                       |        |             | 91.4   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,1-Dichloroethane                          |        |             | 87.5   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,1-Dichloroethylene                        |        |             | 88.3   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,2-Dibromoethane                           |        |             | 92.9   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,2-Dichlorobenzene                         |        |             | 90.0   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,2-Dichloroethane                          |        |             | 85.1   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,2-Dichloropropane                         |        |             | 87.3   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,3-Dichlorobenzene                         |        |             | 83.9   |           | %     |     | 70-130 | 14-MAY-21 |
| 1,4-Dichlorobenzene                         |        |             | 86.6   |           | %     |     | 70-130 | 14-MAY-21 |
| Acetone                                     |        |             | 99.0   |           | %     |     | 60-140 | 14-MAY-21 |
| Benzene                                     |        |             | 87.5   |           | %     |     | 70-130 | 14-MAY-21 |
| Bromodichloromethane                        |        |             | 92.3   |           | %     |     | 70-130 | 14-MAY-21 |
| Bromoform                                   |        |             | 115.2  |           | %     |     | 70-130 | 14-MAY-21 |
| Bromomethane                                |        |             | 90.0   |           | %     |     | 60-140 | 14-MAY-21 |
| Carbon tetrachloride                        |        |             | 91.4   |           | %     |     | 70-130 | 14-MAY-21 |
| Chlorobenzene                               |        |             | 86.9   |           | %     |     | 70-130 | 14-MAY-21 |
| Chloroform                                  |        |             | 91.5   |           | %     |     | 70-130 | 14-MAY-21 |
| cis-1,2-Dichloroethylene                    | )      |             | 92.9   |           | %     |     | 70-130 | 14-MAY-21 |
| cis-1,3-Dichloropropene                     | ;      |             | 86.7   |           | %     |     | 70-130 | 14-MAY-21 |
| Dibromochloromethane                        |        |             | 94.4   |           | %     |     | 70-130 | 14-MAY-21 |
| Dichlorodifluoromethane                     | Э      |             | 91.7   |           | %     |     | 50-140 | 14-MAY-21 |
| Ethylbenzene                                |        |             | 87.9   |           | %     |     | 70-130 | 14-MAY-21 |
| n-Hexane                                    |        |             | 85.3   |           | %     |     | 70-130 | 14-MAY-21 |
| m+p-Xylenes                                 |        |             | 84.2   |           | %     |     | 70-130 | 14-MAY-21 |
| Methyl Ethyl Ketone                         |        |             | 99.1   |           | %     |     | 60-140 | 14-MAY-21 |
| Methyl Isobutyl Ketone                      |        |             | 100.5  |           | %     |     | 60-140 | 14-MAY-21 |
| Methylene Chloride                          |        |             | 91.9   |           | %     |     | 70-130 | 14-MAY-21 |
| MTBE                                        |        |             | 89.5   |           | %     |     | 70-130 | 14-MAY-21 |



Workorder: L2585341 Report Date: 17-MAY-21 Page 12 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                                      | Matrix | Reference | Result       | Qualifier | Units | RPD | Limit  | Analyzed       |
|-------------------------------------------|--------|-----------|--------------|-----------|-------|-----|--------|----------------|
| VOC-511-HS-WT                             | Water  |           |              |           |       |     |        |                |
| Batch R5457674                            |        |           |              |           |       |     |        |                |
| WG3534801-1 LCS                           |        |           | 04.0         |           | 0/    |     |        |                |
| o-Xylene                                  |        |           | 94.9<br>98.0 |           | %     |     | 70-130 | 14-MAY-21      |
| Styrene                                   |        |           |              |           |       |     | 70-130 | 14-MAY-21      |
| Tetrachloroethylene                       |        |           | 88.4         |           | %     |     | 70-130 | 14-MAY-21      |
| Toluene                                   |        |           | 88.3         |           | %     |     | 70-130 | 14-MAY-21      |
| trans-1,2-Dichloroethyle                  |        |           | 87.6         |           | %     |     | 70-130 | 14-MAY-21      |
| trans-1,3-Dichloroprope                   | ne     |           | 86.0         |           | %     |     | 70-130 | 14-MAY-21      |
| Trichloroethylene                         |        |           | 87.5         |           | %     |     | 70-130 | 14-MAY-21      |
| Trichlorofluoromethane                    |        |           | 92.8         |           | %     |     | 60-140 | 14-MAY-21      |
| Vinyl chloride                            |        |           | 99.2         |           | %     |     | 60-140 | 14-MAY-21      |
| WG3534801-2 MB<br>1,1,1,2-Tetrachloroetha | ne     |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,1,2,2-Tetrachloroetha                   | ne     |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,1,1-Trichloroethane                     |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,1,2-Trichloroethane                     |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,1-Dichloroethane                        |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,1-Dichloroethylene                      |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,2-Dibromoethane                         |        |           | <0.20        |           | ug/L  |     | 0.2    | 14-MAY-21      |
| 1,2-Dichlorobenzene                       |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,2-Dichloroethane                        |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,2-Dichloropropane                       |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,3-Dichlorobenzene                       |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| 1,4-Dichlorobenzene                       |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| Acetone                                   |        |           | <30          |           | ug/L  |     | 30     | 14-MAY-21      |
| Benzene                                   |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| Bromodichloromethane                      |        |           | <2.0         |           | ug/L  |     | 2      | 14-MAY-21      |
| Bromoform                                 |        |           | <5.0         |           | ug/L  |     | 5      | 14-MAY-21      |
| Bromomethane                              |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| Carbon tetrachloride                      |        |           | <0.20        |           | ug/L  |     | 0.2    | 14-MAY-21      |
| Chlorobenzene                             |        |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| Chloroform                                |        |           | <1.0         |           | ug/L  |     | 1      | 14-MAY-21      |
| cis-1,2-Dichloroethylene                  | )      |           | <0.50        |           | ug/L  |     | 0.5    | 14-MAY-21      |
| cis-1,3-Dichloropropene                   |        |           | <0.30        |           | ug/L  |     | 0.3    | 14-MAY-21      |
| Dibromochloromethane                      |        |           | <2.0         |           | ug/L  |     | 2      | 14-MAY-21      |
| Dichlorodifluoromethane                   | Э      |           | <2.0         |           | ug/L  |     | 2      | 14-MAY-21      |
|                                           |        |           |              |           | -     |     |        | <del>-</del> - |



Workorder: L2585341 Report Date: 17-MAY-21 Page 13 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

| Test                    | Matrix     | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------|------------|-------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT           | Water      |             |        |           |       |     |        |           |
| Batch R5457674          | 4          |             |        |           |       |     |        |           |
| WG3534801-2 MB          |            |             |        |           |       |     |        |           |
| Ethylbenzene            |            |             | <0.50  |           | ug/L  |     | 0.5    | 14-MAY-21 |
| n-Hexane                |            |             | <0.50  |           | ug/L  |     | 0.5    | 14-MAY-21 |
| m+p-Xylenes             |            |             | <0.40  |           | ug/L  |     | 0.4    | 14-MAY-21 |
| Methyl Ethyl Ketone     |            |             | <20    |           | ug/L  |     | 20     | 14-MAY-21 |
| Methyl Isobutyl Ketone  |            |             | <20    |           | ug/L  |     | 20     | 14-MAY-21 |
| Methylene Chloride      |            |             | <5.0   |           | ug/L  |     | 5      | 14-MAY-21 |
| MTBE                    |            |             | <2.0   |           | ug/L  |     | 2      | 14-MAY-21 |
| o-Xylene                |            |             | <0.30  |           | ug/L  |     | 0.3    | 14-MAY-21 |
| Styrene                 |            |             | <0.50  |           | ug/L  |     | 0.5    | 14-MAY-21 |
| Tetrachloroethylene     |            |             | <0.50  |           | ug/L  |     | 0.5    | 14-MAY-21 |
| Toluene                 |            |             | <0.50  |           | ug/L  |     | 0.5    | 14-MAY-21 |
| trans-1,2-Dichloroethyl | ene        |             | <0.50  |           | ug/L  |     | 0.5    | 14-MAY-21 |
| trans-1,3-Dichloroprop  | ene        |             | <0.30  |           | ug/L  |     | 0.3    | 14-MAY-21 |
| Trichloroethylene       |            |             | <0.50  |           | ug/L  |     | 0.5    | 14-MAY-21 |
| Trichlorofluoromethane  | Э          |             | <5.0   |           | ug/L  |     | 5      | 14-MAY-21 |
| Vinyl chloride          |            |             | <0.50  |           | ug/L  |     | 0.5    | 14-MAY-21 |
| Surrogate: 1,4-Difluoro | benzene    |             | 100.0  |           | %     |     | 70-130 | 14-MAY-21 |
| Surrogate: 4-Bromoflu   | orobenzene |             | 115.8  |           | %     |     | 70-130 | 14-MAY-21 |
| WG3534801-5 MS          |            | WG3534801-3 |        |           |       |     |        |           |
| 1,1,1,2-Tetrachloroetha |            |             | 104.4  |           | %     |     | 50-140 | 17-MAY-21 |
| 1,1,2,2-Tetrachloroetha | ane        |             | 103.4  |           | %     |     | 50-140 | 17-MAY-21 |
| 1,1,1-Trichloroethane   |            |             | 98.2   |           | %     |     | 50-140 | 17-MAY-21 |
| 1,1,2-Trichloroethane   |            |             | 94.4   |           | %     |     | 50-140 | 17-MAY-21 |
| 1,1-Dichloroethane      |            |             | 95.9   |           | %     |     | 50-140 | 17-MAY-21 |
| 1,1-Dichloroethylene    |            |             | 99.0   |           | %     |     | 50-140 | 17-MAY-21 |
| 1,2-Dibromoethane       |            |             | 92.9   |           | %     |     | 50-140 | 17-MAY-21 |
| 1,2-Dichlorobenzene     |            |             | 98.7   |           | %     |     | 50-140 | 17-MAY-21 |
| 1,2-Dichloroethane      |            |             | 88.0   |           | %     |     | 50-140 | 17-MAY-21 |
| 1,2-Dichloropropane     |            |             | 95.2   |           | %     |     | 50-140 | 17-MAY-21 |
| 1,3-Dichlorobenzene     |            |             | 101.3  |           | %     |     | 50-140 | 17-MAY-21 |
| 1,4-Dichlorobenzene     |            |             | 101.7  |           | %     |     | 50-140 | 17-MAY-21 |
| Acetone                 |            |             | 91.2   |           | %     |     | 50-140 | 17-MAY-21 |
| Benzene                 |            |             | 96.5   |           | %     |     | 50-140 | 17-MAY-21 |
| Bromodichloromethane    | е          |             | 101.5  |           | %     |     | 50-140 | 17-MAY-21 |
|                         |            |             |        |           |       |     |        |           |



Workorder: L2585341 Report Date: 17-MAY-21 Page 14 of 15

Client: Grounded Engineering Inc

12 Banigan Drive

TORONTO ON M4H 1E9

Contact: ZENITH WONG

| Test                     | Matrix | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------|--------|-------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT            | Water  |             |        |           |       |     |        |           |
| Batch R5457674           |        |             |        |           |       |     |        |           |
| WG3534801-5 MS           |        | WG3534801-3 |        |           |       |     |        |           |
| Bromoform                |        |             | 114.9  |           | %     |     | 50-140 | 17-MAY-21 |
| Bromomethane             |        |             | 94.4   |           | %     |     | 50-140 | 17-MAY-21 |
| Carbon tetrachloride     |        |             | 104.0  |           | %     |     | 50-140 | 17-MAY-21 |
| Chlorobenzene            |        |             | 95.8   |           | %     |     | 50-140 | 17-MAY-21 |
| Chloroform               |        |             | 100.6  |           | %     |     | 50-140 | 17-MAY-21 |
| cis-1,2-Dichloroethylene |        |             | 101.3  |           | %     |     | 50-140 | 17-MAY-21 |
| cis-1,3-Dichloropropene  |        |             | 92.2   |           | %     |     | 50-140 | 17-MAY-21 |
| Dibromochloromethane     |        |             | 100.3  |           | %     |     | 50-140 | 17-MAY-21 |
| Dichlorodifluoromethane  | )      |             | 107.8  |           | %     |     | 50-140 | 17-MAY-21 |
| Ethylbenzene             |        |             | 98.8   |           | %     |     | 50-140 | 17-MAY-21 |
| n-Hexane                 |        |             | 96.4   |           | %     |     | 50-140 | 17-MAY-21 |
| m+p-Xylenes              |        |             | 94.9   |           | %     |     | 50-140 | 17-MAY-21 |
| Methyl Ethyl Ketone      |        |             | 86.0   |           | %     |     | 50-140 | 17-MAY-21 |
| Methyl Isobutyl Ketone   |        |             | 95.2   |           | %     |     | 50-140 | 17-MAY-21 |
| Methylene Chloride       |        |             | 96.4   |           | %     |     | 50-140 | 17-MAY-21 |
| MTBE                     |        |             | 96.7   |           | %     |     | 50-140 | 17-MAY-21 |
| o-Xylene                 |        |             | 106.8  |           | %     |     | 50-140 | 17-MAY-21 |
| Styrene                  |        |             | 108.8  |           | %     |     | 50-140 | 17-MAY-21 |
| Tetrachloroethylene      |        |             | 99.6   |           | %     |     | 50-140 | 17-MAY-21 |
| Toluene                  |        |             | 95.6   |           | %     |     | 50-140 | 17-MAY-21 |
| trans-1,2-Dichloroethyle | ne     |             | 97.7   |           | %     |     | 50-140 | 17-MAY-21 |
| trans-1,3-Dichloroproper | ne     |             | 86.5   |           | %     |     | 50-140 | 17-MAY-21 |
| Trichloroethylene        |        |             | 99.6   |           | %     |     | 50-140 | 17-MAY-21 |
| Trichlorofluoromethane   |        |             | 104.2  |           | %     |     | 50-140 | 17-MAY-21 |
| Vinyl chloride           |        |             | 109.3  |           | %     |     | 50-140 | 17-MAY-21 |

Workorder: L2585341 Report Date: 17-MAY-21

Client: Grounded Engineering Inc Page 15 of 15

12 Banigan Drive

TORONTO ON M4H 1E9

Contact: ZENITH WONG

#### Legend:

Limit ALS Control Limit (Data Quality Objectives)
DUP Duplicate
RPD Relative Percent Difference
N/A Not Available
LCS Laboratory Control Sample

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

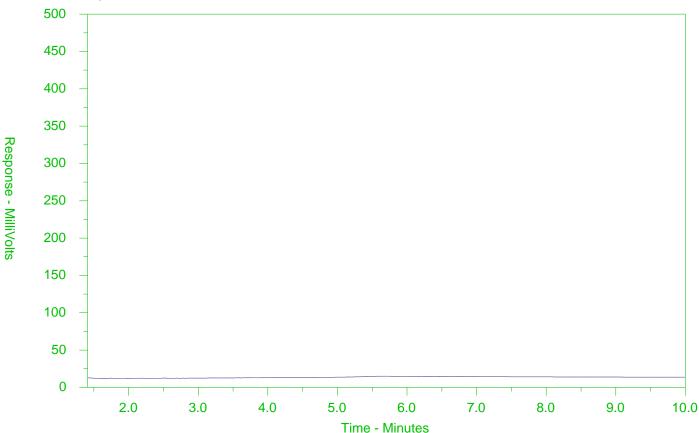
IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

#### **Sample Parameter Qualifier Definitions:**

| Qualifier | Description                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                        |
| MS-B      | Matrix Spike recovery could not be accurately calculated due to high analyte background in sample. |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.        |

#### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

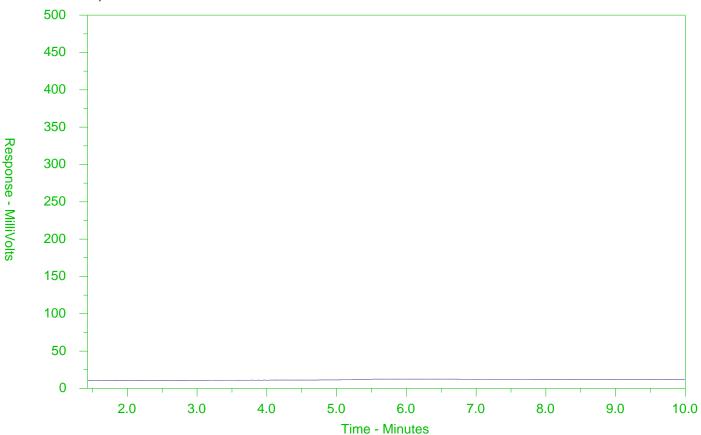
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



ALS Sample ID: L2585341-1 Client Sample ID: BH 101



| <b>←</b> -F2- | →←                   | _F3 <b>→</b> F4- | <b>→</b>                  |   |  |  |  |
|---------------|----------------------|------------------|---------------------------|---|--|--|--|
| nC10          | nC16                 | nC34             | nC50                      |   |  |  |  |
| 174°C         | 287°C                | 481°C            | 575°C                     |   |  |  |  |
| 346°F         | 549°F                | 898°F            | 1067°F                    |   |  |  |  |
| Gasoline → ←  |                      | <b>←</b> Mo      | tor Oils/Lube Oils/Grease | - |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |                  |                           |   |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

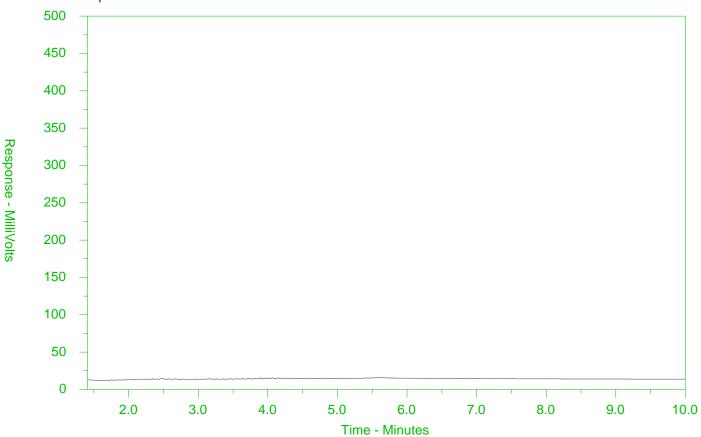
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2585341-2 Client Sample ID: BH 102



| <b>←</b> -F2- | → ←                  | —F3——◆4—F4- | <b>→</b>                    |   |  |  |  |
|---------------|----------------------|-------------|-----------------------------|---|--|--|--|
| nC10          | nC16                 | nC34        | nC50                        |   |  |  |  |
| 174°C         | 287°C                | 481°C       | 575°C                       |   |  |  |  |
| 346°F         | 549°F                | 898°F       | 1067°F                      |   |  |  |  |
| Gasolin       | Gasoline → ← M       |             | otor Oils/Lube Oils/Grease— | - |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |             |                             |   |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

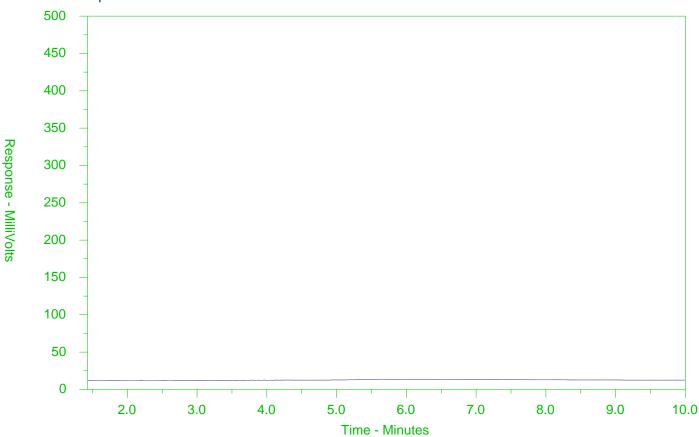
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2585341-3 Client Sample ID: BH 103



| <b>←</b> -F2- | →←                   | _F3 <b>→</b> F4- | <b>→</b>                  |   |  |  |  |
|---------------|----------------------|------------------|---------------------------|---|--|--|--|
| nC10          | nC16                 | nC34             | nC50                      |   |  |  |  |
| 174°C         | 287°C                | 481°C            | 575°C                     |   |  |  |  |
| 346°F         | 549°F                | 898°F            | 1067°F                    |   |  |  |  |
| Gasoline → ←  |                      | <b>←</b> Mo      | tor Oils/Lube Oils/Grease | - |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |                  |                           |   |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2585341-4 Client Sample ID: DUP 1



| <b>←</b> -F2- | → ←                  | —F3——◆4—F4- | <b>→</b>                    |   |  |  |  |
|---------------|----------------------|-------------|-----------------------------|---|--|--|--|
| nC10          | nC16                 | nC34        | nC50                        |   |  |  |  |
| 174°C         | 287°C                | 481°C       | 575°C                       |   |  |  |  |
| 346°F         | 549°F                | 898°F       | 1067°F                      |   |  |  |  |
| Gasolin       | Gasoline → ← M       |             | otor Oils/Lube Oils/Grease— | - |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |             |                             |   |  |  |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



www.alsglobal.com



L2585341-COFC

Number: 20 - 888360
Page / of /



| Report To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact and company name below will appear on the final repo                  | ort                                   | Reports /                                                       | Recipients               |                                                  |                                                                                                                                                               |                                                  |              |            |               | /est        | ted         |                                              | <b>—</b>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.351             |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|--------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|------------|---------------|-------------|-------------|----------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Grounded chaineofing i                                                        | Select Report                         | Format: PDF                                                     | D EXCEL 0                | ראסוואר)                                         | [∏.Kouti                                                                                                                                                      | ine [R] if red                                   | ceived by    | 3pm M-     | -F-nosu       | ırcharges a | apply       |                                              |              | on and the second of the secon | 745<br>7524 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
| Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zenith word                                                                   | Merge QC/0                            | CI Reports with COA                                             | YES N                    | O Nya                                            | 1 -                                                                                                                                                           | y [P4] if rece                                   |              |            |               |             |             | mum                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | i<br>Jan Mil                 |
| Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 647 164-7993                                                                  | <b>Ø</b> Compare R                    | esults to Criteria on Report -                                  | provide details below is | f box checked                                    | 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum  AFFIX ALS B                                                                                   |                                                  |              |            |               |             |             |                                              | EL HE        | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company address below will appear on the final report                         | Select Distribu                       | tion: Æ EMAIL                                                   | MAIL 🗆                   | FAX                                              | 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum  1 day [E] if received by 3pm M-F - 100% rush surcharge minimum                                |                                                  |              |            |               | 100         |             | (ALS us                                      | a only)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
| Street:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 Baniagn Drive                                                              | Email 1 or Fax                        | JWOMA                                                           | 2 acrob                  | HALL OF                                          | <b>dy</b> c₃m.                                                                                                                                                |                                                  |              |            |               |             |             |                                              | foor         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2 ( )<br>1/3 ( ) |                              |
| City/Province:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toronto ON                                                                    | Email 2                               |                                                                 | <del></del>              |                                                  | Same day [EZ] if received by 10am M-S - 200% rush surcharge. Additional fees may apply to rush requests on weekends, statutory holidays and non-routine tests |                                                  |              |            |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
| Postal Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M4H 1E9                                                                       | Email 3 UU                            | 10490195                                                        | ounded c                 | ng. 09                                           | Da                                                                                                                                                            | te and Time                                      | e Require    | ed for a   | LE&P TA       | Ts:         |             | ga Kisa da a a a a a a a a a a a a a a a a a |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 1 1 1 1 1        |                              |
| Invoice To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Same as Réport To                                                             |                                       | Invoice Recipients                                              |                          |                                                  |                                                                                                                                                               |                                                  | For          | all tests  | with rush     | TATs reque  | ested, plea | ise contac                                   | t your AM to | confirm a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ailability. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copy of Invoice with Report YES NO                                            | Select Invoice                        | Distribution: 🗗 🗉                                               | MAIL   MAIL              | ] FAX                                            |                                                                                                                                                               |                                                  |              |            |               | ıA          | nalysis     | Reques                                       | st           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               | Email 1 or Fax                        |                                                                 |                          |                                                  | श्च                                                                                                                                                           |                                                  | Indicate     | e Filtered | d (F), Pres   | served (P)  | or Filtere  | d and Pre                                    | served (F/P  | ) below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                  | l ®                          |
| Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               | Email 2                               |                                                                 |                          |                                                  | ] 🗓 🗀                                                                                                                                                         |                                                  |              |            |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ] '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 븅                            |
| ALS Account # /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Information                                                           | <u> </u>                              | ail 1 or Fax ail 2  Cost Center: PO# withing Code: puisitioner: |                          |                                                  | ] 🗧 🗆                                                                                                                                                         |                                                  |              | T          |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | j           | ٦_ ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REQUIRED           | ا و                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | quote #.                                                                      | AFE/Cost Center:                      |                                                                 | PO#                      |                                                  |                                                                                                                                                               |                                                  | 15           |            |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ١٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                  | <u>&amp;</u>                 |
| Job#: 2/~<br>PO/AFE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 067                                                                           | Major/Minor Code:                     | <del></del>                                                     | Routing Code:            |                                                  | ן הַ ן                                                                                                                                                        | -                                                |              | l          |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 오                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                 | 郞                            |
| LSD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | Requisitioner:                        |                                                                 |                          |                                                  |                                                                                                                                                               | İ                                                | 9            |            |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }           | ON HOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ᇫ                  | §                            |
| LSD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | Location:                             |                                                                 | <del>,</del>             |                                                  | ا<br>ا                                                                                                                                                        | 4                                                |              | 4          |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STORAGE            | 主                            |
| ALS Lab Worl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k Order # (ALS use only):                                                     | ALS Contact:                          |                                                                 | Sampler:                 |                                                  | NUMBER                                                                                                                                                        | 14                                               | 73           | 7          | 0,            |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | LES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DED                | SUSPECTED HAZARD (see notes) |
| ALS use only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Identification and/or Coord<br>(This description will appear on the re |                                       | Date<br>(dd-mmm-yy)                                             | Time<br>(hh:mm)          | Sample Type                                      | §   ≥                                                                                                                                                         | 7                                                | 7            | 9          | $\frac{2}{2}$ |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EXTEN              | USPE                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BH 101                                                                        | sporty                                | <del>                                      </del>               | <del></del>              |                                                  |                                                                                                                                                               |                                                  | 1            |            | <del>,</del>  |             | 1           |                                              | +-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           | ၂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ώ.                 | -S                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BH 109.                                                                       |                                       | + May                                                           | 12:00                    | GW                                               | 15                                                                                                                                                            | 77                                               | 7            | 7 /        | <u> </u>      | _           |             |                                              |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                  |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                           |                                       | +                                                               | ļ <i></i>                | <del>                                     </del> | 15 5                                                                                                                                                          | 7 7                                              | $\angle$     | Z,         | $\prec \perp$ |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | Ш                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                      |                                       |                                                                 | 1 1                      |                                                  | 13 7                                                                                                                                                          | 47                                               | X            | X          |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | ıl                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dup 1                                                                         |                                       |                                                                 |                          | ⊥ {                                              | 15/2                                                                                                                                                          | 4 4                                              | <b>/</b>   ; | $\times$   | X             |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | $\Box$                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trio blank                                                                    |                                       | D                                                               |                          | V                                                | 2                                                                                                                                                             |                                                  | •            | X          |               |             |             |                                              | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
| - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                       |                                                                 |                          |                                                  |                                                                                                                                                               |                                                  |              |            |               |             |             |                                              | -            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | · · · · · · · · · · · · · · · · · · · |                                                                 | 7                        |                                                  |                                                                                                                                                               | -                                                | -            | -          | _             | +           | +           |                                              | _            | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | $\vdash$                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | · · · · · · · · · · · · · · · · · · · | <b>-</b>                                                        |                          | <del> </del>                                     | ├                                                                                                                                                             | <del>                                     </del> | -            | -          |               | +           | <b>├</b>    |                                              | +-           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | <u> </u>                              |                                                                 |                          |                                                  | $\vdash$                                                                                                                                                      |                                                  |              | -          | -             | <del></del> | $\vdash$    |                                              |              | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | ∔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$          | $\vdash$                     |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |                                       |                                                                 |                          |                                                  | <b>  </b>                                                                                                                                                     | $\dashv$                                         |              | <u>_</u> . |               |             |             |                                              |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                  | $\square$                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                       | <del></del>                                                     |                          |                                                  | <b></b>                                                                                                                                                       |                                                  |              |            |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                       |                                                                 |                          |                                                  |                                                                                                                                                               |                                                  |              |            |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                       |                                                                 |                          |                                                  |                                                                                                                                                               |                                                  |              |            |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , , , , , , , , , , , , , , , , , , ,                                       | es / Specify Limits for resul         | t evaluation by selecting<br>(Excel COC only)                   | g from drop-down l       | pelow                                            | Cooling I                                                                                                                                                     | Method:                                          | · //         |            | AMPLI         | 3000        | IPT DE      |                                              | ALS use      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COOLIN      | v mutva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TED                |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | from a Regulated DW System?                                                   | 11.9                                  | ICC .                                                           | CT                       |                                                  |                                                                                                                                                               | ion Comn                                         |              |            |               |             |             |                                              |              | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | J NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>           | 7.1                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 □ NO   7 C                                                                  | 161e9                                 | 100                                                             | - 1                      |                                                  | 7.5                                                                                                                                                           | ustody Se                                        |              | 12.00      | 14.0          | YBS 🗆       |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · m                | N/A                          |
| Are samples for human consumption/ use?    NIITIAL COOLER TEMPERATURES *C   FINAL COOLER TEMP |                                                                               |                                       |                                                                 |                          |                                                  | ***                                                                                                                                                           |                                                  |              |            |               |             |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
| ☐ YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO NO                                                                         |                                       |                                                                 |                          |                                                  | 100                                                                                                                                                           | 7 5                                              | .7           | 54         | <b>1</b>      |             |             | 3.8                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
| Released by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SHIPMENT RELEASE (client use)                                                 |                                       | INITIALISHIPMENT                                                | RECEPTION (AL            | S use only)                                      | ist<br>West                                                                                                                                                   |                                                  | . A          | - th<br>   | FIN           | AL SHIF     | MENT        | RECEP                                        | TION (AI     | LS use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | only)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                              |
| Released by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               | Time 31 Received by                   |                                                                 | Date:                    | 귀의                                               | Time:<br>14-3                                                                                                                                                 | Rece                                             | ived by:     | :          |               | M           | Date        | 17                                           | mi           | <del></del> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y Jakesia   | 739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                  |                              |
| REFER TO BACK PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGE FORALS LOCATIONS AND SAMPLING INFORMATION                                 |                                       | WHIT                                                            | TE - LABORATORY          | COPY YELLOV                                      | - CLIENT                                                                                                                                                      |                                                  |              | ***        |               | 2020(45)    |             | <del> </del>                                 | <del></del>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AUG 20:            | 20 FRONT                     |



Grounded Engineering Inc ATTN: Jeremy Bobro 12 Banigan Drive Toronto On M4H1E9

Date Received: 09-JUN-21

Report Date: 11-JUN-21 09:52 (MT)

Version: FINAL

Client Phone: 647-264-7953

# **Certificate of Analysis**

Lab Work Order #: L2598832

Project P.O. #: NOT SUBMITTED

Job Reference: 21-067

C of C Numbers: Legal Site Desc:

Jennifer Barkshire-Paterson Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





### **ANALYTICAL REPORT**

L2598832 CONT'D.... Job Reference: 21-067 PAGE 2 of 4 11-JUN-21 09:52 (MT)

### **Summary of Guideline Exceedances**

| Guideline |           |          |         |        |                 |      |
|-----------|-----------|----------|---------|--------|-----------------|------|
| ALS ID    | Client ID | Grouping | Analyte | Result | Guideline Limit | Unit |

Ontario Regulation 153/04 - April 15, 2011 Standards - T8-Ground Water - All Types of Property Use (No parameter exceedances)



### **ANALYTICAL REPORT**

L2598832 CONT'D.... Job Reference: 21-067 PAGE 3 of 4 11-JUN-21 09:52 (MT)

### **Polycyclic Aromatic Hydrocarbons - WATER**

|                             |      | Sample                |        | L2598832-1<br>09-JUN-21 | L2598832-2<br>09-JUN-21 |
|-----------------------------|------|-----------------------|--------|-------------------------|-------------------------|
|                             |      | Sam                   | ple ID | BH 103                  | DUP 1                   |
| Analyte                     | Unit | Guide Limits<br>#1 #2 |        |                         |                         |
| Acenaphthene                | ug/L | 4.1                   | -      | <0.020                  | <0.020                  |
| Acenaphthylene              | ug/L | 1                     | -      | <0.020                  | <0.020                  |
| Anthracene                  | ug/L | 1                     | -      | <0.020                  | <0.020                  |
| Benzo(a)anthracene          | ug/L | 1                     | -      | <0.020                  | <0.020                  |
| Benzo(a)pyrene              | ug/L | 0.01                  | -      | <0.010                  | <0.010                  |
| Benzo(b&j)fluoranthene      | ug/L | 0.1                   | -      | <0.020                  | <0.020                  |
| Benzo(g,h,i)perylene        | ug/L | 0.2                   | -      | <0.020                  | <0.020                  |
| Benzo(k)fluoranthene        | ug/L | 0.1                   | -      | <0.020                  | <0.020                  |
| Chrysene                    | ug/L | 0.1                   | -      | <0.020                  | <0.020                  |
| Dibenz(a,h)anthracene       | ug/L | 0.2                   | -      | <0.020                  | <0.020                  |
| Fluoranthene                | ug/L | 0.41                  | -      | <0.020                  | <0.020                  |
| Fluorene                    | ug/L | 120                   | -      | <0.020                  | <0.020                  |
| ndeno(1,2,3-cd)pyrene       | ug/L | 0.2                   | -      | <0.020                  | <0.020                  |
| 1+2-Methylnaphthalenes      | ug/L | 3.2                   | -      | <0.028                  | <0.028                  |
| 1-Methylnaphthalene         | ug/L | 3.2                   | -      | <0.020                  | <0.020                  |
| 2-Methylnaphthalene         | ug/L | 3.2                   | -      | <0.020                  | <0.020                  |
| Naphthalene                 | ug/L | 11                    | -      | <0.050                  | <0.050                  |
| Phenanthrene                | ug/L | 1                     | -      | <0.020                  | <0.020                  |
| Pyrene                      | ug/L | 4.1                   | -      | <0.020                  | <0.020                  |
| Surrogate: Chrysene d12     | %    | -                     | -      | 95.9                    | 92.4                    |
| Surrogate: Naphthalene d8   | %    | -                     | -      | 96.7                    | 96.3                    |
| Surrogate: Phenanthrene d10 | %    | -                     | -      | 98.1                    | 98.1                    |

Guide Limit #1: T8-Ground Water - All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

#### **Reference Information**

L2598832 CONT'D....
Job Reference: 21-067
PAGE 4 of 4
11-JUN-21 09:52 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

METHYLNAPS-CALC-WT Water PAH-Calculated Parameters SW846 8270

PAH-511-WT Water PAH-O. Reg 153/04 (July 2011) SW846 3510/8270

Aqueous samples, fortified with surrogates, are extracted using liquid/liquid extraction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.



Workorder: L2598832 Report Date: 11-JUN-21 Page 1 of 3

Client: Grounded Engineering Inc

12 Banigan Drive Toronto On M4H1E9

Contact: Jeremy Bobro

| Test                             | Matrix           | Reference           | Result        | Qualifier         | Units              | RPD              | Limit        | Analyzed  |
|----------------------------------|------------------|---------------------|---------------|-------------------|--------------------|------------------|--------------|-----------|
| PAH-511-WT                       | Water            |                     |               |                   |                    |                  |              |           |
| Batch R5483380                   |                  |                     |               |                   |                    |                  |              |           |
| WG3551733-2 LCS                  |                  |                     | 440.0         |                   | 0/                 |                  |              |           |
| 1-Methylnaphthalene              |                  |                     | 118.3<br>88.5 |                   | %                  |                  | 50-140       | 10-JUN-21 |
| 2-Methylnaphthalene              |                  |                     | 88.5<br>104.1 |                   |                    |                  | 50-140       | 10-JUN-21 |
| Acenaphthylana                   |                  |                     | 98.2          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Acenaphthylene                   |                  |                     |               |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Anthracene                       |                  |                     | 60.3          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Benzo(a)anthracene               |                  |                     | 113.1         |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Benzo(a)pyrene                   |                  |                     | 89.6          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Benzo(b&j)fluoranthene           |                  |                     | 62.8          | 2200              | %                  |                  | 50-140       | 10-JUN-21 |
| Benzo(g,h,i)perylene             |                  |                     | 47.8          | RRQC              | %                  |                  | 50-140       | 10-JUN-21 |
| Benzo(k)fluoranthene             |                  |                     | 58.1          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Chrysene                         |                  |                     | 78.1          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Dibenz(a,h)anthracene            |                  |                     | 83.0          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Fluoranthene                     |                  |                     | 100.6         |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Fluorene                         |                  |                     | 97.6          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Indeno(1,2,3-cd)pyrene           |                  |                     | 109.3         |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Naphthalene                      |                  |                     | 98.9          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Phenanthrene                     |                  |                     | 61.6          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| Pyrene                           |                  |                     | 88.5          |                   | %                  |                  | 50-140       | 10-JUN-21 |
| COMMENTS: RRQC<br>WG3551733-1 MB | : Recovery is be | elow ALS control li | mits. Repor   | ted non-detect re | esults for associa | ted samples have | not been aff | ected.    |
| 1-Methylnaphthalene              |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| 2-Methylnaphthalene              |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Acenaphthene                     |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Acenaphthylene                   |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Anthracene                       |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Benzo(a)anthracene               |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Benzo(a)pyrene                   |                  |                     | <0.010        |                   | ug/L               |                  | 0.01         | 10-JUN-21 |
| Benzo(b&j)fluoranthene           |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Benzo(g,h,i)perylene             |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Benzo(k)fluoranthene             |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Chrysene                         |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Dibenz(a,h)anthracene            |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Fluoranthene                     |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |
| Fluorene                         |                  |                     | <0.020        |                   | ug/L               |                  | 0.02         | 10-JUN-21 |



Workorder: L2598832 Report Date: 11-JUN-21 Page 2 of 3

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Contact: Jeremy Bobro

| Test                            | Matrix  | Reference | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------|---------|-----------|---------|-----------|-------|-----|--------|-----------|
| PAH-511-WT                      | Water   |           |         |           |       |     |        |           |
| Batch R548338<br>WG3551733-1 MB |         |           |         |           |       |     |        |           |
| Indeno(1,2,3-cd)pyren           | е       |           | <0.020  |           | ug/L  |     | 0.02   | 10-JUN-21 |
| Naphthalene                     |         |           | < 0.050 |           | ug/L  |     | 0.05   | 10-JUN-21 |
| Phenanthrene                    |         |           | <0.020  |           | ug/L  |     | 0.02   | 10-JUN-21 |
| Pyrene                          |         |           | <0.020  |           | ug/L  |     | 0.02   | 10-JUN-21 |
| Surrogate: Naphthaler           | ne d8   |           | 88.2    |           | %     |     | 60-140 | 10-JUN-21 |
| Surrogate: Phenanthre           | ene d10 |           | 111.4   |           | %     |     | 60-140 | 10-JUN-21 |
| Surrogate: Chrysene of          | 112     |           | 139.4   |           | %     |     | 50-150 | 10-JUN-21 |
|                                 |         |           |         |           |       |     |        |           |

Page 3 of 3

Workorder: L2598832 Report Date: 11-JUN-21

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Contact: Jeremy Bobro

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

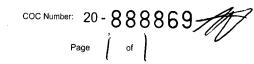
MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

#### **Sample Parameter Qualifier Definitions:**

| Qualifier | Description                                                       |
|-----------|-------------------------------------------------------------------|
| RRQC      | Refer to report remarks for information regarding this QC result. |

#### **Hold Time Exceedances:**


All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.







www.alsglobal.com

| Report To         | Contact and company name below will appe     | ear on the final report |                     | Panarta / I                                      | Paginiants.              |                                       |                                                  | <u>:</u>       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              | 201        |                  |                | <del>, ,</del>     |
|-------------------|----------------------------------------------|-------------------------|---------------------|--------------------------------------------------|--------------------------|---------------------------------------|--------------------------------------------------|----------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------|----------------|-------------|--------------|------------|------------------|----------------|--------------------|
| Сотрапу:          | Grounded engine                              |                         | Select Report Fo    | Reports / I                                      | <del></del>              | O (DIGITAL)                           | ╁                                                |                |                                  | ound Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>`</del>    | <del>`                                     </del> |                | 4           | \$7. 7. July | Şur.       | 5.04 A. A.       |                |                    |
| Contact:          | Stotro D. ground                             | 8 1 0 2 0 C4            |                     | Reports with COA                                 |                          |                                       |                                                  |                | if received b                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            |                  | 100            |                    |
| Phone:            | Vo Chelle of Inches                          | 2 220 (0)               |                     | ults to Criteria on Report -                     |                          |                                       |                                                  |                | if received by<br>if received b  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                | <b>1</b>    | FFIX ALS     | BARCOL     | )F i AR          | EL HE          | RF                 |
|                   | Cheff and will appear on the fina            | report                  | Select Distribution |                                                  | provide details below if |                                       |                                                  |                | if received b                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              | (ALS use   |                  |                | 7.1                |
| Street:           | 12 Benigan Lo                                |                         |                     |                                                  |                          |                                       |                                                  |                | f received by                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                | 44.34       |              | Appendi    | Strain Commencer |                |                    |
| City/Province:    | toronto pa                                   |                         | Email 1 or Fax      | 1606000                                          | giou                     | oco cong                              | <b>†</b> □ s                                     | iame day (E    | [2] if received<br>orush request | d by 10am N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I-S - 200% r    | ush surcharge                                     | . Additional   | fees        |              |            | 200              |                |                    |
| Postal Code:      | MHHIEA                                       |                         | Email 3             | 010 27 1 3                                       |                          |                                       | ╁                                                |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | nonuays and                                       | HOIPFOULTIE    | tests       | * N. j.      |            | <u>.14.1</u>     | 2.55           | 1.00               |
| Invoice To        | Same as Report To                            | 7 NO                    | Lillain 3 Kip       | Chette                                           | acinionto                | tel en                                | 46                                               | Date and       | i Time Requ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            |                  |                |                    |
|                   | Copy of Invoice with Report                  |                         | Select Invoice D    | istribution:                                     | MAIL MAIL                |                                       | ┢                                                |                | F                                | or all tests w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | th rush TATs    | requested, p                                      |                |             | confirm ava  | ilability. |                  |                |                    |
| Company:          |                                              |                         | Email 1 or Fax      | istribution Er                                   | TAIL   THAIL             | FAX                                   | G                                                |                | 1 P .                            | . ===                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                                                   | s Reques       |             |              |            |                  |                |                    |
| Contact:          |                                              |                         | Email 2             |                                                  | ····                     | · · · · · · · · · · · · · · · · · · · | 18                                               | $\vdash$       | moice                            | ate Filtered (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F), Preserve    | d (P) or Filte                                    | red and Pre    | served (F/P | ) below      |            | 1 1              |                | tes)               |
|                   | Project Information                          |                         |                     | Oil and Gas Require                              | d Fields (client us      | se)                                   | CONTAINERS                                       | $\vdash$       |                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | -+                                                | ++             |             | +            | -          | 1 1              | REQUIRED       | 2                  |
| ALS Account #     |                                              |                         | AFE/Cost Center:    |                                                  | PO#                      |                                       | ₹                                                |                | - 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i l             |                                                   | 1              |             |              |            | اما              | E E            | see                |
| Job#: 2/ -        | -067                                         |                         | Major/Minor Code:   |                                                  | Routing Code:            | <del></del>                           | Ž                                                |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | i                                                 |                |             |              |            | HOLD             |                | ۵                  |
| PO / AFE:         |                                              |                         | Requisitioner:      | ·                                                | Trouting Godo:           |                                       | 18                                               |                |                                  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1             |                                                   | 1 1            |             |              | 1          | <del>Ĭ</del>     | AG             | AR                 |
| LSD:              |                                              |                         | Location:           |                                                  | j                        |                                       | P<br>P                                           |                | - 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   | 1 1            |             |              | İ          | NO<br>O          | STORAGE        | HAZARD (see notes) |
| ALS Lab Wor       | k Order# (ALS use only): 1259                | 0001                    | ALS Contact:        |                                                  | Sampler:                 |                                       | NUMBER (                                         |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            | SAMPLES          | NDED ST        | SUSPECTED !        |
| ALS Sample #      | Sample Identification                        | and/or Coordinates      |                     | Date                                             | Time                     | <u> </u>                              | ₩.                                               | #              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            | <u>=</u>         | 밁              | ျှမှု              |
| (ALS use conly)   | (This description will a                     |                         |                     | (dd-mmm-yy)                                      | (hh:mm)                  | Sample Type                           | ΙŞ                                               | PA             | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            | [ ]              |                | S                  |
|                   | BH 103                                       | PF Tan Sit Bio Topolity |                     | (3) 11LP                                         | 10:00                    | OW                                    | 15                                               | Z              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                                                   | -              | _           |              |            | S                | ш              | ေ                  |
| J.                | 14.01                                        |                         |                     | 0/10/1                                           | 1000                     |                                       | 5                                                |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            | $\sqcup$         | $\sqcup$       |                    |
|                   | 1 4 4 p                                      |                         |                     | 9 544                                            | 10:00                    | 6W                                    | 1,5                                              | X              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            |                  | Ш              |                    |
|                   |                                              |                         |                     |                                                  |                          |                                       | <u> </u>                                         |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            | 1 1              | 1              | ı J                |
|                   |                                              |                         |                     |                                                  |                          |                                       |                                                  |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            |                  |                |                    |
| 1 2 3             |                                              |                         | ,                   |                                                  |                          |                                       |                                                  |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   | 1              |             |              |            |                  | $\Box$         |                    |
|                   | -                                            |                         |                     |                                                  |                          |                                       | <del>                                     </del> | <del>   </del> |                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +               |                                                   | ╂              | _           | ╁            |            | $\vdash$         | ├─┤            |                    |
|                   |                                              |                         |                     | <del>                                     </del> |                          |                                       | ├                                                | -              |                                  | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +               |                                                   |                |             | <u> </u>     |            | $\vdash$         | $\vdash$       |                    |
|                   |                                              |                         |                     |                                                  |                          |                                       |                                                  |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1             |                                                   | 1              |             |              |            |                  |                |                    |
| 25.9              |                                              |                         |                     |                                                  |                          |                                       | <u> </u>                                         |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              | _          |                  | Ш              |                    |
| 1/4               |                                              |                         |                     |                                                  |                          |                                       |                                                  |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            | 1 1              | ıl             |                    |
| 12.               |                                              |                         |                     |                                                  |                          |                                       |                                                  |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   |                |             |              |            |                  |                |                    |
| 12.540            |                                              |                         |                     |                                                  |                          |                                       |                                                  |                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                   | <del>  -</del> | <del></del> |              | +          | $\vdash$         | -1             | _                  |
| 47.4              |                                              |                         |                     |                                                  |                          | ļ                                     | <del>                                     </del> | <del>-  </del> |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +-+             | +                                                 | +              | -           |              |            | $\vdash$         | <del>-  </del> |                    |
| Drinking          | Water (DW) Samples <sup>1</sup> (client use) | Notes / Specify I       | Limits for result e | valuation by selecting                           | g from drop-down b       | elow                                  | 18/19/2                                          | · 走江 @         | <u> </u>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ECEIPT D                                          | ETAILS (       | ALS use     | only) 🐧      | <u> </u>   | 70.00            |                | E / 2              |
| Are samples taken | from a Regulated DW System?                  | , #1 0                  |                     | xcel COC only)                                   | <u></u>                  |                                       |                                                  | ng Metho       |                                  | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the same of | ☐ ICE PK                                          |                | FROZEN      |              | COOLING    | INITIA           | JED_           |                    |
|                   | NO NO                                        | Table 8                 | 100                 | CT                                               |                          |                                       | 100                                              |                | omments                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on Sample       | e Receipt                                         | Notification   | io:         |              | s 🗆        | NO               |                |                    |
|                   | ıman consumption/ use?                       | . •                     |                     |                                                  |                          |                                       | Coole                                            | The second     | ly Seals In                      | The Land Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of t | ☐ YES           |                                                   | Sample         | Custody     |              |            | ☐ YES            |                | N/A                |
|                   | i                                            |                         |                     |                                                  |                          |                                       | ~                                                | NII            | TIAL COOLE                       | K TEMPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATURES °C       |                                                   | l ar           | FINAL       | COOLER       | EMPERAT    | JRES °C          | —              |                    |
|                   | SHIPMENT RELEASE (client use)                |                         | 58.00               | DIFIAL CUIDATES                                  | DECENTAL -               |                                       | 3                                                | 1              | 366                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 19            | ***                                               |                |             | 14 - 3       |            |                  | كينشيا         | 4                  |
| Released by:      | Date:                                        | Timeia I                | Received by:        | INPTIAL SHIPMENT                                 | Date: A                  | p use only)                           | Time:                                            |                | teceived b                       | المم ي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FINAL           | SHIPMEN<br>Date                                   |                | TION (AI    | S use o      | nly)       | 17.2             |                | -                  |
| /                 | VI VV J JUI                                  | ~ 19 1 WYA              | 7.51                | Saram                                            | 6/4/                     | 2021                                  | 6                                                |                | eserved b                        | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | J Dall                                            | 6/0            | <b>火/a</b>  | 1            |            | Time:            | :57            | <b>s</b> 1         |
| CEFER TO BACK P   | AGE FOR ALS LOCATIONS AND SAMPLING INFO      | DRMATION                |                     | WHIT                                             | E - LABORATORY           | COPY VELLOV                           |                                                  | NT COP         | Y                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AVENUE .        |                                                   |                | 1000        |              |            |                  | AUG 200        | 28 FRONT           |



Grounded Engineering Inc
ATTN: KIMBERLY PICKETT

12 Banigan Drive Toronto On M4H1E9 Date Received: 14-JUN-21

Report Date: 16-JUN-21 13:44 (MT)

Version: FINAL

Client Phone: 647-264-7928

# **Certificate of Analysis**

Lab Work Order #: L2600820

Project P.O. #: NOT SUBMITTED

Job Reference: 21-067

C of C Numbers: 20-888395

Legal Site Desc: 60 DUNDAS ST E, MISSISSAUGA

Jennifer Barkshire-Paterson Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





### **ANALYTICAL REPORT**

L2600820 CONT'D.... Job Reference: 21-067 PAGE 2 of 4 16-JUN-21 13:44 (MT)

### **Summary of Guideline Exceedances**

| Guideline |           |          |         |        |                 |      |
|-----------|-----------|----------|---------|--------|-----------------|------|
| ALS ID    | Client ID | Grouping | Analyte | Result | Guideline Limit | Unit |

Ontario Regulation 153/04 - April 15, 2011 Standards - T8-Ground Water - All Types of Property Use (No parameter exceedances)



### **ANALYTICAL REPORT**

L2600820 CONT'D.... Job Reference: 21-067 PAGE 3 of 4 16-JUN-21 13:44 (MT)

### **Polycyclic Aromatic Hydrocarbons - WATER**

|                             |      | Sample    | Lab ID<br>e Date<br>ple ID | L2600820-1<br>14-JUN-21<br>BH103 | L2600820-2<br>14-JUN-21<br>DUP |
|-----------------------------|------|-----------|----------------------------|----------------------------------|--------------------------------|
| Analyte                     | Unit | Guide Lim |                            | Billioo                          | 201                            |
| Acenaphthene                | ug/L | 4.1       |                            | <0.020                           | <0.020                         |
| Acenaphthylene              | ug/L | 1         | -                          | <0.020                           | <0.020                         |
| Anthracene                  | ug/L | 1         | -                          | <0.020                           | <0.020                         |
| Benzo(a)anthracene          | ug/L | 1         | -                          | <0.020                           | <0.020                         |
| Benzo(a)pyrene              | ug/L | 0.01      | -                          | <0.010                           | <0.010                         |
| Benzo(b&j)fluoranthene      | ug/L | 0.1       | -                          | <0.020                           | <0.020                         |
| Benzo(g,h,i)perylene        | ug/L | 0.2       | -                          | <0.020                           | <0.020                         |
| Benzo(k)fluoranthene        | ug/L | 0.1       | -                          | <0.020                           | <0.020                         |
| Chrysene                    | ug/L | 0.1       | -                          | <0.020                           | <0.020                         |
| Dibenz(a,h)anthracene       | ug/L | 0.2       | -                          | <0.020                           | <0.020                         |
| Fluoranthene                | ug/L | 0.41      | -                          | <0.020                           | <0.020                         |
| Fluorene                    | ug/L | 120       | -                          | <0.020                           | <0.020                         |
| Indeno(1,2,3-cd)pyrene      | ug/L | 0.2       | -                          | <0.020                           | <0.020                         |
| 1+2-Methylnaphthalenes      | ug/L | 3.2       | -                          | <0.028                           | <0.028                         |
| 1-Methylnaphthalene         | ug/L | 3.2       | -                          | <0.020                           | <0.020                         |
| 2-Methylnaphthalene         | ug/L | 3.2       | -                          | <0.020                           | < 0.020                        |
| Naphthalene                 | ug/L | 11        | -                          | <0.050                           | <0.050                         |
| Phenanthrene                | ug/L | 1         | -                          | <0.020                           | <0.020                         |
| Pyrene                      | ug/L | 4.1       | -                          | <0.020                           | <0.020                         |
| Surrogate: Chrysene d12     | %    | -         | -                          | 93.3                             | 94.3                           |
| Surrogate: Naphthalene d8   | %    | -         | -                          | 98.9                             | 98.2                           |
| Surrogate: Phenanthrene d10 | %    | -         | -                          | 100.3                            | 100.2                          |

Guide Limit #1: T8-Ground Water - All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

#### **Reference Information**

L2600820 CONT'D....
Job Reference: 21-067
PAGE 4 of 4
16-JUN-21 13:44 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

METHYLNAPS-CALC-WT Water PAH-Calculated Parameters SW846 8270

PAH-511-WT Water PAH-O. Reg 153/04 (July 2011) SW846 3510/8270

Aqueous samples, fortified with surrogates, are extracted using liquid/liquid extraction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

20-888395

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.



Report Date: 16-JUN-21 Workorder: L2600820 Page 1 of 3

Grounded Engineering Inc Client:

12 Banigan Drive Toronto On M4H1E9

Contact: KIMBERLY PICKETT

| Test                                    | Matrix | Reference | Result       | Qualifier | Units | RPD | Limit  | Analyzed      |
|-----------------------------------------|--------|-----------|--------------|-----------|-------|-----|--------|---------------|
| PAH-511-WT                              | Water  |           |              |           |       |     |        |               |
| Batch R5490724                          |        |           |              |           |       |     |        |               |
| WG3554850-2 LCS                         |        |           | 04.7         |           | %     |     | 50.440 |               |
| 1-Methylnaphthalene                     |        |           | 91.7<br>89.2 |           | %     |     | 50-140 | 15-JUN-21     |
| 2-Methylnaphthalene                     |        |           |              |           |       |     | 50-140 | 15-JUN-21     |
| Acenaphthene                            |        |           | 94.4         |           | %     |     | 50-140 | 15-JUN-21     |
| Acenaphthylene                          |        |           | 94.5         |           |       |     | 50-140 | 15-JUN-21     |
| Anthracene                              |        |           | 94.2         |           | %     |     | 50-140 | 15-JUN-21     |
| Benzo(a)anthracene                      |        |           | 108.0        |           | %     |     | 50-140 | 15-JUN-21     |
| Benzo(a)pyrene                          |        |           | 85.2         |           | %     |     | 50-140 | 15-JUN-21     |
| Benzo(b&j)fluoranthene                  |        |           | 87.5         |           | %     |     | 50-140 | 15-JUN-21     |
| Benzo(g,h,i)perylene                    |        |           | 108.1        |           | %     |     | 50-140 | 15-JUN-21     |
| Benzo(k)fluoranthene                    |        |           | 91.3         |           | %     |     | 50-140 | 15-JUN-21     |
| Chrysene                                |        |           | 102.5        |           | %     |     | 50-140 | 15-JUN-21     |
| Dibenz(a,h)anthracene                   |        |           | 107.7        |           | %     |     | 50-140 | 15-JUN-21     |
| Fluoranthene                            |        |           | 106.0        |           | %     |     | 50-140 | 15-JUN-21     |
| Fluorene                                |        |           | 102.5        |           | %     |     | 50-140 | 15-JUN-21     |
| Indeno(1,2,3-cd)pyrene                  |        |           | 124.6        |           | %     |     | 50-140 | 15-JUN-21     |
| Naphthalene                             |        |           | 89.2         |           | %     |     | 50-140 | 15-JUN-21     |
| Phenanthrene                            |        |           | 107.4        |           | %     |     | 50-140 | 15-JUN-21     |
| Pyrene                                  |        |           | 105.4        |           | %     |     | 50-140 | 15-JUN-21     |
| WG3554850-1 MB<br>1-Methylnaphthalene   |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| 2-Methylnaphthalene                     |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Acenaphthene                            |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Acenaphthylene                          |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Anthracene                              |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Benzo(a)anthracene                      |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Benzo(a)pyrene                          |        |           | <0.010       |           | ug/L  |     | 0.01   | 15-JUN-21     |
| Benzo(b&j)fluoranthene                  |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Benzo(g,h,i)perylene                    |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Benzo(k)fluoranthene                    |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Chrysene                                |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Dibenz(a,h)anthracene                   |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Fluoranthene                            |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Fluorene                                |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| Indeno(1,2,3-cd)pyrene                  |        |           | <0.020       |           | ug/L  |     | 0.02   | 15-JUN-21     |
| , , , , , , , , , , , , , , , , , , , , |        |           |              |           | J     |     |        | ·- <u>-</u> · |



Workorder: L2600820 Report Date: 16-JUN-21 Page 2 of 3

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Contact: KIMBERLY PICKETT

| Test                       | Matrix    | Reference | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------------|-----------|-----------|---------|-----------|-------|-----|--------|-----------|
| PAH-511-WT                 | Water     |           |         |           |       |     |        |           |
| Batch R5490 WG3554850-1 MI |           |           |         |           |       |     |        |           |
| Naphthalene                |           |           | < 0.050 |           | ug/L  |     | 0.05   | 15-JUN-21 |
| Phenanthrene               |           |           | <0.020  |           | ug/L  |     | 0.02   | 15-JUN-21 |
| Pyrene                     |           |           | <0.020  |           | ug/L  |     | 0.02   | 15-JUN-21 |
| Surrogate: Naphtha         | lene d8   |           | 107.2   |           | %     |     | 60-140 | 15-JUN-21 |
| Surrogate: Phenant         | hrene d10 |           | 109.4   |           | %     |     | 60-140 | 15-JUN-21 |
| Surrogate: Chrysen         | e d12     |           | 99.8    |           | %     |     | 50-150 | 15-JUN-21 |
|                            |           |           |         |           |       |     |        |           |

Page 3 of 3

Workorder: L2600820 Report Date: 16-JUN-21

Client: Grounded Engineering Inc

12 Banigan Drive

Toronto On M4H1E9

Contact: KIMBERLY PICKETT

#### Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

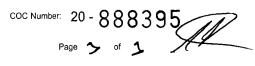
MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

#### **Hold Time Exceedances:**


All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.







www.alsglobal.com

| Report To                                      | Contact and company name below will appe      | ar on the final report                          | 1                                      | respons / h                                      | kecipients              |              | T            |                                                                                                                               | Turnarou                               | ınd Time (      | TAT) Req     | uested        |                                                  | 375        |                |             | -               | S. 3077              |  |
|------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|--------------|---------------|--------------------------------------------------|------------|----------------|-------------|-----------------|----------------------|--|
| Company:                                       | Groundled Engineering                         | Select Report Format: PDF DEXCEL DEDD (DIGITAL) |                                        |                                                  |                         |              |              | Routine [R] if received by 3pm M-F - no surcharges apply                                                                      |                                        |                 |              |               |                                                  |            |                |             |                 |                      |  |
| Contact:                                       | Kimberley Picket                              |                                                 |                                        |                                                  |                         |              | 1-           | 4 day [P4] if received by 3pm M-F- 20% rush surcharge minimum                                                                 |                                        |                 |              |               |                                                  |            |                |             |                 |                      |  |
| Phone:                                         |                                               |                                                 |                                        | ults to Criteria on Report - p                   |                         |              |              |                                                                                                                               |                                        |                 |              |               |                                                  | A          | FIX ALS        |             |                 | IL HERE              |  |
|                                                | Company address below will appear on the fina | l report                                        | Select Distribution: MAIL   MAIL   FAX |                                                  |                         |              |              | 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum |                                        |                 |              |               |                                                  |            | (ALS use only) |             |                 |                      |  |
| Street:                                        | 12 Bangan Dr                                  |                                                 |                                        | KPICKETT                                         |                         |              | <b>A</b> I — |                                                                                                                               | if received by 3p                      |                 |              |               |                                                  |            |                |             |                 | Line I               |  |
| City/Province:                                 | TOCONTO, ON                                   |                                                 | Email 1 or Fax                         | Friondit                                         | <u> </u>                | <u></u>      |              |                                                                                                                               | E2] if received to<br>to rush requests |                 |              |               |                                                  |            |                |             |                 |                      |  |
| Postal Code:                                   | M4H 1E19                                      |                                                 | Email 3                                |                                                  |                         |              |              | Date and Time Required for all E&P TATs:                                                                                      |                                        |                 |              |               |                                                  |            |                |             |                 |                      |  |
| Invoice To                                     | Same as Report To                             | 7 NO                                            |                                        | Invoice R                                        | ecipients               |              | +            |                                                                                                                               | For                                    | all tests with  | rush TATs    | requested, pl | ease contact                                     | your AM to | onfirm availa  | ability.    |                 |                      |  |
|                                                | Copy of Invoice with Report YES               |                                                 | Select Invoice D                       |                                                  | MAIL MAIL               | 1 FAX        | +            |                                                                                                                               |                                        |                 |              | Analysi       | s Reques                                         | <u> </u>   |                |             |                 |                      |  |
| Company:                                       |                                               |                                                 | Email 1 or Fax                         |                                                  |                         |              | S            |                                                                                                                               | Indicate                               | Filtered (F     | ), Preserved |               | red and Pres                                     |            | (F/P) below    |             |                 |                      |  |
| Contact:                                       |                                               |                                                 | Email 2                                |                                                  |                         |              | 出            |                                                                                                                               |                                        |                 | T            |               |                                                  | 1          |                |             |                 | UIRED                |  |
|                                                | Project Information                           |                                                 |                                        | Oil and Gas Require                              | d Fields (client us     | se)          | 7 3          |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             | i _ l           | 8   '                |  |
| ALS Account #                                  | Quote #:                                      |                                                 | AFE/Cost Center:                       |                                                  | PO#                     |              | 7≧           |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             |                 | 2   2                |  |
|                                                | 1-067                                         |                                                 | Major/Minor Code:                      |                                                  | Routing Code:           |              | CONTAINERS   |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             | 우               | 9 6                  |  |
| PO / AFE:                                      |                                               | ŊΩ                                              | Requisitioner:                         |                                                  | -                       |              |              |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             | ON HOLD         | STORAGE REQUIRED     |  |
| LSD: 60 D                                      | A WKUM , 3 TZ ZACHU                           | JCH AP                                          | Location:                              |                                                  |                         |              | ∣ଜ           |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             | 0               | STO                  |  |
| ALS Lab Work Order # (ALS use only): / 2600826 |                                               | 0826                                            | ALS Contact:                           |                                                  | Sampler: Land to hosten |              | NUMBER       | H H                                                                                                                           |                                        |                 |              |               |                                                  |            |                |             | SAMPLES         | EXTENDED STORAGE REQ |  |
| ALS Sample #                                   | Sample Identification                         | and/or Coordinates                              | <del></del>                            | Date                                             | Time                    | I            | ٦Ē           | 2                                                                                                                             |                                        |                 |              |               |                                                  |            |                |             | Ş               |                      |  |
| (ALS use only)                                 | (This description will a                      | appear on the report)                           |                                        | (dd-mmm-yy)                                      | (hh:mm)                 | Sample Type  | ' ź          |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             | S/S             |                      |  |
|                                                | BH103                                         |                                                 |                                        | 14-JUN-21                                        | 11:00                   | 6W           | 2            | 7                                                                                                                             |                                        |                 |              |               |                                                  |            |                | T           | $\Box$          |                      |  |
|                                                | DU.                                           |                                                 |                                        | 14-504-21                                        | 11:00                   | 6W           | 12           | ノ                                                                                                                             |                                        |                 |              |               | <del>                                     </del> |            |                |             |                 |                      |  |
|                                                |                                               |                                                 |                                        | 1                                                |                         | †            |              |                                                                                                                               |                                        |                 | 1 1          |               | <del>                                     </del> |            |                |             |                 |                      |  |
| 1                                              |                                               |                                                 |                                        | <del>                                     </del> |                         |              | +            |                                                                                                                               | ++                                     |                 | + +          |               |                                                  |            |                | +           |                 |                      |  |
|                                                |                                               |                                                 |                                        |                                                  |                         |              | +            | ++                                                                                                                            |                                        |                 | +            |               | +                                                |            |                | +           | $\vdash$        |                      |  |
|                                                |                                               |                                                 |                                        | +                                                | <del> </del>            | <b> </b>     | +            | +                                                                                                                             |                                        |                 | +            | -             |                                                  |            |                | +           | $\vdash$        |                      |  |
|                                                | 1750                                          | •••                                             | •                                      |                                                  |                         | ļ            |              | 1                                                                                                                             | _                                      |                 | +-+          |               | 1                                                |            |                | <del></del> | $\vdash \vdash$ | <b></b> -            |  |
| - 1                                            |                                               |                                                 |                                        |                                                  |                         |              |              |                                                                                                                               |                                        |                 | 11           |               | ļļ.                                              |            |                |             | $\sqcup$        | $\vdash$             |  |
| 4.4                                            |                                               |                                                 |                                        |                                                  |                         |              |              |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             | Ш               |                      |  |
|                                                |                                               |                                                 |                                        |                                                  |                         |              |              |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             | 1 1             |                      |  |
|                                                |                                               |                                                 |                                        |                                                  |                         |              |              |                                                                                                                               |                                        |                 |              |               |                                                  |            |                |             |                 |                      |  |
|                                                |                                               |                                                 |                                        |                                                  |                         |              | 1            |                                                                                                                               |                                        |                 | 1 1          |               |                                                  |            |                | 1           | $\Box$          | $\Box$               |  |
|                                                |                                               |                                                 |                                        |                                                  |                         |              | +            |                                                                                                                               |                                        |                 | + +          |               | 1                                                | +          | <del> </del>   | _           |                 |                      |  |
|                                                | , -                                           | Notes / Specif                                  | h I imits for result                   | evaluation by selectin                           | a from dron-down        | helow        | 10.00        |                                                                                                                               |                                        | ∠ SA            | MPLE RI      | CEIPT D       | ETAILS (                                         | ALS use    | oniv)          | <del></del> |                 |                      |  |
| Drinking                                       | g Water (DW) Samples¹ (client use)            | Notes / Opecin                                  |                                        | Excel COC only)                                  | g iroin arop-aown       | Delow        | Coo          | ling Met                                                                                                                      | nod:                                   |                 |              |               | cks 🖂                                            | 7.74       |                | COOLING     | INITIA          | TED.                 |  |
| Are samples taker                              | n from a Regulated DW System?                 | ۸ . ۱۲                                          | 2 J au                                 | ۱ ما ام ۱                                        | colle                   |              | Sub          | mission                                                                                                                       | Comments in                            |                 |              |               |                                                  | -          | ☐ YES          |             | NO              | 1                    |  |
| ☐ YE                                           | s □ NO                                        | 0.1cg. 15                                       | 1 01                                   | TASIE 8,                                         | (10(20                  |              | -            | 150,000                                                                                                                       | dy Seals Int                           | THE RESERVE     |              | □ N/A         |                                                  | 200        | Seals Inta     |             |                 | S DW                 |  |
| Are samples for h                              | uman consumption/ use?                        | textule                                         |                                        |                                                  |                         |              |              | 2.50                                                                                                                          | IITIAL COOLEI                          | Charles Co. Co. |              |               |                                                  |            | COOLER TE      |             |                 |                      |  |
| ☐ YE                                           | s 🗆 NO                                        |                                                 |                                        |                                                  | _                       |              |              | 9.74                                                                                                                          |                                        |                 |              |               | 18.0                                             |            |                |             |                 |                      |  |
|                                                | SHIPMENT RELEASE (client use)                 |                                                 |                                        | INITIAL SHIPMEN                                  | TRECEPTION (A           | LS use only) |              | 7                                                                                                                             | N.                                     |                 | FINAL        | SHIPMEN       | TRECEP                                           | TION (A    | .S use or      | ıly)        | 21.5            | 70.08                |  |
| Released by:                                   | Sten 14-06                                    | Time:                                           | Received by:                           | 4444                                             | Date: //IV              | ハハー          | Tim's        | 7د.•                                                                                                                          | Received by                            | $\sigma = 1$    | M            | Dat           | لرايا                                            | ען         |                |             | TO              | OA                   |  |
| PEFER TO BACK                                  | PAGE FOR ALS LOCATIONS AND SAMPLING INF       | -21 liam                                        |                                        | MAM                                              | TE - LABORATORY         |              |              | IENT CO                                                                                                                       | 400                                    |                 | <u>""</u>    |               | ערוע                                             |            |                |             | 1.1             | AUG 2020 F           |  |