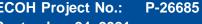


PHASE II ENVIRONMENTAL SITE ASSESSMENT

65 & 71 AGNES STREET MISSISSAUGA, ON


Prepared for: Intentional Capital 147 Liberty Street

Toronto, ON. M6K 3G3 Attention: Nauman Khalid

Prepared by:

ECOH Management Inc. 75 Courtneypark Drive West, Unit 1 Mississauga, ON L5W 0E3

ECOH Project No.: September 24, 2021

DELIVERY DETAILS

Intentional Capital

Nauman Khalid

C:

647-629-0621

Issued to:

Contact:

Issued on:	September 24, 2021
ECOH Project No.:	P-26685
Author:	lan Duncan, B.Sc. Environmental Scientist C: 647-455-0775 E: iduncan@ecoh.ca
Reviewer:	Adam Dawe, B.Sc., P.Geo., QP Senior Project Manager/RSC Lead

E: adawe@ecoh.ca

EXECUTIVE SUMMARY

ECOH Management Inc. (ECOH) was retained by Intentional Capital to conduct a Phase II Environmental Site Assessment (ESA) of the properties located at 65 & 71 Agnes Street in Mississauga, ON. (herein referred to as the Site).

It is ECOH's understanding that Intentional Capital is in the process of aquiring the Site. As such, in support of Intentional Capital's proposed acquisition of the Site and for due diligence purposes, Intentional Capital requested that ECOH conduct a Phase II ESA at the Site.

The objective of the Phase II ESA was to investigate soil and groundwater quality at the location of one previously identified area of potential environmental concern (APEC) on the Site which was identified during a Phase I ESA completed by Sirati and Partners Consultants Ltd. (Sirati) in April, 2021 (summarized in section 1.2.2, below). The APEC identified by Sirati is described as follows:

• APEC 1 – North Boundary of the Site. Area of the site potentially affected by activities at 3100 Hurontario Street. TL Kennedy Secondary School is located 60m to the northwest of the Site and is inferred to be situated in a hydraulically upgradient position from the Site. This property was identified by HWIN as a generator of wastes including inorganic laboratory chemicals, petroleum distillates, oil skimmings & sludges, waste oils & lubricants, organic laboratory chemicals, photoprocessing wastes, aliphatic solvents and halogenated pesticides. Sirati identified petroleum hydrocarbons (PHCs), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), polychlorinated biphenyls (PCBs) and metals and inorganics as potential contaminants of concern associated with this identified APEC.

Sirati recommended that a Phase II ESA be conducted at the Site in order to reduce uncertainty related to the APEC that was identified on the Site. This Phase II ESA was completed to investigate APEC-1 identified by Sirati (2021) and included the following activities:

- The Phase II ESA field activities were undertaken at the Site between September 2, 2021, and September 9, 2021 and included the advancement of one borehole which was instrumented with a groundwater monitoring well.
- One existing monitoring well was sampled as part of this Phase II ESA.
- The soil stratigraphy at the Site comprised a light brown fine sand fill layer beneath the topsoil, underlain by a native brown silty sand and grey weathered shale strata.
- There was no visual or olfactory evidence of impacts in the samples collected.
- Groundwater levels measured within the existing monitoring well and new monitoring well installed at the Site ranged between 4.27 (MW4) to 4.98 (BHMW1) mbgs.
- Based on the topographical information outlined in a Phase I ESA completed by Sirati in April 2021, the regional groundwater is inferred to be towards the southeast.
- The Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, with Parkland/Institutional/Residential Property Use and Coarse Textured Soil Conditions were selected to assess the environmental quality of soil and groundwater at the Site.

ECOH PAGE i

EXECUTIVE SUMMARY

- A total of two soil samples from the borehole advanced at APEC-1, which included one
 field duplicate soil sample, were collected and submitted to ALS Laboratories (ALS) for
 chemical analysis of PHC (F1-F4), PAHs, VOCs, PCBs, Metals & Inorganics, pH, and
 grain size. The soil analytical results indicated that concentrations for the parameters
 analyzed were below the applicable MECP Table 3 SCS in the samples analyzed.
- A total of two groundwater samples, were collected from the one new and one existing
 monitoring well at APEC-1 and were submitted to ALS for chemical analysis of PHC (F1F4), PAHs, VOCs, PCBs and Metals & Inorganics. The analytical results indicated that
 the parameters analyzed were below the applicable MECP Table 3 SCS in the samples
 analyzed.

Based on the findings of the Phase II ESA, the concentrations of the contaminants of concern analyzed in the soil and groundwater samples collected at APEC 1 were below the applicable MECP Table 3 SCS. Therefore, further investigation of APEC-1 is not recommended at this time. No additional APECs were identified on the Site by the Sirati Phase One ESA and therefore this Phase II ESA has investigated the previously identified APECs on the site and did not identify exceedances of the applicable SCS. Based on these findings, additional site investigations would not be warranted at this time.

It is recommended that the monitoring wells on-site be decommissioned in accordance with O. Reg. 903 (as amended) once it is determined that the monitoring wells are no longer required.

This Executive Summary provides a brief overview of the Phase II ESA findings. It is not intended to substitute for the complete report, nor does it detail specific matters discussed within the report. This summary is not to be adopted in lieu of reading the complete report.

ECOH PAGE II

TABLE OF CONTENTS

EXEC	JTIVE SUMMARY	i
1.	INTRODUCTION	1
1.1	Background Information and Objective	1
2.	APPLICABLE SITE CONDITION STANDARDS	3
3.	SCOPE OF THE INVESTIGATION	5
3.1	Media Investigated	5
3.2	Overview of Site Investigation	5
4.	INVESTIGATION METHOD	7
4.1	General	
4.2	Health and Safety	7
4.3	Utility Clearances	
4.4	Drilling	
4.5	Soil Sampling	
4.6	Groundwater Sampling	
4.7	Residue Management Procedures	
4.8	Quality Assurance and Quality Control Measures	
5.	REVIEW AND EVALUATION	
5.1	Geology	
5.2	Groundwater: Elevations and Flow Direction	
5.3	Soil Texture	
5.4	Field Screening	
5.5	Soil Quality	
5.6	Groundwater Quality	
5.7	Quality Assurance and Quality Control Results	
5.8	Field Quality Control Samples	
6.	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	
6.1	Summary	
6.2	Conclusions & Recommendations	
7. •	STATEMENT OF LIMITATIONS	_
8.	REFERENCES	20
FIGUR	<u>ES</u>	
Figure	e 1: Site Location Map	
Figure	2: Site Location Map Showing Borehole and Monitoring Well Location Plan	
Figure	3: Groundwater Elevations and Contour Plan	
TABLE	<u>≣S</u>	
Table	1: Sample Container Details	
Table	2: Summary of Analyses	
Table	3: Duplicate Sample Summary	

TABLE OF CONTENTS

Table 4: Monitoring Well Installation Details Table 5: Groundwater Level and Elevation Data Table 6: Soil Analytical Results - Physical Tests Table 7: Soil Analytical Results - Metals & Inorganics Table 8: Soil Analytical Results - Polycyclic Aromatic Hydrocarbons Table 9: Soil Analytical Results – Petroleum Hydrocarbon (F1-F4) Table 10: Soil Analytical Results - Volatile Organic Compounds Table 11: Soil Analytical Results - Polychoronated Biphenyls Table 12: Soil Analytical Results - Toxicity Characteristic Leaching Procedure Table 13: Groundwater Analytical Results - Metals & Inorganics Table 14: Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons **Table 15:** Groundwater Analytical Results – Petroleum Hydrocarbon (F1-F4) Table 16: Groundwater Analytical Results - Volatile Organic Compounds **Table 17:** Groundwater Analytical Results - Polychoronated Biphenyls Table 18: Relative Percent Difference Values

APPENDICES

Appendix A: Borehole Logs

Appendix B: Certificates of Analysis

1. INTRODUCTION

ECOH Management Inc. (ECOH) was retained by Intentional Capital to conduct a Phase II Environmental Site Assessment (ESA) of the properties located at 65 & 71 Agnes Street in Mississauga, ON (herein referred to as "the Site"). The geographical location of the Site is shown on Figure 1.

It is ECOH's understanding that Intentional Capital is in the process of aquiring the Site. As such, in support of the Intentional Capital's proposed acquisition of the Site and for due diligence purposes, Intentional Capital requested that ECOH conduct a Phase II ESA at the Site.

The Phase II ESA was authorized by Nauman Khalid of Intentional Capital. Nauman Khalid's contact details are provided in the table below:

Details	Description
	Nauman Khalid
Address	147 Liberty Street
	Toronto, ON. M6K 3G3
Email	khalid@intentionalcapital.com

1.1 Objective of Phase One ESA

The objective of the Phase II ESA was to investigate soil and groundwater quality at the location of one previously identified area of potential environmental concern (APEC) on the Site which was identified during a Phase I ESA¹ completed by Sirati and Partners Consultants Ltd. (Sirati) in April, 2021 (summarized in section 1.2.2, below).

1.2 Background Information

1.2.1 Site Setting

The Site is located at the northwest corner of Agnes Street and Cook Street in Mississauga, Ontario. The Site is approximately 0.361 hectares in area and is currently occupied by two detached single family residential homes, each with one ground floor and a basement. The two homes are located on the eastern side of the property, while the western side of the property is a vacant grassed area.

ECOH PAGE 1

-

¹ "Phase I Environmental Site Assessment, 65 & 71 Agnes Street, Mississauga, Ontario. Sirati & Partners Consultants Ltd.", dated April, 2021

PHASE II ENVIRONMENTAL SITE ASSESSMENT INTENTIONAL CAPITAL 65 & 71 AGNES STREET | MISSISSAUGA, ON

ECOH Project No.: 26685 September 2021

The Site is bound by single family residential homes to the north, Cooks Street followed by vacant land to the east, Agnes Street followed by single family residential homes to the south, and a high-rise residential building to the west.

1.2.2 Summary of Phase One Environmental Site Assessment Activities

In April 2021, a Phase One ESA was completed for the Site by Sirati, on behalf of CentraCondos 1000 De La Montagne. The Phase One ESA was completed in accordance with Ontario Regulation (O. Reg.) 153/04 (as amended) with the intention of supporting the future filing of a Record of Site Condition (RSC) for the property in accordance with O.Reg 153/04. The objective of the Phase One ESA was to identify areas of potential environmental concern (APEC) on, in or under the Site as a result of current and/or historical on-site or off-site activities [within a 250 metre (m) radius of the Site] which could contribute to environmental concerns on the Site.

The Phase One ESA completed by Sirati was completed in general accordance with O.Reg 153/04 and included a records review, site visit and interviews with personnel familiar with the Site. Based on the findings of the Phase One ESA, no on-site Potentially contaminating activities (PCA) were identified, while ten PCA within the Phase one study area (within 250 m of the Phase One property boundary) were identified. Of the ten PCA's identified within the Phase One Study Area, one of the PCAs was considered to cause an APEC on the Site. The APEC was described by Sirati as follows:

• APEC 1 - North boundary of the Site. Area of the site potentially affected by activities at 3100 Hurontario Street. TL Kennedy Secondary School is located 60m to the northwest of the Site and is inferred to be situated in a hydraulically upgradient position from the Site. This property was identified by HWIN as a generator of wastes including inorganic laboratory chemicals, petroleum distillates, oil skimmings & sludges, waste oils & lubricants, organic laboratory chemicals, photoprocessing wastes, aliphatic solvents and halogenated pesticides. Sirati identified petroleum hydrocarbons (PHCs), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), polychlorinated biphenyls (PCBs) and metals and inorganics as potential contaminants of concern associated with this identified APEC.

The location of APEC-1 is shown on Figure 3.

Sirati recommended that a Phase II ESA be conducted at the Site in order to reduce uncertainty related to the APEC that was identified on the Site.

2. APPLICABLE SITE CONDITION STANDARDS

To evaluate analytical data from the soil and groundwater samples analyzed during the Phase II ESA, the Site Condition Standards (SCS) were selected from the Ontario Ministry of the Environment, Conservation and Parks (MECP) document titled "Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", dated April 15, 2011².

The SCS selection process was conducted in accordance with O. Reg. 153/04 (as amended) and is described below.

- Environmentally Sensitive Areas:
 - The Site is not located within an area of natural significance;
 - The Site does not include land that is within 30 m of an area of natural significance or part of such an area; and
 - The pH of soils measured during the Phase II ESA were within the acceptable range of 5 to 9 for surface soils (< 1.5 metres below ground surface [mbgs]) and 5 to 11 for sub-surface soils (> 1.5 mbgs).
- Water Bodies: The Site does not include land that is within 30 m of a permanent water body.
- Non-Potable / Potable Groundwater Conditions: Based on Site observations and the
 WWIS database provided by Environmental Risk Information Services and Ontario
 Groundwater well records³ (as outlined in the Phase One ESA report), potable water
 supply wells were not identified on the Site or within 250 m from the Site. The Site is
 serviced with a potable water supply via the City of Mississauga's municipal water
 distribution system.
- **Current and Proposed Future Property Uses**: The current property use of the Site is residential and the future property use is inferred as residential.
- **Soil Texture:** Grain size analyses conducted during the Phase II ESA indicated that more than 1/3 of the soil at the Site (measured by volume), consists of coarse textured soil.
- Shallow Soil Property: The Site is not considered a shallow soil property as defined by
 O. Reg. 153/04 (as amended) since more than 2/3 of the Site has more than 2 m of
 overburden above bedrock.

Based on the selection process, the SCS selected for the Site are the Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, with

ECOH PAGE 3

-

² https://www.ontario.ca/page/soil-ground-water-and-sediment-standards-use-under-part-xv1-environmental-protection-act

³ http://ontariogroundwater.com/maps/

PHASE II ENVIRONMENTAL SITE ASSESSMENT INTENTIONAL CAPITAL 65 & 71 AGNES STREET | MISSISSAUGA, ON ECOH PROJECT No.: 26685

ECOH Project No.: 26685 September 2021

Parkland/Institutional/Residential Property Use and Coarse Textured Soil Conditions (MECP Table 3 SCS).

3. SCOPE OF THE INVESTIGATION

The objective of the Phase II ESA is to investigate the potential for soil and groundwater impacts to be present at the area of the one APEC (i.e. APEC-1) identified by the Sirati Phase One ESA.

3.1 Media Investigated

Based on the findings of the Sirati Phase One ESA, soil and groundwater were identified as potentially impacted media.

3.2 Overview of Site Investigation

ECOH provided Intentional Capital with a proposal/work plan to undertake the Phase II ESA at the Site on August 11, 2021. The proposal, titled "Phase II Environmental Site Assessment, 65 & 71 Agnes Street, Mississauga, Ontario", was approved by Intentional Capital on August 11, 2021. The proposal originally called for the following scope of work to be completed.

- Develop a Health and Safety Plan (HASP);
- Obtain all public and private utility clearances for the work area;
- Advance two boreholes to a maximum depth of 6 mbgs to facilitate the collection and assessment of soil at the Site;
- Collect one "worst case" soil sample from each borehole location and submit to project laboratory for analysis of petroleum hydrocarbon (PHC) fractions 1 through 4 (F1-F4), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and metals & inorganics;
- Collect one composite soil sample for Toxicity Characteristic Leaching Procedure (TCLP) analysis for waste characterization purposes;
- Collect and analyse two soil samples from surface (<1.5 m) and sub-surface (>1.5 m) for pH analysis to assist in selecting the applicable MECP SCS;
- Collect and analyse one soil sample for grain size analysis (75 micron [μm] sieve) to assist in selecting the applicable MECP SCS;
- Instrument two boreholes with monitoring wells to facilitate the assessment of groundwater at the Site;
- Collect one groundwater sample from each of the newly installed monitoring wells and submit to project laboratory for analysis of PHC F1-F4, VOCs, PAHs, PCBs, and metals and inorganics; and
- Prepare a Phase II ESA report summarizing the soil investigation results, conclusions and recommendations.

PHASE II ENVIRONMENTAL SITE ASSESSMENT INTENTIONAL CAPITAL 65 & 71 AGNES STREET | MISSISSAUGA, ON

ECOH Project No.: 26685 September 2021

Due to access restrictions encountered during the Phase II ESA field program, only one of the two proposed monitoring wells could be installed. In addition, an existing monitoring well was identified in the area of APEC 1. No reports were available to ECOH describing the construction and installation of this monitoring well, however the location of this well was beneficial to the objectives of the work program as it was installed in the area of APEC 1. The location of the previously installed monitoring well is shown on Figure 2 and Figure 3. For the purposes of this report, the previously installed monitoring well was identified as 'MW4'.

Therefore, given the access restrictions and the presence of an existing monitoring well, only one new monitoring well was considered sufficient to meet the objectives of the work program, and collecting a groundwater sample from the existing monitoring well was added to the work program to provide additional groundwater analytical data and data coverage in the area of APEC-1.

4. INVESTIGATION METHOD

4.1 General

The following sections describe the pre-field work activities and field investigation methodology employed during the Phase II ESA. The field investigation methods were conducted in accordance with CSA Z769-00 (R2018), in general accordance with O. Reg. 153/04 (as amended), ECOH's standard operating procedures (SOPs) and industry standard practices.

4.2 Health and Safety

Prior to commencing intrusive investigations, a HASP was developed and implemented. The HASP identified potential physical and chemical hazards associated with the Phase II ESA and provided mitigative actions as required. In addition, the HASP provided procedures to follow in the event of an emergency.

A health and safety kick-off meeting and job safety analysis were conducted to advise project personnel of the potential risks and appropriate mitigative actions, as well as to address any health and safety concerns identified by the on-Site project staff. The HASP was retained on file by ECOH.

4.3 Utility Clearances

Prior to the commencement of intrusive investigation activities, ECOH contacted Ontario One Call to initiate utility clearances with all public utility providers whom subscribe to this service. In addition, ECOH retained the services of a private utility locator, Premier Locates Inc. of Aurora, Ontario to clear services within the proposed work areas. Copies of the public and private utility clearance documents are retained on file by ECOH.

4.4 Drilling

ECOH retained the services Pontil Drilling Services Inc. (Pontil) of Mount Albert, Ontario to advance one borehole at the Site. Pontil is an MECP licensed well contractor, as per the provisions of O. Reg. 903 (as amended), under the Ontario Water Resources Act.

The one borehole (BH/MW1) was advanced on September 2, 2021 using a track mounted CME 55 Track Mounted Rig, equipped with split-spoon sampling equipment and hollow stem auger drilling under full time ECOH supervision.

The borehole was advanced to a depth of 6.1 mbgs. The findings of the field observations at this borehole location are recorded on the borehole log presented in Appendix A and the location of the boreholes advanced during the investigation are presented on Figure 2.

4.5 Soil Sampling

4.5.1 Soil: Sample Collection

Soil samples were collected from each borehole *via* the advancement of 51 millimetre (mm) diameter (2 inch) and 0.6 m long stainless steel split spoon samplers. The split spoon samplers were advanced to continuous intervals until the depth of borehole termination at approximately 6.1 m. Following the advancement of each sampling interval, the stainless-steel split spoon sampler was removed from the borehole to enable the logging of soil characteristics and sample collection.

Upon retrieval of the soil samples from the sampling equipment, soil conditions were logged for soil characteristics (soil type, colour, moisture, etc.), olfactory observations and evidence of contamination (staining, sheens, etc.). Following the logging of the soil conditions, each soil sample was divided into two portions; the first portion was placed directly into laboratory supplied glass containers for possible laboratory analysis while the remaining portion was placed in a sealable polyethylene bag for organic vapour meter (OVM) readings. Soil samples which were collected for PHC (F1) and/ VOC analysis were collected in pre-weighed laboratory supplied vials containing methanol preservative. Soil sample container details are presented in Table 1. Soil samples placed in laboratory supplied glass containers were placed immediately in coolers equipped with ice to initiate cooling.

Samples were maintained in a cold state until submitted to ALS Laboratories (ALS), located in Mississauga, Ontario.

4.5.2 Soil: Field Screening Measurements

To assist with the selection of soil samples submitted for laboratory analysis, and to identify potential PHC and/or VOC impacts, OVM readings were taken using a hand-held RKI Eagle 2[™] portable gas detector. The RKI Eagle 2[™] reports organic vapour concentrations in parts per million by volume (ppmv) or as a percentage of the lower explosive limit (% LEL) of equivalent hexane vapour and isobutylene vapour.

The RKI Eagle 2[™] was calibrated prior to use and was operated in methane elimination mode. The OVM readings were taken by placing the end of the intake tube of the OVM into the headspace of the bagged soil samples while the soil was gently broken up. The OVM readings attained during the soil sampling activities are shown on the borehole log presented in Appendix A.

4.5.3 Soil: Selecting Soil Samples for Analysis

Generally, one soil sample inferred to represent "worst case" conditions was selected from the borehole for subsequent chemical analyses. The worst-case soil sample was selected based on visual and olfactory observations, OVM measurements and/or from depths at which potential

impacts would most likely have occurred (e.g., near the water table, targeted depths, near the interface of different soil horizons and/or from the upper fill layers).

4.5.4 Soil: Laboratory Analysis

Soil samples were submitted under signed chain-of-custody to ALS. ALS is accredited by the Canadian Association of Laboratory Accreditation Inc. (CALA) to perform the analysis required for the Phase II ESA. The analyses performed on soil samples collected during the Phase II ESA is summarized in Table 2.

4.6 Groundwater Sampling

4.6.1 Groundwater: Monitoring Well Installation

A monitoring well was installed in the one borehole advanced by ECOH (BH/MW1) to facilitate the assessment of groundwater conditions at the Site. The monitoring well was constructed with 51 mm (2 inch) diameter polyvinyl chloride (PVC) well screen threaded to solid PVC riser pipes. The riser pipes and well screen were delivered to the Site pre-washed and packed in sealed polyethylene bags; where they remained until use. The monitoring well screen was 3.05 m in length and were instrumented with a tight-fitting slip-on PVC cap. The top of the riser pipe was sealed with a compression J-plug fitting. A silica sand pack was placed in the annulus of the borehole surrounding the screened portion of the monitoring well and extended approximately 0.3 m above the top of the screen. Bentonite holeplug was placed in the borehole annulus above the sand pack to near ground surface. The monitoring wells were completed at surface with a flushmount style protective casing encased in concrete.

The monitoring well construction details are presented within the borehole log provided in Appendix A. As required by O. Reg. 903 (as amended), individual well records were completed by Pontil and submitted to the MECP. Copies of the well records have been retained on file by ECOH.

4.6.2 Groundwater: Field Measurement of Water Quality Parameters

To ensure that a complete hydraulic connection was made between the new monitoring well and the groundwater horizon surrounding the well screen and filter pack, the new monitoring well was developed prior to sampling. Well development was conducted using dedicated polyethylene tubing fitted with a plastic inertial foot valve on September 9, 2021. The monitoring well was developed by purging until dry of groundwater.

Following well development, and prior to collecting the groundwater samples, each monitoring well (both BHMW1 and MW4) was purged by employing low-stress (i.e. low-flow) purging protocols as defined within the *United States Environmental Protection Agency (US EPA)*Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers (USEPA 2002). Groundwater purging was conducted using dedicated 6.4 mm diameter low density polyethylene (LDPE) tubing connected to a low-flow peristaltic pump. The tubing intake was lowered slowly

PHASE II ENVIRONMENTAL SITE ASSESSMENT INTENTIONAL CAPITAL

65 & 71 Agnes Street | Mississauga, ON ECOH Project No.: 26685

into the water column to minimize mixing of groundwater and the intake was positioned in approximately the centre of the saturated screen interval. The outlet of the tubing was connected to an in-line flow-through cell system (i.e., water quality meter) for monitoring geochemical groundwater parameters, including: pH, conductivity, temperature, dissolved oxygen and oxidation reduction potential (ORP). In addition, the depth to groundwater was measured during the purging activities *via* an oil/water interface meter. Geochemical parameters and groundwater levels were monitored and recorded approximately every five minutes. Purging activities continued until the groundwater level and geochemical parameter readings were generally stabilized (i.e. three successive readings within EPA defined limits⁴).

SEPTEMBER 2021

4.6.3 Groundwater: Sampling

Groundwater samples were collected from the monitoring wells using dedicated LDPE tubing and a peristaltic pump. Where appropriate, samples collected for metals and inorganic analyses were filtered in the field prior to submission to the lab. Groundwater samples were collected in laboratory supplied glass vials and bottles containing preservatives (where applicable).

4.6.4 Groundwater: Laboratory Analysis

Groundwater samples were submitted to ALS under a signed chain-of-custody. ALS is accredited by CALA to perform the analysis required for the Phase II ESA. The analyses performed on the groundwater samples collected during the investigation is summarized in Table 2.

4.7 Residue Management Procedures

Waste materials generated during the Phase II ESA field activities included drill soil cuttings and purged groundwater. Soil cuttings and purged groundwater were placed in 205 litre steel drums for temporary storage at the Site prior to off-Site disposal at an MECP licensed facility.

4.8 Quality Assurance and Quality Control Measures

The following quality assurance / quality control (QA/QC) measures were employed during the Phase II ESA field investigation activities to maintain sample integrity:

 Sampling and monitoring equipment (e.g., oil/water interface meter) were cleaned between sampling points (e.g., monitoring wells) using an Alconox® and a distilled water mixture followed by a distilled water rinse;

ECOH PAGE 10

-

⁴ Turbidity 10%, Conductivity 3%, Dissolved Oxygen 10%, Temperature 3%, pH +/-0.1 units, ORP +/- 10 millivolts

 Disposable nitrile gloves were worn when handling sampling tools and samples and were replaced between subsequent samples;

- All soil and groundwater samples collected for laboratory analysis were collected in appropriate new sample containers provided by the laboratory;
- Field duplicate sample collection for soil was performed at a 10% frequency to evaluate the sampling procedure and the laboratory analytical precision for select analytes. The field duplicate sample summary is provided in Table;
- Groundwater samples analyzed for PHC (F1) and VOCs were collected with no headspace to minimize degassing and potential loss of volatile compounds;
- Samples were stored in coolers equipped with ice until submission to the laboratory; and
- Samples submitted to the laboratory were accompanied by a signed and dated Chain of Custody form and were packaged in custody sealed coolers equipped with ice.

QA/QC measures performed by ALS consisted of the analysis of laboratory duplicate samples (DUP), laboratory control samples (LCS), matrix spikes (MS), method blanks (MB), internal reference material (IRM), surrogate recoveries (SR), and the use of analytical methods in accordance with CALA accreditation standards. Laboratory QA/QC is documented in the Certificates of Analysis provided in Appendix B. A review of the laboratory QA/QC data was performed by ECOH upon receipt of the Certificates of Analysis and is summarized in Section 5.7.

ECOH Page 11

5. REVIEW AND EVALUATION

5.1 Geology

Details of soil stratigraphy observed in the boreholes advanced at the Site are presented on the log provided in Appendix A.

In general, the soil strata at the Site, based on the one borehole advanced by ECOH at the Site, comprised fine sand fill material overlying a native silty sand, followed by weathered shale. Further details are provided below:

- Fill material was encountered directly beneath the landscaped surface. The fill material
 extended to a maximum observed depth of 0.76 mbgs and generally comprised light
 brown fine sand. No visual or olfactory evidence of impact was identified within the fill
 material.
- A native brown silty sand stratum was encountered beneath the fill material to a maximum observed depth of 2.64 mbgs. No visual or olfactory evidence of impact was observed within this soil stratum.
- grey weathered shale (inferred) bedrock was encountered beneath the silty sand stratum to a maximum depth of 6.1 mbgs. No visual or olfactory evidence of impact was observed within weathered shale bedrock.

5.2 Groundwater: Elevations and Flow Direction

Static groundwater level measurements were obtained from the new and existing monitoring wells on September 3 and 9, 2021. Groundwater was encountered within the monitoring wells at depths ranging between 4.27 and 4.98 mbgs (MW4 and BHMW1, respectively). No light non-aqueous phase liquid (LNAPL) or dense non-aqueous phase liquid (DNAPL) was observed in the monitoring wells during the monitoring events. Groundwater level data is provided within the attached borehole log (Appendix A) and in Table 4.

With only two monitoring wells present within the work area, an interpretation of equipotential groundwater contours could not be used to determine the groundwater flow direction. As such, the general groundwater flow directions are inferred based on regional topography and is inferred to be towards the southeast based on the topographical information outlined in the Phase One ESA completed by Sirati in April 2021.

5.3 Soil Texture

One soil sample was submitted for grain size analysis (75 µm sieve) to assist with soil texture classification. The result of the sieve analysis is presented in Table 6 and is shown below.

PHASE II ENVIRONMENTAL SITE ASSESSMENT INTENTIONAL CAPITAL 65 & 71 AGNES STREET | MISSISSAUGA, ON

ECOH Project No.: 26685 September 2021

Sieve Analysis Results									
Sample ID	Soil Type	%>75 μm	Classification						
BHMW1-GS	Silty Sand	71.7%	Coarse						

Based on the above grain size analysis test, coarse textured soils standards, as defined by O. Reg. 153/04 (as amended) were applied to the Site. The grain size analytical results are presented in Appendix B.

5.4 Field Screening

Soil field screening techniques employed during the Phase II ESA field assessment included recording visual observations of soil characteristics and measurement of headspace vapour concentrations.

No visual and/or olfactory evidence of contamination was observed in the recovered soil samples. Soil organic vapour measurement (OVM) readings recorded on soil samples collected from the one borehole advanced by ECOH are presented in the borehole log provided in Appendix A. The OVM readings ranged from 0 to 55 ppm for hexane response and 0 ppm for isobutylene response.

5.5 Soil Quality

The soil analytical results, with comparison to the applicable MECP Table 3 SCS, are presented in Table 6 to Table 12. Copies of the laboratory Certificates of Analysis are provided in Appendix B. The following sections discuss the soil sample analytical results.

5.5.1 Soil: pH

One surface (< 1.5 mbgs) and one sub-surface (>1.5 mbgs) soil samples were submitted to ALS for pH analysis. The pH analytical results are presented in Table 6.

The surface soil sample recorded a pH value of 7.35, which is within the acceptable pH range for surface soils (i.e., 5-9). The sub-surface soil sample recorded a pH value of 8.08, which are within the acceptable range for sub-surface soils (i.e., 5-11). Based on the pH analytical results, the Site is not considered sensitive due to pH, as per Section 41 of O. Reg. 153/04 (as amended).

5.5.2 Soil: Metals & Inorganics

A total of two soil samples, which included one field duplicate soil sample, were submitted to ALS for analysis of metals & inorganics. The analytical results (see Table 7) indicated that metal parameter concentrations were below the applicable MECP Table 3 SCS for the samples analyzed.

5.5.3 Soil: Polycyclic Aromatic Hydrocarbons

A total of one soil sample was submitted to ALS for analysis of PAHs. The analytical results (see Table 8) indicated that PAH parameter concentrations were below the applicable MECP Table 3 SCS for the samples analyzed.

5.5.4 Soil: Petroleum Hydrocarbons (F1- F4)

A total of one soil sample was submitted to ALS for analysis of PHCs (F1-F4). The analytical results (see Table 9) indicated that PHCs (F1- F4) concentrations were below the applicable MECP Table 3 SCS for the samples analyzed.

5.5.5 Soil: Volatile Organic Compounds

A total of one soil samples was submitted to ALS for analysis of VOCs. The analytical results (see Table 10) indicated that VOC concentrations were below the applicable MECP Table 3 SCS for the samples analyzed.

5.5.6 Soil: Polychloronated Biphenyls

A total of one soil sample was submitted to ALS for analysis of PCBs. The analytical results (see Table 11) indicated that PCB concentrations were below the applicable MECP Table 3 SCS for the samples analyzed.

5.5.7 Soil: Toxicity Characteristic Leaching Procedure

The results of the TCLP analyses are presented in Table 12. In summary, the analytical results indicated that the soil was below the Schedule 4 Leachate Criteria for the parameters analyzed; therefore, the soil was characterized as non-hazardous waste soil.

5.6 Groundwater Quality

The groundwater analytical results, with comparison to the applicable (MECP Table 3 SCS), are presented in Table 13 to Table 17. Copies of the laboratory Certificates of Analysis are provided in Appendix B. The following sections discuss the groundwater analytical results.

5.6.1 Groundwater: Metals & Inorganics

A total of two groundwater samples were submitted to ALS for analysis of metals & inorganics. The analytical results (see Table 13) indicated that concentrations for the metal parameters analyzed were below the applicable MECP Table 3 SCS for the samples analyzed.

5.6.2 Groundwater: Polycyclic Aromatic Hydrocarbons

A total of one groundwater samples was submitted to ALS for analysis of PAHs. The analytical results (see Table 14) indicated that concentrations for PAHs were below the applicable MECP Table 3 SCS for the samples analyzed.

5.6.3 Groundwater: Petroleum Hydrocarbons (F1- F4)

A total of two groundwater samples were submitted to ALS for analysis of PHCs (F1-F4). The analytical results (see Table 15) indicated that concentrations for PHCs (F1 –F4) were below the applicable MECP Table 3 SCS for the samples analyzed.

5.6.4 Groundwater: Volatile Organic Compounds

A total of two groundwater samples were submitted to ALS for analysis of VOCs. The analytical results (see Table 16) indicated that concentrations for VOCs were below the applicable MECP Table 3 SCS for the samples analyzed.

5.6.5 Groundwater: Polychlorinated Biphenyls

A total of one groundwater sample was submitted to ALS for analysis of PCBs. The analytical results (see Table 17) indicated that concentrations for PCBs were below the applicable MECP Table 3 SCS for the samples analyzed.

5.7 Quality Assurance and Quality Control Results

5.7.1 Laboratory Quality Control

Laboratory quality control (QC) samples are prepared and analyzed by the laboratory to ascertain the accuracy and precision of the analytical reported results. In summary, there were no laboratory QC recoveries or values outside of the applicable QC limits which could have a material effect on the interpretation of the analytical results.

5.8 Field Quality Control Samples

Field Duplicate Samples

A field duplicate soil sample was collected during the Phase II ESA to validate the field sampling technique precision. ECOH collected one field duplicate soil sample and submitted for analysis of metals & inorganics. For each set of field duplicates, the relative percent difference (RPD) was calculated using the following formula:

$$RPD \ (\%) = \frac{X1 - X2}{Xavg} \ x \ 100$$

ECOH Page 15

PHASE II ENVIRONMENTAL SITE ASSESSMENT INTENTIONAL CAPITAL 65 & 71 AGNES STREET | MISSISSAUGA, ON

ECOH Project No.: 26685 September 2021

In the above formula, *X1* and *X2* are the measured concentrations of the duplicate pairs and *Xavg* is the mean of these two (2) values. Results for duplicate analyses of field duplicate samples were considered acceptable where RPD values were <100% for soil duplicate analyses and <80% (VOCs, PHCs, PAHs) and 50% (metals) for groundwater duplicate analyses. RPDs were not calculated where the concentration in both samples were less than five times the laboratory reportable detection limits (RDLs).

In summary, all calculable RPDs were below the applicable alert limits for soil, as shown in Table 18.

5.8.1 QA/QC Summary

All hold times were met and the appropriate preservation methods were used. Samples were collected in the appropriate clean sample containers provided by ALS and stored on sufficient ice to keep the temperature between 0 and 10°C. A chain-of-custody accompanied all analyzed samples and they are included with the laboratory certificates of analyses provided in Appendix B.

In summary, no issues with laboratory analysis, sample shipping, sample preservation, or field sampling techniques that could have a material effect on the interpretation of the reported results were identified as part of the QA/QC program. Therefore, the analytical laboratory data is considered reliable.

ECOH Page 16

6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

The following is a summary of the Phase II ESA activities and findings:

- The Phase II ESA field activities were undertaken at the Site between September 2 and September 9, 2021 and included the advancement of one borehole which was instrumented with a groundwater monitoring well.
- The soil stratigraphy at the Site comprised a light brown fine sand fill layer beneath the topsoil, underlain by a native brown silty sand and grey weathered shale strata.
- There was no visual or olfactory evidence of impacts in the samples collected.
- Groundwater levels measured within the existing monitoring well and new monitoring well installed at the Site ranged between 4.27 (MW4) to 4.98 (BHMW1) mbgs.
- Based on the topographical information outlined in a Phase One ESA completed by Sirati in April 2021, the regional groundwater flow is inferred to be towards the southeast.
- The Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, with Parkland/Institutional/Residential Property Use and Coarse Textured Soil Conditions were selected to assess the environmental quality of soil and groundwater at the Site.
- A total of two soil samples, which included one field duplicate soil sample, were collected
 and submitted to ALS for chemical analysis of PHC (F1-F4), PAHs, VOCs, PCBs, Metals
 & Inorganics, pH, and grain size. The soil analytical results indicated that concentrations
 of the parameters analyzed were below the applicable MECP Table 3 SCS in the
 samples analyzed
- A total of two groundwater samples, were collected and submitted to ALS for chemical analysis of PHC (F1-F4), PAHs, VOCs, PCBs and Metals & Inorganics. The analytical results indicated that the concentrations of the parameters analyzed were below the applicable MECP Table 3 SCS in the samples analyzed.

6.2 Conclusions & Recommendations

The Phase II ESA was completed to investigate the potential for soil and groundwater impacts at one area of potential environmental concern (APEC-1) that was identified at the Site by a Phase One ESA by Sirati in 2021. One borehole was advanced by ECOH at APEC-1 and was completed as a monitoring well. Soil samples were collected during borehole drilling and submitted for laboratory analysis, and a groundwater sample was collected from the one newly installed monitoring well and one existing monitoring well at APEC-1.

Based on the findings of the Phase II ESA, the concentrations of the contaminants of concern analyzed in the soil and groundwater samples collected at APEC 1 were below the applicable

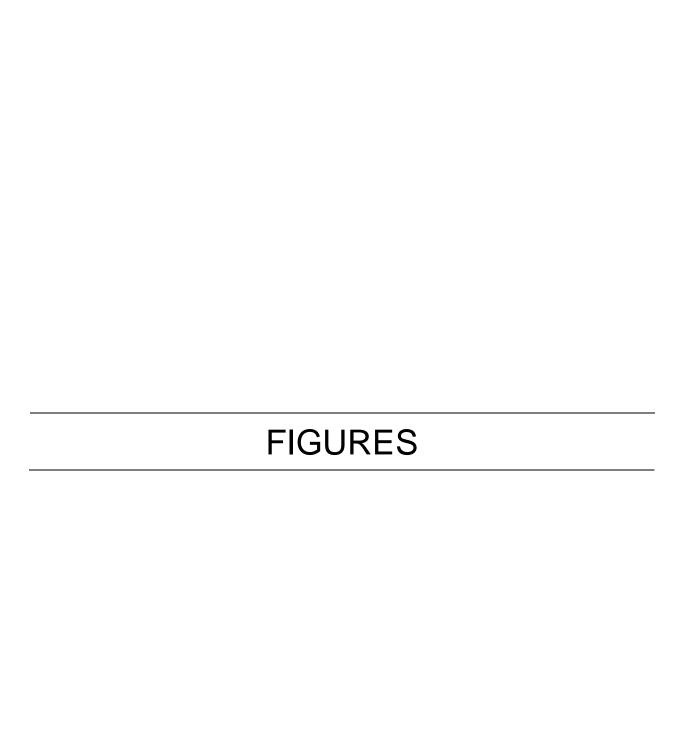
PHASE II ENVIRONMENTAL SITE ASSESSMENT INTENTIONAL CAPITAL 65 & 71 AGNES STREET | MISSISSAUGA, ON

ECOH Project No.: 26685 September 2021

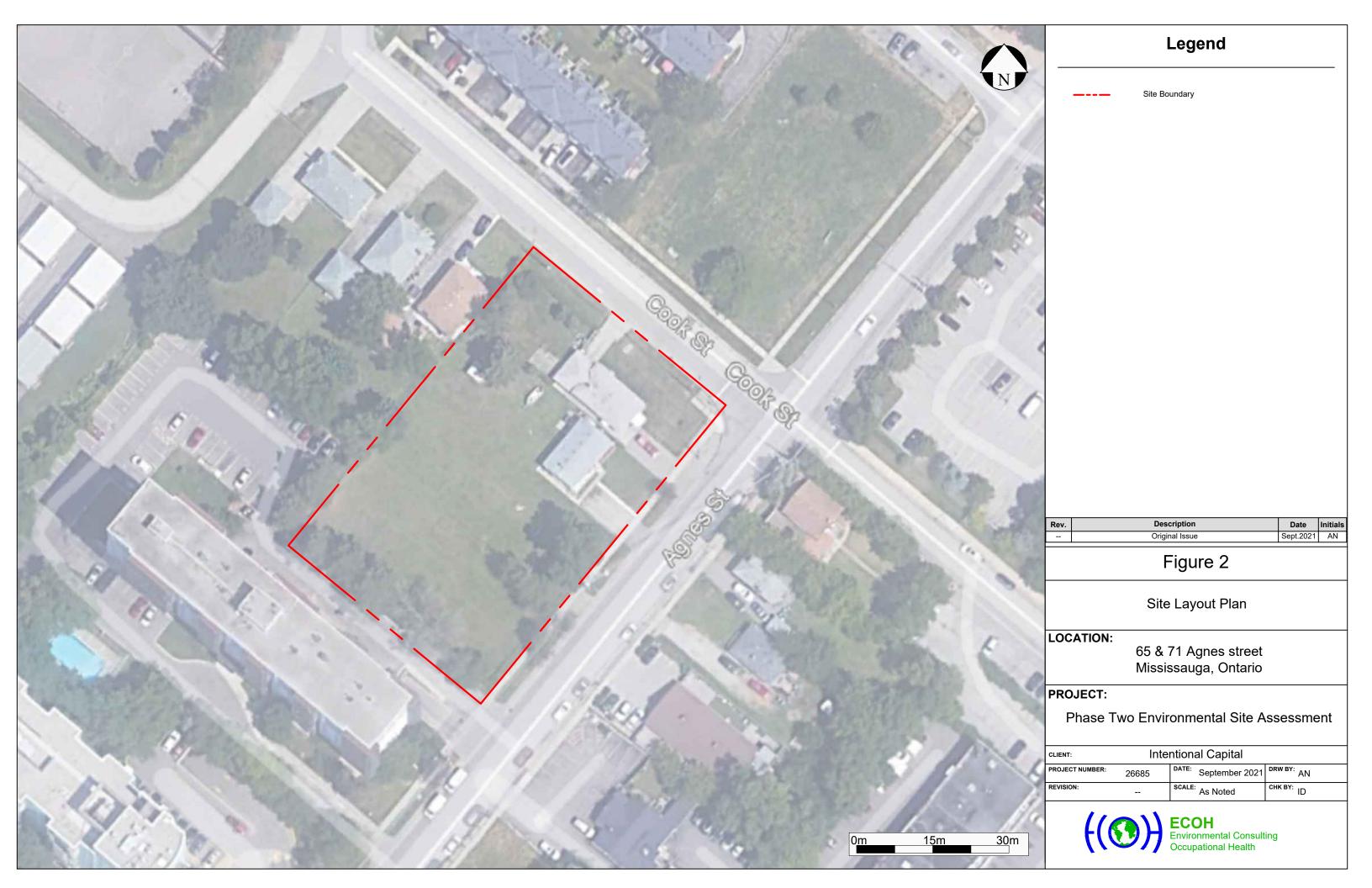
MECP Table 3 SCS. Therefore, further investigation of APEC-1 is not recommended at this time. No additional APECs were identified on the Site by the Sirati Phase One ESA and therefore this Phase II ESA has investigated the previously identified APECs on the site and did not identify exceedances of the applicable SCS. Based on these findings, additional site investigations would not be warranted at this time.

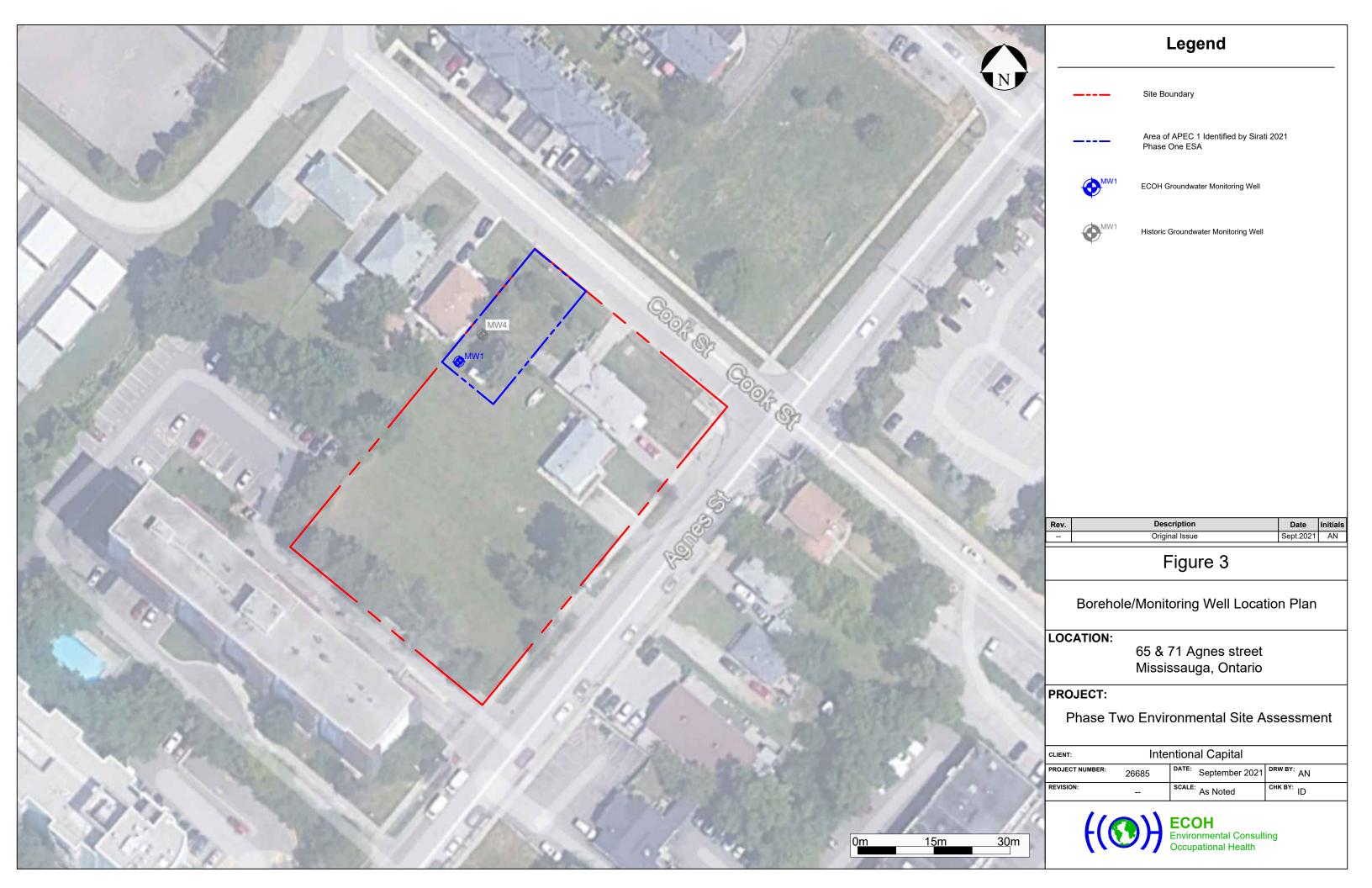
It is recommended that the monitoring wells on-site be decommissioned in accordance with O. Reg. 903 (as amended) once it is determined that the monitoring wells are no longer required.

7. STATEMENT OF LIMITATIONS


The results, field observations and conclusions drawn by ECOH concerning the Phase II ESA conducted for the property located at 65 & 71 Agnes Street in Mississauga, ON are limited to the specific scope of work for which ECOH was retained and are based solely on information generated as a result of the specific scope of work authorized by Intentional Capital. The conclusions are limited to the specific locations of soil samples collected for analytical testing and on observations made during the course of the program.

It is ECOH's professional opinion that the level of detail carried out during the Phase II ESA at the Site is appropriate to meet the study objectives. However, there is no warranty, expressed or implied, that this investigation has uncovered all potential environmental liabilities associated with the Site. In addition, ECOH cannot guarantee the completeness or accuracy of information supplied by a third party. It should also be noted that any investigation regarding the presence of contamination on the Site is based on interpretation of conditions determined at specific sampling locations, and conditions may vary between sampling locations.


This report was prepared by ECOH for the purposes of Intentional Capital. The material in it reflects ECOH's professional interpretation of information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. ECOH accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. Should additional information become available that suggests other environmental issues of concern beyond that described in this report, ECOH retains the right to review this information and modify conclusions and recommendations presented in this report accordingly. ECOH is an Environmental Consulting Company and as such any results or conclusions presented in this report should not be construed as legal advice.


8. REFERENCES

- Canadian Standard Association (CSA)-Z769-00 (R2018) Phase II Environmental Site Assessment Standard.
- Ontario Ministry of the Environment, Conservation and Parks, Ontario Regulation 153/04, Record of Site Condition, Part XV.1 of the Act., April 2011.
- Soil and Sediment Standards, retrieved from: https://www.ontario.ca/page/soil-ground-water-and-sediment-standards-use-under-part-xv1-environmental-protection-act
- Ontario Groundwater Database, retrieved from: http://ontariogroundwater.com/maps/
- Phase One Environmental Site Assessment, 65 & 71 Agnes Street, Mississauga,
 Ontario. Sirati & Partners Consultants Ltd.", dated April, 2021.

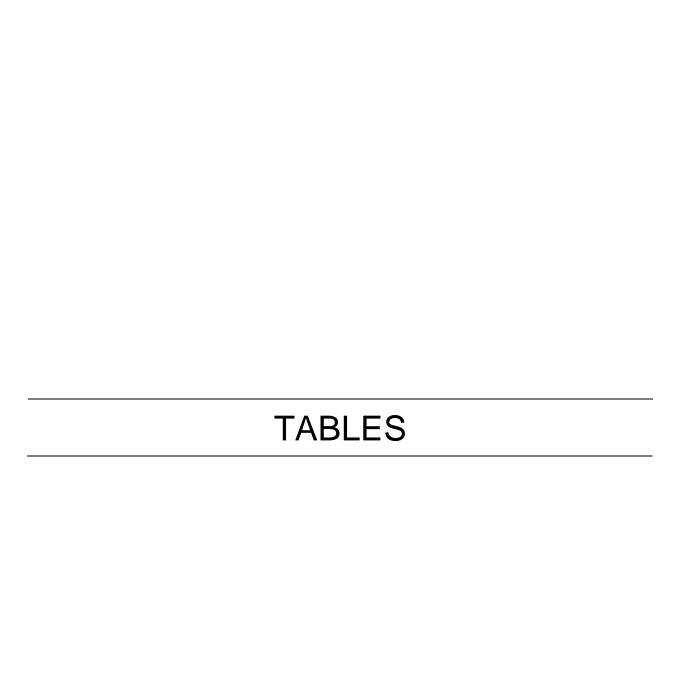


TABLE 1
Sample Container Details

Analyte	Container Type	Preservative
•	Soil	
Petroleum Hydrocarbon Fraction 1 & Volatile Organic Compounds	2 x 40 ml glass vial	Methanol (CH₃OH)
Petroleum Hydrocarbon Fractions 2 through 4	1 x 125ml clear glass jar	None
Polycyclic Aromatic Hydrocarbons & Polychlorinated Biphenyls	1 x 125ml clear glass jar	None
Metals & Inorganics	1 x 250ml clear glass jar	None
рН	1 x 125ml clear glass jar	None
Grain Size	1 x 250ml clear glass jar	None
	Groundwater	
Petroleum Hydrocarbon Fraction 1 & Volatile Organic Compounds	2 x 40 ml clear glass vial	Sodium bisulfate (NaHSO ₄)
Petroleum Hydrocarbon Fractions 2 through 4	2 x 100 ml amber glass vial	Sodium bisulfate (NaHSO ₄)
Polycyclic Aromatic Hydrocarbons & Polychlorinated Biphenyls	2 x 100 ml amber glass vial	Sodium bisulfate (NaHSO ₄)
Metals & Ingranies	1 x 60 ml HDPE bottle	Nitric acid (HNO ₃₎
Metals & Inorganics	1 x 250 ml HDPE bottle	None
Cyanide	1 x 60 ml HDPE bottle	Sodium Hydroxide (NaOH)
Chromium, Hexavalent	1 x 60 ml HDPE bottle	Nitric acid (HNO₃)
Mercury	1 x 40 ml glass vial	Hydrochloric Acid (HCl)

ECOH Page 1 of 18

Intentional Capital ECOH Project Number 26685

TABLE 2 Summary of Analyses

	Samples												Work	sheets						
Borehole / Monitoring Well ID	GPS Coordinates (Northing)	GPS Coordinates (Easting)	Sample ID	Sample Collection Date (mmm-dd-yy)	Sample Depth (mbgs)	Laboratory ID	oil	Physical Tests	Metals & Inorganics	PAHS	PHCs (F1-F4)	VOCs	PCBs	TCLP	dwater	Metals & Inorganics	PAHs	PHCs (F1-F4)	VOCs	PCBs
			BHMW1	Sep-09-21	4.98	L2637513-1	Š								uno	×		×	×	
			BHMW1-SS1	Sep-02-21	0-0.76	L2635191-1		×							ษั					
BHMW1			BHMW1-SS4	Sep-02-21	2.29-3.05	L2635191-2		×	×	×	×	×	×							
5			BHMW1-GS	Sep-02-21	N/A	L2635191-5		×												
			DUP1	Sep-02-21	2.29-3.05	L2635191-3			×											
			TCLP	Sep-02-21	N/A	L2635197-1								×						
MW4			MW4	Sep-03-21	4.27	L2635577-1										×	×	×	×	×

Notes:

- 1. PAHs = Polycyclic Aromatic Hydrocarbons
- 2. PHCs (F1-F4) = Petroleum Hydrocarbon Fractions 1 through 4
- 3. BTEX = Benzene, Toluene, Ethylbenzene and Xylenes
- 4. VOCs = Volatile Organic Compounds
- 5. sVOCs = semi-Volatile Organic Compounds
- 6. TCLP = Toxicity Characteristic Leaching Procedure
- 7. mbgs = Metres Below Ground Surface

ECOH Page 2 of 18

TABLE 3
Duplicate Sample Summary

Borehole / Monitoring Well ID	Sample ID	Duplicate Sample ID	Sample Depth (mbgs)	Parameters						
	Soil									
BHMW1	BHMW-SS4	DUP1	2.29-3.05	Metals & Inorganics						

Notes:

1. mbgs = Metres Below Ground Surface

ECOH Page 3 of 18

TABLE 4
Monitoring Well Installation Details

	Appitoring Wall	Ground Elevation	Well Interior	Well Interior Well Depth		Type of Sealant Used				
10	ID	(mAAD)	Diameter (mm)	(mbgs)	Screened Interval (mbgs)	Flush Mount/ Concrete (mbgs)	Bentonite Pack (mbgs)	Sand Pack (mbgs)		
	BHMW1	N/A	50.80	5.49	2.44-5.49	N/A	0-1.83	1.83-5.49		

Notes:

- 1. mbgs = Metres Below Ground Surface
- 2. mAAD = m Above Arbitrary Datum

ECOH Page 4 of 18

TABLE 5
Groundwater Level and Elevation Data

Monitoring Well ID	Date (mmm-dd-yy)	Ground Elevation (mAAD)	Groundwater Level (mbgs)	Groundwater Elevation (mbgs)	LNAPL / DNAPL Thickness (mm)	OVM Reading (ppm)
BHMW1	Sep-09-21	N/A	4.98	N/A	N/A	100/5
MW4	Sep-03-21	N/A	4.27	N/A	N/A	0/0

Notes:

- 1. mbgs = Metres Below Ground Surface
- 2. mAAD = m Above Arbitrary Datum
- 3. OVM reading = hexane/isobutylene response in ppm
- 4. ppm = Parts Per Million
- 5. LNAPL = Light Non-Aqueous Phase Liquid
- 6. DNAPL = Dense Non-Aqueous Phase Liquid
- 7. NA = Not Applicable

ECOH Page 5 of 18

TABLE 6
Soil Analytical Results – Physical Tests

Borehole / Monitoring Well ID					BHMW1	
Sample ID		MECP		BHMW1-SS1	BHMW1-SS4	BHMW1-GS
Sample Depth (m)	Units	Table 3	RDL	0-0.76	2.29-3.05	N/A
Laboratory ID		SCS ²	L2635191-1	L2635191-2	L2635191-5	
Date Sampled				Sep-02-21	Sep-02-21	Sep-02-21
% Moisture	%	NA	0.25		7.97	-
рН	рН	NA	0.1	7.35	8.08	-
Grain Size (% > 75 um)	%	NA	NA	-	-	71.70

- 1. MECP = Ministry of the Environment, Concervation and Parks
- 2. MECP Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with Parkland/Institutional/Residential Use and Coarse Textured Soil
- 3. RDL = Reported Detection Limit
- 4. NA = Not Applicable

ECOH Page 6 of 18

TABLE 7
Soil Analytical Results – Metals & Inorganics

Borehole / Monitoring Well ID				ВНЛ	/W1
Sample ID		MECP		BHMW1-SS4	DUP1
Sample Depth (m)	Units	Table 3	RDL	2.29-3.05	2.29-3.05
Laboratory ID		SCS ²		L2635191-2	L2635191-3
Date Sampled (mmm/dd/yy)				Sep-02-21	Sep-02-21
Antimony	μg/g	7.5	1.0	<1.0	<1.0
Arsenic	μg/g	18	1.0	2.6	2.5
Barium	μg/g	390	1.0	16.1	15.8
Beryllium	μg/g	4	0.50	<0.50	<0.50
Boron	μg/g	120	5.0	<5.0	<5.0
Cadmium	μg/g	1.2	0.50	<0.50	<0.50
Chromium	μg/g	160	1.0	7.8	7.7
Cobalt	μg/g	22	1.0	2.4	2.4
Copper	μg/g	140	1.0	7.8	7.4
Lead	μg/g	120	1.0	9.5	7.9
Molybdenum	μg/g	6.9	1.0	<1.0	<1.0
Nickel	μg/g	100	1.0	5.5	5.4
Selenium	μg/g	2.4	1.0	<1.0	<1.0
Silver	μg/g	20	0.20	<0.20	<0.20
Thallium	μg/g	1	0.50	<0.50	<0.50
Uranium	μg/g	23	1.0	<1.0	<1.0
Vanadium	μg/g	86	1.0	18.0	18.6
Zinc	μg/g	340	5.0	22.5	20.2

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with Parkland/Institutional/Residential Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. <0.20 = Concentration of parameter detected below the RDL
- 6. μg/g = microgram per gram
- 7. NA = Not Applicable
- 8. NV = No Value
- 9. Yellow highlight and bold Concentration exceeds the applicable SCS

ECOH Page 7 of 18

TABLE 8
Soil Analytical Results – Polycyclic Aromatic Hydrocarbons

Borehole / Monitoring Well ID				BHMW1
Sample ID		MECP		BHMW1-SS4
Sample Depth (m)	Units	Table 3	RDL	2.29-3.05
Laboratory ID		SCS ²		L2635191-2
Date Sampled (mmm/dd/yy)				Sep-02-21
Acenaphthene	μg/g	7.9	0.05	<0.050
Acenaphthylene	μg/g	0.15	0.05	<0.050
Anthracene	μg/g	0.67	0.05	<0.050
Benzo(a)anthracene	μg/g	0.5	0.05	<0.050
Benzo(a)pyrene	μg/g	0.3	0.05	<0.050
Benzo(b/j)fluoranthene	μg/g	0.78	0.05	<0.050
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.050
Benzo(k)fluoranthene	μg/g	0.78	0.05	<0.050
Chrysene	μg/g	7	0.05	<0.050
Dibenz(a,h)anthracene	μg/g	0.1	0.05	<0.050
Fluoranthene	μg/g	0.69	0.05	<0.050
Fluorene	μg/g	62	0.05	<0.050
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	<0.050
1-Methylnaphthalene	μg/g	0.99	0.03	<0.030
2-Methylnaphthalene	μg/g	0.99	0.03	<0.030
Naphthalene	μg/g	0.6	0.013	<0.013
Phenanthrene	μg/g	6.2	0.046	<0.046
Pyrene	μg/g	78	0.05	<0.050

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with Parkland/Institutional/Residential Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. <0.20 = Concentration of parameter detected below the RDL
- 6. μg/g = microgram per gram
- 7. PAHs = Polycyclic Aromatic Hydrocarbons
- 8. NA = Not Applicable
- 9. NV = No Value
- 10. Yellow highlight and bold Concentration exceeds the applicable SCS

TABLE 9
Soil Analytical Results - Petroleum Hydrocarbon Fractions 1 through 4

Borehole / Monitoring Well ID				BHMW1
Sample ID		MECP		BHMW1-SS4
Sample Depth (m)	Units	Table 3 SCS ²	RDL	2.29-3.05
Laboratory ID				L2635191-2
Date Sampled (mmm/dd/yy)				Sep-02-21
F1 (C6-C10)	μg/g	55	5.0	<5.0
F1 - BTEX	μg/g	55	5	<5.0
F2 (C10-C16)	μg/g	98	10	<10
F3 (C16-C34)	μg/g	300	50	<50
F4 (C34-C50)	μg/g	2800	50	<50

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with Parkland/Institutional/Residential Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. <0.20 = Concentration of parameter detected below the RDL
- 6. μg/g = microgram per gram
- 7. PHCs (F1-F4) = Petroleum Hydrocarbon Fractions 1 through 4
- 8. BTEX = Benzene, Toluene, Ethylbenzene and Xylenes
- 9. NA = Not Applicable
- 10. NV = No Value
- 11. Yellow highlight and bold Concentration exceeds the applicable SCS

ECOH Page 9 of 18

TABLE 10
Soil Analytical Results - Volatile Organic Compounds

Borehole / Monitoring Well ID				BHMW1	
Sample ID		MECP		BHMW1-SS4	
Sample Depth (m)	Units	Table 3	RDL	2.29-3.05	
Laboratory ID		SCS ¹		L2635191-2	
Date Sampled (mmm/dd/yy)				Sep-02-21	
Acetone	μg/g	16	0.50	<0.50	
Benzene	μg/g	0.21	0.0068	<0.0068	
Bromodichloromethane	μg/g	13	0.050	<0.050	
Bromoform	μg/g	0.27	0.050	<0.050	
Bromomethane	μg/g	0.05	0.050	<0.050	
Carbon Tetrachloride	μg/g	0.05	0.050	<0.050	
Chlorobenzene	μg/g	2.4	0.050	<0.050	
Chloroform	μg/g	0.05	0.050	<0.050	
Dibromochloromethane	μg/g	9.4	0.050	<0.050	
Dichlorodifluoromethane	μg/g	16	0.050	<0.050	
1,2-Dichlorobenzene	μg/g	3.4	0.050	<0.050	
1,3-Dichlorobenzene	μg/g	4.8	0.050	<0.050	
1,4-Dichlorobenzene	μg/g	0.083	0.050	<0.050	
1,1-Dichloroethane	μg/g	3.5	0.050	<0.050	
1,2-Dichloroethane	μg/g	0.05	0.050	<0.050	
1,1-Dichloroethylene	μg/g	0.05	0.050	<0.050	
cis-1,2-Dichloroethylene	μg/g	3.4	0.050	<0.050	
trans-1,2-Dichloroethylene	μg/g	0.084	0.050	<0.050	
1,2-Dichloropropane	μg/g	0.05	0.050	<0.050	
1,3-Dichloropropene, total	μg/g	0.05	0.042	<0.042	
Ethylbenzene	μg/g	2	0.018	<0.018	
Hexane	μg/g	2.8	0.050	<0.050	
Methyl Ethyl Ketone (2-Butanone)	μg/g	16	0.50	<0.50	
Methyl Isobutyl Ketone	μg/g	1.7	0.50	<0.50	
Methyl tert-butyl ether	μg/g	0.75	0.050	<0.050	
Methylene Chloride	μg/g	0.1	0.050	<0.050	
Styrene	μg/g	0.7	0.050	<0.050	
1,1,1,2-Tetrachloroethane	μg/g	0.058	0.050	<0.050	
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.050	<0.050	
Tetrachloroethylene	μg/g	0.28	0.050	<0.050	
Toluene	μg/g	2.3	0.080	<0.080	
1,1,1-Trichloroethane	μg/g	0.38	0.050	<0.050	
1,1,2-Trichloroethane	μg/g	0.05	0.050	<0.050	
Trichloroethylene	μg/g	0.061	0.010	<0.010	
Trichlorofluoromethane	μg/g	4	0.050	<0.050	
Vinyl Chloride	μg/g	0.02	0.020	<0.020	
Total Xylenes	μg/g	3.1	0.050	<0.050	

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with Parkland/Institutional/Residential Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. <0.20 Concentration of parameter detected below the RDL
- 6. $\mu g/g$ = microgram per gram
- 7. VOCs = Volatile Organic Compounds
- 8. NA = Not Applicable
- 9. NV = No Value
- 10. Yellow highlight and bold Concentration exceeds the applicable SCS

ECOH Page 10 of 18

TABLE 11
Soil Analytical Results - Ploychlorinated Biphenyls

Borehole / Monitoring Well ID	Units		RDL	BHMW1
Sample ID		MECP		BHMW1-SS4
Sample Depth (m)		Table 3 SCS ¹		2.29-3.05
Laboratory ID				L2635191-2
Date Sampled (mmm/dd/yy)				Sep-02-21
PCBs				
Total PCBs	μg/g	0.35	0.020	<0.020

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with Industrial/Community/Commercial Use and Medium/Fine Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. < 0.20 Concentration of parameter detected below the RDL
- 6. μ g/g = microgram per gram
- 7. PCBs = Polychlorinated Biphenyls
- 8. ABNs = Acid-Base Neutrals
- 9. NA = Not Applicable
- 10. NV = No Value
- 11. Yellow highlight and bold Concentration exceeds the applicable SCS

ECOH Page 11 of 18

TABLE 12
Soil Analytical Results - Toxicity Characteristic Leaching Procedure

Borehole / Monitoring Well ID				BHMW1
Sample ID	MECP			TCLP
Laboratory ID	Criteria ²	Units	RDL	L2635197-1
Date Sampled (mmm/dd/yy)				Sep-09-21
Ignitability				
Ignitability	NV	NV	NA	NF/NI
TCLP Prep	•		•	•
TCLP - % Solids	NV	%	0.2	NA
TCLP Extraction Fluid	NV	NV	NA	NA
Initial pH	NV	pН	NA	9.18
Final pH	NV	pН	NA	6.18
TCLP Inorganics	•	-		
Leachable WAD Cyanide (Free)	20	mg/L	0.10	<0.10
Leachable Fluoride	150	mg/L	10	<10
Leachable Nitrate	NV	mg/L	2.0	<2.0
Leachable Nitrite	NV	mg/L	2.0	<2.0
Leachable Nitrate + Nitrite	1000	mg/L	4.0	<4.0
Leachable Arsenic	2.5	mg/L	0.2	<0.050
Leachable Barium	100	mg/L	0.50	<0.50
Leachable Boron	500	mg/L	2.5	<2.5
Leachable Cadmium	0.5	mg/L	0.0050	<0.0050
Leachable Chromium	5	mg/L	0.050	<0.050
Leachable Lead	5	mg/L	0.025	<0.025
Leachable Mercury	0.1	mg/L	0.00010	<0.00010
Leachable Selenium	1	mg/L	0.025	<0.025
Leachable Silver	5	mg/L	0.0050	<0.0050
Leachable Uranium	10	mg/L	0.25	<0.25
TCLP Prep - Volatiles				
Amount Extracted (Wet Weight) (g)	NV	NV	NA	NA
TCLP Volatile Organic Compounds				
Leachable Benzene	0.5	mg/L	0.025	<0.025
Leachable Chloroform	10	mg/L	0.10	<0.10
Leachable Chlorobenzene	8	mg/L	0.025	<0.025
Leachable Carbon Tetrachloride	0.5	mg/L	0.025	<0.025
Leachable 1,2-Dichlorobenzene	20	mg/L	0.025	<0.025
Leachable 1,4-Dichlorobenzene	0.5	mg/L	0.025	<0.025
Leachable 1,2-Dichloroethane	0.5	mg/L	0.025	<0.025
Leachable 1,1-Dichloroethylene	1.4	mg/L	0.025	<0.025
Leachable Methyl Ethyl Ketone (2-Butanone)	200	mg/L	1.0	<1.0
Leachable Methylene Chloride (Dichloromethane)	5	mg/L	0.50	<0.50
Leachable Tetrachloroethylene	3	mg/L	0.025	<0.025
Leachable Trichloroethylene	5	mg/L	0.025	<0.025
Leachable Vinyl Chloride	0.2	mg/L	0.05	<0.05

^{1.} MECP = Ministry of the Environment, Conservation and Parks

ECOH Page 12 of 18

^{2.} MECP Ontario Regulation 558/00

^{3.} RDL = Reported Detection Limit

^{4.} NF/NI = Non-Flammable/Non-Ignitable

^{5.} mg/L = milligram per litre

^{6.} NA = Not Applicable

^{7.} NV = No Value

^{8.} Yellow highlight and bold $\,$ - Concentration exceeds the applicable SCS $\,$

TABLE 13
Groundwater Analytical Results – Metals & Inorganics

Borehole / Monitoring Well ID					BHMW1	MW4
Sample ID		MECP			BHMW1	MW4
Sample Depth (m)	Units	Table 3	RDL	RDL (DANA(A)	4.98	4.27
Laboratory ID		SCS ²	(BHMW1)	(MW4)	L2637513-1	L2635577-1
Date Sampled (mmm/dd/yy)					Sep-09-21	Sep-03-21
Antimony	μg/L	20000	1.00	0.10	1.4	<0.10
Arsenic	μg/L	1900	1.00	0.10	2.8	0.22
Barium	μg/L	29000	1.00	0.10	160	341
Beryllium	μg/L	67	1.00	0.10	<1.0	<0.10
Boron	μg/L	45000	100	10	500	236
Cadmium	μg/L	2.7	0.050	0.010	<0.050	<0.010
Chromium	μg/L	810	5.00	0.50	<5.0	<0.50
Cobalt	μg/L	66	1.00	0.10	<1.0	<0.10
Copper	μg/L	87	2.00	0.20	3.6	3.72
Lead	μg/L	25	0.500	0.050	<0.50	0.051
Mercury	μg/L	0.29	0.0050	0.0050	0.0643	<0.0050
Molybdenum	μg/L	9200	0.500	0.050	27.1	0.524
Nickel	μg/L	490	5.00	0.50	<5.0	<0.50
Selenium	μg/L	63	0.500	0.050	1.18	0.096
Silver	μg/L	1.5	0.500	0.050	<0.50	<0.050
Sodium	μg/L	2300000	500	500	137000	162000
Thallium	μg/L	510	0.100	0.010	<0.10	<0.010
Uranium	μg/L	420	0.100	0.010	2.26	0.331
Vanadium	μg/L	250	5.00	0.50	<5.0	<0.50
Zinc	μg/L	1100	10.0	1.0	<10	3.4
Chloride	μg/L	2300	2.500	2.500	511	513
Chromium, Hexavalent	μg/L	140	0.50	0.50	<0.50	<0.50
Cyanide (WAD)	μg/L	66	2.0	2.0	<2.0	<2.0

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with All Types of Property Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. <0.20 = Concentration of parameter detected below the RDL
- 6. μg/L = microgram per litre
- 7. NA = Not Applicable
- 8. NV = No Value
- 9. Yellow highlight and bold Concentration exceeds the applicable SCS

Page 13 of 18

TABLE 14
Groundwater Analytical Results – Polycyclic Aromatic Hydrocarbons

Borehole / Monitoring Well ID				BHMW1	MW4
Sample ID		MECP		BHMW1	MW4
Sample Depth (m)	Units	Table 3	RDL	4.98	4.27
Laboratory ID		SCS ²		L2637513-1	L2635577-1
Date Sampled (mmm/dd/yy)				Sep-09-21	Sep-03-21
Acenaphthene	μg/L	600	0.02	N/A	<0.020
Acenaphthylene	μg/L	1.8	0.02	N/A	<0.020
Anthracene	μg/L	2.4	0.02	N/A	<0.020
Benzo(a)anthracene	μg/L	4.7	0.02	N/A	<0.020
Benzo(a)pyrene	μg/L	0.81	0.01	N/A	<0.010
Benzo(b/j)fluoranthene	μg/L	0.8	0.02	N/A	<0.020
Benzo(g,h,i)perylene	μg/L	0.2	0.02	N/A	<0.020
Benzo(k)fluoranthene	μg/L	0.4	0.02	N/A	<0.020
Chrysene	μg/L	1	0.02	N/A	<0.020
Dibenz(a,h)anthracene	μg/L	0.52	0.02	N/A	<0.020
Fluoranthene	μg/L	130	0.02	N/A	<0.020
Fluorene	μg/L	400	0.02	N/A	<0.020
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.02	N/A	<0.020
1-Methylnaphthalene	μg/L	1800	0.02	N/A	<0.020
2-Methylnaphthalene	μg/L	1800	0.02	N/A	<0.020
Naphthalene	μg/L	1400	0.05	N/A	<0.050
Phenanthrene	μg/L	580	0.02	N/A	<0.020
Pyrene	μg/L	68	0.02	N/A	<0.020

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with All Types of Property Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. <0.20 = Concentration of parameter detected below the RDL
- 6. μg/L = microgram per litre
- 7. PAHs = Polycyclic Aromatic Hydrocarbons
- 8. NA = Not Applicable
- 9. NV = No Value
- 10. Yellow highlight and bold Concentration exceeds the applicable SCS

TABLE 15
Groundwater Analytical Results - Petroleum Hydrocarbon Fractions 1 through 4

Borehole / Monitoring Well ID				BHMW1	MW4
Sample ID		MECP		BHMW1	MW4
Sample Depth (m)	Units	Table 3	RDL	4.98	4.27
Laboratory ID		SCS ²		L2637513-1	L2635577-1
Date Sampled (mmm/dd/yy)				Sep-09-21	Sep-03-21
F1 (C6-C10) - BTEX	μg/L	750	25	<25	<25
F1 - BTEX	μg/L	750	25	<25	<25
F2 (C10-C16)	μg/L	150	100	<100	<100
F3 (C16-C34)	μg/L	500	250	<250	<250
F4 (C34-C50)	μg/L	500	250	<250	<250

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with All Types of Property Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. <0.20 = Concentration of parameter detected below the RDL
- 6. μg/L = microgram per litre
- 7. PHCs (F1-F4) = Petroleum Hydrocarbon Fractions 1 through 4
- 8. BTEX = Benzene, Toluene, Ethylbenzene and Xylenes
- 9. NA = Not Applicable
- 10. NV = No Value
- 11. Yellow highlight and bold Concentration exceeds the applicable SCS

Page 15 of 18

TABLE 16
Groundwater Analytical Results - Volatile Organic Compounds

Borehole / Monitoring Well ID				BHMW1	MW4
Sample ID		MECP		BHMW1	MW4
Sample Depth (m)	Units	Table 3	RDL	4.98	4.27
Laboratory ID		SCS ¹		L2637513-1	L2635577-1
Date Sampled (mmm/dd/yy)				Sep-09-21	Sep-03-21
Acetone	μg/L	130000	30	<30	<30
Benzene	μg/L	44	0.5	<0.5	<0.5
Bromodichloromethane	μg/L	85000	2.0	<2	<2
Bromoform	μg/L	380	5.0	<5	<5
Bromomethane	μg/L	5.6	0.5	<0.5	<0.5
Carbon Tetrachloride	μg/L	0.79	0.2	<0.2	<0.2
Chlorobenzene	μg/L	630	0.5	<0.5	<0.5
Chloroform	μg/L	2.4	1.0	<1	<1
Dibromochloromethane	μg/L	82000	2.0	<2	<2
Dichlorodifluoromethane	μg/L	4400	2.0	<2	<2
1,2-Dichlorobenzene	μg/L	4600	0.5	<0.5	<0.5
1,3-Dichlorobenzene	μg/L	9600	0.5	<0.5	<0.5
1,4-Dichlorobenzene	μg/L	8	0.5	<0.5	<0.5
1,1-Dichloroethane	μg/L	320	0.5	<0.5	<0.5
1,2-Dichloroethane	μg/L	1.6	0.5	<0.5	<0.5
1,1-Dichloroethylene	μg/L	1.6	0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	μg/L	1.6	0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	μg/L	1.6	0.5	<0.5	<0.5
1,2-Dichloropropane	μg/L	16	0.5	<0.5	<0.5
Ethylbenzene	μg/L	2300	0.5	<0.5	<0.5
Hexane	μg/L	51	0.5	<0.5	<0.5
Methyl Ethyl Ketone (2-Butanone)	μg/L	470000	20	<20	<20
Methyl Isobutyl Ketone	μg/L	140000	20	<20	<20
Methyl tert-butyl ether	μg/L	190	2.0	<2	<2
Methylene Chloride	μg/L	610	5.0	<5	<5
Styrene	μg/L	1300	0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.5	<0.5	<0.5
Tetrachloroethylene	μg/L	1.6	0.5	<0.5	<0.5
Toluene	μg/L	18000	0.5	<0.5	<0.5
1,1,1-Trichloroethane	μg/L	640	0.5	<0.5	<0.5
1,1,2-Trichloroethane	μg/L	4.7	0.5	<0.5	<0.5
Trichloroethylene	μg/L	1.6	0.5	<0.5	<0.5
Trichlorofluoromethane	μg/L	2500	5.0	<5	<5
Vinyl Chloride	μg/L	0.5	0.5	<0.5	<0.5
Total Xylenes	μg/L	4200	0.5	<0.5	<0.5

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition with All Types of Property Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. < 0.20 Concentration of parameter detected below the RDL
- 6. μ g/L = microgram per litre
- 7. VOCs = Volatile Organic Compounds
- 8. NA = Not Applicable
- 9. NV = No Value
- 10. Yellow highlight and bold $\,$ Concentration exceeds the applicable SCS $\,$

ECOH Page 16 of 18

TABLE 17
Groundwater Analytical Results - Polychlorinated Biphenyls

Borehole / Monitoring Well ID				BHMW1	MW4
Sample ID		MECP		BHMW1	MW4
Sample Depth (m)	Units	Table 3	RDL	4.98	4.27
Laboratory ID		SCS ¹		L2637513-1	L2635577-1
Date Sampled (mmm/dd/yy)				Sep-09-21	Sep-03-21
PAHs					
Total PCBs	μg/L	3	0.040	N/A	<0.040

- 1. MECP = Ministry of the Environment, Conservation and Parks
- 2. MECP Ontario Regulation 153/04 (as amended), Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition All Types of Property Use and Coarse Textured Soil
- 3. SCS = Site Condition Standard
- 4. RDL = Reported Detection Limit
- 5. < 0.20 Concentration of parameter detected below the RDL
- 6. μ g/L = microgram per litre
- 7. PAHs = Polycyclic Aromatic Hydrocarbons
- 8. ABNs = Acid-Base Neutrals
- 9. NA = Not Applicable
- 10. NV = No Value
- 11. Yellow highlight and bold Concentration exceeds the applicable SCS

ECOH Page 17 of 18

TABLE 16
Relative Percent Difference Values

Borehole / Monitoring Well II	D BHN	/IW1				
Sample ID	BHMW1-SS4	DUP1	RDL	RPD ¹		
Matri	x S	Soil				
Date Sampled (mmm/dd/yy	Sep-	02-21				
Metals	-					
Antimony	<1.0	<1.0	1.0	NC		
Arsenic	2.6	2.5	1.0	4%		
Barium	16.1	15.8	1.0	2%		
Beryllium	<0.50	<0.50	0.5	NC		
Boron	<5.0	<5.0	5.0	NC		
Cadmium	<0.50	<0.50	0.5	NC		
Chromium	7.8	7.7	1.0	1%		
Cobalt	2.4	2.4	1.0	0%		
Copper	7.8	7.4	1.0	5%		
Lead	9.5	7.9	1.0	18%		
Molybdenum	<1.0	<1.0	1.0	NC		
Nickel	5.5	5.4	1.0	2%		
Selenium	<1.0	<1.0	1.0	NC		
Silver	<0.20	<0.20	0.2	NC		
Thallium	<0.50	<0.50	0.5	NC		
Uranium	<1.0	<1.0	1.0	NC		
Vanadium	18	18.6	1.0	3%		
Zinc	22.5	20.2	5.0	11%		

1. RPD = Relative percentage difference

2. RPD Calculation =
$$\frac{absolute (sample - duplicate)}{(sample + duplicate)/2} \times 100$$

3. NC = Non-Calculable

4. RDL = Reported detection limit

5. Concentrations of parameters in $\mu g/g$ (soil) and $\mu g/L$ (groundwater)

6. PAHs = Polycyclic Aromatic Hydrocarbons

7. PHCs (F1-F4) = Petroleum Hydrocarbon Fractions 1 through 4

8. VOCs = Volatile Organic Compounds

ECOH Page 18 of 18

APPENDIX A Borehole Logs

BOREHOLE ID: BHMW1

OGO	GED BY _	D 2-9-21										
DEPIH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE CORE NUMBER	SAMPLE ID	DEPTH (mbgs)	Analysis	RECOVERY (%)	SOIL VAPOUR READINGS Hexene / Isobutylene(ppm)	GW LEVEL	WELL		
-	0.7	TOPSOIL FINE SAND FILL -Light brown fine sand, dry	1	SS SS1	0 - 0.76	pH (<1.5mbgs)	60	0/0				
1 1 -		(SM) SILTY SAND -Brown silty sand, minor gravel.	2	SS SS2	0.76 - 1.52		60	25/0				
- 2 -			3	SS SS3	1.52 - 2.29		80	20/0				
- - 3		(SM) Wet at 2.64mbgs	4	SS SS4	2.29 - 3.05	PHC F1-F4, VOCs, PAHs, PCBs, Metals & Inorganics, pH (>1.5mbgs)	90	30/0				
-	3.2	WEATHERED SHALE -Grey weathered shale, dry, similar consistency at botto borehole	om of 5	SS SS5	3.05 - 3.81		55	25/0				
1 - -			6	SS SS6	3.81 - 4.57		30	40/0	-			
- 5 -			7	SS SS7	4.57 - 5.33		30	55/0	Ā			
-			8	SS SS8	5.33 - 6.1	Clean Bottom Sample	40	50/0				

APPENDIX B

Certificates of Analysis

ECOH MANAGEMENT INC (Mississauga)

ATTN: Ian Duncan

75 Courtney Park Drive West

Unit 1

Mississauga ON L5W 0E3

Date Received: 02-SEP-21

Report Date: 13-SEP-21 10:59 (MT)

Version: FINAL REV. 2

Client Phone: 905-795-2800

Certificate of Analysis

Lab Work Order #: L2635191

Project P.O. #: NOT SUBMITTED

Job Reference: 26685

C of C Numbers: 20-897729

Legal Site Desc:

Emily Hansen Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2635191 CONTD.... Page 2 of 8

26685							1	13-SEP-21 1	0:59 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	ne Limits	
L2635191-1 BHMW1-SS1									
Sampled By: CLIENT on 02-SEP-21 @ 12:00									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
рН	7.35		0.10	pH units	07-SEP-21				
L2635191-2 BHMW1-SS4									
Sampled By: CLIENT on 02-SEP-21 @ 12:00									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
	7.97		0.25	%	04-SEP-21				
% Moisture pH	7.97 8.08		0.25 0.10	pH units	04-SEP-21 07-SEP-21				
Metals	0.00		0.10	priunts	07-3LF-21				
Antimony (Sb)	<1.0		1.0	ug/g	09-SEP-21	40	50	7.5	7.5
Arithory (Ob) Arsenic (As)	2.6		1.0	ug/g ug/g	09-SEP-21	18	18	18	18
Barium (Ba)	16.1		1.0	ug/g ug/g	09-SEP-21	670	670	390	390
Beryllium (Be)	< 0.50		0.50	ug/g ug/g	09-SEP-21	8	10	4	5
Boron (B)	<5.0		5.0	ug/g	09-SEP-21	120	120	120	120
Cadmium (Cd)	< 0.50		0.50	ug/g	09-SEP-21	1.9	1.9	1.2	1.2
Chromium (Cr)	7.8		1.0	ug/g	09-SEP-21	160	160	160	160
Cobalt (Co)	2.4		1.0	ug/g	09-SEP-21	80	100	22	22
Copper (Cu)	7.8		1.0	ug/g	09-SEP-21	230	300	140	180
Lead (Pb)	9.5		1.0	ug/g	09-SEP-21	120	120	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	09-SEP-21	40	40	6.9	6.9
Nickel (Ni)	5.5		1.0	ug/g	09-SEP-21	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	09-SEP-21	5.5	5.5	2.4	2.4
Silver (Ag)	< 0.20		0.20	ug/g	09-SEP-21	40	50	20	25
Thallium (TI)	< 0.50		0.50	ug/g	09-SEP-21	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	09-SEP-21	33	33	23	23
Vanadium (V)	18.0		1.0	ug/g	09-SEP-21	86	86	86	86
Zinc (Zn)	22.5		5.0	ug/g	09-SEP-21	340	340	340	340
Volatile Organic Compounds									
Acetone	< 0.50		0.50	ug/g	08-SEP-21	16	28	16	28
Benzene	<0.0068		0.0068	ug/g	08-SEP-21	0.32	0.4	0.21	0.17
Bromodichloromethane	< 0.050		0.050	ug/g	08-SEP-21	18	18	13	13
Bromoform	< 0.050		0.050	ug/g	08-SEP-21	0.61	1.7	0.27	0.26
Bromomethane	< 0.050		0.050	ug/g	08-SEP-21	0.05	0.05	0.05	0.05
Carbon tetrachloride	< 0.050		0.050	ug/g	08-SEP-21	0.21	1.5	0.05	0.12
Chlorobenzene	< 0.050		0.050	ug/g	08-SEP-21	2.4	2.7	2.4	2.7
Dibromochloromethane	< 0.050		0.050	ug/g	08-SEP-21	13	13	9.4	9.4
Chloroform	< 0.050		0.050	ug/g	08-SEP-21	0.47	0.18	0.05	0.18
1,2-Dibromoethane	<0.050		0.050	ug/g	08-SEP-21	0.05	0.05	0.05	0.05
1,2-Dichlorobenzene	<0.050		0.050	ug/g	08-SEP-21	6.8	8.5	3.4	4.3
1,3-Dichlorobenzene	<0.050		0.050	ug/g	08-SEP-21	9.6	12	4.8	6
1,4-Dichlorobenzene	<0.050		0.050	ug/g	08-SEP-21	0.2	0.84	0.083	0.097
Dichlorodifluoromethane	<0.050		0.050	ug/g	08-SEP-21	16	25	16	25
1,1-Dichloroethane	<0.050		0.050	ug/g	08-SEP-21	17	21	3.5	11
1,2-Dichloroethane	<0.050		0.050	ug/g	08-SEP-21	0.05	0.05	0.05	0.05
1,1-Dichloroethylene	<0.050		0.050	ug/g	08-SEP-21	0.064	0.48	0.05	0.05
									I

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T3-Soil-All

#1: T3-Soil-Ind/Com/Commu. Property Use (Coarse)

#2: T3-Soil-Ind/Com/Commu. Property Use (Fine)

#3: T3-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2635191 CONTD....

Page 3 of 8 3-SEP-21 10:59 (MT)

26685							1	13-SEP-21 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
L2635191-2 BHMW1-SS4									
Sampled By: CLIENT on 02-SEP-21 @ 12:00									
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	08-SEP-21	55	37	3.4	30
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	08-SEP-21	1.3	9.3	0.084	0.75
Methylene Chloride	<0.050		0.050	ug/g	08-SEP-21	1.6	2	0.1	0.96
1,2-Dichloropropane	<0.050		0.050	ug/g	08-SEP-21	0.16	0.68	0.05	0.085
cis-1,3-Dichloropropene	<0.030		0.030	ug/g	08-SEP-21				
trans-1,3-Dichloropropene	<0.030		0.030	ug/g	08-SEP-21				
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g	08-SEP-21	0.18	0.21	0.05	0.083
Ethylbenzene	<0.018		0.018	ug/g	08-SEP-21	9.5	19	2	15
n-Hexane	<0.050		0.050	ug/g	08-SEP-21	46	88	2.8	34
Methyl Ethyl Ketone	<0.50		0.50	ug/g	08-SEP-21	70	88	16	44
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	08-SEP-21	31	210	1.7	4.3
MTBE	<0.050		0.050	ug/g	08-SEP-21	11	3.2	0.75	1.4
Styrene	<0.050		0.050	ug/g	08-SEP-21	34	43	0.7	2.2
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g	08-SEP-21	0.087	0.11	0.058	0.05
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g	08-SEP-21	0.05	0.094	0.05	0.05
Tetrachloroethylene	<0.050		0.050	ug/g	08-SEP-21	4.5	21	0.28	2.3
Toluene	<0.080		0.080	ug/g	08-SEP-21	68	78	2.3	6
1,1,1-Trichloroethane	<0.050		0.050	ug/g	08-SEP-21	6.1	12	0.38	3.4
1,1,2-Trichloroethane	<0.050		0.050	ug/g	08-SEP-21	0.05	0.11	0.05	0.05
Trichloroethylene	<0.010		0.010	ug/g	08-SEP-21	0.91	0.61	0.061	0.52
Trichlorofluoromethane	<0.050		0.050	ug/g	08-SEP-21	4	5.8	4	5.8
Vinyl chloride	<0.020		0.020	ug/g	08-SEP-21	0.032	0.25	0.02	0.022
o-Xylene	<0.020		0.020	ug/g	08-SEP-21				
m+p-Xylenes	<0.030		0.030	ug/g	08-SEP-21				
Xylenes (Total)	<0.050		0.050	ug/g	08-SEP-21	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	91.7		50-140	%	08-SEP-21				
Surrogate: 1,4-Difluorobenzene	95.5		50-140	%	08-SEP-21				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	08-SEP-21	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	09-SEP-21	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	09-SEP-21	230	250	98	150
F2-Naphth	<10		10	ug/g	09-SEP-21				
F3 (C16-C34)	<50		50	ug/g	09-SEP-21	1700	2500	300	1300
F3-PAH	<50		50	ug/g	09-SEP-21				
F4 (C34-C50)	<50		50	ug/g	09-SEP-21	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	<72		72	ug/g	09-SEP-21				
Chrom. to baseline at nC50	YES			No Unit	09-SEP-21				
Surrogate: 2-Bromobenzotrifluoride	74.2		60-140	%	09-SEP-21				
Surrogate: 3,4-Dichlorotoluene	80.8		60-140	%	08-SEP-21				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.050		0.050	ug/g	09-SEP-21	96	96	7.9	58
Acenaphthylene	<0.050		0.050	ug/g	09-SEP-21	0.15	0.17	0.15	0.17
Anthracene	<0.050		0.050	ug/g	09-SEP-21	0.67	0.74	0.67	0.74
Benzo(a)anthracene	<0.050		0.050	ug/g	09-SEP-21	0.96	0.96	0.5	0.63
Benzo(a)pyrene	<0.050		0.050	ug/g	09-SEP-21	0.3	0.3	0.3	0.3
Benzo(b&j)fluoranthene	<0.050		0.050	ug/g	09-SEP-21	0.96	0.96	0.78	0.78

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T3-Soil-All

#1: T3-Soil-Ind/Com/Commu. Property Use (Coarse)

#2: T3-Soil-Ind/Com/Commu. Property Use (Fine)

#3: T3-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2635191 CONTD....

Page 4 of 8 3-SEP-21 10:59 (MT)

26685								13-SEP-21 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2635191-2 BHMW1-SS4									
Sampled By: CLIENT on 02-SEP-21 @ 12:00							"0	"0	
Matrix: SOIL						#1	#2	#3	#4
Polycyclic Aromatic Hydrocarbons									
Benzo(g,h,i)perylene	< 0.050		0.050	ug/g	09-SEP-21	9.6	9.6	6.6	7.8
Benzo(k)fluoranthene	< 0.050		0.050	ug/g	09-SEP-21	0.96	0.96	0.78	0.78
Chrysene	< 0.050		0.050	ug/g	09-SEP-21	9.6	9.6	7	7.8
Dibenz(a,h)anthracene	< 0.050		0.050	ug/g	09-SEP-21	0.1	0.1	0.1	0.1
Fluoranthene	< 0.050		0.050	ug/g	09-SEP-21	9.6	9.6	0.69	0.69
Fluorene	< 0.050		0.050	ug/g	09-SEP-21	62	69	62	69
Indeno(1,2,3-cd)pyrene	< 0.050		0.050	ug/g	09-SEP-21	0.76	0.95	0.38	0.48
1+2-Methylnaphthalenes	< 0.042		0.042	ug/g	09-SEP-21	76	85	0.99	3.4
1-Methylnaphthalene	< 0.030		0.030	ug/g	09-SEP-21	76	85	0.99	3.4
2-Methylnaphthalene	< 0.030		0.030	ug/g	09-SEP-21	76	85	0.99	3.4
Naphthalene	< 0.013		0.013	ug/g	09-SEP-21	9.6	28	0.6	0.75
Phenanthrene	< 0.046		0.046	ug/g	09-SEP-21	12	16	6.2	7.8
Pyrene	< 0.050		0.050	ug/g	09-SEP-21	96	96	78	78
Surrogate: 2-Fluorobiphenyl	92.0		50-140	%	09-SEP-21				
Surrogate: d14-Terphenyl	92.8		50-140	%	09-SEP-21				
Polychlorinated Biphenyls									
Aroclor 1242	< 0.010		0.010	ug/g	09-SEP-21				
Aroclor 1248	< 0.010		0.010	ug/g	09-SEP-21				
Aroclor 1254	<0.010		0.010	ug/g	09-SEP-21				
Aroclor 1260	<0.010		0.010	ug/g	09-SEP-21				
Total PCBs	<0.020		0.020	ug/g	09-SEP-21	1.1	1.1	0.35	0.35
Surrogate: d14-Terphenyl	102.2		60-140	%	09-SEP-21				
L2635191-3 DUP1									
Sampled By: CLIENT on 02-SEP-21							""	"0	
Matrix: SOIL						#1	#2	#3	#4
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	09-SEP-21	40	50	7.5	7.5
Arsenic (As)	2.5		1.0	ug/g	09-SEP-21	18	18	18	18
Barium (Ba)	15.8		1.0	ug/g	09-SEP-21	670	670	390	390
Beryllium (Be)	< 0.50		0.50	ug/g	09-SEP-21	8	10	4	5
Boron (B)	<5.0		5.0	ug/g	09-SEP-21	120	120	120	120
Cadmium (Cd)	< 0.50		0.50	ug/g	09-SEP-21	1.9	1.9	1.2	1.2
Chromium (Cr)	7.7		1.0	ug/g	09-SEP-21	160	160	160	160
Cobalt (Co)	2.4		1.0	ug/g	09-SEP-21	80	100	22	22
Copper (Cu)	7.4		1.0	ug/g	09-SEP-21	230	300	140	180
Lead (Pb)	7.9		1.0	ug/g	09-SEP-21	120	120	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	09-SEP-21	40	40	6.9	6.9
Nickel (Ni)	5.4		1.0	ug/g	09-SEP-21	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	09-SEP-21	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	09-SEP-21	40	50	20	25
Thallium (TI)	< 0.50		0.50	ug/g	09-SEP-21	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	09-SEP-21	33	33	23	23
Vanadium (V)	18.6		1.0	ug/g	09-SEP-21	86	86	86	86
Zinc (Zn)	20.2		5.0	ug/g	09-SEP-21	340	340	340	340
		-			-				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T3-Soil-All

#1: T3-Soil-Ind/Com/Commu. Property Use (Coarse)

#2: T3-Soil-Ind/Com/Commu. Property Use (Fine)

#3: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2635191 CONTD.... Page 5 of 8

26685							1	13-SEP-21 1	D:59 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2635191-5 BHMW1-GS									
Sampled By: CLIENT on 02-SEP-21 @ 12:45						#1	#2	#3	#4
Matrix: SOIL									
Particle Size General Texture Class	Coarse			No Unit	09-SEP-21				
MUST PSA % > 75um	71.7		1.0	%	09-SEP-21				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T3-Soil-All

#1: T3-Soil-Ind/Com/Commu. Property Use (Coarse)

#2: T3-Soil-Ind/Com/Commu. Property Use (Fine)

#3: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference***
F1-F4-511-CALC-WT	Soil	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-S

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011) CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

Notes

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sg are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sg cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Soil

ABN-Calculated Parameters

SW846 8270

MOISTURE-WT Soil % Moisture

CCME PHC in Soil - Tier 1 (mod)

Reference Information

PAH-511-WT Soil

PAH-O.Reg 153/04 (July 2011) SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking technique sused to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(i)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PCB-511-WT

Soil

PCB-O.Reg 153/04 (July 2011) SW846 3510/8082

An aliquot of a solid sample is extracted with a solvent, extract is cleaned up and analyzed on the GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT

Soil

pН

MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

PSA-MUST-SK

Soil

% Particles > 75um

ASTM D6913

(Coarse/Fine) An air-dried sample is reduced to < 2 mm size and mixed with a dispersing agent (Calgon solution). The sample is washed through a 200 mesh (75 um) sieve. The retained mass of sample is used to determine % sand fraction.

Reference: ASTM D422-63

VOC-1,3-DCP-CALC-WT VOC-511-HS-WT

Soil

Regulation 153 VOCs

SW8260B/SW8270C

Soil VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-

Soil

Sum of Xylene Isomer

Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

20-897729

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON SASKATCHEWAN, CANADA	ı, WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2635191 Report Date: 13-SEP-21 Page 1 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Soil							
	580958								
WG3612065-4	DUP		WG3612065-3						
F1 (C6-C10)			<5.0	<5.0	RPD-NA	ug/g	N/A	30	09-SEP-21
WG3612065-2 F1 (C6-C10)	LCS			110.7		%		80-120	08-SEP-21
WG3612065-1 F1 (C6-C10)	MB			<5.0		ug/g		5	08-SEP-21
Surrogate: 3,4-D	Dichloroto	oluene		81.7		%		60-140	08-SEP-21
WG3612065-5 F1 (C6-C10)	MS		WG3612065-3	127.3		%		60-140	09-SEP-21
F2-F4-511-WT		Soil							
Batch R5	581599								
WG3612063-3	DUP		WG3612063-5	-10	DDD ***	ua/a	N1/A	20	00.050.04
F2 (C10-C16)			<10	<10	RPD-NA	ug/g	N/A	30	09-SEP-21
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	09-SEP-21
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	09-SEP-21
WG3612063-2 F2 (C10-C16)	LCS			89.5		%		80-120	09-SEP-21
F3 (C16-C34)				84.2		%		80-120	09-SEP-21
F4 (C34-C50)				94.4		%		80-120	09-SEP-21
WG3612063-1	MB								
F2 (C10-C16)				<10		ug/g		10	09-SEP-21
F3 (C16-C34)				<50		ug/g		50	09-SEP-21
F4 (C34-C50)				<50		ug/g		50	09-SEP-21
Surrogate: 2-Bro		otrifluoride		83.7		%		60-140	09-SEP-21
WG3612063-4 F2 (C10-C16)	MS		WG3612063-5	82.2		%		60-140	09-SEP-21
F3 (C16-C34)				79.5		%		60-140	09-SEP-21
F4 (C34-C50)				84.7		%		60-140	09-SEP-21
MET-200.2-CCMS-\	ΝT	Soil						20 . 10	
	582236	Ju.							
WG3613614-2 Antimony (Sb)	CRM		WT-SS-2	110.0		%		70-130	09-SEP-21
Arsenic (As)				118.1		%		70-130	09-SEP-21
Barium (Ba)				115.1		%		70-130	09-SEP-21
Beryllium (Be)				116.9		%		70-130	09-SEP-21
Boron (B)				9.5		mg/kg		3.5-13.5	09-SEP-21
, ,									

Workorder: L2635191 Report Date: 13-SEP-21 Page 2 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5582236								
WG3613614-2 CRM		WT-SS-2						
Cadmium (Cd)			105.5		%		70-130	09-SEP-21
Chromium (Cr)			107.8		%		70-130	09-SEP-21
Cobalt (Co)			112.7		%		70-130	09-SEP-21
Copper (Cu)			113.1		%		70-130	09-SEP-21
Lead (Pb)			109.6		%		70-130	09-SEP-21
Molybdenum (Mo)			113.9		%		70-130	09-SEP-21
Nickel (Ni)			111.6		%		70-130	09-SEP-21
Selenium (Se)			0.12		mg/kg		0-0.34	09-SEP-21
Silver (Ag)			102.8		%		70-130	09-SEP-21
Thallium (TI)			0.083		mg/kg		0.029-0.129	09-SEP-21
Uranium (U)			123.0		%		70-130	09-SEP-21
Vanadium (V)			108.9		%		70-130	09-SEP-21
Zinc (Zn)			108.0		%		70-130	09-SEP-21
WG3613614-4 DUP Antimony (Sb)		L2634112-1 <0.10	<0.10	RPD-NA	ug/g	N/A	30	09-SEP-21
Arsenic (As)		0.12	0.16	KFD-NA	ug/g	28	30	09-SEP-21
Barium (Ba)		210	221		ug/g	5.2	40	09-SEP-21
Beryllium (Be)		<0.10	<0.10	RPD-NA	ug/g	N/A	30	09-SEP-21
Boron (B)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	
Cadmium (Cd)		0.210	0.215	RPD-NA	ug/g ug/g	2.5	30	09-SEP-21
Chromium (Cr)		31.8	33.1					09-SEP-21
, ,		0.28	0.29		ug/g	4.0	30	09-SEP-21
Cobalt (Co)				000 114	ug/g	5.9	30	09-SEP-21
Copper (Cu)		<0.50	0.50	RPD-NA	ug/g	N/A	30	09-SEP-21
Lead (Pb)		<0.50	<0.50	RPD-NA	ug/g	N/A	40	09-SEP-21
Molybdenum (Mo)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	09-SEP-21
Nickel (Ni)		10.3	10.8		ug/g	4.6	30	09-SEP-21
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	09-SEP-21
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	09-SEP-21
Thallium (TI)		<0.050	<0.050	RPD-NA	ug/g	N/A	30	09-SEP-21
Uranium (U)		<0.050	<0.050	RPD-NA	ug/g	N/A	30	09-SEP-21
Vanadium (V)		0.21	0.23		ug/g	9.3	30	09-SEP-21
Zinc (Zn)		3.7	3.4		ug/g	8.7	30	09-SEP-21

WG3613614-3 LCS

Workorder: L2635191 Report Date: 13-SEP-21 Page 3 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5582236								
WG3613614-3 LCS Antimony (Sb)			110.0		%		80-120	09-SEP-21
Arsenic (As)			106.5		%		80-120	09-SEP-21
Barium (Ba)			104.7		%		80-120	09-SEP-21
Beryllium (Be)			102.5		%		80-120	09-SEP-21
Boron (B)			100.8		%		80-120	09-SEP-21
Cadmium (Cd)			105.1		%		80-120	09-SEP-21
Chromium (Cr)			106.2		%		80-120	09-SEP-21
Cobalt (Co)			105.4		%		80-120	09-SEP-21
Copper (Cu)			103.2		%		80-120	09-SEP-21
Lead (Pb)			110.0		%		80-120	09-SEP-21
Molybdenum (Mo)			108.1		%		80-120	09-SEP-21
Nickel (Ni)			104.7		%		80-120	09-SEP-21
Selenium (Se)			108.7		%		80-120	09-SEP-21
Silver (Ag)			70.3	RRQC	%		80-120	09-SEP-21
Thallium (TI)			108.6		%		80-120	09-SEP-21
Uranium (U)			105.8		%		80-120	09-SEP-21
Vanadium (V)			107.4		%		80-120	09-SEP-21
Zinc (Zn)			109.3		%		80-120	09-SEP-21
COMMENTS: RRQC WG3613614-1 MB	: Silver recove	ry outside of ALS I	DQOs due to	issue with stand	dard. Reported da	ta was not affect	by this issue	
Antimony (Sb)			<0.10		mg/kg		0.1	09-SEP-21
Arsenic (As)			<0.10		mg/kg		0.1	09-SEP-21
Barium (Ba)			<0.50		mg/kg		0.5	09-SEP-21
Beryllium (Be)			<0.10		mg/kg		0.1	09-SEP-21
Boron (B)			<5.0		mg/kg		5	09-SEP-21
Cadmium (Cd)			<0.020		mg/kg		0.02	09-SEP-21
Chromium (Cr)			<0.50		mg/kg		0.5	09-SEP-21
Cobalt (Co)			<0.10		mg/kg		0.1	09-SEP-21
Copper (Cu)			<0.50		mg/kg		0.5	09-SEP-21
Lead (Pb)			<0.50		mg/kg		0.5	09-SEP-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	09-SEP-21
Nickel (Ni)			<0.50		mg/kg		0.5	09-SEP-21
Selenium (Se)			<0.20		mg/kg		0.2	09-SEP-21
Silver (Ag)			<0.10		mg/kg		0.1	09-SEP-21

Workorder: L2635191 Report Date: 13-SEP-21 Page 4 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5582236								
WG3613614-1 MB Thallium (TI)			<0.050		ma/ka		0.05	00.050.04
Uranium (U)			<0.050		mg/kg mg/kg		0.05	09-SEP-21
Vanadium (V)			<0.20		mg/kg		0.03	09-SEP-21 09-SEP-21
Zinc (Zn)			<2.0		mg/kg		2	09-SEP-21
			\Z. 0		mg/kg		2	09-3EF-21
MOISTURE-WT	Soil							
Batch R5579592 WG3611615-3 DUP		L2635532-1						
% Moisture		36.4	35.6		%	2.2	20	04-SEP-21
WG3611615-2 LCS								
% Moisture			98.6		%		90-110	04-SEP-21
WG3611615-1 MB								
% Moisture			<0.25		%		0.25	04-SEP-21
PAH-511-WT	Soil							
Batch R5581493								
WG3612062-3 DUP		WG3612062-5 < 0.030	<0.030	000 114	/a	N1/A	40	00.050.04
1-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	09-SEP-21
2-Methylnaphthalene				RPD-NA	ug/g	N/A	40	09-SEP-21
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Benzo(a)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Benzo(b&j)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Chrysene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Dibenz(a,h)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Fluorene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Indeno(1,2,3-cd)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	09-SEP-21
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	09-SEP-21
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
WG3612062-2 LCS								

Workorder: L2635191 Report Date: 13-SEP-21 Page 5 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5581493								
WG3612062-2 LCS			00.0		0/			
1-Methylnaphthalene			96.0		%		50-140	09-SEP-21
2-Methylnaphthalene			92.4		%		50-140	09-SEP-21
Acenaphthene			90.9		%		50-140	09-SEP-21
Acenaphthylene			87.4		%		50-140	09-SEP-21
Anthracene			82.2		%		50-140	09-SEP-21
Benzo(a)anthracene			94.4		%		50-140	09-SEP-21
Benzo(a)pyrene			80.4		%		50-140	09-SEP-21
Benzo(b&j)fluoranthene			92.9		%		50-140	09-SEP-21
Benzo(g,h,i)perylene			84.2		%		50-140	09-SEP-21
Benzo(k)fluoranthene			88.1		%		50-140	09-SEP-21
Chrysene			96.4		%		50-140	09-SEP-21
Dibenz(a,h)anthracene			92.5		%		50-140	09-SEP-21
Fluoranthene			90.7		%		50-140	09-SEP-21
Fluorene			89.4		%		50-140	09-SEP-21
Indeno(1,2,3-cd)pyrene			92.2		%		50-140	09-SEP-21
Naphthalene			88.3		%		50-140	09-SEP-21
Phenanthrene			93.4		%		50-140	09-SEP-21
Pyrene			90.0		%		50-140	09-SEP-21
WG3612062-1 MB 1-Methylnaphthalene			<0.030		ug/g		0.03	09-SEP-21
2-Methylnaphthalene			<0.030		ug/g		0.03	09-SEP-21
Acenaphthene			<0.050		ug/g		0.05	09-SEP-21
Acenaphthylene			<0.050		ug/g		0.05	09-SEP-21
Anthracene			<0.050		ug/g		0.05	09-SEP-21
Benzo(a)anthracene			<0.050		ug/g		0.05	09-SEP-21
Benzo(a)pyrene			<0.050		ug/g		0.05	09-SEP-21
Benzo(b&j)fluoranthene			<0.050		ug/g		0.05	09-SEP-21
Benzo(g,h,i)perylene			<0.050		ug/g		0.05	09-SEP-21
Benzo(k)fluoranthene			<0.050		ug/g		0.05	09-SEP-21
Chrysene			<0.050		ug/g		0.05	09-SEP-21
Dibenz(a,h)anthracene			<0.050		ug/g		0.05	09-SEP-21
Fluoranthene			<0.050		ug/g		0.05	09-SEP-21
Fluorene			<0.050		ug/g		0.05	09-SEP-21
Indeno(1,2,3-cd)pyrene			<0.050		ug/g		0.05	09-SEP-21
11140110(1,2,0 04)pyrelie			\0.000		⊲ 9/9		0.00	03-3LF-21

Workorder: L2635191 Report Date: 13-SEP-21 Page 6 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result (Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5581493								
WG3612062-1 MB			0.040				0.040	
Naphthalene			<0.013		ug/g		0.013	09-SEP-21
Phenanthrene			<0.046		ug/g		0.046	09-SEP-21
Pyrene	1		<0.050		ug/g		0.05	09-SEP-21
Surrogate: 2-Fluorobiph	-		87.9		%		50-140	09-SEP-21
Surrogate: d14-Terphen	iyi		85.4		%		50-140	09-SEP-21
WG3612062-4 MS 1-Methylnaphthalene		WG3612062-5	96.0		%		50-140	09-SEP-21
2-Methylnaphthalene			92.7		%		50-140	09-SEP-21
Acenaphthene			90.4		%		50-140	09-SEP-21
Acenaphthylene			85.4		%		50-140	09-SEP-21
Anthracene			81.7		%		50-140	09-SEP-21
Benzo(a)anthracene			92.0		%		50-140	09-SEP-21
Benzo(a)pyrene			79.6		%		50-140	09-SEP-21
Benzo(b&j)fluoranthene			93.8		%		50-140	09-SEP-21
Benzo(g,h,i)perylene			80.0		%		50-140	09-SEP-21
Benzo(k)fluoranthene			87.3		%		50-140	09-SEP-21
Chrysene			96.4		%		50-140	09-SEP-21
Dibenz(a,h)anthracene			84.4		%		50-140	09-SEP-21
Fluoranthene			88.4		%		50-140	09-SEP-21
Fluorene			93.4		%		50-140	09-SEP-21
Indeno(1,2,3-cd)pyrene			82.7		%		50-140	09-SEP-21
Naphthalene			88.0		%		50-140	09-SEP-21
Phenanthrene			94.9		%		50-140	09-SEP-21
Pyrene			87.1		%		50-140	09-SEP-21
PCB-511-WT	Soil							
Batch R5581131								
WG3612062-3 DUP		WG3612062-5			,			
Aroclor 1242		<0.010	<0.010	RPD-NA	ug/g	N/A	40	09-SEP-21
Aroclor 1248		<0.010	<0.010	RPD-NA	ug/g	N/A	40	09-SEP-21
Aroclor 1254		<0.010	<0.010	RPD-NA	ug/g	N/A	40	09-SEP-21
Aroclor 1260		<0.010	<0.010	RPD-NA	ug/g	N/A	40	09-SEP-21
WG3612062-2 LCS Aroclor 1242			96.6		%		60 140	00 SED 24
Aroclor 1248			98.0		%		60-140	09-SEP-21
AIUGUI 1240			30.0		/0		60-140	09-SEP-21

Report Date: 13-SEP-21 Workorder: L2635191 Page 7 of 13

ECOH MANAGEMENT INC (Mississauga) Client:

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PCB-511-WT	Soil							
Batch R5581131	1							
WG3612062-2 LCS Aroclor 1254			111.1		%		60-140	09-SEP-21
Aroclor 1260			98.1		%		60-140	09-SEP-21
WG3612062-1 MB Aroclor 1242			<0.010		ug/g		0.01	09-SEP-21
Aroclor 1248			<0.010		ug/g		0.01	09-SEP-21
Aroclor 1254			<0.010		ug/g		0.01	09-SEP-21
Aroclor 1260			<0.010		ug/g		0.01	09-SEP-21
Surrogate: d14-Terphe	enyl		95.9		%		60-140	09-SEP-21
WG3612062-4 MS	•	WG3612062-5	;					00 02: 2:
Aroclor 1242			97.6		%		60-140	09-SEP-21
Aroclor 1254			110.5		%		60-140	09-SEP-21
Aroclor 1260			101.3		%		60-140	09-SEP-21
PH-WT	Soil							
Batch R5580132	2							
WG3612056-5 DUP		L2635187-11						
рН		7.98	7.93	J	pH units	0.05	0.3	07-SEP-21
WG3612427-1 LCS pH			7.06		pH units		6.9-7.1	07-SEP-21
PSA-MUST-SK	Soil							
Batch R5581791	I							
WG3614214-1 DUP		L2635191-5						
MUST PSA % > 75um		71.7	71.6	J	%	0.1	5	09-SEP-21
WG3614214-2 IRM MUST PSA % > 75um		2020-PSA_SC	VIL 42.3		%		27.0.47.0	00 OFP 04
			42.3		76		37.9-47.9	09-SEP-21
VOC-511-HS-WT	Soil							
Batch R5580958 WG3612065-4 DUP	3	WOOGAGGE O						
WG3612065-4 DUP 1,1,1,2-Tetrachloroetha	ane	WG3612065-3 < 0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,1,2,2-Tetrachloroetha	ane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,2-Dichlorobenzene		<0.050	<0.050				-	

Workorder: L2635191 Report Date: 13-SEP-21 Page 8 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5580958								
WG3612065-4 DUP		WG3612065-						
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	09-SEP-21
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	09-SEP-21
Bromodichloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Carbon tetrachloride		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Chlorobenzene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
cis-1,2-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
cis-1,3-Dichloropropene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	09-SEP-21
Dibromochloromethane		< 0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Dichlorodifluoromethane)	<0.050	< 0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	09-SEP-21
n-Hexane		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Methylene Chloride		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
MTBE		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
m+p-Xylenes		<0.030	< 0.030	RPD-NA	ug/g	N/A	40	09-SEP-21
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	09-SEP-21
Methyl Isobutyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	09-SEP-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	09-SEP-21
Styrene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Tetrachloroethylene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	09-SEP-21
trans-1,2-Dichloroethyle	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
trans-1,3-Dichloroprope	ne	<0.030	<0.030	RPD-NA	ug/g	N/A	40	09-SEP-21
Trichloroethylene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	09-SEP-21
Trichlorofluoromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-SEP-21
Vinyl chloride		<0.020	<0.020		ug/g		-	09-SEP-21
•		-			5 5			00 0 2. 21

Workorder: L2635191 Report Date: 13-SEP-21 Page 9 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5580958	3							
WG3612065-4 DUP		WG3612065-3						
Vinyl chloride		<0.020	<0.020	RPD-NA	ug/g	N/A	40	09-SEP-21
WG3612065-2 LCS 1,1,1,2-Tetrachloroetha	ane		82.2		%		60-130	08-SEP-21
1,1,2,2-Tetrachloroetha	ane		77.0		%		60-130	08-SEP-21
1,1,1-Trichloroethane			79.0		%		60-130	08-SEP-21
1,1,2-Trichloroethane			80.4		%		60-130	08-SEP-21
1,1-Dichloroethane			68.4		%		60-130	08-SEP-21
1,1-Dichloroethylene			64.1		%		60-130	08-SEP-21
1,2-Dibromoethane			79.0		%		70-130	08-SEP-21
1,2-Dichlorobenzene			79.1		%		70-130	08-SEP-21
1,2-Dichloroethane			78.1		%		60-130	08-SEP-21
1,2-Dichloropropane			71.5		%		70-130	08-SEP-21
1,3-Dichlorobenzene			77.1		%		70-130	08-SEP-21
1,4-Dichlorobenzene			74.7		%		70-130	08-SEP-21
Acetone			93.6		%		60-140	08-SEP-21
Benzene			75.1		%		70-130	08-SEP-21
Bromodichloromethane	9		85.5		%		50-140	08-SEP-21
Bromoform			81.4		%		70-130	08-SEP-21
Bromomethane			59.6		%		50-140	08-SEP-21
Carbon tetrachloride			72.9		%		70-130	08-SEP-21
Chlorobenzene			78.7		%		70-130	08-SEP-21
Chloroform			72.9		%		70-130	08-SEP-21
cis-1,2-Dichloroethylen	е		74.2		%		70-130	08-SEP-21
cis-1,3-Dichloropropen	е		73.7		%		70-130	08-SEP-21
Dibromochloromethane	Э		83.6		%		60-130	08-SEP-21
Dichlorodifluoromethar	ne		30.4	LCS-L	%		50-140	08-SEP-21
Ethylbenzene			72.0		%		70-130	08-SEP-21
n-Hexane			60.8	MES	%		70-130	08-SEP-21
Methylene Chloride			69.7	MES	%		70-130	08-SEP-21
MTBE			77.6		%		70-130	08-SEP-21
m+p-Xylenes			77.8		%		70-130	08-SEP-21
Methyl Ethyl Ketone			97.7		%		60-140	08-SEP-21
Methyl Isobutyl Ketone			92.9		%		60-140	08-SEP-21
o-Xylene			78.2		%		70-130	08-SEP-21

Workorder: L2635191 Report Date: 13-SEP-21 Page 10 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5580958	}							
WG3612065-2 LCS			76.5		%		70.400	00.050.04
Styrene Tetrachloroethylene			76.5 74.9		%		70-130	08-SEP-21
Toluene			74.9 77.6		%		60-130	08-SEP-21
			67.3				70-130	08-SEP-21
trans-1,2-Dichloroethyle					%		60-130	08-SEP-21
trans-1,3-Dichloroprope	ene		71.9		%		70-130	08-SEP-21
Trichloroethylene			72.8		%		60-130	08-SEP-21
Trichlorofluoromethane			61.1		%		50-140	08-SEP-21
Vinyl chloride			46.5	LCS-L	%		60-140	08-SEP-21
WG3612065-1 MB 1,1,1,2-Tetrachloroetha	ine		<0.050		ug/g		0.05	08-SEP-21
1,1,2,2-Tetrachloroetha			<0.050		ug/g		0.05	08-SEP-21
1,1,1-Trichloroethane			<0.050		ug/g		0.05	08-SEP-21
1,1,2-Trichloroethane			<0.050		ug/g		0.05	08-SEP-21
1,1-Dichloroethane			<0.050		ug/g		0.05	08-SEP-21
1,1-Dichloroethylene			<0.050		ug/g		0.05	08-SEP-21
1,2-Dibromoethane			<0.050		ug/g		0.05	08-SEP-21
1,2-Dichlorobenzene			<0.050		ug/g		0.05	08-SEP-21
1,2-Dichloroethane			<0.050		ug/g		0.05	08-SEP-21
1,2-Dichloropropane			<0.050		ug/g		0.05	08-SEP-21
1,3-Dichlorobenzene			<0.050		ug/g		0.05	08-SEP-21
1,4-Dichlorobenzene			<0.050		ug/g		0.05	08-SEP-21
Acetone			<0.50		ug/g		0.5	08-SEP-21
Benzene			<0.0068		ug/g		0.0068	08-SEP-21
Bromodichloromethane)		< 0.050		ug/g		0.05	08-SEP-21
Bromoform			<0.050		ug/g		0.05	08-SEP-21
Bromomethane			<0.050		ug/g		0.05	08-SEP-21
Carbon tetrachloride			<0.050		ug/g		0.05	08-SEP-21
Chlorobenzene			<0.050		ug/g		0.05	08-SEP-21
Chloroform			<0.050		ug/g		0.05	08-SEP-21
cis-1,2-Dichloroethylen	e		<0.050		ug/g		0.05	08-SEP-21
cis-1,3-Dichloropropen			<0.030		ug/g		0.03	08-SEP-21
Dibromochloromethane			<0.050		ug/g		0.05	08-SEP-21
Dichlorodifluoromethan			<0.050		ug/g		0.05	08-SEP-21
Ethylbenzene			<0.018		ug/g		0.018	08-SEP-21
Luiyiberizerie			\0.010		ug/g		0.010	U0-SEP-21

Workorder: L2635191 Report Date: 13-SEP-21 Page 11 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

	Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG812085-1 MB	VOC-511-HS-WT So	oil						
n-Hexane	Batch R5580958							
Methylene Chloride <0.050 ug/g 0.05 08-SEP-21 MTBE <0.050			.0.050		a/a		0.05	
MTBE <0.050 ug/g 0.05 08-SEP-21 mp-Xylenes <0.030								
m+p-Xylenes <0.030	•							
Methyl Ethyl Ketone <0.50 ug/g 0.5 08-SEP-21 Methyl Isobutyl Ketone <0.50								
Methyl Isobutyl Ketone <0.50 ug/g 0.5 08-SEP-21 o-Xylene <0.020								
o-Xylene								
Styrene 0.050 ug/g 0.05 08-SEP-21 Tetrachloroethylene <0.050								
Tetrachloroethylene	•							
Toluene <0.080 ug/g 0.08 08-SEP-21 trans-1,2-Dichloroethylene <0.050	·							
trans-1,2-Dichloroethylene <0.050	•							
trans-1,3-Dichloropropene <0.030								
Trichloroethylene <0.010 ug/g 0.01 08-SEP-21 Trichlorofluoromethane <0.050	•							
Trichlorofluoromethane <0.050 ug/g 0.05 08-SEP-21 Vinyl chloride <0.020								
Vinyl chloride <0.020 ug/g 0.02 08-SEP-21 Surrogate: 1,4-Diffluorobenzene 101.6 % 50-140 08-SEP-21 Surrogate: 4-Bromoffluorobenzene 97.1 % 50-140 08-SEP-21 WG3612065-5 MS WG3612065-3 WG3612065-3 WG3612065-3 WG3612065-3 SO-140 10-SEP-21 1,1,1,2-Tetrachloroethane 96.3 % 50-140 10-SEP-21 1,1,1-Trichloroethane 94.7 % 50-140 10-SEP-21 1,1,1-Trichloroethane 105.4 % 50-140 10-SEP-21 1,1-Dichloroethane 77.5 % 50-140 10-SEP-21 1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibloromethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloroptopane 97.2 % 50-140 10-SEP-21 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•							
Surrogate: 1,4-Difluorobenzene 101.6 % 50-140 08-SEP-21 Surrogate: 4-Bromofluorobenzene 97.1 % 50-140 08-SEP-21 WG3612065-5 MS WG3612065-3 W								
Surrogate: 4-Bromofluorobenzene 97.1 % 50-140 08-SEP-21 WG3612065-5 MS WG3612065-3 WG3612065-3 Solution Solution 10-SEP-21 1,1,2-Tetrachloroethane 97.0 % 50-140 10-SEP-21 1,1,2-Tetrachloroethane 96.3 % 50-140 10-SEP-21 1,1,1-Trichloroethane 94.7 % 50-140 10-SEP-21 1,1,2-Trichloroethane 105.4 % 50-140 10-SEP-21 1,1-Dichloroethane 77.5 % 50-140 10-SEP-21 1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroptopane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•							
WG3612065-5 MS WG3612065-3 1,1,1,2-Tetrachloroethane 97.0 % 50-140 10-SEP-21 1,1,2,2-Tetrachloroethane 96.3 % 50-140 10-SEP-21 1,1,1-Trichloroethane 94.7 % 50-140 10-SEP-21 1,1,2-Trichloroethane 105.4 % 50-140 10-SEP-21 1,1-Dichloroethane 77.5 % 50-140 10-SEP-21 1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropapane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichlorom	=							
1,1,1,2-Tetrachloroethane 97.0 % 50-140 10-SEP-21 1,1,2,2-Tetrachloroethane 96.3 % 50-140 10-SEP-21 1,1,1-Trichloroethane 94.7 % 50-140 10-SEP-21 1,1,2-Trichloroethane 105.4 % 50-140 10-SEP-21 1,1-Dichloroethane 77.5 % 50-140 10-SEP-21 1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140					%		50-140	08-SEP-21
1,1,2,2-Tetrachloroethane 96.3 % 50-140 10-SEP-21 1,1,1-Trichloroethane 94.7 % 50-140 10-SEP-21 1,1,2-Trichloroethane 105.4 % 50-140 10-SEP-21 1,1-Dichloroethane 77.5 % 50-140 10-SEP-21 1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21		WG3612065-3			%		50-140	10-SEP-21
1,1,1-Trichloroethane 94.7 % 50-140 10-SEP-21 1,1,2-Trichloroethane 105.4 % 50-140 10-SEP-21 1,1-Dichloroethane 77.5 % 50-140 10-SEP-21 1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21			96.3					
1,1,2-Trichloroethane 105.4 % 50-140 10-SEP-21 1,1-Dichloroethane 77.5 % 50-140 10-SEP-21 1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,1,1-Trichloroethane		94.7		%			
1,1-Dichloroethane 77.5 % 50-140 10-SEP-21 1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,1,2-Trichloroethane		105.4		%			
1,1-Dichloroethylene 87.5 % 50-140 10-SEP-21 1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,1-Dichloroethane		77.5		%			
1,2-Dibromoethane 103.3 % 50-140 10-SEP-21 1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,1-Dichloroethylene		87.5		%		50-140	
1,2-Dichlorobenzene 104.2 % 50-140 10-SEP-21 1,2-Dichloroethane 90.4 % 50-140 10-SEP-21 1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,2-Dibromoethane		103.3		%		50-140	
1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,2-Dichlorobenzene		104.2		%		50-140	
1,2-Dichloropropane 97.2 % 50-140 10-SEP-21 1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,2-Dichloroethane		90.4		%		50-140	10-SEP-21
1,3-Dichlorobenzene 97.6 % 50-140 10-SEP-21 1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,2-Dichloropropane		97.2		%			
1,4-Dichlorobenzene 99.7 % 50-140 10-SEP-21 Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,3-Dichlorobenzene		97.6		%			
Acetone 100.6 % 50-140 10-SEP-21 Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	1,4-Dichlorobenzene		99.7					
Benzene 101.1 % 50-140 10-SEP-21 Bromodichloromethane 108.1 % 50-140 10-SEP-21	Acetone		100.6		%		50-140	
Bromodichloromethane 108.1 % 50-140 10-SEP-21	Benzene				%			
	Bromodichloromethane		108.1		%			
Bromoform 106.4 % 50-140 10-SEP-21	Bromoform		106.4		%		50-140	10-SEP-21

Workorder: L2635191 Report Date: 13-SEP-21 Page 12 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R558095	8							
WG3612065-5 MS		WG3612065			0.4			
Bromomethane			103.4		%		50-140	10-SEP-21
Carbon tetrachloride			92.5		%		50-140	10-SEP-21
Chlorobenzene			99.2		%		50-140	10-SEP-21
Chloroform			97.2		%		50-140	10-SEP-21
cis-1,2-Dichloroethyler	ne		105.0		%		50-140	10-SEP-21
cis-1,3-Dichloroproper	ne		92.6		%		50-140	10-SEP-21
Dibromochloromethan	е		101.1		%		50-140	10-SEP-21
Dichlorodifluorometha	ne		81.5		%		50-140	10-SEP-21
Ethylbenzene			86.9		%		50-140	10-SEP-21
n-Hexane			84.3		%		50-140	10-SEP-21
Methylene Chloride			98.7		%		50-140	10-SEP-21
MTBE			100.9		%		50-140	10-SEP-21
m+p-Xylenes			88.2		%		50-140	10-SEP-21
Methyl Ethyl Ketone			119.4		%		50-140	10-SEP-21
Methyl Isobutyl Ketone)		90.7		%		50-140	10-SEP-21
o-Xylene			85.7		%		50-140	10-SEP-21
Styrene			89.7		%		50-140	10-SEP-21
Tetrachloroethylene			97.3		%		50-140	10-SEP-21
Toluene			92.1		%		50-140	10-SEP-21
trans-1,2-Dichloroethy	lene		84.5		%		50-140	10-SEP-21
trans-1,3-Dichloroprop			86.3		%		50-140	10-SEP-21
Trichloroethylene			103.7		%		50-140	10-SEP-21
Trichlorofluoromethan	e		89.8		%		50-140	10-SEP-21
Vinyl chloride			87.2		%		50-140	10-SEP-21
,							00 140	10 021 21

Report Date: 13-SEP-21 Workorder: L2635191

ECOH MANAGEMENT INC (Mississauga) Client:

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

Internal Reference Material IRM CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

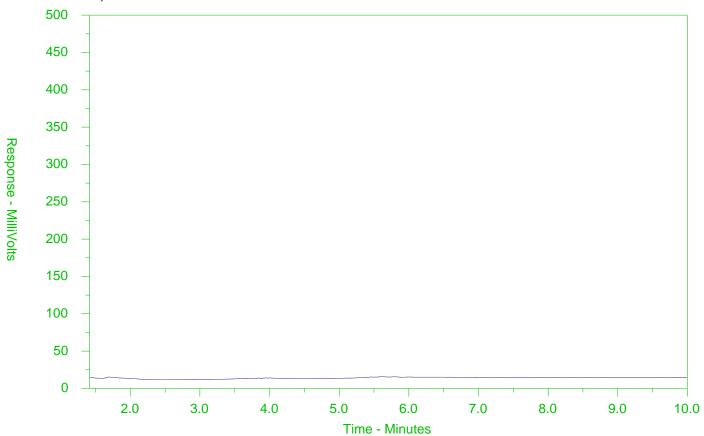
Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-L	Lab Control Sample recovery was below ALS DQO. Reference Material and/or Matrix Spike results were acceptable. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 13 of 13

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2635191-2 Client Sample ID: BHMW1-SS4

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
•	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

Chain of Cu

vw.alsglobal.com			
vw.aisulobai.com			

Report To	ontact and company nam	e below will appear	on the final report		Reports / R	tecipients		T		Turn	around 1	ime (T/	AT) Requ	ested							
Company: E(Contact: 90:	OH 5, 2 3 H 5, 2 address below will app	800/Ja	n Du Eus	Merge QC/QC	Select Report Format: PDF PDF CXCEL PDF (DIGITAL) Merge QC/QCI Reports with COA PDS YES NO NO NA Compare Results to Criteria on Report - provide details below if box checked Select Distribution: PMAIL NAIL PAX				Routine [R] if received by 3pm M-F - no surcharges apply 4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum					AFFIX ALS BARCODE LABEL HERE (ALS use only)							
Street: 75		rount i		Email 1 or Fax	Janaa Jane 2			ار Sa	1 day [E] . If received by .3pm .M-F 100% rush surcharge minimum. Same day [E2] . If received by .10am .M-S 200% rush surcharge. Additional fees may apply to rush requests on weekends, statutory holidays and non-routine tests.				fees tests								
Postal Code: 5	W 003		o egykonálak (jář	Email 3				 	Date and	i Time Ri	quired fo	-				*************	nmm+yy	THE PERSON NAMED IN			
Invoice To Same as R		DR YES [Invoice Re			<u> </u>			For all te	sts with re	ush TATs r	_			ur AM to confirm availability.				
Company:	oice with Report	DI YES 🗆	NO	Select Invoice D Email 1 or Fax		IAIL BOMAIL D	FAX CON CU	CONTAINERS			dicate Filte	red (F), I	Preserved	Michigan Colonia	s Reque	ancial Company of Comp	F/P) below			T	
Contact:	Alle State of the			Email 2	OU I C Bossiles	t Elalda fallast us		۱z۱		8	10,492.60			\rightarrow							5 2
ALS Account # / Quote #:	Project Inform	ation		AFE/Cost Center:	Oil and Gas Require	PO#	ie)	┦⋜│	100	i de la la	461	12	(a)	S			772 W/15	taristi 1	, c	4 j	STORAGE REQUIRED HAZARD (see notes)
Job#: 7 CAS	~	i jaga da tarin a	i na kita disaka kati	Major/Minor Code:		Routing Code:		۱ <u>×</u> ا	्य	965 × 1		2	(A)	2			3.0 M . 15	Nick	C S	2 8	8 B
PO / AFE:			andreas de la Santida de la colo	Requisitioner:	alaya da	Incoming Control			11	7		54.	N	7		i jaš (il) Kriena krij				» (2 3
LSD:		unione Silveriae	and the annual contraction of the contraction of th	Location:	ger elesti di		andro de la composición del composición de la c	占	******	0		18	7 A (15)	M		g Ar Wall			Ž	5 }	3 ₹
ALS Lab Work Order# (A	ALS use only):	1763	5191	ALS Contact	A.	Sampler: Jo	in D		なる。そ	7		CPM	I	ري ح	160 w	yd y da Maetry da			OF A		EXTENDED STORAGE REQUIRED SUSPECTED HAZARD (see notes)
ALS Sample # (ALS use only)			nd/or Coordinates bear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	NUMBER	a			-	9	Š			in some		N Y W		EX E
	BHMW	1-<<	X		02/04/21	12:00	Selv	1	e Ko		W HIT	196	\rtimes						7713		
	RHMIN	1_<<	<i>(</i> 1	en die regionale de la company	Acceptant 1 Section	12:00		6	X	XS		X	X				ty Market 1				
	MIDI					N/A						X									
	ZUW.	W _<	₹₹		r Rijes de	12:30		15		14 /c (N)	A. 1887.11										
constant	OUM.	11-6	No becasa area		ナル ファ	12:45		11		a la s				ZI		1 25 - 6	1000			1	
		****************				Î		1		7	7	1		1	1 1	(10) T				1	
	i da arang da kabupat Kabupatèn kabupatèn			esta ifrancia i strato	******************	-	*********** *************************	*****	-2004	~	- 		N. Cartina		11				gr yar	1	
	o Panjara ara	6 K62K4 - K63 - 103		a tiging as welling to	i di Markor Maria pika	F STATE STATE	l half or he seed	T	3015	0.60				a a mark		W - 1	S. Jilly				
	, en la companya de la comp , en la companya de l	ini arasini mada ini i Kanada kanada kata ini ini	, kan kan da kan arawa , manazaran da ingan kan arawa		J	1	************	7-			1 **		7	7	111					1	
	sella svis sationi 2	Cot symbols	anasa sa atawa Na Guna ata 188 (188)	Charleson (SAA Section)	o di majiman na majima ya m		a de estado	AN YES	13845		- 44 KB 475 K	14,187		38 Sec.		92 V	32 52 5	1 90.9		100	100
														_	1 1			1 100		1	
		<u>) da e Kala Agel A:</u> Advica	<u>a Calla et Siin kuntaa ya di Jua.</u> Heri seka et <i>pa</i> akke ya kala a h	<u>an in de St. an Stage in Artist</u> Ar en Artista (Artist an territor	A SAN TOTAL PROPERTY OF SAN	25 2 2 2 3 5 6 6	1 4 7 7 195 HE KESE 1967	150 3	8,40 a M	e n sa kac A dasa ka			(3) 11 1 2	1000				1000	1	1	
<u> </u>			Notes / S	pecify Limits for result	evaluation by selecting	l a from drop-down l	pelow					SAM	PLE RE	CEIPT D	ETAILS	(ALS u	se only)				
Drinking Water (DV	V) Samples' (client	use)			Excel COC only)			Cooli	ng Meth	od:	☐ NON	F 🔲	ICE .	ICE PA	icks [] FROZE	N	DK CC	OLING IN	ITIATE	.O.
Are samples taken from a Reg YES NO Are samples for human consu	n automat mente i inite. Spilotografije projet projece	te in to depend on the in to depend on the European state	-1/1 H	e 2 si	5 Fine	ur Goal Hermana	- 8- 10 U		r Custo	dy Seal	nts ident s Intact: OLER TEI		☐ YES	Receipt	Notificat Sampl	e Custo	dy Seals		NO DERATURE	YES	□ N/A
Are samples for numan consu-	ising) and make Val.	verski sa 194 1 ste	yang bir (Amerikan) y	o krajestajskih v rasti	Ş 1800 (1841 - 1941 (1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841 - 1841		and osis	1) a	-· XI			- 1			Th.	6				Т	
	HPMENT RELEASE				INITIAL SHIPMEN	· · · · · · · · · · · · · · · · · · ·			- 1				FINAL S	HIPMEN	IT RECE	PTION	(ALS us	e only)			
Released by: Tan	Date:		Tin	ne: Received by:	Laran	Date: 4/2/	2021	Time:	:03	Receive	d by:	1	Λ	Dat 		1/2	171		T	ne: ₇ .	2Δ

ECOH MANAGEMENT INC (Mississauga)

ATTN: Ian Duncan

75 Courtney Park Drive West

Unit 1

Mississauga ON L5W 0E3

Date Received: 02-SEP-21

Report Date: 10-SEP-21 10:13 (MT)

Version: FINAL

Client Phone: 905-795-2800

Certificate of Analysis

Lab Work Order #: L2635197

Project P.O. #: NOT SUBMITTED

Job Reference: 26685

C of C Numbers: 20-897731

Legal Site Desc:

Emily Hansen Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2635197 CONT'D....

Job Reference: 26685

PAGE 2 of 11

10-SEP-21 10:13 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Federal & Provincial Waste Regulations (MAR, 2008) - Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90 (No parameter exceedances)

L2635197 CONT'D.... Job Reference: 26685 PAGE 3 of 11 10-SEP-21 10:13 (MT)

Sample Preparation - WASTE

	J			1.0005407.4
			Lab ID	L2635197-1
	\$		e Date	02-SEP-21
		Sam	ple ID	TCLP
	(Guide	Limits	
Analyte	Unit	#1	#2	
Analyte Initial pH	Unit pH units	#1 -	#2	9.18

Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

L2635197 CONT'D.... Job Reference: 26685 PAGE 4 of 11 10-SEP-21 10:13 (MT)

TCLP Extractables - WASTE

		Lab ID Sample Date Sample ID		L2635197-1 02-SEP-21 TCLP
Analyte	Unit	Guide I #1	Limits #2	
Acenaphthene	mg/L	-	-	<0.0050
Acenaphthylene	mg/L	-	-	< 0.0050
Anthracene	mg/L	-	-	<0.0050
Aroclor 1242	mg/L	-	-	<0.00020
Aroclor 1248	mg/L	-	-	<0.00020
Aroclor 1254	mg/L	-	-	<0.00020
Aroclor 1260	mg/L	-	-	<0.00020
Benzo(a)anthracene	mg/L	-	-	< 0.0050
Benzo(a)pyrene	mg/L	0.001	-	<0.0010
Benzo(b&j)fluoranthene	mg/L	-	-	< 0.0050
Benzo(g,h,i)perylene	mg/L	-	-	<0.0050
Benzo(k)fluoranthene	mg/L	-	-	<0.0050
Chrysene	mg/L	-	-	<0.0050
Cyanide, Weak Acid Diss	mg/L	20	-	<0.10
Dibenz(a,h)anthracene	mg/L	-	-	<0.0050
Fluoranthene	mg/L	-	-	<0.0050
Fluorene	mg/L	-	-	<0.0050
Fluoride (F)	mg/L	150.0	-	<10
Indeno(1,2,3-cd)pyrene	mg/L	-	-	<0.0050
Naphthalene	mg/L	-	-	<0.0050
Nitrate and Nitrite as N	mg/L	1000	-	<4.0
Nitrate-N	mg/L	-	-	<2.0
Nitrite-N	mg/L	-	-	<2.0
Total PCBs	mg/L	0.3	-	<0.00040
Phenanthrene	mg/L	-	-	<0.0050
Pyrene	mg/L	-	-	<0.0050
Surrogate: Chrysene d12	%	-	-	104.2
Surrogate: Naphthalene d8	%	-	-	99.1
Surrogate: Phenanthrene d10	%	-	-	102.6
Quinoline	mg/L	-	-	<0.0050

Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

L2635197 CONT'D....
Job Reference: 26685
PAGE 5 of 11
10-SEP-21 10:13 (MT)

TCLP Extractables - WASTE

Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

L2635197 CONT'D....

Job Reference: 26685

PAGE 6 of 11

10-SEP-21 10:13 (MT)

TCLP Metals - WASTE

		Sample	Lab ID e Date ple ID	L2635197-1 02-SEP-21 TCLP
Analyte	Unit	Guide #1	Limits #2	
Arsenic (As)	mg/L	2.5	-	<0.050
Barium (Ba)	mg/L	100	-	<0.50
Boron (B)	mg/L	500	-	<2.5
Cadmium (Cd)	mg/L	0.5	-	<0.0050
Chromium (Cr)	mg/L	5.0	-	<0.050
Lead (Pb)	mg/L	5.0	-	<0.025
Mercury (Hg)	mg/L	0.1	-	<0.00010
Selenium (Se)	mg/L	1.0	-	<0.025
Silver (Ag)	mg/L	5.0	-	<0.0050
Uranium (U)	mg/L	10	-	<0.25

Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

L2635197 CONT'D....

Job Reference: 26685

PAGE 7 of 11

10-SEP-21 10:13 (MT)

TCLP VOCs - WASTE

ICLP VOCS - WASTE			ah ID	L2635197-1
		Sample	ab ID	02-SEP-21
		•	ple ID	TCLP
		Jaiii	pie ib	TOLF
		Guide	Limits	
Analyte	Unit	#1	#2	
1,1-Dichloroethylene	mg/L	1.4	-	<0.025
1,2-Dichlorobenzene	mg/L	20.0	-	<0.025
1,2-Dichloroethane	mg/L	0.5	-	<0.025
1,4-Dichlorobenzene	mg/L	0.5	-	<0.025
Benzene	mg/L	0.5	-	<0.025
Carbon tetrachloride	mg/L	0.5	-	<0.025
Chlorobenzene	mg/L	8	-	<0.025
Chloroform	mg/L	10	-	<0.10
Dichloromethane	mg/L	5.0	-	<0.50
Methyl Ethyl Ketone	mg/L	200.0	-	<1.0
Tetrachloroethylene	mg/L	3	-	<0.025
Trichloroethylene	mg/L	5	-	<0.025
Vinyl chloride	mg/L	0.2	-	< 0.050
Surrogate: 4-Bromofluorobenzene	%	-	-	99.2

Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

L2635197 CONT'D....

Job Reference: 26685

PAGE 8 of 11

10-SEP-21 10:13 (MT)

Volatile Organic Compounds - WASTE

		Lab ID	L2635197-1
	Sampl	e Date	02-SEP-21
	San	nple ID	TCLP
Unit	#1	#2	
%	-	-	102.2
	Unit	Sampl San Guide Unit #1	Lab ID Sample Date Sample ID Guide Limits Unit #1 #2

Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

L2635197 CONT'D.... Job Reference: 26685 PAGE 9 of 11 10-SEP-21 10:13 (MT)

Polychlorinated Biphenyls - WASTE

. Oryonia mateu Bipnonyie				
			Lab ID	L2635197-1
		Sampl	e Date	02-SEP-21
		San	nple ID	TCLP
		Guide	Limits	
Analyte	Unit	#1	#2	
Surrogate: Decachlorobiphenyl	%	-	-	134.6
Surrogate: Tetrachloro-m-xylene	%	-	-	95.7

Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

Reference Information

L2635197 CONT'D.... Job Reference: 26685 PAGE 10 of 11 10-SEP-21 10:13 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

CN-TCLP-WT Waste Cyanide for O. Reg 347 APHA 4500CN I

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The extract is then analyzed using procedures adapted from APHA Method 4500-CN I. "Weak Acid Dissociable Cyanide". Weak Acid Dissociable (WAD) cyanide is determined by in-line sample distillation with final determination by colourimetric analysis.

F-TCLP-WT Waste Fluoride (F) for O. Reg 347 EPA 300.1

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The extract is then analyzed using procedures adapted from EPA 300.1 and is analyzed by Ion Chromatography with conductivity and/or UV detection.

HG-TCLP-WT Waste Mercury (CVAA) for O.Reg 347 EPA 1631E

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter and analysed using atomic absorption spectrophotometry (EPA 1631E).

LEACH-TCLP-WT Waste Leachate Procedure for Reg 347 EPA 1311

Inorganic and Semi-Volatile Organic contaminants are leached from waste samples in strict accordance with US EPA Method 1311, "Toxicity Characteristic Leaching Procedure" (TCLP). Test results are reported in leachate concentration units (normally mg/L).

MET-TCLP-WT Waste O.Reg 347 TCLP Leachable Metals EPA 6020B

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020B).

N2N3-TCLP-WT Waste Nitrate/Nitrite-N for O. Reg 347 EPA 300.1

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The extract is then analyzed using procedures adapted from EPA 300.1 and is analyzed by Ion Chromatography with conductivity and/or UV detection.

PAH-TCLP-WT Waste PAH for O. Reg 347 SW846 8270 (PAH)

Samples are leached according to TCLP protocol and then the aqueous leachate is extracted and the resulting extracts are analyzed on GC/MSD. Depending on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene.

 PCB-TCLP-WT
 Waste
 PCBs for O. Reg 347
 SW846 8270

 VOC-TCLP-WT
 Waste
 VOC for O. Reg 347
 SW846 8260

A sample of waste is leached in a zero headspace extractor at 30–2 rpm for 18–2.0 hours with the appropriate leaching solution. After tumbling the leachate is analyzed directly by headspace technology, followed by GC/MS using internal standard quantitation.

^{**}ALS test methods may incorporate modifications from specified reference methods to improve performance.

Reference Information

L2635197 CONT'D.... Job Reference: 26685 PAGE 11 of 11 10-SEP-21 10:13 (MT)

Chain of Custody Numbers:

20-897731

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2635197 Report Date: 10-SEP-21 Page 1 of 10

ECOH MANAGEMENT INC (Mississauga) Client:

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CN-TCLP-WT	Waste							
Batch R5580570 WG3612611-3 DUP Cyanide, Weak Acid Dis	ss	L2630849-11 <0.10	<0.10	RPD-NA	mg/L	N/A	50	07-SEP-21
WG3612611-2 LCS Cyanide, Weak Acid Dis	SS .		101.9		%		70-130	07-SEP-21
WG3612611-1 MB Cyanide, Weak Acid Dis	ss		<0.10		mg/L		0.1	07-SEP-21
WG3612611-4 MS Cyanide, Weak Acid Dis	SS	L2630849-11	102.7		%		50-140	07-SEP-21
F-TCLP-WT	Waste							
Batch R5580810								
WG3612614-3 DUP Fluoride (F)		L2630849-11 <10	<10	RPD-NA	mg/L	N/A	30	07-SEP-21
WG3612614-2 LCS Fluoride (F)			95.7		%		70-130	07-SEP-21
WG3612614-1 MB Fluoride (F)			<10		mg/L		10	07-SEP-21
WG3612614-4 MS Fluoride (F)		L2630849-11	99.6		%		50-150	07-SEP-21
HG-TCLP-WT	Waste							
Batch R5579990 WG3612221-3 DUP Mercury (Hg)		L2635262-1 <0.00010	<0.00010	RPD-NA	mg/L	N/A	50	07-SEP-21
WG3612221-2 LCS Mercury (Hg)			95.2		%		70-130	07-SEP-21
WG3612221-1 MB Mercury (Hg)			<0.00010		mg/L		0.0001	07-SEP-21
WG3612221-4 MS Mercury (Hg)		L2635262-1	95.3		%		50-140	07-SEP-21
MET-TCLP-WT	Waste							
Batch R5580258								
WG3612041-4 DUP Silver (Ag)		WG3612041-3 < 0.0050	<0.0050	RPD-NA	mg/L	N/A	50	07-SEP-21
Arsenic (As)		<0.050	<0.050	RPD-NA	mg/L	N/A	50	07-SEP-21
Boron (B)		<2.5	<2.5	RPD-NA	mg/L	N/A	50	07-SEP-21
Barium (Ba)		<0.50	<0.50	RPD-NA	mg/L	N/A	50	07-SEP-21
Cadmium (Cd)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	07-SEP-21
Chromium (Cr)		<0.050	<0.050	RPD-NA	mg/L	N/A	50	07-SEP-21

Workorder: L2635197 Report Date: 10-SEP-21

Page 2 of 10

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TCLP-WT		Waste							
Batch R5	580258								
WG3612041-4	DUP		WG3612041-3						
Lead (Pb)			<0.025	<0.025	RPD-NA	mg/L	N/A	50	07-SEP-21
Selenium (Se)			<0.025	<0.025	RPD-NA	mg/L	N/A	50	07-SEP-21
Uranium (U)			<0.25	<0.25	RPD-NA	mg/L	N/A	50	07-SEP-21
WG3612041-2 Silver (Ag)	LCS			96.1		%		70-130	07-SEP-21
Arsenic (As)				103.5		%		70-130	07-SEP-21
Boron (B)				96.9		%		70-130	07-SEP-21
Barium (Ba)				107.1		%		70-130	07-SEP-21
Cadmium (Cd)				99.4		%		70-130	07-SEP-21
Chromium (Cr)				101.0		%		70-130	07-SEP-21
Lead (Pb)				100.2		%		70-130	07-SEP-21
Selenium (Se)				103.7		%		70-130	07-SEP-21
Uranium (U)				100.4		%		70-130	07-SEP-21
WG3612041-1 Silver (Ag)	MB			<0.0050		mg/L		0.005	07-SEP-21
Arsenic (As)				<0.050		mg/L		0.05	07-SEP-21
Boron (B)				<2.5		mg/L		2.5	07-SEP-21
Barium (Ba)				<0.50		mg/L		0.5	07-SEP-21
Cadmium (Cd)				<0.0050		mg/L		0.005	07-SEP-21
Chromium (Cr)				<0.050		mg/L		0.05	07-SEP-21
Lead (Pb)				<0.025		mg/L		0.025	07-SEP-21
Selenium (Se)				<0.025		mg/L		0.025	07-SEP-21
Uranium (U)				<0.25		mg/L		0.25	07-SEP-21
WG3612041-5	MS		WG3612041-3						
Silver (Ag)				106.5		%		50-140	07-SEP-21
Arsenic (As)				101.5		%		50-140	07-SEP-21
Boron (B)				97.6		%		50-140	07-SEP-21
Barium (Ba)				105.2		%		50-140	07-SEP-21
Cadmium (Cd)				99.2		%		50-140	07-SEP-21
Chromium (Cr)				99.96		%		50-140	07-SEP-21
Lead (Pb)				96.8		%		50-140	07-SEP-21
Selenium (Se)				103.9		%		50-140	07-SEP-21
Uranium (U)				98.8		%		50-140	07-SEP-21

N2N3-TCLP-WT Waste

Workorder: L2635197 Report Date: 10-SEP-21 Page 3 of 10

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
N2N3-TCLP-WT	Waste							
Batch R5580810								
WG3612614-3 DUP		L2630849-11						
Nitrate-N		<2.0	<2.0	RPD-NA	mg/L	N/A	25	07-SEP-21
Nitrite-N		<2.0	<2.0	RPD-NA	mg/L	N/A	25	07-SEP-21
WG3612614-2 LCS Nitrate-N			97.7		%		70-130	07-SEP-21
Nitrite-N			97.3		%		70-130	07-SEP-21
WG3612614-1 MB Nitrate-N			<2.0		mg/L		2	07-SEP-21
Nitrite-N			<2.0		mg/L		2	07-SEP-21
WG3612614-4 MS		L2630849-11			Ü			
Nitrate-N			104.8		%		50-150	07-SEP-21
Nitrite-N			93.3		%		50-150	07-SEP-21
PAH-TCLP-WT	Waste							
Batch R5580791								
WG3612563-5 DUP		WG3612563-4	0.00=0					
Acenaphthene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	08-SEP-21
Acenaphthylene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	08-SEP-21
Anthracene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	08-SEP-21
Benzo(a)anthracene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	08-SEP-21
Benzo(a)pyrene Benzo(b&j)fluoranthene		<0.0010 <0.0050	<0.0010	RPD-NA	mg/L	N/A	50	08-SEP-21
` "			<0.0050	RPD-NA	mg/L	N/A	50	08-SEP-21
Benzo(g,h,i)perylene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	08-SEP-21
Benzo(k)fluoranthene		<0.0050 <0.0050	<0.0050 <0.0050	RPD-NA	mg/L	N/A	50	08-SEP-21
Chrysene Dibenz(a,h)anthracene		<0.0050	<0.0050	RPD-NA	mg/L mg/L	N/A	50	08-SEP-21
Fluoranthene		<0.0050	<0.0050	RPD-NA RPD-NA	mg/L	N/A	50 50	08-SEP-21
Fluoranthene		<0.0050	<0.0050	RPD-NA RPD-NA	mg/L	N/A N/A	50 50	08-SEP-21 08-SEP-21
Indeno(1,2,3-cd)pyrene		<0.0050	<0.0050		mg/L			
Naphthalene		<0.0050	<0.0050	RPD-NA RPD-NA	mg/L	N/A N/A	50 50	08-SEP-21 08-SEP-21
Phenanthrene		<0.0050	<0.0050	RPD-NA RPD-NA	mg/L	N/A N/A	50	08-SEP-21
Pyrene		<0.0050	<0.0050	RPD-NA RPD-NA	mg/L	N/A N/A	50	08-SEP-21
Quinoline		<0.0050	<0.0050	RPD-NA RPD-NA	mg/L	N/A N/A	50	08-SEP-21 08-SEP-21
WG3612563-2 LCS		10.0000	10.0000	IXI D-NA	y, <u>-</u>	IN/A	50	00-3LF-21
Acenaphthene			89.1		%		50-130	08-SEP-21
Acenaphthylene			88.2		%		50-130	08-SEP-21
İ								

Workorder: L2635197 Report Date: 10-SEP-21 Page 4 of 10

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TCLP-WT	Waste							
Batch R5580791								
WG3612563-2 LCS Anthracene			88.3		%		50-130	08-SEP-21
Benzo(a)anthracene			100.0		%		50-130	08-SEP-21
Benzo(a)pyrene			83.5		%		60-140	08-SEP-21
Benzo(b&j)fluoranthene			87.2		%		50-130	08-SEP-21
Benzo(g,h,i)perylene			85.5		%		50-140	08-SEP-21
Benzo(k)fluoranthene			91.2		%		50-150	08-SEP-21
Chrysene			102.0		%		50-140	08-SEP-21
Dibenz(a,h)anthracene			90.3		%		50-140	08-SEP-21
Fluoranthene			97.5		%		50-130	08-SEP-21
Fluorene			93.0		%		50-130	08-SEP-21
Indeno(1,2,3-cd)pyrene			93.7		%		50-140	08-SEP-21
Naphthalene			75.5		%		50-130	08-SEP-21
Phenanthrene			96.9		%		50-130	08-SEP-21
Pyrene			98.9		%		50-140	08-SEP-21
Quinoline			107.0		%		50-130	08-SEP-21
WG3612563-1 MB								
Acenaphthene			<0.0050		mg/L		0.005	08-SEP-21
Acenaphthylene			<0.0050		mg/L		0.005	08-SEP-21
Anthracene			<0.0050		mg/L		0.005	08-SEP-21
Benzo(a)anthracene			<0.0050		mg/L		0.005	08-SEP-21
Benzo(a)pyrene			<0.0010		mg/L		0.001	08-SEP-21
Benzo(b&j)fluoranthene			<0.0050		mg/L		0.005	08-SEP-21
Benzo(g,h,i)perylene			<0.0050		mg/L		0.005	08-SEP-21
Benzo(k)fluoranthene			<0.0050		mg/L		0.005	08-SEP-21
Chrysene			<0.0050		mg/L		0.005	08-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/L		0.005	08-SEP-21
Fluoranthene			<0.0050 <0.0050		mg/L		0.005	08-SEP-21
Fluorene					mg/L		0.005	08-SEP-21
Indeno(1,2,3-cd)pyrene Naphthalene			<0.0050		mg/L		0.005	08-SEP-21
Naphthalene Phenanthrene			<0.0050		mg/L		0.005	08-SEP-21
			<0.0050		mg/L		0.005	08-SEP-21
Pyrene			<0.0050		mg/L		0.005	08-SEP-21
Quinoline	40		<0.0050		mg/L		0.005	08-SEP-21
Surrogate: Naphthalene	uo		102.1		%		50-130	08-SEP-21

Workorder: L2635197 Report Date: 10-SEP-21 Page 5 of 10

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TCLP-WT	Waste							
Batch R55807	791							
WG3612563-1 ME			400.0		0/		60.400	
Surrogate: Phenanth Surrogate: Chrysene			100.2 106.2		%		60-130 60-130	08-SEP-21
			106.∠		70		00-130	08-SEP-21
WG3612563-3 ME Acenaphthene	5		<0.0050		mg/L		0.005	08-SEP-21
Acenaphthylene			< 0.0050		mg/L		0.005	08-SEP-21
Anthracene			<0.0050		mg/L		0.005	08-SEP-21
Benzo(a)anthracene)		<0.0050		mg/L		0.005	08-SEP-21
Benzo(a)pyrene			<0.0010		mg/L		0.001	08-SEP-21
Benzo(b&j)fluoranth	ene		<0.0050		mg/L		0.005	08-SEP-21
Benzo(g,h,i)perylene	e		<0.0050		mg/L		0.005	08-SEP-21
Benzo(k)fluoranthen	ie		<0.0050		mg/L		0.005	08-SEP-21
Chrysene			<0.0050		mg/L		0.005	08-SEP-21
Dibenz(a,h)anthrace	ene		<0.0050		mg/L		0.005	08-SEP-21
Fluoranthene			<0.0050		mg/L		0.005	08-SEP-21
Fluorene			<0.0050		mg/L		0.005	08-SEP-21
Indeno(1,2,3-cd)pyre	ene		<0.0050		mg/L		0.005	08-SEP-21
Naphthalene			<0.0050		mg/L		0.005	08-SEP-21
Phenanthrene			<0.0050		mg/L		0.005	08-SEP-21
Pyrene			<0.0050		mg/L		0.005	08-SEP-21
Quinoline			<0.0050		mg/L		0.005	08-SEP-21
Surrogate: Naphthal	ene d8		97.2		%		50-130	08-SEP-21
Surrogate: Phenanth	nrene d10		94.7		%		60-130	08-SEP-21
Surrogate: Chrysene	e d12		100.3		%		60-130	08-SEP-21
WG3612563-6 MS	3	WG3612563-4	00.4		0/			
Acenaphthene			92.1		%		50-140	08-SEP-21
Acenaphthylene			90.5		%		50-140	08-SEP-21
Anthracene			86.1		%		50-150	08-SEP-21
Benzo(a)anthracene	;		99.8		%		50-140	08-SEP-21
Benzo(a)pyrene	ono		83.8		%		50-140	08-SEP-21
Benzo(b&j)fluoranth Benzo(g,h,i)perylene			84.6 83.8		%		50-150	08-SEP-21
Benzo(g,n,n)perylene Benzo(k)fluoranthen			92.8		%		50-140	08-SEP-21
Chrysene	IC		101.0		%		50-150	08-SEP-21
Dibenz(a,h)anthrace	ana		88.3		%		50-140	08-SEP-21
Dibenz(a,n)anunace	ii lo		00.3		/0		50-140	08-SEP-21

Qualifier

Workorder: L2635197 Report Date: 10-SEP-21 Page 6 of 10

RPD

Limit

Analyzed

Units

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Reference

Result

Mississauga ON L5W 0E3

Matrix

Contact: Ian Duncan

Test

1621		Wallix	Reference	Result	Qualifier	Units	KFD	Lillin	Allalyzeu
PAH-TCLP-WT		Waste							
Batch R5	5580791								
WG3612563-6	MS		WG3612563-4						
Fluoranthene				96.8		%		50-140	08-SEP-21
Fluorene				93.2		%		50-140	08-SEP-21
Indeno(1,2,3-co	d)pyrene			94.2		%		50-140	08-SEP-21
Naphthalene				84.6		%		50-140	08-SEP-21
Phenanthrene				94.1		%		50-150	08-SEP-21
Pyrene				98.1		%		50-150	08-SEP-21
Quinoline				107.0		%		50-150	08-SEP-21
PCB-TCLP-WT		Waste							
Batch R5	5580777								
WG3612560-5 Aroclor 1242	DUP		WG3612560-4 <0.00020	<0.00020	RPD-NA	mg/L	N/A	50	08-SEP-21
Aroclor 1248			<0.00020	<0.00020	RPD-NA	mg/L	N/A	50	08-SEP-21
Aroclor 1254			<0.00020	<0.00020	RPD-NA	mg/L	N/A	50	08-SEP-21
Aroclor 1260			<0.00020	<0.00020	RPD-NA	mg/L	N/A	50	08-SEP-21
WG3612560-2	LCS								
Aroclor 1242				89.9		%		65-130	08-SEP-21
Aroclor 1248				80.4		%		65-130	08-SEP-21
Aroclor 1254				75.3		%		65-130	08-SEP-21
Aroclor 1260				86.2		%		65-130	08-SEP-21
WG3612560-1 Aroclor 1242	MB			<0.00020		mg/L		0.0002	08-SEP-21
Aroclor 1248				<0.00020		mg/L		0.0002	08-SEP-21
Aroclor 1254				<0.00020		mg/L		0.0002	08-SEP-21
Aroclor 1260				<0.00020		mg/L		0.0002	08-SEP-21
Surrogate: Dec	achlorobi	phenyl		113.6		%		50-150	08-SEP-21
Surrogate: Tetra	achloro-n	n-xylene		87.9		%		50-150	08-SEP-21
WG3612560-3 Aroclor 1242	MB			<0.00020		mg/L		0.0002	08-SEP-21
Aroclor 1248				<0.00020		mg/L		0.0002	08-SEP-21
Aroclor 1254				<0.00020		mg/L		0.0002	08-SEP-21
Aroclor 1260				<0.00020		mg/L		0.0002	08-SEP-21
Surrogate: Dec	achlorobi	phenvl		112.0		··· <i>y</i> = %		50-150	08-SEP-21
Surrogate: Tetra				88.8		%		50-150	08-SEP-21
WG3612560-6	MS	.,	WG3612560-4	30.0		, .		00	00 OL1 -Z1
VVG301230U-0	IVIO		WG3012300-4						

Workorder: L2635197 Report Date: 10-SEP-21 Page 7 of 10

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PCB-TCLP-WT	Waste							
Batch R5580777 WG3612560-6 MS		WG3612560-4			0.4			
Aroclor 1242			88.6		%		50-150	08-SEP-21
Aroclor 1254			81.1		%		50-150	08-SEP-21
Aroclor 1260			104.0		%		50-150	08-SEP-21
VOC-TCLP-WT	Waste							
Batch R5581985 WG3614583-1 LCS 1,1-Dichloroethylene			88.1		%		70-130	10-SEP-21
1,2-Dichlorobenzene			95.3		%		70-130	10-SEP-21
1,2-Dichloroethane			76.5		%		70-130	10-SEP-21
1,4-Dichlorobenzene			100.2		%		70-130	10-SEP-21
Benzene			93.7		%		70-130	10-SEP-21
Carbon tetrachloride			89.5		%		60-140	10-SEP-21
Chlorobenzene			93.5		%		70-130	10-SEP-21
Chloroform			88.8		%		70-130	10-SEP-21
Dichloromethane			96.2		%		70-130	10-SEP-21
Methyl Ethyl Ketone			94.1		%		50-150	10-SEP-21
Tetrachloroethylene			98.6		%		70-130	10-SEP-21
Trichloroethylene			100.2		%		70-130	10-SEP-21
Vinyl chloride			89.5		%		60-130	10-SEP-21
WG3614583-2 MB 1,1-Dichloroethylene			<0.025		mg/L		0.025	10-SEP-21
1,2-Dichlorobenzene			<0.025		mg/L		0.025	10-SEP-21
1,2-Dichloroethane			<0.025		mg/L		0.025	10-SEP-21
1,4-Dichlorobenzene			<0.025		mg/L		0.025	10-SEP-21
Benzene			<0.025		mg/L		0.025	10-SEP-21
Carbon tetrachloride			<0.025		mg/L		0.025	10-SEP-21
Chlorobenzene			<0.025		mg/L		0.025	10-SEP-21
Chloroform			<0.10		mg/L		0.1	10-SEP-21
Dichloromethane			<0.50		mg/L		0.5	10-SEP-21
Methyl Ethyl Ketone			<1.0		mg/L		1	10-SEP-21
Tetrachloroethylene			<0.025		mg/L		0.025	10-SEP-21
Trichloroethylene			<0.025		mg/L		0.025	10-SEP-21
Vinyl chloride			<0.050		mg/L		0.05	10-SEP-21
Surrogate: 1,4-Difluorob	enzene		101.6		%		70-130	10-SEP-21

Workorder: L2635197 Report Date: 10-SEP-21 Page 8 of 10

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-TCLP-WT Waste							
Batch R5581985							
WG3614583-2 MB Surrogate: 4-Bromofluorobenzene		100.5		%		70-130	10-SEP-21
WG3614583-4 MB							
1,1-Dichloroethylene		<0.025		mg/L		0.025	10-SEP-21
1,2-Dichlorobenzene		<0.025		mg/L		0.025	10-SEP-21
1,2-Dichloroethane		<0.025		mg/L		0.025	10-SEP-21
1,4-Dichlorobenzene		<0.025		mg/L		0.025	10-SEP-21
Benzene		<0.025		mg/L		0.025	10-SEP-21
Carbon tetrachloride		<0.025		mg/L		0.025	10-SEP-21
Chlorobenzene		<0.025		mg/L		0.025	10-SEP-21
Chloroform		<0.10		mg/L		0.1	10-SEP-21
Dichloromethane		<0.50		mg/L		0.5	10-SEP-21
Methyl Ethyl Ketone		<1.0		mg/L		1	10-SEP-21
Tetrachloroethylene		<0.025		mg/L		0.025	10-SEP-21
Trichloroethylene		<0.025		mg/L		0.025	10-SEP-21
Vinyl chloride		<0.050		mg/L		0.05	10-SEP-21
Surrogate: 1,4-Difluorobenzene		101.6		%		70-130	10-SEP-21
Surrogate: 4-Bromofluorobenzene		99.3		%		70-130	10-SEP-21
WG3614583-5 MB							
1,1-Dichloroethylene		<0.025		mg/L		0.025	10-SEP-21
1,2-Dichlorobenzene		<0.025		mg/L		0.025	10-SEP-21
1,2-Dichloroethane		<0.025		mg/L		0.025	10-SEP-21
1,4-Dichlorobenzene		<0.025		mg/L		0.025	10-SEP-21
Benzene		<0.025		mg/L		0.025	10-SEP-21
Carbon tetrachloride		<0.025		mg/L		0.025	10-SEP-21
Chlorobenzene		<0.025		mg/L		0.025	10-SEP-21
Chloroform		<0.10		mg/L		0.1	10-SEP-21
Dichloromethane		<0.50		mg/L		0.5	10-SEP-21
Methyl Ethyl Ketone		<1.0		mg/L		1	10-SEP-21
Tetrachloroethylene		<0.025		mg/L		0.025	10-SEP-21
Trichloroethylene		<0.025		mg/L		0.025	10-SEP-21
Vinyl chloride		<0.050		mg/L		0.05	10-SEP-21
Surrogate: 1,4-Difluorobenzene		100.8		%		70-130	10-SEP-21
Surrogate: 4-Bromofluorobenzene		95.6		%		70-130	10-SEP-21
WG3614583-3 MS	L2630849-11						

Workorder: L2635197 Report Date: 10-SEP-21

Page 9 of 10

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-TCLP-WT	Waste							
Batch R5581985	5							
WG3614583-3 MS		L2630849-11						
1,1-Dichloroethylene			106.2		%		50-140	10-SEP-21
1,2-Dichlorobenzene			110.2		%		50-140	10-SEP-21
1,2-Dichloroethane			110.1		%		50-140	10-SEP-21
1,4-Dichlorobenzene			112.6		%		50-140	10-SEP-21
Benzene			120.3		%		50-140	10-SEP-21
Carbon tetrachloride			108.5		%		50-140	10-SEP-21
Chlorobenzene			113.3		%		50-140	10-SEP-21
Chloroform			116.4		%		50-140	10-SEP-21
Dichloromethane			130.3		%		50-140	10-SEP-21
Methyl Ethyl Ketone			144.2	MES	%		50-140	10-SEP-21
Tetrachloroethylene			110.5		%		50-140	10-SEP-21
Trichloroethylene			124.6		%		50-140	10-SEP-21
Vinyl chloride			107.7		%		50-140	10-SEP-21

Workorder: L2635197 Report Date: 10-SEP-21

ECOH MANAGEMENT INC (Mississauga) Client: Page 10 of 10

75 Courtney Park Drive West Unit 1 Mississauga ON L5W 0E3

Contact: Ian Duncan

Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody

www.alsglobal.com

Canad

L2635197-COFC

Report To	Contact and company name below will appear on the final report		Reports / F	Recipients		T		Ti	urnaro	und Ti	me (TA1	r) Requ	ested									
Company: Contact: Phone:	Tun Duncayon 10.5 79.3 28.00 Company address below will appear on the final report		CI Reports with COA ults to Criteria on Report - p		NyA box checked		I day [P4 I day [P3 I day [P3 I day [E]] if rece 3] if reco 2] if reco if recei	eived by eived by eived by ived by	3pm M / 3pm N / 3pm N 3pm M-	4-F - no : 1-F - 20% 4-F - 25% 4-F - 50% F - 100%	rush su 6 rush si 6 rush si 6 rush si	rcharge r urcharge urcharge urcharge	minimun minimun minimum	o i fak y Danasa isa Danasa isa	AF	FIX AL	500000000000000000000000000000000000000	CODE use on		L HER	łΕ
Street: City/Province: Postal Code:	73 Country park Dru MSK SSUNGA ON USWOB3	Email 1 or Fax Email 2 Email 3	iduncer adeus	<u>182</u>	elice viace	s	ame day nay apply	[E2] if i torush	received requests	by 10an s on wee	M-S - 2	200% rus atutory h	h surchar	ge. Additi	ional fees utine tests	s dd-fmmin	10.0	r Kanan	am/pn			
Invoice To	Same as Report To ☐ YES ☐ NO		Invoice Ro	ecipients		T			Fo	r all test	s with rus	h TATs n	quested,	please c	ontact you	ur AM to co	onfirm av	vailabilit	y-	16		
	Copy of Invoice with Report YES NO	Select Invoice D	Distribution: 🖄 🗗	AIL MAIL] FAX		rovey and an fee auto			rigayay San Dibar	iliyari ya Karasibila		Analy	sis Red	quest		17 19 19 19 12 20 20 20 20 20 20 20 20 20 20 20 20 20					
Company: Contact:	u nggalagang kali dia penggalagan penggalagan ang at penggalagan ang at penggalagan penggalagan penggalagan pe	Email 1 or Fax Email 2	usim	enting 6	ي. موري لادو	CONTAINERS			Indica	te Filter	ed (F), Pr	eserved	(P) or Fi	tered an	d Preserv	red (F/P) t	pelow		ing i		REQUIRED	iotes)
	Project Information		Oil and Gas Require	d Fields (client u	se)	13	Г	5						ich ten			CB 13		18. jeu <i>a</i>	~ 1	ğ	99
ALS Account # /	/ Quote #	AFE/Cost Center;		PO#		ΙĔ	2	9	16 1938	VA.	(A) (1) (2)		8. 9.64 19.6 .186- 1 July				58776 2677	SVIENT PARIA		71	BZ	s) (s
Job #:	26685	Major/Minor Code:		Routing Code:] 6	L	- -	-	V			sie sie	62A - 127						¥	AG!	A R
PO7 AFE: LSD:	. 1911 (np. 1960) np. 1913. Et 1. 1914 (C. 1914) de ned kangenhade e verk, dependebre. Et gyaderlikkeske en 1986 - 1917 (C. 1914) (R. 1914) np. 1914 (K. 1915)	Requisitioner: Location:	side ad varo tonidratas. September 18. sett tem		<u>- Sandara (S. 6 silab</u> 1976 kwazani 1988) a	18 10	3	29	PAT	カラ	edi erdiq Vivisia i	gaga V Gaga N					des d Verdie	January Nama		ON HOLD	STORAGE	HAZ
ALS Lab Wor	k Order# (ALS use only):	ALS Contact:	4	Sampler:		NUMBER	۵	P R	LP (Δ)		Arko.		orales As lás (s			46.09				EXTENDED	SUSPECTED HAZARD (see notes)
ALS Sample # (ALS use only)	Sample Identification and/or Coordinates (This description will appear on the report)	Section in the Assertation and the Assertation and Assertation	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type			721	7	Ĕ						033	l van de			SAN		SUSF
	TO P THE STATE OF	18 (K. Bergeren auf de Legal (b. 11) Legal de legal (b. 11) 19 de beskert oans Assaul (b. 11)	07/09/21	17:45	601)	3		X	×	~		Sana (A Sana (A) Sana (A)	Ce 5		2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				6.00			
						-	1,000		A 50								200 PS					Н
	nggapagganakana safikko shara je shqiqarik saak ilik bilagama soolo					<u> </u>					V.497;					i desa				\Box	100	15.5
		****		-		J	ļ			***					4-				\dashv			
	is the stiff of the first of the constitution of the state of the stat	o kalandar (1865-1886) Kangana (1868-1869)	s <mark>in despesi (sindere)</mark> Si in despesione		************	+			99 ja ja 1985 ja ja		ace.				+		2004 S				<u>00-04</u> (# %)	
				\$	 	1-	† • • • •	•					-		1							
	ats to make colla aids traille colle of fined) not collaborated as an ami	garama kilindra di	ė () s vienisinsi tai		ser len (162 Bisse	A 75. 00	11391	海海科	42.00	217.18	30)	2 0	ad ga		35 SAVE	A STORY	Kalada Yan					
	tim in trade of citate in a properties to the little and indicates on	<u> A garagin ang Kanasa laga</u>		la como Varia		100.0		082		12. 14						1000		Ta sala			<u>Series - l</u>	
	en e					4					CAME	i e pe	CEIDT	DETA	II S /AI	LS use	oply)					
	g Water (DW) Samples' (client use)		evaluation by selectine Excel COC only)	g from drop-down	below		ing Me			NONE		ICE `	PKICE	PACKS		ROZEN		000000000000000000000000000000000000000	OOLING		TED	
☐ YE	n from a Regulated DW System? S □ NO uman consumption/ use? S □ NO	2505	Ben	34J)	120000000000000000000000000000000000000	er Cus	tody S	eals ir	ntact:		YES			fication: mple C	ustody S FINAL (Seals I			☐ YES		ŊĄ
Released by:	SHIPMENT RELEASE (client use) On D Date: 07/59/111 Tim	e: Received by:	, INITIAL SHIPMENT	RECEPTION (All Date:	LS use only)	Time	 :.83	Rece	eived b	oy:	F	INAL S		ENT RI	ECEPT 12	ION (AL	S use	only	THE RESERVE OF THE RE	Time:		

ECOH MANAGEMENT INC (Mississauga)

ATTN: Ian Duncan

75 Courtney Park Drive West

Unit 1

Mississauga ON L5W 0E3

Date Received: 03-SEP-21

Report Date: 13-SEP-21 13:19 (MT)

Version: FINAL

Client Phone: 905-795-2800

Certificate of Analysis

Lab Work Order #: L2635577

Project P.O. #: NOT SUBMITTED

Job Reference: 26685

C of C Numbers: 20-946718

Legal Site Desc:

Emily Hansen Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2635577 CONT'D....

Job Reference: 26685

PAGE 2 of 16

13-SEP-21 13:19 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T2-Ground Water (Coarse Soil)-All Types of Property Use (No parameter exceedances)

Ontario Regulation 153/04 - April 15, 2011 Standards - T2-Ground Water (Fine Soil)-All Types of Property Use (No parameter exceedances)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D....

Job Reference: 26685

PAGE 3 of 16

13-SEP-21 13:19 (MT)

Physical Tests - WATER

		Lab ID	L2635577-1
\$	Sampl	e Date	03-SEP-21
	Sam	ple ID	MW4
	Guide	Limits	
Unit	#1	#2	
mS/cm	-	-	2.05
. 11 . 20			8.03
	Unit mS/cm	Sample Sam Guide Unit #1	Lab ID Sample Date Sample ID Guide Limits Unit #1 #2

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D....

Job Reference: 26685

PAGE 4 of 16

13-SEP-21 13:19 (MT)

Anions and Nutrients - WATER

		Sample	Lab ID e Date iple ID	L2635577-1 03-SEP-21 MW4
Analyte	Unit	Guide #1	Limits #2	
Chloride (CI)	mg/L	790	790	513 DLHC

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D....

Job Reference: 26685

PAGE 5 of 16

13-SEP-21 13:19 (MT)

Cyanides - WATER

January III		
	Lab II	L2635577-1
	Sample Date	9 03-SEP-21
	Sample II	MW4
	Guide Limit	S
Analyte	Unit #1 #2	
Cyanide, Weak Acid Diss	ug/L 66 66	<2.0

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D....

Job Reference: 26685

PAGE 6 of 16

13-SEP-21 13:19 (MT)

Dissolved Metals - WATER

		Lab ID Sample Date Sample ID		
Analyte	Unit	Guide #1	Limits #2	
Dissolved Mercury Filtration Location		-	-	FIELD
Dissolved Metals Filtration Location		-	-	FIELD
Antimony (Sb)-Dissolved	ug/L	6	6	<0.10
Arsenic (As)-Dissolved	ug/L	25	25	0.22
Barium (Ba)-Dissolved	ug/L	1000	1000	341
Beryllium (Be)-Dissolved	ug/L	4	4	<0.10
Boron (B)-Dissolved	ug/L	5000	5000	236
Cadmium (Cd)-Dissolved	ug/L	2.7	2.7	<0.010
Chromium (Cr)-Dissolved	ug/L	50	50	<0.50
Cobalt (Co)-Dissolved	ug/L	3.8	3.8	<0.10
Copper (Cu)-Dissolved	ug/L	87	87	3.72
Lead (Pb)-Dissolved	ug/L	10	10	0.051
Mercury (Hg)-Dissolved	ug/L	0.29	1	<0.0050
Molybdenum (Mo)-Dissolved	ug/L	70	70	0.524
Nickel (Ni)-Dissolved	ug/L	100	100	<0.50
Selenium (Se)-Dissolved	ug/L	10	10	0.096
Silver (Ag)-Dissolved	ug/L	1.5	1.5	<0.050
Sodium (Na)-Dissolved	ug/L	490000	490000	162000 ^{DLHC}
Thallium (TI)-Dissolved	ug/L	2	2	<0.010
Uranium (U)-Dissolved	ug/L	20	20	0.331
Vanadium (V)-Dissolved	ug/L	6.2	6.2	<0.50
Zinc (Zn)-Dissolved	ug/L	1100	1100	3.4

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D....

Job Reference: 26685

PAGE 7 of 16

13-SEP-21 13:19 (MT)

Speciated Metals - WATER

		Lab ID	L2635577-1
	Samp	le Date	03-SEP-21
	San	nple ID	MW4
	Guide	Limits	
Uni		Limits #2	
		Sampl	Lab ID Sample Date Sample ID

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D.... Job Reference: 26685 PAGE 8 of 16 13-SEP-21 13:19 (MT)

Volatile Organic Compounds - WATER						
		Lab ID Sample Date Sample ID		L2635577-1 03-SEP-21 MW4		
Analyte	Unit	Guide #1	Limits #2			
Acetone	ug/L	2700	2700	<30		
Benzene	ug/L	5	5	<0.50		
Bromodichloromethane	ug/L	16	16	<2.0		
Bromoform	ug/L	25	25	<5.0		
Bromomethane	ug/L	0.89	0.89	<0.50		
Carbon tetrachloride	ug/L	0.79	5	<0.20		
Chlorobenzene	ug/L	30	30	<0.50		
Dibromochloromethane	ug/L	25	25	<2.0		
Chloroform	ug/L	2.4	22	<1.0		
1,2-Dibromoethane	ug/L	0.2	0.2	<0.20		
1,2-Dichlorobenzene	ug/L	3	3	<0.50		
1,3-Dichlorobenzene	ug/L	59	59	<0.50		
1,4-Dichlorobenzene	ug/L	1	1	<0.50		
Dichlorodifluoromethane	ug/L	590	590	<2.0		
1,1-Dichloroethane	ug/L	5	5	<0.50		
1,2-Dichloroethane	ug/L	1.6	5	<0.50		
1,1-Dichloroethylene	ug/L	1.6	14	<0.50		
cis-1,2-Dichloroethylene	ug/L	1.6	17	<0.50		
trans-1,2-Dichloroethylene	ug/L	1.6	17	<0.50		
Methylene Chloride	ug/L	50	50	<5.0		
1,2-Dichloropropane	ug/L	5	5	<0.50		
cis-1,3-Dichloropropene	ug/L	-	-	<0.30		
trans-1,3-Dichloropropene	ug/L	-	-	< 0.30		
1,3-Dichloropropene (cis & trans)	ug/L	0.5	0.5	<0.50		
Ethylbenzene	ug/L	2.4	2.4	<0.50		
n-Hexane	ug/L	51	520	<0.50		
Methyl Ethyl Ketone	ug/L	1800	1800	<20		
Methyl Isobutyl Ketone	ug/L	640	640	<20		
MTBE	ug/L	15	15	<2.0		
<u> -</u> .						

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

Styrene

ug/L

5.4 5.4

< 0.50

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D....

Job Reference: 26685

PAGE 9 of 16

13-SEP-21 13:19 (MT)

Volatile Organic Compounds - WATER

		Lab ID Sample Date Sample ID		L2635577-1 03-SEP-21 MW4
Analyte	Unit	Guide #1	Limits #2	
1,1,1,2-Tetrachloroethane	ug/L	1.1	1.1	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1	1	<0.50
Tetrachloroethylene	ug/L	1.6	17	<0.50
Toluene	ug/L	24	24	<0.50
1,1,1-Trichloroethane	ug/L	200	200	<0.50
1,1,2-Trichloroethane	ug/L	4.7	5	<0.50
Trichloroethylene	ug/L	1.6	5	<0.50
Trichlorofluoromethane	ug/L	150	150	<5.0
Vinyl chloride	ug/L	0.5	1.7	<0.50
o-Xylene	ug/L	-	-	<0.30
m+p-Xylenes	ug/L	-	-	<0.40
Xylenes (Total)	ug/L	300	300	<0.50
Surrogate: 4-Bromofluorobenzene	%	-	-	91.4
Surrogate: 1,4-Difluorobenzene	%	-	-	90.3

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D....

Job Reference: 26685

PAGE 10 of 16

13-SEP-21 13:19 (MT)

Hydrocarbons - WATER

		Sample	Lab ID e Date ple ID	L2635577-1 03-SEP-21 MW4
Analyte	Unit	Guide #1	Limits #2	
F1 (C6-C10)	ug/L	750	750	<25
F1-BTEX	ug/L	750	750	<25
F2 (C10-C16)	ug/L	150	150	<100
F2-Naphth	ug/L	-	-	<100
F3 (C16-C34)	ug/L	500	500	<250
F3-PAH	ug/L	-	-	<250
F4 (C34-C50)	ug/L	500	500	<250
Total Hydrocarbons (C6-C50)	ug/L	-	-	<370
Chrom. to baseline at nC50		-	-	YES
Surrogate: 2-Bromobenzotrifluoride	%	-	-	92.2
Surrogate: 3,4-Dichlorotoluene	%	-	-	104.2

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D....

Job Reference: 26685

PAGE 11 of 16

13-SEP-21 13:19 (MT)

Polycyclic Aromatic Hydrocarbons - WATER

 Lab ID
 L2635577-1

 Sample Date
 03-SEP-21

 Sample ID
 MW4

		Guide I	Limits	
Analyte	Unit	#1	#2	
Acenaphthene	ug/L	4.1	4.1	<0.020
Acenaphthylene	ug/L	1	1	<0.020
Anthracene	ug/L	2.4	2.4	<0.020
Benzo(a)anthracene	ug/L	1	1	<0.020
Benzo(a)pyrene	ug/L	0.01	0.01	<0.010
Benzo(b&j)fluoranthene	ug/L	0.1	0.1	<0.020
Benzo(g,h,i)perylene	ug/L	0.2	0.2	<0.020
Benzo(k)fluoranthene	ug/L	0.1	0.1	<0.020
Chrysene	ug/L	0.1	0.1	<0.020
Dibenz(a,h)anthracene	ug/L	0.2	0.2	<0.020
Fluoranthene	ug/L	0.41	0.41	<0.020
Fluorene	ug/L	120	120	<0.020
Indeno(1,2,3-cd)pyrene	ug/L	0.2	0.2	<0.020
1+2-Methylnaphthalenes	ug/L	3.2	3.2	<0.028
1-Methylnaphthalene	ug/L	3.2	3.2	<0.020
2-Methylnaphthalene	ug/L	3.2	3.2	<0.020
Naphthalene	ug/L	11	11	<0.050
Phenanthrene	ug/L	1	1	<0.020
Pyrene	ug/L	4.1	4.1	<0.020
Surrogate: Chrysene d12	%	-	-	107.0
Surrogate: Naphthalene d8	%	-	-	100.6
Surrogate: Phenanthrene d10	%	-	-	97.9

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

ANALYTICAL REPORT

L2635577 CONT'D....

Job Reference: 26685

PAGE 12 of 16

13-SEP-21 13:19 (MT)

Polychlorinated Biphenyls - WATER

· • · · · · · · · · · · · · · · · · · ·				
			Lab ID	L2635577-1
		Sampl	e Date	03-SEP-21
		San	nple ID	MW4
Analyte	Unit	Guide #1	Limits #2	
Aroclor 1242	ug/L	-	-	<0.020
Aroclor 1248	ug/L	-	-	<0.020
Aroclor 1254	ug/L	-	-	<0.020
Aroclor 1260	ug/L	-	-	<0.020
Surrogate: Decachlorobiphenyl	%	-	-	141.4
Total PCBs	ug/L	3	3	<0.040
Surrogate: Tetrachloro-m-xylene	%	-	-	106.0

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2635577 CONT'D.... Job Reference: 26685 PAGE 13 of 16 13-SEP-21 13:19 (MT)

Qualifiers for Individual Parameters Listed:

Qualifier Description

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Water Cyanide (WAD)-O.Reg 153/04 APHA 4500CN I-Weak acid Dist Colorimet

Weak acid dissociable cyanide (WAD) is determined by undergoing a distillation procedure. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CR-CR6-IC-R511-WT Water Hex Chrom-O.Reg 153/04 (July 2011) EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

EC-R511-WT Water Conductivity-O.Reg 153/04 (July 2011) APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

EC-SCREEN-WT Water Conductivity Screen (Internal Use APHA 2510 Only)

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

L2635577 CONT'D.... Job Reference: 26685 PAGE 14 of 16 13-SEP-21 13:19 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-D-UG/L-CVAA-WT Water Diss. Mercury in Water by CVAAS EPA 1631E (mod)

(ug/L)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Water PAH-Calculated Parameters SW846 8270

PAH-511-WT Water PAH-O. Reg 153/04 (July 2011) SW846 3510/8270

Aqueous samples, fortified with surrogates, are extracted using liquid/liquid extraction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PCB-511-WT Water PCB-O. Reg 153/04 (July 2011) SW846 3510/8082

Aqueous samples are extracted, then concentrated, reconstituted, and analyzed by GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of

L2635577 CONT'D....
Job Reference: 26685
PAGE 15 of 16
13-SEP-21 13:19 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Water pH APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 (July SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

20-946718

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

L2635577 CONT'D.... Job Reference: 26685 PAGE 16 of 16 13-SEP-21 13:19 (MT)

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2635577 Report Date: 13-SEP-21

Page 1 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-IC-N-WT	Water							
Batch R5580189								
WG3612551-15 DUP Chloride (CI)		WG3612551-1 3 46.0	3 46.0		mg/L	0.0	20	07-SEP-21
WG3612551-12 LCS Chloride (Cl)			103.1		%		90-110	07-SEP-21
WG3612551-11 MB Chloride (Cl)			<0.50		mg/L		0.5	07-SEP-21
WG3612551-14 MS Chloride (Cl)		WG3612551-1	3 104.3		%		75-125	07-SEP-21
CN-WAD-R511-WT	Water							
Batch R5581173								
WG3613513-18 DUP		WG3613513-20						
Cyanide, Weak Acid Dis	S	<2.0	<2.0	RPD-NA	ug/L	N/A	20	08-SEP-21
WG3613513-17 LCS Cyanide, Weak Acid Dis	s		93.0		%		80-120	08-SEP-21
WG3613513-16 MB Cyanide, Weak Acid Dis	s		<2.0		ug/L		2	08-SEP-21
WG3613513-19 MS Cyanide, Weak Acid Dis	s	WG3613513-20	9 0.0		%		75-125	08-SEP-21
CR-CR6-IC-R511-WT	Water							
Batch R5580511								
WG3612575-4 DUP Chromium, Hexavalent		WG3612575-3 <0.50	<25	RPD-NA	ug/L	N/A	20	07-SEP-21
WG3612575-2 LCS Chromium, Hexavalent			97.6		%		80-120	07-SEP-21
WG3612575-1 MB Chromium, Hexavalent			<0.50		ug/L		0.5	07-SEP-21
WG3612575-5 MS Chromium, Hexavalent		WG3612575-3	93.2		%		70-130	07-SEP-21
EC-R511-WT	Water						70 100	J. JL. L.
Batch R5579786								
WG3611879-4 DUP Conductivity		WG3611879-3 1.02	1.04		mS/cm	1.5	10	05-SEP-21
WG3611879-2 LCS Conductivity			104.6		%		90-110	05-SEP-21
WG3611879-1 MB Conductivity			<0.0060		mS/cm		0.006	05-SEP-21
F1-HS-511-WT	Water						•	55 021 21

Workorder: L2635577 Report Date: 13-SEP-21 Page 2 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Water							
Batch R558	3104								
WG3615664-4 F1 (C6-C10)	DUP		WG3615664-3 <25	<25	RPD-NA	ug/L	N/A	30	13-SEP-21
WG3615664-1 L F1 (C6-C10)	_cs			110.0		%		80-120	13-SEP-21
WG3615664-2 N F1 (C6-C10)	ИB			<25		ug/L		25	13-SEP-21
Surrogate: 3,4-Dic	hloroto	luene		116.6		%		60-140	13-SEP-21
WG3615664-5 N F1 (C6-C10)	MS		WG3615664-3	104.7		%		60-140	13-SEP-21
F2-F4-511-WT		Water							
Batch R558 WG3612122-2 L	0948 _CS								
F2 (C10-C16)				100.5		%		70-130	08-SEP-21
F3 (C16-C34)				102.5		%		70-130	08-SEP-21
F4 (C34-C50)				102.0		%		70-130	08-SEP-21
WG3612122-1 N F2 (C10-C16)	ИΒ			<100		ug/L		100	08-SEP-21
F3 (C16-C34)				<250		ug/L		250	08-SEP-21
F4 (C34-C50)				<250		ug/L		250	08-SEP-21
Surrogate: 2-Brom	nobenzo	otrifluoride		90.2		%		60-140	08-SEP-21
HG-D-UG/L-CVAA-W	Т	Water							
	1422								
WG3613531-4 D Mercury (Hg)-Diss	OUP solved		WG3613531-3 <0.0050	<0.0050	RPD-NA	ug/L	N/A	20	09-SEP-21
WG3613531-2 L Mercury (Hg)-Diss	CS solved			97.2		%		80-120	09-SEP-21
WG3613531-1 M Mercury (Hg)-Diss	MB solved			<0.0050		ug/L		0.005	09-SEP-21
WG3613531-6 M Mercury (Hg)-Diss	MS solved		WG3613531-5	114.0		%		70-130	09-SEP-21
MET-D-UG/L-MS-WT		Water							
Batch R558	0470								
WG3612581-4 D Antimony (Sb)-Dis	DUP solved		WG3612581-3 <1.0	<1.0	RPD-NA	ug/L	N/A	20	07-SEP-21
Arsenic (As)-Disso	olved		<1.0	<1.0	RPD-NA	ug/L	N/A	20	07-SEP-21
Barium (Ba)-Disso	olved		309	308		ug/L	0.4	20	07-SEP-21

Workorder: L2635577 Report Date: 13-SEP-21 Page 3 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R55804	70							
WG3612581-4 DUI		WG3612581-			4			
Beryllium (Be)-Dissol	ved	<1.0	<1.0	RPD-NA	ug/L	N/A	20	07-SEP-21
Boron (B)-Dissolved		<100	<100	RPD-NA	ug/L	N/A	20	07-SEP-21
Cadmium (Cd)-Disso		<0.050	<0.050	RPD-NA	ug/L	N/A	20	07-SEP-21
Chromium (Cr)-Disso		<5.0	<5.0	RPD-NA	ug/L	N/A	20	07-SEP-21
Cobalt (Co)-Dissolve		<1.0	<1.0	RPD-NA	ug/L	N/A	20	07-SEP-21
Copper (Cu)-Dissolve	ed	<2.0	<2.0	RPD-NA	ug/L	N/A	20	07-SEP-21
Lead (Pb)-Dissolved		<0.50	< 0.50	RPD-NA	ug/L	N/A	20	07-SEP-21
Molybdenum (Mo)-Di	ssolved	73.4	76.6		ug/L	4.2	20	07-SEP-21
Nickel (Ni)-Dissolved		<5.0	<5.0	RPD-NA	ug/L	N/A	20	07-SEP-21
Selenium (Se)-Disso	lved	<0.50	< 0.50	RPD-NA	ug/L	N/A	20	07-SEP-21
Silver (Ag)-Dissolved		<0.50	< 0.50	RPD-NA	ug/L	N/A	20	07-SEP-21
Sodium (Na)-Dissolve	ed	584000	574000		ug/L	1.8	20	07-SEP-21
Thallium (TI)-Dissolve	ed	<0.10	<0.10	RPD-NA	ug/L	N/A	20	07-SEP-21
Uranium (U)-Dissolve	ed	<0.10	<0.10	RPD-NA	ug/L	N/A	20	07-SEP-21
Vanadium (V)-Dissol	ved	<5.0	<5.0	RPD-NA	ug/L	N/A	20	07-SEP-21
Zinc (Zn)-Dissolved		<10	<10	RPD-NA	ug/L	N/A	20	07-SEP-21
WG3612581-2 LCS								
Antimony (Sb)-Dissol			101.8		%		80-120	07-SEP-21
Arsenic (As)-Dissolve			102.8		%		80-120	07-SEP-21
Barium (Ba)-Dissolve			97.8		%		80-120	07-SEP-21
Beryllium (Be)-Dissol	ved		101.5		%		80-120	07-SEP-21
Boron (B)-Dissolved			97.0		%		80-120	07-SEP-21
Cadmium (Cd)-Disso			99.9		%		80-120	07-SEP-21
Chromium (Cr)-Disso			99.8		%		80-120	07-SEP-21
Cobalt (Co)-Dissolve			98.3		%		80-120	07-SEP-21
Copper (Cu)-Dissolve	ed		98.2		%		80-120	07-SEP-21
Lead (Pb)-Dissolved			98.9		%		80-120	07-SEP-21
Molybdenum (Mo)-Di			100.9		%		80-120	07-SEP-21
Nickel (Ni)-Dissolved			98.3		%		80-120	07-SEP-21
Selenium (Se)-Disso			99.8		%		80-120	07-SEP-21
Silver (Ag)-Dissolved			99.1		%		80-120	07-SEP-21
Sodium (Na)-Dissolv			101.2		%		80-120	07-SEP-21
Thallium (TI)-Dissolve	ed		101.4		%		80-120	07-SEP-21

Workorder: L2635577 Report Date: 13-SEP-21 Page 4 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R55804	170							
WG3612581-2 LC					0.4			
Uranium (U)-Dissolv			103.1		%		80-120	07-SEP-21
Vanadium (V)-Dissol	ivea		100.3		%		80-120	07-SEP-21
Zinc (Zn)-Dissolved			97.0		%		80-120	07-SEP-21
WG3612581-1 MB Antimony (Sb)-Disso			<0.10		ug/L		0.1	07-SEP-21
Arsenic (As)-Dissolv			<0.10		ug/L		0.1	07-SEP-21
Barium (Ba)-Dissolve	ed		<0.10		ug/L		0.1	07-SEP-21
Beryllium (Be)-Disso	lved		<0.10		ug/L		0.1	07-SEP-21
Boron (B)-Dissolved			<10		ug/L		10	07-SEP-21
Cadmium (Cd)-Disso	olved		<0.0050		ug/L		0.005	07-SEP-21
Chromium (Cr)-Disso	olved		<0.50		ug/L		0.5	07-SEP-21
Cobalt (Co)-Dissolve	ed		<0.10		ug/L		0.1	07-SEP-21
Copper (Cu)-Dissolv	red		<0.20		ug/L		0.2	07-SEP-21
Lead (Pb)-Dissolved			<0.050		ug/L		0.05	07-SEP-21
Molybdenum (Mo)-D	issolved		<0.050		ug/L		0.05	07-SEP-21
Nickel (Ni)-Dissolved	t		<0.50		ug/L		0.5	07-SEP-21
Selenium (Se)-Disso	olved		< 0.050		ug/L		0.05	07-SEP-21
Silver (Ag)-Dissolved	d		< 0.050		ug/L		0.05	07-SEP-21
Sodium (Na)-Dissolv	ved .		<50		ug/L		50	07-SEP-21
Thallium (TI)-Dissolv	ved .		<0.010		ug/L		0.01	07-SEP-21
Uranium (U)-Dissolv	ed		<0.010		ug/L		0.01	07-SEP-21
Vanadium (V)-Dissol	lved		<0.50		ug/L		0.5	07-SEP-21
Zinc (Zn)-Dissolved			<1.0		ug/L		1	07-SEP-21
WG3612581-5 MS		WG3612581-3						
Antimony (Sb)-Disso			98.3		%		70-130	07-SEP-21
Arsenic (As)-Dissolv			100.5		%		70-130	07-SEP-21
Barium (Ba)-Dissolve			N/A	MS-B	%		-	07-SEP-21
Beryllium (Be)-Disso			97.7		%		70-130	07-SEP-21
Boron (B)-Dissolved			71.6		%		70-130	07-SEP-21
Cadmium (Cd)-Disso			95.7		%		70-130	07-SEP-21
Chromium (Cr)-Disse			96.5		%		70-130	07-SEP-21
Cobalt (Co)-Dissolve			97.8		%		70-130	07-SEP-21
Copper (Cu)-Dissolv			92.0		%		70-130	07-SEP-21
Lead (Pb)-Dissolved			96.5		%		70-130	07-SEP-21

Workorder: L2635577 Report Date: 13-SEP-21 Page 5 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R558047 WG3612581-5 MS Molybdenum (Mo)-Dis		WG3612581-3		MO D	%			07.050 -:
Nickel (Ni)-Dissolved	ssoiveu		N/A 92.5	MS-B	%		70.400	07-SEP-21
	, a d						70-130	07-SEP-21
Selenium (Se)-Dissolv	/eu		98.6		%		70-130	07-SEP-21
Silver (Ag)-Dissolved	٨		97.4	MOD	%		70-130	07-SEP-21
Sodium (Na)-Dissolve			N/A	MS-B	%		-	07-SEP-21
Thallium (TI)-Dissolve			98.9		%		70-130	07-SEP-21
Uranium (U)-Dissolve			102.4		%		70-130	07-SEP-21
Vanadium (V)-Dissolv	ea		100.6		%		70-130	07-SEP-21
Zinc (Zn)-Dissolved			90.2		%		70-130	07-SEP-21
PAH-511-WT	Water							
Batch R558126								
WG3612122-2 LCS 1-Methylnaphthalene			91.0		%		50-140	00 CED 24
2-Methylnaphthalene			88.1		%		50-140	09-SEP-21 09-SEP-21
Acenaphthene			89.5		%		60-130	09-SEP-21
Acenaphthylene			87.9		%		60-130	09-SEP-21
Anthracene			82.5		%		50-130	
Benzo(a)anthracene			97.7		%		60-140	09-SEP-21
Benzo(a)pyrene			78.0		%			09-SEP-21
Benzo(b&j)fluoranther	10		81.4		%		50-140	09-SEP-21
Benzo(g,h,i)perylene	ic .		81.2		%		60-130 50-140	09-SEP-21 09-SEP-21
Benzo(k)fluoranthene			88.3		%		50-140	
Chrysene			98.6		%		60-140	09-SEP-21 09-SEP-21
Dibenz(a,h)anthracen	Δ		87.3		%		50-140	09-SEP-21
Fluoranthene	•		93.3		%		60-140	09-SEP-21
Fluorene			90.6		%		60-130	09-SEP-21
Indeno(1,2,3-cd)pyren	ne.		88.6		%		50-140	09-SEP-21
Naphthalene	.0		81.2		%		50-140	09-SEP-21
Phenanthrene			91.5		%		60-140	09-SEP-21
Pyrene			94.9		%		60-140	09-SEP-21
WG3612122-1 MB			00		,,		00-140	03-0L1 -21
1-Methylnaphthalene			<0.020		ug/L		0.02	09-SEP-21
2-Methylnaphthalene			<0.020		ug/L		0.02	09-SEP-21
Acenaphthene			<0.020		ug/L		0.02	09-SEP-21

Workorder: L2635577 Report Date: 13-SEP-21 Page 6 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Test Matrix	Reference R	esult	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT Water							
Batch R5581268							
WG3612122-1 MB							
Acenaphthylene		:0.020		ug/L		0.02	09-SEP-21
Anthracene		:0.020		ug/L		0.02	09-SEP-21
Benzo(a)anthracene		:0.020		ug/L		0.02	09-SEP-21
Benzo(a)pyrene	<	0.010		ug/L		0.01	09-SEP-21
Benzo(b&j)fluoranthene	<	0.020		ug/L		0.02	09-SEP-21
Benzo(g,h,i)perylene	<	0.020		ug/L		0.02	09-SEP-21
Benzo(k)fluoranthene	<	0.020		ug/L		0.02	09-SEP-21
Chrysene	<	:0.020		ug/L		0.02	09-SEP-21
Dibenz(a,h)anthracene	<	:0.020		ug/L		0.02	09-SEP-21
Fluoranthene	<	:0.020		ug/L		0.02	09-SEP-21
Fluorene	<	:0.020		ug/L		0.02	09-SEP-21
Indeno(1,2,3-cd)pyrene	<	0.020		ug/L		0.02	09-SEP-21
Naphthalene	<	:0.050		ug/L		0.05	09-SEP-21
Phenanthrene	<	:0.020		ug/L		0.02	09-SEP-21
Pyrene	<	:0.020		ug/L		0.02	09-SEP-21
Surrogate: Naphthalene d8	1	08.4		%		60-140	09-SEP-21
Surrogate: Phenanthrene d10	1	07.7		%		60-140	09-SEP-21
Surrogate: Chrysene d12	1	14.0		%		50-150	09-SEP-21
PCB-511-WT Water							
Batch R5580788							
WG3612112-2 LCS							
Aroclor 1242		23.9		%		60-140	08-SEP-21
Aroclor 1248		07.9		%		60-140	08-SEP-21
Aroclor 1254		28.9		%		60-140	08-SEP-21
Aroclor 1260	1	47.5	LCS-H	%		60-140	08-SEP-21
WG3612112-1 MB Aroclor 1242	<	:0.020		ug/L		0.02	08-SEP-21
Aroclor 1248	<	:0.020		ug/L		0.02	08-SEP-21
Aroclor 1254	<	:0.020		ug/L		0.02	08-SEP-21
Aroclor 1260		:0.020		ug/L		0.02	08-SEP-21
Surrogate: Decachlorobiphenyl		55.7	SURQC	%		50-150	08-SEP-21
Surrogate: Tetrachloro-m-xylene		08.8		%		50-150	08-SEP-21
PH-WT Water							

PH-WT Water

Workorder: L2635577 Report Date: 13-SEP-21 Page 7 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT	Water							
Batch R5579786 WG3611879-4 DUP pH WG3611879-2 LCS pH		WG3611879-3 8.63	8.60 6.99	J	pH units pH units	0.03	0.2 6.9-7.1	05-SEP-21 05-SEP-21
•	Water		0.00		p		0.0 7.1	00 OLI 21
VOC-511-HS-WT Batch R5583104								
WG3615664-4 DUP		WG3615664-3						
1,1,1,2-Tetrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1,2,2-Tetrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1,1-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	13-SEP-21
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,2-Dichloropropane		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Acetone		<30	<30	RPD-NA	ug/L	N/A	30	13-SEP-21
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Bromodichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	13-SEP-21
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	13-SEP-21
cis-1,2-Dichloroethylene	e	<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
cis-1,3-Dichloropropene	•	<0.30	<0.30	RPD-NA	ug/L	N/A	30	13-SEP-21
Dibromochloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Dichlorodifluoromethane	е	<2.0	<2.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	13-SEP-21

Workorder: L2635577 Report Date: 13-SEP-21 Page 8 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5583104								
WG3615664-4 DUP		WG3615664-						
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	13-SEP-21
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	13-SEP-21
Methylene Chloride		<5.0	<5.0	RPD-NA	ug/L	N/A	30	13-SEP-21
MTBE		<2.0	<2.0	RPD-NA	ug/L	N/A	30	13-SEP-21
o-Xylene		<0.30	< 0.30	RPD-NA	ug/L	N/A	30	13-SEP-21
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Tetrachloroethylene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
trans-1,2-Dichloroethyle	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
trans-1,3-Dichloroprope	ne	<0.30	<0.30	RPD-NA	ug/L	N/A	30	13-SEP-21
Trichloroethylene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Trichlorofluoromethane		<5.0	<5.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
WG3615664-1 LCS								
1,1,1,2-Tetrachloroetha	ne		92.2		%		70-130	13-SEP-21
1,1,2,2-Tetrachloroetha	ne		104.2		%		70-130	13-SEP-21
1,1,1-Trichloroethane			97.7		%		70-130	13-SEP-21
1,1,2-Trichloroethane			104.6		%		70-130	13-SEP-21
1,1-Dichloroethane			107.5		%		70-130	13-SEP-21
1,1-Dichloroethylene			104.6		%		70-130	13-SEP-21
1,2-Dibromoethane			101.8		%		70-130	13-SEP-21
1,2-Dichlorobenzene			109.7		%		70-130	13-SEP-21
1,2-Dichloroethane			110.7		%		70-130	13-SEP-21
1,2-Dichloropropane			103.2		%		70-130	13-SEP-21
1,3-Dichlorobenzene			107.2		%		70-130	13-SEP-21
1,4-Dichlorobenzene			108.9		%		70-130	13-SEP-21
Acetone			124.4		%		60-140	13-SEP-21
Benzene			91.8		%		70-130	13-SEP-21
Bromodichloromethane			105.9		%		70-130	13-SEP-21
Bromoform			99.5		%		70-130	13-SEP-21
Bromomethane			96.6		%		60-140	13-SEP-21
Carbon tetrachloride			88.8		%		70-130	13-SEP-21
Chlorobenzene			93.9		%		70-130	13-SEP-21

Workorder: L2635577 Report Date: 13-SEP-21 Page 9 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5583104								
WG3615664-1 LCS			04.5		0/			
Chloroform			94.5		%		70-130	13-SEP-21
cis-1,2-Dichloroethylene			104.0		%		70-130	13-SEP-21
cis-1,3-Dichloropropene Dibromochloromethane	!		100.5		%		70-130	13-SEP-21
	_		100.9		%		70-130	13-SEP-21
Dichlorodifluoromethane)		81.2		%		50-140	13-SEP-21
Ethylbenzene			98.1		%		70-130	13-SEP-21
n-Hexane			103.1		%		70-130	13-SEP-21
m+p-Xylenes			98.5		%		70-130	13-SEP-21
Methyl Ethyl Ketone			111.7		%		60-140	13-SEP-21
Methyl Isobutyl Ketone			117.0		%		60-140	13-SEP-21
Methylene Chloride			101.2		%		70-130	13-SEP-21
MTBE			103.3		%		70-130	13-SEP-21
o-Xylene			99.7		%		70-130	13-SEP-21
Styrene			99.97		%		70-130	13-SEP-21
Tetrachloroethylene			89.1		%		70-130	13-SEP-21
Toluene			100.0		%		70-130	13-SEP-21
trans-1,2-Dichloroethyle			106.0		%		70-130	13-SEP-21
trans-1,3-Dichloroprope	ne		103.0		%		70-130	13-SEP-21
Trichloroethylene			87.2		%		70-130	13-SEP-21
Trichlorofluoromethane			93.5		%		60-140	13-SEP-21
Vinyl chloride			84.9		%		60-140	13-SEP-21
WG3615664-2 MB								
1,1,1,2-Tetrachloroetha			<0.50		ug/L		0.5	13-SEP-21
1,1,2,2-Tetrachloroetha	ne		<0.50		ug/L		0.5	13-SEP-21
1,1,1-Trichloroethane			<0.50		ug/L		0.5	13-SEP-21
1,1,2-Trichloroethane			<0.50		ug/L		0.5	13-SEP-21
1,1-Dichloroethane			<0.50		ug/L		0.5	13-SEP-21
1,1-Dichloroethylene			<0.50		ug/L		0.5	13-SEP-21
1,2-Dibromoethane			<0.20		ug/L		0.2	13-SEP-21
1,2-Dichlorobenzene			<0.50		ug/L		0.5	13-SEP-21
1,2-Dichloroethane			<0.50		ug/L		0.5	13-SEP-21
1,2-Dichloropropane			<0.50		ug/L		0.5	13-SEP-21
1,3-Dichlorobenzene			<0.50		ug/L		0.5	13-SEP-21
1,4-Dichlorobenzene			<0.50		ug/L		0.5	13-SEP-21

Workorder: L2635577 Report Date: 13-SEP-21 Page 10 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test N	Matrix F	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5583104								
WG3615664-2 MB Acetone			<30		ua/l		30	40 OFP 04
Benzene			<0.50		ug/L		0.5	13-SEP-21
Bromodichloromethane			<2.0		ug/L		2	13-SEP-21
Bromoform			<2.0 <5.0		ug/L		5	13-SEP-21
Bromomethane					ug/L		5 0.5	13-SEP-21
Carbon tetrachloride			<0.50		ug/L		0.5	13-SEP-21
Chlorobenzene			<0.20		ug/L			13-SEP-21
			<0.50		ug/L		0.5	13-SEP-21
Chloroform			<1.0		ug/L		1	13-SEP-21
cis-1,2-Dichloroethylene			<0.50		ug/L		0.5	13-SEP-21
cis-1,3-Dichloropropene			<0.30		ug/L		0.3	13-SEP-21
Dibromochloromethane			<2.0		ug/L		2	13-SEP-21
Dichlorodifluoromethane			<2.0		ug/L		2	13-SEP-21
Ethylbenzene			<0.50		ug/L		0.5	13-SEP-21
n-Hexane			<0.50		ug/L		0.5	13-SEP-21
m+p-Xylenes			<0.40		ug/L		0.4	13-SEP-21
Methyl Ethyl Ketone			<20		ug/L		20	13-SEP-21
Methyl Isobutyl Ketone			<20		ug/L		20	13-SEP-21
Methylene Chloride			<5.0		ug/L		5	13-SEP-21
MTBE			<2.0		ug/L		2	13-SEP-21
o-Xylene			<0.30		ug/L		0.3	13-SEP-21
Styrene			<0.50		ug/L		0.5	13-SEP-21
Tetrachloroethylene			<0.50		ug/L		0.5	13-SEP-21
Toluene			<0.50		ug/L		0.5	13-SEP-21
trans-1,2-Dichloroethylene			<0.50		ug/L		0.5	13-SEP-21
trans-1,3-Dichloropropene			<0.30		ug/L		0.3	13-SEP-21
Trichloroethylene			<0.50		ug/L		0.5	13-SEP-21
Trichlorofluoromethane			<5.0		ug/L		5	13-SEP-21
Vinyl chloride			<0.50		ug/L		0.5	13-SEP-21
Surrogate: 1,4-Difluoroben			90.5		%		70-130	13-SEP-21
Surrogate: 4-Bromofluorob			92.0		%		70-130	13-SEP-21
WG3615664-5 MS 1,1,1,2-Tetrachloroethane	,	NG3615664-3	87.6		%		50-140	13-SEP-21
1,1,2,2-Tetrachloroethane			95.0		%		50-140	13-SEP-21
1,1,1-Trichloroethane			94.2		%		50-140	
1, 1, 1 - 1 HOHOTOGUIANG			J-1.2		70		JU-14U	13-SEP-21

Workorder: L2635577 Report Date: 13-SEP-21 Page 11 of 13

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Batch R5583104 W03615664-5 MS 1.1,2-Trichloroetane 97.3 % 50-140 13-SEP-21 1,1-Dichloroethylene 100.8 % 50-140 13-SEP-21 1,1-Dichloroethylene 100.8 % 50-140 13-SEP-21 1,2-Dichloroethane 93.4 % 50-140 13-SEP-21 1,2-Dichloroebrane 106.4 % 50-140 13-SEP-21 1,2-Dichloroethane 103.3 % 50-140 13-SEP-21 1,2-Dichloropropane 98.0 % 50-140 13-SEP-21 1,2-Dichlorobenzene 106.2 % 50-140 13-SEP-21 1,4-Dichlorobenzene 108.3 % 50-140 13-SEP-21 1,4-Dichlorobenzene 108.3 % 50-140 13-SEP-21 1,4-Dichlorobenzene 100.4 % 50-140 13-SEP-21 1,4-Dichloromethane 100.4 % 50-140 13-SEP-21 Bromodichromethane 91.4 % 50-140 1	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG3615664-5 MS	VOC-511-HS-WT	Water							
1.1.2-Trichloroethane 97.3 % 50.140 13.SEP-21 1.1-Dichloroethylone 100.8 % 50.140 13.SEP-21 1.1-Dichloroethylone 93.4 % 50.140 13.SEP-21 1.2-Dichlorobenzene 106.4 % 50.140 13.SEP-21 1.2-Dichlorobenzene 106.4 % 50.140 13.SEP-21 1.2-Dichlorobenzene 108.3 % 50.140 13.SEP-21 1.3-Dichlorobenzene 108.3 % 50.140 13.SEP-21 1.3-Dichlorobenzene 108.3 % 50.140 13.SEP-21 1.3-Dichlorobenzene 108.3 % 50.140 13.SEP-21 1.4-Dichlorobenzene 108.3 % 50.140 13.SEP-21 Acetone 112.1 % 50.140 13.SEP-21 Bromodichloromethane 100.4 % 50.140 13.SEP-21 Bromodorm 92.0 % 50.140 13.SEP-21 Bromoderbrane 91.4 % 50.140 13.SEP-21<	Batch R558310	4							
1,1-Dichloroethylene			WG3615664-			0.4			
1,1-Dichloroethylene 100.8 % 50-140 13-SEP-21 1,2-Dichloroethane 93.4 % 50-140 13-SEP-21 1,2-Dichlorobenzene 106.4 % 50-140 13-SEP-21 1,2-Dichlorobenzene 106.4 % 50-140 13-SEP-21 1,2-Dichlorobenzene 98.0 % 50-140 13-SEP-21 1,2-Dichloropthane 103.3 % 50-140 13-SEP-21 1,3-Dichlorobenzene 106.2 % 50-140 13-SEP-21 1,3-Dichlorobenzene 106.2 % 50-140 13-SEP-21 1,3-Dichlorobenzene 108.3 % 50-140 13-SEP-21 1,3-Dichlorobenzene 108.3 % 50-140 13-SEP-21 1,3-Dichlorobenzene 112.1 % 50-140 13-SEP-21 1,3-Dichlorobenzene 112.1 % 50-140 13-SEP-21 1,3-Dichloromethane 100.4 % 50-140 13-SEP-21 1,3-Dichloromethane 100.4 % 50-140 13-SEP-21 1,3-SEP-21 1,3-Dichloromethane 100.4 % 50-140 13-SEP-21 1,3-SEP-21									
1,2-Dibromoethane	•								
1,2-Dichlorobenzene 106.4	-								
1,2-Dichloroethane 103.3 % 50-140 13-SEP-21 1,2-Dichloropropane 98.0 % 50-140 13-SEP-21 1,3-Dichlorobenzene 106.2 % 50-140 13-SEP-21 1,4-Dichlorobenzene 108.3 % 50-140 13-SEP-21 1,4-Dichlorobenzene 100.4 % 50-140 13-SEP-21 1,4-Dichlorobenzene 100.0 % 50-140 13-SEP-21 1,4-Dichloropropene 100.0 % 50-140 13-SEP-21 1,4-Dichlorodifluoromethane 100.0 % 50-140 13-SEP-21 1,4-Dichlorodi	•								
1,2-Dichloropropane 98.0 % 50-140 13-SEP-21 1,3-Dichlorobenzene 106.2 % 50-140 13-SEP-21 1,4-Dichlorobenzene 108.3 % 50-140 13-SEP-21 1,4-Dichlorobenzene 108.3 % 50-140 13-SEP-21 1,4-Dichlorobenzene 112.1 % 50-140 13-SEP-21 1,4-Dichlorobenzene 87.7 % 50-140 13-SEP-21 1,4-Dichloromethane 110.4 % 50-140 13-SEP-21 1,4-Dichloromethane 100.4 % 50-140 13-SEP-21 1,4-Dichloromethane 100.4 % 50-140 13-SEP-21 1,4-Dichloromethane 100.4 % 50-140 13-SEP-21 1,4-Dichlorobenzene 100.4 % 50-140 13-SEP-21 1,4-Dichlorobenzene 100.0 % 50-140 13-SEP-21 1,4-Dichlorobenzene 100.0 % 50-140 13-SEP-21 1,4-Dichloromethane 100.0 % 50-140 13-SEP-21 1,3-Dichloropropene 100.0 % 50-140 13-SEP-21 1,3-Dichloromethane 100	•								
1,3-Dichlorobenzene 106.2 % 50.140 13-SEP-21 1,4-Dichlorobenzene 108.3 % 50.140 13-SEP-21 1,4-Dichlorobenzene 108.3 % 50.140 13-SEP-21 1,4-Dichlorobenzene 112.1 % 50.140 13-SEP-21 1,4-Dichlorobenzene 87.7 % 50.140 13-SEP-21 1,4-Dichloromethane 100.4 % 50.140 13-SEP-21 1,5-Dichloromethane 100.4 % 50.140 13-SEP-21 1,5-Dichlorodifluoromethane 100.4 % 50.140 13-SEP-21 1,5-Dichlorodifluo	•								
1,4-Dichlorobenzene 108.3 % 50-140 13-SEP-21 Acetone 112.1 % 50-140 13-SEP-21 Benzene 87.7 % 50-140 13-SEP-21 Bromodichloromethane 100.4 % 50-140 13-SEP-21 Bromoform 92.0 % 50-140 13-SEP-21 Bromomethane 91.4 % 50-140 13-SEP-21 Carbon tetrachloride 85.3 % 50-140 13-SEP-21 Chlorobenzene 90.0 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 cis-1,2-Dichloroethylene 99.8 % 50-140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dichlorodifluoromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 n-Hexane 96.0 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50-140</td><td></td></t<>								50-140	
Acetone 112.1 % 50-140 13-SEP-21 Benzene 87.7 % 50-140 13-SEP-21 Bromodichloromethane 100.4 % 50-140 13-SEP-21 Bromoform 92.0 % 50-140 13-SEP-21 Bromomethane 91.4 % 50-140 13-SEP-21 Carbon tetrachloride 85.3 % 50-140 13-SEP-21 Chlorobenzene 90.0 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 Cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibriomochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane									
Benzene 87.7 % 50.140 13-SEP-21 Bromodichloromethane 100.4 % 50.140 13-SEP-21 Bromoform 92.0 % 50.140 13-SEP-21 Bromomethane 91.4 % 50.140 13-SEP-21 Carbon tetrachloride 85.3 % 50.140 13-SEP-21 Chlorobenzene 90.0 % 50.140 13-SEP-21 Chloroform 90.2 % 50.140 13-SEP-21 Cis-1,2-Dichloroethylene 99.8 % 50.140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50.140 13-SEP-21 Dibromochloromethane 95.5 % 50.140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50.140 13-SEP-21 Ethylbenzene 96.0 % 50.140 13-SEP-21 n-Hexane 95.1 % 50.140 13-SEP-21 m+P-Xylenes 96.7 % 50.140 13-SEP-21 Meth								50-140	
Bromodichloromethane 100.4 % 50-140 13-SEP-21 Bromoform 92.0 % 50-140 13-SEP-21 Bromomethane 91.4 % 50-140 13-SEP-21 Carbon tetrachloride 85.3 % 50-140 13-SEP-21 Chlorobenzene 90.0 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 cis-1,2-Dichloroethylene 99.8 % 50-140 13-SEP-21 cis-1,2-Dichloropropene 96.4 % 50-140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21									13-SEP-21
Bromoform 92.0 % 50-140 13-SEP-21 Bromomethane 91.4 % 50-140 13-SEP-21 Carbon tetrachloride 85.3 % 50-140 13-SEP-21 Chlorobenzene 90.0 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 cis-1,2-Dichloroethylene 99.8 % 50-140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21								50-140	13-SEP-21
Bromomethane 91.4 % 50-140 13-SEP-21 Carbon tetrachloride 85.3 % 50-140 13-SEP-21 Chlorobenzene 90.0 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 cis-1,2-Dichloroethylene 99.8 % 50-140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 MtBE 101.3 % 50-140 13-SEP-21		е						50-140	13-SEP-21
Carbon tetrachloride 85.3 % 50-140 13-SEP-21 Chlorobenzene 90.0 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 cis-1,2-Dichloroethylene 99.8 % 50-140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21								50-140	13-SEP-21
Chlorobenzene 90.0 % 50-140 13-SEP-21 Chloroform 90.2 % 50-140 13-SEP-21 cis-1,2-Dichloroethylene 99.8 % 50-140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 O-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrac	Bromomethane			91.4		%		50-140	13-SEP-21
Chloroform 90.2 % 50-140 13-SEP-21 cis-1,2-Dichloroethylene 99.8 % 50-140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 O-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21				85.3		%		50-140	13-SEP-21
cis-1,2-Dichloroethylene 99.8 % 50-140 13-SEP-21 cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	Chlorobenzene			90.0		%		50-140	13-SEP-21
cis-1,3-Dichloropropene 96.4 % 50-140 13-SEP-21 Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	Chloroform			90.2		%		50-140	13-SEP-21
Dibromochloromethane 95.5 % 50-140 13-SEP-21 Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	cis-1,2-Dichloroethyler	ne		99.8		%		50-140	13-SEP-21
Dichlorodifluoromethane 71.9 % 50-140 13-SEP-21 Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	cis-1,3-Dichloroproper	ne		96.4		%		50-140	13-SEP-21
Ethylbenzene 96.0 % 50-140 13-SEP-21 n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	Dibromochloromethan	е		95.5		%		50-140	13-SEP-21
n-Hexane 95.1 % 50-140 13-SEP-21 m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	Dichlorodifluorometha	ne		71.9		%		50-140	13-SEP-21
m+p-Xylenes 96.7 % 50-140 13-SEP-21 Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	Ethylbenzene			96.0		%		50-140	13-SEP-21
Methyl Ethyl Ketone 97.5 % 50-140 13-SEP-21 Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	n-Hexane			95.1		%		50-140	13-SEP-21
Methyl Isobutyl Ketone 103.7 % 50-140 13-SEP-21 Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	m+p-Xylenes			96.7		%		50-140	13-SEP-21
Methylene Chloride 95.5 % 50-140 13-SEP-21 MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	Methyl Ethyl Ketone			97.5		%		50-140	13-SEP-21
MTBE 101.3 % 50-140 13-SEP-21 o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	Methyl Isobutyl Ketone	9		103.7		%		50-140	13-SEP-21
o-Xylene 97.0 % 50-140 13-SEP-21 Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	Methylene Chloride			95.5		%		50-140	13-SEP-21
Styrene 96.1 % 50-140 13-SEP-21 Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	MTBE			101.3		%		50-140	13-SEP-21
Tetrachloroethylene 86.7 % 50-140 13-SEP-21 Toluene 94.6 % 50-140 13-SEP-21	o-Xylene			97.0		%		50-140	13-SEP-21
Toluene 94.6 % 50-140 13-SEP-21	Styrene			96.1		%		50-140	13-SEP-21
	Tetrachloroethylene			86.7		%		50-140	13-SEP-21
	Toluene			94.6		%		50-140	13-SEP-21
	trans-1,2-Dichloroethy	lene		103.1		%		50-140	13-SEP-21

Workorder: L2635577

Report Date: 13-SEP-21

Page 12 of 13

Client:

ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

VOC-511-HS-WT Water			
Batch R5583104 WG3615664-5 MS WG3615664-3			
trans-1,3-Dichloropropene 98.2 %	50-140	13-SEP-21	
Trichloroethylene 84.5 %	50-140	13-SEP-21	
Trichlorofluoromethane 87.7 %	50-140	13-SEP-21	
Vinyl chloride 78.4 %	50-140	13-SEP-21	

Workorder: L2635577 Report Date: 13-SEP-21

ECOH MANAGEMENT INC (Mississauga) Client:

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

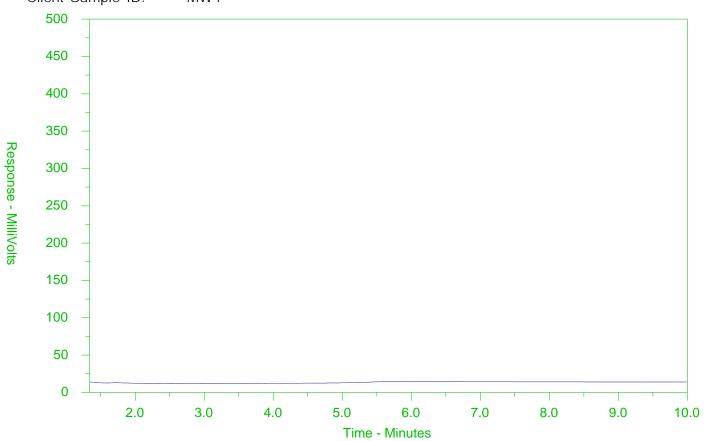
Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
SURQC	Surrogate recovery marginally exceeded DQO in QC sample (MB, LCS, RM, or MS). Surrogates are less important for QC samples than for test samples. Refer to regular (non-surrogate) analyte results in affected QC sample for assessment of potential impacts to those analytes.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 13 of 13

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2635577-1 Client Sample ID: MW4

← -F2-	→ ←	—F3—→ ← F4—	>
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067⁰F
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease
←	-Diesel/J	et Fuels→	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

L2635577-COFC

COC Number: 20 -

Page of

Danast Ta	Contact and company name below will appear on the final report	r	Danasta / F	la simia mén					(TAT) D.								· i
Report To Company:	+ f	Select Report F	Reports / F ormat: PDF	EXCEL E	ID (DICITAL)	1	R] if received by	ound Time									ļ
Contact:		i				(-					1-1	ľ					1
Phone:	72 72 72 72 72 72 72 72 72 72 72 72 72 7	<u>.</u> i	CI Reports with COA	YES NC			'4] if received by P3] if received by					-	AFFIX AI	S BARCO	DE LAE	BEL HE	RE
riione.	Company address below will appear on the final report	Select Distribution	ults to Criteria on Report - p on: 🔲 EMAIL	orovide details below if			P2] if received by							(ALS use	e only)		
						_ 1 day [E] if received by	3pm M-F - :	100% rush	surcharge n	inimum						ì
Street:	7 the part 1	Email 1 or Fax	1	Lillin		- Same da	y [E2] if received ly to rush request	l by 10am M-	S - 200% n s statutory	ish surcharg holidays and	e. Additional	fees tests					1
City/Province: Postal Code.	<u> </u>	Email 2	(3, E).	15 15 152	7.60	1	and Time Requi			1	Tidit i Gacilia			h			!
Invoice To	Same as Report To	Email 3	I	114		Date							nmm-y r			—–	'
IIIVOICE TO			Invoice R	· ·			ro	or all tests wit	n rusn IAIS				to contirm a	анавину.			
Componii	Copy of Invoice with Report ≥ YES □ NO	Select Invoice D		MAIL MAIL		i (o (-	10				is Reque		700 6 -1		$\overline{}$	1-	
Company:	·	Email 1 or Fax	1, i/ Cl	and (or the	11 (1	¦≝ _€	Indica	te Filtered (F), Preserve	d (P) or Filte — — ;	ered and Pro	eserved (F	/P) below	ï	-	12	tes
Contact:	Project Information	Email 2	Oil and Can Baguira	d Fields (alient us		CONTAINERS	 		i ∤-					— -	-	Į	notes)
ALS Account #	•		Oil and Gas Require	PO#	se)	∤ ₹ .	- .	I			1		- i - J	l I	ے ا	ļ₩	å :
Job #:		AFE/Cost Center:	—	ł		ĮΣ					'				HOLD	ايزا	ا ۋا
PO / AFE:	$\psi = SE_{i}^{*}$ At	Major/Minor Code:		Routing Code:		-181		1				'			Ξ	18	AR :
LSD:		Requisitioner:				ଜ ୍	!								O	STORAGE REQUIRED	≩
LOD.	ن المحمد بسير	Location:					n										0.
ALS Lab Wor	k Order # (ALS use only): // 3	ALS Contact:		Sampler:		NUMBER									SAMPLES	EXTENDED	SUSPECTED HAZARD (see
ALS Sample #	Sample Identification and/or Coordinate		Date	Time		₹									Ξ	E	PE
(ALS use only)	(This description will appear on the report)	•	(dd-mmm-yy)	(hh:mm)	Sample Type	[⊋]				1			i l		₽	\	l sg
	***************************************		7	(+	177	হিছি	 -					_		+**	╁╾	
	14-100 "		+ / `			. 11	1~,~	 -	+			<u></u> -	-			<u>!</u>	
	· — – –					<u> </u>				i	. !		\rightarrow			ŗ	
-	<u> </u>			<u></u>			 		- +				_	_	_Ļ	ļ	ļļ
			<u> </u>				· ·									!	!
	<u></u>													ļ		ì	
	_			-				<u> </u>		i _	-i i	ĺ	i j	j			
			†	†		i					- 				1 -	1	† †
			:			 		<u> </u>	1		+ +	-	-	-		┧──	+-1
			<u>-</u>			 		 	-+			_	$-\vdash-$			 	<u></u>
			-1												 		<u> </u> ;
														'	<u> </u>	!	<u> </u>
			:										ļ				
			:					i i			Ti i		i ,			Ţ	i
Duinkin	Notes / S	pecify Limits for result	evaluation by selectin	g from drop-down l	below		-ii -	SA	MPLE R	ECEIPT I	DETAILS	(ALS us	se only)				
	g Water (DW) Samples ¹ (client use)	(Excel COC only)			Cooling M	ethod: 🏻 🖂	NONE	☐ ICE	TCE P.	ACKS	FROZE	7	COOLI	NG INITI	ATED	
•	n from a Regulated DW System?					Submissio	n Comments	identified o	on Sampi	Receipt	Notificati	ion:	<u> </u>	YES [□ NO		ļ
	s □ no						stody Seals Ir			□ N/A	Sample		dy Seals I		☐ YE		R.A
Are samples for h	uman consumption/ use?					1 0	INITIAL COOLE	R TEMPER	ATURES °C	===	1172	FIN	AL COOLER	. TEMPÉRA	TURES °	C	1
☐ YE	S NO					<u> </u>			<u></u>		118.	<u>U</u>				·	
Dalassada	SHIPMENT RELEASE (client use)		INITIAL SHIPMEN		S use only)		ļ		MAL			PTION ((ALS use	onły)			
Released by:	Date: 3/76/20 1 Tir	ne: Received by	Karan	Date 4/2/	202/	Time 10:52	Received b	by.	ベスス	Qef.	罗仁	/ W	1		1727	171	}
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION			TE - LABO - ATORY	COPY YELLO	W - CLIENT C	COPY				<u> </u>	A				AUG 2	2020 FRONT

ECOH MANAGEMENT INC (Mississauga)

ATTN: Ian Duncan

75 Courtney Park Drive West

Unit 1

Mississauga ON L5W 0E3

Date Received: 09-SEP-21

Report Date: 13-SEP-21 16:24 (MT)

Version: FINAL

Client Phone: 905-795-2800

Certificate of Analysis

Lab Work Order #: L2637513

Project P.O. #: NOT SUBMITTED

Job Reference: 26685

C of C Numbers: Legal Site Desc:

Emily Hansen Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

ANALYTICAL GUIDELINE REPORT

L2637513 CONTD....

Page 2 of 6

6685	ANALI	IOAL	Page 2 of 6 13-SEP-21 16:24 (MT)				
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits
_2637513-1 BHMW-1					/		
Sampled By: ID on 09-SEP-21 @ 12:30							
Matrix: WATER						#1	
Physical Tests							
Conductivity	1.96		0.0030	mS/cm	10-SEP-21		
рН	8.00		0.10	pH units	10-SEP-21		
Anions and Nutrients							
Chloride (CI)	511	DLHC	2.5	mg/L	10-SEP-21	790	
Cyanides							
Cyanide, Weak Acid Diss	<2.0		2.0	ug/L	10-SEP-21	52	
Dissolved Metals							
Dissolved Mercury Filtration Location	FIELD			No Unit	10-SEP-21		
Dissolved Metals Filtration Location	FIELD			No Unit	09-SEP-21		
Antimony (Sb)-Dissolved	1.4	DLHC	1.0	ug/L	09-SEP-21	6	
Arsenic (As)-Dissolved	2.8	DLHC	1.0	ug/L	09-SEP-21	25	
Barium (Ba)-Dissolved	160	DLHC	1.0	ug/L	09-SEP-21	1000	
Beryllium (Be)-Dissolved	<1.0	DLHC	1.0	ug/L	09-SEP-21	4	
Boron (B)-Dissolved	500	DLHC	100	ug/L	09-SEP-21	5000	
Cadmium (Cd)-Dissolved	<0.050	DLHC	0.050	ug/L	09-SEP-21	2.1	
Chromium (Cr)-Dissolved	<5.0	DLHC	5.0	ug/L	09-SEP-21	50	
Cobalt (Co)-Dissolved	<1.0	DLHC	1.0	ug/L	09-SEP-21	3.8	
Copper (Cu)-Dissolved	3.6	DLHC	2.0	ug/L	09-SEP-21	69	
Lead (Pb)-Dissolved	<0.50	DLHC	0.50	ug/L	09-SEP-21	10	
Mercury (Hg)-Dissolved	0.0643		0.0050	ug/L	13-SEP-21	0.29	
Molybdenum (Mo)-Dissolved	27.1	DLHC	0.50	ug/L	09-SEP-21	70	
Nickel (Ni)-Dissolved	<5.0	DLHC	5.0	ug/L	09-SEP-21	100	
Selenium (Se)-Dissolved	1.18	DLHC	0.50	ug/L	09-SEP-21	10	
Silver (Ag)-Dissolved	<0.50	DLHC	0.50	ug/L	09-SEP-21	1.2	
Sodium (Na)-Dissolved	137000	DLHC	500	ug/L	09-SEP-21	490000	
Thallium (TI)-Dissolved	<0.10	DLHC	0.10	ug/L	09-SEP-21	2	
Uranium (U)-Dissolved	2.26	DLHC	0.10	ug/L	09-SEP-21	20	
Vanadium (V)-Dissolved	<5.0	DLHC	5.0	ug/L	09-SEP-21	6.2	
Zinc (Zn)-Dissolved	<10	DLHC	10	ug/L	09-SEP-21	890	
Speciated Metals							
Chromium, Hexavalent	<0.50		0.50	ug/L	10-SEP-21	25	
Volatile Organic Compounds	10.00		3.55	39,2	.552. 2.	20	
Acetone	<30	OWP	30	ug/L	13-SEP-21	2700	
Benzene	<0.50	OWP	0.50	ug/L ug/L	13-SEP-21	5	
Bromodichloromethane	<2.0	OWP	2.0	ug/L ug/L	13-SEP-21	16	
Bromoform	<5.0	OWP	5.0	ug/L ug/L	13-SEP-21	25	
Bromomethane	<0.50	OWP	0.50	ug/L ug/L	13-SEP-21	0.89	
Carbon tetrachloride	<0.30	OWP	0.30	ug/L ug/L	13-SEP-21	0.89	
Chlorobenzene	<0.20	OWP	0.20	ug/L ug/L	13-SEP-21	30	
Dibromochloromethane	<2.0	OWP	2.0	•	13-SEP-21		
Chloroform	<2.0 <1.0	OWP	1.0	ug/L	13-SEP-21 13-SEP-21	25 2.4	
				ug/L			
1,2-Dibromoethane	<0.20	OWP	0.20	ug/L	13-SEP-21	0.2	
1,2-Dichlorobenzene	<0.50	OWP	0.50	ug/L	13-SEP-21	3	
1,3-Dichlorobenzene	<0.50	OWP	0.50	ug/L	13-SEP-21	59	
1,4-Dichlorobenzene	<0.50	OWP	0.50	ug/L	13-SEP-21	1	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2637513 CONTD....

Page 3 of 6 13-SEP-21 16:24 (MT)

26685 Sample Details								13-SEP-21 1	6:24 (MT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2637513-1 BHMW-1									
Sampled By: ID on 09-SEP-21 @ 12:30									
Matrix: WATER						#1		1	
Volatile Organic Compounds									
Dichlorodifluoromethane	<2.0	OWP	2.0	ug/L	13-SEP-21	590			
1,1-Dichloroethane	<0.50	OWP	0.50	ug/L	13-SEP-21	5			
1,2-Dichloroethane	<0.50	OWP	0.50	ug/L	13-SEP-21	1.6			
1,1-Dichloroethylene	<0.50	OWP	0.50	ug/L	13-SEP-21	1.6			
cis-1,2-Dichloroethylene	<0.50	OWP	0.50	ug/L	13-SEP-21	1.6			
trans-1,2-Dichloroethylene	<0.50	OWP	0.50	ug/L	13-SEP-21	1.6			
Methylene Chloride	<5.0	OWP	5.0	ug/L	13-SEP-21	50			
1,2-Dichloropropane	<0.50	OWP	0.50	ug/L	13-SEP-21	5			
cis-1,3-Dichloropropene	<0.30	OWP	0.30	ug/L	13-SEP-21				
trans-1,3-Dichloropropene	<0.30	OWP	0.30	ug/L	13-SEP-21				
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	13-SEP-21	0.5			
Ethylbenzene	<0.50	OWP	0.50	ug/L	13-SEP-21	2.4			
n-Hexane	<0.50	OWP	0.50	ug/L	13-SEP-21	51			
Methyl Ethyl Ketone	<20	OWP	20	ug/L	13-SEP-21	1800			
Methyl Isobutyl Ketone	<20	OWP	20	ug/L	13-SEP-21	640			
MTBE	<2.0	OWP	2.0	ug/L	13-SEP-21	15			
Styrene	<0.50	OWP	0.50	ug/L	13-SEP-21	5.4			
1,1,1,2-Tetrachloroethane	<0.50	OWP	0.50	ug/L	13-SEP-21	1.1			
1,1,2,2-Tetrachloroethane	<0.50	OWP	0.50	ug/L	13-SEP-21	1			
Tetrachloroethylene	<0.50	OWP	0.50	ug/L	13-SEP-21	1.6			
Toluene	<0.50	OWP	0.50	ug/L	13-SEP-21	22			
1,1,1-Trichloroethane	<0.50	OWP	0.50	ug/L	13-SEP-21	200			
1,1,2-Trichloroethane	<0.50	OWP	0.50	ug/L	13-SEP-21	4.7			
Trichloroethylene	<0.50	OWP	0.50	ug/L	13-SEP-21	1.6			
Trichlorofluoromethane	<5.0	OWP	5.0	ug/L	13-SEP-21	150			
Vinyl chloride	<0.50	OWP	0.50	ug/L	13-SEP-21	0.5			
o-Xylene	<0.30	OWP	0.30	ug/L	13-SEP-21				
m+p-Xylenes	<0.40	OWP	0.40	ug/L	13-SEP-21				
Xylenes (Total)	<0.50		0.50	ug/L	13-SEP-21	300			
Surrogate: 4-Bromofluorobenzene	85.9		70-130	%	13-SEP-21				
Surrogate: 1,4-Difluorobenzene	99.6		70-130	%	13-SEP-21				
Hydrocarbons									
F1 (C6-C10)	<25	OWP	25	ug/L	13-SEP-21	420			
F1-BTEX	<25		25	ug/L	13-SEP-21	420			
F2 (C10-C16)	<100		100	ug/L	13-SEP-21	150			
F3 (C16-C34)	<250		250	ug/L	13-SEP-21	500			
F4 (C34-C50)	<250		250	ug/L	13-SEP-21	500			
Total Hydrocarbons (C6-C50)	<370		370	ug/L	13-SEP-21				
Chrom. to baseline at nC50	YES			No Unit	13-SEP-21				
Surrogate: 2-Bromobenzotrifluoride	87.7		60-140	%	13-SEP-21				
Surrogate: 3,4-Dichlorotoluene	89.9		60-140	%	13-SEP-21				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Sample Parameter Qualifier key listed:

Qualifier	Description		
Qualifor	Boothplion		
OWP		e contained visible sediment (r can be biased high due to pres	must be included as part of analysis). Measured concentrations of organic sence of sediment.
DLHC	Detection Limit Raise	d: Dilution required due to high	h concentration of test analyte(s).
Methods Li	sted (if applicable):		
ALS Test Co	ode Matrix	Test Description	Method Reference***
CL-IC-N-WT	- Water	Chloride by IC	EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Water Cyanide (WAD)-O.Reg 153/04 APHA 4500CN I-Weak acid Dist Colorimet

Weak acid dissociable cyanide (WAD) is determined by undergoing a distillation procedure. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CR-CR6-IC-R511-WT Water Hex Chrom-O.Reg 153/04 (July EPA 7199

2011)
This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

EC-R511-WT Water Conductivity-O.Reg 153/04 (July APHA 2510 B

2011

Water samples can be measured directly by immersing the conductivity cell into the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

EC-SCREEN-WT Water Conductivity Screen (Internal APHA 2510

Use Only)

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-D-UG/L-CVAA-WT Water Diss. Mercury in Water by EPA 1631E (mod)

CVAAS (ug/L)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MFT-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS EPA 200.8

(ug/L)

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Water APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs

SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg SW846 8260

153/04 (July 2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-Water Sum of Xylene Isomer CALCULATION WT

Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location Laboratory Location Laboratory Definition Code

WT ALS ENVIRONMENTAL - WATERLOO,

ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2637513 Report Date: 13-SEP-21

Page 1 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-IC-N-WT	Water						-	
Batch R5583036	vvalei							
WG3615061-9 DUP		WG3615061-8						
Chloride (CI)		33.8	33.8		mg/L	0.1	20	10-SEP-21
WG3615061-7 LCS Chloride (CI)			102.5		%		90-110	10-SEP-21
WG3615061-6 MB Chloride (CI)			<0.50		mg/L		0.5	10-SEP-21
WG3615061-10 MS Chloride (Cl)		WG3615061-8	99.7		%		75-125	10-SEP-21
CN-WAD-R511-WT	Water							
Batch R5583377								
WG3615143-24 DUP Cyanide, Weak Acid Dis	c	WG3615143-2 3	3 <2.0	DDD NA	ug/L	NI/A	20	40 CED 04
WG3615143-22 LCS	J	\2.0	<2.U	RPD-NA	ug/L	N/A	20	10-SEP-21
Cyanide, Weak Acid Dis	s		96.2		%		80-120	10-SEP-21
WG3615143-21 MB Cyanide, Weak Acid Dis	s		<2.0		ug/L		2	10-SEP-21
WG3615143-25 MS Cyanide, Weak Acid Dis	s	WG3615143-2	3 102.7		%		75-125	10-SEP-21
CR-CR6-IC-R511-WT	Water							
Batch R5583299								
WG3615903-4 DUP Chromium, Hexavalent		WG3615903-3 <0.50	<0.50	RPD-NA	ug/L	N/A	20	10-SEP-21
WG3615903-2 LCS Chromium, Hexavalent			97.8		%		80-120	10-SEP-21
WG3615903-1 MB Chromium, Hexavalent			<0.50		ug/L		0.5	10-SEP-21
WG3615903-5 MS		WG3615903-3	02.7		0/		70.400	40.055.64
Chromium, Hexavalent			93.7		%		70-130	10-SEP-21
EC-R511-WT	Water							
Batch R5582750 WG3614795-4 DUP		WG3614795-3						
Conductivity		1.96	1.97		mS/cm	0.4	10	10-SEP-21
WG3614795-2 LCS Conductivity			98.5		%		90-110	10-SEP-21
WG3614795-1 MB Conductivity			<0.0030		mS/cm		0.003	10-SEP-21
F1-HS-511-WT	Water							

Workorder: L2637513 Report Date: 13-SEP-21 Page 2 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Water							
Batch R558339 WG3615798-4 DUP F1 (C6-C10)		WG3615798-3 <25	<25	RPD-NA	ug/L	N/A	30	13-SEP-21
WG3615798-1 LCS F1 (C6-C10)			109.3		%		80-120	13-SEP-21
WG3615798-2 MB F1 (C6-C10)			<25		ug/L		25	13-SEP-21
Surrogate: 3,4-Dichlor	otoluene		102.3		%		60-140	13-SEP-21
WG3615798-5 MS F1 (C6-C10)		WG3615798-3	92.2		%		60-140	13-SEP-21
F2-F4-511-WT	Water							
Batch R558320 WG3614620-2 LCS								
F2 (C10-C16)			101.8		%		70-130	13-SEP-21
F3 (C16-C34)			104.8		%		70-130	13-SEP-21
F4 (C34-C50)			101.4		%		70-130	13-SEP-21
WG3614620-1 MB F2 (C10-C16)			<100		ug/L		100	13-SEP-21
F3 (C16-C34)			<250		ug/L		250	13-SEP-21
F4 (C34-C50)			<250		ug/L		250	13-SEP-21
Surrogate: 2-Bromobe	enzotrifluoride		85.9		%		60-140	13-SEP-21
HG-D-UG/L-CVAA-WT	Water							
Batch R558323	8							
WG3615265-4 DUP Mercury (Hg)-Dissolve		WG3615265-3 <0.0050	<0.0050	RPD-NA	ug/L	N/A	20	13-SEP-21
WG3615265-2 LCS Mercury (Hg)-Dissolve			96.6		%		80-120	13-SEP-21
WG3615265-1 MB Mercury (Hg)-Dissolve	ed		<0.0050		ug/L		0.005	13-SEP-21
WG3615265-6 MS Mercury (Hg)-Dissolve	ed	WG3615265-5	94.8		%		70-130	13-SEP-21
MET-D-UG/L-MS-WT	Water							
Batch R558150	9							
WG3614463-4 DUP Antimony (Sb)-Dissolv		WG3614463-3 <1.0	<1.0	RPD-NA	ug/L	N/A	20	10-SEP-21
Arsenic (As)-Dissolve	b	<1.0	<1.0	RPD-NA	ug/L	N/A	20	10-SEP-21
Barium (Ba)-Dissolved	d	404	406		ug/L	0.4	20	10-SEP-21

Workorder: L2637513 Report Date: 13-SEP-21 Page 3 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R5581509								
WG3614463-4 DUP Beryllium (Be)-Dissolve	d	WG3614463 < 1.0	-3 <1.0	DDD MA	ua/l	N1/A	20	40.0ED.04
Boron (B)-Dissolved	u	<1.0	<1.0	RPD-NA RPD-NA	ug/L ug/L	N/A N/A	20 20	10-SEP-21
Cadmium (Cd)-Dissolved	ad	0.113	0.105	RPD-NA	ug/L	6.9	20	10-SEP-21
Chromium (Cr)-Dissolve		<5.0	<5.0	RPD-NA	ug/L ug/L			10-SEP-21
Cobalt (Co)-Dissolved	c u	<1.0	<1.0		ug/L	N/A	20	10-SEP-21
Copper (Cu)-Dissolved		4.3	4.0	RPD-NA		N/A	20	10-SEP-21
Lead (Pb)-Dissolved				DDD NA	ug/L	7.6	20	10-SEP-21
` ,	alvad	<0.50	<0.50	RPD-NA	ug/L	N/A	20	10-SEP-21
Molybdenum (Mo)-Diss	oivea	0.63	0.54	000 114	ug/L	15	20	10-SEP-21
Nickel (Ni)-Dissolved		<5.0	<5.0	RPD-NA	ug/L	N/A	20	10-SEP-21
Selenium (Se)-Dissolve	ea	1.78	1.83		ug/L	2.5	20	10-SEP-21
Silver (Ag)-Dissolved		<0.50	<0.50	RPD-NA	ug/L	N/A	20	10-SEP-21
Sodium (Na)-Dissolved		885000	906000		ug/L	2.3	20	10-SEP-21
Thallium (TI)-Dissolved		<0.10	<0.10	RPD-NA	ug/L	N/A	20	10-SEP-21
Uranium (U)-Dissolved		3.95	4.00		ug/L	1.1	20	10-SEP-21
Vanadium (V)-Dissolve	d	<5.0	<5.0	RPD-NA	ug/L	N/A	20	10-SEP-21
Zinc (Zn)-Dissolved		<10	<10	RPD-NA	ug/L	N/A	20	10-SEP-21
WG3614463-2 LCS Antimony (Sb)-Dissolve	ed .		92.4		%		80-120	09-SEP-21
Arsenic (As)-Dissolved			94.4		%		80-120	09-SEP-21
Barium (Ba)-Dissolved			94.2		%		80-120	09-SEP-21
Beryllium (Be)-Dissolve	d		92.1		%		80-120	09-SEP-21
Boron (B)-Dissolved			85.8		%		80-120	09-SEP-21
Cadmium (Cd)-Dissolve	ed		92.8		%		80-120	09-SEP-21
Chromium (Cr)-Dissolve	ed		92.5		%		80-120	09-SEP-21
Cobalt (Co)-Dissolved			93.3		%		80-120	09-SEP-21
Copper (Cu)-Dissolved			91.6		%		80-120	09-SEP-21
Lead (Pb)-Dissolved			92.8		%		80-120	09-SEP-21
Molybdenum (Mo)-Diss	olved		92.4		%		80-120	09-SEP-21
Nickel (Ni)-Dissolved			91.8		%		80-120	09-SEP-21
Selenium (Se)-Dissolve	ed		94.2		%		80-120	09-SEP-21
Silver (Ag)-Dissolved			93.3		%		80-120	09-SEP-21
Sodium (Na)-Dissolved			93.5		%		80-120	09-SEP-21
Thallium (TI)-Dissolved			92.6		%		80-120	09-SEP-21

Workorder: L2637513 Report Date: 13-SEP-21 Page 4 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R5581509								
WG3614463-2 LCS			00.0		0/		00.400	
Uranium (U)-Dissolved			96.0		%		80-120	09-SEP-21
Vanadium (V)-Dissolved			94.6		%		80-120	09-SEP-21
Zinc (Zn)-Dissolved			88.7		%		80-120	09-SEP-21
WG3614463-1 MB Antimony (Sb)-Dissolved			<0.10		ug/L		0.1	09-SEP-21
Arsenic (As)-Dissolved			<0.10		ug/L		0.1	09-SEP-21
Barium (Ba)-Dissolved			<0.10		ug/L		0.1	09-SEP-21
Beryllium (Be)-Dissolved			<0.10		ug/L		0.1	09-SEP-21
Boron (B)-Dissolved			<10		ug/L		10	09-SEP-21
Cadmium (Cd)-Dissolved	I		<0.0050		ug/L		0.005	09-SEP-21
Chromium (Cr)-Dissolved	d		<0.50		ug/L		0.5	09-SEP-21
Cobalt (Co)-Dissolved			<0.10		ug/L		0.1	09-SEP-21
Copper (Cu)-Dissolved			<0.20		ug/L		0.2	09-SEP-21
Lead (Pb)-Dissolved			<0.050		ug/L		0.05	09-SEP-21
Molybdenum (Mo)-Dissol	ved		< 0.050		ug/L		0.05	09-SEP-21
Nickel (Ni)-Dissolved			<0.50		ug/L		0.5	09-SEP-21
Selenium (Se)-Dissolved			<0.050		ug/L		0.05	09-SEP-21
Silver (Ag)-Dissolved			<0.050		ug/L		0.05	09-SEP-21
Sodium (Na)-Dissolved			<50		ug/L		50	09-SEP-21
Thallium (TI)-Dissolved			<0.010		ug/L		0.01	09-SEP-21
Uranium (U)-Dissolved			<0.010		ug/L		0.01	09-SEP-21
Vanadium (V)-Dissolved			<0.50		ug/L		0.5	09-SEP-21
Zinc (Zn)-Dissolved			<1.0		ug/L		1	09-SEP-21
WG3614463-5 MS		WG3614463-6						
Antimony (Sb)-Dissolved			90.9		%		70-130	09-SEP-21
Arsenic (As)-Dissolved			93.1		%		70-130	09-SEP-21
Barium (Ba)-Dissolved			N/A	MS-B	%		-	09-SEP-21
Beryllium (Be)-Dissolved			90.2		%		70-130	09-SEP-21
Boron (B)-Dissolved			N/A	MS-B	%		-	09-SEP-21
Cadmium (Cd)-Dissolved			90.0		%		70-130	09-SEP-21
Chromium (Cr)-Dissolved	t		90.8		%		70-130	09-SEP-21
Cobalt (Co)-Dissolved			82.8		%		70-130	09-SEP-21
Copper (Cu)-Dissolved			75.2		%		70-130	09-SEP-21
Lead (Pb)-Dissolved			89.7		%		70-130	09-SEP-21

Qualifier

Workorder: L2637513 Report Date: 13-SEP-21 Page 5 of 11

RPD

Limit

Analyzed

Units

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Reference

Result

Mississauga ON L5W 0E3

Matrix

Contact: Ian Duncan

Test

rest	IVIALITA	Reference	Result	Qualifier	Units	KPD	Lillit	Anaryzeu
MET-D-UG/L-MS-WT	Water							
Batch R5581509								
WG3614463-5 MS		WG3614463-6			0.4			
Molybdenum (Mo)-Disso	olved		85.2		%		70-130	09-SEP-21
Nickel (Ni)-Dissolved			79.5		%		70-130	09-SEP-21
Selenium (Se)-Dissolved	1		95.6		%		70-130	09-SEP-21
Silver (Ag)-Dissolved			88.9		%		70-130	09-SEP-21
Sodium (Na)-Dissolved			N/A	MS-B	%		-	09-SEP-21
Thallium (TI)-Dissolved			89.5		%		70-130	09-SEP-21
Uranium (U)-Dissolved			N/A	MS-B	%		-	09-SEP-21
Vanadium (V)-Dissolved			90.0		%		70-130	09-SEP-21
Zinc (Zn)-Dissolved			75.0		%		70-130	09-SEP-21
PH-WT	Water							
Batch R5582750								
WG3614795-4 DUP pH		WG3614795-3 8.00	8.00	J	pH units	0.00	0.2	10-SEP-21
·		8.00	8.00	J	pri units	0.00	0.2	10-SEP-21
WG3614795-2 LCS pH			6.99		pH units		6.9-7.1	10-SEP-21
VOC-511-HS-WT	Water				•			
Batch R5583391	water							
WG3615798-4 DUP		WG3615798-3						
1,1,1,2-Tetrachloroethan	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1,2,2-Tetrachloroethan	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1,1-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	13-SEP-21
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Acetone		<30	<30	RPD-NA	ug/L	N/A	30	13-SEP-21
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Bromodichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Bromoform		<5.0	<5.0	NI D IVA	· <i>y</i> · –	1 11/1	-	.5 OLI 21
2.0			-0.0					

Workorder: L2637513 Report Date: 13-SEP-21 Page 6 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

VOC-511-HS-WT	Water							Analyzed
Batch R5583391								
WG3615798-4 DUP		WG3615798-						
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	13-SEP-21
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	13-SEP-21
cis-1,2-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
cis-1,3-Dichloropropene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	13-SEP-21
Dibromochloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Dichlorodifluoromethane	•	<2.0	<2.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	13-SEP-21
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	13-SEP-21
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	13-SEP-21
Methylene Chloride		<5.0	<5.0	RPD-NA	ug/L	N/A	30	13-SEP-21
MTBE		<2.0	<2.0	RPD-NA	ug/L	N/A	30	13-SEP-21
o-Xylene		<0.30	< 0.30	RPD-NA	ug/L	N/A	30	13-SEP-21
Styrene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Tetrachloroethylene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Toluene		0.53	0.54		ug/L	1.9	30	13-SEP-21
trans-1,2-Dichloroethyler	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
trans-1,3-Dichloroproper	ne	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	13-SEP-21
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
Trichlorofluoromethane		<5.0	<5.0	RPD-NA	ug/L	N/A	30	13-SEP-21
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	13-SEP-21
WG3615798-1 LCS								
1,1,1,2-Tetrachloroethan			77.0		%		70-130	13-SEP-21
1,1,2,2-Tetrachloroethan	ne		78.0		%		70-130	13-SEP-21
1,1,1-Trichloroethane			81.4		%		70-130	13-SEP-21
1,1,2-Trichloroethane			81.0		%		70-130	13-SEP-21
1,1-Dichloroethane			85.4		%		70-130	13-SEP-21
1,1-Dichloroethylene			87.1		%		70-130	13-SEP-21
1,2-Dibromoethane			77.2		%		70-130	13-SEP-21

Workorder: L2637513 Report Date: 13-SEP-21 Page 7 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5583391								
WG3615798-1 LCS 1,2-Dichlorobenzene			85.9		%		70.400	40.050.04
1,2-Dichloroethane			81.4		%		70-130	13-SEP-21
1,2-Dichloropropane			86.9		%		70-130	13-SEP-21 13-SEP-21
1,3-Dichlorobenzene			85.8		%		70-130	
•			85.1		%		70-130	13-SEP-21
1,4-Dichlorobenzene			89.5		%		70-130	13-SEP-21
Acetone Benzene			90.8		%		60-140	13-SEP-21
							70-130	13-SEP-21
Bromodichloromethane Bromoform			85.2 77.1		%		70-130	13-SEP-21
							70-130	13-SEP-21
Bromomethane Carbon tetrachloride			79.4		%		60-140	13-SEP-21
Chlorobenzene			80.3		%		70-130	13-SEP-21
Chloroform			87.3		%		70-130	13-SEP-21
			81.0		%		70-130	13-SEP-21
cis-1,2-Dichloroethylene			83.4		%		70-130	13-SEP-21
cis-1,3-Dichloropropene			74.4		%		70-130	13-SEP-21
Dibromochloromethane			79.6		%		70-130	13-SEP-21
Dichlorodifluoromethane			71.1		%		50-140	13-SEP-21
Ethylbenzene			97.5		%		70-130	13-SEP-21
n-Hexane			90.4		%		70-130	13-SEP-21
m+p-Xylenes			90.4		%		70-130	13-SEP-21
Methyl Ethyl Ketone			83.5		%		60-140	13-SEP-21
Methyl Isobutyl Ketone			75.6		%		60-140	13-SEP-21
Methylene Chloride			81.6		%		70-130	13-SEP-21
MTBE			99.5		%		70-130	13-SEP-21
o-Xylene			94.0		%		70-130	13-SEP-21
Styrene			91.9		%		70-130	13-SEP-21
Tetrachloroethylene			85.7		%		70-130	13-SEP-21
Toluene			94.8		%		70-130	13-SEP-21
trans-1,2-Dichloroethylen			89.5		%		70-130	13-SEP-21
trans-1,3-Dichloropropen	е		75.3		%		70-130	13-SEP-21
Trichloroethylene			80.8		%		70-130	13-SEP-21
Trichlorofluoromethane			84.0		%		60-140	13-SEP-21
Vinyl chloride			79.8		%		60-140	13-SEP-21

Workorder: L2637513 Report Date: 13-SEP-21 Page 8 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
VOC-511-HS-WT	Water									
Batch R5583391										
WG3615798-2 MB			0.50		/!		0.5			
1,1,1,2-Tetrachloroetha			<0.50		ug/L		0.5	13-SEP-21		
1,1,2,2-Tetrachloroetha	ne		<0.50		ug/L		0.5	13-SEP-21		
1,1,1-Trichloroethane			<0.50		ug/L		0.5	13-SEP-21		
1,1,2-Trichloroethane			<0.50		ug/L		0.5	13-SEP-21		
1,1-Dichloroethane			<0.50		ug/L		0.5	13-SEP-21		
1,1-Dichloroethylene			<0.50		ug/L		0.5	13-SEP-21		
1,2-Dibromoethane			<0.20		ug/L		0.2	13-SEP-21		
1,2-Dichlorobenzene			<0.50		ug/L		0.5	13-SEP-21		
1,2-Dichloroethane			<0.50		ug/L		0.5	13-SEP-21		
1,2-Dichloropropane			<0.50		ug/L		0.5	13-SEP-21		
1,3-Dichlorobenzene			<0.50		ug/L		0.5	13-SEP-21		
1,4-Dichlorobenzene			<0.50		ug/L		0.5	13-SEP-21		
Acetone			<30		ug/L		30	13-SEP-21		
Benzene			< 0.50		ug/L		0.5	13-SEP-21		
Bromodichloromethane			<2.0		ug/L		2	13-SEP-21		
Bromoform			<5.0		ug/L		5	13-SEP-21		
Bromomethane			<0.50		ug/L		0.5	13-SEP-21		
Carbon tetrachloride			<0.20		ug/L		0.2	13-SEP-21		
Chlorobenzene			<0.50		ug/L		0.5	13-SEP-21		
Chloroform			<1.0		ug/L		1	13-SEP-21		
cis-1,2-Dichloroethylene	Э		< 0.50		ug/L		0.5	13-SEP-21		
cis-1,3-Dichloropropene	e		< 0.30	<0.30			0.3	13-SEP-21		
Dibromochloromethane	:		<2.0		ug/L		2	13-SEP-21		
Dichlorodifluoromethan	е		<2.0		ug/L		2	13-SEP-21		
Ethylbenzene			<0.50		ug/L		0.5	13-SEP-21		
n-Hexane			<0.50		ug/L		0.5	13-SEP-21		
m+p-Xylenes			< 0.40		ug/L		0.4	13-SEP-21		
Methyl Ethyl Ketone			<20		ug/L		20	13-SEP-21		
Methyl Isobutyl Ketone			<20		ug/L		20	13-SEP-21		
Methylene Chloride			<5.0		ug/L		5	13-SEP-21		
MTBE			<2.0		ug/L		2	13-SEP-21		
o-Xylene			<0.30		ug/L		0.3	13-SEP-21		
Styrene			<0.50		ug/L		0.5	13-SEP-21		

Workorder: L2637513 Report Date: 13-SEP-21 Page 9 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5583	391							
WG3615798-2 M			-O FO		ug/l		0.5	10.050.01
Tetrachloroethylene Toluene	į		<0.50 <0.50		ug/L		0.5	13-SEP-21
trans-1,2-Dichloroe	thylono		<0.50		ug/L		0.5	13-SEP-21
•	•		<0.30		ug/L		0.3	13-SEP-21
trans-1,3-Dichlorop	торене				ug/L		0.5	13-SEP-21
Trichloroethylene Trichlorofluorometh	000		<0.50		ug/L		5	13-SEP-21
Vinyl chloride	ane		<5.0 <0.50		ug/L		0.5	13-SEP-21
•					ug/L			13-SEP-21
Surrogate: 1,4-Diflu			100.2		%		70-130	13-SEP-21
Surrogate: 4-Bromo			87.6		%		70-130	13-SEP-21
WG3615798-5 M 1,1,1,2-Tetrachloro		WG3615798-	3 75.5		%		50-140	13-SEP-21
1,1,2,2-Tetrachloro	ethane		81.9		%		50-140	13-SEP-21
1,1,1-Trichloroetha	ne		79.2		%		50-140	13-SEP-21
1,1,2-Trichloroetha	ne		84.4		%		50-140	13-SEP-21
1,1-Dichloroethane			85.8		%		50-140	13-SEP-21
1,1-Dichloroethylen	e		83.7		%		50-140	13-SEP-21
1,2-Dibromoethane			80.6		%		50-140	13-SEP-21
1,2-Dichlorobenzen	е		84.6		%		50-140	13-SEP-21
1,2-Dichloroethane			85.6		%		50-140	13-SEP-21
1,2-Dichloropropan	е		89.4		%		50-140	13-SEP-21
1,3-Dichlorobenzen	е		81.5		%		50-140	13-SEP-21
1,4-Dichlorobenzen	е		80.7		%		50-140	13-SEP-21
Acetone			97.1		%		50-140	13-SEP-21
Benzene			90.5		%		50-140	13-SEP-21
Bromodichlorometh	ane		87.1		%		50-140	13-SEP-21
Bromoform			79.6		%		50-140	13-SEP-21
Bromomethane			76.6		%		50-140	13-SEP-21
Carbon tetrachlorid	е		76.5		%		50-140	13-SEP-21
Chlorobenzene			85.5		%		50-140	13-SEP-21
Chloroform			81.1		%		50-140	13-SEP-21
cis-1,2-Dichloroethy	lene		83.1		%		50-140	13-SEP-21
cis-1,3-Dichloroprop	pene		72.7		%		50-140	13-SEP-21
Dibromochlorometh	ane		81.1		%		50-140	13-SEP-21
Dichlorodifluoromet	hane		65.6		%		50-140	13-SEP-21
i								

Workorder: L2637513 Report Date: 13-SEP-21

Page 10 of 11

Client: ECOH MANAGEMENT INC (Mississauga)

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R55833	91							
WG3615798-5 MS		WG3615798-						
Ethylbenzene			92.9		%		50-140	13-SEP-21
n-Hexane			84.3		%		50-140	13-SEP-21
m+p-Xylenes			86.3		%		50-140	13-SEP-21
Methyl Ethyl Ketone			86.2		%		50-140	13-SEP-21
Methyl Isobutyl Ketor	ne		81.7		%		50-140	13-SEP-21
Methylene Chloride			84.1		%		50-140	13-SEP-21
MTBE			99.8		%		50-140	13-SEP-21
o-Xylene			90.4		%		50-140	13-SEP-21
Styrene			88.2		%		50-140	13-SEP-21
Tetrachloroethylene			79.0		%		50-140	13-SEP-21
Toluene			91.4		%		50-140	13-SEP-21
trans-1,2-Dichloroeth	ylene		85.5		%		50-140	13-SEP-21
trans-1,3-Dichloropro	pene		72.9		%		50-140	13-SEP-21
Trichloroethylene			76.8		%		50-140	13-SEP-21
Trichlorofluorometha	ne		78.8		%		50-140	13-SEP-21
Vinyl chloride			75.9		%		50-140	13-SEP-21
•								

Report Date: 13-SEP-21 Workorder: L2637513

ECOH MANAGEMENT INC (Mississauga) Client:

75 Courtney Park Drive West Unit 1

Mississauga ON L5W 0E3

Contact: Ian Duncan

Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate

RPD Relative Percent Difference

Not Available N/A

LCS Laboratory Control Sample Standard Reference Material SRM

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

Internal Reference Material IRM CRM Certified Reference Material Continuing Calibration Verification CCV CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

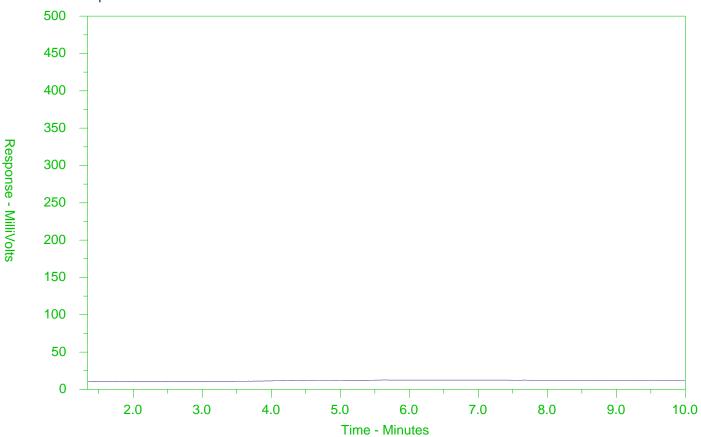
Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 11 of 11

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2637513-1 Client Sample ID: BHMW-1

← -F2-	→←	_F3F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline → ← Moto			tor Oils/Lube Oils/Grease———	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

Chain of C

COC Number: 20 -

ge of

Report To	Contact and company name below will appear on the final report	1	Reports / Recipients					Turnaround Time (TAT) Requested									
Company:	+ FLM 6/2	Select Report For	rmat: 🚡 PDF	Æs excel □ E	EDD (DIGITAL)	Routine [R] if received by 3pm M-F - no surcharges apply											
Contact:	Tan Diarra				4 day [P4] if received by 3pm M-F- 20% rush surcharge minimum												
Phone:	647455 775	 +	ts to Criteria on Beport -	-				ceived by 3pm						AFFIX ALS BA			1ERE
	Company address below will appear on the final report	Select Distribution: EMAIL MAIL FAX				_		eived by 3pm						(AL	.S use onl	y;	
Street:	THE COURT OF DEC						1 day [E] if received by 3pm M-F - 100% rush surcharge minimum Same day [E2] if received by 10am M-F - 200% rush surcharge. Additional fees may anoth to rush remests on weekends, statutory bullifus, and non-routine tests.										
City/Province:	M Saya, AN	Email 2 A E A CA					polytorush	requests on we	ekends,	statutory holid	ays and n	on-routine t	tests				
Postal Code:	15	Email 3	151 - 5 (3, 5.3	<u> </u>		Dat	e and Tim	e Required fo	rali E&P	TATs:	7	136	<u></u>	- <u>Bu</u>	<u> </u>	_ 0	
Invoice To	Same as Report To ⋈ YES □ NO		Invoice F	Recipients		1			_	-	ested, pie			to confirm availab	_		
	Copy of Invoice with Report YES NO	 Select Invoice Dis		EMAIL [] MAIL [— — — —							Reques					
Company:	copy of invoice with Nepolt \$25 Hzs No		ر المنظم (Sulph)		_	lo I		Indicate Filte	red (F)	Preserved (P)				E/D) holow		C	5 5
Contact:		Email 2	<u>CLC i Sui Mine</u>	4-26-	7	18	i	The F	100 (17)	i			501467 (1				ةٍ إِنْ
Oontaot.	Project Information		il and Gas Require	ed Fields (client u	ise)	┧┇┝╴		- : -			-					=	ءَ ا
ALS Account #	<u> </u>	AFE/Cost Center:	una ouo riequii	PO#		CONTAINERS									c	S ON HOLD	يُّ إِي
	76685	Major/Minor Code:		Routing Code:		ÌŻ	-,1								5	ON HOLD	۽ ا ڍ
PO / AFE:	<u> </u>	Requisitioner:				- ႘	1.	-					ı			<u> </u>	<u>ا</u> ا
LSD:		Location:				၂ㅂ							1		े है	5 \$. ₹
230.	1 0 0	Location.		Ī			- ند. أ	-	1							ي ا د	\
ALS Lab Wo	rk Order# (ALS use only):	ALS Contact:		Sampler:	<u> </u>	NUMBER	را <u></u> ما <u></u>	13			'				ا ا	SAMPLES EXTENDED S	SIISPECTED HAZARD (see notes)
ALS Sample #	Sample Identification and/or Coordinates	!	Date Date	Time	Sample Type	15 🗔		-								SAN	
(ALS use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)		<u> JZJ</u>		<u> </u>	<u> </u>			·				<u>Λ μ</u>	i j
	BAMIN	_	01/04/	1		$ A\rangle$	$<$ \times	ļ>4 —						<u> </u>	. !	<u>!</u>	
				İ										;	į	1	.'_
			,			i							•	T ! —	- I	ij	,
	- -	•	·	-		-i	i							† i -	† 	— <u>!</u>	i
			,			 		 -							 -	i i	1
	-		r – – —	+		-	_				+			<u> </u>	- ¦	1_	
	<u> </u>	l					-				\perp	·	— ⊢	—→- —÷	. ;	<u>;</u> —	4
															. i	-	
						i	ĺ		: 	i		i	ĺ		i	Ì	-
					Ī		j-	j - †	-	<u>;</u>	1	_ -	\top	- · —	' !	i i	
								 	i		+			; — <i>:-</i>	j-	- -	1.
<u> </u>				+					} <u>—</u> إ		-}			<u></u>			-
 _				 	- - !	1 1	ļ <u>.</u>					:- 		! · -			- 🚽 🗕
 						<u> </u>								_	-10		
Drinkir	ng Water (DW) Samples ¹ (client use)	ecify Limits for result e		ng from drop-down	below	SAMPLE RECEIPT DETAILS (ALS use only)											
	<u> </u>	(E)	xcel COC only)			Cooling N		_ D NON			ICE PACI		FROZE		COOLING IN		<u> </u>
	en from a Regulated DW System?							ments identi		 -	•				□ NO		
	ZES , □ NO					Cooler C		eals Intact:		YES [N/A	Sample		dy Seals Intaci		YES	<u> N</u> //
Are samples for	human consumption/ use?					22-	INIITIAL	COOLER TEN	MPERATI	URES ºC			$=\frac{FIN}{C}$	IAL COOLER TEM	PERATURE	:S *C	
						1 1 1 1 1		1			,	. /	\ <u>-</u>	7	1	- 1	
□ Y	SHIPMENT RELEASE (client use)			IT RECEPTION (4		122"							<u> </u>	(ALS use only			