

HAZELVIEW INVESTMENTS

HYDROLOGICAL REVIEW

PROPOSED MIXED-USE DEVELOPMENT 1590 AND 1650 DUNDAS STREET EAST MISSISSAUGA, ONTARIO

REPORT

February 16, 2021

Revised: December 10, 2021

August 15, 2022

CA20-149

Terrapex Environmental Ltd. 90 Scarsdale Road Toronto, Ontario, M3B 2R7 Telephone: (416) 245-0011 Website: www.terrapex.com

DISTRIBUTION: Hazelview Investments PROJECT #CA20-149

TABLE OF CONTENTS

	TABLE OF CONTENTS	I
1.0	BACKGROUND	1
2.0	LOCATION AND SETTING	2
	2.1 LOCATION AND PROPERTY DIMENSIONS	2
	2.2 PRESENT LAND USE	2
	2.3 PROPOSED DEVELOPMENT	2
	2.4 SITE TOPOGRAPHY	3
	2.5 DRAINAGE	3
	2.6 REGIONAL GEOLOGY	3
	2.7 SENSITIVE ECOLOGICAL RECEIVERS	4
	2.8 GROUNDWATER SUPPLY WELLS	4
3.0	FIELDWORK	5
	3.1 DRILLING INVESTIGATION AND MONITORING WELL CONSTRUCTION	5
	3.2 PREVIOUS INVESTIGATIONS AT THE SITE	5
	3.3 SURVEYING	5
4.0	SITE CHARACTERIZATION	6
	4.1 WATER LEVEL MONITORING	6
	4.2 SUBSURFACE SOIL CONDITIONS	6
	4.3 HYDRAULIC TESTING	6
	4.4 INTERPRETED GROUNDWATER FLOW DIRECTION AND VELOCITY	7
5.0	DEWATERING ESTIMATES	9
	5.1 TEMPORARY DEWATERING ESTIMATES	9
	5.2 DEWATERING ZONE OF INFLUENCE (ZOI)	12
	5.3 PERMANENT DEWATERING ESTIMATES	12
	5.4 ANTICIPATED PERMITTING	13
6.0	ANALYTICAL HYDROCHEMICAL ANALYSES	14
7.0	WATER BALANCE	15
8.0	SUMMARY AND DISCUSSION	16
9.0	CLOSURE	18
10.0	DREFERENCESERROR! BOOKMARK NOT DEFINE	ΞD.

TABLES (in text)

Table A	Summary of Steady State Construction Dewatering Rate Estimates							
Table B	Summary of Steady State Foundation Drainage Rate Estimates							
Table C	Summary of Tested Parameters Identified as Not Meeting Applicable Sanitary and Storm Sewer By-Law Criteria							
FIGURES								

Figure 1	Site Location
Figure 2	Site Vicinity 500m
Figure 3	Site Vicinity 100m
Figure 4	Locations of Investigations

TABLES

Monitoring Well Construction Details
Observed Groundwater Levels
Summary of Encountered Subsurface
Hydraulic Conductivity Estimates
Construction Dewatering Worksheet – Block A and Block C
Construction Dewatering Worksheet – Block E
Construction Dewatering Worksheet – Block F and Block G
Summary of Temporary Dewatering Estimates – (also Table A)
Summary of Permanent Dewatering Estimates – (also Table B)
Summary of Tested Parameters Identified as Not Meeting Applicable Sanitary
and Storm By-Law Criteria – (also Table C)
Summary of Groundwater Quality

APPENDICES

Appendix I	Provided Drawings and Information
Appendix II	Borehole Log Records
Appendix III	MECP Well Record Report
Appendix IV	Analytical Hydraulic Analysis Reports
Appendix V	Analytical Laboratory Analysis Reports

1.0 BACKGROUND

Terrapex Environmental Ltd. (**Terrapex**) was retained by Hazelview Investments (Hazelview) in support of the proposed mixed-use development located at 1590 and 1650 Dundas Street East in Mississauga, Ontario (referred to herein as the "Site"). This review herein is intended to address existing Site-specific subsurface conditions, in accordance with the Toronto Region Conservation Authority (TRCA) and the City of Mississauga.

A joint hydrogeological and geotechnical drilling investigation was carried out by Terrapex. The fieldwork for the joint drilling program consisted of advancing thirteen (13) boreholes in December of 2020 (BH100-series designations), and a further three (3) boreholes in August and September of 2021 (BH200-series designations). Specific to the hydrogeological work program, Terrapex installed nine wells in total for the two investigations. The remaining boreholes were drilled to support geotechnical assessments that were concurrently undertaken at the Site and are reported under separate cover. The hydrological network of monitoring wells at the Site were comprised of the newly installed monitoring wells.

This report presents the results of the initial investigation released in draft in February 2021, and the subsequent investigation released in draft in October 2021, and is intended for the guidance of the client and the design architects or engineers only. It is assumed that the design will be in accordance with the applicable building codes and standards.

2.0 LOCATION AND SETTING

2.1 LOCATION AND PROPERTY DIMENSIONS

The Site is located on the south side of Dundas Street East; approximately 600 m east of Dixie Road in Mississauga. For the purposes of this report Dundas Street east is oriented in an east-west direction and Mattawa Avenue is oriented in a north-south direction. The Site consists of two rectangular parcels of land separated by Mattawa Avenue. The parcel located on the west side of Mattawa Avenue (the West Parcel) has municipal address of 1590 Dundas Street East, measuring approximately 3.6 hectares (36360.2 m²) with approximate dimensions of 417 m by 87.2 m. The parcel located on the east side of Mattawa Avenue (the East Parcel) has municipal address of 1650 Dundas Street East, measuring approximately 3.7 hectares (37632 m²) with approximate dimensions of 392 m by 96 m. The general location is mapped on **Figure 1**.

2.2 PRESENT LAND USE

The northern sections of the two Parcels are developed with large 2-storey commercial buildings and a smaller restaurant building. The remaining area of the Site is paved with asphaltic concrete and used for parking. Land in the Site vicinity within approximately 500 m is urbanized with mixed usage (commercial/industrial/residential properties). **Figures 2 and 3** show the Site in its local context. The situation of the Site can be summarized by cardinal direction as follows:

- **South:** large buildings for commercial and industrial purposes further, and with Queensway East beyond;
- East: residential single detached dwellings, commercial properties further East;
- **North:** commercial properties along Dundas Street East, residential single detached dwellings further North; and,
- West: Little Etobicoke Creek, with commercial properties further West.

2.3 PROPOSED DEVELOPMENT

Based on available design drawings (Bousfields Inc, October 2020; SvN Architects, 18June2021; 27July2022), the proposed development consists of demolishing the existing buildings on Site and constructing new buildings. Based on the information provided, it is understood that Block A and Block C will be constructed over three levels of underground, Block E will be constructed over two levels of underground, Block F will be constructed over one level of underground, and Block G will be constructed over one level of underground. The southern approximately 100 m long section of the West Parcel will be developed as a park.

The following summarizes the understood parking foundation information:

Area	Proposed Levels of Underground	Anticipated Parking Foundation Slabs Depths	Anticipated Foundation Depth
Block A and Block C	P3	10 mbg / 105 masl	12 mbg / 101 masl
Block E	P2	6 mbg / 111.1 masl	7.5 mbg / 109.6 masl
Block F and Block G	P1	4 mbg / 113.1 masl	5.5 mbg / 111.6

The design concept plan for the parking garage structure is provided in **Appendix I** (SvN; *Site Plan – Typical U/G Parking Plan*, 27July2022).

2.4 SITE TOPOGRAPHY

General relief in the Site vicinity is characterized with a general slope grading down to the south from 120 masl at the northern property line to 115 masl at the southern portion of the Site (Google Earth, accessed February 2021). According to the investigation survey done on boreholes and monitoring wells on Site, the maximum elevation of the paved area is approximately 119.78 masl at MW111 (northeastern portion of the Site), and the lowest elevation is approximately 115.47 masl at BH104 (southwestern portion of the Site). The average ground elevation at the borehole locations is 117.1 masl.

2.5 DRAINAGE

No watercourses, ponds, or other surface water features are located on the Site. Little Etobicoke Creek (a tributary of Etobicoke Creek) is located 30 m west of the proposed development. It runs parallel with the western Site boundary and continues southerly direction discharging into Etobicoke Creek and ultimately to Lake Ontario. Within the Site itself, local roads and adjacent properties manage stormwater through catch basins and the piped municipal storm sewer system.

2.6 REGIONAL GEOLOGY

A review of available mapping indicates that the subject property is located in a region with sand plains (MRD228, 2019). These soils are characterized as clay to silt-textured till derived from glaciolacustrine deposits or shale (MRD128, 2017).

The bedrock beneath the described overburden is reported to be composed of shale, limestone, dolostone, and siltstone of the Georgian Bay Formation (MRD126, 2018). Bedrock was encountered at all borehole locations, with the exception of BH103.

Regional soil descriptions generally correspond with the subsurface soils encountered at the Site, as summarized in the borehole logs provided in **Appendix II**.

2.7 SENSITIVE ECOLOGICAL RECEIVERS

Designated sensitive ecological areas such as Areas of Natural and Scientific Interest (ANSI), Environmentally Significant Areas (ESA's), and wetland areas are absent within 500 m of the Site (MNRF, 2021). Wooded areas are noted along Little Etobicoke Creek and at various locations within 500 m of the Site (MNRF, 2020).

Little Etobicoke Creek, located 30m west of the proposed new development on Site is mapped as a Regulated Area by the Toronto and Region Conservation Authority (TRCA).

A search was conducted for the Site on the Source Water Protection Information Atlas ArcGIS platform (MECP, 2021). The eastern and western parcels at the Site are situated on a highly vulnerable aquifer with score of 6. In addition, the western parcel is situated in an intake protection zone with level 3. An event based spill is noted at the western parcel of a pipeline fuel/oil origin (SPIA).

2.8 GROUNDWATER SUPPLY WELLS

The surrounding vicinity is urbanized, and therefore provided with piped municipal supplies sourced from Lake Ontario. A water well record search was conducted within a 500 m radius of the Site (**Figure 2** and **Figure 3**). The search identified 155 water well records, and 10 on-Site well records for monitoring and test holes advanced in 2012, 2017, and 2018. Of the off-Site records on the database, one record (4905538) was for a domestic water-supply well, constructed in 1978 which is located 35m east of the eastern parcel at the Site (location is presented on **Figure 2**). The remaining well records were for monitoring observation wells, test holes or abandoned wells. The Site and surrounding areas are serviced with municipally supplied water, therefore the domestic supply well found in this search is unlikely to be used for domestic potable purposes.

A search was conducted in February 2021 for the Site and surrounding 500 m vicinity on the Permit to Take Water map (MECP, last updated January 2020) for any active permit to take water wells. The search identified no active permits to take water within the search radius.

3.0 FIELDWORK

3.1 DRILLING INVESTIGATION AND MONITORING WELL CONSTRUCTION

A joint hydrogeological and geotechnical drilling investigation was carried out by Terrapex between December 15 and 23, 2020. The fieldwork for this project was carried out under the supervision of an experienced Terrapex technician who laid out the positions of the boreholes in the field; arranged locates of buried services; effected the drilling, sampling and *in situ* testing; observed groundwater conditions; and prepared field borehole log sheets.

The fieldwork for the joint drilling program consisted of advancing thirteen (13) boreholes, given 100-series borehole/monitoring well designations. Standard Penetration Testing (SPT N-values) and sampling were carried out at regular depth intervals in the boreholes using conventional nominal 35 mm internal diameter split spoon sampling equipment. Bedrock was encountered on Site and subsequently cored using HQ coring equipment.

The fieldwork for the hydrological investigation consisted of installing monitoring wells at six (6) of the borehole locations. The hydrological network of monitoring well at the site are comprised of monitoring wells MW101, MW102, MW107 constructed on the west parcel, and monitoring wells MW111, MW112, and MW113 constructed on the east parcel at the Site. These were installed as part of drilling operations carried out in December of 2020. An additional three (3) monitoring wells were later constructed in Block A and Block C, as part of drilling operations carried out in August and September of 2021. The remaining boreholes at the Site were advanced as part of the geotechnical investigation.

Borehole logs, including the construction details of the groundwater monitoring wells (GWMWs are provided in **Appendix II**. It should be noted that the boundaries of soil types indicated on the borehole logs are inferred from non-continuous soil sampling and observations made during drilling. These boundaries are intended to reflect transition zones for the purpose of geotechnical design, and therefore, should not be construed as exact planes of geological change. Further, conditions will vary between and beyond the boreholes.

3.2 PREVIOUS INVESTIGATIONS AT THE SITE

Pinchin conducted a Phase II Environmental Site Assessment at the Site in 2018. In a report titled "Phase II Environmental Site Assessment, 0 Loreland Avenue, 1680 Mattawa Avenue, 1580, 1590, 1650 Dundas Street East, Mississauga, Ontario" six (6) boreholes were advanced to depths ranging between 5 to 8.5 mbg at the southern portion of the Site. Monitoring wells were installed at three of the borehole locations but they were not used in this hydrogeological investigation.

3.3 SURVEYING

Terrapex established the ground surface elevations, and UTM coordinates for the wells in the hydrological network and for the 100 series wells installed by Terrapex, using a Topcon Hiper V GNSS Receiver. A summary of well construction specifications and screening details are provided in **Table 1**. The locations of the GWMWs and boreholes are provided in **Figure 4**.

4.0 SITE CHARACTERIZATION

4.1 WATER LEVEL MONITORING

Groundwater piezometric head measurements were measured manually for wells within the hydrological well network (MW101, MW102, MW107, MW111, MW112, and MW113) over the course of three bi-weekly monitoring events from December 22, 2020, to January 21, 2021. An additional monitoring event was completed on March 30, 2021, to observe anticipated seasonal high-water levels in the spring. Further monitoring was carried out at locations MW201 through MW203 over the course of three bi-weekly monitoring events from September 14, 2021, through October 1, 2021. The recorded water levels reflect the groundwater conditions on the dates they were measured and are provided in **Table 2**.

As shown in **Table 2**, monitoring wells MW101, MW102, MW111, and MW113 were screened in the overburden material. Groundwater levels for wells screened in overburden materials (MW101, MW102, and MW113) ranged between 3.01 mbg and 6.06 mbg; groundwater elevations in these wells ranged between 111.21 masl and 112.88 masl. MW111, also screened in overburden, was found dry during all monitored events.

As shown in **Table 2**, monitoring wells MW107, MW112, MW201, MW202, and MW203 were screened in shale bedrock. Groundwater levels for wells screened in shale bedrock ranged between 1.19 mbg and 5.30 mbg; groundwater elevations in these wells ranged between 112.00 masl to 114.80 masl.

It should be noted that groundwater levels are subject to seasonal fluctuations. A higher groundwater level condition will likely develop in the spring and following significant rainfall events.

4.2 SUBSURFACE SOIL CONDITIONS

The subsurface stratigraphy is generally comprised of surficial fill material underlain by sandy silt till and clayey silt till, a shale/till complex, and then Shale bedrock. Shale bedrock was encountered at all the borehole locations with the exception of borehole BH103, and was found to be between 3 and 7.5 mbgs

The soil stratigraphy encountered during drilling and groundwater monitoring well construction operations is summarized in the Geotechnical Report, under separate cover (Terrapex, 2021). The encountered conditions as identified in the geotechnical report are summarized in **Table 3**.

The above stratigraphic description is a generalization. Variations could occur in thickness, depth, presence and texture of units. Constructors and dewatering contractors should review the nearest borehole records for specific locations, and if necessary, drill to confirm conditions if critical to their activities.

4.3 HYDRAULIC TESTING

To estimate the hydraulic conductivity (K) of the soil materials and bedrock adjacent to the screened intervals at the tested monitoring wells, single well response tests were carried out at locations MW101, MW102, MW111, and MW112 on January 8, and 21, 2021. The tests were

carried out by rapidly removing (at locations MW102, MW112, and MW201) or adding (at locations MW101 and MW111) a volume of water from the well and monitoring the subsequent water level recovery to previous conditions. Automated water level loggers (Solinst Leveloggers) were used to collect the recharging water levels during the response tests for all test locations. The Bouwer and Rice (1976) method was applied to falling/rising head test data, using the unconfined solution. The data were analysed using the AQTESOLV™ (v. 4.50) modelling program. *In-situ* testing was comprised of assessing hydraulic conductivities in the overburden materials at three locations, and in bedrock at one location.

The resultant hydraulic conductivities are summarized in **Table 4**. Estimated hydraulic conductivities for wells screened in overburden materials ranged from 4.87x10⁻¹¹ m/s to 2.71x10⁻⁸ m/s. Estimated hydraulic conductivities for wells screened in bedrock materials ranged from 1.04x10⁻⁸ m/s to 4.06x10⁻⁸ m/s. The analytical hydraulic conductivity reports and grain size analysis are provided in **Appendix IV**.

A theoretical hydraulic conductivity was estimated based on the results of the grain size analyses presented in **Appendix IV**. The coefficient of permeability (k value) of the till units is calculated (using Hazen's Formula) to be $1.9x10^{-7}$ m/s. This higher hydraulic conductivity estimated by the Hazen method, is interpreted to be due to the lack of consideration for soil compaction in Hazen methods. Overall, these hydraulic conductivity values are consistent with the expected hydraulic conductivities of the encountered soils, and are indicative of relatively impermeable conditions (Bear, 1972; Freeze and Cherry, 1979).

The geometric mean of the *in-situ* hydraulic conductivity estimates for the overburden was calculated to be 1.7x10⁻⁹. Whereas the geometric mean of the *in-situ* hydraulic conductivity estimates for the bedrock material was calculated to be 2.04x10⁻⁸ m/s. To provide the most conservative estimate, the faster of the two geometric means (2.04x10⁻⁸ m/s) has been used for the purposes of calculating the dewatering estimates in **Section 4.5**.

4.4 INTERPRETED GROUNDWATER FLOW DIRECTION AND VELOCITY

Horizontal Hydraulic Gradient and Flow Direction

Groundwater flow directions and magnitudes were estimated using manual piezometric head measurements for wells screened in overburden, measured on March 30, 2020. The piezometric elevations at well locations MW101, MW102, and MW113 show that there is a horizontal gradient of approximately 2x10⁻³ (no units), flowing in a heading of 271.8 degrees (~SW) at a velocity of up to 4.6x10⁻⁴ cm/day.

Groundwater flow directions and magnitudes were estimated using manual piezometric head measurements for wells screened in bedrock materials measured on September 16, 2021. The piezometric elevations at well locations MW201, MW202, and MW203 show that there is a horizontal gradient of approximately 4.7x10⁻³ (no units), flowing in a heading of 279 degrees (~SW) at a velocity of up to 1.6x10⁻³ cm/day.

Overall, groundwater appears to be flowing from the southeast toward the southwest, both in overburden and bedrock. In fact, based on the similarities in groundwater elevations in both

bedrock and overburden, there is a presumed hydraulic connection between the two. As indicated above, flow appears to be slightly faster in the bedrock than in the overburden. It should be noted, that whereas flow direction in overburden is controlled by effective porosity, local variations in topography and soil type --- flow within bedrock is control by general fracture patterns.

Vertical Hydraulic Gradient and Flow Direction

The highest measured groundwater levels in the overburden at locations MW101 and MW102 reached an elevation of 112.81 masl, whereas the highest measured groundwater levels in the bedrock at locations MW107 and MW112 reached an elevation of 114.35 masl. These measurements indicate that groundwater in the bedrock was approximately 1.5 metres higher than in local overburden materials. As such, groundwater trends appear indicative of an upward vertical gradient, demonstrating that the Site does not function as a groundwater recharge area, and that the neighbouring water channel may have groundwater base flow associated with it.

5.0 DEWATERING ESTIMATES

5.1 TEMPORARY DEWATERING ESTIMATES

The Ministry of the Environment, Conservation and Parks (MECP) requires a Permit to Take Water (PTTW) or an Environmental Activity and Sector Registry (EASR) for groundwater takings exceeding 50,000 litres per day (L/day). For the purpose of construction, a PTTW is required for dewatering extraction rates that exceed 400,000 L/day. An EASR is required for a rate between 50,000 and 400,000 L/day. Long term water takings in excess of 50,000 L/day are regulated by the Ministry of Environment, Conservation and Parks (MECP).

Based on the geotechnical report, the shoring design system "may be comprised of soldier piles and timber lagging" (Terrapex, 2021). For the purposes of our hydrogeological investigation, dewatering estimates were predicated based on soldier pile and lagging construction of excavation walls.

Block A and Block C (~15,000 m²)

Provided drawings (SvN, 27July2022) indicate that the proposed underground footprint of the P3 Block A and Block C area is approximately 15,000 m². Based on an excavation depth of approximately 12 mbg, dewatering operations will advance through overburden materials and bedrock materials for an overall drawdown of approximately 8.5 metres. The highest measured groundwater levels in the overburden at locations MW101 and MW102 reached an elevation of 112.81 masl, whereas the highest measured groundwater levels in the bedrock at locations MW201, MW202, and MW203 was reported to be 114.81 masl.

Using the conservative hydraulic conductivity of 2.04x10⁻⁸ m/s for both overburden and bedrock, calculations predict the quantity of groundwater seepage into the proposed Block A and Block C footprint to be approximately **115,575** L/day. In order to account for a relatively large precipitation event of 25 mm entering the excavation below buildings during construction, an additional **375,000** L/day is expected. Such rain events are anticipated to recur four to five times per year. The combined anticipated amount to be managed from excavated area below the buildings (in the new parking structure) is approximately **490,572** L/day. Prior to amendments to the Permit to Take Water (PTTW) process, made effective on July 1, 2021, this volume would require a Category 3 PTTW. At this time, however, this estimated volume would require the registration of an EASR.

Block E (~11,200 m²)

The hydraulic conductivities derived from neighbouring soils were used to estimate a worst-case scenario for temporary construction dewatering rates, using an excavation size approximately equivalent to 140 m x 80 m, and approximate foundation depth of 109.6 masl (two levels of underground). The following summarized the assumptions made as part of the dewatering calculations:

Excavation Footprint:

140 m x 80 m

Target dewatering elevation: (109.6 - 1) = 108.6 masl

(two levels of underground)

Hydraulic conductivity: 2.04 x 10⁻⁸ m/s

Highest measured groundwater elevation: 112.88 masl

Required Drawdown: (112.88 - 108.6) = 4.28 metres

Table A summarizes the anticipated steady state dewatering rate estimates.

Block F and Block G (~20,000 m²)

The hydraulic conductivities derived from neighbouring soils were used to estimate a worst-case scenario for temporary construction dewatering rates, using an excavation size approximately equivalent to 250 m x 80 m, and approximate foundation depth of 109.6 masl (one level of underground). The following summarized the assumptions made as part of the dewatering calculations:

Excavation Footprint: 140 m x 80 m

Target dewatering elevation: (111.6 - 1) = 110.6 masl

(one level of underground)

Hydraulic conductivity: 2.04 x 10⁻⁸ m/s

Highest measured groundwater elevation: 112.88 masl

Required Drawdown: (112.88 - 110.6) = 2.28 metres

Table A summarizes the anticipated steady state dewatering rate estimates.

Table A. Summary of Estimated Dewatering Volumes for Concept Development

		(A)	(B)	(C)		
Excavation	Dimensions ¹	Estimated Dewatering Volume	Incident Precipitation ²	Total Dewatering Volume (A+B)	Design Dewatering Volume (A x 2) + B	Zone of Influence (ZOI)
Concept		(L/day)	(L/day)	(L/day)	(L/day)	(m radius)
Block A and Block C	Three levels of underground (~15,000 m²)	54,020	376,875	430,900	484,920	5
Block E	Two levels of underground (~11,200 m²)	40,910	280,000	320,910	361,820	2
Block F and Block G	One level of underground (~20,000 m²)	77,480	500,000	577,480	654,960	1

¹ SvN Architects, 18June2021; 27July2022

Based on the worst-case assumptions provided above and applying a Factor of Safety of 2.0 to estimated dewatering volumes, steady state temporary dewatering volumes are estimated to range from 48,492 L/day to 654,960 L/day. As shown in **Table A** and **Table 8**, much of the anticipated volume is due to precipitation from a 100-year storm, having a precipitation of 25mm. Further to this, permitting does not take these precipitation volumes into consideration, as of July 1, 2021.

Groundwater in bedrock

As indicated above, groundwater flow within bedrock follows continuous fracture paths and the availability of water, as opposed to soil effective porosity, which is often attributed to isometric flow distribution. As such, groundwater flow within bedrock can be highly variable within a short distance. To compensate for this uncertainty, the dewatering volumes for P3 - Block A and Block C are given a Factor of Safety of 2.0.

RQD is an estimate of fracturing within the rock, and lower values indicate a greater amount of fracturing. A review of subsurface bedrock conditions reported in the borehole logs indicates that Rock Quality Designation (RQD) values reported at locations MW201 and MW203 generally increase with depth from 68% to 100%. RQD values reported for bedrock materials at location MW202 are not as competent and range from 24% to 89%. Screened bedrock elevations used in the estimate of hydraulic conductivity above captured zones of RQD ranging from 40% to 100%.

² Based on a 100-year storm, with a precipitation of 25 mm

Based on this review, the horizons having RQDs of 24% through 40% were not available for hydraulic testing, and it is possible that there are horizons within the bedrock that may conduct greater and faster volumes of groundwater.

It is further noted that the groundwater encountered in the bedrock elevations appears pressurized. Groundwater within the bedrock had a piezometric level approximately 1.5 m to 1.8 m above the bedrock surface on September 14, 2021.

5.2 DEWATERING ZONE OF INFLUENCE (ZOI)

The radius of influence is the distance range beyond which the drawdown on groundwater caused by dewatering is not expected to be detectable. The radius of influence is commonly estimated using the formula of Sichart and Kryieleis (Powers et al, 2007).

As shown in **Table A**, the maximum radius of influence predicted ranges is 5 metres from the perimeter of the proposed dewatering operations.

No off-site ecologically sensitive receivers, private water supply wells, or buildings exist within the radius of influence that could be negatively affected by dewatering.

5.3 PERMANENT DEWATERING ESTIMATES

The following permanent dewatering estimates are based on conservative assumptions that predict relatively high rates that are less likely but remain possible. The geometric mean of the hydraulic conductivities (2.04x10⁻⁸ m/s) was used, whereas lower hydraulic conductivity conditions are possible at the Site.

Table B. Summary of Steady State Foundation Drainage Rate Estimates

Parking Structure Area	Post- Construction Drainage Rate	Post- Construction Drainage Rate (FOS Applied)	Anticipated Discharge Permitting Requirements for Permanent Foundation Drainage
	(L/d)	(L/d)	
Block A and Block C	54,020	~108,040	PTTW (assuming no waterproofing)
Block E	40,910	~81,820	PTTW (assuming no waterproofing)
Block F and Block G	77,480	~154,960	PTTW (assuming no waterproofing)

No Permitting, < 50,000 L/day

As shown in **Table B** and **Table 9**, based on the worst-case assumptions provided above, using a Factor of Safety of 2.0 to estimated dewatering volumes, steady state permanent dewatering

volumes are estimated to range from 81,820 L/day to 154,960 L/day.

5.4 ANTICIPATED PERMITTING

Water takings in excess of 50,000 L/day are regulated by the Ministry of Environment, Conservation and Parks (MECP). Certain construction dewatering activities up to 400,000 L/day may qualify for a self-registration process under the Environmental Activity Sector Registry ("EASR"). A Category 3 PTTW is required where the proposed water taking is greater than 400,000 L/day.

The volumes summarized in **Table A** and **Table 8** indicate that a Permit to Take Water (PTTW) will likely not be required for the concept excavation dimensions, and that an Environmental Activity and Sector Registry (EASR) will be sufficient for temporary dewatering needs.

Approval will have to be obtained from the City of Mississauga and the Regional Municipality of Peel before discharging to municipal storm sewer, and from the Regional Municipality of Peel before discharging to the sanitary sewer.

6.0 ANALYTICAL HYDROCHEMICAL ANALYSES

Analytical laboratory investigations were carried out to characterize the hydrochemical conditions of the groundwater at the Site for the purposes of temporary dewatering and long-term foundation drainage operations. One representative non-filtered groundwater sample was collected from each of the parcels on site. Samples were collected from MW107 and MW112 on January 21, 2020, using a Spectra Field-Pro Peristaltic Pump, and were sent to AGAT Laboratories (AGAT) for testing. AGAT is certified by the Standards Council of Canada (SCC) and the Canadian Association for Laboratory Accreditation (CALA). AGAT completed analysis for the suite of parameters specified under the City of Mississauga by-law 259-05 for discharge to storm sewer and to the Regional Municipality of Peel by-law number 53-2010 for discharge to sanitary sewer and storm sewer.

Table C below summarizes the tested parameters identified as not meeting the municipal sewer use by-laws. This summary table is also included in the **Tables Section** as **Table 10**. Laboratory analysis for the remaining tested parameters (including those parameters which met the standards) are presented in **Table 11**. The laboratory certificates of analysis are provided in **Appendix V**.

Table C: Summary of Tested Parameters Identified as Not Meeting Applicable Sanitary and Storm Sewer By-Law Criteria

Parameter	Sanitary Sewers		Storm Sewers	Storm Sewers	MW107	MW112
	Units	By-law Criteria ¹	By-law Criteria ²	By-law Criteria ³	21-Jan-21	21-Jan-21
Total Suspended Solids (TSS)	mg/L	350	15	15	<10	17
Aluminum	mg/L	50	-	1	0.031	1.220
Manganese (Mn)	mg/L	5	0.05	0.05	0.238	0.040
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	1	3.09	2.17

¹ Regional Municipality of Peel Sanitary Sewer Discharge, By-law 53-2010

As summarized in **Table C** above, the groundwater within both parcels meets the Sanitary discharge criteria. The sample (MW107) obtained from the western parcel exceeds the Peel and Mississauga storm sewer discharge criteria for manganese and total kjeldahl nitrogen (TKN). The sample (MW112) obtained from the eastern parcel exceeds the Peel and Mississauga storm sewer discharge criteria for total suspended solids (TSS), aluminium, and TKN.

Laboratory testing of the same locations using filtration proved effective in treating for all parameters at both parcels on Site, with the exception of manganese in sample MW107 (western parcel) which demonstrated that manganese is in the dissolved form in groundwater, and will require chemical treatment and/or measures deemed appropriate by dewatering contractors/water treatment suppliers in order to achieve storm sewer guidelines.

² Regional Municipality of Peel Storm Sewer Discharge, By-law 53-2010

³ City of Mississauga Storm Sewer Discharge, By-law 259-05

7.0 WATER BALANCE

Typically, incident precipitation infiltrates through a pervious soil surface, then moves down through the unsaturated zone and then recharges the shallow groundwater. In turn, this shallow groundwater moves towards the lake, a watercourse to contribute to baseflow or to replenish aquifers, if present. Impervious surfaces of buildings or paving block infiltration and divert precipitation to become runoff that is then directed to storm sewers.

The pre-construction land use is occupied by asphalt-paved parking areas that are impervious, which block infiltration. Block B appears to be partially landscaped.

The post-construction land usage will mostly consist of impervious features that include the new buildings and the underlying parking garage structure. Block B will observe an increase in pervious area. Thus, the post-development lands may observe an overall increase in pervious area.

Low impact development (LID) measures to promote infiltration are challenging since the impervious garage footprint will span much of the site.

8.0 SUMMARY AND DISCUSSION

The following summarizes the information above, obtained as part of the investigation described above.

- The subsurface stratigraphy is generally comprised of surficial fill material underlain by sandy silt till and clayey silt till, a shale/till complex, and then Shale bedrock. Shale bedrock was encountered at all the borehole locations with the exception of borehole BH103.
- Groundwater levels were measured between December 2020 and January 2021 at BH100-series locations. Groundwater levels for wells screened in shale bedrock (MW107 and MW112) ranged between 2.72 mbg and 3.79 mbg, groundwater elevations in these wells ranged between 112.00 masl to 114.35 masl. Groundwater levels for wells screened in overburden materials (MW101, MW102, and MW113) ranged between 3.01 mbg and 6.06 mbg, groundwater elevations in these wells ranged between 111.21 masl and 112.88 masl. MW111 was found dry during all monitored events.
- Groundwater monitoring wells BH201 through BH203 (P3-Block A and Block C) were screened in the underlying bedrock. Groundwater levels at these locations were measured between September and October at BH200-series locations, and ranged between 5.3 mbg to 1.19 mbg, equivalent to approximately 114.10 masl to 114.81 masl.
- Groundwater measured at wells screened within the overburden are interpreted to have a
 horizontal gradient of approximately 2x10⁻³ (no units), flowing in a heading of 271.8
 degrees (~SW) at a velocity of up to 4.6x10⁻⁴ cm/day.
- Groundwater measured at wells screened within the underlying bedrock is interpreted to have a horizontal gradient of approximately 4.7x10⁻³ (no units), flowing in a heading of 279 degrees (~SW) at a velocity of up to 1.6x10⁻³ cm/day.
- Groundwater within the bedrock may be hydraulically connected to the groundwater within
 the overburden soils through fractures, and is interpreted to have an upward vertical
 gradient, demonstrating that the neighbouring water channel may have groundwater base
 flow contributions.
- Temporary construction dewatering calculations are estimated to range between approximately 48,492 L/day to 654,960 L/day, depending on the Block size calculated. A PTTW is not required for this estimated range, because these values include incident precipitation, which is no longer a requirement of permitting (July 1, 2021).
 - EASRs, however, should be filed for groundwater discharge inclusive of incident stormwater. The cumulative amount pumped from the excavations should be monitored daily during construction to confirm that the requested pumping rate limit stated in the EASR is not exceeded, and to confirm the calculated groundwater seepage rate.
- Preliminary post-construction permanent foundation dewatering effluent volumes are estimated to range between approximately 81,820 L/day to 154,960 L/day, depending on

the Block size calculated. A PTTW is required for permanent dewatering volumes exceeding 50,000 L/day.

 Based on the hydrochemical analyses carried out, groundwater meets the criteria for discharge without treatment to the sanitary sewers.

The western parcel will require filtration and chemical treatment in order to achieve storm sewer by-law limits.

The groundwater at the eastern parcel achieves storm sewer by-law limits with filtration.

Approval will have to be obtained from the City of Mississauga and the Regional Municipality of Peel before discharging to municipal storm sewer, and from the Regional Municipality of Peel before discharging to the sanitary sewer.

9.0 CLOSURE

This report has been completed in accordance with the terms of reference for this project as agreed upon by Hazelview Investments (the Client) and Terrapex Environmental Ltd. (Terrapex) and generally accepted hydrogeological consulting practices in this area.

The reported information is believed to provide a reasonable representation of the general hydrogeological conditions at the site; however, studies of this nature have inherent limitations. The data were collected at specific locations and conditions may vary at other locations, or with the passage of time. Where applicable, the assessment of the environmental quality of groundwater was limited to a study of those chemical parameters specifically addressed in this report.

Terrapex has relied in good faith on information and representations obtained from the Client and third parties and, except where specifically identified, has made no attempt to verify such information. Terrapex accepts no responsibility for any deficiency or inaccuracy in this report as a result of any misstatement, omission, misrepresentation, or fraudulent act of those providing information. Terrapex shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time of the study.

This report has been prepared for the sole use of Hazelview Investments. Terrapex accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than Hazelview Investments.

Respectfully Submitted,

TERRAPEX ENVIRONMENTAL LTD.

Andrew Durlano

Andrew Durbano, M.Sc., P.Geo.

Project Manager, Hydrogeology

Zen Keizars, P.Geo., FGC Senior Hydrogeologist

7.0 REFERENCES

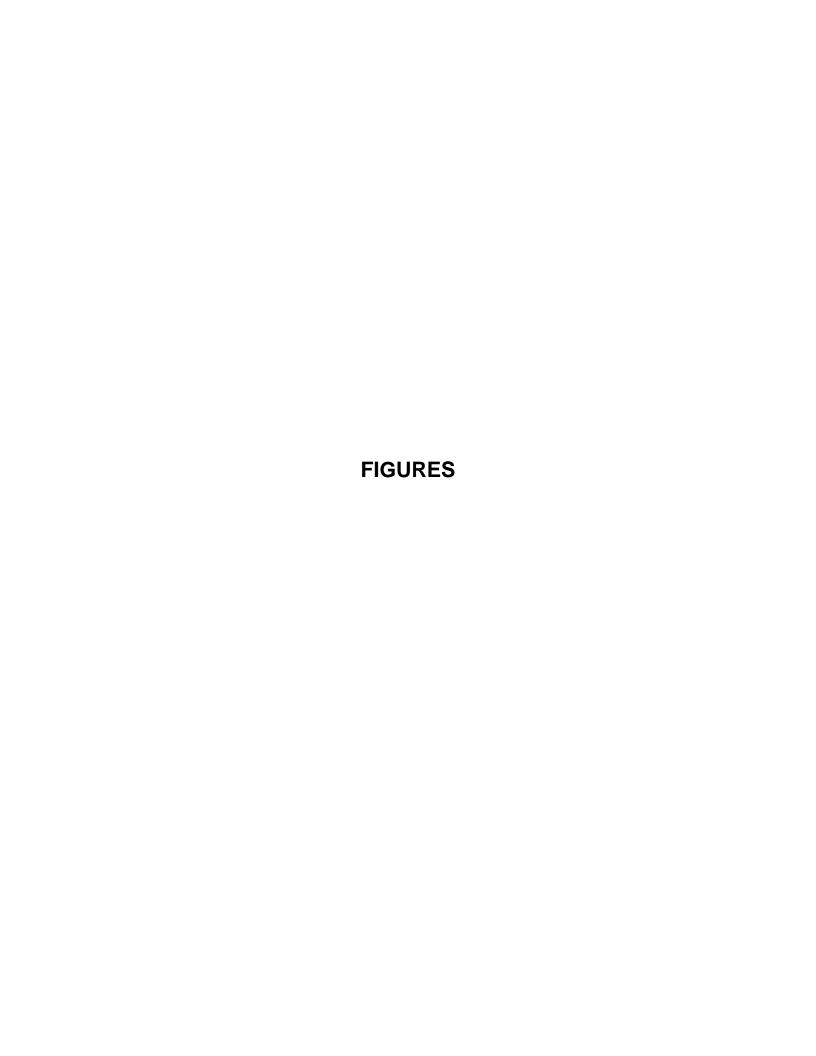
Pinchin. August 13, 2018. Phase II Environmental Site Assessment. 0 Loreland Avenue, 1680 Mattawa Avenue, 1580, 1590 and 1650 Dundas Street East, Mississauga, Ontario.

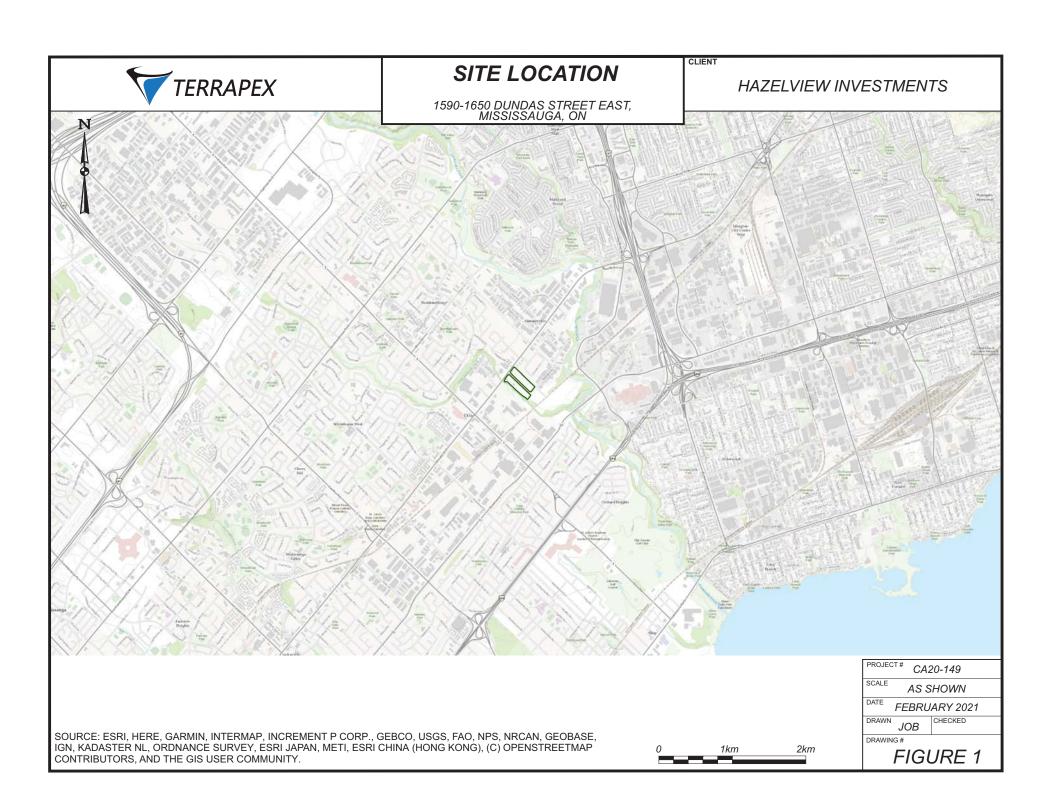
Terrapex Environmental Ltd. January 19, 2020. Draft Report: Geotechnical Investigation Report, Hazelview Investments, Proposed Mixed-Use Development. 1590 and 1650 Dundas Street East, Toronto, Ontario. Terrapex Ref CA20-149.

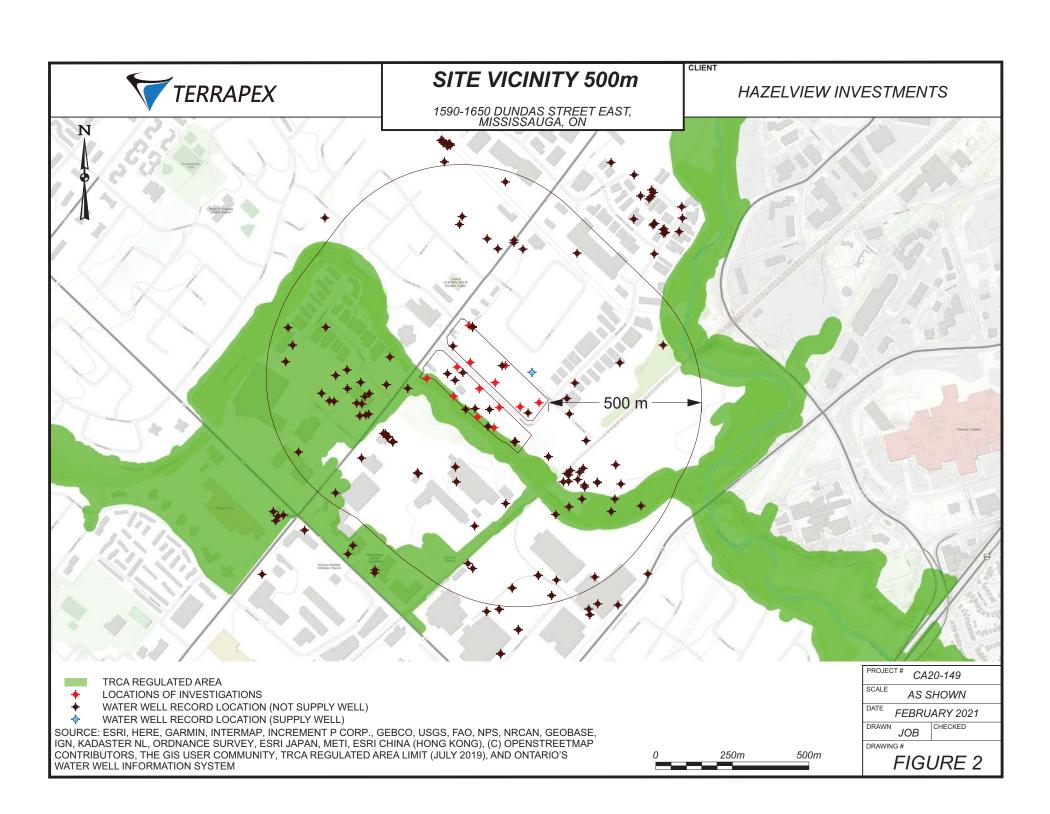
Bousfields Inc. October 2020. Option 3. Project Number 2057-2

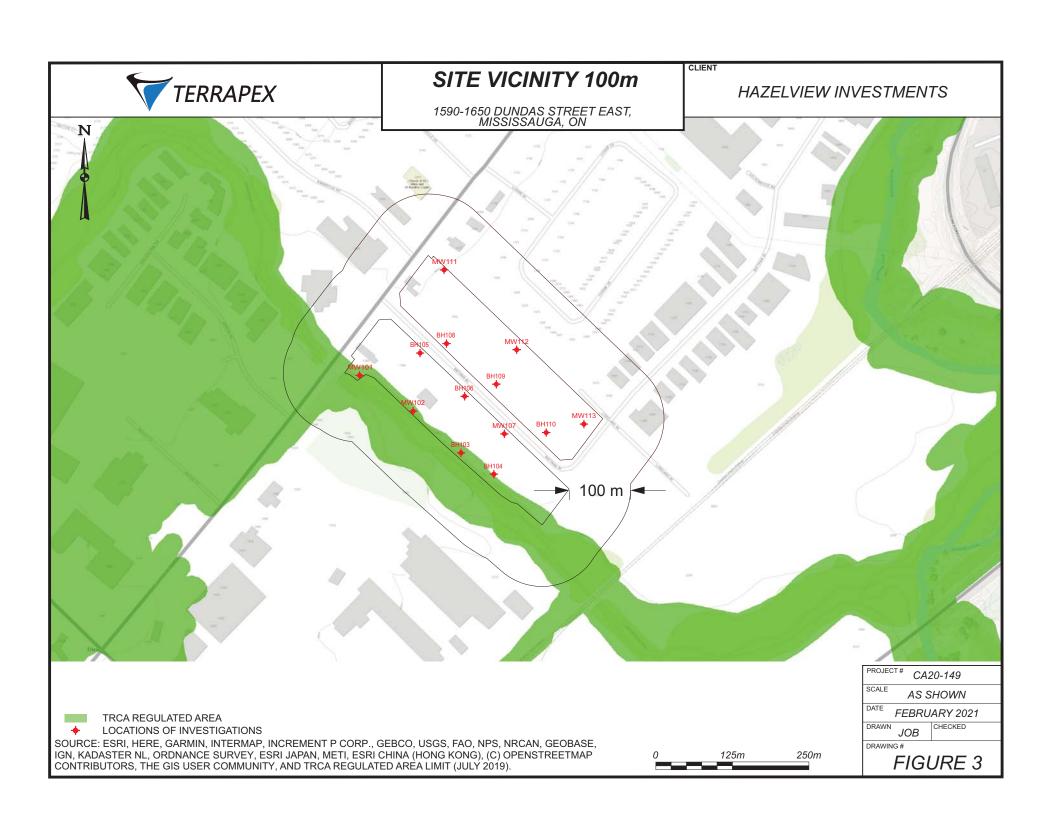
Ministry of Environment, Conservation and Parks. 2021. Source Protection Information Atlas. Interactive mapping application on the internet.

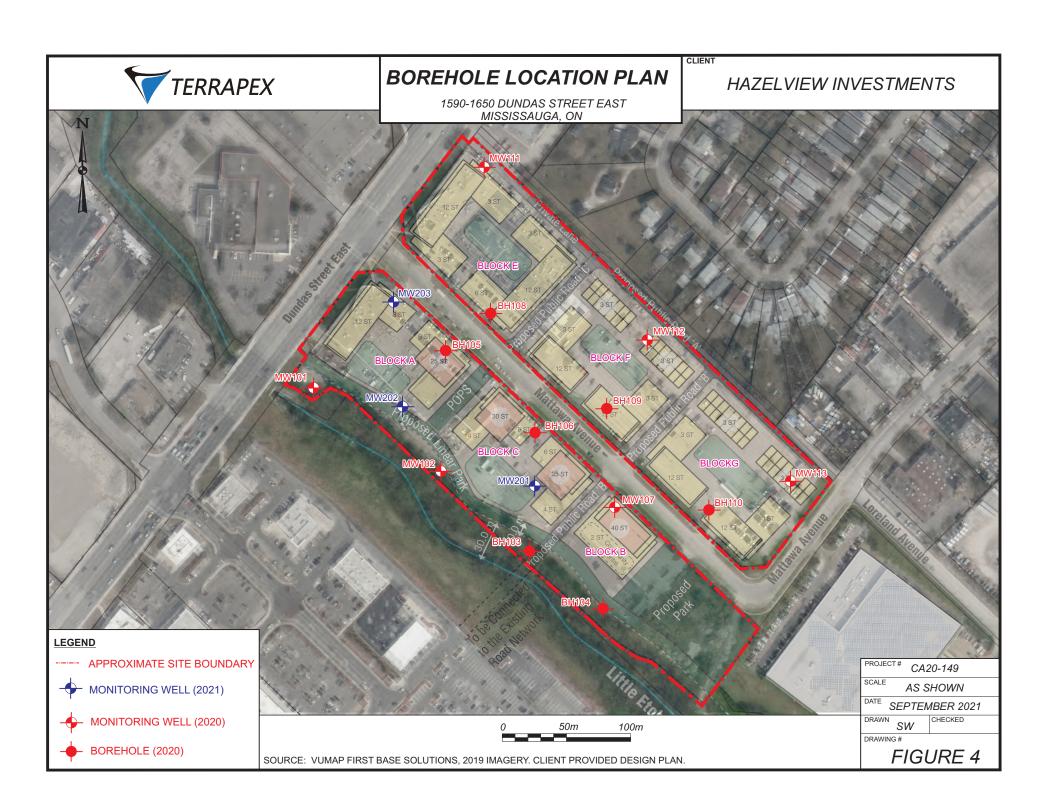
Ministry of Environment, Conservation and Parks. 2021. Water well database listings.


Ministry of the Natural Resources and Forestry. 2021. "Make a Natural Heritage Map". Interactive mapping application on Internet.


Vumap. 2020. Interactive mapping application on Internet.


Ontario Geological Survey. 1980. Preliminary Map p. 2204. Quaternary geology of Toronto and Surrounding Area.


Ontario Geological Survey. 1991. Map 2544. Bedrock geology of Ontario.


- R. Allan Freeze and John A. Cherry. 1979. Groundwater.
- J. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

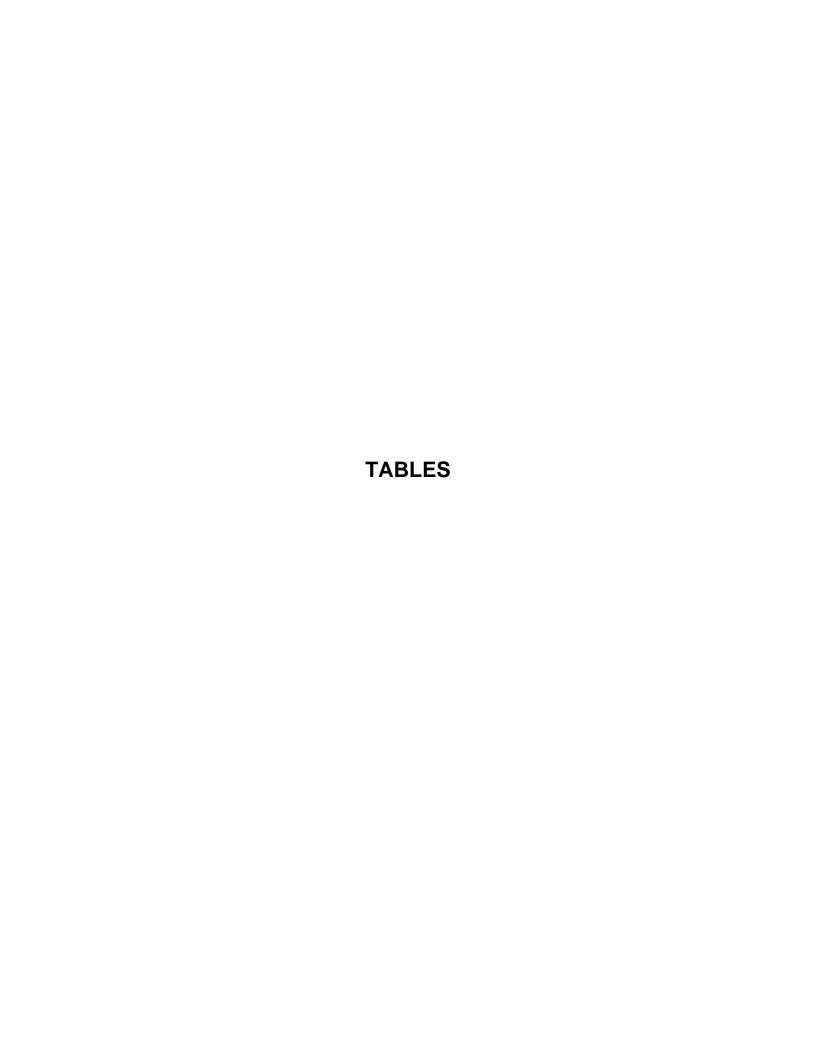


TABLE 1
Monitoring Well Construction Details
1650 & 1590 Dundas Street East, Mississauga ON

Position and Depth

Well Desig.	UTM	UTM	Date of	Stick	Depth of	Depth to	Screen	Depth to	Depth to	Depth to
	Easting	Northing	Construct	Down	Borehole	Well	Length	Screen	Screen	Top Sand
				(flush		Bottom		Bottom	Тор	
(m)	(m)	(m)	dd-mmm-yy	mount) (m)	(mbg)	(mbg)	(m)	(mbg)	(mbg)	(mbg)
MW101	614691.7	4829907.9	16-Dec-20	-0.11	7.70	6.70	1.52	6.60	5.18	4.88
MW102	614780.1	4829851.2	16-Dec-20	-0.13	7.70	7.60	1.52	7.50	6.08	5.50
MW107	614929.7	4829817.0	21-Dec-20	-0.11	11.10	9.15	1.52	9.05	7.63	7.00
MW111	614826.7	4830081.9	16-Dec-20	-0.12	4.10	3.05	1.52	2.95	1.53	1.20
MW112	614947.5	4829954.1	16-Dec-20	-0.06	12.50	9.15	1.52	9.05	7.63	7.00
MW113	615059.3	4829835.0	15-Dec-20	-0.09	3.95	3.05	1.52	2.95	1.53	1.23
MW201	614868.5	4829837.9	31-Aug-21	-0.10	14.00	13.78	3.00	13.68	10.68	10.38
MW202	614763.5	4829883.2	01-Sep-21	-0.17	14.00	14.04	3.00	13.94	10.94	10.64
MW203	614751.9	4829979.8	02-Sep-21	-0.07	14.00	14.05	3.00	13.95	10.95	10.65

Key Elevations

Well Desig.	Ground	End of	Top of Pipe	Screen	Screen
	Elev.	Borehole	Elev.	Bottom	Top Elev.
		Elev.		Elev.	
	(masl)	(masl)	(masl)	(masl)	(masl)
MW101	117.27	109.57	117.16	110.67	112.09
MW102	117.12	109.42	117.00	109.62	111.05
MW107	115.78	104.68	115.67	106.73	108.16
MW111	119.78	115.68	119.66	116.83	118.25
MW112	117.06	104.56	117.00	108.01	109.44
MW113	115.90	111.95	115.80	112.95	114.37
MW201	116.09	102.09	115.99	102.41	105.41
MW202	116.64	102.64	116.46	102.70	105.70
MW203	119.00	105.00	119.07	105.05	108.05

Notes:

- 1. masl = metres above sea level
- 2. mbg = metres below ground (or grade)
- 3. UTM locations and elevations obtained from TOPCON GNSS

TERRAPEX ENVIRONMENTAL LTD. Hazelview Investments Inc. CA20-149

TABLE 2 Observed Groundwater Levels 1530-1650 Dundas Street East, Mississauga, ON

Monitoring	Date	Ground	Top Pipe	Well	Groun	dwater	Groundwater	
Well ID		Elev.	Elev.	Depth ¹	De	pth	Elevation	Comment
		(masl)	(masl)	(mbg)	(mbmp)	(mbg)	(masl)	
MW101	22-Dec-20	117.27	117.16	6.69	DRY	-	-	
	08-Jan-21				5.96	6.06	111.21	
	21-Jan-21				4.89	4.99	112.28	
	30-Mar-21				5.03	5.13	112.14	
MW102	22-Dec-20	117.12	117.00	7.62	4.44	4.56	112.56	
	08-Jan-21				4.19	4.31	112.81	
	21-Jan-21				4.24	4.37	112.76	
	30-Mar-21				4.51	4.64	112.49	
MW107	22-Dec-20	115.78	115.67	9.00	2.97	3.08	112.70	
	08-Jan-21				3.22	3.33	112.45	
	21-Jan-21				3.68	3.79	112.00	
	30-Mar-21				3.49	3.60	112.18	
MW111	22-Dec-20	119.78	119.66	3.01	DRY	-	-	
	08-Jan-21				DRY	-	-	
	21-Jan-21				DRY	-	-	
	30-Mar-21				DRY	-	-	
MW112	22-Dec-20	117.06	117.00	9.07	-	-	-	
	08-Jan-21				2.66	2.72	114.35	
	21-Jan-21				2.78	2.84	114.22	
	30-Mar-21				3.40	3.47	113.60	
MW113	22-Dec-20	115.90	115.80	3.02	3.01	3.10	112.79	
	08-Jan-21				2.96	3.05	112.84	
	21-Jan-21				2.92	3.01	112.88	
	30-Mar-21				2.94	3.03	112.87	
MW201	14-Sep-21	116.00	115.90	102.32	1.29	1.19	114.81	
	16-Sep-21				1.33	1.23	114.77	
	01-Oct-21	110 -			1.34	1.24	114.77	
MW202	14-Sep-21	116.80	116.70	102.86	2.60	2.50	114.30	
	16-Sep-21				2.65	2.55	114.25	
	01-Oct-21				2.65	2.55	114.25	
MW203	14-Sep-21	119.40	119.30	105.45	5.40	5.30	114.10	
	16-Sep-21				5.37	5.27	114.13	
	01-Oct-21				5.37	5.27	114.13	

Notes

Elevations measured by Topcon GNSS device masl = metres above sea level mbmp = metres below measurement point (top of pipe) mbg = metres below ground

¹ = Depth as measured upon installation bold = screened in bedrock

Table 3: Summary of Encountered Subsurface 1590 and 1650 Dundas Street East, Mississauga, Ontario

1330 and 1030 Bundas Otteet Last, Mississauga, Ottano											
Borehole Location	BH No.	Ground Elevation (m)	Asphaltic Concrete/ Topsoil (mm)	Granular Base (mm)	Fill (mbg)	Sandy Silt (till) (mbg)	Clayey Silt (till) (mbg)	Clayey Silt (mbg)	Sandy/Silty layer (mbg)	Shale/Till complex (mbg)	Shale Bedrock (mbg)
Top of	MW101	117.4	75	200	6.0	=	=	-	=	6.0-7.5	7.5
the Slope	MW102	117.1	450		2.1	2.1-6.0	-	-	-	6.0-7.5	7.5
at 1595 Dundas St E	BH103	115.7	450	-	2.7			-	-		
	BH104	115.6	80	150	3.8	1	3.8-6.0	i	-	1	6.0
1595 Dundas	BH105	119.1	80	150	1.2	4.5-6.0	1.2-4.5	i	-	6.0-7.5	7.5
	BH106	117.3	75	225	1.5	ı	1.5-3.4	i	ı	3.4-4.5	4.5
St E	MW107	115.7	105	500	1.7	2.2-3.0	-	1.7-2.2	3.0-3.6	3.6-4.5	4.5
	BH108	119.3	?	?	2.0	3.3-5.2	2.0-3.3	-	5.2-5.8	5.7-6.1	6.1
1650 Dundas St E	BH109	116.7	100	200	1.2	1.2-2.1 3.2-3.8	-	-	2.1-3.2	3.8-4.2	4.2
	BH110	116.0	100	250	1.7	-	1.7-2.5	-	-	2.5-4.0	4.0
	MW111	119.9	100	150	1.2	-	1.2-3.1	-	-	3.1-4.0	4.0
	MW112	117.1	125	225	0.7	-	0.7-2.1	-	-	2.1-3.0	3.0
	MW113	116.0	80	200	1.0	-	1.4-2.2	1.5-2.2	-	2.2-3.7	3.7

Table 4: Hydraulic Conductivity Estimates from *In-Situ* Testing 1590 and 1650 Dundas Street East, Mississauga, Ontario

Location	Description of Soil Materials Adjacent to	Reported	Reported Screened Interval	Estimated Hydraulic Conductivity K (m/s)	
Identification	Screened Interval	SPT N-Value	mbg		
			(masl)		
<i>In-Situ</i> Analy	ses				
MW101	fill to till/abala complay	16 (fill)	5.18-6.70	4.66 x10 ⁻¹¹	
	fill to till/shale complex	6 (till/shale)	(110.67-112.09)		
MW102	till/abala complay	97/250mm	6.08-7.60	2.71 x10 ⁻⁸	
	till/shale complex	97/25011111	(109.62-111.05)		
MW111	alayay ailt ta alayay ailt till	60/200mm (clayey silt)	1.53-3.05	4.12 x10 ⁻⁵	
	clayey silt to clayey silt till	41 (clayey silt till)	(116.83-118.25)		
MW112	shale bedrock		1.53-3.05	4.04 x10⁴	
WIVV I IZ	Shale bedrock	-	(108.01-109.44)	4.04 x 10	
MW201	shale bedrock	RQD range		1.03 x10 ⁻⁸	
Theoretical H	lydraulic Conductivity Estimates u	sing Hazen Formula			
MW102	sand and silt	50/125mm	sample 7, 4.6 mbg	1.9 x10 ⁻⁷	
BH108	silt and clay	30	sample 4, 2.3 mbg	N/A	

mbgs – indicates 'metres below ground surface'

masl – indicates 'metres above sea level'

Construction Dewatering Worksheet Project: 1590-1650 Dundas Street East Mississauga, Ontario TERRAPEX **Project Number:** CA20-149 Location: Block A and Block C Date: August 9, 2022 **Input Parameters** Aquifer Thickness (H) 20 m Target Depth 9.49 m (h) (2) (3) Effective Drawdown (Δh) 10.51 m Hydraulic Conductivity (K) 2.0E-08 m/s (4) (5) Hydraulic Conductivity (K) 1.8E-03 m/d (6) Excavation length (a) 225 m Water Table Flow From a Line Excavation width 67 m (7) (b) Source to a Drainage Trench Excavation Length/Width Ratio 3.4 (8) (a/b) **Distance Calculations** (9) Width of Dewatering (L) 2 m (10) Radius/Zone of Influence (ZOI) (R_o) 5 m (11) Equivalent Radius of Well (R_s) m (where $a/b \le 1.5$) (12) Equivalent Radius of Well (R_s) 93 m (where a/b > 1.5) Radial Flow Water Table Aquifer Volume Calculations (13) Trench Calculation (Q) m3/day (Q) (where a/b \leq 1.5) L/day (14) Trench Calculation (Q) 54 m3/day (where a/b > 1.5) (Q) 54,021 L/day Figure 6.8 Approximate analysis of long natrow system 376,875 L/day @ 25mm storm (15) Anticipated Incident Precipitation (9) R_o / 2 (eq. 6.15, p. 105) (10) 3000 (H - h) x sqrt (K) (eq. 6.12, p. 71) (11) sqrt ((a x b)/ pi) (eq. 6.9, p. 70) (eq. 6.10, p.102) (12) (a+b)/pi) (13) (pi x K x (H^2 - h^2)) / In (Ro / Rs) + 2 x (X x K x (H^2 - h^2)) /(2 x L) (pg. 66,67,68; eq. 6.1 and 6.2) (pg. 66,67,68; eq. 6.1 and 6.2) (14) (pi x K x (H^2 - h^2)) / ln (Ro / Rs) + 2 x (X x K x (H^2 - h^2)) / (2 x L)

Construction Dewatering Worksheet Project: 1590-1650 Dundas Street East Mississauga, Ontario TERRAPEX **Project Number:** CA20-149 Location: Block E August 9, 2022 Date: **Input Parameters** Aquifer Thickness (H) 20 m Target Depth 15.72 m (h) (2) (3) Effective Drawdown (Δh) 4.28 m Hydraulic Conductivity (K) 2.0E-08 m/s (4) (5) Hydraulic Conductivity (K) 1.8E-03 m/d (6) Excavation length (a) 140 m Water Table Flow From a Line Excavation width 80 m (7) (b) Source to a Drainage Trench Excavation Length/Width Ratio (8) (a/b) 1.8 **Distance Calculations** (9) Width of Dewatering (L) 1 m (10) Radius/Zone of Influence (ZOI) (R_o) 2 m (11) Equivalent Radius of Well (R_s) m (where $a/b \le 1.5$) (12) Equivalent Radius of Well (R_s) 70 m (where a/b > 1.5) Radial Flow Water Table Aquifer Volume Calculations (13) Trench Calculation (Q) m3/day (Q) (where a/b \leq 1.5) L/day (14) Trench Calculation (Q) 41 m3/day (where a/b > 1.5) (Q) 40,909 L/day Figure 6.8 Approximate analysis of long natrow system 280,000 L/day @ 25mm storm (15) Anticipated Incident Precipitation (9) R_o / 2 (eq. 6.15, p. 105) (10) 3000 (H - h) x sqrt (K) (eq. 6.12, p. 71) (11) sqrt ((a x b)/ pi) (eq. 6.9, p. 70) (eq. 6.10, p.102) (12) (a+b)/pi) (13) (pi x K x (H^2 - h^2)) / In (Ro / Rs) + 2 x (X x K x (H^2 - h^2)) /(2 x L) (pg. 66,67,68; eq. 6.1 and 6.2) (pg. 66,67,68; eq. 6.1 and 6.2) (14) (pi x K x (H^2 - h^2)) / ln (Ro / Rs) + 2 x (X x K x (H^2 - h^2)) / (2 x L)

Construction Dewatering Worksheet Project: 1590-1650 Dundas Street East Mississauga, Ontario TERRAPEX **Project Number:** CA20-149 Location: Block F and Block G Date: August 9, 2022 **Input Parameters** Aquifer Thickness (H) 20 m Target Depth 17.72 m (h) (2) (3) Effective Drawdown (Δh) 2.28 m Hydraulic Conductivity (K) 2.0E-08 m/s (4) (5) Hydraulic Conductivity (K) 1.8E-03 m/d (6) Excavation length (a) 250 m Water Table Flow From a Line Excavation width 80 m (7) (b) Source to a Drainage Trench Excavation Length/Width Ratio 3.1 (8) (a/b) **Distance Calculations** (9) Width of Dewatering 0 m (L) (10) Radius/Zone of Influence (ZOI) (R_o) 1 m (11) Equivalent Radius of Well (R_s) m (where $a/b \le 1.5$) (12) Equivalent Radius of Well (R_s) 105 m (where a/b > 1.5) Water Table Aquifer **Volume Calculations** (13) Trench Calculation (Q) m3/day (Q) (where a/b \leq 1.5) L/day (14) Trench Calculation (Q) 77 m3/day (where a/b > 1.5) (Q) 77,478 L/day Figure 6.8 Approximate analysis of long natrow system 500,000 L/day @ 25mm storm (15) Anticipated Incident Precipitation (9) R_o / 2 (eq. 6.15, p. 105) (10) 3000 (H - h) x sqrt (K) (eq. 6.12, p. 71) (11) sqrt ((a x b)/ pi) (eq. 6.9, p. 70) (eq. 6.10, p.102) (12) (a+b)/pi) (13) (pi x K x (H^2 - h^2)) / ln (Ro / Rs) + 2 x (X x K x (H^2 - h^2)) /(2 x L) (pg. 66,67,68; eq. 6.1 and 6.2) (pg. 66,67,68; eq. 6.1 and 6.2) (14) (pi x K x (H^2 - h^2)) / ln (Ro / Rs) + 2 x (X x K x (H^2 - h^2)) / (2 x L)

Table 8. Summary of Estimated Dewatering Volumes for Concept Development

		(A)	(B)	(C)		
Excavation	Dimensions ¹	Estimated Dewatering Volume	Incident Precipitation ²	Total Dewatering Volume (A+B)	Design Dewatering Volume (A x 2) + B	Zone of Influence (ZOI)
Concept		(L/day)	(L/day)	(L/day)	(L/day)	(m radius)
Block A and Block C	Three levels of underground (~15,000 m²)	54,020	376,875	430,900	484,92	5
Block E	Two levels of underground (~11,200 m²)	40,910	280,000	320,910	361,820	2
Block F and Block G	One level of underground (~20,000 m²)	77,480	500,000	577,480	654,960	1

¹ SvN Architects, 18June2021; 27July2022

Table 9. Summary of Steady State Foundation Drainage Rate Estimates

Parking Structure Area	Post- Construction Drainage Rate	Post- Construction Drainage Rate (FOS Applied)	Anticipated Discharge Permitting Requirements for Permanent Foundation Drainage
	(L/d)	(L/d)	
Block A and Block C	54,020	~108,040	PTTW (assuming no waterproofing)
Block E	40,910	~81,820	PTTW (assuming no waterproofing)
Block F and Block G	77,480	~154,960	PTTW (assuming no waterproofing)

No Permitting, < 50,000 L/day

² Based on a 100-year storm, with a precipitation of 25 mm

Table 10: Summary of Tested Parameters Identified as Not Meeting Applicable Sanitary and Storm By-Law Criteria

1590 and 1650 Dundas Street East, Mississauga, Ontario

Parameter		Sanitary Sewers	Storm Sewers	Storm Sewers	MW107	MW112
	Units	By-law Criteria¹	By-law Criteria ²	By-law Criteria ³	21-Jan-21	21-Jan-21
Total Suspended Solids (TSS)	mg/L	350	15	15	<10	17
Aluminum	mg/L	50	-	1	0.031	1.220
Manganese (Mn)	mg/L	5	0.05	0.05	0.238	0.040
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	1	3.09	2.17

Regional Municipality of Peel Sanitary Sewer Discharge, By-law 53-2010
 Regional Municipality of Peel Storm Sewer Discharge, By-law 53-2010
 City of Mississauga Storm Sewer Discharge, By-law 259-05

TABLE 10 (cont). Summary of Groundwater Quality 1530-1650 Dundas Street East, Mississauga, ON

			Sewers By	MW107	MW112	
	Units	Peel Sanitary	Peel Storm	Mississauga Storm	01/21/2021	01/21/2021
VOLATILE ORGANIC COMPOUND	s					
Benzene	mg/L	0.01	0.002	0.002	<0.0002	<0.0002
Chloroform	mg/L	0.04	0.002	-	< 0.0002	<0.0002
Methylene Chloride (Dichloromethane	mg/L	2	0.0052	-	< 0.0003	< 0.0003
Dichlorobenzene, 1,2-	mg/L	0.05	0.0056	-	<0.0001	< 0.0001
Dichlorobenzene,1,4-	mg/L	0.08	0.0068	-	<0.0001	< 0.0001
Dichloroethylene, cis-1,2-	mg/L	4	0.0056	-	<0.0002	< 0.0002
Dichloropropene, trans-1,3-	mg/L	0.14	0.0056	-	< 0.0003	< 0.0003
Ethylbenzene	mg/L	0.16	0.002	0.002	<0.0001	< 0.0001
Methyl Ethyl Ketone	mg/L	8.0	-	-	<0.0009	< 0.0009
Styrene	mg/L	0.2	-	-	<0.0001	< 0.0001
Tetrachloroethane, 1,1,2,2-	mg/L	1.4	0.017	-	<0.0001	< 0.0001
Tetrachloroethylene	mg/L	1	0.0044	-	<0.0001	< 0.0001
Toluene	mg/L	0.27	0.002	0.002	<0.0002	< 0.0002
Trichloroethylene	mg/L	0.4	0.008	-	< 0.0002	< 0.0002
Xylenes (Total)	mg/L	1.4	0.0044	0.0044	<0.0001	< 0.0001
Polycyclic Aromatic Hydrocarbons	mg/L	-	-	0.002	<0.0003	<0.0003
SEMIVOLATILE ORGANIC COMP	OUNDS					
Bis (2-ethylhexyl) phthalate	mg/L	0.012	0.0088	-	< 0.0005	<0.0005
Di-N-Butyl phthalate	mg/L	0.08	0.015	-	<0.0005	<0.0005
MISCELLANEOUS ORGANIC PAR	AMETERS					
Nonylphenols (Total)	mg/L	0.02	-	-	<0.001	<0.001
Nonylphenol Ethoxylate (Total)	mg/L	0.2	-	-	<0.001	< 0.001
PCBs	mg/L	0.001	0.004	-	<0.0002	<0.0002

Notes

^{1.} Sewer use criteria values based on Peel Region sewer bylaw (53-2010) and City of Mississauga storm sewer bylaw (0259-2005)

^{2.} Bold and italic values at least exceed either Table 1 or Table 2, as highlighted

^{3.} mg/L = milligrams per litre

^{4.} CFU/100mL = colony forming units per 100 millilitres

^{5. &}quot;-" indicates no established criteria for the parameter

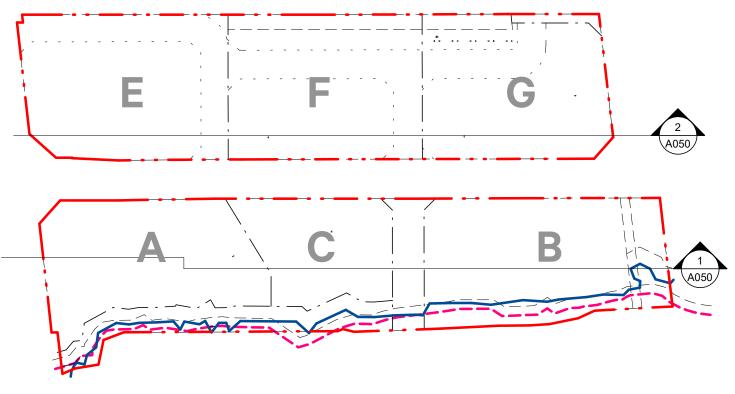
TABLE 11 Summary of Groundwater Quality 1530-1650 Dundas Street East, Mississauga ON

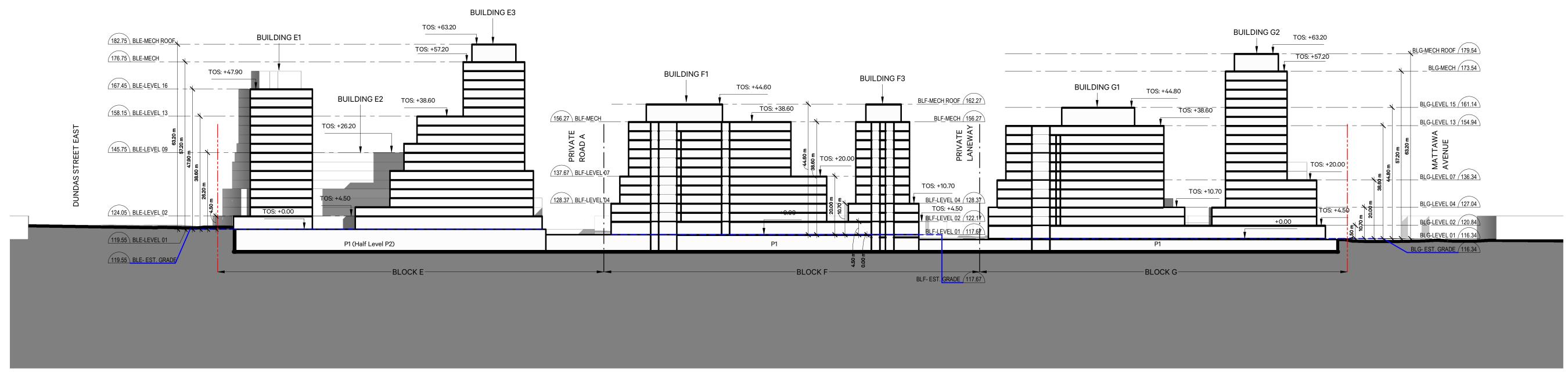
			Sewers By	/law	MW107	MW112
	Units	Peel Sanitary	Peel Storm	Mississauga Storm	01/21/2021	01/21/2021
MISCELLANEOUS INORGANIC PARAMET	ΓERS					
Fluoride	mg/L	10	-		<0.13	<0.07
pH	pH units	5.5-10	6.0-9.0	6.0-9.0	7.59	8.02
Total Suspended Solids	mg/L	350	15	15	<10	17
Cyanide - Total (CN)	mg/L	2	0.02	0.02	<0.002	<0.002
Total Residual Chlorine	mg/L	-	-	1	<0.1	<0.1
METALS (Total)						
Aluminium (AI)	mg/L	50	-	1	0.031	1.220
Antimony (Sb)	mg/L	5	-	-	<0.020	<0.020
Arsenic (As)	mg/L	1	0.02	0.02	<0.015	< 0.015
Cadmium (Cd)	mg/L	0.7	0.008	0.008	<0.010	< 0.010
Hexavalent Chromium (Cr VI)	mg/L	-	-	0.04	< 0.005	< 0.005
Chromium (Cr)	mg/L	5	0.08	0.08	<0.015	< 0.015
Cobalt (Co)	mg/L	5	-	-	<0.020	<0.020
Copper (Cu)	mg/L	3	0.05	0.04	<0.010	< 0.010
Lead (Pb)	mg/L	3	0.120	0.120	<0.020	<0.020
Manganese (Mn)	mg/L	5	0.05	0.05	0.238	0.040
Mercury (Hg)	mg/L	0.01	0.0004	0.0004	<0.0002	< 0.0002
Molybdenum (Mo)	mg/L	5	-	-	<0.020	<0.020
Nickel (N)	mg/L	3	0.08	0.08	<0.015	< 0.015
Selenium (Se)	mg/L	1	0.02	0.02	<0.020	<0.020
Silver (Ag)	mg/L	5	0.12	0.12	<0.010	< 0.010
Tin (Sn)	mg/L	5	-	-	<0.025	< 0.025
Titanium (Ti)	mg/L	5	-	-	<0.020	0.038
Zinc (Zn)	mg/L	3	0.04	0.04	<0.020	<0.020
MICROBIOLOGICAL AND NUTRIENTS						
Escherichia coli	CFU/100 mL	-	200	200	ND	ND
Oil & Grease: Animal and Vegetable	mg/L	150	-	-	<0.5	<0.5
Oil & Grease: Mineral and Synthetic	mg/L	15	-	=	<0.5	<0.5
Biological Oxygen Demand (BOD)	mg/L	300	15	15	15	6
Phenolics (4AAP)	mg/L	1.0	0.008	0.008	0.002	<0.002
Phosphorus (P)	mg/L	10	0.4	0.4	<0.02	0.06
Sulfate (SO4)	mg/L	1500	-	-	191	222
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	1	3.09	2.17

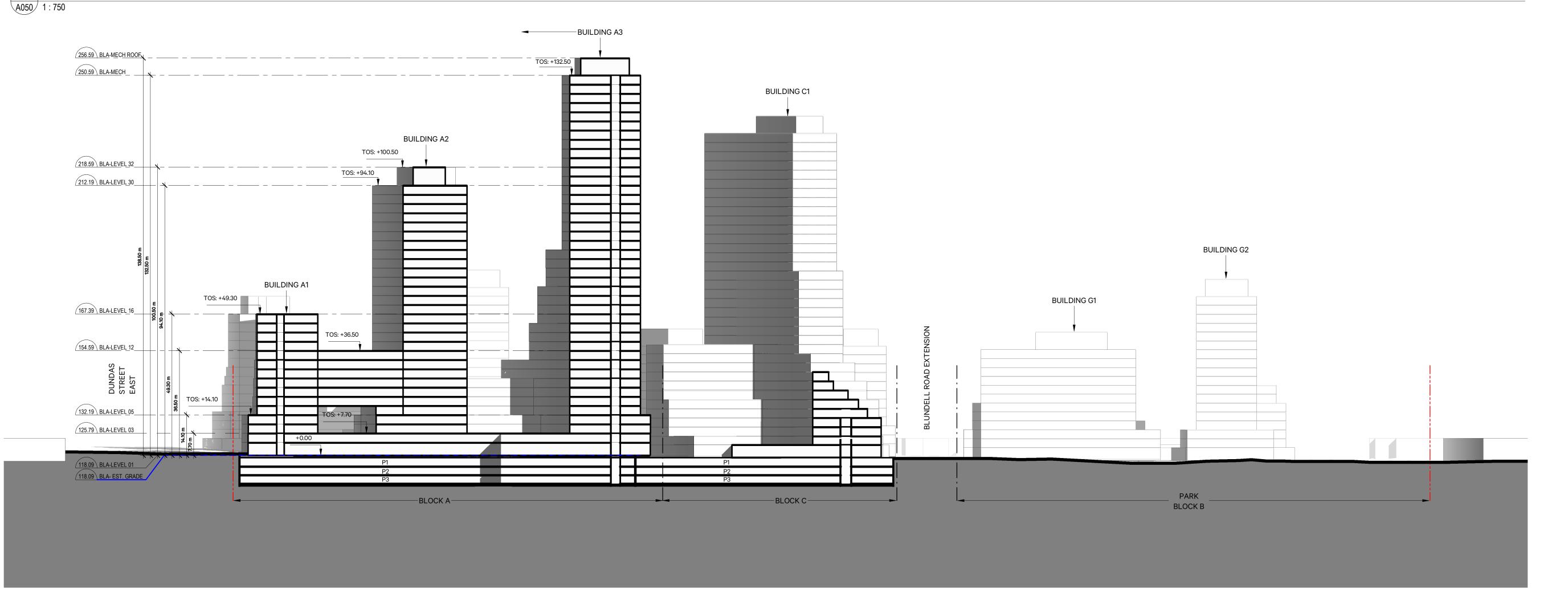
Notes

^{1.} Sewer use criteria values based on Peel Region sewer bylaw (53-2010) and City of Mississauga storm sewer bylaw (0259-2005)

^{2.} Bold and italic values at least exceed either Table 1 or Table 2, as highlighted


^{3.} mg/L = milligrams per litre


^{4.} CFU/100mL = colony forming units per 100 millilitres


^{5. &}quot;-" indicates no established criteria for the parameter

APPENDIX I PROVIDED DRAWINGS AND INFORMATION

KEY PLAN

North - South Site Section A

1 : 750

2 North - South Site Section B

COPYRIGHT RESERVED. THIS DESIGN AND DRAWINGS ARE THE EXCLUSIVE PROPERTY OF THE DESIGNER AND CANNOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF THE DESIGNER.

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION UNTIL ISSUED FOR THAT PURPOSE BY THE DESIGNER.

PRIOR TO COMMENCEMENT OF THE WORK THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, DATUMS AND LEVELS TO IDENTIFY ANY ERRORS AND OMISSIONS; ASCERTAIN ANY DISCREPANCIES BETWEEN THIS DRAWING AND THE FULL CONTRACT DOCUMENTS; AND BRING THESE ITEMS TO THE ATTENTION OF THE

NO. DATE REVISION / COMMENT		FOR CLARIFICAT	
	NO.	DATE	REVISION / COMMENT

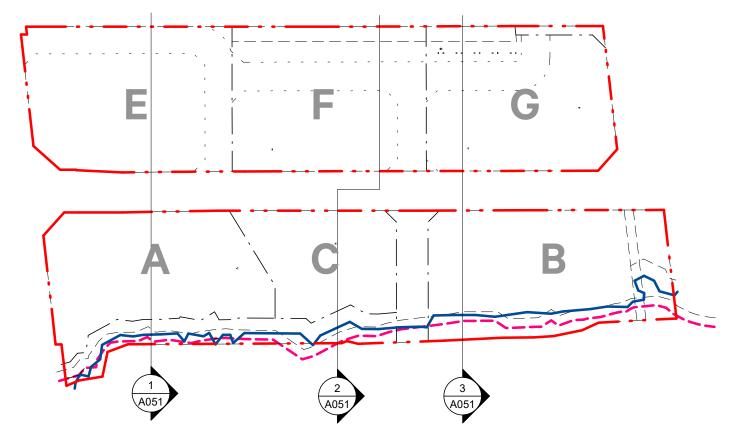
NOTES

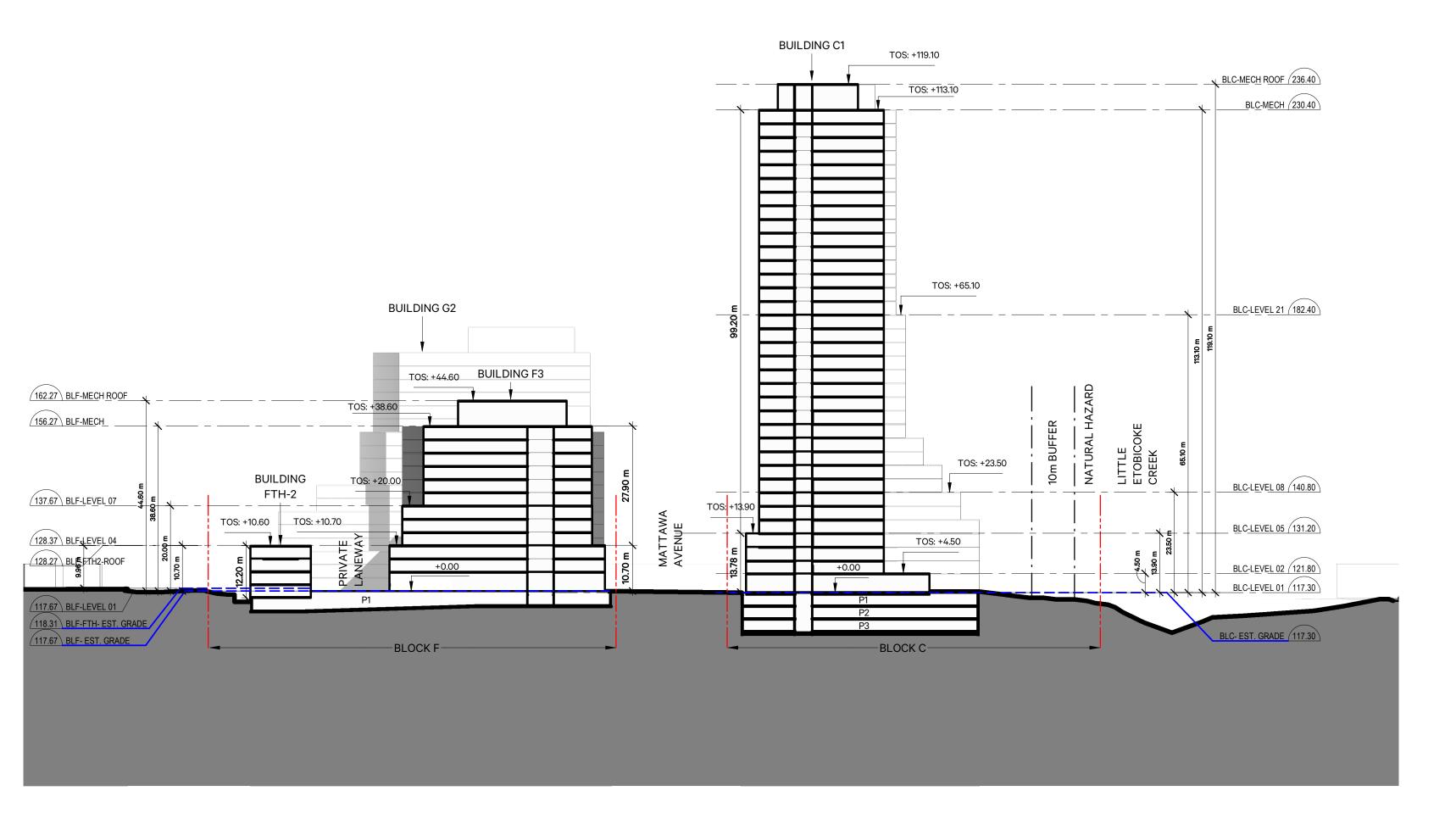
ANDREW SINCLAR
LICENCE
6692

110 Adelaide St. E. info@svn-ap.com
Toronto, ON
M5C 1K9

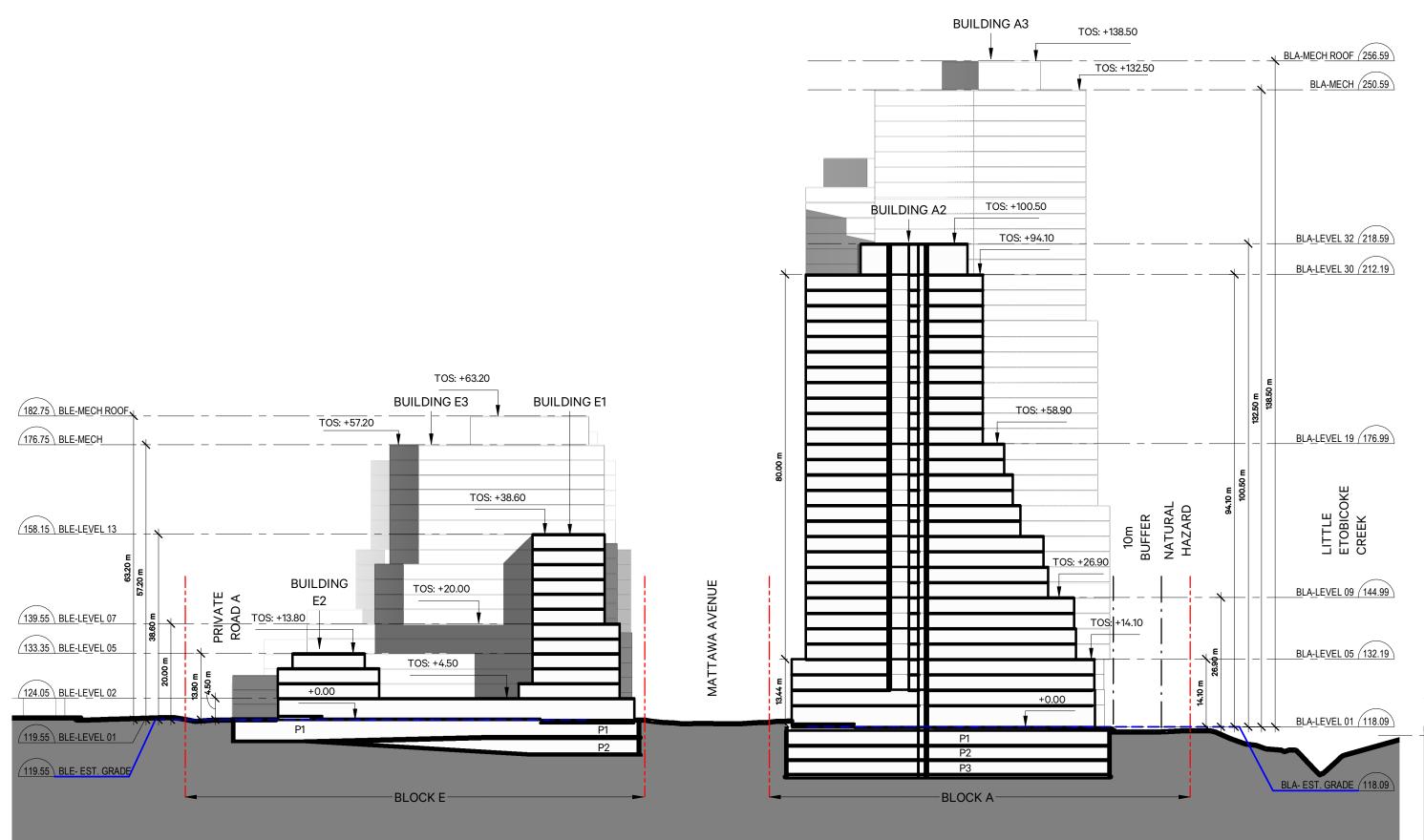
DUNDAS & MATTAWA
1580-1590 and 1650 Dundas Street East
Mississauga, Ontario
Hazelview Investments

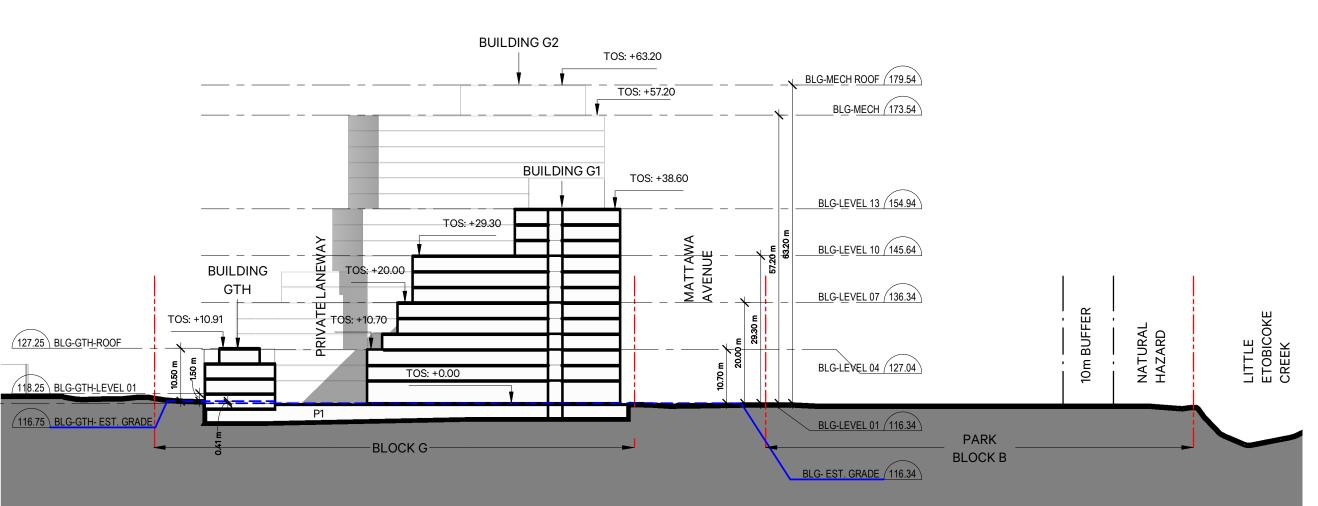
SITE SECTIONS


PROJECT **42075_1**SCALE **As indicated**DATE **03/09/21**


DRAWN Author
CHECKED 2021-11-02 5:08:19 PM
PLOTTED

A050


KEY PLAN


1 East - West Site Section A A051 1:750

2 East - West Site Section B A051 1:750

3 East - West Site Section C A051 1:750 COPYRIGHT RESERVED. THIS DESIGN AND DRAWINGS ARE THE EXCLUSIVE PROPERTY OF THE DESIGNER AND CANNOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF THE DESIGNER.

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION UNTIL ISSUED FOR THAT PURPOSE BY THE DESIGNER.

PRIOR TO COMMENCEMENT OF THE WORK THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, DATUMS AND LEVELS TO IDENTIFY ANY ERRORS AND OMISSIONS; ASCERTAIN ANY DISCREPANCIES BETWEEN THIS DRAWING AND THE FULL CONTRACT DOCUMENTS; AND BRING THESE ITEMS TO THE ATTENTION OF THE OWNERS FOR CLARIFICATION.

NO. DATE REVISION / COMMENT

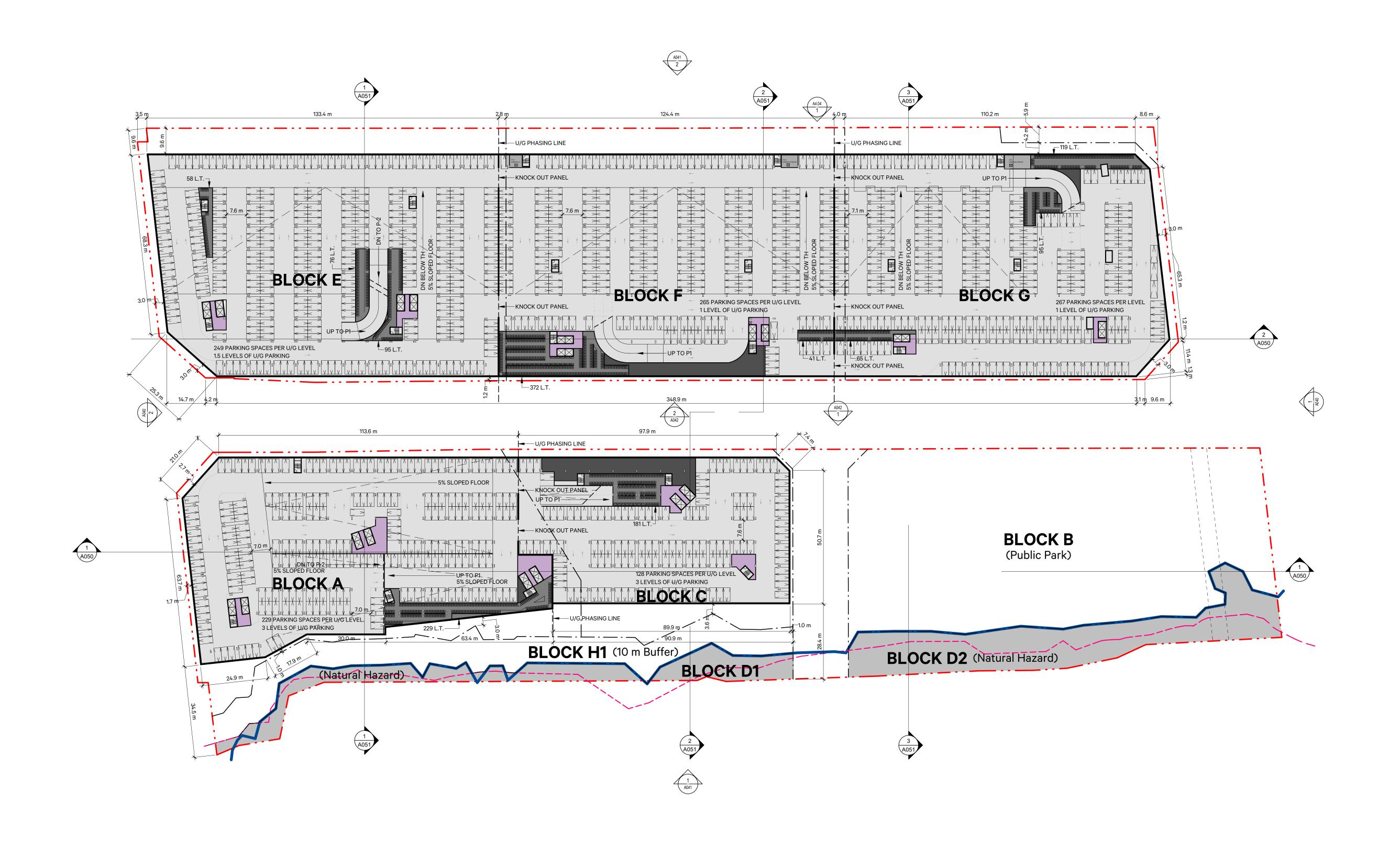
NOTES

STANDAR SINCLAR LICENCE 6692

DUNDAS & MATTAWA
1580-1590 and 1650 Dundas Street East

Mississauga, Ontario
Hazelview Investments

SITE SECTIONS


 PROJECT
 42075_1
 DRAWN
 Author

 SCALE
 As indicated
 CHECKED
 2021-11-02 5:30:12 PM

 DATE
 03/15/21
 PLOTTED

PLOTTED

A051

COPYRIGHT RESERVED. THIS DESIGN AND DRAWINGS ARE THE EXCLUSIVE PROPERTY OF THE DESIGNER AND CANNOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF THE DESIGNER.

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION UNTIL ISSUED FOR THAT PURPOSE BY THE DESIGNER.

PRIOR TO COMMENCEMENT OF THE WORK THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, DATUMS AND LEVELS TO IDENTIFY ANY ERRORS AND OMISSIONS; ASCERTAIN ANY DISCREPANCIES BETWEEN THIS DRAWING AND THE FULL CONTRACT DOCUMENTS; AND BRING THESE ITEMS TO THE ATTENTION OF THE OWNERS FOR CLARIFICATION.

NO.	DATE	REVISION/ COMMENT
1	2022-07-29	Issued for ZBA/OPA
NOT	EC .	

USE LEGEND PARKING / LOAD

PARKING / LOADING/ CIRCULATION

WASTE STORAGE

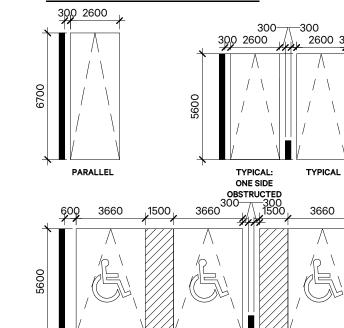
STORAGE (BIKES/ LOCKERS)

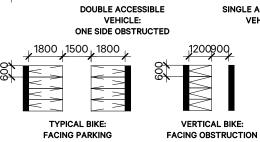
MECHANICAL

RESIDENTIAL - LOBBY

RESIDENTIAL -UNITS

RESIDENTIAL - AMENITY


COMMUNITY


DISTRICT ENERGY PLANT

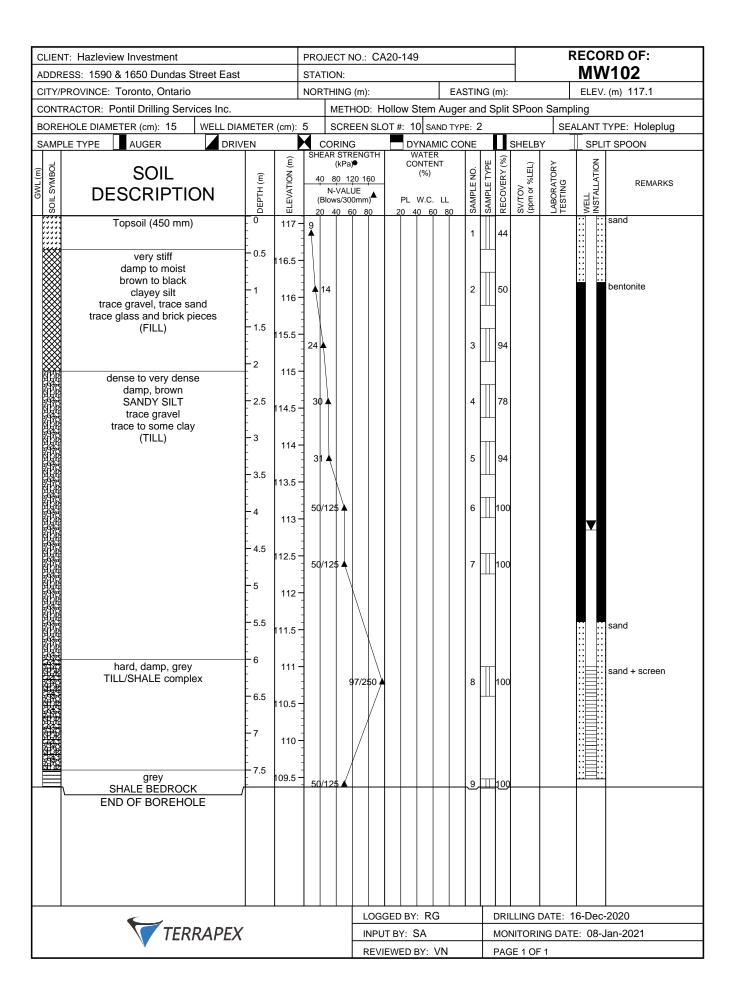
ENERGY TRANSFER STATION

GREEN ROOF/ LANDSCAPE
OUTDOOR AMENITY AREA

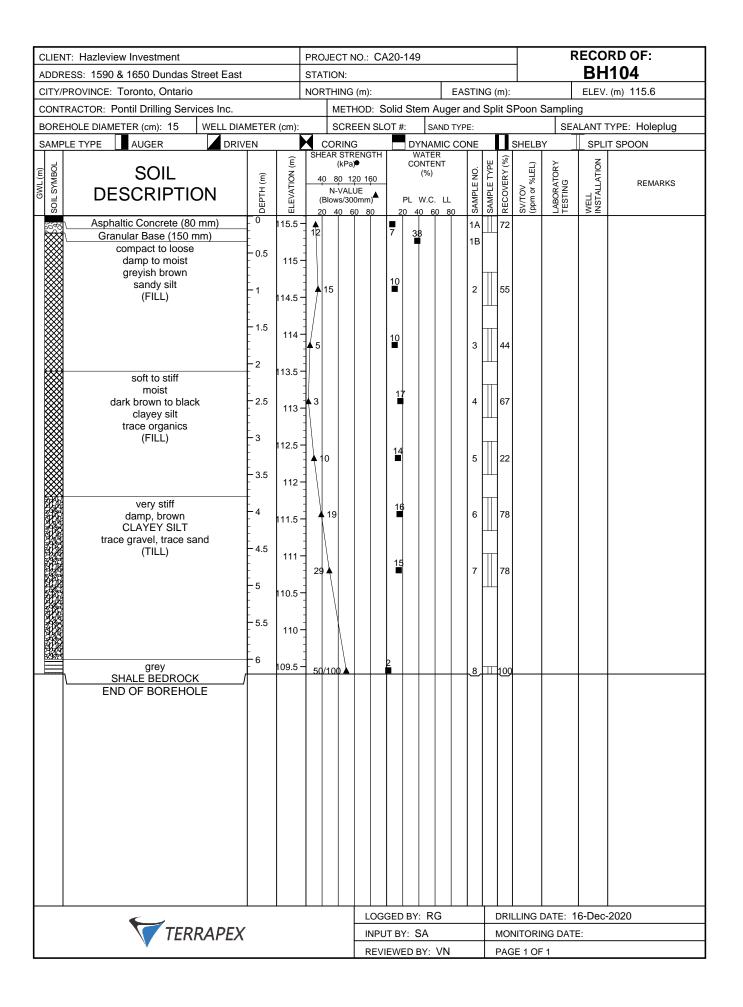
VEHICULAR/ BIKE PARKING

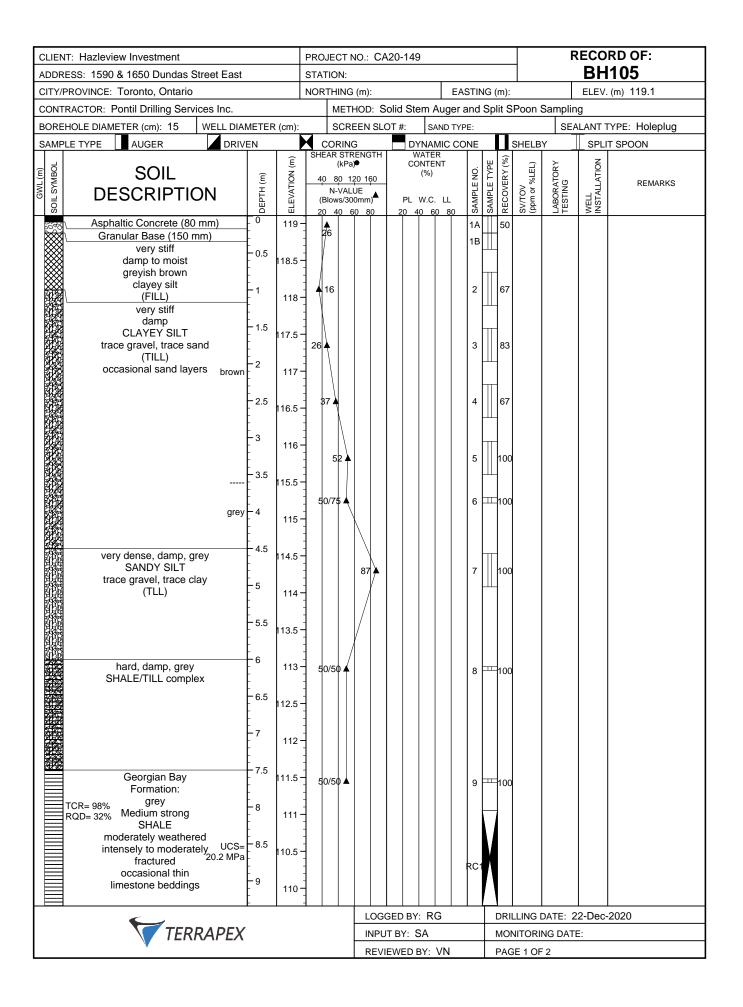
DUNDAS & MATTAWA
1580-1590 and 1650 Dundas Street East
Mississauga, Ontario
Hazelview Investments

SITE PLAN - TYPICAL U/G PARKING PLAN

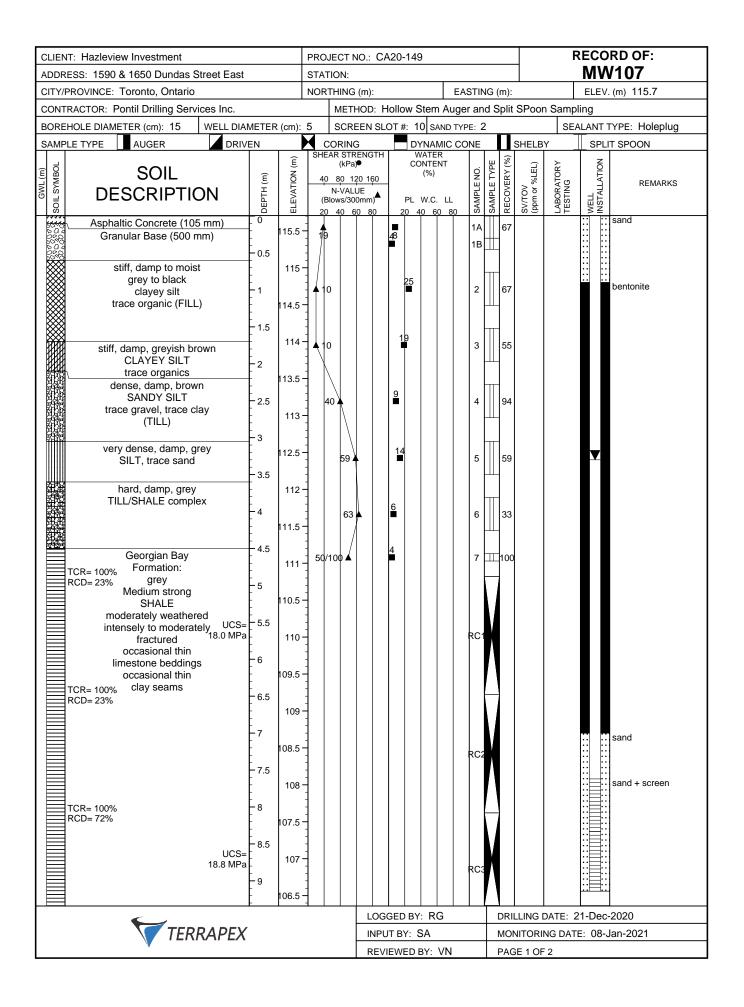

PROJECT **42075_1**SCALE **As indicated**DATE **03/09/21**

75_1 DRAWN SVN
ated CHECKED SVN
9/21 PLOTTED 2022-07-27 4:29:10 PM


A100

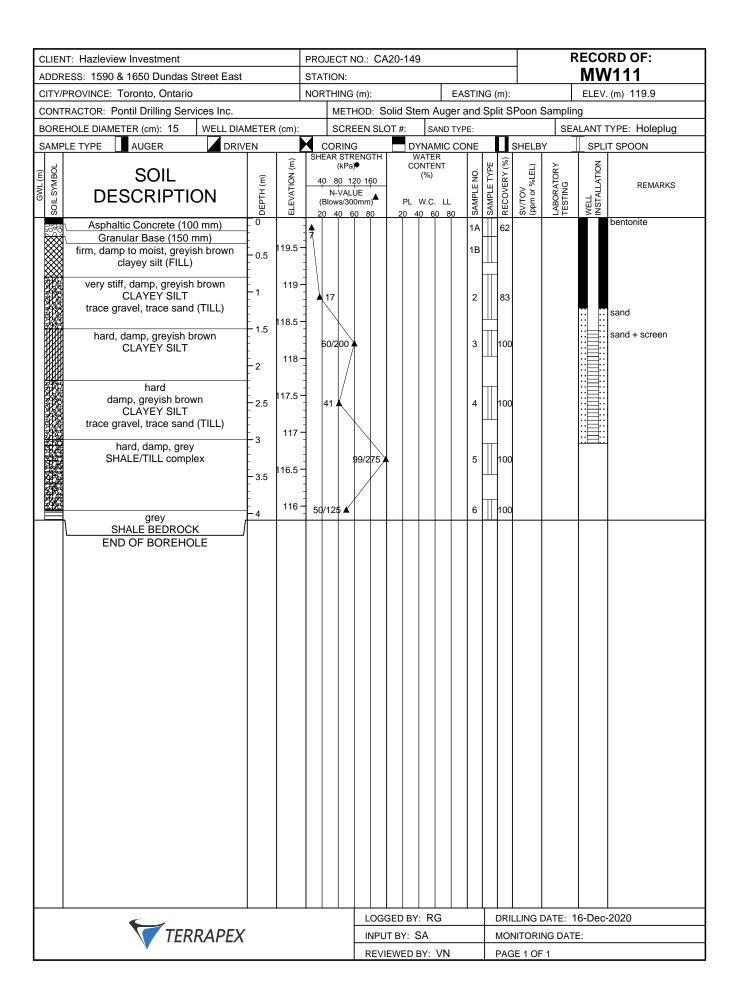

APPENDIX II BOREHOLE LOG RECORDS

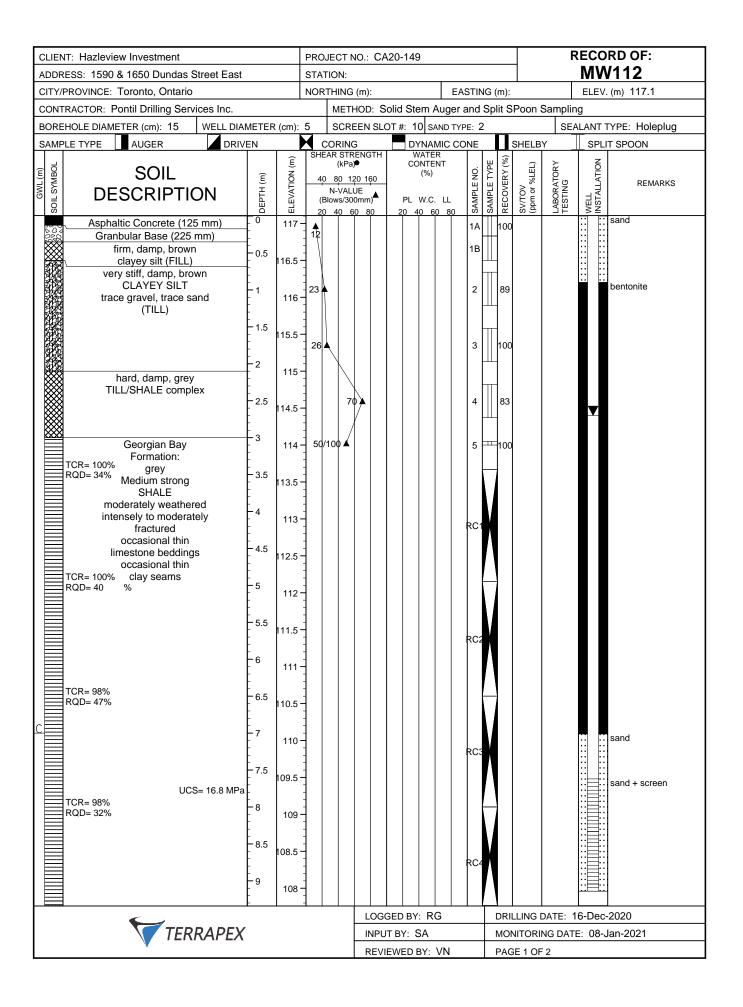
CLIEN	T: Hazleview Investment	PRO	JECT I	NO.: C	A20-	149					RECORD OF:					
ADDR	ESS: 1590 & 1650 Dundas Street East			STA	ΓΙΟΝ:								MW101			
CITY/F	PROVINCE: Toronto, Ontario			NOR	THING	6 (m):			EA	ASTII	NG (m):			ELEV	. (m) 117.4
CONT	RACTOR: Pontil Drilling Services Inc.				_				n Auger		_	lit SI	Poon S	Samplir	ng	
	HOLE DIAMETER (cm): 15 WELL DIAM						OT #:		SAND TY			_			П	TYPE: Holeplug
SAMP	LE TYPE AUGER DRIVI	EN			ORIN	G RENGTH	┌╸		NAMIC CO	ANC T			SHELB		T	T SPOON
GWL (m) SOIL SYMBOL	SOIL	(m)	ELEVATION (m)		(kPa	a) ● 20 160		CON	ITENT %)	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
GW OIL S'	DESCRIPTION	DЕРТН (m)	LEVA'	(E	N-VAL Blows/30	00mm)			/.C. LL	AMPL	AMPL	ECO\	V/TO/	4BOR ESTIN	FLL	
or or	Asphaltic Concrete (75 mm)	_ 0	<u> </u>	20	40 (60 80	-	40	60 80	1A	$\overline{}$	<u>~</u> 67	တ် မ	7 E		sand
	Granbular Base (200 mm)	-		12			7 11				H	67				
I ₩	very stiff to firm damp to moist	0.5	117 -]						1B	3					
I ⋙	greyiesh brown, brown, dark brown	-		1							\vdash					
I ⋙	clayey silt brick pieces	- - 1	116.5 -	- ∦	18		9			2		89				bentonite
I ₩	trace gravel trace organics] /							Ш					
I ₩	trace brick and concrete pieces	- - 1.5	116 -	1/1												
I ₩	(FILL)			1			14			3		83				
I ₩		-2	115.5 -][]						ľ						
I ⋙		-		111												
l ⋙	some organics	- - 2.5	115 -]			11			,						
I ⋙		- 2.5 -		- ↑°			-			4		22				
I ⋙		-	114.5 -													
I ₩	concrete pieces	-3 []			15				Ш					
I ₩			114-	<u>}</u> ∤1′	0		15			5		44				
I ₩		- 3.5 -	''-	111							Н					
I ⋙	blook	-	1105	1							Н					
I ₩	black	-4	113.5 -	_ 5				25		6		100				
I ⋙		-		1 \							Ш					
I ⋙		- - 4.5	113 -	1												
I ⋙	some organics			22			16			7		100				
I ⋙		- -5	112.5 -							'	Ш	100				sand
I ⋙		-		-												sand + screen
I ⋙		- - 5.5	112 -]												Januar Solosii
I ₩		- 5.5 -]												
I ₩		-	111.5 -	1		1										
	hard, damp, grey	-6]		$ \setminus $	6				Н					
	TILL/SHALE complex		111 -]	77/1	25	6			8		100				
		6.5	'''	1		/					Н					
			110.5 -]												1
		7	10.5			/										
		-	140	1		1										
92/32	grey	7.5	110 -]	_		<u>l</u>								X//]
	SHALE BEDROCK			50	0/75 ▲	++		\dashv		╚	严	100			L/XX	
	END OF BOREHOLE															
						LOGGED BY: RG					DRILLING DATE: 16-Dec-2020					-2020
						INPUT BY: SA					+					
					REVIEWED BY: VN					MONITORING DATE: 08-Jan-2021 PAGE 1 OF 1						
						_ v	,.						01	•		


CLIEN	NT: Hazleview Investment			PROJECT NO.: C					NO.: CA20-149							RECORD OF:			
	RESS: 1590 & 1650 Dundas Street East		-	STA							_						1		103
	PROVINCE: Toronto, Ontario			NOF	_	NG (EAS							(m) 115.7
	FRACTOR: Pontil Drilling Services Inc.				+-					$\overline{}$					plit	SPoor	Sampl		
	HOLE DIAMETER (cm): 20 WELL DIAM		(cm):	4			EN SL	TO_				TYP		2	_	SEALANT TYPE: Holeplug			
SAME	PLE TYPE AUGER DRIV	EN		SHE	EAR:	STRE	G DYNAMIC CONE RENGTH WATER				<u></u>	SHELB			T SPOON				
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DЕРТН (m)	ELEVATION (m)	(1	0 80 N-\ Blows	/AL i II	160 E mm)				LL		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
,,,,,	Topsoil (450 mm)		115.5										1	Ш	100				
	loose to compact damp to moist brown sand and gravel some concrete pieces (FILL)	- 1.5 2	115 - 114.5 - 114 - 114 -	▲ 8									3		39 22				
\otimes		2.5	113_	Y	12								4		-				
	END OF BOREHOLE																		Auger Refusal due to concrete
							D BY		G			DRILLING DATE: 21-Dec-2020				2020			
TERRAPEX							3Y: S					MONITORING DATE:							
	TERNAPEX					REV	/IEV	/ED E	BY:	VN			F	PAGE 1 OF 1					

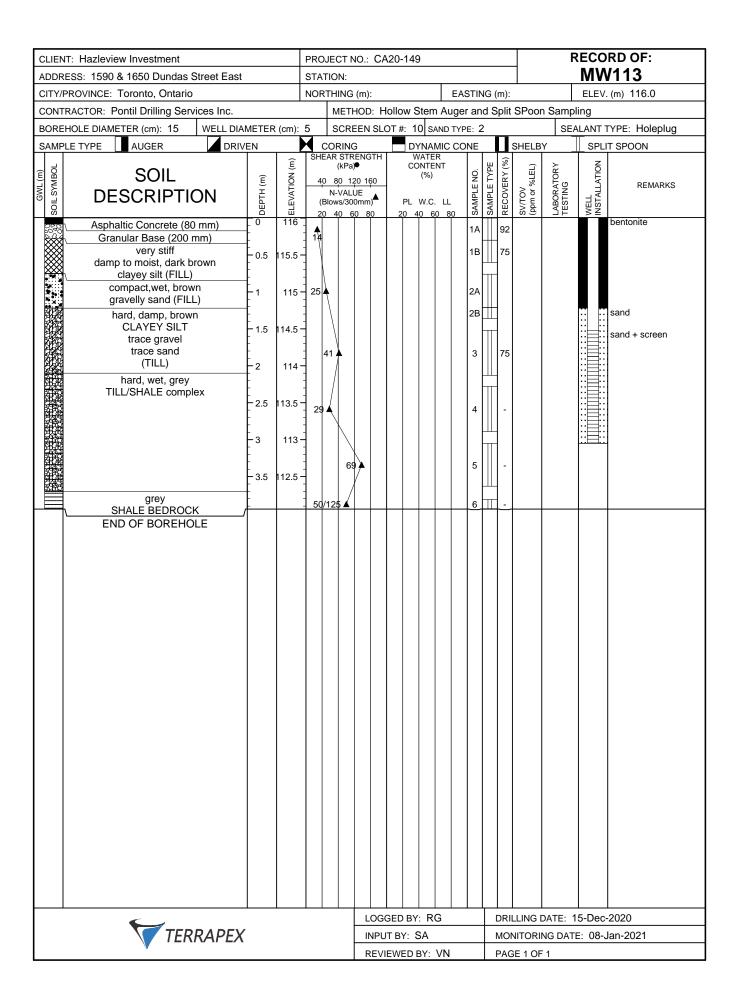
CLIENT: Hazleview Investment	PROJECT	NO.: CA20-149			RECORD OF:		
ADDRESS: 1590 & 1650 Dundas Street East	STATION:				BH105		
CITY/PROVINCE: Toronto, Ontario	NORTHING		EASTING		ELEV. (m) 119.1		
CONTRACTOR: Pontil Drilling Services Inc.		HOD: Solid Ster		olit Spoon Sai			
BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm) SAMPLE TYPE AUGER DRIVEN		EEN SLOT #:	SAND TYPE:	SHELBY	SEALANT TYPE: Holeplug		
	SHEAR ST	RENGTH WA	NAMIC CONE		SPLIT SPOON		
SOIL SOIL DESCRIPTION (m) DESCRIPTION	40 80 1 N-VAL (Blows/30 20 40	1 <u>20 160</u> LUE 00mm) PL V	%) .C. LL	RECOVERY (%) SV/TOV (ppm or %LEL)	LABORATORY TESTING WELL INSTALLATION SYAUSTAND		
TCR= 98% Georgian Bay Formation: grey Medium strong SHALE moderately weathered intensely to moderately fractured occasional thin Clay seams END OF BOREHOLE TCR= 98% Georgian Bay Formation: grey Medium strong SHALE moderately weathered intensely to moderately fractured occasional thin clay seams TCR= 100% occasional thin clay seams END OF BOREHOLE		60 80 20 40	RC2				
TERRAPEX		LOGGED BY:	A	DRILLING DATE: 22-Dec-2020 MONITORING DATE:			
·		REVIEWED B	Y: VN	PAGE 2 OF 2			

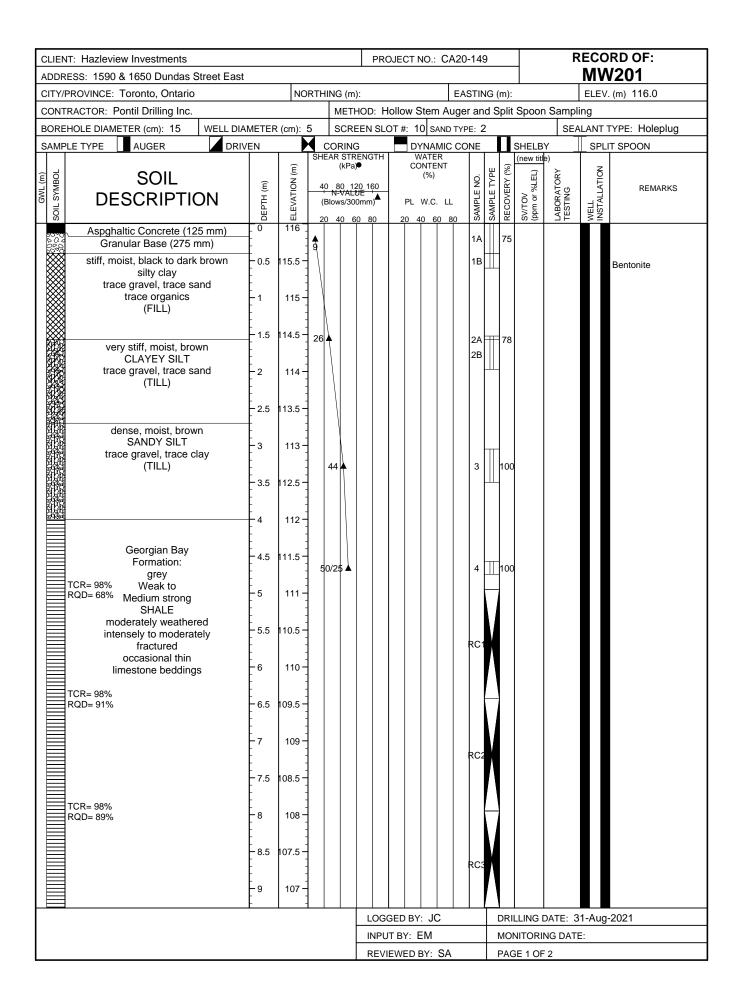
CLIENT: Hazleview Investment	PROJEC1	T NO.: CA2	0-149		RECORD OF:						
ADDRESS: 1590 & 1650 Dundas Street East	STATION	l:			BH106						
CITY/PROVINCE: Toronto, Ontario	NORTHIN	NG (m):		EASTING	G (m):		ELEV.	(m) 117.3			
CONTRACTOR: Pontil Drilling Services Inc.	ME	THOD: So	id Stem Au	iger and S	Split SF	Poon Sampl	ng				
BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm	: SC	REEN SLO	Γ#: SAN	ID TYPE:		SE	ALANT T	YPE: Holeplug			
SAMPLE TYPE AUGER DRIVEN	CORI	ING	C CONE	s	HELBY	SPLI SPLI	T SPOON				
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	40 80 N-V/ (Blows/	120 160 ALUE /300mm) 60 80	WATER CONTENT (%) PL W.C. 20 40 60	SAMPLE NO.	SAMPLE TYPE RECOVERY (%)	SV/TOV (ppm or %LEL) LABORATORY TESTING	WELL INSTALLATION	REMARKS			
Asphaltic Concrete (75 mm) Granular Base (225 mm) stiff damp to moist greyish brown clayey silt (FILL) hard damp, brown CLAYEY SILT trace gravel, trace sand (TILL) hard, damp, grey SHALE/TILL complex 113.	5-10	89/275	20 40 60	1A 1B 2 2 2 3A 3B	61		A = 1				
grey SHALE BEDROCK 112.	,]	90/200 🛦		4	57						
END OF BOREHOLE											
TERRAPEX		_					DRILLING DATE: 23-Dec-2020 MONITORING DATE:				
VIENNAPEA			WED BY: V	N		E 1 OF 1	· L.				

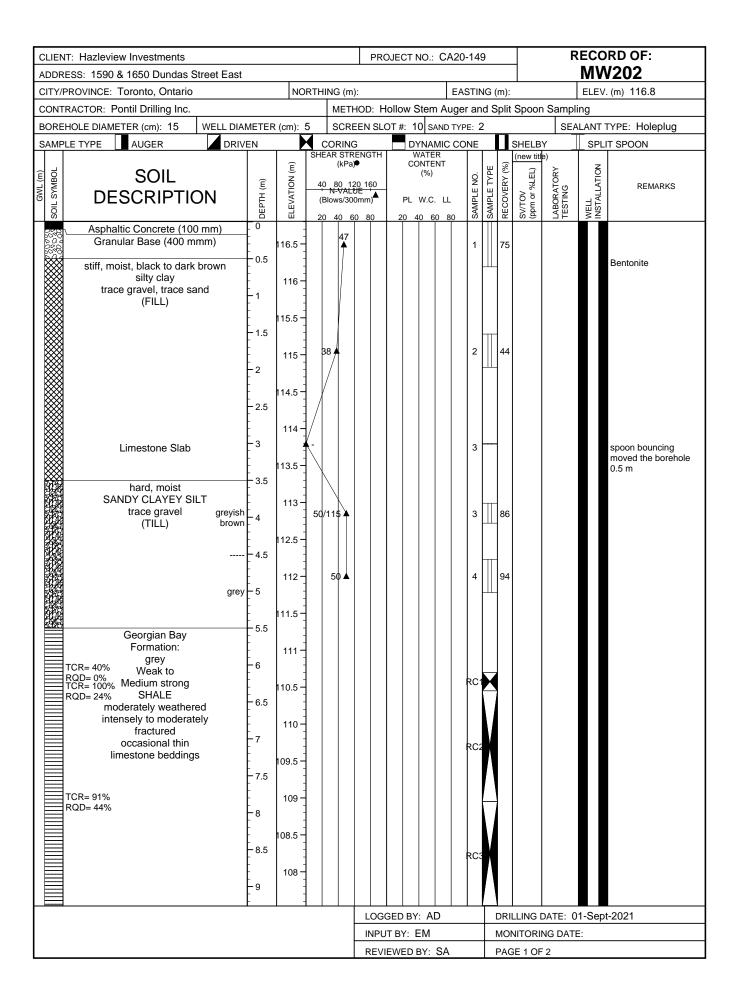



CLIENT: Hazleview Investment	PRC	OJECT N	O.: CA	20-149)					RECORD OF:				
ADDRESS: 1590 & 1650 Dundas Street East		STA	ATION:										MW	/107
CITY/PROVINCE: Toronto, Ontario		NOF	RTHING						ING					(m) 115.7
CONTRACTOR: Pontil Drilling Services Inc.	AETED ()	METHOD: Hollow Stem Auger and Split						SPoor						
BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm)	METER (cm)		5 SCREEN SLOT #: 10 SAND TYPE: 2 CORING DYNAMIC CONE					П	SEALANT TYPE: Holeplug SHELBY SPLIT SPOON					
SOIL OBJUNESTION BOOK SOIL OBJUNESTION	DEPTH (m) ELEVATION (m)	SHE 41	IEAR STRE (kPa) 40 80 12 N-VALU (Blows/300	0 160 E mm)	▲ CC	VATER ONTEN (%) W.C.	R NT LL	C	SAMPLE NO.		SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL G	REMARKS
TCR= 100% RCD= 71% Formation: grey Medium strong SHALE moderately weathered intensely to moderately fractured occasional thin limestone beddings occasional thin clay seams END OF BOREHOLE	9.5 106 105.6 10	5-	20 40 60					R						
TERRAPEX			LOGGED BY: RG INPUT BY: SA REVIEWED BY: VN					DRILLING DATE: 21-Dec-2020 MONITORING DATE: 08-Jan-2021 PAGE 2 OF 2						

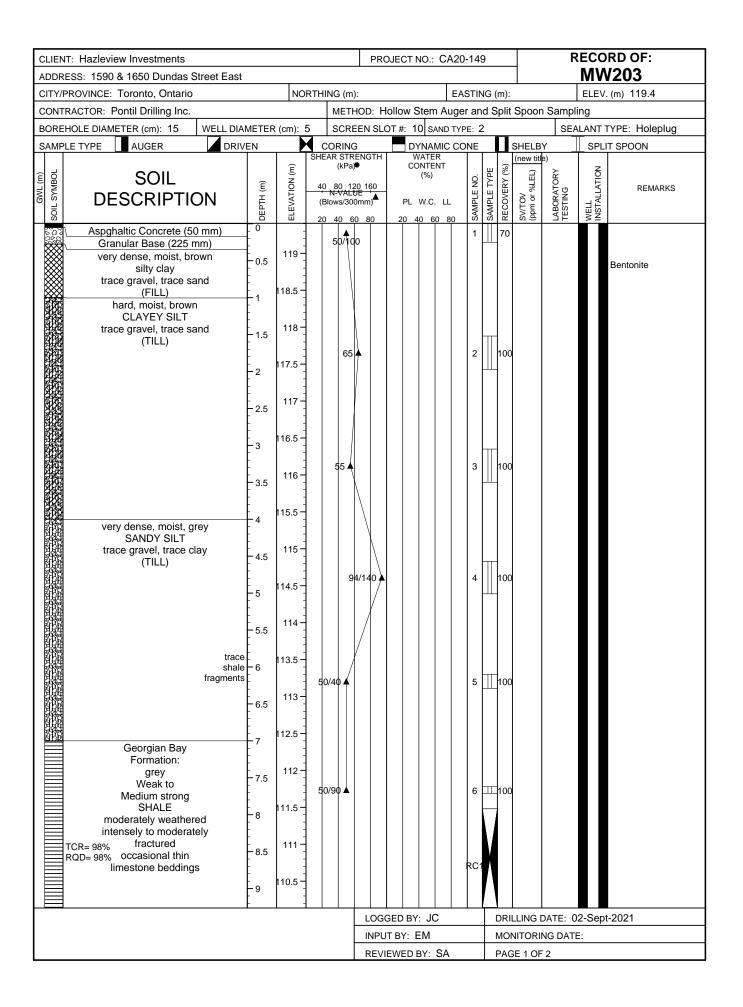
CLIENT: Hazleview Investment	JECT NC).: CA	20-14	9				RECORD OF:					
ADDRESS: 1590 & 1650 Dundas Street	East	STA	TION:									BH	108
CITY/PROVINCE: Toronto, Ontario		NOF	RTHING (r	n):		E	AST	ING	(m):			ELEV.	(m) 119.3
CONTRACTOR: Pontil Drilling Services I			METHOD: Solid Stem Auger and Split Sl										
` '	L DIAMETER (c		SCREE	N SLC		SAND T			_			П	TYPE: Holeplug
SAMPLE TYPE AUGER	DRIVEN	Тенг	CORING EAR STREE	NGTH		YNAMIC (CONE		\Box	SHELB			T SPOON
SOIL DESCRIPTION	DEРТН (m)	EVATION (m	(kPa) 0 80 120 N-VALUE Blows/300m 0 40 60	160 ::	C(PL	ONTENT (%) W.C. LL 40 60 80	CN H IGMAS	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
Asphaltic Concrete (mm)	- 0	1	3 40 00			1 1	1/		50	., .			
Granular Base (mm) Soft to firm damp to moist greyish brown clayey silt (FILL) Very stiff damp, brown CLAYEY SILT trace gravel, trace sand (TILL) very dense, damp, brown SANDY SILT trace gravel, trace clay (TILL)	-0.5 -118 -1 -1.5 -1.5 -1.7 -2.5 -1.118 -3.5 -4 -4.5	15 -	49 A 0/75 A		914		14 1E 2 2 3 3 3 4 4 5 5 6 6 7 7		83 79 100				
very dense, wet, brown SAND trace gravel, trace silt hard, damp, grey SHALE/TILL complex grey SHALE BEDROCK END OF BOREHOLE	5.5	3.5	55 ★ 0/5 0 ★		14 7 9			A	92				
				LOGGED BY: RG D									
TERRAPEX									MONITORING DATE: 15-Dec-2020				
▼ 1210001					BY: VN		PAGE 1 OF 1						
			v II		VIN			. , .	01	•			


CLIENT: Hazleview Investment	PROJEC1	T NO.: CA20-149)		RECORD OF:				
ADDRESS: 1590 & 1650 Dundas Street East	STATION				BH109				
CITY/PROVINCE: Toronto, Ontario	NORTHIN	. ,	EASTING (
CONTRACTOR: Pontil Drilling Services Inc.			em Auger and Sp	lit SPoon Sa					
BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm)		CREEN SLOT #:	SAND TYPE:	П	' —	YPE: Holeplug			
SAMPLE TYPE AUGER DRIVEN	SHEAR S	TRENGTH W	NAMIC CONE	SHELBY		T SPOON			
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	40 80 N-V/ (Blows/	Pa) CO 120 160 ALUE /300mm) PL	THATME (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	RECOVERY (%) SV/TOV (ppm or %LEL)	LABORATORY TESTING WELL INSTALLATION	REMARKS			
Asphaltic Concrete (100 mm) - 0				58					
Granular Base (200 mm) stiff to very stiff damp to moist greyish brown clayey silt trace asphalt pieces (FILL) very dense damp, brown SANDY SILT trace gravel, trace clay (TILL) very dense, wet greyish brown SILTY SAND very dense, damp, brown SANDY SILT trace gravel, trace clay (TILL) 114.5 115.5 116.5 116.5 116.5 116.5 116.5 117 118 119 119 110 110 111 111 111	53	73	1A 1B 2A 2B 3 4 5 6A 6B 1	58 83 83 92 100 92					
TERRAPEX		LOGGED BY		DRILLING DATE: 15-Dec-2020 MONITORING DATE:					
,		REVIEWED E	BY: VN	PAGE 1 OF 1					


CITY/PROVINCE: Toronto, Ontario NORTHING (m): EASTING (m): ELEV. (m) 116.0 CONTRACTOR: Pontil Drilling Services Inc. BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm): SCREEN SLOT #: SAND TYPE: SAND TYPE: SEALANT TYPE: Holeplu SAMPLE TYPE AUGER AUGER ON WATER CONTENT (Name of the policy of the polic	PROJECT NO.: CA20-149 RECORD OF:)	20-14	NO.: CA	JECT	PRO				azleview Investment	CLIENT			
CONTRACTOR: Pontil Drilling Services Inc. BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm): SCREEN SLOT #: SAND TYPE: SEALANT TYPE: Holeplu SAMPLE TYPE AUGER AUGER AUGER AUGER AUGER AUGER AUGER STRENGTH (KPa) SOIL DESCRIPTION Asphaltic Concrete (100 mm) Granular Base (250 mm) Very stiff damp to moist greyish brown clayey silt (FILL) Very stiff damp to moist greyish brown clayey silt (FILL) Very stiff damp to moist greyish brown clayey silt (FILL) Very stiff damp to moist greyish brown clayey silt (FILL)																		
BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm): SCREEN SLOT #: SAND TYPE: SEALANT TYPE: Holeplus SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHEAR STRENGTH (KPa) AUGER SOIL DESCRIPTION	·								1	NOR								
SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOON SOIL DESCRIPTION (E) AUGER SHEAR STRENGTH (KPa) 40 80 120 160 N-VALUE (Blows/300mm) 20 40 60 80 PL W.C. LL 20 40 60 80 REMARK ASPhaltic Concrete (100 mm) Granular Base (250 mm) Very stiff damp to moist greyish brown clayey silt (FILL) Very stiff damp to moist greyish brown clayey silt (FILL) 13 29 12 30 100 SHELBY SPLIT SPOON REMARK 13 2 37	T T T	t SPoon Sa	Split S								2 (255)							
SOIL SHEAR STRENGTH WATER CONTENT (%)		QHEI DV	П								<u> </u>		<u> </u>					
Asphaltic Concrete (100 mm) Granular Base (250 mm) very stiff damp to moist greyish brown clayey silt (FILL) Very stiff very stiff 115 22 3 100	SHEAR STRENGTH WATER					/ATFR		RENGTH	AR STI			I	DRIV	AUGER				
Asphaltic Concrete (100 mm) Granular Base (250 mm) very stiff damp to moist greyish brown clayey silt (FILL) Very stiff very stiff 115 22 3 100	CONIENT CONTENT CONT	RECOVERY (% SV/TOV (ppm or %LEL)	SAMPLE TYPE RECOVERY (9	SAMPLE NO.	L	(%) W.C. L	PL	20 160 .UE .00mm)	N-VAL Blows/30	(E	ELEVATION (n	DEРТН (m)	NC		GWL (m) SOIL SYMBOL			
very stiff damp to moist greyish brown clayey silt (FILL) 115 23 18 2 37 Very stiff very stiff deep brown 19 115.5 21 22 37 100	N T 0 116 T T T T T T T T T T T T T T T T T T		П		Ť	0 60		1 1		- [
very stiff 29 \	13 2 3 37 2 3 37 2 3 37 2 3 37 37 37 37 37 37 37 37 37 37 37 37 3	37	37	-					<u> </u>	- - - -	115 -	- - - - 1 - - -		very stiff damp to moist greyish brown clayey silt				
CLAYEY SILT trace gravel, trace clay		00	100	3						1 1		- - -	lay	damp, brown CLAYEY SILT trace gravel, trace of				
hard, damp, grey SHALE/TILL complex -3 113			Щ									-		hard, damp, grey				
3.5 112.5 — 5d/100 1 5 — 100		100	100	5					100	50/	112.5 -	3.5						
grey SHALE BEDROCK		91	91	6			5		125 ▲	50/	112 -	-4 -4	K		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
-4.5 111.5 - 50/100 5 7 TT 100	-4.5 111.5 - 50/100 5 7 H 100	00	Ⅲ 100	Z	\sqcup		5		100 🛦	50/	111.5 -	- 4.5		5) D 05 D055110				
END OF BOREHOLE																		
LOGGED BY: RG DRILLING DATE: 15-Dec-2020 INPUT BY: SA MONITORING DATE: REVIEWED BY: VN PAGE 1 OF 1	PEX INPUT BY: SA MONITORING DATE:	MONITORING DATE:				SA	ГВҮ:	INPU		<u> </u>	TERRAPEX							



CLIENT: Hazleview Investment		Р	ROJECT I	NO.: CA	20-149)					R		RD OF:
ADDRESS: 1590 & 1650 Dundas Street East			STATION:										/112
CONTRACTOR, Popular Prilling Society Inc.		Į N	ORTHING		olid Ot				3 (m):		Comelia		(m) 117.1
CONTRACTOR: Pontil Drilling Services Inc. BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm): 15	METER /	\. F		EEN SLO		\neg			piii S	POON	Samplin		YPE: Holeplug
SAMPLE TYPE AUGER DRIV		ciii). 3					IC CO		П	SHELB		Г	T SPOON
			SHEAR STR	RENGTH		VATER ONTEN	-		$\neg \neg$				1 31 0011
SOIL DESCRIPTION	DЕРТН (m)	ELEVATION (m)	(kPa 40 80 1 N-VAL (Blows/30 20 40 6	20 160 UE 0mm)	PL	(%) W.C.	LL	SAMPLE NO.	SAMPLE IYPE RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
TCR= 100% Georgian Bay Formation: grey Medium strong SHALE moderately weathered intensely to moderately fractured occasional thin TCR= 87% limestone beddings RQD= 37% occasional thin clay seams END OF BOREHOLE	- 10.5 - 10.5 - 11.5 - 11.5	107 - 1 107 - 1 106 - 1 105 - 1	20 40 6	60 80	20 4	0 60	ı	RCE		S S	7 1	WI W	
TERRAPEX	<u> </u>			INPU	GED BY T BY: \$	SA			МО				2020 lan-2021



CLIEN	IT: Hazleview Investments						PRO	JECT I	VO.: C	CA20-	149			F		RD OF:
	ESS: 1590 & 1650 Dundas S	Street East														/201
	PROVINCE: Toronto, Ontario			NO	RTHING							3 (m):				(m) 116.0
	RACTOR: Pontil Drilling Inc.	1			-	METHOD			$\overline{}$			Spli	t Spoon			
	HOLE DIAMETER (cm): 15	WELL DIAN			a	CREEN	SLO					_			П	YPE: Holeplug
SAMP	LE TYPE AUGER	DRIVE	EN			RING STRENG	тн Г		YNAMI VATER	C CO	NE	Ш	SHELB'		SPLI	T SPOON
SOIL SYMBOL	SOIL DESCRIPTION	ON	DЕРТН (m)	ELEVATION (m)	40 8 + N- (Blow	(kPa) 30 120 16 VALUE vs/300mm)	▲ CC	W.C. I	LL	SAMPLE NO.	SAMPLE IYPE RECOVERY (%)		LABORATORY TESTING	WELL INSTALLATION	REMARKS
	TCR= 98% RQD= 94% Formation: grey Medium strong SHALE moderately weather moderately fractured occasional thin limestone bedding: TCR= 97% RQD= 79% TCR= 100% RQD= 87% TCR= 100% RQD= 100%		-10.5 -11.5 -12 -13.5 -14.5 -15.5	106.5 - 105.5 - 104.5 - 104.5 - 102.5 - 101.5 - 100.5	20 4	10 60 8	0	20 4	10 60	F	₹C4	₩	3 3	7E		Sand Sand + Screen
	END OF BOREHO	LE	- 17	99 -												
				I			OGG	ED BY	· .IC		\dashv	DΡ		DATE: 3	31-Aug-	2021
											\dashv					<u> </u>
1				BY: I			\dashv		NITORII		E:					
		R	EVIE	WED	BY: S	A		PA	GE 2 OF	2						

	IT: Hazleview Investments						PRO	DJECT	NO.:	CA2	20-1	49			F		RD OF:
	ESS: 1590 & 1650 Dundas S	Street East															/202
	PROVINCE: Toronto, Ontario			NO	RTHIN							ΓING	· /	_	_		(m) 116.8
	RACTOR: Pontil Drilling Inc.								-		_		Split	Spoon	Sampl		
	HOLE DIAMETER (cm): 15	WELL DIAM			<u> </u>		EN SL						_			П	YPE: Holeplug
SAMF	LE TYPE AUGER	DRIVE	:N		CC	RING	ENGTH		DYNA WATE	MIC (CON	<u> </u>	-	SHELB'		SPLI	T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTIO	ON	DEPTH (m)	ELEVATION (m)	40 (Blo	(kPa) 80 12 I-VAL t ws/300 40 60	0 160 IE : Imm)	PL	WATE CONTE (%) . W.C	. Ш	() () () () () () () () () ()	SAMPLE NO. SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	TCR= 98% RQD= 39% RQD= 39% Medium strong SHALE moderately weathers moderately fractured occasional thin TCR= 99% RQD= 40% TCR= 99% RQD= 89% TCR= 100% RQD= 87% TCR= 99% RQD= 84%	ed S	-10.5 -10.5 -11.5 -12.5 -13.5 -14.5 -15.5 -16 -16.5 -17	107.5 - 106.5 - 106.5 - 104.5 - 103.5 - 102.5 - 101.5 - 100.5		40 60	0 80	20	40 6	0 80	R	C.E	RE	dd)	LA TE		Sand Sand + Screen
							LOGGED BY: AD					DRILLING DATE: 01-Sept-2021				-2021	
l									EM			\perp	MON	VITORII	NG DAT	E:	
			REVI	EWED	BY:	SA			PAG	E 2 OF	2						

CLIEN	IT: Hazleview Investments						PRO	OJECT	NO.	: CA	\20-	149			F		RD OF:
	ESS: 1590 & 1650 Dundas S	treet East		1													/203
	PROVINCE: Toronto, Ontario			NO	RTHIN							TING	• /				(m) 119.4
	RACTOR: Pontil Drilling Inc.				-				$\overline{}$				Split	Spoon	Sampl		
	HOLE DIAMETER (cm): 15	WELL DIAN			4		EN SLO						П			П	YPE: Holeplug
SAMP	LE TYPE AUGER	DRIVE	EN			RING	ENGTH		NYC WAT	AMIC ER	CON	IE_	Н	SHELB'		SPLI	T SPOON
GWL (m)	SOIL DESCRIPTIO	ON	DEРТН (m)	ELEVATION (m)	40 (Blo	(kPa) 80 12 I-VALU ws/300 40 60	0 160 IE ' Imm)	PL		ENT) C. LL 60 8	-	SAMPLE NO.	RECOVERY (%)		LABORATORY TESTING	WELL INSTALLATION	REMARKS
	TCR= 100% Georgian Bay Formation: grey Medium strong SHALE moderately weatherd occasional thin limestone beddings TCR= 100% RQD= 100% TCR= 95% RQD= 94% TCR= 994% TCR= 994% TCR= 100% RQD= 100%	5	-10.5 -11.5 -12.5 -13.5 -14.5 -16.5	109.5 - 109.5 - 108.5 - 108.5 - 107.5 - 106.5 - 106.5 - 104.5 - 104.5 - 103.5 - 103.5 -	20	40 60	0 80	20	40	60 8		RC2		dd)	LAI TE	JW J	Sand Sand + Screen
							LOG	GED E	SY: J	IC			DRILLING DATE: 02-Sept-2021				-2021
						Ī	INPU	IT BY:	EM						NG DAT		
										SA		\neg		SE 2 OF			

APPENDIX III MECP WELL RECORD REPORT

1:50:13 PM

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	17 614969 4830362 W	2006-07 7241	1.97				0012 5	7035423 (Z34340) A039337	BRWN SILT CLAY STNS 0017
MISSISSAUGA CITY	17 614584 4829701 W	2013-11 7472	2.04	0015		МО	0008 9	7212553 (Z182841) A158948	BRWN FSND PCKD 0005 GREY SILT CLAY HARD 0015 GREY SILT CLAY SHLE 0017
Mississauga City	17 615379 4830513 W	2013-01 7241	2			MT	0010 5	7197191 (Z165631) A143719	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT CLAY LOOS 0010 GREY SILT CLAY LOOS 0015
Mississauga City	17 615415 4830533 W	2013-01 7241	2			MT	0004 5	7197192 (Z165632) A143720	BRWN SAND GRVL LOOS 0001 BRWN SAND SILT LOOS 0009
Mississauga City	17 615421 4830525 W	2013-01 7241	2			MT	0010 5	7197193 (Z165633) A143669	BRWN SAND GRVL LOOS 0001 BRWN SAND SILT LOOS 0010 GREY SILT CLAY LOOS 0015
Mississauga City	17 615407 4830504 W	2013-01 7241	2			MT	0010 5	7197194 (Z165770) A143670	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT CLAY LOOS 0010 GREY SILT CLAY LOOS 0015
Mississauga City	17 615413 4830511 W	2013-01 7241	2			MT	0005 5	7197195 (Z165634) A143721	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT CLAY LOOS 0010
MISSISSAUGA CITY	17 615262 4829184 W	2012-08 6988						7199439 (M10768) A118393 P	
MISSISSAUGA CITY	17 614937 4830551 W	2013-04 7215	2			ТН	0018 10	7202084 (Z159944) A142376	BRWN FILL SAND LOOS 0004 BRWN SILT GRVL 0009 GREY SILT GRVL DRY 0016 GREY 0018
Mississauga City	17 614790 4829621 W	2013-08 7247	2	UT		MT		7208354 (Z176638) A141126	BRWN SAND SILT GRVL 0005 GREY SAND SILT GRVL 0023
Mississauga City	17 614790 4829621 W	2013-08 7247		UT 0016				7208355 (Z176647) A141126 A	
Mississauga City	17 614669 4829597 W	2013-09 7472	0.75			МО	0010 10	7211032 (Z179091) A155421	BRWN SAND PCKD 0004 BRWN SILT CLAY DNSE 0010 GREY CLAY SILT GRVL 0020
Mississauga City	17 614483 4829645 W	2013-09 7472	0.75			МО	0010 10	7211034 (Z179090) A155420	BRWN SAND PCKD 0004 BRWN SILT CLAY DNSE 0010 GREY CLAY SILT GRVL 0020

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY	17 614375 4829829 W	2013-11 7472	2.04			МО	0010 10	7212549 (Z182851) A158954	BRWN FSND PCKD 0007 GREY SILT CLAY DNSE 0020
MISSISSAUGA CITY	17 614433 4829870 W	2014-09 7241	1.5			MT	0004 10	7228413 (Z165543) A170577	BLCK 0004 BRWN SAND GRVL CLAY 0014
MISSISSAUGA CITY	17 614559 4829726 W	2013-11 7472	2.04	0015		МО	0010 10	7212551 (Z182843) A158950	BRWN FSND PCKD 0005 GREY SILT CLAY HARD 0015 GREY SILT CLAY SHLE 0020
MISSISSAUGA CITY	17 614916 4830333 W	2012-10 7241	2			MT	0010 10	7191113 (Z160767) A119305	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT SAND LOOS 0009 GREY SILT SAND LOOS 0020
MISSISSAUGA CITY	17 614476 4829891 W	2013-11 7472	2.04			МО	0015 10	7212560 (Z182852) A158955	BRWN FSND PCKD 0007 GREY SILT CLAY DNSE 0023 GREY SHLE HARD 0025
MISSISSAUGA CITY	17 614666 4829600 W	2014-05 7148						7220713 (Z186416) A	
MISSISSAUGA CITY	17 614584 4829698 W	2014-05 7148						7220714 (Z186417) A	
MISSISSAUGA CITY	17 614553 4829726 W	2014-05 7148						7220715 (Z186418) A	
MISSISSAUGA CITY	17 614566 4829714 W	2014-05 7148						7220716 (Z186419) A	
MISSISSAUGA CITY	17 614390 4829828 W	2014-09 7241	2			MT	0006 10	7228405 (Z165542) A170588	BRWN SAND SILT 0008 BRWN SILT CLAY SAND 0016
MISSISSAUGA CITY	17 614431 4829931 W	2014-09 7241	2			MT	0006 10	7228406 (Z195954) A170578	BLCK 0003 BRWN SAND SILT 0010 GREY SILT SAND 0016
MISSISSAUGA CITY	17 614504 4829788 W	2014-09 7241	2			MT	0006 10	7228407 (Z195958) A170576	GREY GRVL SAND 0005 BRWN SILT SAND 0010 BRWN SILT SAND CLAY 0016
MISSISSAUGA CITY	17 614481 4829821 W	2014-09 7241	2			MT	0006 10	7228410 (Z195961) A165573	GREY 0001 BRWN SAND 0002 BRWN SILT CLAY 0012 GREY SILT CLAY SAND 0016
MISSISSAUGA CITY	17 615120 4829472 W	2018-11 7320						7355114 (C44302) A259657 P	
MISSISSAUGA CITY	17 614505 4829855 W	2014-09 7241	2			MT	0006 10	7228412 (Z195959) A165575	BRWN 0004 BRWN SAND 0005 BRWN SILT SAND CLAY 0016

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY	17 614569 4829716 W	2013-11 7472	2.04	0015		МО	0010 10	7212550 (Z182842) A158949	BRWN FSND PCKD 0005 GREY SILT CLAY HARD 0015 GREY SILT CLAY SHLE 0020
MISSISSAUGA CITY	17 615093 4829660 W	2010-04 7241	0.49			MT		7145408 (M07007) A097144	BRWN FILL LOOS 0079 GREY SILT SAND 0098
MISSISSAUGA CITY	17 614852 4829292 W	2004-08 6809	0.79				0006 5	4909651 (Z11194) A011027	BRWN SAND 0004 GREY SHLE 0011
MISSISSAUGA CITY	17 615281 4830620 W	2005-01 7215	2			NU	0003 10	4909660 (Z26010) A020503	
MISSISSAUGA CITY	17 615507 4830399 W	2005-12 7215	1.25			NU	0003 10	4910021 (Z38613) A026745	
MISSISSAUGA CITY	17 614350 4830424 W	2006-01 7215	2				0005 10	4910034 (Z38596) A031349	
MISSISSAUGA CITY	17 615320 4829969 W	2006-02 7241	2				0003 10	4910087 (Z43704) A036539 A	BRWN GRVL SAND 0004 BRWN CLAY SILT 0007 GREY CLAY SILT 0013
MISSISSAUGA CITY	17 614277 4829661 W	2006-07 7215	2				0010 10	4910335 (Z50053) A039264	
MISSISSAUGA CITY	17 614998 4830333 W	2006-09 6607	2.00	FR 0008			0005 10	4910347 (Z54956) A048454	BRWN SAND GRVL 0007 GREY SHLE 0015
MISSISSAUGA CITY	17 614165 4829261 W	2006-07 7241	1.5				0005 5	7035354 (Z51865) A046069 A	BRWN GRVL SAND LOOS 0004 BRWN SAND SILT SOFT 0008 GREY SHLE ROCK HARD 0010
MISSISSAUGA CITY	17 615517 4830443 W	2007-02 7241	2				0014 10	7043263 (Z59441) A051854	BRWN FILL SAND GRVL 0006 GREY SILT SAND GRVL 0017 GREY SILT SAND GRVL 0019 GREY 0024
MISSISSAUGA CITY	17 615461 4830029 W	2007-06 7238	2.00	0010			0006 14	7047171 (Z72604) A048756	BRWN SAND GRVL FILL 0005 GREY SILT SAND SNDY 0010 GREY SILT CLAY TILL 0016 GREY SHLE 0020
MISSISSAUGA CITY	17 615357 4830581 W	2007-07 7241	1.5			NU	0003 10	7048082 (Z74067) A056123	BRWN GRVL SAND FILL 0004 BRWN SAND GRVL 0008 GREY CLAY SILT DNSE 0012 GREY SHLE WTHD 0013
MISSISSAUGA CITY	17 614725 4830682 W	2008-04 7241						7105509 (M01512) A067193 A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY	17 615126 4829259 W	2012-11 6946						7193392 (C19549) A136751 P	
MISSISSAUGA CITY	17 615514 4830480 W	2010-01 6946	2.04	OT 0002		МО	0010 10	7139957 (Z109101) A094453	BRWN SAND STNS LOOS 0002 BRWN SILT CLAY SAND 0004 BRWN SILT CLAY STNS 0007 BRWN SILT CLAY STNS 0010 GREY SILT WBRG 0020
MISSISSAUGA CITY	17 614956 4829505 W	2012-10 7230						7191934 (C19719) P	
MISSISSAUGA CITY	17 614982 4829230 W	2010-04 7238	2.00			TH		7146653 (M06034) A099600	BRWN SAND SILT 0007 GREY CLAY SILT SAND 0013 BLCK SHLE 0027
MISSISSAUGA CITY	17 614532 4829272 W	2010-12 7473	6 2	UT 0008		МО	0015 5	7159280 (Z126502) A111698	BRWN GRVL SAND PCKD 0001 BRWN SILT CLAY HARD 0007 GREY SHLE HARD 0020
MISSISSAUGA CITY	17 614533 4829282 W	2011-08 7215				TH		7168510 (Z136947) A111699 A	
MISSISSAUGA CITY	17 614968 4830354 W	2011-08 6946	2.04	FR 0009		МО	0010 10	7168811 (Z131596) A112916	BRWN SILT SAND LOOS 0005 GREY SILT STNS DNSE 0007 GREY SILT STNS DNSE 0010 GREY SILT STNS DNSE 0020
MISSISSAUGA CITY	17 615424 4829284 W	2011-12 7230						7179424 (C17731) A119551 P	
MISSISSAUGA CITY	17 614898 4829810 W	2012-02 7241	1.5			MT	0010 10	7183404 (Z145300) A087220	BRWN LOAM LOOS 0001 BRWN SAND STNS FILL 0012 BRWN WDFR DNSE 0013 BRWN CLAY SOFT 0020
MISSISSAUGA CITY	17 614894 4829755 W	2012-02 7241	1.5			MT	0022 5	7183407 (Z145316) A087221	BRWN LOAM SOFT 0002 BRWN SAND STNS FILL 0019 BRWN SHLE FCRD SOFT 0021 GREY SHLE FCRD 0027
MISSISSAUGA CITY	17 615212 4829569 W	2012-02 7241	1.5			MT	0008 10	7183741 (Z145314) A126496	BLCK GRVL LOOS 0001 BRWN FILL STNS SAND 0009 GREY FILL SAND STNS 0016 BLCK FILL GRVL SAND 0018
MISSISSAUGA CITY	17 614790 4830410 W	2012-10 7241	2.04			MT	0010 10	7190996 (Z157113) A138336	BRWN FILL SAND GRVL 0003 BRWN GRVL SILT DNSE 0015 GREY SILT CLAY DNSE 0020
MISSISSAUGA CITY	17 614798 4830436 W	2012-10 7241	2.04			MT	0010 10	7190997 (Z157114) A120868	BRWN FILL SAND GRVL 0003 BRWN GRVL SILT DNSE 0015 GREY SILT CLAY DNSE 0020
MISSISSAUGA CITY	17 614881 4830365 W	2012-10 7241	2			MT	0007 10	7190998 (Z160766) A119306	BLCK 0000 BRWN SAND GRVL LOOS 0008 GREY SAND SILT LOOS 0017

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY	17 614490 4829845 W	2014-09 7241	2			MT	0006 10	7228411 (Z195960) A165574	GREY 0001 BRWN SAND 0002 BRWN SILT CLAY 0012 GREY SILT CLAY SAND 0016
MISSISSAUGA CITY	17 614836 4829308 W	2008-08 6607	2.31	FR 0010		МО		7130892 (M03048) A074971	BRWN SAND SILT FILL 0002 GREY SILT TILL 0010 GREY SHLE LMSN ROCK 0025
MISSISSAUGA CITY	17 615427 4830325 W	2017-03 7437	2			МО	0010 5	7304767 (Z226923) A218179	BRWN SILT CLAY 0002 GREY SILT CLAY 0010 GREY SILT CLAY 0015
MISSISSAUGA CITY	17 615207 4829624 W	2017-08 7241	2			тн мо	0004 10	7295871 (Z263476) A183259	BRWN SAND SILT 0014
MISSISSAUGA CITY	17 615196 4829611 W	2017-08 7241	2			тн мо	0005 10	7295872 (Z263477) A217194	BRWN SILT SAND 0015
MISSISSAUGA CITY	17 615143 4829579 W	2017-08 7241	2			тн мо	0004 10	7295873 (Z263475) A180304	BRWN SILT SAND 0014
MISSISSAUGA CITY	17 615213 4829563 W	2017-08 7241	2			ТН МО	0005 10	7295874 (Z263474) A208717	BRWN SILT SAND 0015
MISSISSAUGA CITY	17 614495 4829785 W	2015-06 7437						7248342 (C29621) A183928 P	
MISSISSAUGA CITY	17 615254 4829578 W	2017-08 7241	1.25			ТН МО	0013 10	7295876 (Z263472) A217478	BRWN SILT SAND 0023
MISSISSAUGA CITY	17 614475 4829782 W	2014-09 7241	2			MT	0006 10	7228408 (Z195957) A166967	GREY GRVL SAND 0005 BRWN SILT SAND 0010 BRWN SILT SAND CLAY 0016
MISSISSAUGA CITY	17 615312 4829526 W	2017-08 7241	1.25			тн мо	0008 5	7295878 (Z267930) A217550	GREY GRVL 0000 BRWN FILL 0013 BRWN SAND 0018
MISSISSAUGA CITY	17 615398 4829505 W	2017-08 7241	2			ТН МО	0003 7	7295879 (Z247596) A233959	GREY GRVL 0000 BRWN SAND 0005 GREY SHLE 0010
MISSISSAUGA CITY	17 615301 4829485 W	2017-08 7241	2			ТН МО	0006 10	7295880 (Z247597) A185457	BLCK LOAM 0001 BRWN SAND SILT 0004 GREY SHLE 0016
MISSISSAUGA CITY	17 614851 4829812 W	2017-08 7241	2			ТН МО	0014 10	7295870 (Z267935) A221689	BLCK 0000 BRWN FILL 0003 BRWN CLAY SILT 0014 GREY CLAY SILT 0017 GREY SHLE 0024

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY	17 615175 4829901 W	2017-10 7464						7303231 (C38159) A227117 P	
MISSISSAUGA CITY	17 615254 4829580 W	2017-08 7241	2			ТН МО	0028 10	7295875 (Z263473) A211581	BRWN SILT SAND 0022 GREY SILT CLAY TILL 0024 GREY SHLE 0038
MISSISSAUGA CITY	17 615237 4829148 W	2018-02 6607	2.00	UT 0011		МО	0021 5	7311660 (Z266995) A232649	GREY 0001 BRWN SAND GRVL FILL 0011 GREY SHLE LMSN LYRD 0026
MISSISSAUGA CITY	17 615328 4829181 W	2018-02 6607	2.00			МО	0023 3	7311661 (Z266987) A232648	BRWN SAND GRVL FILL 0011 GREY SHLE LMSN LYRD 0026
MISSISSAUGA CITY	17 615237 4829148 W	2018-02 6607	2.00	UT 0011		МО	0021 5	7311662 (Z266988) A232603	BRWN SAND GRVL FILL 0011 GREY SHLE LMSN LYRD 0026
MISSISSAUGA CITY	17 615251 4829271 W	2018-05 7215						7315981 (C42050) A246937 P	
MISSISSAUGA CITY	17 614984 4829707 W	2017-07 7241	2			ТН МО	0003 10	7316119 (Z291824) A252058	BRWN SAND GRVL FILL 0013
MISSISSAUGA CITY	17 614981 4829706 W	2018-07 7241	2			ТН МО	0018 10	7316120 (Z291819) A252057	BRWN SAND GRVL FILL 0015 BRWN SILT TILL 0020 GREY SHLE 0028
MISSISSAUGA CITY	17 615175 4830323 W	2019-04 7215						7333532 (C44021) A266434 P	
MISSISSAUGA CITY	17 614460 4829360 W	2018-08 7282						7338625 (C42337) A240989 P	
MISSISSAUGA CITY	17 615462 4830396 W	2019-09 7241	2		///:	MT	0005 8	7346065 (Z323574) A281658	BLCK 0003 BRWN SILT SAND 0008 GREY SILT SAND TILL 0013
MISSISSAUGA CITY	17 615454 4830405 W	2019-09 7241	2		///:	MT	0004 6	7346066 (Z323575) A281657	GREY 0000 BRWN SILT SAND SHLE 0010
MISSISSAUGA CITY	17 614444 4829332 W	2019-08 7464						7351583 (C46165) A205110 P	
MISSISSAUGA CITY	17 615163 4829498 W	2017-08 7241	2			ТН МО	0016 10	7295881 (Z267964) A233961	BRWN SAND SILT 0008 GREY SHLE 0026

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY	17 615421 4830419 W	2016-09 7241	1.25			MT	0005 5	7273303 (Z238201) A205873	BRWN SAND GRVL 0004 BRWN SILT SAND SHLE 0010
MISSISSAUGA CITY	17 614464 4829823 W	2015-11 7501	2	UT		MT	0019 5	7255219 (Z224042) A165293	BRWN SAND GRVL LOOS 0003 GREY CLAY SILT 0024
MISSISSAUGA CITY	17 614231 4829455 W	2015-11 7241	2			MT	0004 10	7256601 (Z218012) A171206	BRWN SAND GRVL LOOS 0002 BRWN SAND SILT LOOS 0004 GREY SHLE HARD 0014
MISSISSAUGA CITY	17 614198 4829466 W	2015-11 7241	2			MT	0005 10	7256602 (Z207280) A170583	BRWN FILL LOOS 0001 BRWN SAND SILT LOOS 0003 GREY SHLE SILT DNSE 0015
MISSISSAUGA CITY	17 614214 4829451 W	2015-11 7241	2			MT	0005 10	7256603 (Z207279) A171205	BRWN SAND GRVL LOOS 0001 BRWN SAND SILT LOOS 0014 GREY SHLE DNSE 0015
MISSISSAUGA CITY	17 614206 4829436 W	2015-11 7241	2			MT	0005 10	7256604 (Z218010) A180462	BRWN FILL LOOS 0002 BRWN SAND SILT LOOS 0005 GREY SHLE DNSE 0015
MISSISSAUGA CITY	17 615331 4829575 W	2017-08 7241	1.25			тн мо	0014 10	7295877 (Z267892) A217529	BRWN SILT SAND GRVL 0024
MISSISSAUGA CITY	17 615458 4830407 W	2016-04 7241	1.25				0004 5	7273302 (Z241209) A205865	BRWN SAND GRVL 0005 BRWN SILT SAND SHLE 0009
MISSISSAUGA CITY	17 614820 4829809 W	2017-08 7241	2			TH MO	0010 10	7295869 (Z267934) A208746	BLCK 0000 BRWN FILL 0003 BRWN CLAY SILT 0014 GREY CLAY SILT 0017 GREY SHLE 0020
MISSISSAUGA CITY	17 615457 4830392 W	2016-09 7241	1.25			MT	0005 5	7273304 (Z238202) A205865	BLCK 0000 BRWN SAND GRVL 0003 BRWN SILT SAND SHLE 0010
MISSISSAUGA CITY	17 615424 4830423 W	2016-09 7241	1.25			MT	0005 5	7273305 (Z238203) A205872	BRWN SAND GRVL 0004 BRWN SILT SAND SHLE 0010
MISSISSAUGA CITY	17 615427 4830424 W	2016-09 7241	1.25			MT	0004 5	7273306 (Z238204) A205871	BRWN SAND GRVL 0004 BRWN SILT SAND SHLE 0009
MISSISSAUGA CITY	17 614359 4830068 W	2016-10 7215						7276348 (C35121) A178752 P	
MISSISSAUGA CITY	17 614759 4829924 W	2017-08 7241	2			тн мо	0013 10	7295868 (Z267933) A221727	BLCK 0000 BRWN FILL 0003 BRWN CLAY SILT 0015 GREY CLAY SILT 0018 GREY SHLE 0023

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY	17 614570 4829975 W	2017-02 7230	1.97	UT 0019		ТН МО	0010 10	7283312 (Z251284) A220780	BLCK HARD 0000 GREY SAND GRVL DNSE 0006 GREY CLAY SILT SAND 0006 GREY SILT SNDY CLAY 0020
MISSISSAUGA CITY	17 614301 4829407 W	2017-03 7148						7285148 (Z248067) A	
MISSISSAUGA CITY	17 615233 4829166 W	2017-06 7215						7289572 (C37371) A212517 P	
MISSISSAUGA CITY	17 615024 4829801 W	2017-08 7241	2			ТН МО	0005 10	7295861 (Z267890) A177256	BRWN SAND SILT 0012 GREY SHLE 0015
MISSISSAUGA CITY	17 614809 4829928 W	2017-08 7241	2			ТН МО	0012 10	7295867 (Z267936) A233921	BLCK 0000 BRWN FILL 0003 BRWN CLAY SILT 0015 BRWN SILT SAND 0018 GREY SHLE 0022
MISSISSAUGA CITY	17 614400 4829530 W	2016-06 7247	2	UT 0024		ТН МО	0015 10	7281324 (Z228888) A202372	BRWN SAND GRVL LOOS 0005 BRWN CLAY SAND HARD 0010 GREY SHLE WTHD 0025
MISSISSAUGA CITY	17 614784 4829903 W	2017-08 7241	1.25			ТН МО	0003 9	7295866 (Z267932) A217503	GREY 0000 BRWN FILL 0003 BRWN SILT SAND 0009 GREY SILT SAND 0012
MISSISSAUGA CITY 01 002	17 615159 4829800 W	2005-07 6607	2.00	0009			0007 5	4909894 (Z32280) A026518	BRWN LOAM 0001 BRWN SAND DRY 0007 GREY SILT SAND DRY 0009 GREY TILL SAND WBRG 0012
MISSISSAUGA CITY DS N 01 003	17 614937 4829953 W	2017-08 7241	2			ТН МО	0012 10	7295863 (Z267889) A217551	BRWN SAND SILT GRVL 0010 GREY SHLE 0022
MISSISSAUGA CITY DS N 01 003	17 614838 4830076 W	2017-08 7241	2			ТН МО	0005 10	7295864 (Z267931) A217480	BLCK 0000 BRWN FILL 0003 BRWN CLAY SILT 0010 GREY SHLE 0015
MISSISSAUGA CITY DS N 01 003	17 614838 4830079 W	2017-08 7241	2			ТН МО	0012 10	7295865 (Z247591) A217479	BLCK 0000 BRWN FILL 0003 BRWN SILT SAND 0008 GREY SHLE 0022
MISSISSAUGA CITY DS N 01 004	17 614236 4830065 W	2019-04 6607	2.00	UT 0012	///:	MO	0005 10	7331596 (EBS4SZZJ) A243629	BRWN SAND FILL PCKD 0005 GREY SAND SILT HARD 0015
MISSISSAUGA CITY DS N 01 004	17 614560 4829885 W	7147	1.25	UT 0006		MO	0007 5	7321273 (Z271398) A247255	BRWN FILL 0002 BRWN SILT SAND GRVL 0003 GREY SAND SILT GRVL 0012
MISSISSAUGA CITY DS N 01 004	17 614394 4829912 W	2019-04 6607	2.00	UT 0012	///:	МО	0005 10	7331607 (VM7548LO) A242100	BRWN SAND FILL PCKD 0005 GREY SAND SILT HARD 0015

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY DS N 01 005	17 614230 4829954 W	2019-04 6607	2.00	UT 0007	///:	МО	0005 10	7331598 (GJKWZIPZ) A264600	BRWN SAND FILL PCKD 0005 GREY SAND SILT HARD 0015
MISSISSAUGA CITY DS N 01 005	17 614252 4830008 W	2019-04 6607	2.00	UT 0006	///:	МО	0005 10	7331592 (BZ2SNDF6) A242096	BRWN SAND FILL PCKD 0005 GREY SAND SILT HARD 0015
MISSISSAUGA CITY DS N 01 005	17 614349 4829853 W	2019-04 6607	2.00	UT 0009	///:	МО	0005 10	7331603 (OXESDTFX) A242097	BRWN SAND FILL PCKD 0005 GREY SAND SILT HARD 0015
MISSISSAUGA CITY DS S 01 003	17 615035 4829933 W	1978-04 3349	6 6	FR 0099	32/104/5/:30	DO		4905538 ()	BLCK LOAM 0002 BRWN CLAY GRVL 0051 RED SHLE 0104
MISSISSAUGA CITY DS S 01 004	17 614775 4830014 W	2017-08 7241	2			TH MO	0011 10	7295862 (Z267891) A179360	BRWN SILT SAND TILL 0016 GREY SHLE 0021
MISSISSAUGA CITY DS S 01 004	17 614630 4829874 W	2011-03 7295	1.79			МО		7164922 (Z120154) A	
MISSISSAUGA CITY DS S 01 005	17 614900 4829153 W	2019-04 7215						7333480 (C45116) A269254 P	
MISSISSAUGA CITY HSE	17 615358 4830437 W	2004-06 6032	1.97 1.97			NU	0005 10	4909491 (Z05474) A005315	BRWN CLAY GRVL DNSE 0005 GREY SHLE DNSE 0017
TORONTO CITY	17 615150 4829850 W	2004-06 6607	1.97	0007			0007 5	6928573 (Z14481) A011834	BRWN CLAY SILT 0006 BRWN SAND FSND 0009 BRWN SILT CLAY TILL 0010 GREY SHLE WTHD 0012
TORONTO CITY	17 614794 4829573 W	2008-08 6607	2.00	UK 0009		МО		7115828 (M03036) A069698	BLCK GRVL SAND 0001 GREY SILT GRVL TILL 0005 GREY SHLE ROCK 0010

TOWNSHIP CON LOT UTM DATE CNTR CASING DIA WATER PUMP TEST WELL USE SCREEN WELL FORMATION

SNDS SANDSTONE

SNDY SANDYOAPSTONE

DRTY DIRTY

DRY DRY

Notes:

UTM: UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number

PEAT PEAT

PGVL PEA GRAVEL

CASING DIA: .Casing diameter in inches

WATER: Unit of Depth in Fee. See Table 4 for Meaning of Code

HARD HARD

HPAN HARDPAN

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour : Minutes

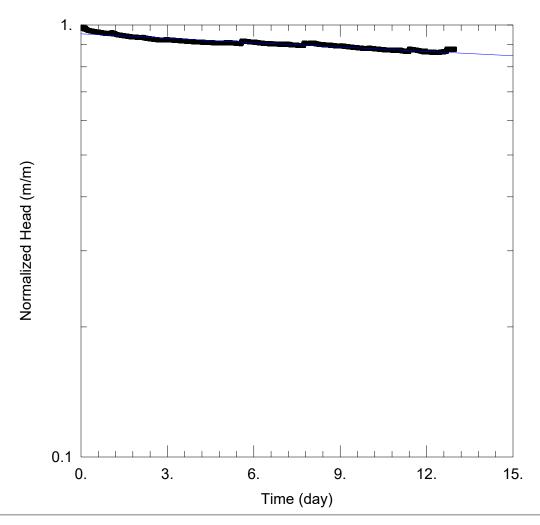
WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet

WELL: WEL (AUDIT #) Well Tag . A: Abandonment; P: Partial Data Entry Only

FORMATION: See Table 1 and 2 for Meaning of Code

1. Core Material and Descriptive terms

C	Code	Description	Code	Description	Code	Description	Code	Description	Code	Description
В	BLDR	BOULDERS	FCRD	FRACTURED	IRFM	IRON FORMATION	PORS	POROUS	SOFT	SOFT
В	BSLT	BASALT	FGRD	FINE-GRAINED	LIMY	LIMY	PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE
C	CGRD	COARSE-GRAINED	${\tt FGVL}$	FINE GRAVEL	LMSN	LIMESTONE	PRDR	PREV. DRILLED	STKY	STICKY
C	CGVL	COARSE GRAVEL	${\tt FILL}$	FILL	LOAM	TOPSOIL	QRTZ	QUARTZITE	STNS	STONES
C	CHRT	CHERT	FLDS	FELDSPAR	LOOS	LOOSE	QSND	QUICKSAND	STNY	STONEY
C	CLAY	CLAY	FLNT	FLINT	LTCL	LIGHT-COLOURED	QTZ	QUARTZ	THIK	THICK
C	CLN C	CLEAN	FOSS	FOSILIFEROUS	LYRD	LAYERED	ROCK	ROCK	THIN	THIN
C	CLYY	CLAYEY	FSND	FINE SAND	MARL	MARL	SAND	SAND	${\tt TILL}$	TILL
C	CMTD	CEMENTED	GNIS	GNEISS	MGRD	MEDIUM-GRAINED	SHLE	SHALE	UNKN	UNKNOWN TYPE
C	CONG	CONGLOMERATE	GRNT	GRANITE	${\tt MGVL}$	MEDIUM GRAVEL	SHLY	SHALY	VERY	VERY
C	CRYS	CRYSTALLINE	GRSN	GREENSTONE	MRBL	MARBLE	SHRP	SHARP	WBRG	WATER-BEARING
C	CSND	COARSE SAND	GRVL	GRAVEL	MSND	MEDIUM SAND	SHST	SCHIST	WDFR	WOOD FRAGMENTS
D	OKCL	DARK-COLOURED	GRWK	GREYWACKE	MUCK	MUCK	SILT	SILT	WTHD	WEATHERED
D	LMT	DOLOMITE	${\tt GVLY}$	GRAVELLY	OBDN	OVERBURDEN	SLTE	SLATE		
D	ONSE	DENSE	GYPS	GYPSUM	PCKD	PACKED	SLTY	SILTY		


2. Core Color 3. Well Use

Code	Description	Coc	de Description	Coc	de Description
WHIT	WHITE	DO	Domestic	OT	Other
GREY	GREY	ST	Livestock	TH	Test Hole
BLUE	BLUE	IR	Irrigation	DE	Dewatering
GREN	GREEN	IN	Industrial	MO	Monitoring
YLLW	YELLOW	CO	Commercial	MT	Monitoring TestHole
BRWN	BROWN	MN	Municipal		
RED	RED	PS	Public		
BLCK	BLACK	AC	Cooling And A	/C	
BLGY	BLUE-GREY	NU	Not Used		

4. Water Detail

Code	Description	Code	Description
FR	Fresh	GS	Gas
SA	Salty	IR	Iron
SU	Sulphur		
MN	Mineral		
UK	Unknown		

APPENDIX IV ANALYTICAL HYDRAULIC ANALYSES REPORTS

Data Set: D:\...\MW101.aqt

Date: 10/22/21 Time: 15:47:00

PROJECT INFORMATION

Company: Terrapex Environmental Ltd. Client: Hazelview Investments Inc.

Project: CA20-149

Location: 1650&1590 Dundas St E

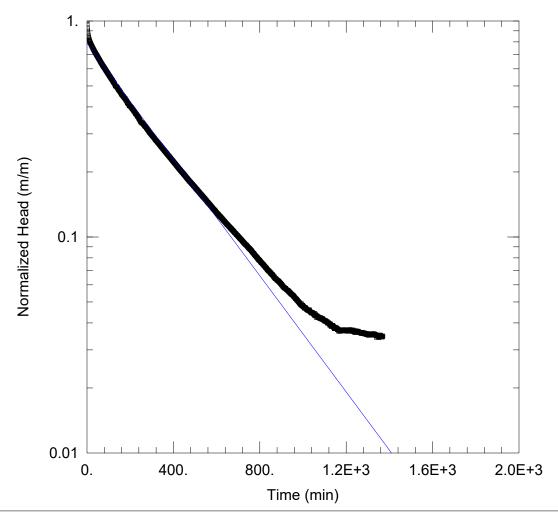
Test Well: MW101 Test Date: 08-Jan-21

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW101)

Initial Displacement: 1.202 m Static Water Column Height: 20. m


Total Well Penetration Depth: 6.7 m Screen Length: 1.52 m Casing Radius: 0.022 m

Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 4.668E-11 m/secy0 = 1.146 m

Data Set: D:\...\MW102.aqt

Date: 10/22/21 Time: 15:50:20

PROJECT INFORMATION

Company: Terrapex Environmental Ltd. Client: Hazelview Investments Inc.

Project: CA20-149

Location: 1650&1590 Dundas St E

Test Well: MW102 Test Date: 08-Jan-21

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW102)

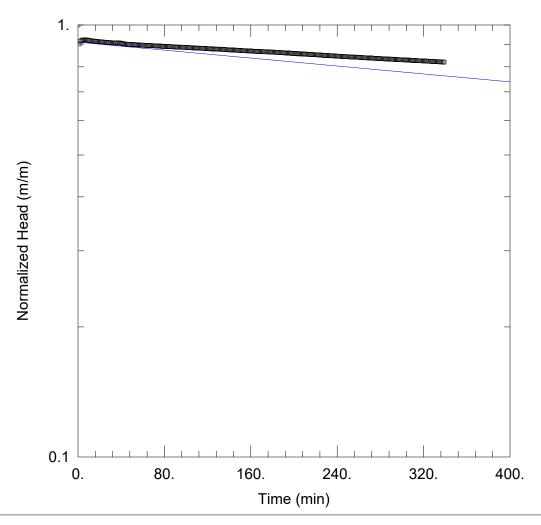
Initial Displacement: 1.259 m

Total Well Penetration Depth: 7.6 m

Casing Radius: 0.022 m

K = 2.71E-8 m/sec

Static Water Column Height: 20. m


Solution Method: Bouwer-Rice

Screen Length: 1.52 m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined

y0 = 0.9923 m

Data Set: D:\...\MW111.aqt

Date: 10/22/21 Time: 15:54:12

PROJECT INFORMATION

Company: <u>Terrapex Environmental Ltd.</u> Client: Hazelview Investments Inc.

Project: CA20-149

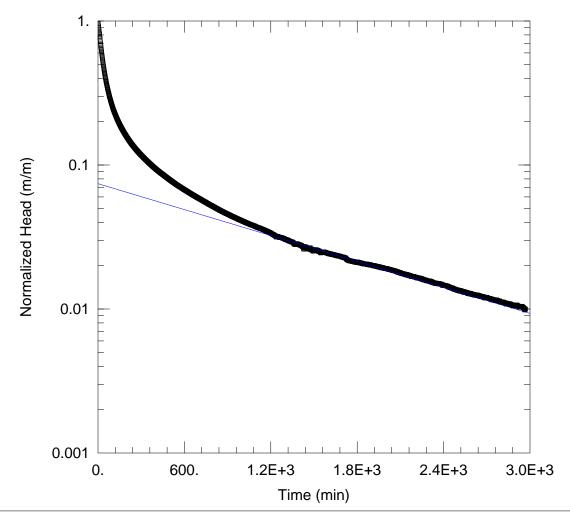
Location: 1650&1590 Dundas St E

Test Well: MW111
Test Date: 21-Jan-21

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW111)


Initial Displacement: 1.087 m Static Water Column Height: 20. m

Total Well Penetration Depth: 3.05 m Screen Length: 1.52 m Casing Radius: 0.022 m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 4.123E-9 m/sec y0 = 0.9915 m

Data Set: S:\...\MW112.aqt

Date: 02/05/21 Time: 10:10:39

PROJECT INFORMATION

Company: <u>Terrapex Environmental Ltd.</u> Client: Hazelview Investments Inc.

Project: CA20-149

Location: 1650&1590 Dundas St E

Test Well: MW112
Test Date: 08-Jan-21

AQUIFER DATA

Saturated Thickness: <u>0.2</u> m Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW112)

Initial Displacement: 6.12 m

Static Water Column Height: 6.4 m

Total Well Penetration Depth: 6.37 m


Screen Length: 1.52 m Well Radius: 0.0254 m

Casing Radius: 0.022 m

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 4.046E-8 m/sec y0 = 0.4537 m

Data Set: D:\...\MW201.aqt

Date: 10/22/21 Time: 15:37:41

PROJECT INFORMATION

Company: <u>Terrapex Environmental Ltd.</u> Client: Hazelview Investments Inc.

Project: CA20-149

Location: 1650&1590 Dundas St E

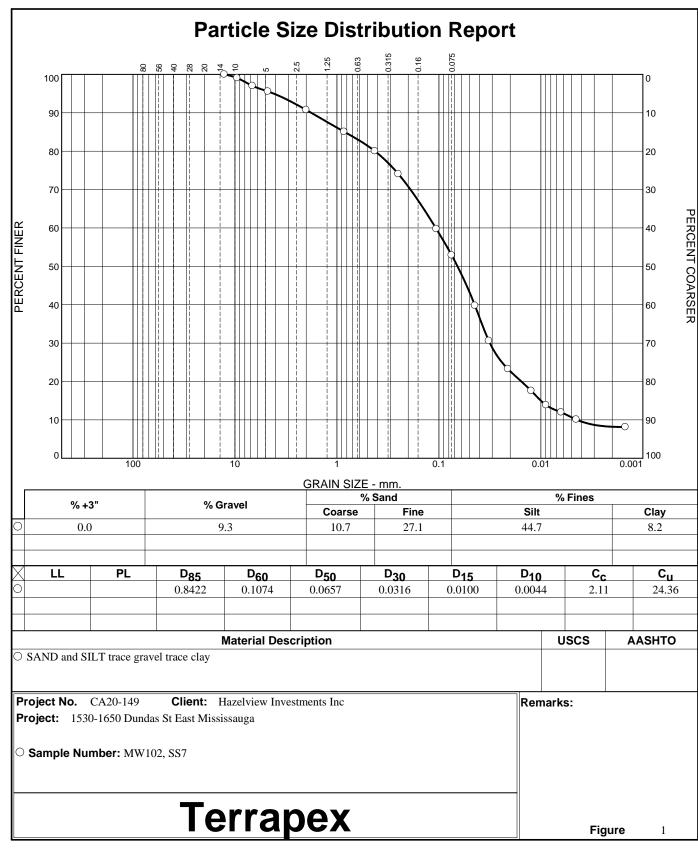
Test Well: MW201

Test Date: September 16, 2021

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW112)


Initial Displacement: 3.605 m Static Water Column Height: 20. m

Total Well Penetration Depth: 13.68 m Screen Length: 3. m Casing Radius: 0.022 m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 1.037E-8 m/sec y0 = 3.42 m

Tested By: AM Checked By: DM

APPENDIX V ANALYTICAL LABORATORY ANALYSES REPORTS

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED 90 SCARSDALE RD

TORONTO, ON M3B2R7 (905) 474-5265

ATTENTION TO: Zen Keizars

PROJECT: CA20-149 AGAT WORK ORDER: 21T702306

MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist
ULTRA TRACE REVIEWED BY: Anastasia Kazakova, chimiste
WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Feb 01, 2021

PAGES (INCLUDING COVER): 25 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	l
	l
	l
	l
	l
	l
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	l
	l
	l
	ı
	l
	l
	l
	ı
	ı
	l
	l
	l
	ı
	ĺ
	ĺ
	ĺ
	l
	ı

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 25

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY: AMD/ST

	E. Coli (Using MI Agar)									
DATE RECEIVED: 2021-01-21 DATE REPORTED: 2021-02-01										
	SA	MPLE DES	CRIPTION:	MW107	MW112					
		SAM	PLE TYPE:	Water	Water					
		DATE	SAMPLED:	2021-01-21 12:00	2021-01-21 14:00					
Parameter	Unit	G/S	RDL	1987562	1987595					
Escherichia coli	CFU/100mL	200	1	ND	ND					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1987562-1987595 ND - Not Detected.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NIVINE BASILY O CHEMIST

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

Mississauga Storm - Organics											
DATE RECEIVED: 2021-01-21						DATE REPORTED: 2021-02-01					
	5	SAMPLE DES	CRIPTION:	MW107	MW112						
		SAMI	PLE TYPE:	Water	Water						
		DATES	SAMPLED:	2021-01-21 12:00	2021-01-21 14:00						
Parameter	Unit	G/S	RDL	1987562	1987595						
Benzene	mg/L		0.0002	< 0.0002	<0.0002						
Toluene	mg/L	0.002	0.0002	< 0.0002	< 0.0002						
Ethylbenzene	mg/L	0.002	0.0001	< 0.0001	< 0.0001						
Xylenes (Total)	mg/L	0.0044	0.0001	< 0.0001	<0.0001						
Total PAHs	mg/L	0.002	0.0003	<0.0003	<0.0003						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1987562-1987595 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY: AMD/ST

				Peel R	egion Sanita	ry - Organics
DATE RECEIVED: 2021-01-21						DATE REPORTED: 2021-02-01
			CRIPTION: PLE TYPE: SAMPLED:	MW107 Water 2021-01-21 12:00	MW112 Water 2021-01-21 14:00	
Parameter	Unit	G/S	RDL	1987562	1987595	
Oil and Grease (animal/vegetable) in water	mg/L	150	0.5	<0.5	<0.5	
Oil and Grease (mineral) in water	mg/L	15	0.5	<0.5	<0.5	
Methylene Chloride	mg/L	2	0.0003	< 0.0003	< 0.0003	
Methyl Ethyl Ketone	mg/L	8.0	0.0009	< 0.0009	< 0.0009	
cis- 1,2-Dichloroethylene	mg/L	4	0.0002	< 0.0002	< 0.0002	
Chloroform	mg/L	0.04	0.0002	< 0.0002	< 0.0002	
Benzene	mg/L	0.01	0.0002	< 0.0002	< 0.0002	
Trichloroethylene	mg/L	0.4	0.0002	< 0.0002	< 0.0002	
Toluene	mg/L	0.27	0.0002	< 0.0002	< 0.0002	
Tetrachloroethylene	mg/L	1	0.0001	< 0.0001	<0.0001	
trans-1,3-Dichloropropylene	mg/L	0.14	0.0003	< 0.0003	< 0.0003	
Ethylbenzene	mg/L	0.16	0.0001	< 0.0001	<0.0001	
1,1,2,2-Tetrachloroethane	mg/L	1.4	0.0001	<0.0001	<0.0001	
Styrene	mg/L	0.2	0.0001	<0.0001	<0.0001	
1,2-Dichlorobenzene	mg/L	0.05	0.0001	<0.0001	<0.0001	
1,4-Dichlorobenzene	mg/L	0.08	0.0001	< 0.0001	<0.0001	
Xylenes (Total)	mg/L	1.4	0.0001	<0.0001	<0.0001	
PCBs	mg/L	0.001	0.0002	<0.0002	<0.0002	
Di-n-butyl phthalate	mg/L	0.08	0.0005	<0.0005	<0.0005	
Bis(2-Ethylhexyl)phthalate	mg/L	0.012	0.0005	<0.0005	<0.0005	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1987562-1987595 Oil and Grease animal/vegetable is a calculated parameter. The calculated value is the difference between Total O&G and Mineral O&G.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Total Nonylphenol Ethoxylates is reported as the sum of Nonylphenol Ethoxylate and Nonylphenol Diethoxylate. NP/NPE analysis done at AGAT 5623 McAdam Road Mississauga location.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprikolof

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

	Nonylphenol and Nonylphenol Ethoxylates (Ontario, mg/L)											
DATE RECEIVED: 2021-01-21						DATE REPORTED: 2021-02-01						
		SAMPLE DES	CRIPTION:	MW107	MW112							
		SAM	PLE TYPE:	Water	Water							
		DATE	SAMPLED:	2021-01-21 12:00	2021-01-21 14:00							
Parameter	Unit	G/S	RDL	1987562	1987595							
Total Nonylphenol	mg/L	0.02	0.001	<0.001	<0.001							
NP1EO	mg/L		0.001	< 0.001	<0.001							
NP2EO	mg/L		0.0003	< 0.0003	< 0.0003							
Total Nonylphenol Ethoxylates	mg/L	0.2	0.001	<0.001	<0.001							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Montreal (unless marked by *)

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

					BOD	
DATE RECEIVED: 2021-01-21						DATE REPORTED: 2021-02-01
		SAMPLE DES	CRIPTION:	MW107	MW112	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2021-01-21 12:00	2021-01-21 14:00	
Parameter	Unit	G/S	RDL	1987562	1987595	
Biochemical Oxygen Demand, Total	mg/L	15	2	15	6	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Halifax (unless marked by *)

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

			Missi	ssauga St	orm Sewer Us	lse Bylaw- Inorganics
DATE RECEIVED: 2021-01-21						DATE REPORTED: 2021-02-01
	S	_	CRIPTION: PLE TYPE: SAMPLED:	MW107 Water 2021-01-21	MW112 Water 2021-01-21	
Parameter	Unit	G/S	RDL	12:00 1987562	14:00 1987595	
pH	pH Units	6.0-9.0	NA	7.59	8.02	
Total Suspended Solids	mg/L	15	10	<10	17	
Total Residual Chlorine	mg/L	1.0	0.1	<0.1	<0.1	
Total Cyanide	mg/L	0.02	0.002	<0.002	<0.002	
Phenols	mg/L	0.008	0.001	0.002	0.002	
Total Phosphorus	mg/L	0.4	0.02	<0.02	0.06	
Total Kjeldahl Nitrogen	mg/L	1	0.10	3.09	2.17	
Chromium VI	mg/L	0.04	0.005	< 0.005	<0.005	
Total Aluminum	mg/L	1.0	0.010	0.031	1.22	
Total Arsenic	mg/L	0.02	0.015	<0.015	<0.015	
Total Cadmium	mg/L	0.008	0.005	< 0.005	< 0.005	
Total Chromium	mg/L	0.08	0.015	<0.015	<0.015	
Total Copper	mg/L	0.04	0.010	<0.010	<0.010	
Total Lead	mg/L	0.12	0.020	<0.020	<0.020	
Total Manganese	mg/L	0.05	0.020	0.238	0.040	
Total Mercury	mg/L	0.0004	0.0002	< 0.0002	<0.0002	
Total Nickel	mg/L	0.08	0.015	<0.015	<0.015	
Total Selenium	mg/L	0.02	0.020	<0.020	<0.020	
Total Silver	mg/L	0.12	0.010	<0.010	<0.010	
Total Zinc	mg/L	0.04	0.020	<0.020	<0.020	
L						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

			Pe	el Sanitary	Sewer Use	e By-Law - Ind	organics
DATE RECEIVED: 2021-01-21							DATE REPORTED: 2021-02-01
	S		CRIPTION: PLE TYPE: SAMPLED:	MW107 Water 2021-01-21 12:00		MW112 Water 2021-01-21 14:00	
Parameter	Unit	G/S	RDL	1987562	RDL	1987595	
рН	pH Units	5.5-10	NA	7.59	NA	8.02	
Total Suspended Solids	mg/L	350	10	<10	10	17	
Fluoride	mg/L	10	0.13	<0.13	0.07	<0.07	
Sulphate	mg/L	1500	2.0	191	1.0	222	
Total Cyanide	mg/L	2	0.002	< 0.002	0.002	< 0.002	
Phenols	mg/L	1.0	0.002	0.002	0.002	< 0.002	
Total Phosphorus	mg/L	10	0.02	< 0.02	0.02	0.06	
Total Kjeldahl Nitrogen	mg/L	100	0.10	3.09	0.10	2.17	
Total Aluminum	mg/L	50	0.010	0.031	0.010	1.22	
Total Antimony	mg/L	5	0.020	<0.020	0.020	<0.020	
Total Arsenic	mg/L	1	0.015	<0.015	0.015	< 0.015	
Total Cadmium	mg/L	0.7	0.010	<0.010	0.010	<0.010	
Total Chromium	mg/L	5	0.015	<0.015	0.015	< 0.015	
Total Cobalt	mg/L	5	0.020	<0.020	0.020	<0.020	
Total Copper	mg/L	3	0.010	<0.010	0.010	<0.010	
Total Lead	mg/L	3	0.020	<0.020	0.020	< 0.020	
Total Manganese	mg/L	5	0.020	0.238	0.020	0.040	
Total Mercury	mg/L	0.01	0.0002	<0.0002	0.0002	<0.0002	
Total Molybdenum	mg/L	5	0.020	<0.020	0.020	< 0.020	
Total Nickel	mg/L	3	0.015	<0.015	0.015	<0.015	
Total Selenium	mg/L	1	0.020	<0.020	0.020	<0.020	
Total Silver	mg/L	5	0.010	<0.010	0.010	<0.010	
Total Tin	mg/L	5	0.025	<0.025	0.025	<0.025	
Total Titanium	mg/L	5	0.020	<0.020	0.020	0.038	
Total Zinc	mg/L	3	0.020	<0.020	0.020	<0.020	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1987562-1987595 Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verástegui

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY: AMD/ST

					cBO	0
DATE RECEIVED: 2021-01-21						DATE REPORTED: 2021-02-01
		SAMPLE DES	CRIPTION:	MW107	MW112	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2021-01-21 12:00	2021-01-21 14:00	
Parameter	Unit	G/S	RDL	1987562	1987595	
Biochemical Oxygen Demand, Carbonaceous	mg/L	300	2	8	<2	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Halifax (unless marked by *)

Exceedance Summary

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

ATTENTION TO: Zen Keizars

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1987562	MW107	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Total Kjeldahl Nitrogen	mg/L	1	3.09
1987562	MW107	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Total Manganese	mg/L	0.05	0.238
1987595	MW112	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Total Aluminum	mg/L	1.0	1.22
1987595	MW112	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Total Kjeldahl Nitrogen	mg/L	1	2.17
1987595	MW112	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Total Suspended Solids	mg/L	15	17

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CA20-149
SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

AGAT WORK ORDER: 21T702306 ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

			Mic	crobio	ology	/ Ana	alysis	3							
RPT Date: Feb 01, 2021			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld		.,			Value	Lower	Upper	,	Lower	Upper		Lower	Upper

E. Coli (Using MI Agar)

Escherichia coli 1986079 ND ND NA <1

Comments: ND - Not Detected, NA - % RPD Not Applicable.

CHARTERED S NIVINE BASILY O CHEMIST

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED AGAT WORK ORDER: 21T702306
PROJECT: CA20-149 ATTENTION TO: Zen Keizars

SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

ATTENTION TO: Zen Keizars SAMPLED BY: AMD/ST

		Trac	e Org	ganio	cs An	alys	is							
RPT Date: Feb 01, 2021			UPLICATE			REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Acceptable Limits F		Recovery		ptable nits
	Id Id					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
Peel Region Sanitary - Organics														
Oil and Grease (animal/vegetable) in water	1977184	< 0.5	< 0.5	NA	< 0.5	90%	70%	130%	102%	70%	130%	106%	70%	130%
Oil and Grease (mineral) in water	1977184	< 0.5	< 0.5	NA	< 0.5	84%	70%	130%	86%	70%	130%	77%	70%	130%
Methylene Chloride	1991366	< 0.0003	< 0.0003	0.0%	< 0.0003	97%	50%	140%	110%	60%	130%	99%	50%	140%
Methyl Ethyl Ketone	1991366	< 0.0009	< 0.0009	0.0%	< 0.0009	104%	50%	140%	80%	50%	140%	78%	50%	140%
cis- 1,2-Dichloroethylene	1991366	< 0.0002	< 0.0002	0.0%	< 0.0002	97%	60%	130%	107%	60%	130%	106%	60%	130%
Chloroform	1991366	< 0.0002	< 0.0002	0.0%	< 0.0002	96%	60%	130%	111%	60%	130%	107%	60%	130%
Benzene	1991366	< 0.0002	< 0.0002	0.0%	< 0.0002	85%	50%	140%	99%	60%	130%	98%	50%	140%
Trichloroethylene	1991366	< 0.0002	< 0.0002	0.0%	< 0.0002	105%	50%	140%	120%	60%	130%	104%	50%	140%
Toluene	1991366	< 0.0002	< 0.0002	0.0%	< 0.0002	94%	50%	140%	117%	60%	130%	115%	50%	140%
Tetrachloroethylene	1991366	< 0.0001	< 0.0001	0.0%	< 0.0001	110%	60%	130%	121%	60%	130%	111%	60%	130%
trans-1,3-Dichloropropylene	1991366	< 0.0003	< 0.0003	0.0%	< 0.0003	106%	60%	130%	75%	60%	130%	99%	60%	130%
Ethylbenzene	1991366	< 0.0001	< 0.0001	0.0%	< 0.0001	95%	50%	140%	112%	60%	130%	111%	50%	140%
1,1,2,2-Tetrachloroethane	1991366	< 0.0001	< 0.0001	0.0%	< 0.0001	104%	50%	140%	108%	60%	130%	112%	50%	140%
Styrene	1991366	< 0.0001	< 0.0001	0.0%	< 0.0001	91%	50%	140%	113%	60%	130%	106%	50%	140%
1,2-Dichlorobenzene	1991366	< 0.0001	< 0.0001	0.0%	< 0.0001	104%	50%	140%	113%	60%	130%	105%	50%	140%
1,4-Dichlorobenzene	1991366	< 0.0001	< 0.0001	0.0%	< 0.0001	105%	50%	140%	111%	60%	130%	100%	50%	140%
Xylenes (Total)	1991366	< 0.0001	< 0.0001	0.0%	< 0.0001		60%	130%		60%	130%		60%	130%
PCBs	1987562 1987562	< 0.0002	< 0.0002	NA	< 0.0002	102%	60%	130%	96%	60%	130%	98%	60%	130%
Di-n-butyl phthalate	1979247	< 0.0005	< 0.0005	NA	< 0.0005	101%	60%	130%	88%	60%	130%	96%	60%	130%
Bis(2-Ethylhexyl)phthalate	1979247	< 0.0005	< 0.0005	NA	< 0.0005	114%	50%	140%	110%	50%	140%	85%	50%	140%
Mississauga Storm - Organics														
Benzene	1991366	< 0.0002	<0.0002	NA	< 0.0002	85%	50%	140%	99%	60%	130%	98%	50%	140%
Toluene	1991366	< 0.0002	< 0.0002	0.0%	< 0.0002	94%	50%	140%	117%	60%	130%	115%	50%	140%
Ethylbenzene	1991366	< 0.0001	< 0.0001	0.0%	< 0.0001	95%	50%	140%	112%	60%	130%	111%	50%	140%
Total PAHs	1978079	< 0.0003	< 0.0003	NA	< 0.0003	101%	60%	140%	88%	60%	140%	96%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED AGAT WORK ORDER: 21T702306

PROJECT: CA20-149 ATTENTION TO: Zen Keizars SAMPLED BY: AMD/ST

SAMPLING SITE: 1650 & 1590 Dundas St E Mississauga

SAMI LING SITE. 1030 & 1330	Dunuas	Of L IVIIS	sissauga							I.AIVID/	01				
			UI	tra T	race	Anal	ysis								
RPT Date: Feb 01, 2021				UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld	·	·			Value	Lower	Upper	ĺ	Lower	Upper	ĺ	Lower	Upper
Nonylphenol and Nonylphenol Etl	noxylates	(Ontario,	mg/L)												
Total Nonylphenol	1	1987595	< 0.001	< 0.001	NA	< 0.001	85%	60%	140%	NA	60%	140%	NA	60%	140%
NP1EO	1	1987595	< 0.001	< 0.001	NA	< 0.001	75%	60%	140%	NA	60%	140%	NA	60%	140%
NP2EO	1	1987595	< 0.0003	< 0.0003	NA	< 0.0003	95%	60%	140%	NA	60%	140%	NA	60%	140%

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CA20-149
SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

AGAT WORK ORDER: 21T702306
ATTENTION TO: Zen Keizars
SAMPLED BY:AMD/ST

			Wate	er Ar	nalys	is								
RPT Date: Feb 01, 2021		1	DUPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SP	KE
PARAMETER	Batch Sam	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	ptable	Recovery	1 1 1	ptable
	lu lu					value	Lower	Upper		Lower	Upper		Lower	Upper
Peel Sanitary Sewer Use By-Law	- Inorganics													
рН	1988879	7.61	7.60	0.1%	NA	100%	90%	110%						
Total Suspended Solids	2007687	<10	<10	NA	< 10	96%	80%	120%						
Fluoride	1989070	< 0.05	< 0.05	NA	< 0.05	108%	90%	110%	101%	90%	110%	98%	85%	115%
Sulphate	1989070	54.3	53.2	2.0%	< 0.10	95%	70%	130%	107%	80%	120%	97%	70%	130%
Total Cyanide	1987562 198756	2 <0.002	<0.002	NA	< 0.002	99%	70%	130%	91%	80%	120%	110%	70%	130%
Phenols	1987418	<0.002	<0.002	NA	< 0.002	101%	90%	110%	97%	90%	110%	84%	80%	120%
Total Phosphorus	2004940	< 0.02	< 0.02	NA	< 0.02	101%	70%	130%	102%	80%	120%	102%	70%	130%
Total Kjeldahl Nitrogen	1947438	24.8	25.2	1.6%	< 0.10	104%	70%	130%	103%	80%	120%	113%	70%	130%
Total Aluminum	1925683	0.015	0.016	NA	< 0.010	100%	70%	130%	102%	80%	120%	107%	70%	130%
Total Antimony	1925683	<0.020	<0.020	NA	< 0.020	97%	70%	130%	98%	80%	120%	103%	70%	130%
Total Arsenic	1925683	<0.015	<0.015	NA	< 0.015	101%	70%	130%	99%	80%	120%	106%	70%	130%
Total Cadmium	1925683	< 0.010	<0.010	NA	< 0.010	101%	70%	130%	101%	80%	120%	100%	70%	130%
Total Chromium	1925683	< 0.015	<0.015	NA	< 0.015	100%	70%	130%	99%	80%	120%	104%	70%	130%
Total Cobalt	1925683	< 0.020	<0.020	NA	< 0.020	100%	70%	130%	98%	80%	120%	102%	70%	130%
Total Copper	1925683	<0.010	<0.010	NA	< 0.010	100%	70%	130%	100%	80%	120%	96%	70%	130%
Total Lead	1925683	<0.020	<0.020	NA	< 0.020	101%	70%	130%	97%	80%	120%	89%	70%	130%
Total Manganese	1925683	0.398	0.429	7.5%	< 0.020	99%	70%	130%	97%	80%	120%	102%	70%	130%
Total Mercury	1987994	< 0.0002	<0.0002	NA	< 0.0002	100%	70%	130%	101%	80%	120%	103%	70%	130%
Total Molybdenum	1925683	< 0.020	<0.020	NA	< 0.020	100%	70%	130%	102%	80%	120%	114%	70%	130%
Total Nickel	1925683	<0.015	<0.015	NA	< 0.015	100%	70%	130%	95%	80%	120%	96%	70%	130%
Total Selenium	1925683	<0.020	<0.020	NA	< 0.020	100%	70%	130%	97%	80%	120%	98%	70%	130%
Total Silver	1925683	< 0.010	< 0.010	NA	< 0.010	100%	70%	130%	99%	80%	120%	94%	70%	130%
Total Tin	1925683	< 0.025	< 0.025	NA	< 0.025	101%	70%	130%	103%	80%	120%	88%	70%	130%
Total Titanium	1925683	< 0.020	<0.020	NA	< 0.020	103%	70%	130%	98%	80%	120%	115%	70%	130%
Total Zinc	1925683	<0.020	<0.020	NA	< 0.020	102%	70%	130%	102%	80%	120%	93%	70%	130%
Mississauga Storm Sewer Use B	ylaw- Inorganics													
Total Residual Chlorine	1987418	0.37	0.381	NA	< 0.1	102%	80%	120%	100%	85%	115%	98%	85%	115%
Chromium VI	1987562 198756		<0.005	NA	< 0.005	104%	70%	130%	108%	80%	120%	105%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

BOD

Biochemical Oxygen Demand, Total 1998885 2430 2220 9.0% < 2 78% 70% 130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

cBOD

Biochemical Oxygen Demand, 1997992 328 360 9.3% < 2 85% 70% 130%

Carbonaceous

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 25

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CA20-149
SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

AGAT WORK ORDER: 21T702306 ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

Water Analysis (Continued)															
RPT Date: Feb 01, 2021			D	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld	- '	- '			Value	Lower	Upper	,	Lower	Upper	, , ,	Lower	Upper

Certified By:

Iris Verástegui

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

ATTENTION TO: Zen Keizars

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Sample ID	Sample Description	Sample Type	Date	Sampled	Date Receive
1987562	MW107	Water	21-	JAN-2021	21-JAN-2021
	BOD				
	Parameter	Date Prep	ared	Date Analyze	d Initials
	Biochemical Oxygen Demand, Total	27-JAN-2	2021	01-FEB-2021	Al
	E. Coli (Using MI Agar)				
	Parameter	Date Prep	ared	Date Analyze	d Initials
	Escherichia coli	22-JAN-2		23-JAN-2021	SJM
	Mississauga Storm - Organics				
	Parameter	Date Prep	ared	Date Analyze	d Initials
	Benzene	26-JAN-2	2021	26-JAN-2021	KS
	Toluene	26-JAN-2	2021	26-JAN-2021	KS
	Ethylbenzene	26-JAN-2	2021	26-JAN-2021	KS
	Xylenes (Total)	26-JAN-2	2021	26-JAN-2021	KS
	Total PAHs	26-JAN-2	2021	27-JAN-2021	US
	Mississauga Storm Sewer Use Bylaw- In	ŭ			
	Parameter	Date Prep	pared	Date Analyze	
	pH	25-JAN-2		25-JAN-2021	ND
	Total Suspended Solids	28-JAN-2		28-JAN-2021	SR
	Total Residual Chlorine	22-JAN-2		22-JAN-2021	
	Total Cyanide	26-JAN-2		26-JAN-2021	BG
	PhenoIs	22-JAN-2		22-JAN-2021	NK
	Total Phosphorus	27-JAN-2		27-JAN-2021	SK
	Total Kjeldahl Nitrogen	25-JAN-2		25-JAN-2021	GN
	Chromium VI	27-JAN-2		27-JAN-2021	NK
	Total Aluminum	26-JAN-2		26-JAN-2021	DW
	Total Arsenic	26-JAN-2		26-JAN-2021	DW
	Total Characterists	26-JAN-2		26-JAN-2021	DW
	Total Conner	26-JAN-2		26-JAN-2021	DW
	Total Copper Total Lead	26-JAN-2		26-JAN-2021	DW DW
		26-JAN-2 26-JAN-2		26-JAN-2021 26-JAN-2021	DW
	Total Manganese Total Mercury	25-JAN-2		25-JAN-2021	DV
	Total Nickel	26-JAN-2		26-JAN-2021	DW
	Total Nickei Total Selenium	26-JAN-2		26-JAN-2021	DW
	Total Selement Total Silver	26-JAN-2		26-JAN-2021	DW
	Total Zinc	26-JAN-2		26-JAN-2021	DW
			LUZ I	20-JAIN-2021	DVV
	Nonylphenol and Nonylphenol Ethoxyla	tes (Ontario, mg/L)			

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

ATTENTION TO: Zen Keizars

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
1987562	MW107	Water	21-JAN-2021	21-JAN-2021

Parameter	Date Prepared	Date Analyzed	Initials
Total Nonylphenol	27-JAN-2021	29-JAN-2021	TC
NP1EO	27-JAN-2021	29-JAN-2021	TC
NP2EO	27-JAN-2021	29-JAN-2021	TC
Total Nonylphenol Ethoxylates	27-JAN-2021	29-JAN-2021	TC

Peel Region Sanitary - Organics

Parameter	Date Prepared	Date Analyzed	Initials
Oil and Grease (animal/vegetable) in water	26-JAN-2021	26-JAN-2021	RMK
Oil and Grease (mineral) in water	26-JAN-2021	26-JAN-2021	RMK
Methylene Chloride	26-JAN-2021	26-JAN-2021	KS
Methyl Ethyl Ketone	26-JAN-2021	26-JAN-2021	KS
cis- 1,2-Dichloroethylene	26-JAN-2021	26-JAN-2021	KS
Chloroform	26-JAN-2021	26-JAN-2021	KS
Benzene	26-JAN-2021	26-JAN-2021	KS
Trichloroethylene	26-JAN-2021	26-JAN-2021	KS
Toluene	26-JAN-2021	26-JAN-2021	KS
Tetrachloroethylene	26-JAN-2021	26-JAN-2021	KS
trans-1,3-Dichloropropylene	26-JAN-2021	26-JAN-2021	KS
Ethylbenzene	26-JAN-2021	26-JAN-2021	KS
1,1,2,2-Tetrachloroethane	26-JAN-2021	26-JAN-2021	KS
Styrene	26-JAN-2021	26-JAN-2021	KS
1,2-Dichlorobenzene	26-JAN-2021	26-JAN-2021	KS
1,4-Dichlorobenzene	26-JAN-2021	26-JAN-2021	KS
Xylenes (Total)	26-JAN-2021	26-JAN-2021	KS
PCBs	26-JAN-2021	27-JAN-2021	VDP
Di-n-butyl phthalate	27-JAN-2021	28-JAN-2021	US
Bis(2-Ethylhexyl)phthalate	27-JAN-2021	28-JAN-2021	US

Peel Sanitary Sewer Use By-Law - Inorganics

Parameter	Date Prepared	Date Analyzed	Initials
pH	25-JAN-2021	25-JAN-2021	ND
Total Suspended Solids	28-JAN-2021	28-JAN-2021	SR
Fluoride	27-JAN-2021	27-JAN-2021	LC
Sulphate	27-JAN-2021	27-JAN-2021	LC
Total Cyanide	26-JAN-2021	26-JAN-2021	BG
Phenols	22-JAN-2021	22-JAN-2021	NK
Total Phosphorus	27-JAN-2021	27-JAN-2021	SK
Total Kjeldahl Nitrogen	25-JAN-2021	25-JAN-2021	GN
Total Aluminum	26-JAN-2021	26-JAN-2021	DW

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Time Markers

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

ATTENTION TO: Zen Keizars

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Sample ID	Sample Description	Sample Type	Date	e Sampled	Date Received
1987562	MW107	Water	21-	JAN-2021	21-JAN-2021
	Peel Sanitary Sewer Use By-Law - Inorganics				
	Parameter	Date Pre	nared	Date Analyze	d Initials
		26-JAN-	•		
	Total Antimony Total Arsenic	26-JAN-		26-JAN-2021 26-JAN-2021	
	Total Cadmium	26-JAN-		26-JAN-2021	
	Total Cadmium Total Chromium	26-JAN-		26-JAN-2021	
	Total Cobalt	26-JAN-		26-JAN-2021	
	Total Copper	26-JAN-		26-JAN-2021	
	Total Lead	26-JAN-		26-JAN-2021	
	Total Manganese	26-JAN-		26-JAN-2021	
	3	25-JAN-		25-JAN-2021	
	Total Melyhdonum	26-JAN-			
	Total Molybdenum Total Nickel	26-JAN-		26-JAN-2021 26-JAN-2021	
	Total Selenium	26-JAN-		26-JAN-2021	
	Total Selenium Total Silver	26-JAN-		26-JAN-2021	
	Total Tin	26-JAN-		26-JAN-2021	
	Total Titanium				
	Total Zinc	26-JAN- 26-JAN-		26-JAN-2021 26-JAN-2021	
	cBOD Parameter	Date Pre	•	Date Analyze	
	Biochemical Oxygen Demand, Carbonaceous	27-JAN-	2021	01-FEB-2021	Al
1987595	MW112	Water	21-	JAN-2021	21-JAN-2021
	BOD				
	Parameter	Date Pre	nared	Date Analyze	d Initials
	Biochemical Oxygen Demand, Total	27-JAN-	•	01-FEB-2021	
	Biochemical Oxygen Demand, Total	21-JAN-	2021	01-FEB-2021	Al
	E. Coli (Using MI Agar)				
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Escherichia coli	22-JAN-	2021	23-JAN-2021	SJM
	Mississauga Storm - Organics				
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Benzene	26-JAN-	•	26-JAN-2021	
	Toluene	26-JAN-		26-JAN-2021	
	Ethylbenzene	26-JAN-		26-JAN-2021	
	Xylenes (Total)	26-JAN-		26-JAN-2021	
	Total PAHs	26-JAN-		27-JAN-2021	

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

ATTENTION TO: Zen Keizars

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
1987595	MW112	Water	21-JAN-2021	21-JAN-2021

Mississauga Storm Sewer Use Bylaw- Inorganics			
Parameter	Date Prepared	Date Analyzed	Initials
pH	25-JAN-2021	25-JAN-2021	ND
Total Suspended Solids	28-JAN-2021	28-JAN-2021	SR
Total Residual Chlorine	22-JAN-2021	22-JAN-2021	GKN
Total Cyanide	26-JAN-2021	26-JAN-2021	BG
Phenols	22-JAN-2021	22-JAN-2021	NK
Total Phosphorus	27-JAN-2021	27-JAN-2021	SK
Total Kjeldahl Nitrogen	25-JAN-2021	25-JAN-2021	GN
Chromium VI	27-JAN-2021	27-JAN-2021	NK
Total Aluminum	26-JAN-2021	26-JAN-2021	DW
Total Arsenic	26-JAN-2021	26-JAN-2021	DW
Total Cadmium	26-JAN-2021	26-JAN-2021	DW
Total Chromium	26-JAN-2021	26-JAN-2021	DW
Total Copper	26-JAN-2021	26-JAN-2021	DW
Total Lead	26-JAN-2021	26-JAN-2021	DW
Total Manganese	26-JAN-2021	26-JAN-2021	DW
Total Mercury	25-JAN-2021	25-JAN-2021	DL
Total Nickel	26-JAN-2021	26-JAN-2021	DW
Total Selenium	26-JAN-2021	26-JAN-2021	DW

Nonylphenol and Nonylphenol Ethoxylates (Ontario, mg/L)

Parameter	Date Prepared	Date Analyzed	Initials
Total Nonylphenol	27-JAN-2021	29-JAN-2021	TC
NP1EO	27-JAN-2021	29-JAN-2021	TC
NP2EO	27-JAN-2021	29-JAN-2021	TC
Total Nonylphenol Ethoxylates	27-JAN-2021	29-JAN-2021	TC

26-JAN-2021

26-JAN-2021

Peel Region Sanitary - Organics

Total Silver

Total Zinc

Parameter	Date Prepared	Date Analyzed	Initials
Oil and Grease (animal/vegetable) in water	26-JAN-2021	26-JAN-2021	RMK
Oil and Grease (mineral) in water	26-JAN-2021	26-JAN-2021	RMK
Methylene Chloride	26-JAN-2021	26-JAN-2021	KS
Methyl Ethyl Ketone	26-JAN-2021	26-JAN-2021	KS
cis- 1,2-Dichloroethylene	26-JAN-2021	26-JAN-2021	KS
Chloroform	26-JAN-2021	26-JAN-2021	KS
Benzene	26-JAN-2021	26-JAN-2021	KS
Trichloroethylene	26-JAN-2021	26-JAN-2021	KS
Toluene	26-JAN-2021	26-JAN-2021	KS

26-JAN-2021

26-JAN-2021

DW

DW

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

ATTENTION TO: Zen Keizars

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
1987595	MW112	Water	21-JAN-2021	21-JAN-2021

Peel Region Sanitary - Or	ganics
---------------------------	--------

Parameter	Date Prepared	Date Analyzed	Initials
Tetrachloroethylene	26-JAN-2021	26-JAN-2021	KS
trans-1,3-Dichloropropylene	26-JAN-2021	26-JAN-2021	KS
Ethylbenzene	26-JAN-2021	26-JAN-2021	KS
1,1,2,2-Tetrachloroethane	26-JAN-2021	26-JAN-2021	KS
Styrene	26-JAN-2021	26-JAN-2021	KS
1,2-Dichlorobenzene	26-JAN-2021	26-JAN-2021	KS
1,4-Dichlorobenzene	26-JAN-2021	26-JAN-2021	KS
Xylenes (Total)	26-JAN-2021	26-JAN-2021	KS
PCBs	26-JAN-2021	27-JAN-2021	VDP
Di-n-butyl phthalate	27-JAN-2021	28-JAN-2021	US
Bis(2-Ethylhexyl)phthalate	27-JAN-2021	28-JAN-2021	US

Peel Sanitary Sewer Use By-Law - Inorganics

· · · · · · · · · · · · · · · · · · ·			
Parameter	Date Prepared	Date Analyzed	Initials
pH	25-JAN-2021	25-JAN-2021	ND
Total Suspended Solids	28-JAN-2021	28-JAN-2021	SR
Fluoride	27-JAN-2021	27-JAN-2021	LC
Sulphate	27-JAN-2021	27-JAN-2021	LC
Total Cyanide	26-JAN-2021	26-JAN-2021	BG
Phenols	22-JAN-2021	22-JAN-2021	NK
Total Phosphorus	27-JAN-2021	27-JAN-2021	SK
Total Kjeldahl Nitrogen	25-JAN-2021	25-JAN-2021	GN
Total Aluminum	26-JAN-2021	26-JAN-2021	DW
Total Antimony	26-JAN-2021	26-JAN-2021	DW
Total Arsenic	26-JAN-2021	26-JAN-2021	DW
Total Cadmium	26-JAN-2021	26-JAN-2021	DW
Total Chromium	26-JAN-2021	26-JAN-2021	DW
Total Cobalt	26-JAN-2021	26-JAN-2021	DW
Total Copper	26-JAN-2021	26-JAN-2021	DW
Total Lead	26-JAN-2021	26-JAN-2021	DW
Total Manganese	26-JAN-2021	26-JAN-2021	DW
Total Mercury	25-JAN-2021	25-JAN-2021	DL
Total Molybdenum	26-JAN-2021	26-JAN-2021	DW
Total Nickel	26-JAN-2021	26-JAN-2021	DW
Total Selenium	26-JAN-2021	26-JAN-2021	DW
Total Silver	26-JAN-2021	26-JAN-2021	DW
Total Tin	26-JAN-2021	26-JAN-2021	DW
Total Titanium	26-JAN-2021	26-JAN-2021	DW
Total Zinc	26-JAN-2021	26-JAN-2021	DW

AGAT WORK ORDER: 21T702306

PROJECT: CA20-149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

ATTENTION TO: Zen Keizars

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
1987595	MW112	Water	21-JAN-2021	21-JAN-2021
	•POD			

cBOD

Parameter	Date Prepared	Date Analyzed	Initials
Biochemical Oxygen Demand, Carbonaceous	27-JAN-2021	01-FEB-2021	Al

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CA20-149

SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

AGAT WORK ORDER: 21T702306 ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis			
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration
Trace Organics Analysis			
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	P & T GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	P & T GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	P&TGC/MS
Total PAHs	ORG-91-5105	EPA SW-846 3510 & 8270E	GC/MS
Oil and Grease (animal/vegetable) in water	VOL-91-5011	EPA SW-846 3510C & SM5520	BALANCE
Oil and Grease (mineral) in water	VOL-91-5011	EPA SW-846 3510C & SM 5520	BALANCE
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030B & 8260B	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030B & 8260B	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030B & 8260B	(P&T)GC/MS
trans-1,3-Dichloropropylene	VOL-91-5001	EPA SW-846 5030B & 8260B	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
PCBs	ORG-91-5112	EPA SW-846 3510C & 8082A	GC/ECD
Di-n-butyl phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Ultra Trace Analysis			
Total Nonylphenol	NA	ASTM D7065-6	LC/MS/MS
NP1EO	NA	ASTM D7065-6	LC/MS/MS
NP2EO	NA	ASTM D7065-6	LC/MS/MS
Total Nonylphenol Ethoxylates	NA	ASTM D7065-6	LC/MS/MS

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CA20-149

SAMPLING SITE:1650 & 1590 Dundas St E Mississauga

AGAT WORK ORDER: 21T702306 ATTENTION TO: Zen Keizars SAMPLED BY:AMD/ST

SAMPLING SITE, 1050 & 1590 Dulluas St	Livilooloodaga	SAMPLED BT.AM	5/61
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Biochemical Oxygen Demand, Total	INOR-121-6023	SM 5210 B	INCUBATOR
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Total Residual Chlorine	INOR-93-6060	SM 4500 CI- F	SPECTROPHOTOMETER
Total Cyanide	INOR-93-6051	modified from MOECC E3015; SM 4500-CN- A, B, & C	TECHNICON AUTO ANALYZER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA
Chromium VI	INOR-93-6034	modified from SM 3500-CR B	SPECTROPHOTOMETER
Total Aluminum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Biochemical Oxygen Demand, Carbonaceous	INOR-121-6023	SM 5210 B	INCUBATOR

Chain of Custody Record

Sample Identification

of

Containers

Sampled

12:00

2:00

AM

AM PM AM PM

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

☐ Yes

Excess Soils R406

Regulation 558

⊠ No

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth agatlabs.com

Prov. Water Quality

Other

Yes

Field Filtered - Metals, Hg, CrVI, DGC

Objectives (PWQO)

Indicate One

☐ No

Report Guldeline on

Certificate of Analysis

O Reg 153

Laboratory Use Only

ork Order #:	217762306

Cooler Quantity: Arrival Temperatures:	X) e e	alto	chedi
Custody Seal Intact: Notes:	□Yes	□No	□N/A
Turnaround Tim	e (TAT) Req	uired:	
Regular TAT (Most A	nalysis) 💢 5	to 7 Business	Days
Rush TAT (Rush Surchar	ges Apply)		
Rush TAT (Rush Surchar 3 Business Days	ges Apply) 2 Busine Days	ss Da	ext Business ay
3 Business Days	2 Busine	□ Da	ау

Report Information Company:	mation: Terrapex Environmental Ltd	Regulatory Requirements (Please check all applicable boxe	
Contact:	zen Keizars	Regulation 153/04	Excess So
Address: Phone:	Toronto ON M3B 2R7 705-760-3416 Fax:	Table	Table
Reports to be sent to: 1. Email: 2. Email:	z. Keizars @ terrapex. com s.j.vani@terrapex.com	Soil Texture (Check One) Coarse Fine	ССМЕ
Project Information	mation: CA20-149	Is this submissi Record of Site Co	

Project:	CA20-149	
Site Location:	1650 & 1590 Dundas St E MISSISSAL	ry
Sampled By:	AMD/ST	_
AGAT ID #.	PO:	
	Please note: If quotation number is not provided, client will be billed full price for analysis,	
Invoice Info		
Company:	Terrapex Environmental 4d	_
Contact:	Zen Kelzars	_
Address:	90 Scarsdale Rd Toronto ON	1

accounts, payable & terrapex, com Date

Sampled

Z. Kelzars @ terrupex, rom

San	nple Matrix Legend
В	Biota
GW	Ground Water
0	Oil
Р	Paint
S	Soil
SD	Sediment
SW	Surface Water

Metals & Inorganics	Metals - □ CrVI, □ Hg, □ HWSB	BTEX, F1-F4 PHCs Analyze F4G if required \square Yes	PAHS	Total PCBs	NOC	Landfill Disposal Characterization T	TCLP: CIM&I CIVOCS CIABNS CIB(a)P	Excess Soils SPLP Rainwater Le	SPLP: Li Metals Li Vocs Li Svocs	Excess Soils Characterizat on Pa	pH, ICPMS Metals, BTEX, F1-F4	Salt - EC/SAR	Peel Sanitary	MISSISS auga CHOI			V Potentially Hazardous or High Concern
ı											T		ľ	_			
										- C							
						ign											

	PM				1000								
	AM PM			and the same of the same									
_	AM PM											B	
	AM PM							417					
	AM)))	8888	WestV6		, W. W.	W44462			
	AM									10000			
	AM	10 -10			of 1	MA							
Samples Refinquished By (Print Name and Sign): Subrina Tivani	Jan 21/2	3:40 pm	Samples Received By (Print North and Sign	~ nat files	1110	Date	Tin	ie		121 JA	N21	3:5E	3F)
Sayring Tivani Samples Relinquished By (Print Name and Sign):	Date	Time	Samples Received by (Print Name and 51g)		000	Date	Tin	ė		Page 👤	of		
Samples Relinquished By (Print Name and Sign):	Date	Time	Samples received By (Print Nume and Sign	N.		Date	Tin	16	Nº∙ T	1111	ROC	3	

Email:

Sample Temperature Log

	-/				oporate				
Client:	10	sca 6	7ex		COC# 0	r Work Order #:	1		
# of Coolers:	2 M	Tamper	lue &	28 K		# of Submissions:	Temperati	ires - Lahoi	raton
	Alliva	remper	atures - Di	anchy briver	(.(.)	Arrival Temperatures - Laboratory			atory
	Cooler #1:	7.2	17.7	176	(tiee ice)	Cooler #1:			, / ,
	Cooler #2:	7.5	17.1	17.8		Cooler #2:			/
	Cooler #3:	41	14.3	1 4.5	1	Cooler #3:	/		. /
	Cooler #4:	01.4	19-1	14.3	V	Cooler #4:	/	=======================================	/
	Cooler #5:		/	/		Cooler #5:			/
	Cooler #6:		/	· / p		Cooler #6:			/
	Cooler #7:		./	. / -		Cooler #7:	/		1
	Cooler #8		/	./		Cooler #8			2/1
	Cooler #9:		/	./		Cooler #9:	/		/
	Cooler #10:	-	/	./		Cooler #10:	/		· / ·
IR Gun ID:					IR Gun ID	:			
Taken By:					Taken By: Date				
Date (yyyy/mm/dd):	a li		Time:	: AM / P			_Time::_	AM / PN	Л

Instructions for use of this form: 1) complete all fields of info including total # of coolers and # of submissions rec'd, 2) photocopy and place in each submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please make sure to scan along with the COC)

Document ID: SR-78-9511.003 Date Issued: 2017-2-23

Page:_____ of _____