

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

Phase Two Environmental Site Assessment (ESA)

49 South Service Road, Mississauga, ON

Project # 2204701

Prepared For

Edenshaw SSR Developments Limited

October 13, 2022

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

October 13, 2022

Oscar Piovesan Edenshaw SSR Developments Limited 201-129 Lakeshore Rd E Mississauga, ON L5G 1E5

Dear Oscar Piovesan:

Re: Phase Two Environmental Site Assessment (ESA), 49 South Service Road,

Mississauga, ON

Project #: 2204701

We are pleased to present our Phase Two Environmental Site Assessment (ESA) report for the abovenoted property. The scope of this Phase Two ESA conforms to the requirements outlined in Ontario Regulation 153/04 and 407/19. The purpose of this Phase Two ESA was to support development approval applications with the City of Mississauga and is required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP).

The report provides information from Palmer's site reconnaissance, drilling activities, soil and ground water sampling, review of laboratory certificate of analysis, and our conclusions for your consideration.

We trust that this report will be satisfactory for your current needs. If you have any questions or require further information, please contact our office at your convenience.

Sarah Sipak, B.Sc., P.Geo (limited), QP_{ESA} Environmental Geoscience Team Lead

i

Executive Summary

Palmer is pleased to provide this Phase Two Environmental Site Assessment (ESA) report to Edenshaw SSR Developments Limited. The Phase Two ESA was prepared for the parcel of land located at 49 South Service Road, Mississauga, ON (hereafter collectively referred to as the "Phase Two Property").

It is Palmer's understanding that the purpose of this Phase Two ESA is to support development approval applications with the City of Mississauga and is required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP). The Phase Two Property (also referred to as the "Subject Property" or "Site") is contemplated for residential redevelopment with a 22-storey tower, 4-storey podium, and an underground parking garage following demolition of the existing buildings. This Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the Environmental Protection Act (EPA).

The Phase Two Property is a 1.09-acre, irregular shaped, parcel of land located on the south side of Queen Elizabeth Way, north of the intersection with Hurontario Street in Mississauga, Ontario. Building structures on the Site include a 334-m² two-storey former Ontario Provincial Police (OPP) office building (with a partial basement) with a 111-m² single-storey attached detention area, a 143-m² garage, and two (2) canopy structures. The Phase Two Property has been vacant since August 2020. The remaining parts of the Site comprise an asphalt-paved parking lot and landscaped grassed areas.

Based on the findings of our recently completed Phase One ESA, the Phase One Study Area ("surrounding area") covers land uses within a 250 metre (m) radius of the Phase One Property. The Phase One Study Area is developed with commercial, residential, and institutional land uses.

There are no water bodies or areas of natural significance on the Phase Two Property. However, Mary Fix Creek exists approximately 230 m south of the Phase Two Property in the Phase One Study Area, which flows southeastward to Lake Ontario.

Historically, the Site was first developed prior to 1952 with a single building on the southern portion of the Phase Two Property. The Phase Two Property was subsequently redeveloped in the early 1960s with the current buildings. Tenants of the building have included the OPP.

Based on the findings of the historical records review, Site reconnaissance, and personal interviews, it was concluded that five (5) potentially contaminating activities (PCAs) were identified either on the Phase Two Property or within the Phase One Study Area. These PCAs were deemed to be contributing to five (5) areas of potential environmental concern (APECs) on the Phase Two Property. The identified PCAs and APECs are as follows:

Table A. Summary of APECs and PCAs

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground water, Soil and/or Sediment)
APEC #1 Automotive Repair Operations	Southern Portion of Phase One Property	#52: Storage, maintenance, fueling and repair of equipment, vehicles, and material used to maintain transportation systems	On-Site – Historical automotive repair operations within the Garage building since the early 1960s.	Petroleum Hydrocarbons (PHCs), Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Volatile Organic Compounds (VOCs), Metals, Arsenic (As), Antimony (Sb), Selenium (Se)	Soil and Ground water
APEC #2 Historical Fuel Aboveground Storage Tank (AST)	Southern Portion of Phase One Property	#28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site – Former diesel backup generator with 50 gallon diesel AST within the Garage building	PHCs, BTEX	Soil and Ground water
APEC #3 Existing Fuel AST	Southern Portion of Phase One Property	#28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site – Presence of diesel-fired backup generator with 50-gallon diesel AST at exterior of the Garage building	PHCs, BTEX	Soil and Ground water
APEC #4 Historical Heating Oil Underground Storage Tank (UST)	Eastern Portion of Phase One Property	#28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site – Former 1,000 gallon heating oil UST located along the east exterior wall of the Main building	PHCs, BTEX	Soil and Ground water
APEC #5 Historical Spill	Northeastern Portion of Phase One Property	N/A. Spill	On-Site – Historical oily water spill to a storm drain located on the northeastern portion of the Site in 2009	PHCs, BTEX	Soil and Ground water

A Phase Two ESA was recommended to assess potential subsurface impacts as a result of the aforementioned PCAs and APECs.

The Phase Two ESA entailed the drilling of a total of six (6) sampled boreholes (BH22-5 to BH22-10) to depths ranging between 4.57 to 5.33 metres below ground surface (mbgs) at strategically selected and accessible locations on the Phase Two Property. Ground water monitoring wells were installed in all boreholes. In addition, six (6) previously installed monitoring wells (BH1, BH4, BH6, MW2-20, MW3-20 and MW4-20) were used during this investigation for ground water monitoring and sampling purposes.

The observed soil stratigraphy generally comprised surficial asphalt pavement or concrete underlain by sand and gravel, silty sand, silty clay, and sandy silt. The soil across the property is considered to be medium-fine textured for the purpose of this assessment.

Fieldwork for this investigation began on May 26, 2022 by drilling four (4) exterior and two (2) interior boreholes to depths of 4.57 to 5.33 m below existing grade with the installation of six (6) monitoring wells. The stabilized ground water levels were measured at depths of 1.60 to 3.34 m below grade. No free-product was observed in any of the monitoring wells.

Based on the site topography and ground water level measurements, the ground water flow is interpreted to flow across the Site in a southerly direction. The results of the ground water monitoring indicate that the primary near surface water table resides within the silty sand layer.

Fourteen (14) soil samples (representative of fill and native soils) and twenty (20) ground water samples were collected and submitted for laboratory analyses.

In comparison with the new (2011) Ontario *Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the* EPA criteria, the results of laboratory analyses revealed the following contaminant concentrations in comparison to the Table 3 Site Condition Standards (SCS) for residential/parkland/institutional (RPI) property uses with medium-fine grained soils in a non-potable ground water condition:

- Sodium Adsorption Ratio (SAR) and Electrical Conductivity (EC) in soil on the southern portion (MW1-20, BH9-20, and BH10-20) of the Phase Two Property between depths of 0.61 and 1.83 mbgs; and,
- Chloride in ground water on the southern portion (MW1-20) of the Phase Two Property.

The aforementioned soil and ground water exceedances are related to the application of road salt for deicing purposes as a safety measure for vehicular and pedestrian traffic on the Phase Two Property and are considered to be exempt from further investigation and/or remediation, as per O. Reg. 153/04, s. 49(1). Therefore, the standards for EC and SAR in soil and chloride in ground water are "deemed to be met" and no further investigations are warranted.

The statements made in this Executive Summary are subject to the same limitations as contained in the report and should be read in conjunction with the entire report.

Table of Contents

Lette Exec		nmary	
1.	Intro	duction	1
	1.1	Phase Two Property Description	1
	1.2	Property Ownership	
	1.3	Current and Proposed Future Uses	2
	1.4	Applicable Site Condition Standards	2
2.	Back	ground Information	4
	2.1	Physical Setting	
	2.2	Past Investigations	
3.	Scor	be of the Investigation	8
	3.1	Overview of Site Investigation	3
	3.2	Media Investigated	
	3.3	Phase One Conceptual Site Model	
	3.4	Deviations from Sampling and Analysis Plan	
	3.5	Impediments	
4.	Inve	stigation Method	13
	4.1	General	13
	4.2	Drilling and Excavating	14
	4.3	Soil: Sampling	14
	4.4	Soil: Field Screening Methods	16
	4.5	Ground Water: Monitoring Well Installations	16
	4.6	Ground Water: Field Measurement of Ground water Quality Parameters	17
	4.7	Ground Water: Sampling	18
	4.8	Sediment: Sampling	18
	4.9	Analytical Testing	
	4.10	Residue Management Procedures	19
	4.11	Elevation Surveying	
	4.12	Quality Assurance and Quality Control Measures	19
5 .	Revi	ew and Evaluation	21
	5.1	Geology	
	5.2	Ground Water: Elevations and Flow Direction	
	5.3	Ground water Hydraulic Gradients	
	5.4	Fine-Medium Soil Texture	
	5.5	Soil: Field Screening	
	5.6	Soil Quality	23

	5.7	Grour	nd Water C	Quality	24
	5.8	Sedin	nent Qualit	у	25
	5.9	Qualit	y Assuran	ce and Quality Control Results	25
	5.10		•	ceptual Site Model	
6.	Con	clusio	ns		37
	6.1	Limita	tions		37
	6.2			Certification	
7.	Refe	rence	s		40
8.	Tabl	es and	d Figures	S	41
	8.1	Table	S		41
		8.1.1		g Well Installation	
		8.1.2	•	vels	
		8.1.3	LNAPLs a	and DNAPLs	42
		8.1.4	Soil Data.		43
			8.1.4.1	PHCs with BTEX	
			8.1.4.2	Metals and Inorganics	44
			8.1.4.3	VOCs	
			8.1.4.4	PAHs	
			8.1.4.5	OC Pesticides	
		8.1.5		/ater Data	
			8.1.5.1	PHCs with BTEX	
			8.1.5.2 8.1.5.3	Metals and Inorganics VOCs	
		8.1.6		Data	
		8.1.7		Ground Water Maximum Concentration Data	
		0.1.7	8.1.7.1	Soil Maximum Concentration Data	
			8.1.7.2	Ground Water Maximum Concentration Data	
	8.2	Figur	es		
	0.2	8.2.1		Natural Significance and Water Bodies	
		8.2.2		Before Actions Taken to Reduce the Concentration of Contaminants.	
		8.2.3		d Contours of Ground Water Elevations	
		8.2.4	•	Identified Contaminants in Soil Before Actions Taken to Reduce the	
		0.2.4	-	ation of Contaminants	
		8.2.5		/ Identified Contaminants in Ground Water Before Actions Taken to	. 00
		0.2.0	-	ne Concentration of Contaminants	61
		006		ction A-A'	
		8.2.6			
		8.2.7		ction B-B'	
		8.2.8	Cross-Sec	ction C-C'	64

List of Drawings

Drawing 1:	Site Location Map
Drawing 2:	Borehole Location Plan
Drawing 3:	On-Site & Off-Site Areas of Potential Environmental Concern
Drawing 4:	Impacted Locations (Soil)
Drawing 5:	Impacted Locations (Ground Water)
Drawing 6:	Conceptual Model for Human & Ecological Receptors

List of Additional Tables

Table 1. APEC Locations and Associated Boreholes and Monitoring Wells	8
Table 2. Soil Stratigraphy Summary	14
Table 3. Monitoring Well Development Details	17
Table 4. Additional Monitoring Well Development Details	17
Table 5. Ground Water Quality Parameters	17
Table 6. Additional Ground Water Quality Parameters	18
Table 7. Summary of Geology	21
Table 8. Summary of Ground Water Conditions	21
Table 9. Soil Exceedances of MECP Table 3 Criteria	24

Photographs

List of Appendices

A. GENERAL

Appendix A1: Sampling and Analysis Plan

Appendix A2: Finalized Field Logs

Appendix A3: Certificates of Analysis or Analytical Reports from Laboratories

Appendix A4: Survey of Phase Two Property

B. HISTORICAL DATA

Appendix B1: GHD Phase I ESA Summary
Appendix B2: GHD Phase II BH Logs

1. Introduction

Palmer was retained by Edenshaw SSR Developments Limited (the 'Client') to conduct a Phase Two Environmental Site Assessment (ESA) for the parcel of land located at 49 South Service Road, Mississauga, ON (hereinafter referred to as the 'Phase Two Property'), as shown in **Drawing 1**.

It is Palmer's understanding that the purpose of this Phase Two ESA is to support development approval applications with the City of Mississauga and is required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP). The Phase Two Property (also referred to as the "Subject Property" or "Site") is contemplated for residential redevelopment with a 22-storey tower, 4-storey podium, and an underground parking garage following demolition of the existing building. The Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the Environmental Protection Act (EPA).

The assessment consisted of a program of drilling, sampling, laboratory analysis and evaluation of results which characterized the subsurface conditions beneath the Site to establish any environmental contamination affecting the Site.

Conditions noted in this report are general in nature. This report presents the results of the investigation and the conclusions we have drawn regarding the possible impact of the conditions observed.

1.1 Phase Two Property Description

The Phase Two Property is a 1.09-acre, irregular shaped, parcel of land located on the south side of Queen Elizabeth Way, north of the intersection with Hurontario Street in Mississauga, Ontario. Building structures on the Site include a 334-m² two-storey former Ontario Provincial Police (OPP) office building (with a partial basement) with a 111-m² single-storey attached detention area, a 143-m² garage, and two (2) canopy structures. The Phase Two Property has been vacant since August 2020. The remaining parts of the Site comprise an asphalt-paved parking lot and landscaped grassed areas.

The subject property is southeast of Queen Elizabeth Way, north of Hurontario Street, and west of South Service Road, as shown in **Drawing 1** and the photograph appendix. The municipal address is 49 South Service Road, Mississauga with Property Identification Number (PIN) 13504-0978 (LT).

The legal description of the Phase Two Property is Part of Lot 1, Range 2 Credit Indian Reserve, Part 3 43R37754, Subject to an Easement in Gross Over Parts 1 and 2, 43R40056 as in PR3941590, in the City of Mississauga, Province of Ontario.

The center of the Phase Two Property is located in UTM Zone 17, with approximate coordinates of Easting 613193 m and Northing 4824875 m.

1.2 Property Ownership

At the time of the investigation, the Phase Two Property was unoccupied. The property is currently owned by Edenshaw SSR Developments Limited. The authorization for Palmer to proceed with the Phase Two ESA was given by Mr. Oscar Piovesan (Executive Director) of Edenshaw SSR Developments Limited. The contact information for the proponent is provided below:

<u>Company Name</u>: Edenshaw SSR Developments Limited

Company Address: 201-129 Lakeshore Rd E, Mississauga, ON L5G 1E5

Contact Name: Oscar Piovesan

<u>Contact email</u>: oscar.piovesan@edenshaw.com

1.3 Current and Proposed Future Uses

Historically, the Site was first developed prior to 1952 with a single building on the southern portion of the Phase Two Property. The Phase Two Property was subsequently redeveloped in the early 1960s with the current buildings. Tenants of the building have included the OPP.

The current and proposed land uses are as follows:

Current or Proposed	Description of Property Use	
Current	Commercial – Former commercial Ontario Provincial Police (OPP) detachment building and garage that are no longer operational.	
Proposed	Residential – 22-storey tower, 4-storey podium, and underground parking.	

1.4 Applicable Site Condition Standards

Ontario Regulation 153/04 - Records of Site Condition, Part XV.1 of the Environmental Protection Act as amended - "O.Reg. 153/04, as amended" - establishes the legislative and regulatory requirements for contaminated sites in Ontario. The Ministry of Environment, Conservation and Parks (MECP) document "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act," dated April 15, 2011 sets out the prescribed contaminants and applicable Site Condition Standards (SCS) for those contaminants for the purposes of O. Reg. 153/04, as amended. The MECP SCS are set out in Tables 1 to 9 criteria applicable for various site conditions.

The selection of the appropriate MECP SCS for a Phase Two ESA is dependent upon several site-specific conditions, such as the existing/proposed property use, the existing/potential ground water use, the depth of clean-up, soil texture, depth to bedrock and proximity to the nearest body of water.

The MECP SCS applicable to the Site have been evaluated on the basis of the following rationale:

Site Sensitivity:

• The site does not include, nor is there evidence to suggest it could have an adverse effect on a sensitive environment.

- The borehole drilling program revealed that the bedrock is at depths greater than 5.33 metres (m) below existing grade across the Site;
- The glacially-derived native silty sand materials are of moderate permeability to depths up to at least 5.33 m below ground surface; and
- The subsurface soil pH values are between 7.67 and 7.75. Two (2) soil samples (and one duplicate soil sample) were collected on June 1, 2022 at each borehole (BH22-6 and BH22-10) between the surface and 1.52 m below existing grade, to determine the soil pH for the Phase Two Property.

Land Use:

 The subject site is currently developed with a building to support commercial land uses. Proposed residential redevelopment is anticipated.

Ground Water Use:

 The site is and will continue to be serviced by a municipal drinking water supply derived from Lake Ontario.

Depth and Soil Texture:

- For the purpose of the report, the assessment criteria corresponding to the full depth option will be used for comparison to the laboratory analytical results.
- One soil sample was collected on June 1, 2022 at the location of BH22-10 between 2.29 and 3.05 m below existing grade, to determine the soil grain size for the Phase Two Property.
- Based upon field observations and soil grain size analyses conducted by ALS Environmental, the
 site stratigraphy generally comprises medium-fine loam (a mixture of sand, silt, and clay).
 Therefore, for the purpose of this report, the assessment criteria corresponding to medium-fine
 textured soils were selected for comparison in laboratory analytical results.
- The selected soil texture is applicable to at least one-third of the Site being assessed. Therefore, the medium-fine textured soil SCS can be used, as per Ontario Regulation 153/04, s.42 (1).

Based on the above information, the applicable <u>EPA</u> site assessment criteria selected for use at this Site is the Full Depth Generic SCS in a Non-Potable Ground Water Condition (<u>Table 3</u>) criteria for residential/parkland/institutional land uses with medium-fine-textured soils.

2. Background Information

The environmental investigation conducted at the Site and the details of our findings are outlined in **Section**3. The Phase Two ESA was conducted at the Site to address the APECs identified by the Palmer 2022 Phase One ESA for the Site.

2.1 Physical Setting

The Phase Two Property is located at a topographic elevation of approximately 101 m above mean sea level. Topography at and in the general vicinity of the Site is relatively flat with a drop in elevation to the southeast as shown in **Figure 8.2.1**.

The Phase Two Property is located within the broad physiographic region known as the Iroquois Plain (Chapman and Putnam, 1984). This region is a slightly sloping plain that is covered with stratified sands of various depths in some areas and soil formed directly on the wave-eroded surface of red and gray shale in others. This region borders Lake Ontario and extends around the western part of Lake Ontario from the Niagara River to the Trent River.

Local surficial geologic mapping (The Ontario Geological Survey, 2003) of the Mississauga area indicates that coarse-textured glaciolacustrine deposits of sand, gravel, and minor silt and clay underlie the Phase Two Property.

Bedrock geologic mapping of Ontario (The Ontario Geological Survey, 1990) indicates that the glacially derived overburden soil at the Phase Two Property is underlain by Upper Ordovician Age shale, limestone, dolostone, and siltstone of the Georgian Bay Formation.

No water bodies or areas of natural significance were observed on the subject property. Mary Fix Creek exists approximately 230 m south of the Site in the Phase One Study Area. The local hydrogeology is controlled by this waterbody, the underlying geology and the topography and is surmised to be directed southeastward.

Regional ground water flow is expected to be southeastward towards Lake Ontario. The static ground water level in the vicinity of the Phase Two Property is noted to be around 3.4 m below existing grade based on well records in the vicinity of the Phase One Property.

Local source water protection mapping (Source Protection Information Atlas, 2020) of the Mississauga area indicates there are no well-head protection areas in the vicinity of the Phase Two Property; however, the northern portion of the Phase Two Property falls within intake protection Zone 2. There are significant ground water recharge areas present in the vicinity of the Phase Two Property located at the west and south portions of the Study Area. In addition, a highly vulnerable aquifer was noted to be present within the Phase Two Property and Phase One Study Area.

The Phase Two Property is serviced by a municipal drinking water system with potable water derived from Lake Ontario. However, there are two (2) well records for the Phase Two Property and three (3) well records within a 250 m search radius. These records relate to test holes and monitoring wells in the Phase One Study Area.

2.2 Past Investigations

Seven (7) reports relating to the environmental conditions at the Phase Two Property were provided by the Client and reviewed by Palmer. A summary of the description of relevant report data, analysis and findings relevant to the Phase Two ESA, including the presence of a contaminant on, in or under the Phase Two Property or the existence of an area of potential environmental concern, is as follows:

Report Title: Phase One Environmental Site Assessment, 49 South Service Road, Mississauga,

Ontario

<u>Date:</u> October 13, 2022 <u>Prepared by:</u> Palmer

Prepared for: Edenshaw SSR Developments Limited

Based on the findings of the historical records review, site reconnaissance, and interviews; PCAs and APECs were identified in association with the Phase One Property and/or Phase One Study Area. Refer to Table A in the Executive Summary.

A Phase Two ESA was recommended to assess potential subsurface impacts as a result of the PCAs and APECs identified in the Phase One ESA.

Report Title: Phase One Environmental Site Assessment, Mississauga OPP Detachment, 49 South

Service Road, Mississauga, Ontario

<u>Date:</u> December 21, 2020 <u>Prepared by:</u> GHD Limited

Prepared for: Infrastructure Ontario

A Phase One Environmental Site Assessment (ESA) was conducted at 49 South Service Road, Mississauga on December 21, 2020 by GHD Limited (GHD). It was required that the site be assessed to document environmental conditions for the potential disposition of the Property. The site consisted of a former Ontario Provincial Police (OPP) detachment building, an associated garage and two canopy structures. Historic site operations were identified as potential agricultural use up to the 1940s and commercial use (Ontario Provincial Police) since at least the early 1950s to 2020. Surface water along the site drains overland towards catchbasins on the property and potable water is supplied by the Region of Peel. No potable well or onsite septic tank systems were observed during the site reconnaissance performed by GHD. The wastewater discharges were identified to consist of domestic wastewater, wastewater from kitchen sinks and floor drain systems generated within the main building and discharged to the municipal sanitary system, as well as any wash water or runoff associated with vehicle maintenance generated within the garage building and collected in the trench drain system and a catch basin in the garage which are connected to the municipal sewer system. The ground water flow direction was anticipated to be in a southerly direction, towards Lake Ontario. In the related Phase One Environmental Site Assessment, GHD identified five (5) Potentially Contaminating Activities which lead to five (5) Areas of Potential Environmental Concern. The APECs included on-site historical pesticide use, unknown fill material quality, vehicle servicing garage, potential historical UST, and fuel storage tank integrated within a diesel fuel backup generator.

A copy of the Executive Summary from the GHD Report is presented in Appendix B1.

Report Title: Phase Two Environmental Site Assessment, Mississauga OPP Detachment, 49 South

Service Road, Mississauga, Ontario

Date: April 1, 2021

Prepared by: GHD Limited

Prepared for: Infrastructure Ontario

A Phase Two ESA was conducted at 49 South Service Road by GHD Limited (GHD) to address the areas of potential environmental concern (APECs) identified during the 2020 Phase One ESA. The investigation occurred between December 3 and 21, 2020. A total of ten (10) boreholes (BHs) were drilled to a maximum depth of 4.47 metres below ground surface (mbgs) and four (4) monitoring wells (MW1-20 to MW4-20) were installed. Groundwater flow direction was identified in the southeastern direction and depth to groundwater ranged from 2.64 to 3.50 mbgs.

Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, for Industrial/Commercial/Community Property Use, coarse-textured soil, were chosen for the subject site. Based on the results of the Phase Two ESA, no specific impacts were identified to be related to the APECs revealed in the Phase One ESA. Inorganic parameters including Sodium Adsorption Ration (SAR) and/or electrical conductivity (EC) were found to exceed Table 3 standards in the southern portion of the site. Additionally, groundwater in the southern portion of the site was found to exceed Table 3 standards for chloride. It was reported that these exceedances were most likely due to the use of road salt for de-icing purposes.

GHD concluded that amendments made to O. Reg. 153/04, related to the use of road de-icing salt to keep a property safe under conditions of snow and ice, indicate that the exemption outlined under Section 49.1 would apply to the Site. Therefore, if an RSC is required in the future, the Qualified Person could conclude that Standards for EC and SAR in soil and chloride in groundwater are "deemed to be met".

A copy of the borehole logs from the GHD Report is presented in **Appendix B2**.

Report Title: Ontario Government Building - Critical Environment Audit Report

<u>Date:</u> September 20, 2016 <u>Prepared by:</u> CBRE Limited

Prepared for: Infrastructure Ontario

A Critical Site Audit was conducted at 49 South Service Road by CBRE Limited. The Site was visually inspected, and data was collected to provide best practices, areas of improvement, and recommendations for the Site. Recommendations for the Site included implementing a fire suppression system in all rooms, upgrading the backup generator, fuel tank, and ATS, and installing a battery backup light, fire extinguisher and space heater for the generator enclosure.

Report Titles: Base Building Assessment Report (B12278 and B12279)

Dates: July 12 & 15, 2019

<u>Prepared by:</u> Infrastructure Ontario <u>Prepared for:</u> Infrastructure Ontario

A Base Building Assessment Report was conducted at 49 South Service Road by Infrastructure Ontario for the OPP detachment building (B12278) and the garage (B12279). Sections of the buildings were described and requirements for repairs and renewals were provided. Some of these recommendations included structural repairs to the foundations, renewal of exterior doors, wheelchair lift renewal, domestic water distribution renewal, piping repair, standpipes renewal, roadway renewal, unit heaters renewal, etc.

Report Title: Asbestos Building Materials Reassessment Survey Report

Date: November 15, 2013

Prepared by: Environmental Consulting Occupational Health (ECOH)

Prepared for: CBRE Limited

An Asbestos Building Materials Reassessment Survey Report was conducted at 49 South Service Road by ECOH Inc. and exp. Services Inc. (ECOH-exp.). This report was carried out for the purposes of long-term management of the asbestos-containing building materials for both the OPP detachment building and garage on the Site. The assessment found that asbestos materials were detected within pipe insultation in the pump room of the OPP detachment building. Asbestos was also identified within the roof hopper drain and all piping insulation within the garage building. No visible damage or deterioration was noted on the identified asbestos containing materials; therefore, no immediate remedial action was required.

3. Scope of the Investigation

The Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the Environmental Protection Act (EPA). It is Palmer's understanding that the purpose of this Phase Two ESA is to support development approval applications with the City of Mississauga and is required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP). The Phase Two Property is contemplated for residential redevelopments with a 22-storey tower, 4-storey podium, and underground parking following demolition of the existing buildings.

3.1 Overview of Site Investigation

To address the APECs identified in the Palmer 2022 Phase One ESA, Palmer conducted a Phase Two ESA consisting of drilling boreholes, installing monitoring wells, and sampling and chemical testing of soil and ground water samples during the Phase Two ESA investigation.

Six (6) boreholes (BH22-5, BH22-6, BH22-7, BH22-8, BH22-9, and BH22-10) were advanced across the Site. All six (6) of the boreholes were completed as monitoring wells. In addition, six (6) previously installed ground water monitoring wells were sampled (BH1, BH4, BH6, MW2-20, MW3-20 and MW4-20).

The rationale for the selection of borehole/monitoring well locations is shown on Table 1 below:

Table 1. APEC Locations and Associated Boreholes and Monitoring Wells

Areas of Potential Environmental Concern	Location on Site	Sample Location / Sample ID	
APEC 1 (Associated with auto service garage)	Southern Portion of Phase One Property	BH22-8, BH22-9, BH22- 10, and MW2-20	
APEC 2 (Associated with historic AST in service garage)	Southern Portion of Phase One Property	BH22-8, BH22-9, and BH22-10	
APEC 3 (Associated with current diesel fuel back-up generator with AST near garage)	Southern Portion of Phase One Property	BH22-10 and MW2-20	
APEC 4 (Associated with historic UST)	Northern Portion of Phase One Property	BH22-5, BH22-6, BH22- 7, BH1, BH4, BH6, MW3- 20, MW4-20	
APEC 5 (Associated with historic oily water spill)	Entirety of Phase One Property	BH22-5, BH22-6, BH22- 7, BH1, BH4, MW3-20, MW4-20	

The scope of work for this Phase Two ESA included the following tasks:

 Planned a site investigation through the preparation of a Sampling and Analysis Plan (refer to Appendix A1).

- Acquired utility locates: Prior to the advancement of the boreholes, arranging for the location of
 underground and overhead utilities including electrical (hydro), natural gas, water supply, sanitary
 and storm sewer, telephone, cable and communication. Underground utilities were marked by utility
 locates company representatives, and a private locator, All Clear Locates, was retained to clear the
 borehole locations prior to drilling of the boreholes.
- Mobilized, drilled, and logged six (6) sampled boreholes to depths of 4.57 to 5.33 metres below ground surface (mbgs).
- Installed 50-mm diameter perforated polyvinyl chloride (PVC) ground water monitoring wells in six
 (6) of the boreholes. All ground water monitoring wells were installed with 3 m of slotted PVC intake screen.
- Screened soil sample head-space for soil vapours using a portable photo ionization detector (PID)
 RKI Eagle 2.
- Measured the static ground water levels in the twelve (12) monitoring wells.
- Completed an elevation survey of the twelve (12) monitoring wells to obtain a ground water elevation measurement to confirm ground water flow direction at the Site at the time of the field investigation.
- Purged three (3) well casing volumes from each monitoring well or until each well was dry and collected ground water samples from the twelve (12) monitoring wells.
- Submitted soil and ground water samples under Chain of Custody protocol to an accredited laboratory to carry out chemical analysis for contaminants of potential concern in accordance with O.Reg. 153/04 "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the *Environmental Protection Act*" published by the MECP and dated March 9, 2004, as amended by O. Reg. 511/09, s. 22 ("Analytical Protocol").
- Reviewed and interpreted laboratory results of chemical analysis data and observations made during the site investigation.
- Completed an evaluation of the information from the above and preparing a Phase Two Conceptual Site Model (CSM) to identify locations and concentrations of contaminants (if any) above the applicable SCS at the Site.
- Prepared a Phase Two ESA report of the investigation findings, conclusions, and recommendations.

3.2 Media Investigated

The Phase Two ESA included the investigation of soil and ground water at the Site.

Soil and ground water samples were selected for chemical analysis to determine whether any contaminants of potential concern (COPCs) were present in the soil and ground water in the locations of the APECs, outlined in the Palmer July 2022 Phase One ESA.

A total of fourteen (14) soil samples, including three (3) duplicate soil samples, and twenty (20) ground water samples, including three (3) duplicate ground water samples and one (1) trip blank sample, were submitted to ALS Environmental, for analysis of various COPCs to investigate the soil and ground water quality related to the aforementioned APECs. These COPC included PHCs, VOCs, BTEX, and metals and inorganic parameters (As, Sb, Se, Na, low or high pH). Borehole and monitoring well locations are presented in **Drawing 2**.

As there is no surface water body on the Site, no sediment sampling is required.

3.3 Phase One Conceptual Site Model

Site Description

The Phase One Property is a 1.09-acre, irregular shaped, parcel of land located on the south side of Queen Elizabeth Way, north of the intersection with Hurontario Street in Mississauga, Ontario. Building structures on the Site include a 334-m² two-storey former Ontario Provincial Police (OPP) office building (with a partial basement) with a 111-m² single-storey attached detention area, a 143-m² garage, and two (2) canopy structures. The Phase One Property has been vacant since August 2020.

Historically, the Site was first developed prior to 1952 with a single building on the southern portion of the Phase One Property. The Phase One Property was subsequently redeveloped in the early 1960s with the current buildings. Tenants of the building have included the OPP.

The remaining parts of the Site comprise an asphalt-paved parking lot and landscaped grassed areas.

Water Bodies / Areas of Natural Significance

There are no water bodies or areas of natural significance on the Phase One Property. However, Mary Fix Creek exists approximately 230 m south of the Phase One Property in the Phase One Study Area, which flows southeastward to Lake Ontario.

Drinking Water Wells

There are no drinking water well records for the Phase One Property; however there are two (2) well records for the Phase One Property and three (3) well records within a 250 m search radius. These records relate to test holes or observation wells in the vicinity of the Phase One Property.

Neighboring Land Use

The Phase One Study Area is developed with commercial, residential, and institutional land uses, as presented in **Drawing 2 and 3**.

Areas of Potential Environmental Concerns (APECs)

Based on the findings of the historical records review, Site reconnaissance, and personal interviews, five (5) potentially contaminating activities (PCAs) were identified either on the Phase One Property or within the Phase One Study Area. These PCAs were deemed to be contributing to five (5) areas of potential environmental concern (APECs) on the Phase One Property, as shown in **Drawing 3**.

The following Potentially Contaminating Activities (PCAs) were found to be associated with the current or historical land uses of the Phase One Property and/or Phase One Study Area:

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On- Site or Off-Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground water, Soil and/or Sediment)
APEC #1 Automotive Repair Operations	Southern Portion of Phase One Property	#52: Storage, maintenance, fueling and repair of equipment, vehicles, and material used to maintain transportation systems	On-Site – Historical automotive repair operations within the Garage building since the early 1960s.	PHCs, BTEX, VOCs, Metals, As, Sb, Se	Soil and Ground water
APEC #2 Historical Fuel Aboveground Storage Tank (AST)	Southern Portion of Phase One Property	#28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site – Former diesel backup generator with 50 gallon diesel AST within the Garage building	PHCs, BTEX	Soil and Ground water
APEC #3 Existing Fuel AST	Southern Portion of Phase One Property	#28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site – Presence of diesel-fired backup generator with 50-gallon diesel AST at the exterior of the Garage building	PHCs, BTEX	Soil and Ground water
APEC #4 Historical Heating Oil Underground Storage Tank (UST)	Eastern Portion of Phase One Property	#28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site – Former 1,000 gallon heating oil UST located along the east exterior wall of the Main building	PHCs, BTEX	Soil and Ground water
APEC #5 Historical Spill	Northeastern Portion of Phase One Property	N/A. Spill	On-Site – Historical oily water spill to a storm drain located on the northeastern portion of the Site in 2009	PHCs, BTEX	Soil and Ground water

Description of Assessment

PCAs with known or potential to affect the Phase One Property are as follows:

PCA Location	Location of APEC on the Phase One Property	Contaminants of Concern	Impact to Phase One Property (Known or Potential)
	Southern Portion of Phase One Property	PHCs, BTEX, VOCs, Metals, As, Sb, Se	Potential
49 South Service Road	Southern Portion of Phase One Property	PHCs, BTEX	Potential
	Southern Portion of Phase One Property	PHCs, BTEX	Potential
	Eastern Portion of Phase One Property	PHCs, BTEX	Potential
	Northeastern Portion of Phase One Property	PHCs, BTEX	Potential

Underground utilities are expected to be present on the subject property (sanitary sewer, storm sewer, city water, natural gas, telephone, electricity) and could potentially act as preferential pathways.

Local surficial geologic mapping of the Mississauga area indicates that sand, gravel, and minor silt and clay of glaciolacustrine deposits, underlie the Phase One Property.

The Phase One Property is located approximately 230 m north of Mary Fix Creek, which flows southeastward to Lake Ontario. The local hydrogeology is controlled by this waterbody, the underlying geology, and the topography, and local ground water flow is expected to be southeastward. The regional ground water flow is also expected to be southeastward towards Lake Ontario.

It is not expected that any uncertainty or absence of information would affect the validity of the Conceptual Site Model (CSM).

3.4 Deviations from Sampling and Analysis Plan

The field investigation and sampling program was carried out following the requirements of the Sampling and Analysis Plan (SAP) (shown in **Appendix A1**) with the following exceptions.

- Due to prior damage to monitoring wells MW1-20, BH5, and BH2 being observed and monitoring
 wells deemed inaccessible, ground water sampling did not occur and was instead carried out in
 BH4 and BH1.
- Due to monitoring well BH7 being dry, BH6 was sampled as an alternative.

3.5 Impediments

There were no impediments at the Site during the Phase Two ESA on-site investigation.

4. Investigation Method

Fieldwork for this investigation began on May 26, 2022 by purging ground water from six (6) previously installed monitoring wells. Soil sampling was carried out from a total of four (4) exterior and two (2) interior boreholes drilled to depths of 4.57 to 5.33 m below existing grade with the installation of six (6) monitoring wells at the locations shown in **Figure 8.2.2**. The boreholes on the Phase Two Property were strategically placed to address the PCAs and APECs identified in Table A.

4.1 General

This section of the report describes the various investigation methods used in the Phase Two ESA, including drilling, soil sampling, monitoring well installation, ground water sampling and analytical testing.

The Phase Two ESA was carried out in accordance with Palmer's SAP (Appendix A1).

The borehole locations were established in the field by Palmer staff prior to drilling. *Ontario One-Call* was contracted to locate and clear buried utility lines including telephone cables, natural gas mains, and hydro power lines. All the detected underground lines were identified on the ground by marking paints of various colours, as shown in **Drawing 2**.

Soil

Representative soil samples were recovered at each of the borehole locations. The soil stratigraphy was logged during drilling as soil samples were collected with dedicated dual tubes. Visual observations of any foreign materials or odours were also logged. The Finalized Field Logs are presented in **Appendix A2**.

Soil samples were split into portions that were collected into a plastic bag and a sample jar. Head space vapour concentrations were determined by allowing the bags to warm up to ambient temperature, probing into partially opened bags using a monitoring probe, and measuring the sample head space with a PID. Selected samples were placed in laboratory-supplied glass jars or vials and stored in a cooler during transport to the laboratory.

Ground Water

Upon completion of drilling, a 50-mm diameter PVC monitoring well was installed in six boreholes for ground water monitoring. Initial ground water levels were measured and a dedicated length of low-density polyethylene (LDPE) tubing was inserted into the wells.

The wells were purged to waste in sealed drums and fresh ground water samples were drawn for chemical analyses using a low-flow peristaltic pump. Samples were also placed in laboratory-supplied glass bottles or vials and stored in a cooler on ice during transport to the laboratory.

4.2 Drilling and Excavating

Boreholes were advanced by using a *CME-75 Truck Mounted Drill* equipped with augers and dual tubes, supplied and operated by Davis Drilling Ltd. under the direction of Palmer staff. Boreholes carried out in the garage were advanced using a *Ram Sounder*, supplied and operated by Sonic Soil Sampling Inc.

Disposable nitrile gloves were used and replaced between the handling of samples and all soil sampling equipment (stainless steel trowels, spatulas, etc.) was thoroughly decontaminated between soil sample locations to prevent potential cross-contamination. Decontamination activities included physical removal of any adhered debris, wash/scrub in "Alconox" soap solution, distilled water rinse, methanol rinse, and air dry.

Samples were collected continuously from the dual tubes. Samples submitted to the laboratory were based on visual observations, results of headspace screening, and identified APECs and associated parameters of concern.

4.3 Soil: Sampling

All soil samples were collected in accordance with strict environmental sampling protocols to ensure reliable results. The equipment used to collect the soil samples was previously discussed in Section 4.0, 4.1, and 4.2.

The observed soil stratigraphy generally comprised surficial asphalt pavement or concrete underlain by sand and gravel, silty sand, silty clay, and sandy silt, as described in **Table 2** below. The Finalized Field Logs are provided in **Appendix A2**.

Table 2. Soil Stratigraphy Summary

Borehole/ Monitoring Well ID	Soil Stratigraphy	Depth (m)	Observations
	Asphalt Pavement	0 to 0.15	No staining observed on the surface
BH22-5	Silty Sand Fill – Brown; trace gravel	0.15 to 3.81	Black asphalt fragments noted at 3.05 m
	Silty Sand Till – Greyish brown	3.81 to 5.33	No staining or odour observed in this layer
	Asphalt Pavement; with some grey sandy gravel fill	0 to 0.03	No staining observed on the surface
	Silty Sand Fill – Brown; trace gravel	0.02 to 0.76	No staining or odour observed in this layer
BH22-6	Silty Sand Fill – Brown; trace gravel and trace clay	0.76 to 1.52	No staining or odour observed in this layer
	Silty Sand Fill – Brown; trace gravel	1.52 to 2.29	No staining or odour observed in this layer
	Silty Sand Fill – Brown	2.29 to 2.59	No staining or odour observed in this layer

	Silty Sand Till – Greyish brown	2.59 to 5.33	No staining or odour observed in this layer
	Asphalt Pavement	0 to 0.15	No staining observed on the surface
	Silty Sand Fill – Brown; trace gravel	0.15 to 1.83	No staining or odour observed in this layer
	Silty Sand Fill - Black	1.83 to 2.29	No staining or odour observed in this layer
	Silty Sand Fill – Grey; trace clay	2.29 to 2.74	No staining or odour observed in this layer
BH22-7	Silty Clay Fill – Black; trace roots	2.74 to 3.05	No staining or odour observed in this layer
	Silty Clay Fill – Grey	3.05 to 3.43	No staining or odour observed in this layer
	Sandy Silt Fill – Black	3.43 to 3.81	Black staining and slight odour noted at 3.43 m
	Sandy Silt Till – Greyish brown; trace clay	3.81 to 5.33	No staining or odour observed in this layer
	Concrete	0 to 0.15	No staining observed on the surface
	Silty Sand Fill – Brown; trace gravel	0.15 to 2.29	No staining or odour observed in this layer
BH22-8	Silty Sand Fill – Brown; trace gravel and boulder fragments	2.29 to 3.05	No staining or odour observed in this layer
	Silty Sand Fill – Brown; trace gravel	3.05 to 3.81	No staining or odour observed in this layer
	Silty Sand Till – Brown	3.81 to 4.57	No staining or odour observed in this layer
	Concrete	0 to 0.15	No staining observed on the surface
	Silty Sand Fill – Brown; trace gravel	0.15 to 0.76	No staining or odour observed in this layer
BH22-9	Silty Sand Fill – Brown; trace gravel and boulder fragments	0.76 to 1.52	No staining or odour observed in this layer
	Silty Sand Fill – Brown; trace gravel	1.52 to 2.29	No staining or odour observed in this layer
	Silty Sand Till – Brown	2.29 to 4.57	No staining or odour observed in this layer
	Asphalt Pavement	0 to 0.02	No staining observed on the surface
	Silty Sand Fill – Brown; trace gravel	0.02 to 0.76	No staining or odour observed in this layer
BH22-10	Silty Sand Fill – Brown; trace gravel and trace clay	0.76 to 1.52	No staining or odour observed in this layer
	Silty Sand Fill – Golden brown; trace gravel	1.52 to 2.29	No staining or odour observed in this layer

Silty Sand Fill – Brown; trace clay	2.29 to 3.05	No staining or odour observed in this layer
Silty Sand Till – Greyish brown	3.05 to 5.33	No staining or odour observed in this layer

4.4 Soil: Field Screening Methods

All soil samples were screened in the field for evidence of staining and odours. Soil sample headspace screening was also performed to facilitate sample selections for laboratory analysis and to provide an assessment of the vertical contaminant distributions at each borehole location.

The soil sample headspace screening was conducted with a RKI Eagle 2 calibrated to a known isobutylene gas. The PID readings were recorded in parts per million (ppm), as shown in the Finalized Field Logs in **Appendix A2**.

4.5 Ground Water: Monitoring Well Installations

Upon completion of drilling, a 50-mm diameter, flush-joint threaded PVC monitoring well was installed in six (6) of the boreholes for ground water monitoring by Davis Drilling Ltd. and Sonic Soil Sampling Inc. under the direction of Palmer staff.

The monitoring wells included a 3 m length of slotted PVC intake screen. The wells were then extended from the top of the intake screen to the ground surface using solid PVC riser pipe. A silica sand filter pack was placed between the intake screen and the wall of the borehole. The filter pack was extended approximately 0.6 m above the top of the well screen to allow for settlement of the sand packs and to accommodate expansion of the overlying well seals. A bentonite seal was placed above the sand pack and extended to approximately 0.3 mbgs. Concrete and a flushmount well casing were installed between 0.3 mbgs and the ground surface. No glue was used in the construction of the monitoring well.

Elevations and associated monitoring well construction details are shown in **Table 8.1.1**. The location of the monitoring wells are shown in **Figure 8.2.3**, and the well completion diagrams are also shown on the Finalized Field Logs in **Appendix A2**.

All ground water monitoring wells installed at the Phase Two Property were instrumented with sufficient lengths of LDPE tubing to facilitate well development and purging requirements. Following the initial installation, depths to the static water level were measured and each monitoring well was developed by purging either three (3) well casing volumes or until the well went dry at least once. The well development occurred in order to remove any fluids that may have been introduced into the well during drilling, to remove particulates that may have become entrained in the well and filter pack, to stabilize and grade the filter pack, to improve connectivity between the well and the formation, and to restore ground water that may have been disturbed or altered during the drilling process to ensure the samples to be representative of true formation waters. The purging activities were carried out using the dedicated LDPE tubing and a low-flow peristaltic pump.

Purging of the six installed monitoring wells was completed on June 1, 2022 and was as follows:

Table 3. Monitoring Well Development Details

Monitoring Well ID	Date of Development/Purging	Time of Development/Purging	Volume of Fluid Removed from Well (L)
BH22-5		12:00 pm	11.98
BH22-6	June 1, 2022	12:30 pm	8.39
BH22-7		1:00 pm	10.58
BH22-8		2:30 pm	4.56
BH22-9		3:00pm	5.11
BH22-10		11:00 am	3.95

The development was completed on the aforementioned date as all six (6) monitoring wells were purged for three well casing volumes.

Additional purging of six (6) previously installed monitoring wells was completed on May 26, 2022 and was as follows:

Table 4. Additional Monitoring Well Development Details

Monitoring Well ID	Date of Development/Purging	Time of Development/Purging	Volume of Fluid Removed from Well (L)
BH1		2:30pm	12.58
BH4		3:30pm	11.55
BH6	May 26, 2022	10:30am	0.43
MW2-20	May 26, 2022	11:30am	6.51
MW3-20		12:30pm	3.10
MW4-20		2:00pm	10.45

The development was also completed on the aforementioned date as all six (6) monitoring wells were purged until dry or for three well casing volumes.

Ground Water: Field Measurement of Ground water Quality Parameters 4.6

On June 2, 2022, after the monitoring wells were purged for three well casing volumes, the following water quality field parameters were measured using a Quanta multi-probe prior to sampling:

Table 5. Ground Water Quality Parameters

Monitoring Well ID	pH (pH units)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)
BH22-5	6.59	8.389	5.21	14.5
BH22-6	6.48	9.806	2.84	14.0
BH22-7	6.96	6.697	6.07	13.3
BH22-8	6.82	5.709	4.12	16.8

Palmer_2204701 Phase Two Esa - 49 South Service Road -F2

Monitoring Well ID	pH (pH units)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)
BH22-9	6.78	7.050	5.10	15.2
BH22-10	7.00	7.404	6.15	16.5

On May 27, 2022, after six (6) previously installed monitoring wells were purged until dry or for three well casing volumes, the following water quality field parameters were measured using a Quanta multi-probe prior to sampling:

Table 6. Additional Ground Water Quality Parameters

Monitoring Well ID	pH (pH units)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)
BH1	6.72	7.045	1.49	12.2
BH4	6.73	2.357	3.07	11.7
BH6	7.43	2.719	6.36	20.3
MW2-20	7.04	7.120	6.07	13.5
MW3-20	6.80	6.990	5.01	14.7
MW4-20	7.11	3.344	4.16	14.4

4.7 Ground Water: Sampling

All ground water samples were collected in accordance with strict environmental sampling protocols to ensure reliable results. Any equipment used to collect the ground water samples are previously discussed in *Section 4.0, 4.1,* and *4.2*.

The wells were purged to waste in sealed drums and fresh ground water samples were drawn for chemical analyses. During the sampling round, ground water samples were collected using a low-flow peristaltic pump, with dedicated tubing installed in each of the monitoring wells. This method minimizes the velocity of the formation water entering the well screen, as the drawdown is kept to a minimum (i.e., less than 10 cm) by adjusting the pumping rate. The samples were placed in laboratory-supplied glass bottles or vials and stored in a cooler on ice during transport to the laboratory.

Ground water monitoring, including measuring the depth to the stabilized water level, was conducted on May 26, 27, June 1 and June 2, 2022. Measurements of ground water depth were made using an electronic oil water interface probe. Ground water level measurements are shown in **Table 8.1.2**.

In addition, the ground water was screened in the field during all monitoring events for evidence of free product including presence of liquid petroleum hydrocarbons (LPH), sheen (iridescence), odour and colour, as summarized in **Table 8.1.3**.

4.8 Sediment: Sampling

As no water bodies are present on the Site, sediment sampling was not within the scope of this Phase Two ESA.

4.9 Analytical Testing

ALS Environmental (ALS) performed chemical analysis on soil and ground water samples collected from boreholes/monitoring wells at the Site. ALS is an accredited laboratory under the Standards Council of Canada (SCC) and the Canadian Association for Laboratory Accreditation (CALA), in accordance with the international standard ISO/IE 17025:2005 – General Requirements for the Competence of Testing and Calibration. ALS is accredited for all parameters required under Ontario Regulation 153/04 – Record of Site Condition, as outlined in MECP Technical Update entitled "Laboratory Accreditation Requirements under the New Records of Site Condition Regulation (O. Reg. 153/04).

Based on visual observations, results of headspace screening, and identified APECs and associated parameters of concern, fourteen (14) selected soil samples (representative of fill materials and native soils), and twenty (20) ground water samples were submitted to ALS Environmental, for the following analyses:

- PHCs on eight (8) soil and fourteen (14) ground water samples (including two (2) QA/QC samples for soil and two (2) QA/QC samples for ground water);
- BTEX on four (4) soil samples and nine (9) ground water samples (including one (1) QA/QC sample for soil and one (1) QA/QC sample for ground water);
- Metals on four (4) soil samples (including one (1) QA/QC sample) and five (5) ground water samples (including one (1) QA/QC sample);
- VOCs on four (4) soil samples (including one (1) QA/QC samples) and six (6) ground water samples (including one (1) QA/QC samples).

The Laboratory Certificate of Analyses and Analytical Reports are reproduced in Appendix A3.

4.10 Residue Management Procedures

All soil cuttings from the borehole drilling activities, water from the well development and purging, and all fluids from equipment cleaning are stored in secure containers on the Phase Two Property.

The secure containers were collected from the Site for off-Site disposal on June 30, 2022 by Conscade Engineering Service.

4.11 Elevation Surveying

The ground surface elevation of borehole and monitoring wells was surveyed by Palmer personnel. The elevations were surveyed based on a marked local benchmark. The benchmark is at Station 20220110017, located on the roof of 1050 Stacey Court, Mississauga, ON. The elevation at this point is understood to be at Ellipsoidal Elev. 120.138 metres.

A legal survey of the Phase Two Property can be seen in **Appendix A4**.

4.12 Quality Assurance and Quality Control Measures

A Quality Assurance and Quality Control (QA/QC) program, developed as part of the SAP, was followed by Palmer to ensure the integrity of all soil and ground water samples was maintained and that they were representative of the Site conditions. The QA/QC program was developed in accordance with the Analytical Protocol.

The jars and preservatives (where applicable) used in the collection of soil and ground water samples were supplied by ALS Environmental. The soil samples intended to be submitted for analysis of VOCs and PHC F1 were immediately preserved in laboratory provided methanol vials to sequester the volatile compounds.

The soil samples from the boreholes which were advanced using solid stem augers were collected with split spoon samplers which were decontaminated after the extraction of each sample.

The soil and ground water samples were labelled as they were collected. Samples were stored in ice-packed coolers, until the samples were transported to the laboratory for chemical analysis.

The soil and ground water samples were handed over to the laboratory by Palmer staff. Chains of Custody of the samples were logged with Chain of Custody Forms.

As discussed in Section 4.4 above, the monitoring wells were installed by direct drilling with solid stem augers and direct push with a split spoon. All drilling equipment arrived at the Site in a pre-cleaned condition. The augers were cleaned with a brush and washed between monitoring well locations.

The stainless-steel sampling tool (trowel) was decontaminated between sampling locations in the following sequence: cleaned with a brush to remove adhered soil and/or debris, rinsed with distilled water and allowed to air dry.

Field duplicate samples for both soil and ground water were submitted to ALS for chemical analysis for QA/QC purposes.

For soil samples, three (3) duplicate samples (22-5-6D, duplicate of soil sample BH2-5 SS6, 22-9-3D, duplicate of soil sample BH22-9 SS3, and 22-8-6D, duplicate of soil sample BH22-8 SS6) were submitted to ALS for analysis.

For ground water samples, two (2) duplicate ground water samples (BH4D and MW2-20D, duplicates of ground water sample BH4 and MW2-20) and one (1) trip blank were submitted to ALS for analysis.

The laboratory quality assurance program included the analysis of laboratory duplicate samples, methods blanks, matrix spikes and samples of reference materials, in accordance with the Analytical Protocol.

5. Review and Evaluation

5.1 Geology

The subsurface soil profiles and associated below grade elevations encountered at the Phase Two Property are described in the Finalized Field Logs in **Appendix A2**.

The estimated thickness range of each geologic unit is as follows:

Table 7. Summary of Geology

	Geologic Unit	Range Depth (m)	
	Asphalt Pavement	0.00 to 0.15	
Surface	Concrete	0.00 to 0.15	
Fill Strata	Silty Sand Fill	0.15 to 3.81	
	Silty Clay Fill	2.74 to 3.43	
	Sandy Silt Fill	3.43 to 3.81	
T:11 Ot (Silty Sand Till	2.29 to 5.33	
Till Strata	Sandy Silt Till	3.81 to 5.33	
Bedrock	Not encountered		

The soil across the property is considered to be medium-fine-textured for the purpose of this ESA.

5.2 Ground Water: Elevations and Flow Direction

Ground water levels were measured in the monitoring wells on May 26, June 1 and 2, 2022, using a Heron Interface Probe. Ground water levels and measured elevations from June 2, 2022 are presented on the borehole logs and are summarized below:

Table 8. Summary of Ground Water Conditions

Monitoring Well ID	Date	Ground Surface Elevation (mAMSL)	Depth to GW (mbgs)	GW Elevation (mAMSL)	Observations
BH1 (Old)	06/02/22	99.538	2.56	96.98	Casing was not sealed properly, and purged water was orange
BH2 (Old)	06/02/22	-	-	-	MW was damaged & not used in this investigation
BH4 (Old)	06/02/22	99.65	2.58	97.07	None
BH5 (Old)	06/02/22	-	-	-	MW was damaged & not used in this investigation
BH6 (Old)	06/02/22	-	1.60	-	None
BH7 (Old)	06/02/22	-	-	-	MW was dry

Monitoring Well ID	Date	Ground Surface Elevation (mAMSL)	Depth to GW (mbgs)	GW Elevation (mAMSL)	Observations
MW1-20 (Old)	06/02/22	-	-	-	MW was damaged & not used in this investigation
MW2-20 (Old)	06/02/22	99.459	3.04	96.42	None
MW3-20 (Old)	06/02/22	99.709	2.76	96.95	None
MW4-20 (Old)	06/02/22	99.728	2.90	96.83	None
BH22-5	06/02/22	99.66	2.66	97.00	None
BH22-6	06/02/22	99.56	2.71	96.85	None
BH22-7	06/02/22	99.552	2.59	96.96	None
BH22-8	06/02/22	99.765	3.27	96.50	None
BH22-9	06/02/22	99.8	3.32	96.48	None
BH22-10	06/02/22	99.724	3.34	96.38	None

The results of the ground water monitoring indicated that the primary near surface water table resides within the silty sand native and fill layer.

As summarized in **Table 8.1.3**, no free-product was observed in any of the monitoring wells monitored on the Phase Two Property.

Based on the overburden ground water elevations, the ground water is interpreted to flow across the Site in a southerly direction. The ground water elevations and interpreted flow direction is presented in **Figure 8.2.3**.

5.3 Ground water Hydraulic Gradients

The horizontal hydraulic gradient was estimated for the water table based on the June 2, 2022 ground water elevations.

The horizontal hydraulic gradient is calculated using the following equation:

 $i = \Delta h/\Delta s$

Where,

i = horizontal hydraulic gradient

 Δh (m) = Ground water elevation difference; and,

 Δs (m) = separation distance.

The following table shows the horizontal hydraulic gradient values calculated (as shown in **Figure 8.2.3**) using ground water monitoring data for the monitoring wells on the Phase Two Property:

		Horizontal Hydraulic Gradient in Native Unit (m/m)
	Average	0.03869
Horizontal	Maximum	0.06685
	Minimum	0.01053

It should be noted that vertical hydraulic gradients were not evaluated for the Site and ground water impacts were not vertically distributed at the depths investigated at the Phase Two Property.

The hydraulic conductivity of the silty sand unit was derived by using Puckett's formula, which uses the percentage of clay or percentage of the sample finer than 0.002 mm by weight (refer to laboratory grain size analyses provided in **Appendix A3**). Based on grain size analysis testing, the hydraulic conductivity of the native unit is on the order of 1.33x10⁻⁵ m/s. Therefore, the soil's ability to transmit water across the site (in the native till materials) is slow and verifies that the potential for vertical migration of contamination is limited on the Phase Two Property. Furthermore, a hydraulic conductivity of 1.33x10⁻⁵ m/s is consistent with an unconsolidated deposit of clean sand, silty sand, and silt loess (Freeze and Cherry, 1979) and represents a moderately permeable aquitard unit.

5.4 Fine-Medium Soil Texture

Fine-medium soil texture was used for this investigation, as soil grain size analyses conducted by ALS Environmental on one (1) soil sample collected from the native unit (BH22-10), revealed 71.60% silt and 6.03% clay, which resembles medium-fine textured soils, as previously discussed in *Section 1.4*.

5.5 Soil: Field Screening

Sample headspace screening with the PID yielded readings from non-detect to 380 ppm, as shown in the Finalized Field Logs in **Appendix A2**.

These readings and any field observations (staining, odours, etc.) were considered when selecting soil samples for laboratory analyses.

5.6 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on visual and/or olfactory evidence of impacts, known historical contamination and the presence of potential water bearing zones. The results of the soil sample analyses, and their respective Table 3 SCS, are summarized in **Table Series 8.1.4**. Measured (previous) contaminant concentration exceedances in soil can be seen in **Figure 8.2.4a**.

A total of fourteen (14) soil samples including three (3) duplicate soil samples were submitted to ALS for analysis of various COPC to investigate the soil quality related to the APECs. These COPC included PHCs, VOCs, BTEX, and metals (As, Sb, Se, Na, and low or high pH).

Table 9 lists the exceedances in the analysed soil samples collected during the 2020 GHD Phase II ESA.

Table 9. Soil Exceedances of MECP Table 3 Criteria

Sample ID	Borehole ID	Depth (mbgs)	Exceeding Parameters	Concentration	Unit	MECP Table 3 RPI SCS
			GHD (2020)			
MW1-4-6	MW1-20 (Old)	1.22 –	EC	0.799	mS/cm	0.7
10100 1-4-0	MW 1-20 (Old)	1.83	SAR	19.1	μg/g	5
BH9-2-4	BH9-20 (Old)	0.61 – 1.22	EC	1.573	mS/cm	0.7
DП9-2- 4			SAR	14.4	μg/g	5
BH10-2-4	BH10-20 (Old)	BH10-20 (Old) 0.61 – 1.22	EC	0.965	mS/cm	0.7
BH 10-2-4			SAR	22.3	μg/g	5
DUP3			EC	0.943	mS/cm	0.7
			SAR	22.8	μg/g	5

Based on historic soil sampling results, Inorganic (SAR and EC) exceedances in soil have been identified in three locations on the Phase Two Property, as shown in **Figures 8.2.4a**. The locations of these areas of exceedances were found to be consistent with the use of road salt for de-icing purposes in the prior study, which is no longer an environmental concern on the Phase Two Property, according to O. Reg. 153/04 s. 49(1), which states an exemption is put in place for this exceedance due to road salt application for the purpose of keeping the roadway safe for traffic under conditions of snow, ice, or both.

The current soil sampling results demonstrated no exceedances above the Table 3 SCS on the Phase Two Property.

Furthermore, soil maximum concentration data can be seen in **Table Series 8.1.7**. In addition, the horizontal and vertical distribution of the aforementioned contaminants within the impacted area can be seen in **Figure Series 8.2.6**.

5.7 Ground Water Quality

From May 27 to June 3, 2022, twenty (20) ground water samples, including three (3) duplicates and one (1) trip blank were collected from monitoring wells BH1 (Old), BH4 (Old), BH6 (Old), MW2-20 (Old), MW3-20 (Old), MW4-20 (Old), BH22-5, BH22-6, BH22-7, BH22-8, BH22-9, and BH22-10 to assess ground water quality at the Site. Ground water samples were not collected from monitoring well BH7 due to the well being dry, and from MW1-20, BH5, and BH2 due to the wells being damaged. The results of the ground water sample analyses, and their respective Table 3 SCS, are summarized in **Table Series 8.1.5**. Existing (previous) contaminant concentration exceedances in soil can be seen in **Figures 8.2.5a**.

No evidence of free product (i.e. visible film or sheen), or odour was observed during well purging and ground water sampling from the newly installed wells and existing wells. Ground water samples that were analyzed for metal parameters were field filtered at the time of collection.

The samples collected were analysed for one or more of the COPCs, including PHCs, VOCs, BTEX, and metals (As, Sb, Se, Na, low or high pH).

The concentrations of the COPCs in the tested ground water samples were in compliance with the MECP Table 3 SCS.

Exceedances in ground water samples from the previous GHD Phase II ESA included an exceedance in chloride of $2,750,000~\mu g/L$ in MW1-20. This exceedance was also found to be consistent with the use of road salt for de-icing purposes in the prior study, which is no longer an environmental concern on the Phase Two Property, according to O. Reg. 153/04~s.~49(1), which states an exemption is put in place for this exceedance due to road salt application for the purpose of keeping the roadway safe for traffic under conditions of snow, ice, or both.

Ground water maximum concentration data can also be seen in Table Series 8.1.7.

5.8 Sediment Quality

Sediment sampling was not part of this investigation, as previously discussed in *Section 4.8* and **Table 8.1.6**.

5.9 Quality Assurance and Quality Control Results

The QA/QC samples for this Phase Two ESA investigation included field duplicates for soil and ground water, and a trip blank for QA/QC purposes. The trip blank was submitted with ground water samples for analysis of VOCs.

The purpose of the duplicate samples is to measure the precision or reproducibility of the field and laboratory methodology used in the collection and analysis of the samples. The precision is evaluated in terms of the relative percent difference (RPD). The RPDs of the primary and duplicate samples were not calculated in situations where the concentrations of both primary and duplicate samples were at least 5 times less than the laboratory Reporting Detection Limits (RDLs) for the parameters analyzed.

Laboratory quality control limits for duplicate and method blank, method blank spike, matrix spike and surrogate recoveries were within the acceptable limits.

No tested parameters were detected in the trip blank.

All of the samples were handled in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (Analytical Protocol) with respect to preservation methods, storage requirements, or container type without any exception. Holding times were met for all samples.

The RPDs for all remaining reported concentrations were not calculated considering that the results were below the laboratory minimum detection limits or less than 5 times of the method detection limit in both soil and ground water samples. No other QA/QC concerns were noted.

Based on the review of QA/QC sample results of soil and ground water, it is certified that:

 All Certificates of Analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47 (3);

- A Certificate of Analysis report has been received for each sample submitted for analysis; and
- All Certificates of Analysis or analytical reports received have been included in full in Appendix A3
 of this Phase Two ESA report.

ALS has certified that the analytical methods and data meet the requirements of the Analytical Protocol and that holding times were met for all samples.

Laboratory quality control limits for duplicate, method blank, method blank spike, matrix spike and surrogate recoveries were within the acceptable limits.

The sampling program was carried out in accordance with the SAP. All requirements of the Analytical Protocol were met.

In summary, decision making was not affected by the quality of the data obtained and the overall objectives of the assessment were met.

5.10 Phase Two Conceptual Site Model

Section i. A description and assessment of the Phase Two Property:

The Phase Two Property is a commercial property that currently comprises a 334-m² two-storey former Ontario Provincial Police (OPP) office building (with a partial basement) with a 111-m² single-storey attached detention area, a 143-m² garage, and two (2) canopy structures. The Phase Two Property has been unoccupied since August 2020.

A.	Potentially Contaminating	There are five (5) PCAs (1-5) on the Phase Two Property and no				
	Activities (PCAs)	PCAs within the Phase One StudyArea. Refer to Drawing 3.				
		PCA 1		Former Automobile		
		(Item #52)	On-Site	Maintenance Garage		
				Former diesel backup		
		PCA 2	On-Site	generator with a50-gallon		
		(Item #28)	J. J	diesel AST located inside the		
				garage.		
		PCA 3	On-Site	Current diesel-fired backup		
		(Item #28)		generator with integrated 50-		
			OH-Site	gallon diesel AST located at		
				the exterior of the garage.		
		PCA 4		Former 1,000-gallon heating		
		(Item #28)	On-Site	oil UST located at the east		
				exterior area of the Phase		
				Two Property.		
		PCA 5		Historic Oily Water Spill to a		
		(N/A. Spill)	On-Site	storm drain at the northeast		
			On-Site	portion of the Phase Two		
				Property.		

B.	Areas of Potential
	Environmental Concerns
	(APECs)

There are five (5) APECs on the Phase Two Property where PCAs (on-Site) may have affected the soil and/or ground water at the Phase Two Property:

APEC 1	Historical use of automobile service repair garage located on the southern portion of the Phase One Property which has existed since at least 1966. Wash water or runoff associated with vehicle maintenance generated within the garage building was collected in a trench drain system		
	and a catch basin in the garage.		
APEC 2	Former diesel backup generator with tank in garage located on the southern portion of the Phase One Property. One (1) former 50-gallon AST which was connected to a former diesel fuel backup generator located inside the garage building was reported to have been located inside the southern portion of the garage.		
APEC 3	Presence of diesel backup generator with integrated 50-gallon diesel AST located on the southern portion of the Phase One Property adjacent to the exterior wall of the garage building.		
APEC 4	A former 1,000-gallon heating oil tank located on the eastern portion of the Phase One Property. A historic 1,000-gallon heating oil UST outside of the boiler room		
APEC 5	Historical oily water spill to storm drain located on the northeastern portion of the Phase One Property.		

Refer to Drawing 2, 3 and 4.

COPC associated with the abovementioned APECs include the following:

APEC	COPC	Media Potentially Impacted	Borehole/ Monitoring Well Location Sampled for COPC
1	Petroleum Hydrocarbons (PHCs), Benzene, Toluene, Ethylbenzene,	Soil and Ground Water	BH22-8 (3.81-4.57 mgbs) BH22-9 (1.52-2.29 mbgs) BH22-10 (4.57-5.33 mbgs) MW2-20

11.			
	and Xylenes (BTEX), Volatile Organic Compounds (VOCs) Metals, As, Sb, Se		
2	PHCs, BTEX	Soil and Ground Water	BH22-8 (3.81-4.57 mbgs) BH22-9 (1.52-2.29 mgbs) BH22-10 (4.57- 5.33 mbgs)
3	PHCs, BTEX	Soil and Ground Water	BH22-10 (4.57- 5.33 mbgs) MW2-20
4	PHCs, BTEX	Soil and Ground Water	BH22-5 (3.81-4.57 mgbs) BH22-6 (1.22-1.52 mbgs) BH22-7 (3.43-3.81 mbgs) BH1 BH4 BH6 MW3-20 MW4-20
5	PHCs, BTEX	Soil and Ground Water	BH22-5 (3.81-4.57 mbgs) BH22-6 (1.22-1.52 mbgs) BH22-7 (3.43-3.81 mbgs) BH1 BH4 MW3-20 MW4-20

Prior to Palmer's investigations, all available previous environmental reports provided were reviewed to determine the presence of PCAs and APECs at the Phase One Property.

A Phase One Environmental Site Assessment (ESA) was completed for 49 South Service Road by GHD Limited (herein referred to as GHD) on December 21, 2020 to document environmental conditions for the potential disposition of the Property. The Phase One ESA identified APECs including historical pesticide use, unknown fill material quality, vehicle servicing garage, potential historical UST, and fuel storage tank related to the diesel backup generator on the Property.

A Phase Two ESA was subsequently completed for 49 South

Service Road by GHD on April 1, 2021 in order to assess concerns identified within the previous Phase I ESA. During the Phase Two ESA ten (10) boreholes were advanced to depths of 4.57 mbgs and the installation of four (4) ground water monitoring wells (MW1-20 to MW4-20) were carried out. Depth to groundwater ranged from 2.64 to 3.50 mbgs. The subsurface stratigraphy on the Phase One Property generally consisted of asphalt, topsoil, sand, gravel, trace silt, and trace gravel to a maximum of 4.57 mbgs, overlying native silt. Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition and those for industrial/commercial/community (ICC) property use with coarse textured soils (Table 3 SCSs), were chosen for the Subject Site. Road salt related exceedances (SAR and EC) concentrations in soil samples from MW1-20, BH9-20 and BH10-20 were above the applicable Table 3 SCSs) in the soils was identified along the southern, eastern, and western portions of the Subject Site. The Phase Two ESA concluded that the exemption for road salt de-icing purposes would consider the standards to be met for the purposes of RSC filing.

Palmer's investigation consisted of the following:

Upon review of Palmer's grain size analytical results, Palmer compared the previous laboratory results of the GHD Phase Two **ESA** against **MECP** Table SCS residential/parkland/institutional (RPI) property uses in a nonpotable ground water condition. Palmer noted that the previously identified contaminant concentrations of SAR and EC that exceeded the Table 3 SCS for RPI property uses with coarsetextured soils also exceeded the Table 3 SCS for RPI property uses with fine/medium-textured soils, as shown in Drawing 4. The locations of these areas of exceedances were found to be consistent with the use of road salt for de-icing purposes in the prior study, which is no longer an environmental concern on the Phase Two Property, according to O. Reg. 153/04 s. 49(1), which states an exemption is put in place for this exceedance due to road salt application for the purpose of keeping the roadway safe for traffic under conditions of snow, ice, or both.

Exceedances in ground water samples from the previous GHD Phase II ESA included an exceedance in chloride of 2,750,000 µg/L in MW1-20, as shown in **Drawing 5**. This exceedance was also found to be consistent with the use of road salt for de-icing purposes in the prior study, which is no longer an environmental concern on the Phase Two Property, according to O. Reg. 153/04 s. 49(1), which states an exemption is put in place for this

exceedance due to road salt application for the purpose of keeping the roadway safe for traffic under conditions of snow, ice, or both.

The monitoring wells located in the vicinity of the historic automobile repair garage, the former diesel backup generator with former AST and the current diesel backup generator with integrated 50-gallon AST (MW2-20, BH22-8, BH22-9, and BH22-10) were analyzed for the identified COPC associated with these APECs.

Monitoring wells located in the vicinity of the former heating oil tank and historic oily water spill (BH1, BH4, BH6, MW3-20, MW4-20, BH22-5, BH22-6, and BH22-7) were analyzed for the identified COPC associated with these APECs.

Soil samples associated with APEC 1 were collected at depths between 1.52 and 5.3 mbgs in relation to potential impacts from the former use of the auto service repair garage on the Phase Two Property.

Soil samples associated with APEC 2 were collected at depths between 1.52 and 5.33 mbgs in relation to potential impacts from the former diesel backup generator and tank on the Phase Two Property.

Soil samples associated with APEC 3 were collected at depths between 4.57 and 5.3 mbgs in relation to potential impacts from the current diesel backup generator on the Phase Two Property.

Soil samples associated with APEC 4 were collected at depths between 1.22 and 4.57 mbgs in relation to potential impacts from the former heating oil UST on the Phase Two Property.

Soil samples associated with APEC 5 were collected at depths between 1.22 and 4.57 mbgs in relation to a former oily water spill on the Phase Two Property.

Refer to Cross-Section A-A', B-B', and C-C'.

C. Any subsurface structures and utilities on, in, or under the Phase Two Property

Subsurface structures identified on, in, or under the Phase Two Property include a partial basement associated with the main building located on the northern portion of the Site.

Subsurface utilities identified on, in, or under the Phase Two Property include:

- Sanitary sewer, potable water, storm sewer, hydro, natural gas services, private irrigation system, as well as a potential concrete septic tank; and
- Alectra Mississauga, Enbridge Gas, Peel Sanitary, Bell Canada, and Peel Water.

Refer to **Drawing 2**.

Site-wide, subsurface structures and utilities are generally installed above the ground water table at the site.

Section ii. A description of the physical setting of the Phase Two Property:

The Phase Two Property is a 1.09-acre, irregular shaped, parcel of land located on the south side of Queen Elizabeth Way, north of the intersection with Hurontario Street in Mississauga, Ontario. Refer to **Drawing 2.**

A. Stratigraphy from ground surface to the deepest aquifer or aquitard investigated The observed soil stratigraphy comprised:

	Geologic Unit	Depth Range
		(m)
Surface	Asphalt Pavement/Concrete	0.00 to 0.15
=	Silty Sand Fill	0.15 to 3.81
Fill	Silty Clay Fill	2.74 to 3.43
Strata	Sandy Silt Fill	3.43 to 3.81
Till	Silty Sand Till	2.29 to 5.33
Strata	Sandy Silt Till (trace gravel)	3.81 to 5.33
Bedrock	Not Encountered.	

Fill strata was identified between 0.15 and 3.81 m below existing grade. Evidence of man-made materials (i.e., waste, debris, concrete, etc.) was not observed in the strata. Therefore, the observed fill material is considered to be re-worked native materials.

Refer to Cross-Sections A-A', B-B', and C-C'.

One (1) soil sample was collected in the native strata between 2.29 and 3.05 mbg to determine the soil grain size for the Phase Two Property. Soil grain size analyses conducted by the laboratory classified the soil as silty sand and clay comprising approximately 77.6% silt and clay. Since more than 50% of the particles were smaller than 75 micrometres in diameter, the assessment criteria corresponding to medium-fine textured soils were selected for comparison in laboratory analytical results.

B.	Hydrogeological characteristics	The results of the ground water monitoring indicated that the primary near surface water table resides within the silty sand native and fill layer. No evidence of free product was observed in the ground water in the monitoring wells on the Phase Two Property, no visible PHC film or sheen was present in the ground water during well development or in any ground water samples collected. Ground water flow is interpreted to flow across the Site in a									
		southerly direction. Refer to Figure 8.2.3 . The following horizontal hydraulic gradient calculations using ground water monitoring data across the site revealed on the Phase Two Property:									
					Native (Till)						
				A.,	Unit						
			Horizontal	Average Maximum	0.03869 m/m 0.06685 m/m						
			Tionzontai	Minimum	0.01053 m/m						
C.	Approximate depth of bedrock	the nate transmoverifies the Phase	tive till is 1.33x10 it water across the that the potential f ase Two Property.	l-5 m/s. Therefore the site (in the native or migration of co	hydraulic conductivity of ore, the soil's ability to till materials) is slow and ntamination is limited or g depth of 5.33 m below						
		existing	g grade across the ecords within the I	Site during this in	• .						
D.	Approximate depth to water table	Ground	l water was obs	erved between	1.60 to 3.34 mbgs						
E.	Any respect in which Section 35, 41, or 43.1 of the regulation applies to the property	 generally in the lower native unit. Section 35, non-potable site condition standards, applies to the Phase Two Property based on the following: The property and all properties located within a 250 m radius of the property are supplied by a municipal drinking water system, as defined in the Safe Drinking Water Act, 2002 (shown in Drawing 3); The proposed use of the Phase Two Property is residential use; The property is not located in an area designated in the municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater, and there are no wells on the property or within 									

		the Phase One Study Area used for human consumption or agriculture; and, The local and regional municipality have consented in writing to the application of the non-potable site condition standards. Section 41 and 43.1 do not apply to the Phase Two Property.
F.	Areas on, in, or under the	Excess soil has not been imported to the Phase Two Property for
	Phase Two Property where	backfilling and/or regrading purposes.
	excess soil is finally placed	
G.	Approximate locations, if	The proposed redevelopment will be residential. Residential
	known, of any proposed	redevelopment will comprise a 22-storey tower and 4-storey podium
	buildings and other structures	(with an underground parking garage) on the central portion of the
		Site. The proposed building locations are shown in Drawing 4 .

Section iii. Where a contaminant is present on, in, or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of:

Α	Cook area where a	The following limited group of sail contemination were identified:								
Α.	Each area where a	The following limited areas of soil contamination were identified:								
	contaminant is present on, in or under the Phase Two	1s. Southern portion of the Phase Two Property								
	Property	1s. Southern portion of the Phase Two Property								
	Property	Defer to Drewing 4								
_	The contaminant consists of	Refer to Drawing 4 .								
B.	The contaminants associated	Contaminants associated with the aforementioned areas are as								
	with each of the areas referred	follows:								
	to in subparagraph A	1s. EC. SAR, and Chloride (Drawings 4 and 5)								
		1s. EC, SAR, and Chloride (Drawings 4 and 5)								
		As not O Bog 153/04 s. 40(1), the exceedance of EC SAB, and								
		As per O.Reg. 153/04 s. 49(1), the exceedance of EC, SAR, and chloride is exempt as part of this Phase Two ESA due to the use								
		of road salt being applied for the purpose of keeping an asphalt-								
		paved area free of snow or ice or both.								
C.	Each medium in which a	The aforementioned exceedances occurred in soil, at depths								
0.	contaminant associated with	between 0.61 and 1.83 mgbs, and ground water, and are road salt								
	an area referred to in	related, as noted above.								
	subparagraph is present	Totaloa, ao Notoa abovo.								
D.	A description and assessment	Soil impacts on the southern portion of the Phase Two Property								
	of what is known about each	and ground water impacts on the southern portion of the Phase								
	of the areas referred to in	Two Property have been noted and are related to the application								
	subparagraph A	of road salt.								
E.	The distribution, in each of the	Drawing 4 shows the profile locations for Cross-Sections A-A', B-								
	areas referred to in	B', and C-C' and depict the horizontal and vertical distribution of								
	subparagraph A	the contaminants associated with road salt application. The								
		aforementioned exceedances occurred at depths between 0.61 and								
		1.83 mgbs within three (3) localized areas on the southern portion								
		of the Phase Two Property.								

F.	Anything known about the	See Item D.
	reason for the discharge of the	
	contaminants present on, in or	
	under the Phase Two Property	
	at a concentration greater than	
	the applicable site condition	
	standard into the natural	
	environment	
G.	Anything known about	Delineation boreholes were not required as part of this
	migration of the contaminants	investigation, as exceedances identified were road salt related and
	present on, in or under the	are exempt as per O. Reg. 153/04, s. 49(1).
	Phase Two Property at a	
	concentration greater than the	Refer to Drawing 4 .
	applicable site condition	
	standard away from any area	
	of potential environmental	
	concern, including the	
	identification of any	
	preferential pathways	
Н.	Climatic or meteorological	Meteorological conditions may have influenced the distribution and
	conditions that may have	migration of the contaminants by raising the ground water table.
	influenced distribution and	However, the calculated hydraulic conductivity revealed the soil's
	migration of the contaminants	ability to transmit water across the site (in the native materials) is
		slow and verifies that the potential for migration of contamination is
		limited on the Phase Two Property.
		Ground water data for the Site does not suggest considerable
		influence on seasonal ground water levels due to climatic or
		meteorological conditions.
I.	If applicable, information	Soil vapor samples were not collected as part of this Phase Two
	concerning soil vapour	ESA.
	intrusion of the contaminants	
	into building including, (1)	
	relevant construction features	
	of a building, such as a	
	basement or crawl space, (2)	
	building heating, ventilation	
	and air conditioning design	
	and operation, (3) subsurface	
	utilities	

Section iv. Where contamination is present on, in, or under the Phase Two Property at a concentration greater than the applicable site condition standard, one or more cross-sections:

Refer to Cross-Section A-A', B-B' and Cross-Section C-C'.

Section v. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable site condition standard for the contaminant, a diagram identifying the release mechanisms, contaminant transport pathway, the human and ecological receptors located on, in, or under the Phase Two Property, receptor exposure points, and routes of exposure:

Primary sources of concern on the Phase Two Property are related to EC and SAR impacted soil and Chloride impacted ground water due to the application of road salt for de-icing activities. Exposure pathways related to the impacted soil, include ingestion, immersion, and/or dermal contact of soil, which may impact potential receptors including residents, indoor and/or outdoor workers, subsurface workers, mammals, birds, terrestrial invertebrates, and plants.

Receptor pathways related to EC and SAR impacted soils and ground water due to the application of deicing activities are incomplete as the exemption set out in Section 49.1 of Ontario Regulation 153/04 (as amended) is being relied upon.

Refer to Drawing 6.

Section vi. If a non-standard delineation was conducted in accordance with Section 7.1 of Schedule E as part of preparing the Phase Two ESA:

A non-standard delineation was not conducted as part of this Phase Two ESA.

Section vii. If the exemption set out in paragraph 1 or 2 of Section 49.1 is being relied upon:

The exemption set out in paragraph 1 of Section 49.1 of Ontario Regulation 153/04 is being relied upon for soil exceedances (SAR and EC) identified in shallow soils on the southern portion of the Phase Two Property and Chloride in ground water on the southern portion of the Phase Two Property beneath the asphalt-paved parking areas, relating to the use of road salt for de-icing operations for vehicular and pedestrian traffic safety during the winter months. Therefore, the exemption applies to the Phase Two Property and the identified soil exceedances of SAR and EC and ground water exceedances of Chloride are not considered to be an environmental concern that requires further investigation and/or remediation.

The exemption set out in paragraph 2 of Section 49.1 of Ontario Regulation 153/04 is not being relied upon as part of this Phase Two ESA.

Section viii. If the exemption set out in paragraph 3 of Section 49.1 is being relied upon:

The exemption set out in paragraph 3 of Section 49.1 of Ontario Regulation 153/04 is not being relied upon as part of this Phase Two ESA.

Summary of Remedial Activities:

Results of the Phase Two ESA revealed that all soil and ground water samples collected and analyzed for the COPCs were below the applicable Table 3 SCS for RPI property uses with medium-fine textured soils in a non-potable ground water condition with the exception of soil and ground water exceedances as a result of road salt application. As the road salt related exceedances are exempt as per O. Reg. 153/04, remedial activities are not required at the Phase Two Property.

6. Conclusions

In comparison with the new (2011) Ontario *Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the* EPA criteria, the results of laboratory analyses revealed the following contaminant concentrations in comparison to the Table 3 Site Condition Standards (SCS) for residential/parkland/institutional (RPI) property uses with medium-fine grained soils in a non-potable ground water condition:

- Sodium Adsorption Ratio (SAR) and Electrical Conductivity (EC) in soil on the southern portion (MW1-20, BH9-20, and BH10-20) of the Phase Two Property between depths of 0.61 and 1.83 mbgs; and,
- Chloride in ground water on the southern portion (MW1-20) of the Phase Two Property.

The aforementioned soil and ground water exceedances are related to the application of road salt for deicing purposes as a safety measure for vehicular and pedestrian traffic on the Phase Two Property and are considered to be exempt from further investigation and/or remediation, as per O. Reg. 153/04, s. 49(1). Therefore, the standards for EC and SAR in soil and chloride in ground water are "deemed to be met" and no further investigations are warranted.

6.1 Limitations

This report was prepared by Palmer for the account of Edenshaw SSR Developments Limited in accordance with the professional services agreement.

The conclusions and recommendations detailed in this report are based upon the information available at the time of preparation of the report. No investigative method eliminates the possibility of obtaining imprecise or incomplete information. Professional judgement was exercised in gathering and analyzing the information obtained and in the formulation of our conclusions and recommendations.

The nature of the sampling works makes it possible that contrary conditions may be identified in locations which were not sampled. However, it does suggest that the conditions will be localized and not extensive. The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations made during drilling and therefore should not be interpreted as exact planes of geological change.

The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects Palmer's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Palmer accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

Unless stated otherwise in this report, provided that the report is still reliable, and less than 18 months old, Palmer may issue a third-party reliance letter to parties, client identifies in writing, upon payment of the then current fee for such letters. All third parties relying on Palmer's report, by such reliance agree to be bound by our proposal and Palmer's standard reliance letter. Palmer's standard reliance letter indicates that in no event shall Palmer be liable for any damages, howsoever arising, relating to third-party reliance on Palmer's report. No reliance by any party is permitted without such agreement. This report is not to be given over to any third party for any purpose whatsoever without the written permission of Palmer.

The original of the technology-based document sent herewith has been authenticated and will be retained by Palmer for a minimum of five years. Since the file transmitted is now out of Palmer's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

6.2 Signatures and Certification

This report was prepared by Bailey Fleet, B.Sc.(Env.) who is currently an Environmental Scientist with Palmer in the Toronto Office. She has experience in conducting Phase One ESAs at various land use types, in accordance with Ontario Regulation 153/04 and 511/09 and the CSA Z768-01 environmental protocols.

This report was prepared by Sylvia Babiarz, M.Env.Sc., who is currently an Environmental Scientist with Palmer in the Toronto Office. She has experience in conducting Phase One and Two ESAs at various land use types, in accordance with Ontario Regulation 153/04 and 511/09 and the CSA Z768-01 environmental protocols.

This report was reviewed by Kalina Naydenova, M.Sc. who is an Environmental Scientist with Palmer in the Toronto Office. She has over twelve years' experience conducting numerous Phase One and Two ESAs at various land use types, conducting soil and ground water sampling procedures in accordance with ASTM 1527-13 and ASTM E1903-19, as well as experience with Ontario Regulation 153/04 and 511/09 and the CSA Z768-01 and Z769-00 environmental protocols.

This report was reviewed by Sarah Sipak, B.Sc., P.Geo (limited), an Environmental Geoscience Team Lead in the Toronto office of Palmer. She has over twelve years' experience conducting Phase One and Two ESAs, soil and ground water sampling, and site remediation in accordance with Ontario Regulation 153/04 and 511/09, the CSA Z768-01 and Z769-00 environmental protocols, the Consulting Engineers of Ontario's Generally Accepted Standards for Environmental Investigations, and the Canadian Mortgage and Housing Corporation (CMHC) environmental site investigation procedures for mortgage loan insurance. The aforementioned ESAs have covered all land use types across Canada. Sarah also has numerous years of experience in preparing and filing Record of Site Conditions (RSCs) with the Ministry of the Environment, Conservation and Parks (MECP). Sarah also has experience conducting Excess Soil Reuse Planning assessments in accordance with Ontario Regulation 406/19.

Prepared By:

Bailey Fleet, B.Sc.(Env.) Environmental Scientist

Sylvia Babiarz, M.Env.Sc. Environmental Scientist

Kalina Naydenova, M.Sc. Environmental Scientist

Reviewed By:

Sarah Sipak, B.Sc., P.Geo. (limited), QP_{ESA} Environmental Geoscience Team Lead

7. References

- Atlas of Canada, Topographic Maps;
 - http://atlas.nrcan.gc.ca/Site/english/toporama/index.html
- Chapman and Putnam, The Physiography of Southern Ontario, 1984;
- ECOH Asbestos Building Materials Reassessment Survey Report, 2013;
- Freeze, Alan R. and Cherry, John A., Ground water, 1979;
- GHD Phase One Environmental Site Assessment, Mississauga OPP Detachment, 49 South Service Road, Mississauga, Ontario, 2020
- GHD Phase Two Environmental Site Assessment, Mississauga OPP Detahcment, 49 South Service Road, Mississauga, Ontario, 2021
- Google Earth, 2018.
- IO Base Building Assessment Report, B12278 OPP Detachment, 49 South Service Rd, Mississauga, 2019;
- IO Base Building Assessment Report, B12279 OPP Garage, 49 South Service Rd, Mississauga, 2019;
- Palmer Phase One Environmental Site Assessment, 49 South Service Road, Mississauga, Ontario, 2022;
- Terzaghi and Peck, Soil Mechanics in Engineering Practice, 1948;
- The Ontario Geological Survey, 1990; and,
- The Ontario Geological Survey, 2003.

8. Tables and Figures

8.1 Tables

8.1.1 Monitoring Well Installation

Monitoring Well ID	Ground Surface Elevation (mAMSL)	Monitoring Well Construction Details	Associated Elevations Below Grade (mAMSL)					
D1100 5	00.00	50-mm PVC solid riser pipe	99.66 – 98.07					
BH22-5	99.66	50-mm PVC slotted intake screen	98.07 – 95.02					
DI IOO C	00.50	50-mm PVC solid riser pipe	99.56 – 98.54					
BH22-6	99.56	50-mm PVC slotted intake screen	98.54 – 95.49					
DI 100.7	00.550	50-mm PVC solid riser pipe	99.552 – 98.282					
BH22-7	99.552	50-mm PVC slotted intake screen	98.282 – 95.232					
BH22-8	99.765	50-mm PVC solid riser pipe	99.765 – 98.775					
DH22-0	99.765	50-mm PVC slotted intake screen	98.775 – 95.725					
BH22-9	99.8	50-mm PVC solid riser pipe						
BH22-9	99.8	50-mm PVC slotted intake screen	98.68 – 95.63					
DU00 40	00.704	50-mm PVC solid riser pipe	99.724 – 98.764					
BH22-10	99.724	50-mm PVC slotted intake screen	98.764 – 95.714					
DITA (OI4)	99.538	50-mm PVC solid riser pipe	99.538 – 97.988					
BH1 (Old)	99.556	50-mm PVC slotted intake screen	97.988 – 94.938					
BH2 (Old)	99.508	50-mm PVC solid riser pipe	99.508 – 98.728					
BHZ (Old)	99.506	50-mm PVC slotted intake screen	98.728 – 95.678					
BH4 (Old)	99.65	50-mm PVC solid riser pipe	99.65 – 98.35					
БП4 (Olu)	99.05	50-mm PVC slotted intake screen	98.35 – 95.3					
MW2-20 (GHD	99.459	50-mm PVC solid riser pipe	99.459 – 98.409					
2020)	99.459	50-mm PVC slotted intake screen	98.409 – 95.359					
MW3-20 (GHD	99.709	50-mm PVC solid riser pipe	99.709 – 98.509					
2020)	99.709	50-mm PVC slotted intake screen	98.509 – 95.459					
MW4-20 (GHD	99.728	50-mm PVC solid riser pipe	99.728 – 98.178					
2020)	99.720	50-mm PVC slotted intake screen	98.178 – 95.128					

8.1.2 Water Levels

Monitoring Well ID	Date	Ground Surface Elevation (mAMSL)	Depth to GW (mbgs)	GW Elevation (mAMSL)
BH1 (Old)	06/02/22	99.538	2.56	96.98

BH2 (Old)	06/02/22	-	-	-
BH4 (Old)	06/02/22	99.65	2.58	97.07
BH6 (Old)	06/02/22	-	1.60	-
BH7 (Old)	06/02/22	-	-	-
MW1-20 (Old)	06/02/22	-	-	-
MW2-20 (Old)	06/02/22	99.459	3.04	96.42
MW3-20 (Old)	06/02/22	99.709	2.76	96.95
MW4-20 (Old)	06/02/22	99.728	2.90	96.83
BH22-5	06/02/22	99.66	2.66	97.00
BH22-6	06/02/22	99.56	2.71	96.85
BH22-7	06/02/22	99.552	2.59	96.96
BH22-8	06/02/22	99.765	3.27	96.50
BH22-9	06/02/22	99.8	3.32	96.48
BH22-10	06/02/22	99.724	3.34	96.38

8.1.3 LNAPLs and DNAPLs

No light or dense non-aqueous phase liquid measurements were detected at the Phase Two Property, as discussed in *Sections 4.7, 5.2*, and *5.7*.

8.1.4 Soil Data

PHCs with BTEX

Soil Analytical Results: Petroleum Hydrocarbons (PHCs) and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)

3011 Allalytical IV	csuits. I choicuin 115	diocarbons (i iics	s) and Benzene, Te	nuciic, i	PHCs BTEX								
						11103				טונ			
				F1 (C6-C10)	F1 (C6-C10) - BTEX*	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Benzene	Toluene	Ethylbenzene	Xylenes, Total (Xylene Mixture)	
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	
	MOECC Guideline (2 extured Soil, Non-Po			65	65	150	1300	5600	0.17	6	15	25	
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date										
BH22-5.	22-5-6.	3.81-4.57	01-Jun-22	<5.0	< 5.0	<10	< 50	< 50	< 0.0068	< 0.080	< 0.018	< 0.050	
BH22-5.	22-5-6D	3.81-4.57	01-Jun-22	< 5.0	< 5.0	<10	< 50	< 50	< 0.0068	< 0.080	< 0.018	< 0.050	
BH22-6.	22-6-2B	1.22-1.52	01-Jun-22	< 5.0	< 5.0	<10	< 50	< 50	< 0.0068	< 0.080	< 0.018	< 0.050	
BH22-7.	22-7-5B	3.43-3.81	01-Jun-22	<5.0	<5.0	<10	62	75	0.0194	< 0.080	< 0.018	< 0.050	
BH22-8.	22-8-6.	3.81-4.57	01-Jun-22	<5.0	< 5.0	<10	<50	< 50	< 0.0068	< 0.080	< 0.018	< 0.050	
BH22-9.	22-9-3.	1.52-2.29	01-Jun-22	<5.0	< 5.0	<10	< 50	< 50	< 0.0068	< 0.080	< 0.018	< 0.050	
BH22-9.	22-9-3D	1.52-2.29	01-Jun-22	< 5.0	< 5.0	<10	< 50	< 50	< 0.0068	< 0.080	< 0.018	< 0.050	
BH22-10.	22-10-7.	4.57-5.33	01-Jun-22	<5.0	< 5.0	<10	< 50	< 50	< 0.0068	< 0.080	< 0.018	< 0.050	
MW1-20	MW1-8-10	2.44-3.05	07-Dec-20	<5.0	< 5.0	<10	< 50	84	< 0.02	< 0.05	< 0.05	< 0.05	
MW2-20	MW2-4-6	1.22-1.83	07-Dec-20	<5.0	<5.0	<10	< 50	< 50	< 0.02	< 0.05	< 0.05	< 0.05	
MW3-20	MW3-6-8	1.83-2.44	07-Dec-20	<5.0	< 5.0	<10	< 50	< 50	< 0.02	< 0.05	< 0.05	< 0.05	
MW4-20	MW4-6-8	1.83-2.44	07-Dec-20	<5.0	<5.0	<10	120	110	< 0.02	< 0.05	< 0.05	< 0.05	
BH5-20	BH5-6-8	1.83-2.44	07-Dec-20	<5.0	<5.0	<10	93	110	< 0.02	< 0.05	< 0.05	< 0.05	
BH6-20	BH6-8-10	2.44-3.05	07-Dec-20	<5.0	<5.0	<10	<50	83	< 0.02	< 0.05	< 0.05	< 0.05	
BH7-20	BH7-4-6	1.22-1.83	07-Dec-20	<5.0	<5.0	<10	<50	<50	< 0.02	< 0.05	< 0.05	< 0.05	
BH8-20	BH8-4-6	< 5.0	<5.0	<10	57	<50	< 0.02	< 0.05	< 0.05	< 0.05			
BH9-20	BH9-4-6	1.22-1.83	07-Dec-20	<5.0	<5.0	<10	<50	<50	< 0.02	< 0.05	< 0.05	< 0.05	
BH10-20	BH10-6-8	1.83-2.44	07-Dec-20	<5.0	<5.0	<10	<50	<50	< 0.02	< 0.05	< 0.05	< 0.05	
BH9-20	DUP2	1.22-1.83	07-Dec-20	< 5.0	< 5.0	<10	<50	<50	< 0.02	< 0.05	< 0.05	< 0.05	

Notes:		
1.		In guideline row(s) denotes no criteria for that parameter
2.		In data row(s) denotes parameter not analyzed
3.	mbgs	Denotes metres below ground surface
4.	BOLD	Denotes entries exceed the criteria
5		

Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Insitutional Property Use with Medium-Fine Textured Soils

6. * F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result

Metals and Inorganics

Soil Analytical Results: Metals and Inorganics

					Metals Inorganics																									
					Arsenic	Barium	Beryllium	Boron (total)	Boron (Hot Water Soluble)*	Cadmium	Chromium Total	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Sodium	Thallium	Uranium	Vanadium	Zinc	Chloride	Chromium VI	Electrical Conductivity (mS/cm)	Cyanide, Weak Acid Dissociable	Mercury	Methyl Mercury**	Sodium Adsorption Ratio
				β Antimony	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	mS/cm	μg/g	μg/g	μg/g	μg/g
	MOECC Guideline (2 extured Soil, Non-Pot			7.5	18	390	5	120	1.5	1.2	160	22	180	120	6.9	130	2.4	25		1	23	86	340		10	0.7	0.051	1.8	0.009	5
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																											
BH22-8.	22-8-6.	3.81-4.57	01-Jun-22	<1.0	1.5	10.2	< 0.50	< 5.0	-	< 0.50	7.2	7.6	8.1	3.1	<1.0	6.7	<1.0	< 0.20	-	< 0.50	<1.0	15.8	15.2	-	-	-	-	-	-	-
BH22-8.	22-8-6D	3.81-4.57	01-Jun-22	<1.0	1.4	10	< 0.50	< 5.0	-	< 0.50	7	9.3	7.8	2.9	<1.0	6.6	<1.0	< 0.20	-	< 0.50	<1.0	15.6	14.6	-	-	-	-	-	-	-
BH22-9.	22-9-3.	1.52-2.29	01-Jun-22	<1.0	1.3	13.4	< 0.50	< 5.0	-	< 0.50	6.9	2.4	5.9	4.2	<1.0	4.6	<1.0	< 0.20	-	< 0.50	<1.0	14.1	18.9	-	-	-	-	-	-	-
BH22-10.	22-10-7.	4.57-5.33	01-Jun-22	<1.0	1.7	14.6	< 0.50	< 5.0	-	< 0.50	8.2	3.4	9.7	3.1	<1.0	6.4	<1.0	< 0.20	-	< 0.50	<1.0	16.6	15.7	-	-	-	-	-	-	-
MW1-20	MW1-4-6	1.22-1.83	07-Dec-20	< 0.8	2	18	< 0.5	<5	0.19	< 0.5	7	2.6	7	7	< 0.5	5	< 0.4	< 0.2	-	< 0.4	< 0.5	13	18	-	< 0.2	0.799	< 0.040	< 0.10	-	19.1
MW3-20	MW3-2-4	0.61-1.22	07-Dec-20	< 0.8	<1	12	< 0.5	<5	< 0.10	< 0.5	5	2	4	2	< 0.5	2	< 0.4	< 0.2	-	< 0.4	< 0.5	12	11	-	< 0.2	0.127	< 0.040	< 0.10	-	0.711
BH8-20	BH8-4-6	1.22-1.83	07-Dec-20	< 0.8	3	17	< 0.5	<5	0.14	< 0.5	10	2.9	8	10	< 0.5	5	< 0.4	< 0.2	-	< 0.4	< 0.5	19	25	-	< 0.2	0.157	< 0.040	< 0.10	-	0.332
BH9-20	BH9-2-4	0.61-1.22	07-Dec-20	< 0.8	3	18	< 0.5	<5	0.25	< 0.5	8	2.3	4	4	< 0.5	5	< 0.4	< 0.2	-	< 0.4	< 0.5	16	17	-	< 0.2	1.573	< 0.040	< 0.10	-	14.4
BH10-20	BH10-2-4	0.61-1.22	07-Dec-20	< 0.8	2	19	< 0.5	<5	< 0.10	< 0.5	8	4.1	11	5	< 0.5	7	< 0.4	< 0.2	-	< 0.4	< 0.5	15	21	-	< 0.2	0.965	< 0.040	< 0.10	-	22.3
BH10-20	DUP3	0.61-1.22	07-Dec-20	< 0.8	2	22	< 0.5	<5	< 0.10	< 0.5	9	4.3	11	5	< 0.5	7	< 0.4	< 0.2	-	< 0.4	< 0.5	16	23	-	< 0.2	0.943	< 0.040	< 0.10	-	22.8

	Notes:		
•	1.		In guideline row(s) denotes no criteria for that parameter
	2.		In data row(s) denotes parameter not analyzed
•	3.	mbgs	Denotes metres below ground surface

5. Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Insitutional Property Use with Medium-Fine Textured Soils

Denotes the boron standards are for hot water soluble extract for all surface soils. For subsurface soils the standards are for total boron (mixed strong acid digest), as ecological criteria are not considered

7. ** Denotes analysis for methyl mercury only applies when mercury (total) standard is exceeded

VOCs

Coll Annihological F	Results: Volatile Organ	- i- c	(OC-)																																						
Sou Analytical I	cesuits: voiattie Orga	nic Compounds (v	OCS)																				/OCs																		
				(E) Acetone	Berzene	Bromodkhlozomethane	Bromoform	Bromomethane	Eg. Carbon Tetrachloride	E Chlorobenzene	e Chloroform	Dibromochloromethane	E 1,2-Dichlorobenzene	E 1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	5 1,1-Dichlorcethane	E 1,2-Dichloroethane	Ti.1-Dichloroethykne	es cis-1,2-Dichloroethylene	trans-1,2-Dichloroethykne	The state of the s	The 1,3-Dichloropropene (cis) + (trans)	Ethylbenzene	Ethykne Dhromide	Hexane (n)	Methyl Ethyl Ketone	Methyl Isoburyl Ketone	Methyl tert-Butyl Ether (MTBE)	Methykne Chbride	Slyrene	Ti.1.1.2-Te tra chlorocthane	1,1,2,2-Tetrachloroethane	Tetrachloroethykne	Toluene	1,1,1-Trichloroethane	U. 1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	(F) Vinyl Chloride	Xylenes, Total (Xykne Mixture)
	MOECC Guideline (2 extured Soil, Non-Po			28	0.17	13	0.26	0.05	0.12	2.7	0.17	9.4	4.3	6	0.097	25	11	0.05	0.05	30	0.75	0.085	0.083	15	0.05	34	44	4.3	1.4	0.96	2.2	0.05	0.05	2.3	6	3.4	0.05	0.52	5.8	0.022	25
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																																						
BH22-8.	22-8-6.	3.81-4.57	01-Jun-22	< 0.50	< 0.0068	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.042	<0.018	-	< 0.050	< 0.50	< 0.50	<0.050	<0.050 <	0.050	<0.050	0.050	< 0.050	< 0.080	< 0.050	< 0.050	< 0.010	< 0.050	< 0.020	< 0.050
BH22-9.	22-9-3.	1.52-2.29	01-Jun-22	< 0.50	< 0.0068	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.042	< 0.018	-	< 0.050	< 0.50	< 0.50	< 0.050	< 0.050	0.050	<0.050	0.050	< 0.050	< 0.080	< 0.050	< 0.050	< 0.010	< 0.050	< 0.020	< 0.050
BH22-9.	22-9-3D	1.52-2.29	01-Jun-22	< 0.50	< 0.0068	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.042	< 0.018	-	< 0.050	< 0.50	< 0.50	< 0.050	< 0.050	0.050	<0.050	0.050	< 0.050	< 0.080	< 0.050	< 0.050	< 0.010	< 0.050	< 0.020	< 0.050
BH22-10.	22-10-7.	4.57-5.33	01-Jun-22	< 0.50	< 0.0068	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.042	<0.018	-	< 0.050	< 0.50	< 0.50			0.050	<0.050	0.050	< 0.050	< 0.080	< 0.050	< 0.050	< 0.010	< 0.050	< 0.020	< 0.050
MW1-20	MW1-8-10	2.44-3.05	07-Dec-20	< 0.50	< 0.02	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50	< 0.50	< 0.050	< 0.050	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	< 0.03	< 0.050	< 0.020	< 0.05
MW2-20	MW2-4-6	1.22-1.83	07-Dec-20	< 0.50	< 0.02	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50	< 0.50	< 0.050	< 0.050	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	< 0.03	< 0.050	< 0.020	< 0.05
MW3-20	MW3-6-8	1.83-2.44	07-Dec-20	< 0.50	< 0.02	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	<0.050	< 0.50	< 0.50	<0.050	< 0.050	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	< 0.03	< 0.050	< 0.020	< 0.05
MW4-20	MW4-6-8	1.83-2.44	07-Dec-20	< 0.50	< 0.02	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50	< 0.50	< 0.050	< 0.050	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	< 0.03	< 0.050	< 0.020	< 0.05
BH5-20	BH5-6-8	1.83-2.44	07-Dec-20	< 0.50		< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.04		< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50				0.050			< 0.050	< 0.05	< 0.050	< 0.04	< 0.03	< 0.050	< 0.020	< 0.05
BH6-20	BH6-8-10	2.44-3.05	07-Dec-20	< 0.50	< 0.02	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50	< 0.50	<0.050	< 0.050	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	< 0.03	< 0.050	< 0.020	< 0.05
BH7-20	BH7-4-6	1.22-1.83	07-Dec-20	< 0.50	< 0.02	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50	< 0.50	<0.050	< 0.050	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	<0.03	< 0.050	< 0.020	< 0.05
BH8-20	BH8-4-6	1.22-1.83	07-Dec-20	< 0.50	< 0.02	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50	< 0.50	<0.050	< 0.050	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	<0.03	< 0.050	< 0.020	< 0.05
BH9-20	BH9-4-6	1.22-1.83	07-Dec-20	< 0.50	< 0.02	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50	< 0.50	<0.050	<0.050 <	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	< 0.03	< 0.050	< 0.020	< 0.05
BH10-20	BH10-6-8	1.83-2.44	07-Dec-20	< 0.50	< 0.02	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.04	< 0.050	< 0.050	< 0.050	< 0.050	< 0.02	< 0.03	< 0.050	< 0.02	< 0.050	< 0.03	< 0.04	< 0.05	< 0.04	< 0.050	< 0.50	< 0.50	<0.050	<0.050 <	0.050	< 0.04	0.050	< 0.050	< 0.05	< 0.050	< 0.04	< 0.03	< 0.050	< 0.020	< 0.05
BH9-20	DUP2	1 22-1 83	07-Dec-20	< 0.50	< 0.02	<0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.04	<0.050	< 0.050	< 0.050	<0.050	<0.02	< 0.03	< 0.050	< 0.02	<0.050	<0.03	< 0.04	< 0.05	< 0.04	< 0.050	<0.50	< 0.50	0.050	<0.050 <	0.050	< 0.04	:0.050	<0.050	< 0.05	<0.050	<0.04	<0.03	< 0.050	< 0.020	<0.05

In guacune row(s) aenotes no criteria for that fin data row(s) denotes parameter not analyzed Denotes metres below ground surface

Denotes entries exceed the criteria

Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with Medium-Fine Textured Soils

PAHs

Soil Analytical R	Results: Polycyclic Ar	omatic Hydrocarbo	ons (PAHs)																	
												PAHs								
				Methylnaphthalenes, 2-(1-)***	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
				μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
	MOECC Guideline (2 extured Soil, Non-Po	· · · · · · · · · · · · · · · · · · ·	* *	3.4	58	0.17	0.74	0.63	0.3	0.78	7.8	0.78	7.6	0.1	0.69	69	0.48	0.75	7.8	78
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																	
MW1-20	MW1-4-6	1.22-1.83	07-Dec-20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW3-20	MW3-2-4	0.61-1.22	07-Dec-20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BH9-20	BH9-2-4	0.61-1.22	07-Dec-20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW1-20	DUP4	1.22-1.83	07-Dec-20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:		
1.		In guideline row(s) denotes no criteria for that parameter
2.		In data row(s) denotes parameter not analyzed
3.	mbgs	Denotes metres below ground surface
4.	BOLD	Denotes entries exceed the criteria
5.		Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Insitutional Property Use with Medium-Fine Textured Soils
6.	***	The methyl naphthalenes standards are applicable to both 1-methyl naphthalene and 2-methyl naphthalene with the provision that if both are detected the sum of the two must not exceed the standard

OC Pesticides

Soil Analytical Results: Organochlorine (OC) Pesticides

Son Analytical N	esuits: Organochiorir	ie (OC) i esticides																
										OC P	esticides							
				(E DDD (Total)	(E) DDE (Total)	(ig DDT (Total)	(Te Aldrin	कि एव (Shlordane	(vec Dieldrin	क् g Endosulfan (Total)	de Endrin	ট্ৰ Heptachlor	क् g Heptachlor Epoxide	re Hexachlorobenzene	দু জু দু Hexachlorobutadiene	क एव स्ट	Hexachlorocyclohexane Gamma (Lindane or Gamma BHC)	টি জি Methoxychlor
_	MOECC Guideline (2 extured Soil, Non-Po			3.3	0.33	1.4	0.05	0.05	0.05	0.04	0.04	0.15	0.05	0.52	0.014	0.07	0.063	0.13
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date															
MW2-20	MW2-2-4	0.61-1.22	07-Dec-20	< 0.007	< 0.007	< 0.007	< 0.005	< 0.007	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005
BH8-20	BH8-0-2	0.00-0.61	07-Dec-20	< 0.007	< 0.007	< 0.007	< 0.005	< 0.007	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005
BH9-20	BH9-2-4	0.61-1.22	07-Dec-20	< 0.007	< 0.007	< 0.007	< 0.005	< 0.007	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005
BH10-20	BH10-2-4	0.61-1.22	07-Dec-20	< 0.007	< 0.007	< 0.007	< 0.005	< 0.007	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005
BH8-20	DUP1	0.00-0.61	07-Dec-20	< 0.007	< 0.007	< 0.007	< 0.005	< 0.007	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005

Notes:

- 1. In guideline row(s) denotes no criteria for that parameter
 - 2. In data row(s) denotes parameter not analyzed
- 3. mbgs Denotes metres below ground surface
- 4. BOLD Denotes entries exceed the criteria
- 5. Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Insitutional Property Use with Medium-Fine Textured Soils

8.1.5 Ground Water Data

PHCs with BTEX

Ground Water Analytical Results: Petroleum Hydrocarbons (PHCs) and Benzene. Toluene. Ethylbenzene. Xylenes (BTEX)

Ground Water A	Analytical Results: Pe	troleum Hydrocarb	ons (PH	ICs) and	d Benze	ne, Toh	iene, Et	hylbenz	zene, Xy	lenes (I	BTEX)
					PHCs				BT	EX	
			[전] FI (C6-C10)	FI-BTEX	편 F2 (C10-C16)	편 F3 (C16-C34)	[편] F4 (C34-C50)	전 Benzene	Toluene	표 Ethylbenzene	দ্র Xylenes (Total)
O Pag. 152/04 N	MECP Guideline (20	11) All Types of	PS E	PG Z	PG L	PG L	PG L	FBL	PG L	FBZ	PG L
Property Use, M	MECF Guidelille (20 Medium-Fine Texture Water Condition		750	750	150	500	500	430	18000	2300	4200
Sample Location	Sample ID	Sample Date									
BH1	BH1	27-May-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH4	BH4	27-May-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH4	BH4D	27-May-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH6	BH6	03-Jun-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
MW2-20	MW2-20	27-May-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
MW3-20	MW3-20	27-May-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
MW4-20	MW4-20	27-May-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
TRIP BLANK	TRIP BLANK	27-May-22	-	-	-	-	-	< 0.50	< 0.50	< 0.50	< 0.50
BH22-6.	22-6.	03-Jun-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH22-5.	22-5.	02-Jun-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH22-7.	22-7.	02-Jun-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH22-8.	22-8.	02-Jun-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH22-9.	22-9.	02-Jun-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH22-10.	22-10.	02-Jun-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
BH22-10.	22-10D	02-Jun-22	<25	<25	<100	<250	<250	< 0.50	< 0.50	< 0.50	< 0.50
TRIP BLANK	TRIP BLANK	10-Dec-20	<25	<25	-	1	-	< 0.20	< 0.20	< 0.10	< 0.20
MW1-20	MW1	10-Dec-20	<25	<25	<100	<100	<100	< 0.20	3.8	< 0.10	< 0.20
MW2-20	MW2	10-Dec-20	<25	<25	<100	<100	<100	< 0.20	0.32	< 0.10	< 0.20
MW3-20	MW3	10-Dec-20	<25	<25	<100	<100	<100	< 0.20	0.54	< 0.10	< 0.20
MW4-20	MW4	10-Dec-20	<25	<25	<100	<100	<100	< 0.20	0.78	< 0.10	< 0.20
BH1	BH1	10-Dec-20	<25	<25	<100	<100	<100	< 0.20	< 0.20	< 0.10	< 0.20
BH2	BH2	10-Dec-20	<25	<25	<100	<100	<100	< 0.20	0.34	< 0.10	< 0.20
MW3-20	DUP	10-Dec-20	<25	<25	<100	<100	<100	< 0.20	0.62	< 0.10	< 0.20

- In guideline row(s) denotes no criteria for that parameter 2.
- mbgs Denotes metres below ground surface
- Denotes entries exceed the criteria
- Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for

In data row(s) denotes parameter not analyzed

- All Types of Property Uses with Medium-Fine Textured Soils
 - F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result

Metals and Inorganics

Ground Water Analytical Results: Metals and Inorganics

Ground Water 2	Analytical Results: Me	tuis und morganic.	l										. 1										l			
			├	ı			l					Me	tals			1	I			1		ı			Inorga	nics
			Antimony	Arsenic	Barium	Beryllium	Boron (total)	Cadmium	Chromium Total	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Sodium	Thallium	Uranium	Vanadium	Zinc	Chloride	Chromium VI	Electrical Conductivity (mS/cm)	Cyanide, Weak Acid Dissociable
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Property Use, M	MECP Guideline (20 Medium-Fine Texture Water Condition		20000	1900	29000	67	45000	2.7	810	66	87	25	2.8	9200	490	63	1.5	2300000	510	420	250	1100	2300000	140	1	66
Sample Location	Sample ID	Sample Date																								
MW2-20	MW2-20	27-May-22	<1.0	<1.0	43	<1.0	<100	< 0.050	< 5.0	<1.0	< 2.0	< 0.50	-	< 0.50	< 5.0	0.8	< 0.50	1940000	< 0.10	1.33	< 5.0	<10	-	-	-	-
MW2-20	MW2-20D	27-May-22	<1.0	<1.0	41.3	<1.0	<100	< 0.050	< 5.0	<1.0	<2.0	< 0.50	-	< 0.50	< 5.0	0.95	< 0.50	1920000	< 0.10	1.28	< 5.0	<10	-	-	-	-
BH22-8.	22-8.	01-Jan-00	<1.0	<1.0	45.2	<1.0	<100	< 0.050	< 5.0	<1.0	2.9	< 0.50	-	2.84	< 5.0	0.6	< 0.50	1500000	< 0.10	1.61	< 5.0	<10	-	-	-	-
BH22-9.	22-9.	02-Jun-22	<1.0	<1.0	39.8	<1.0	<100	< 0.050	< 5.0	<1.0	<2.0	< 0.50	-	2.38	< 5.0	0.82	< 0.50	2020000	< 0.10	0.79	< 5.0	<10	-	-	-	-
BH22-10.	22-10.	02-Jun-22	<1.0	<1.0	169	<1.0	<100	< 0.050	< 5.0	<1.0	3.6	< 0.50	-	0.84	< 5.0	1.97	< 0.50	2190000	< 0.10	4.43	< 5.0	<10	-	-	-	-
MW1-20	MW1	10-Dec-20	<1.0	<1.0	211	< 0.50	63	< 0.20	3.1	0.92	2.9	< 0.50	< 0.02	1.24	<3.0	1.5	< 0.20	1520000	< 0.30	1.28	0.48	5.1	2750000	<5	9.34	<2
MW3-20	MW3	10-Dec-20	<1.0	<1.0	225	< 0.50	72.4	< 0.20	<2.0	1.87	2.4	< 0.50	< 0.02	4.58	<3.0	<1.0	< 0.20	1220000	< 0.30	2.1	< 0.40	< 5.0	2240000	<5	7.6	<2
BH1	BH1	10-Dec-20	<1.0	1.9	141	< 0.50	50.4	< 0.20	<2.0	1.58	2.2	< 0.50	< 0.02	2.1	<3.0	<1.0	< 0.20	1090000	< 0.30	< 0.50	< 0.40	16.3	1820000	<5	6.43	<2
MW3-20	DUP	10-Dec-20	<1.0	1.6	225	< 0.50	74.2	< 0.20	<2.0	1.97	2.2	< 0.50	< 0.02	5	<3.0	1.5	< 0.20	1230000	< 0.30	2.08	< 0.40	< 5.0	2240000	<5	7.65	<2

Notes:	
1 In guideline row(s) denotes no criteria for that parameter	
2 In data row(s) denotes parameter not analyzed	
3mbgsDenotes metres below ground surface	
4. BOLD Denotes entries exceed the criteria	
5. Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for All Types of Property Uses w	with Medium-Fine Textured Soils

Denotes analysis for methyl mercury only applies when mercury (total) standard is exceeded

October 13, 2022 Palmer_2204701 Phase Two Esa - 49 South Service Road -F2

VOCs

Ground Water	Analytical Results: Vo	latile Organic Com	pounds (VOCs)																																							1
																							VOC	`s																			
			Acetone	Benzene	Bromodichkoromethane	Bromoform	Bromomethane	, Carbon tetrachloride	Chlorobenzene	Dibromochloromethane	Chloroform	1,2-Dibromoethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene		1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	ds-1,2-Dichloroethylene	trans-1,2-Dichloroethylene	, Methylene Chloride	1,2-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	1,3-Dichloropropene (cis & trans)	, Ethylbenzene	n-Hexane	, Methyl Ethyl Ketone	Methyl Isobutyl Ketone	MTBE	Styrene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride	o-Xylene	m+p-Xylenes
Property Use, N	MECP Guideline (20 Medium-Fine Texture I Water Condition		μg/L 130000	μg/L 430	μg/L 85000	μg/L 770	μg/L 56	μg/L 8.4	μg/L 630	μg/L 82000	μg/L 22	μg/L 0.83	μg/L 9600			μg/L 4400	μg/L 3100	μg/L 12		μg/L 17			μg/L 140	μg/L -	μg/L -	μg/L 45		μg/L 520	μg/L 1500000	μg/L 580000	μg/L 1400	μg/L 9100	μg/L 28	μg/L 15	μg/L 17	μg/L 18000	μg/L 6700	μg/L 30	μg/L 17	μg/L 2500	μg/L 1.7	μg/L 4200	µg/L 7300000
Sample Location	Sample ID	Sample Date																																									
MW2-20	MW2-20	27-May-22	<30	< 0.50	<2.0	<5.0	< 0.50	< 0.20	< 0.50	< 2.0	<1.0	< 0.20	< 0.50	<0.50 <	0.50	<2.0	<0.50	< 0.50	<0.50 <	<0.50	< 0.50	< 5.0	< 0.50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	<20	<20	<2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.40
TRIP BLANK	TRIP BLANK	27-May-22	<30	< 0.50	<2.0	<5.0	< 0.50	< 0.20	< 0.50	<2.0	<1.0	< 0.20	< 0.50	< 0.50	0.50	<2.0	<0.50	< 0.50	< 0.50	<0.50	< 0.50	< 5.0	<0.50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	<20	<20	<2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.40
BH22-8.	22-8.	02-Jun-22	<30	< 0.50	<2.0	<5.0	< 0.50	< 0.20	< 0.50	<2.0	<1.0	< 0.20	< 0.50	< 0.50	0.50	<2.0	0.50	< 0.50	<0.50 <	<0.50	< 0.50	< 5.0	<0.50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	<20	<20	<2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.40
BH22-9.	22-9.	02-Jun-22	<30	< 0.50	< 2.0	<5.0	< 0.50	< 0.20	< 0.50	<2.0	<1.0	< 0.20	< 0.50	< 0.50	0.50	<2.0	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	<20	<20	<2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.40
BH22-10.	22-10.	02-Jun-22	<30	< 0.50	<2.0	<5.0	< 0.50	< 0.20	< 0.50	< 2.0	<1.0	< 0.20	< 0.50	< 0.50	0.50	<2.0	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	<20	<20	<2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.40
BH22-10.	22-10D	02-Jun-22	<30	< 0.50	<2.0	<5.0	< 0.50	< 0.20	< 0.50	< 2.0	<1.0	< 0.20	< 0.50	< 0.50	0.50	<2.0	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	<0.50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	<20	<20	<2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.40
MW1-20	MW1	10-Dec-20	<1.0	< 0.20	< 0.20	< 0.10	< 0.20	< 0.20	< 0.10	< 0.10	< 0.20	-	< 0.10	< 0.10	0.10	<0.20 <	<0.30	_	< 0.30					-	-	-	< 0.10	< 0.20	<1.0	<1.0	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20			_	_	< 0.40	< 0.17	< 0.20	< 0.20
MW2-20	MW2	10-Dec-20	<1.0	< 0.20		0.110		< 0.20	< 0.10		0.00	-		< 0.10					< 0.30					-	-	-	< 0.10		<1.0	<1.0												< 0.20	< 0.20
MW3-20	MW3	10-Dec-20	<1.0	0.00		0110		< 0.20	< 0.10	< 0.10		-	_	< 0.10					< 0.30					-	-	-	< 0.10		<1.0	<1.0		< 0.10	-	-	_			_	_	< 0.40	-		< 0.20
MW4-20	MW4	10-Dec-20	<1.0	< 0.20	_	_	< 0.20	< 0.20	< 0.10	< 0.10	_	-				<0.20		-	<0.30 <					-	-	-	< 0.10		<1.0	<1.0		< 0.10		< 0.10		0110		0.000				< 0.20	< 0.20
BH1	BH1	10-Dec-20	<1.0	< 0.20		_		< 0.20	< 0.10			-			-	<0.20		-	<0.30 <					-	-	-	< 0.10		<1.0	<1.0		< 0.10		-		_		<0.20				< 0.20	< 0.20
BH2	BH2	10-Dec-20	<1.0	< 0.20	_	< 0.10		< 0.20	< 0.10	< 0.10	-	-		-	_	<0.20		$\overline{}$	<0.30 <	_				-	-	-	< 0.10		<1.0	<1.0		< 0.10		< 0.10		0.34	< 0.30	-			_		< 0.20
MW3-20	DUP	10-Dec-20	<1.0		< 0.20		0.00	< 0.20	< 0.10	< 0.10	-			<0.10 <					<0.30 <					-	-	-	< 0.10		<1.0	<1.0		< 0.10		_				_		< 0.40			< 0.20
TRIP BLANK	TRIP BLANK	10-Dec-20	<1.0	< 0.20	< 0.20	< 0.10	< 0.20	< 0.20	< 0.10	< 0.10	< 0.20	-	< 0.10	< 0.10	0.10	<0.20	<0.30	-	< 0.30	<0.20	< 0.20	< 0.30	< 0.20	-	-	-	< 0.10	< 0.20	<1.0	<1.0	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.20	< 0.30	< 0.20	< 0.20	< 0.40	< 0.17	< 0.20	< 0.20

In guideline row(s) denotes no criteria for that parameter

In data row(s) denotes parameter not analyzed

Denotes metres below ground surface

Denotes entries exceed the criteria
Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for All Types of Property Uses with Medium-Fine Textured Soils

8.1.6 Sediment Data

Sediment sampling was not part of this investigation, as a water body is not on the Phase Two Property.

8.1.7 Soil and Ground Water Maximum Concentration Data

Soil Maximum Concentration Data

Parameter	MECP Table 3 RPI SCS (µg/g)	Maximum Soil Concentration (μg/g)	Location of Maximum Concentration	Sample Depth (m)
VOCs - BTEX				
Benzene	0.17	<0.02	All Boreholes	1.22 – 3.05
Ethylbenzene	15	<0.05	All Boreholes	1.22 – 3.05
Toluene	6	<0.080	All Boreholes	1.52 – 5.33
Xylene Mixture	25	<0.05	All Boreholes	1.22 – 5.33
Metals				
Barium	390	22	BH10-20	0.61-1.22
Beryllium	5	<0.5	All Boreholes	0.61 – 5.33
Boron (total)	120	<5	All Boreholes	0.61 – 5.33
Cadmium	1.2	<0.5	All Boreholes	0.61 – 5.33
Chromium Total	160	10	BH8-20	1.22 – 1.83
Cobalt	22	9.3	BH22-8	3.81 – 4.57
Copper	180	11	BH10-20	0.61-1.22
Lead	120	10	BH8-20	1.22 – 1.83
Molybdenum	6.9	<1.0	All Boreholes	1.52 – 5.33
Nickel	130	7	BH10-20	0.61 – 5.33
Silver	25	<0.2	All Boreholes	0.61 – 5.33
Thallium	1	<0.5	All Boreholes	1.52 – 5.33
Uranium	23	<1.0	All Boreholes	1.52 – 5.33
Vanadium	86	19	BH8-20	1.22 – 1.83
Zinc	340	25	BH8-20	1.22 – 1.83
Metals – Hydride Forming				
Antimony	7.5	<1.0	All Boreholes	1.52 – 5.33
Arsenic	18	3	BH8-20/BH9-20	0.61 – 1.83
Selenium	2.4	<1.0	All Boreholes	1.52 – 5.33
OC Pesticides				
Aldrin	0.05	<0.007	All GHD Boreholes	0.00 – 1.22
Chlordane	0.05	<0.007	All GHD Boreholes	0.00 – 1.22
DDD	3.3	<0.007	All GHD Boreholes	0.00 – 1.22
DDE	0.33	<0.007	All GHD Boreholes	0.00 – 1.22

Parameter	MECP Table 3 RPI SCS (μg/g)	Maximum Soil Concentration (μg/g)	Location of Maximum Concentration	Sample Depth (m)
DDT	1.4	<0.007	All GHD Boreholes	0.00 – 1.22
Dieldrin	0.05	<0.005	All GHD Boreholes	0.00 – 1.22
Endosulfan	0.04	<0.005	All GHD Boreholes	0.00 – 1.22
Endrin	0.04	<0.005	All GHD Boreholes	0.00 – 1.22
Heptachlor	0.15	<0.005	All GHD Boreholes	0.00 – 1.22
Heptachlor Epoxide	0.05	<0.005	All GHD Boreholes	0.00 – 1.22
Hexachlorobenzene	0.52	<0.005	All GHD Boreholes	0.00 – 1.22
Hexachlorobutadiene	0.014	<0.01	All GHD Boreholes	0.00 – 1.22
Hexachlorocyclohexane Gamma-	0.063	<0.005	All GHD Boreholes	0.00 – 1.22
Hexachloroethane	0.07	<0.01	All GHD Boreholes	0.00 – 1.22
Methoxychlor	0.13	<0.005	All GHD Boreholes	0.00 – 1.22
PAHs				
Acenaphthene	58	<0.05	All GHD Boreholes	0.61 – 1.83
Acenaphthylene	0.17	<0.05	All GHD Boreholes	0.61 – 1.83
Anthracene	0.74	<0.05	All GHD Boreholes	0.61 – 1.83
Benz(a)anthracene	0.63	<0.05	All GHD Boreholes	0.61 – 1.83
Benzo(a)pyrene	0.3	<0.05	All GHD Boreholes	0.61 – 1.83
Benzo(b)fluoranthene	0.78	<0.05	All GHD Boreholes	0.61 – 1.83
Benzo(g,h,i)perylene	7.8	<0.05	All GHD Boreholes	0.61 – 1.83
Benzo(k)fluoranthene	0.78	<0.05	All GHD Boreholes	0.61 – 1.83
Chrysene	7.6	<0.05	All GHD Boreholes	0.61 – 1.83
Dibenzo(a,h)anthracene	0.1	<0.05	All GHD Boreholes	0.61 – 1.83
Fluoranthene	0.69	<0.05	All GHD Boreholes	0.61 – 1.83
Fluorene	69	<0.05	All GHD Boreholes	0.61 – 1.83
Indeno(1,2,3-cd)pyrene	0.48	<0.05	All GHD Boreholes	0.61 – 1.83
Methlynaphthalene, 2-(1-)	3.4	<0.05	All GHD Boreholes	0.61 – 1.83
Naphthalene	0.75	<0.05	All GHD Boreholes	0.61 – 1.83
Phenanthrene	7.8	<0.05	All GHD Boreholes	0.61 – 1.83
Pyrene	78	<0.05	All GHD Boreholes	0.61 – 1.83
PHCs				
Petroleum Hydrocarbons F1	65	<5	All Boreholes	1.22 – 5.33
Petroleum Hydrocarbons F2	150	<10	All Boreholes	1.22 – 5.33
Petroleum Hydrocarbons F3	1300	120	MW4-20	1.83 – 2.44

Parameter	MECP Table 3 RPI SCS	Maximum Soil Concentration	Location of Maximum Concentration	Sample Depth (m)
Petroleum Hydrocarbons F4	(μ g/g) 5600	(μg/g) 110	MW4-20/BH5-20	1.83 – 2.44
VOCs - Trihalomethanes	0000	1.0	WW 1 20/2110 20	1.00 2.11
Bromodichloromethane	13	<0.05	All Boreholes	1.22 – 5.33
Bromoform	0.26	<0.05	All Boreholes	1.22 – 5.33
Dibromochloromethane	9.4	<0.05	All Boreholes	1.52 – 5.33
VOCs				
Acetone	28	<0.05	All Boreholes	1.22 – 5.33
Bromomethane	0.05	<0.05	All Boreholes	1.22 – 5.33
Carbon Tetrachloride	0.12	<0.05	All Boreholes	1.22 – 5.33
Chlorobenzene	2.7	<0.05	All Boreholes	1.22 – 5.33
Chloroform	0.17	<0.05	All Boreholes	1.22 – 5.33
Dichlorobenzene, 1,2-	4.3	<0.05	All Boreholes	1.22 – 5.33
Dichlorobenzene, 1,3-	6	<0.05	All Boreholes	1.22 – 5.33
Dichlorobenzene, 1,4-	0.097	<0.05	All Boreholes	1.22 – 5.33
Dichlorodifluoromethane	25	<0.05	All Boreholes	1.22 – 5.33
Dichloroethane, 1,1-	11	<0.05	All Palmer Boreholes	1.52 – 5.33
Dichloroethane, 1,2-	0.05	<0.05	All Palmer Boreholes	1.52 – 5.33
Dichloroethylene, 1,1-	0.05	<0.05	All Boreholes	1.22 – 5.33
Dichloroethylene , 1,2-cis-	30	<0.05	All Palmer Boreholes	1.52 – 5.33
Dichloroethylene, 1,2-trans-	0.75	<0.05	All Boreholes	1.22 – 5.33
Dichloropropane, 1,2-	0.085	<0.05	All Palmer Boreholes	1.52 – 5.33
Dichloropropene, 1,3-	0.083	<0.042	All Boreholes	1.52 – 5.33
Ethylene Dibromide	0.05	<0.04	All Boreholes	1.22 – 3.05
Hexane (n)	34	<0.05	All Boreholes	1.22 – 5.33
Methyl Ethyl Ketone	44	<0.5	All Boreholes	1.22 – 5.33
Methyl Isobutyl Ketone	4.3	<0.5	All Boreholes	1.22 – 5.33
Methyl tert-Butyl Ether (MTBE)	1.4	<0.05	All Boreholes	1.22 – 5.33
Methylene Chloride	0.96	<0.05	All Boreholes	1.22 – 5.33
Styrene	2.2	<0.05	All Boreholes	1.22 – 5.33
Tetrachloroethane, 1,1,1,2-	0.05	<0.05	All Boreholes	1.52 – 5.33
Tetrachloroethane, 1,1,2,2-	0.05	<0.05	All Boreholes	1.22 – 5.33

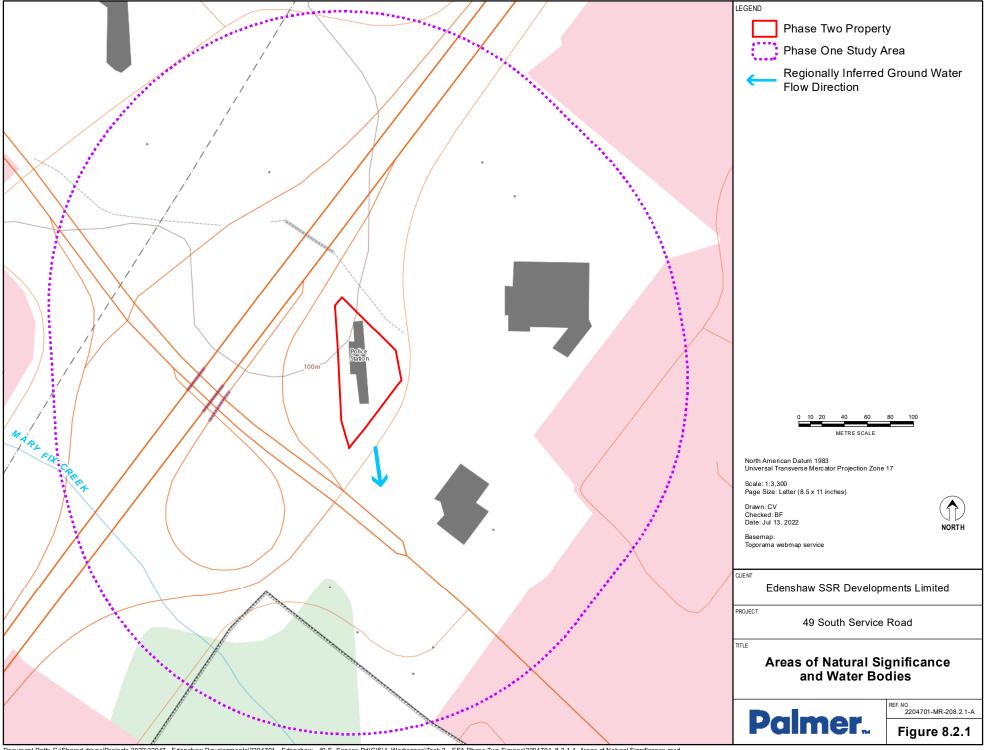
Parameter	MECP Table 3 RPI SCS (µg/g)	Maximum Soil Concentration (μg/g)	Location of Maximum Concentration	Sample Depth (m)
Tetrachloroethylene	2.3	<0.05	All Boreholes	1.22 – 5.33
Trichloroethane, 1,1,1-	3.4	<0.05	All Boreholes	1.22 – 5.33
Trichloroethane, 1,1,2-	0.05	<0.05	All Boreholes	1.52 – 5.33
Trichloroethylene	0.52	<0.03	All Boreholes	1.22 – 3.05
Trichlorofluoromethane	5.8	<0.05	All Boreholes	1.22 – 5.33
Vinyl Chloride	0.022	<0.02	All Boreholes	1.22 – 5.33
Other Regulated Parameters				
Boron (Hot Water Soluble)	1.5	0.25	BH9-20	0.61 – 1.22
Chromium VI	10	<0.2	All GHD Boreholes	0.61 – 1.83
Cyanide (CN-)	0.051	<0.040	All GHD Boreholes	0.61 – 1.83
Electrical Conductivity	0.7	1.57	BH9-20	0.61 – 1.22
Mercury	1.8	<0.10	All GHD Boreholes	0.61 – 1.83
Sodium Adsorption Ratio (unitless)	5	22.8	BH10-20	0.61 – 1.22

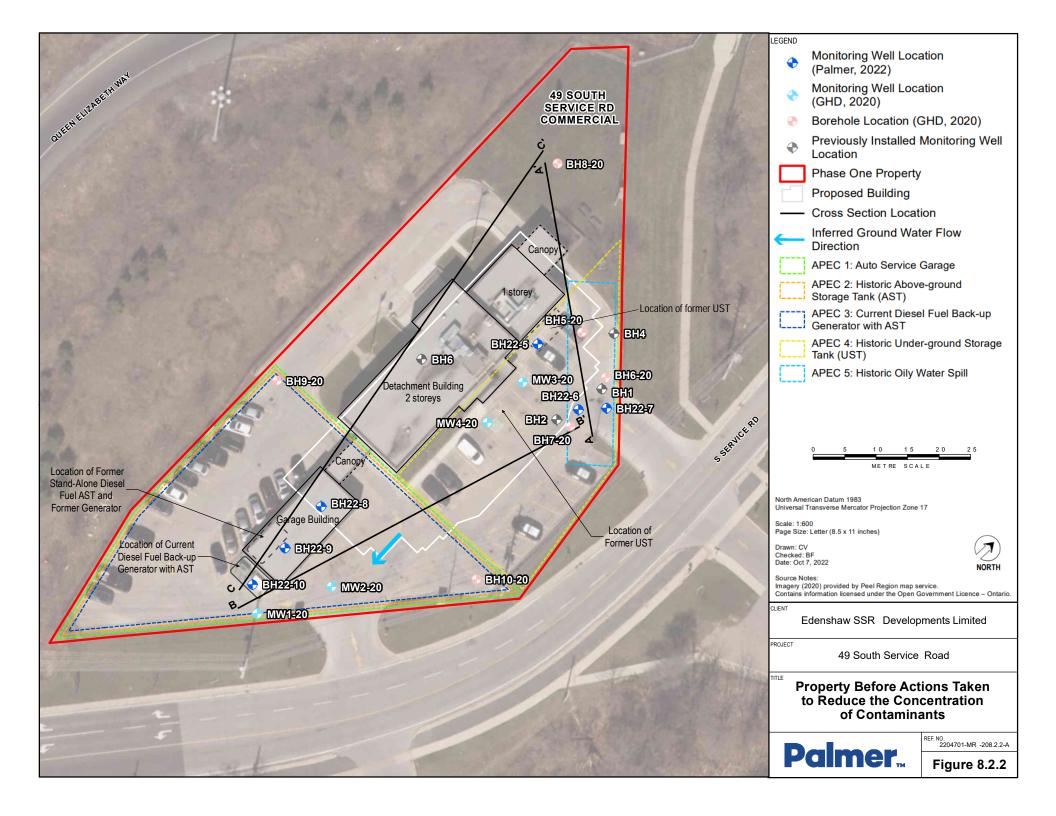
Note:

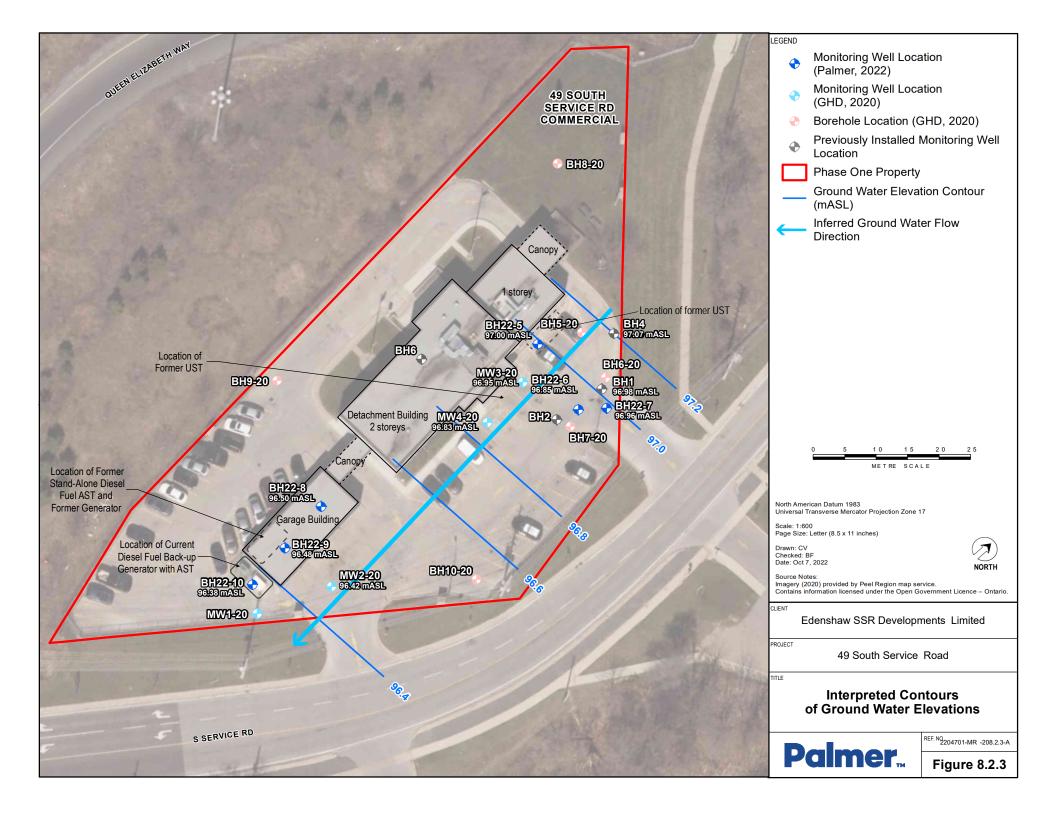
- 1. ND represents Non-Detect.
- Bold entries exceed the Criteria.
- 3. Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with Medium-Fine-Textured Soils.

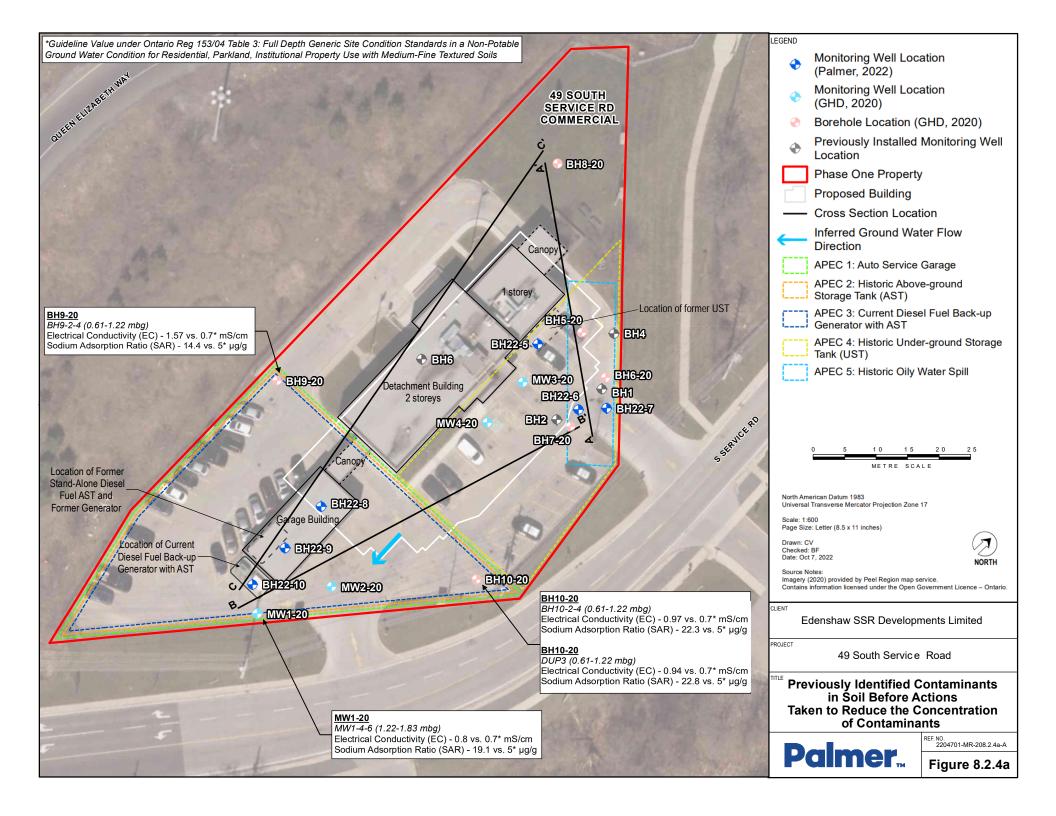
Ground Water Maximum Concentration Data

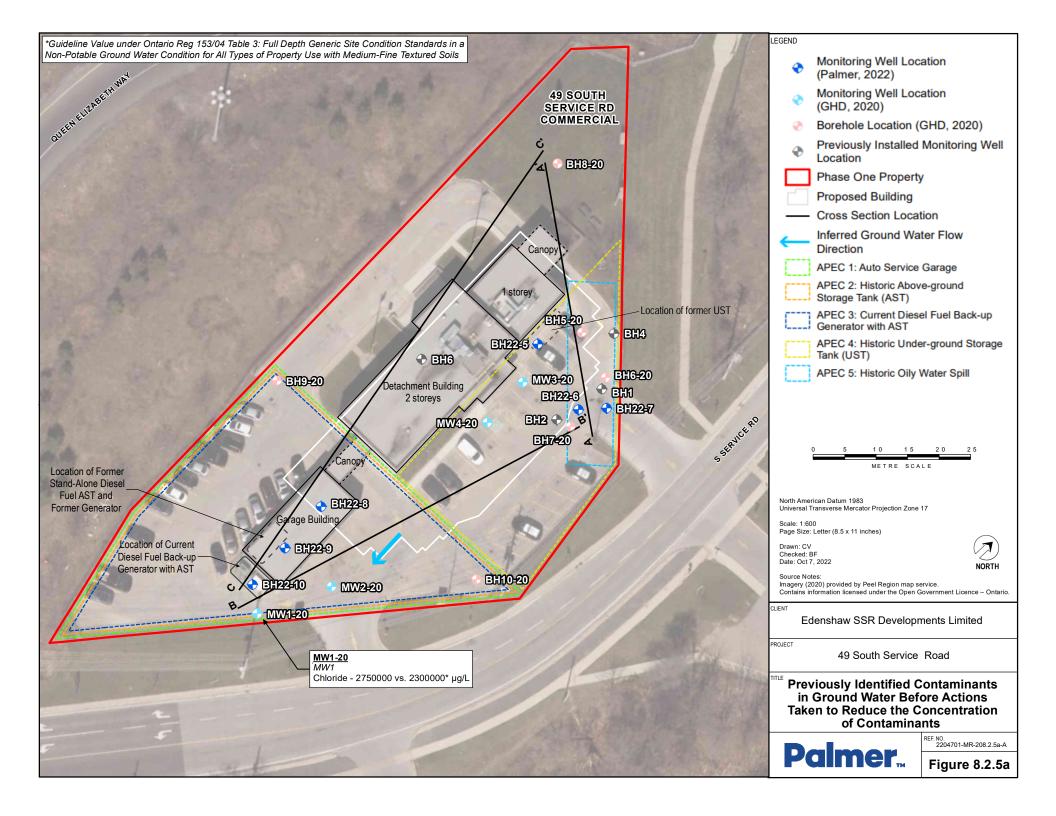
Parameter	MECP Table 3 RPI SCS (μg/L)	Maximum Ground Water Concentration (µg/L)	Location of Maximum Concentration		
VOCs - BTEX					
Benzene	430	<0.5	All Palmer MWs		
Ethylbenzene	2300	<0.5	All Palmer MWs		
Toluene	18000	3.8	MW1-20		
Xylene Mixture	4200	<0.5	All Palmer MWs		
Metals					
Barium	29000	225	MW3-20		
Beryllium	67	<1.0	All Palmer MWs		
Boron (total)	45000	74.2	MW3-20		
Cadmium	2.7	<0.2	All GHD MWs		
Chromium Total	810	<5.0	All Palmer MWs		
Cobalt	66	1.97	MW3-20		
Copper	87	3.6	BH22-10		
Lead	25	<0.5	All MWs		
Molybdenum	9200	5	MW3-20		
Nickel	490	<5.0	All Palmer MWs		
Silver	1.5	<0.5	All Palmer MWs		
Thallium	510	<0.3	All GHD MWs		
Uranium	420	4.43	BH22-10		
Vanadium	250	<5.0	All Palmer MWs		
Zinc	1100	16.3	BH1		
Metals – Hydride Forming					
Antimony	20000	<1.0	All MWs		
Arsenic	1900	1.9	BH1		
Selenium	63	1.97	BH22-10		
Na Sodium					
Sodium	2300000	2190000	BH22-10		
PHCs					
Petroleum Hydrocarbons F1	750	<25	All MWs		
Petroleum Hydrocarbons F2	150	<100	All MWs		
Petroleum Hydrocarbons F3	500	<250	All Palmer MWs		
Petroleum Hydrocarbons F4	500	<250	All Palmer MWs		

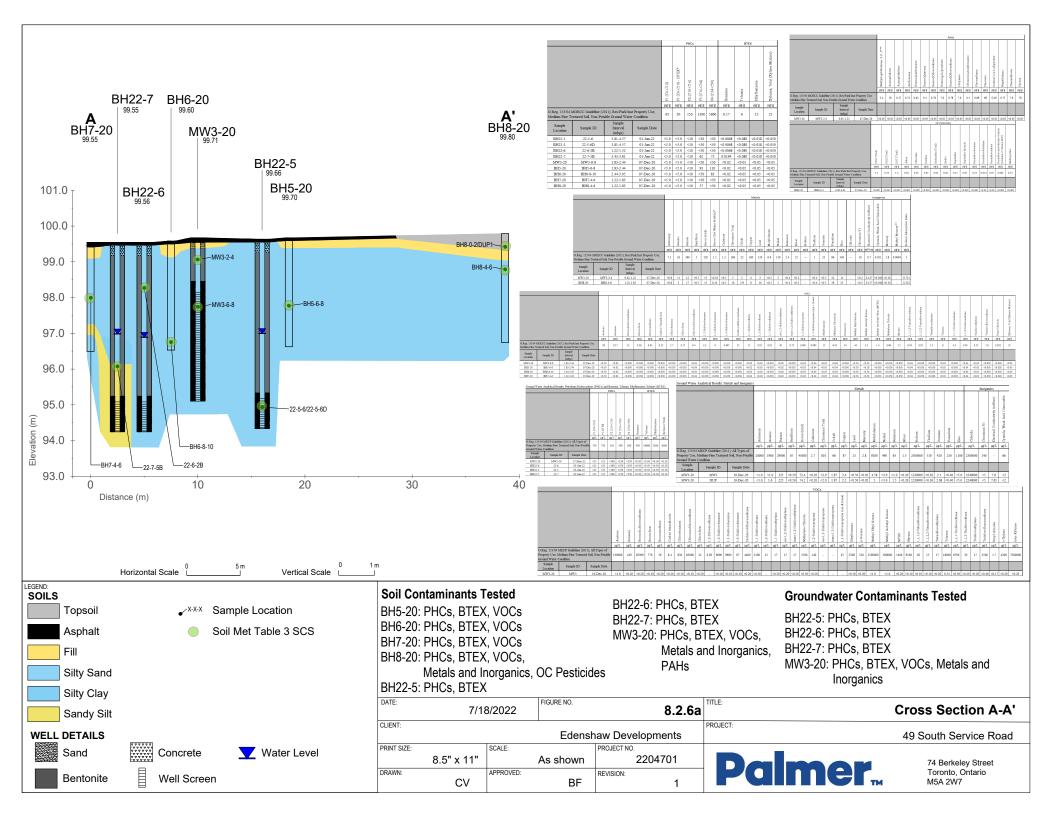

Parameter	MECP Table 3 RPI SCS (μg/L)	Maximum Ground Water Concentration (µg/L)	Location of Maximum Concentration		
VOCs – Trihalomethanes					
Bromodichloromethane	85000	<2.0	All Palmer MWs		
Bromoform	770	<5.0	All Palmer MWs		
Dibromochloromethane	82000	<2.0	All Palmer MWs		
VOCs					
Acetone	130000	<30	All Palmer MWs		
Bromomethane	56	<0.5	All Palmer MWs		
Carbon Tetrachloride	8.4	<0.2	All MWs		
Chlorobenzene	630	<0.5	All Palmer MWs		
Chloroform	22	<1.0	All Palmer MWs		
Dichlorobenzene, 1,2-	9600	<0.5	All Palmer MWs		
Dichlorobenzene, 1,3-	9600	<0.5	All Palmer MWs		
Dichlorobenzene, 1,4-	67	<0.5	All Palmer MWs		
Dichlorodifluoromethane	4400	<2.0	All Palmer MWs		
Dichloroethane, 1,1-	3100	<0.5	All Palmer MWs		
Dichloroethane, 1,2-	12	<0.05	All Palmer MWs		
Dichloroethylene, 1,1-	17	<0.05	All Palmer MWs		
Dichloroethylene , 1,2-cis-	17	<0.05	All Palmer MWs		
Dichloroethylene, 1,2-trans-	17	<0.05	All Palmer MWs		
Dichloropropane, 1,2-	140	<0.05	All Palmer MWs		
Dichloropropene, 1,3-	45	<0.05	All Palmer MWs		
Hexane (n)	520	<0.05	All Palmer MWs		
Methyl Ethyl Ketone	1500000	<20	All Palmer MWs		
Methyl Isobutyl Ketone	580000	<20	All Palmer MWs		
Methyl tert-Butyl Ether (MTBE)	1400	<2.0	All Palmer MWs		
Methylene Chloride	5500	<5.0	All Palmer MWs		
Styrene	9100	<0.5	All Palmer MWs		
Tetrachloroethane, 1,1,1,2-	28	<0.5	All Palmer MWs		
Tetrachloroethane, 1,1,2,2-	15	<0.5	All Palmer MWs		
Tetrachloroethylene	17	<0.5	All Palmer MWs		
Trichloroethane, 1,1,1-	6700	<0.5	All Palmer MWs		
Trichloroethane, 1,1,2-	30	<0.5	All Palmer MWs		
Trichloroethylene	17	<0.5	All Palmer MWs		

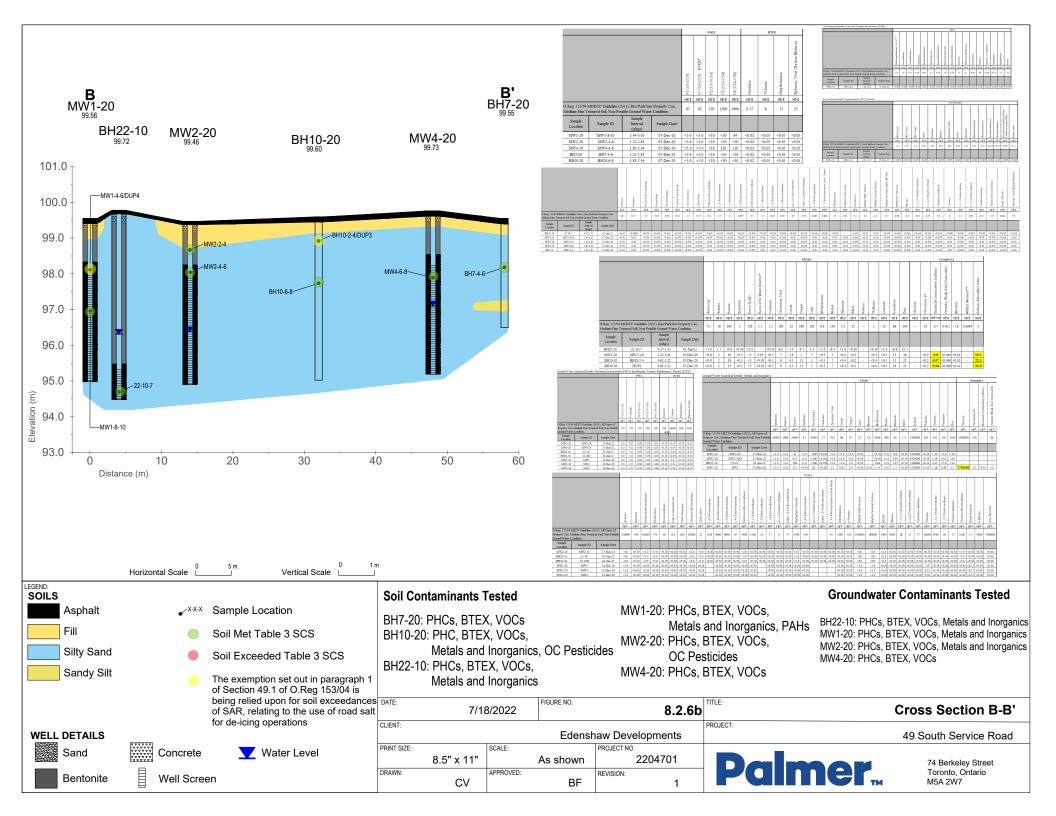


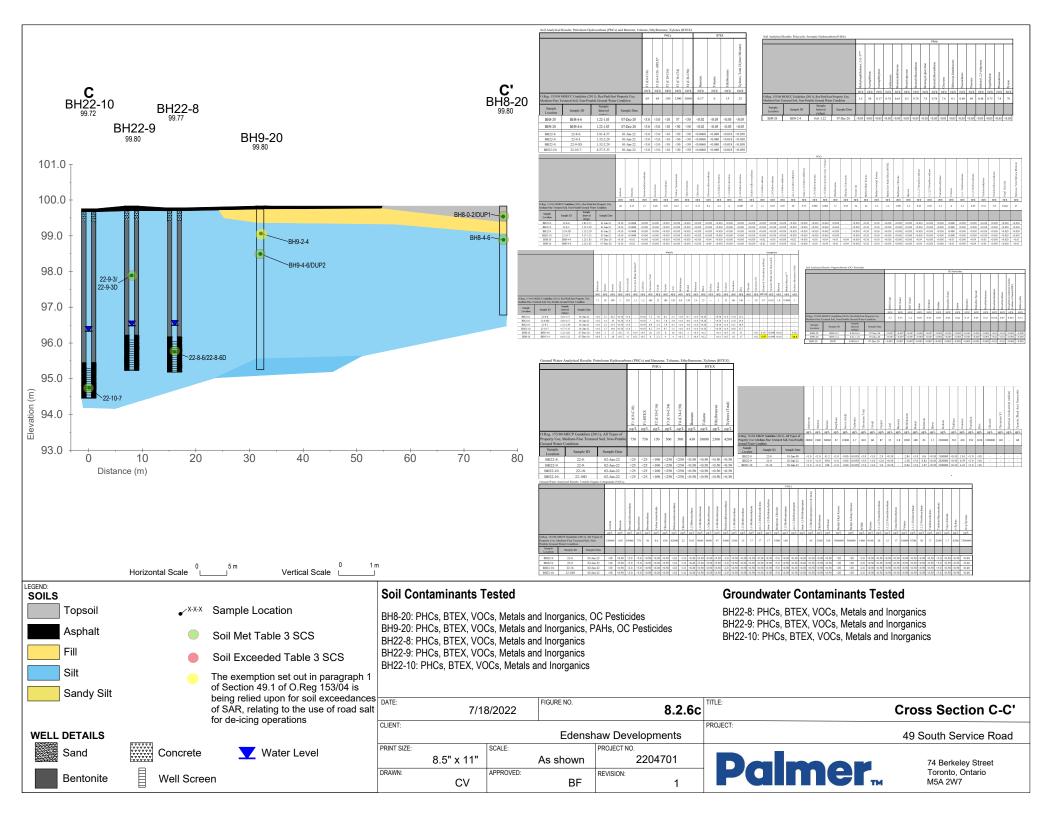

Parameter	MECP Table 3 RPI SCS (µg/L)	Maximum Ground Water Concentration (µg/L)	Location of Maximum Concentration			
Trichlorofluoromethane	2500	<5.0	All Palmer MWs			
Vinyl Chloride	1.7	<0.5	All Palmer MWs			
Other Regulated Parameters						
Chloride	2300000	2750000	MW1-20			
Chromium VI	140	<5	All GHD MWs			
Cyanide (CN-)	66	<2	All GHD MWs			
Mercury	2.8	<0.02	All GHD MWs			

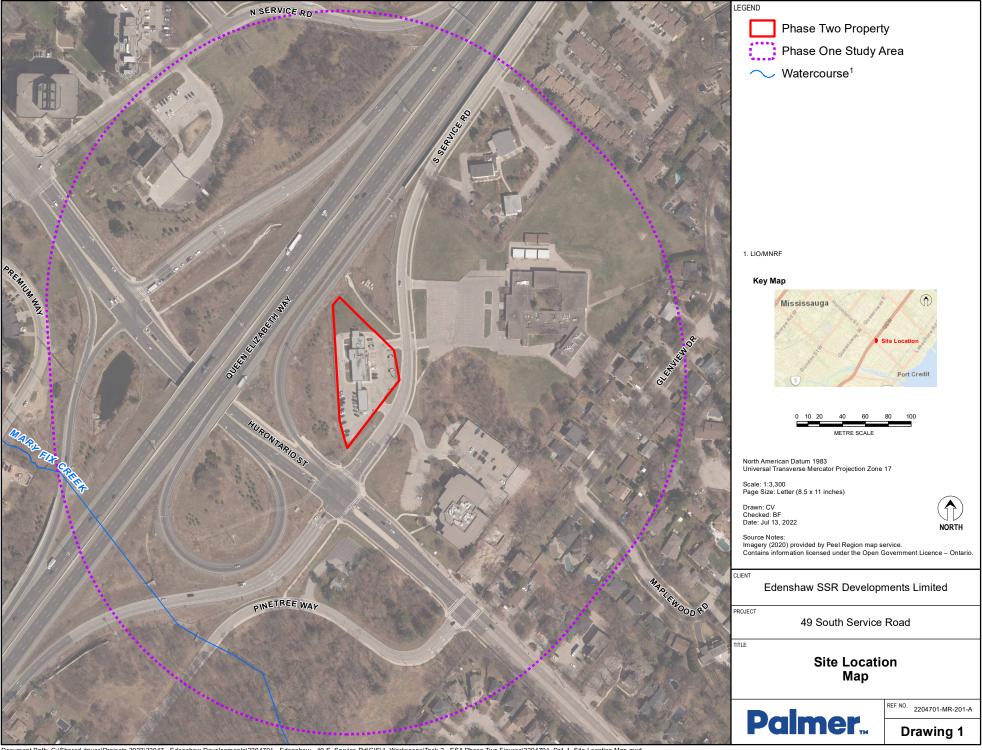

Note:

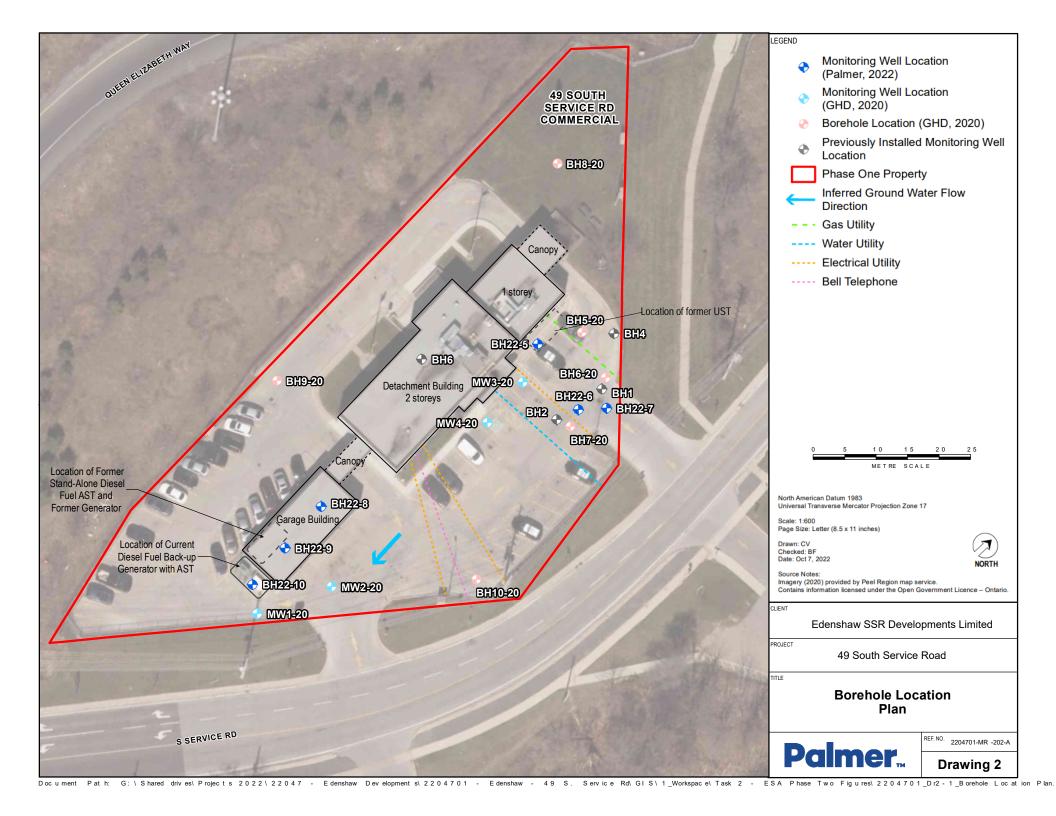

- 1. ND represents Non-Detect.
- 2. Bold entries exceed the Criteria.
- 3. Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with Medium-Fine-Textured Soils.

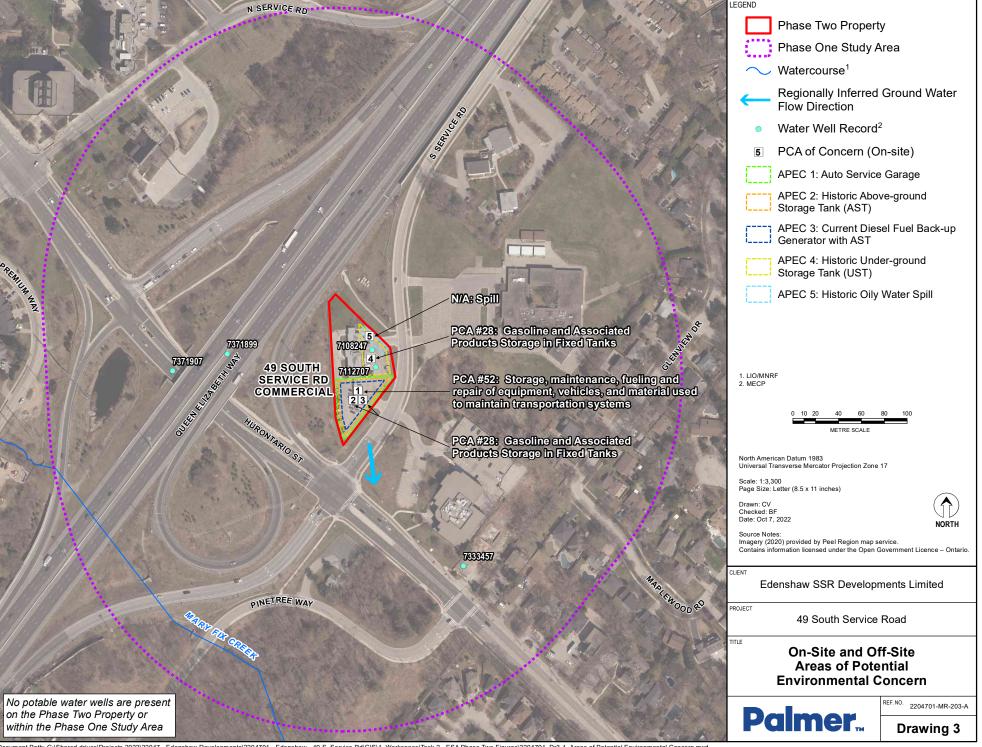


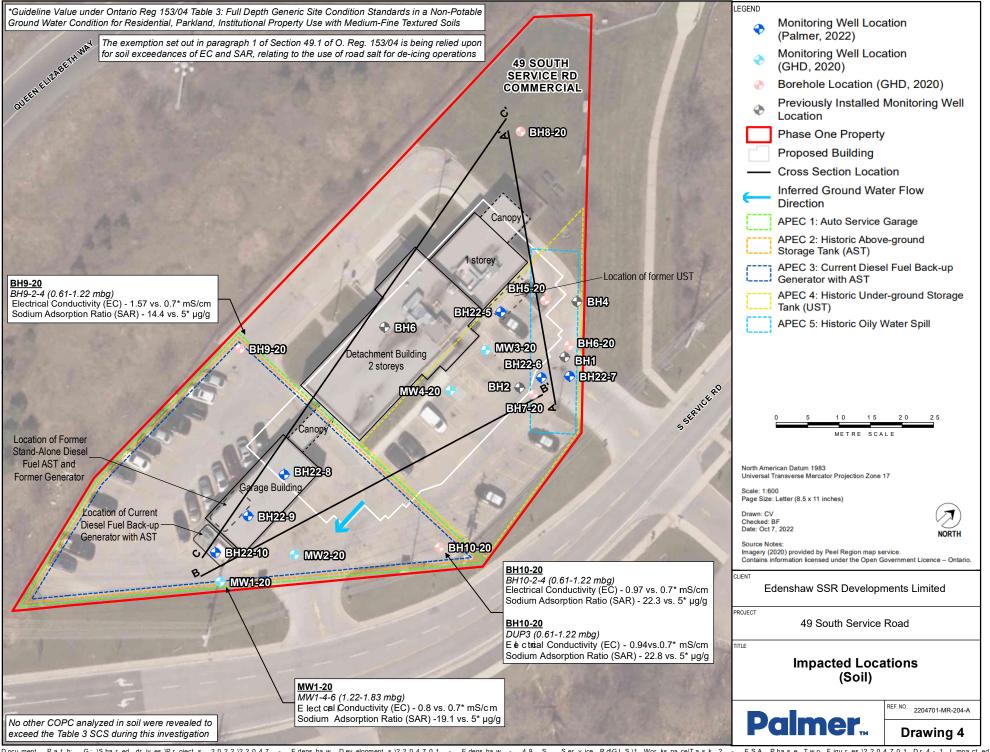


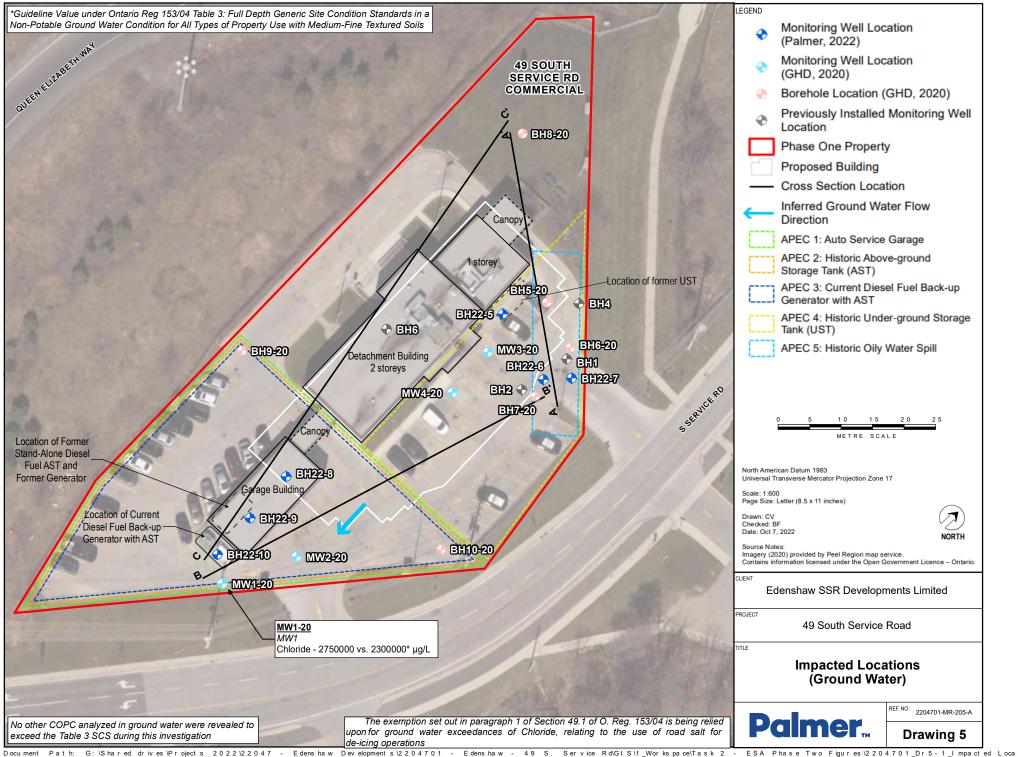


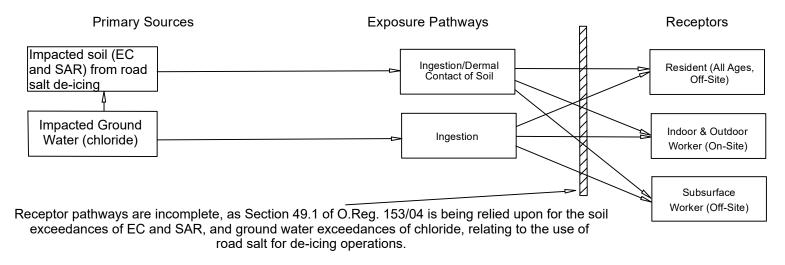


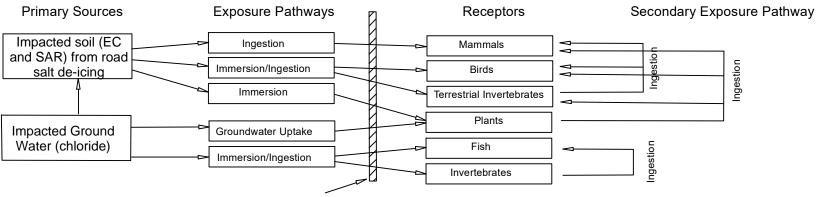







Drawings





Human Receptors and Exposure Pathways

Ecological Receptors and Exposure Pathways

Receptor pathways are incomplete, as Section 49.1 of O.Reg. 153/04 is being relied upon for the soil exceedances of EC and SAR, and ground water exceedances of chloride, relating to the use of road salt for de-icing operations.

Photographs

Photograph Log Phase Two Environmental Site Assessment (ESA) 49 South Service Road, Mississauga, ON Project No.: 2204701

Photograph 1

Photo depicts damaged monitoring well (MW1-20) from previous Phase Two study.

Photograph 2

Photo depicts previously installed monitoring well with no casing.

Photograph 3

Photo depicts soil core sample from BH22-7.

Photograph 4

Photo depicts drilling occurring in the garage building.

Appendix A – General A1 – Sampling and Analysis Plan

Phase Two ESA Sampling and Analysis Plan

Site: 49 South Service Road, Mississauga, ON

Project #: 2204701

Location ID	Media	Sample No.	Approximate Depth (m)	Date of Sample Collection	Date of Analysis	Chemical Analyses	Purpose and Justification
MW1-20	Soil	MW1-4-6	1.22-1.83	December 7, 2020	December 10 and 16, 2020	PAHs, Metals and Inorganics	Worst case soil sample. Collected to verify and/or refute APEC 2 and 3 from previous study.
		MW1-8-10	2.44-3.05		December 14 and 16, 2020	VOCs, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 3 and 5 from previous study.
		DUP4	1.22-1.83		December 16, 2020	PAHs	QA/QC. Duplicate sample of MW1-4-6.
	Ground Water	MW1	N/A	December 10, 2020	December 15, 17 and 18, 2020	VOCs, Metals and Inorganics, PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 2, 3 and 5 from previous study.
MW2-20	Soil	MW2-2-4	0.61-1.22	December 7, 2020	December 16, 2020	OC Pesticides	Worst case soil sample. Collected to verify and/or refute APEC 1 from previous study.
		MW2-4-6	1.22-1.83		December 14 and 16, 2020	VOCs, PHC, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 3 and 5 from previous study.
	Ground Water	MW2	N/A	December 10, 2020	December 17 and 18, 2020	VOCs, PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 3 and 5 from previous study.
		MW2-20		May 27, 2022	May 31, June 1 and 3, 2022	PHCs, BTEX, VOCs, Metals	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 1 and 3.
		MW2-20D			May 31, 2022	Metals	QA/QC. Duplicate sample of MW2-20.
MW3-20	Soil	MW3-2-4	0.61-1.22	December 7, 2020	December 10 and 16, 2020	PAHs, Metals and Inorganics	Worst case soil sample. Collected to verify and/or refute APEC 2 from previous study.

Phase Two ESA Sampling and Analysis Plan

	TM			Camping at	iu Alialysis Plai		
		MW3-6-8	1.83-2.44		December 14 and 16, 2020	VOCs, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 4 from previous study.
	Ground Water		MW3 N/A		December 15, 17 and 18, 2020	VOCs, Metals and Inorganics, PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 2 and 4 from previous study.
		DUP			December 15, 17 and 18, 2020	VOCs, Metals and Inorganics, PHCs, BTEX	QA/QC. Duplicate sample of MW3.
		MW3-20		May 27, 2022	June 1 and 3, 2022	PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 and 5.
MW4-20	Soil	MW4-6-8	1.83-2.44	December 7, 2020	December 14 and 16, 2020	VOCs, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 4 from previous study.
	Ground Water	MW4	N/A	December 10, 2020	December 17 and 18, 2020	VOCs, PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 from previous study.
		MW4-20		May 27, 2022	June 1 and 3, 2022	PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 and 5.
BH5-20	Soil	BH5-6-8	1.83-2.44	December 7, 2020	December 14 and 16, 2020	VOCs, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 4 from previous study.
BH6-20	Soil	BH6-8-10	2.44-3.05	December 7, 2020	December 14 and 16, 2020	VOCs, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 4 from previous study.
BH7-20	Soil	BH7-4-6	1.22-1.83	December 7, 2020	December 14 and 16, 2020	VOCs, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 4 from previous study.
BH8-20	Soil	BH8-0-2	0.00-0.61	December 7, 2020	December 16, 2020	OC Pesticides	Worst case soil sample. Collected to verify and/or refute APEC 1 from previous study.
		BH8-4-6	1.22-1.83		December 10, 14 and 16, 2020	VOCs, Metals and Inorganics, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 2 and 4 from previous study.

Palmer...

Phase Two ESA Sampling and Analysis Plan

	TM			Samping at	iu Alialysis Plai	1	
		DUP1	0.00-0.61		December 16, 2020	OC Pesticides	QA/QC. Duplicate sample of BH8-0-2.
BH9-20	Soil	BH9-2-4	0.61-1.22	December 7, 2020	December 10 and 16, 2020	PAHs, Metals and Inorganics, OC Pesticides	Worst case soil sample. Collected to verify and/or refute APEC 1 and 2 from previous study.
		BH9-4-6	1.22-1.83		December 14 and 16, 2020	VOCs, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 2, 3 and 5 from previous study.
		DUP2	1.22-1.83		December 14 and 16, 2020	VOCs, PHCs, BTEX	QA/QC. Duplicate sample of BH9-4-6.
BH10-20	Soil	BH10-2-4	0.61-1.22	December 7, 2020	December 10 and 16, 2020	Metals and Inorganics, OC Pesticides	Worst case soil sample. Collected to verify and/or refute APEC 1 and 2 from previous study.
		BH10-6-8	1.83-2.44		December 14 and 16, 2020	VOCs, PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 2, 3 and 5 from previous study.
		DUP3	0.61-1.22		December 10, 2020	Metals and Inorganics	QA/QC. Duplicate sample of BH10-2-4.
ВН1	Ground Water	ВН1	N/A	December 10, 2020	December 15, 17 and 18, 2020	VOCs, Metals and Inorganics, PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 2 and 4 from previous study.
		ВН1		May 27, 2022	June 1 and 3, 2022	PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 and 5.
ВН2	Ground Water	ВН2	N/A	December 10, 2020	December 17 and 18, 2020	VOCs, PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 from previous study.
BH4	Ground Water	BH4	N/A	May 27, 2022	June 1 and 3, 2022	PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 and 5.
		BH4D			June 1 and 3, 2022	PHCs, BTEX	QA/QC. Duplicate sample of BH4.
ВН6	Ground Water	ВН6	N/A	June 3, 2022	June 7 and 9, 2022	PHCs, BTEX	Characterize ground water conditions from potential contamination sources.

Palmer...

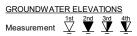
Phase Two ESA Sampling and Analysis Plan

Pull	ТМ			Sampling a	nd Analysis Plar	1	
							Collected to verify and/or refute APEC 4.
BH22-5	Soil	22-5-6	3.81-4.57	June 1, 2022	June 6, 7 and 8 2022	PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 4 and 5.
		22-5-6D	3.81-4.57		June 6, 7 and 8 2022	PHCs, BTEX	QA/QC. Duplicate sample of 22-5-6.
	Ground Water	22-5	N/A	June 2, 2022	June 9 and 10, 2022	PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 and 5.
BH22-6	Soil	22-6-2B	1.22-1.52	June 1, 2022	June 6, 7 and 8 2022	PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 4 and 5.
		22-6-5	2.29-3.05	June 1, 2022	June 7, 2022	pH	Characterize soil conditions across Phase Two Property.
	Ground Water	22-6	N/A	June 2, 2022	June 9 and 10, 2022	PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 and 5.
BH22-7	Soil	22-7-5B	3.43-3.81	June 1, 2022	June 6, 7 and 8 2022	PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC 4 and 5.
	Ground Water	22-7	N/A	June 2, 2022	June 9 and 10, 2022	PHCs, BTEX	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 4 and 5.
BH22-8	Soil	22-8-6	3.81-4.57	June 1, 2022	June 6, 7 and 8 2022	PHCs, BTEX, VOCs, Metals	Worst case soil sample. Collected to verify and/or refute APEC 1 and 2.
		22-8-6D			June 7, 2022	Metals	QA/QC. Duplicate sample of 22-8-6.
	Ground Water	22-8	N/A	June 2, 2022	June 6, 7, 9 and 10, 2022	PHCs, BTEX, VOCs, Metals	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 1 and 2.
BH22-9	Soil	22-9-3	1.52-2.29	June 1, 2022	June 6, 7 and 8 2022	PHCs, BTEX, VOCs, Metals,	Worst case soil sample. Collected to verify and/or refute APEC 1 and 2.
		22-9-3D			June 6, 7 and 8 2022	PHCs, BTEX, VOCs,	QA/QC. Duplicate sample of 22-9-3.

Palmer...

Phase Two ESA Sampling and Analysis Plan

Sampling and Analysis Flan										
	Ground Water	22-9	N/A	June 2, 2022	June 6, 7, 9 and 10, 2022	PHCs, BTEX, VOCs, Metals	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 1 and 2.			
BH22-10	Soil	22-10-7	4.57-5.33	June 1, 2022	June 6, 7 and 8, 2022	PHCs, BTEX, VOCs, Metals	Worst case soil sample. Collected to verify and/or refute APEC 1, 2 and 3.			
		22-10-2	0.76-1.14		June 3, 2022	рН	Characterize soil conditions across Phase Two Property.			
		22-10-2D			June 3, 2022	рН	QA/QC. Duplicate sample of 22-10-2.			
	Ground Water	22-10 N/A June 2,		June 2, 2022	June 6, 7, 9 and 10, 2022	PHCs, BTEX, VOCs, Metals	Characterize ground water conditions from potential contamination sources. Collected to verify and/or refute APEC 1, 2 and 3.			
		22-10D			June 6, 9 and 10, 2022	PHCs, BTEX, VOCs	QA/QC. Duplicate sample of 22-10.			
22-TCLP	Soil	22-TCLP	N/A	June 1, 2022	June 6, 7 and 8, 2022	TCLP (Metals and Inorganics, sVOCs, VOCs, PCBs)	Characterize soil conditions across Phase Two Property.			
TCLP	Soil	TCLP	N/A	December 7, 2020	December 15, 2020	TCLP (VOCs, BaP, Metals, General Chemistry)	Characterize soil conditions across Phase Two Property.			



Appendix A – General A2 – Finalized Field Logs

REF. NO.: 2204701

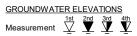
PROJECT: Phase Two ESA_49 S Service Road CLIENT: Edenshaw SSR Developments Limited Method: Solid Stem Auger ENCL NO.: 1 ORIGINATED BY SB & BF PROJECT LOCATION: City of Mississauga, ON Diameter: 150 mm DATUM: Geodetic Date: Jun-22-2001 ΚN BH LOCATION: CHECKED BY SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) STRATA PLOT (ppm) SAMPLE REMARKS CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS** DESCRIPTION NUMBER 200 300 400 500 **Ground Surface** Concrete ASPHALT: 100mm 0.2 FILL: brown silty sand, trace gravel, fill SS 2 SS -Bentonite 3 SS W. L. 2.3 mBGL FILL: brown silty sand, trace Jun 02, 2022 gravel, wet, fill SS 5 SS Sand -Screen 3.8 SILTY SAND: greyish brown, silty sand, wet, native SS Analysis: PHC/BTEX+ 6 duplicate SS END OF BOREHOLE: Notes:
1.Upon completion of drilling, one
50mm diameter monitoring well
was installed in the borehole 2.Borehole was open upon completion of drilling 3. Water Level Readings: Date: June 2, 2022 W.L. Depth: 2.26 mBGS

PROJECT: Phase Two ESA_49 S Service Road REF. NO.: 2204701 CLIENT: Edenshaw SSR Developments Limited Method: Solid Stem Auger ENCL NO.: 2 ORIGINATED BY SB & BF PROJECT LOCATION: City of Mississauga, ON Diameter: 150 mm DATUM: Geodetic Date: Jun-22-2001 ΚN BH LOCATION: CHECKED BY SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) STRATA PLOT (ppm) SAMPLE REMARKS CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS** NUMBER DESCRIPTION 200 300 400 500 Ground Surface ASPHALT: 76 mm Concrete 0.0 FILL: brown silty sand, trace SS gravel, fill 0.8 FILL: brown silty sand, trace gravel, trace clay, fill SS 2 -Bentonite 3 SS FILL: brown silty sand, trace gravel, wet, fill SS 4 FILL: brown, silty sand, wet, fill SILTY SAND: greyish brown, silty SS 5 sand, wet, native W. L. 2.7 mBGL Jun 02, 2022 6 SS Analysis: PHC/BTEX, PAH, Metals, EC, SAR Sand -Screen SS 8 SS END OF BOREHOLE: Notes: 1.Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole 2.Borehole was open upon completion of drilling 3. Water Level Readings: Date: June 2, 2022 W.L. Depth: 2.71 mBGS

PROJECT: Phase Two ESA_49 S Service Road REF. NO.: 2204701 CLIENT: Edenshaw SSR Developments Limited Method: Solid Stem Auger ENCL NO.: 3 ORIGINATED BY SB & BF PROJECT LOCATION: City of Mississauga, ON Diameter: 150 mm DATUM: Geodetic Date: Jun-22-2001 ΚN BH LOCATION: CHECKED BY SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) STRATA PLOT (ppm) SAMPLE REMARKS CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS** NUMBER DESCRIPTION 200 300 400 500 **Ground Surface** Concrete ASPHALT: 100mm 0.2 FILL: brown silty sand, trace gravel, fill SS 2 SS -Bentonite SS 3 FILL: black silty sand, fill 4 SS FILL: grey silty sand, trace clay, fill SS 5 W. L. 2.6 mBGL Jun 02, 2022 FILL: black silty clay, trace roots, 6 SS 3.1 FILL: grey silty clay, fill Analysis: PHC/BTEX 7 SS FILL: black sandy silt, fill black staining and SS slight odour 8 Sand -Screen SANDY SILT: greyish brown, 3.8 sandy silt, trace clay, native SS 9 10 SS END OF BOREHOLE: 5.3 Notes: 1.Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole 2.Borehole was open upon completion of drilling 3.Water Level Readings: Date: June 2, 2022 W.L. Depth: 2.59 mBGS

PROJECT: Phase Two ESA_49 S Service Road REF. NO.: 2204701 CLIENT: Edenshaw SSR Developments Limited Method: Solid Stem Auger ENCL NO.: 4 ORIGINATED BY SB & BF PROJECT LOCATION: City of Mississauga, ON Diameter: 150 mm DATUM: Geodetic Date: Jun-22-2001 ΚN BH LOCATION: CHECKED BY SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) STRATA PLOT (ppm) SAMPLE REMARKS CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS** DESCRIPTION NUMBER 200 300 400 500 Ground Surface -Concrete CONCRETE: 0.2 FILL: brown silty sand, trace gravel, fill SS -Bentonite 2 SS 3 SS W. L. 2.3 mBGL FILL: brown silty sand, trace Jun 02, 2022 gravel, boulder fragments, fill SS -Sand -Screen 3.1 FILL: brown silty sand, trace gravel, fill 5 SS SILTY SAND: brown, silty sand, wet 3.8 , native SS Analysis: PHC/VOC + 6 duplicate, metals END OF BOREHOLE: 4.6 Notes: 1.Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole 2.Borehole was open upon completion of drilling 3.Water Level Readings: Date: June 2, 2022 W.L. Depth: 2.26 mBGS

PROJECT: Phase Two ESA_49 S Service Road REF. NO.: 2204701 CLIENT: Edenshaw SSR Developments Limited Method: Solid Stem Auger ENCL NO.: 5 ORIGINATED BY SB & BF PROJECT LOCATION: City of Mississauga, ON Diameter: 150 mm DATUM: Geodetic Date: Jun-22-2001 ΚN BH LOCATION: CHECKED BY SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) STRATA PLOT (ppm) SAMPLE REMARKS CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS** DESCRIPTION NUMBER 200 300 400 500 Ground Surface Concrete CONCRETE: 0.2 FILL: brown silty sand, trace gravel, fill SS -Bentonite FILL: brown silty sand, trace gravel, boulder fragments, fill 2 SS FILL: brown silty sand, trace gravel, fill 3 SS Analysis: PHC/VOC, metals+duplicate SILTY SAND: brown, silty sand, wet SS -Sand -Screen W. L. 3.3 mBGL 5 SS Jun 02, 2022 6 SS END OF BOREHOLE: 4.6 Notes: 1.Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole 2.Borehole was open upon completion of drilling 3.Water Level Readings: Date: June 2, 2022 W.L. Depth: 3.32 mBGS



REF. NO.: 2204701

PROJECT: Phase Two ESA_49 S Service Road

CLIENT: Edenshaw SSR Developments Limited Method: Solid Stem Auger ENCL NO.: 6 ORIGINATED BY SB & BF PROJECT LOCATION: City of Mississauga, ON Diameter: 150 mm DATUM: Geodetic Date: Jun-22-2001 ΚN BH LOCATION: CHECKED BY SAMPLES SOIL PROFILE Head Space Combustible GROUND WATER CONDITIONS Vapor Reading LABORATORY ANALYSIS WELL (m) STRATA PLOT (ppm) SAMPLE REMARKS CONSTRUCTION AND ELEV DEPTH REMARKS **DETAILS** NUMBER DESCRIPTION 200 300 400 500 Ground Surface Ž, Concrete ASPHALT: 100mm FILL: brown silty sand, trace gravel, fill SS FILL: brown silty sand, trace gravel, trace clay, fill 2 SS Analysis: pH+duplicate -Bentonite 3 SS FILL: golden brown silty sand, trace gravel, fill SS 4 FILL: brown silty sand, trace clay, moist, fill SS Analysis: Grain Size 5 W. L. 2.9 mBGL Jun 02, 2022 FILL: greyish brown, silty sand, wet 6 SS -Sand -Screen SS 8 SS Analysis: PHC/VOC, END OF BOREHOLE: Notes: 1.Upon completion of drilling, one 50mm diameter monitoring well was installed in the borehole 2.Borehole was open upon completion of drilling 3. Water Level Readings: Date: June 2, 2022 W.L. Depth: 2.89 mBGS

Appendix A – General A3 – Certificates of Analysis or Analytical Reports from Laboratories

PALMER ENVIRONMENTAL CONSULTING

GROUP INC. (Richmond Hill)

ATTN: Bailey Fleet 74 Berkeley Street Toronto ON M5V 1E3 Date Received: 27-MAY-22

Report Date: 03-JUN-22 13:58 (MT)

Version: FINAL

Client Phone: 647-795-8153

Certificate of Analysis

Lab Work Order #: L2710170

Project P.O. #: 2204701 Job Reference: 2204701 C of C Numbers: 20-951780

Legal Site Desc:

Kdingh

KARANPARTAP SINGH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2710170 CONT'D....

Job Reference: 2204701

PAGE 2 of 9

03-JUN-22 13:58 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)

(No parameter exceedances)

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

(No parameter exceedances)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2710170 CONT'D....

Job Reference: 2204701

PAGE 3 of 9

03-JUN-22 13:58 (MT)

Dissolved Metals - WATER

		Lab ID Sample Date Sample ID		L2710170-4 27-MAY-22 MW2-20	L2710170-6 27-MAY-22 MW2-20D
Analyte	Unit	Guide #1	Limits #2		
Dissolved Metals Filtration Location		-	-	FIELD	FIELD
Antimony (Sb)-Dissolved	ug/L	20000	20000	<1.0 DLHC	<1.0 DLHC
Arsenic (As)-Dissolved	ug/L	1900	1900	<1.0 DLHC	<1.0 DLHC
Barium (Ba)-Dissolved	ug/L	29000	29000	43.0 DLHC	41.3 DLHC
Beryllium (Be)-Dissolved	ug/L	67	67	<1.0 DLHC	<1.0 DLHC
Boron (B)-Dissolved	ug/L	45000	45000	<100 DLHC	<100 DLHC
Cadmium (Cd)-Dissolved	ug/L	2.7	2.7	< 0.050 DLHC	<0.050 ^{DLHC}
Chromium (Cr)-Dissolved	ug/L	810	810	<5.0 DLHC	<5.0 DLHC
Cobalt (Co)-Dissolved	ug/L	66	66	<1.0 DLHC	<1.0 DLHC
Copper (Cu)-Dissolved	ug/L	87	87	<2.0 DLHC	<2.0 DLHC
Lead (Pb)-Dissolved	ug/L	25	25	<0.50 DLHC	<0.50 DLHC
Molybdenum (Mo)-Dissolved	ug/L	9200	9200	<0.50 DLHC	<0.50 DLHC
Nickel (Ni)-Dissolved	ug/L	490	490	<5.0 DLHC	<5.0 DLHC
Selenium (Se)-Dissolved	ug/L	63	63	0.80 DLHC	0.95 DLHC
Silver (Ag)-Dissolved	ug/L	1.5	1.5	<0.50 DLHC	<0.50 DLHC
Sodium (Na)-Dissolved	ug/L	2300000	2300000	1940000 BLHC	1920000 BLHC
Thallium (TI)-Dissolved	ug/L	510	510	<0.10 DLHC	<0.10 DLHC
Uranium (U)-Dissolved	ug/L	420	420	1.33 DLHC	1.28 DLHC
Vanadium (V)-Dissolved	ug/L	250	250	<5.0 DLHC	<5.0 DLHC
Zinc (Zn)-Dissolved	ug/L	1100	1100	<10 DLHC	<10 DLHC

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2710170 CONT'D....

Job Reference: 2204701

PAGE 4 of 9

03-JUN-22 13:58 (MT)

Volatile Organic Compounds - WATER

		Sample	ab ID Date ple ID	L2710170-1 27-MAY-22 BH1	L2710170-2 27-MAY-22 BH4	L2710170-3 27-MAY-22 BH4D	L2710170-4 27-MAY-22 MW2-20	L2710170-5 27-MAY-22 MW3-20	L2710170-7 27-MAY-22 MW4-20	L2710170-8 27-MAY-22 TRIP BLANK
Analyte	Unit	Guide #1	Limits #2							
Acetone	ug/L	130000	130000				<30			<30
Benzene	ug/L	44	430	<0.50 OWP	<0.50 OWP	<0.50 OWP	<0.50	<0.50	<0.50 OWP	< 0.50
Bromodichloromethane	ug/L	85000	85000				<2.0			<2.0
Bromoform	ug/L	380	770				<5.0			<5.0
Bromomethane	ug/L	5.6	56				<0.50			<0.50
Carbon tetrachloride	ug/L	0.79	8.4				<0.20			<0.20
Chlorobenzene	ug/L	630	630				<0.50			<0.50
Dibromochloromethane	ug/L	82000	82000				<2.0			<2.0
Chloroform	ug/L	2.4	22				<1.0			<1.0
1,2-Dibromoethane	ug/L	0.25	0.83				<0.20			<0.20
1,2-Dichlorobenzene	ug/L	4600	9600				<0.50			<0.50
1,3-Dichlorobenzene	ug/L	9600	9600				<0.50			< 0.50
1,4-Dichlorobenzene	ug/L	8	67				<0.50			<0.50
Dichlorodifluoromethane	ug/L	4400	4400				<2.0			<2.0
1,1-Dichloroethane	ug/L	320	3100				<0.50			<0.50
1,2-Dichloroethane	ug/L	1.6	12				<0.50			< 0.50
1,1-Dichloroethylene	ug/L	1.6	17				<0.50			<0.50
cis-1,2-Dichloroethylene	ug/L	1.6	17				<0.50			< 0.50
trans-1,2-Dichloroethylene	ug/L	1.6	17				<0.50			<0.50
Methylene Chloride	ug/L	610	5500				<5.0			<5.0
1,2-Dichloropropane	ug/L	16	140				<0.50			<0.50
cis-1,3-Dichloropropene	ug/L	-	-				<0.30			< 0.30
trans-1,3-Dichloropropene	ug/L	-	-				<0.30			<0.30
1,3-Dichloropropene (cis & trans)	ug/L	5.2	45				<0.50			<0.50
Ethylbenzene	ug/L	2300	2300	<0.50 OWP	<0.50 OWP	<0.50 OWP	<0.50	<0.50	<0.50 OWP	<0.50
n-Hexane	ug/L	51	520				<0.50			<0.50
Methyl Ethyl Ketone	ug/L	470000	1500000				<20			<20
Methyl Isobutyl Ketone	ug/L	140000	580000				<20			<20
МТВЕ	ug/L	190	1400				<2.0			<2.0
Styrene	ug/L	1300	9100				<0.50			<0.50
	=									

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2710170 CONT'D....

Job Reference: 2204701

PAGE 5 of 9

03-JUN-22 13:58 (MT)

Volatile Organic Compounds - WATER

		I	∟ab ID	L2710170-1	L2710170-2	L2710170-3	L2710170-4	L2710170-5	L2710170-7	L2710170-8
		Sample	e Date	27-MAY-22						
		•	ple ID	BH1	BH4	BH4D	MW2-20	MW3-20	MW4-20	TRIP BLANK
Analyte	Unit	Guide #1	Limits #2							
1,1,1,2-Tetrachloroethane	ug/L	3.3	28				<0.50			<0.50
1,1,2,2-Tetrachloroethane	ug/L	3.2	15				<0.50			<0.50
Tetrachloroethylene	ug/L	1.6	17				<0.50			<0.50
Toluene	ug/L	18000	18000	<0.50 OWP	<0.50 OWP	<0.50 OWP	<0.50	<0.50	<0.50 OWP	<0.50
1,1,1-Trichloroethane	ug/L	640	6700				<0.50			<0.50
1,1,2-Trichloroethane	ug/L	4.7	30				<0.50			<0.50
Trichloroethylene	ug/L	1.6	17				<0.50			<0.50
Trichlorofluoromethane	ug/L	2500	2500				<5.0			<5.0
Vinyl chloride	ug/L	0.5	1.7				<0.50			<0.50
o-Xylene	ug/L	-	-	<0.30 OWP	<0.30 OWP	<0.30 OWP	<0.30	<0.30	<0.30 OWP	< 0.30
m+p-Xylenes	ug/L	-	-	<0.40 OWP	<0.40 OWP	<0.40 OWP	<0.40	<0.40	<0.40 OWP	<0.40
Xylenes (Total)	ug/L	4200	4200	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Surrogate: 4-Bromofluorobenzene	%	-	-	87.3	86.9	87.8	92.7	87.3	88.2	92.8
Surrogate: 1,4-Difluorobenzene	%	-	-	97.9	97.3	97.2	98.7	97.7	98.4	99.4

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2710170 CONT'D....

Job Reference: 2204701

PAGE 6 of 9

03-JUN-22 13:58 (MT)

Hydrocarbons - WATER

ilyanooansono iiiita									
		l	Lab ID	L2710170-1	L2710170-2	L2710170-3	L2710170-4	L2710170-5	L2710170-7
		Sample	e Date	27-MAY-22	27-MAY-22	27-MAY-22	27-MAY-22	27-MAY-22	27-MAY-22
		Sam	ple ID	BH1	BH4	BH4D	MW2-20	MW3-20	MW4-20
Analyte	Unit	Guide #1	Limits #2						
F1 (C6-C10)	ug/L	750	750	<25 OWP	<25 OWP	<25 OWP	<25	<25	<25 OWP
F1-BTEX	ug/L	750	750	<25	<25	<25	<25	<25	<25
F2 (C10-C16)	ug/L	150	150	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	ug/L	500	500	<250	<250	<250	<250	<250	<250
F4 (C34-C50)	ug/L	500	500	<250	<250	<250	<250	<250	<250
Total Hydrocarbons (C6-C50)	ug/L	-	-	<370	<370	<370	<370	<370	<370
Chrom. to baseline at nC50		-	-	YES	YES	YES	YES	YES	YES
Surrogate: 2-Bromobenzotrifluoride	%	-	-	84.9	82.8	83.7	85.6	83.5	82.4
Surrogate: 3,4-Dichlorotoluene	%	-	-	74.0	81.6	81.0	84.5	76.8	63.2

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

Reference Information

L2710170 CONT'D.... Job Reference: 2204701 PAGE 7 of 9 03-JUN-22 13:58 (MT)

Qualifiers for Individual Parameters Listed:

Qualifier	Description
OWP	Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of

Reference Information

L2710170 CONT'D.... Job Reference: 2204701 PAGE 8 of 9 03-JUN-22 13:58 (MT)

sediment.

DLHC Detection Limit Raise

Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

BTX-511-HS-WT Water BTEX by Headspace SW846 8260 (511)

BTX is determined by analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-F4-511-CALC-WT

Water

F1-F4 Hydrocarbon Calculated

CCME CWS-PHC. Pub #1310. Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Water

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Water

F2-F4-O.Reg 153/04 (July 2011)

EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

L2710170 CONT'D.... Job Reference: 2204701 PAGE 9 of 9 03-JUN-22 13:58 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 (July SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

20-951780

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Quality Control Report

Workorder: L2710170 Report Date: 03-JUN-22 Page 1 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Bailey Fleet

Contact:

Test Matrix Reference Result Qualifier Units **RPD** Limit Analyzed BTX-511-HS-WT Water R5793818 **Batch** WG3734915-4 DUP WG3734915-3 Benzene < 0.50 < 0.50 RPD-NA ug/L N/A 30 03-JUN-22 Ethylbenzene 190 178 ug/L 6.5 30 03-JUN-22 649 612 m+p-Xylenes ug/L 6.0 30 03-JUN-22 o-Xylene 42.7 41.4 ug/L 3.1 30 03-JUN-22 Toluene <6.0 <5.5 RPD-NA ug/L N/A 30 03-JUN-22 WG3734915-1 LCS Benzene 97.4 % 70-130 03-JUN-22 Ethylbenzene 79.3 % 70-130 03-JUN-22 m+p-Xylenes % 88.4 70-130 03-JUN-22 o-Xylene 82.4 % 70-130 03-JUN-22 92.0 % Toluene 70-130 03-JUN-22 WG3734915-2 MB 0.5 Benzene < 0.50 ug/L 03-JUN-22 Ethylbenzene < 0.50 0.5 ug/L 03-JUN-22 m+p-Xylenes < 0.40 ug/L 0.4 03-JUN-22 o-Xylene < 0.30 ug/L 0.3 03-JUN-22 Toluene ug/L 0.5 < 0.50 03-JUN-22 Surrogate: 1,4-Difluorobenzene 99.0 % 70-130 03-JUN-22 Surrogate: 4-Bromofluorobenzene 90.4 % 70-130 03-JUN-22 WG3734915-5 MS WG3734915-3 Benzene % 73.7 03-JUN-22 50-140 Ethylbenzene N/A MS-B % 03-JUN-22 m+p-Xylenes N/A MS-B % 03-JUN-22 86.8 o-Xylene % 50-140 03-JUN-22 Toluene 94.5 % 50-140 03-JUN-22 F1-HS-511-WT Water R5791463 **Batch** WG3733556-4 DUP WG3733556-3 F1 (C6-C10) <25 <25 RPD-NA ug/L N/A 30 01-JUN-22 WG3733556-1 LCS F1 (C6-C10) 103.6 % 80-120 01-JUN-22 WG3733556-2 MB F1 (C6-C10) 25 <25 ug/L 01-JUN-22 Surrogate: 3,4-Dichlorotoluene 100.4 % 60-140 01-JUN-22 WG3733556-5 MS WG3733556-3

Quality Control Report

Workorder: L2710170 Report Date: 03-JUN-22 Page 2 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Contact: Bailey Fleet

Test Matrix Refere	nce Result Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT Water					
Batch R5791463 WG3733556-5 MS WG37 F1 (C6-C10)	33556-3 84.6	%		60-140	01-JUN-22
Batch R5793818 WG3734915-1 LCS F1 (C6-C10)	102.0	%		80-120	03-JUN-22
WG3734915-2 MB F1 (C6-C10)	<25	ug/L		25	03-JUN-22
Surrogate: 3,4-Dichlorotoluene	81.3	%		60-140	03-JUN-22
WG3734915-5 MS WG37 F1 (C6-C10)	34915-3 N/A MS-B	%		-	03-JUN-22
F2-F4-511-WT Water					
Batch R5791147					
WG3732703-2 LCS	00.0	0.4			
F2 (C10-C16)	92.0	%		70-130	31-MAY-22
F3 (C16-C34) F4 (C34-C50)	106.6	%		70-130	31-MAY-22
	94.6	70		70-130	31-MAY-22
WG3732703-1 MB F2 (C10-C16)	<100	ug/L		100	31-MAY-22
F3 (C16-C34)	<250	ug/L		250	31-MAY-22
F4 (C34-C50)	<250	ug/L		250	31-MAY-22
Surrogate: 2-Bromobenzotrifluoride	76.0	%		60-140	31-MAY-22
MET-D-UG/L-MS-WT Water					
Batch R5791056					
WG3733063-4 DUP WG37 Antimony (Sb)-Dissolved <0.10	33063-3 <0.10 RPD-NA	ug/L	N/A	20	31-MAY-22
Arsenic (As)-Dissolved 0.23	0.21	ug/L	8.0	20	31-MAY-22
Barium (Ba)-Dissolved 30.2	30.9	ug/L	2.2	20	31-MAY-22
Beryllium (Be)-Dissolved <0.10	<0.10 RPD-NA	ug/L	N/A	20	31-MAY-22
Boron (B)-Dissolved <10	<10 RPD-NA	ug/L	N/A	20	31-MAY-22
Cadmium (Cd)-Dissolved <0.00	0 <0.0050 RPD-NA	ug/L	N/A	20	31-MAY-22
Chromium (Cr)-Dissolved <0.50	<0.50 RPD-NA	ug/L	N/A	20	31-MAY-22
Cobalt (Co)-Dissolved <0.10	<0.10 RPD-NA	ug/L	N/A	20	31-MAY-22
Copper (Cu)-Dissolved 0.51	0.47	ug/L	6.9	20	31-MAY-22
Lead (Pb)-Dissolved <0.05	<0.050 RPD-NA	ug/L	N/A	20	31-MAY-22
Molybdenum (Mo)-Dissolved 0.076	0.064	ug/L			31-MAY-22

Workorder: L2710170 Report Date: 03-JUN-22 Page 3 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R5791056	i							
WG3733063-4 DUP Molybdenum (Mo)-Diss	olved	WG3733063-3 0.076	0.064		ug/L	17	20	31-MAY-22
Nickel (Ni)-Dissolved		<0.50	<0.50	RPD-NA	ug/L	N/A	20	31-MAY-22
Selenium (Se)-Dissolve	ed	<0.050	<0.050	RPD-NA	ug/L	N/A	20	31-MAY-22
Silver (Ag)-Dissolved		<0.050	<0.050	RPD-NA	ug/L	N/A	20	31-MAY-22
Sodium (Na)-Dissolved		1020	1030		ug/L	0.9	20	31-MAY-22
Thallium (TI)-Dissolved		<0.010	<0.010	RPD-NA	ug/L	N/A	20	31-MAY-22
Uranium (U)-Dissolved		0.053	0.054		ug/L	2.3	20	31-MAY-22
Vanadium (V)-Dissolve	d	<0.50	<0.50	RPD-NA	ug/L	N/A	20	31-MAY-22
Zinc (Zn)-Dissolved		<1.0	<1.0	RPD-NA	ug/L	N/A	20	31-MAY-22
WG3733063-2 LCS Antimony (Sb)-Dissolve	ed.		98.4		%		80-120	31-MAY-22
Arsenic (As)-Dissolved	, u		103.3		%		80-120	31-MAY-22
Barium (Ba)-Dissolved			106.3		%		80-120	31-MAY-22
Beryllium (Be)-Dissolve	ed		100.0		%		80-120	31-MAY-22
Boron (B)-Dissolved			96.6		%		80-120	31-MAY-22
Cadmium (Cd)-Dissolve	ed		99.5		%		80-120	31-MAY-22
Chromium (Cr)-Dissolv	ed		100.8		%		80-120	31-MAY-22
Cobalt (Co)-Dissolved			99.5		%		80-120	31-MAY-22
Copper (Cu)-Dissolved			97.8		%		80-120	31-MAY-22
Lead (Pb)-Dissolved			98.3		%		80-120	31-MAY-22
Molybdenum (Mo)-Diss	olved		104.1		%		80-120	31-MAY-22
Nickel (Ni)-Dissolved			99.2		%		80-120	31-MAY-22
Selenium (Se)-Dissolve	ed		103.0		%		80-120	31-MAY-22
Silver (Ag)-Dissolved			99.7		%		80-120	31-MAY-22
Sodium (Na)-Dissolved			107.1		%		80-120	31-MAY-22
Thallium (TI)-Dissolved			101.8		%		80-120	31-MAY-22
Uranium (U)-Dissolved			93.4		%		80-120	31-MAY-22
Vanadium (V)-Dissolve	d		102.6		%		80-120	31-MAY-22
Zinc (Zn)-Dissolved			99.5		%		80-120	31-MAY-22
WG3733063-1 MB Antimony (Sb)-Dissolve	ed		<0.10		ug/L		0.1	31-MAY-22
Arsenic (As)-Dissolved			<0.10		ug/L		0.1	31-MAY-22
Barium (Ba)-Dissolved			<0.10		ug/L		0.1	31-MAY-22
Beryllium (Be)-Dissolve	ed		<0.10		ug/L		0.1	31-MAY-22
- , ,					-			

Workorder: L2710170 Report Date: 03-JUN-22 Page 4 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R57910	56							
WG3733063-1 MB Boron (B)-Dissolved			40		/!		10	24.1414.22
	dvod		<10		ug/L		10 0.005	31-MAY-22
Cadmium (Cd)-Disso			<0.0050		ug/L			31-MAY-22
Chromium (Cr)-Disso			<0.50		ug/L		0.5	31-MAY-22
Cobalt (Co)-Dissolve			<0.10		ug/L		0.1	31-MAY-22
Copper (Cu)-Dissolve	ea		<0.20		ug/L		0.2	31-MAY-22
Lead (Pb)-Dissolved	in a a b ca al		<0.050		ug/L		0.05	31-MAY-22
Molybdenum (Mo)-Di			<0.050		ug/L		0.05	31-MAY-22
Nickel (Ni)-Dissolved			<0.50		ug/L		0.5	31-MAY-22
Selenium (Se)-Disso			<0.050		ug/L		0.05	31-MAY-22
Silver (Ag)-Dissolved			<0.050		ug/L		0.05	31-MAY-22
Sodium (Na)-Dissolv			<50		ug/L		50	31-MAY-22
Thallium (TI)-Dissolv			<0.010		ug/L		0.01	31-MAY-22
Uranium (U)-Dissolve			<0.010		ug/L		0.01	31-MAY-22
Vanadium (V)-Dissol	ved		<0.50		ug/L		0.5	31-MAY-22
Zinc (Zn)-Dissolved			<1.0		ug/L		1	31-MAY-22
WG3733063-5 MS Antimony (Sb)-Disso		WG3733063-6	96.1		%		70-130	31-MAY-22
Arsenic (As)-Dissolve	ed		105.5		%		70-130	31-MAY-22
Barium (Ba)-Dissolve	ed		N/A	MS-B	%		-	31-MAY-22
Beryllium (Be)-Dissol	ved		98.6		%		70-130	31-MAY-22
Boron (B)-Dissolved			89.9		%		70-130	31-MAY-22
Cadmium (Cd)-Disso	lved		96.5		%		70-130	31-MAY-22
Chromium (Cr)-Disso	olved		94.3		%		70-130	31-MAY-22
Cobalt (Co)-Dissolve	d		94.4		%		70-130	31-MAY-22
Copper (Cu)-Dissolve	ed		88.3		%		70-130	31-MAY-22
Lead (Pb)-Dissolved			92.0		%		70-130	31-MAY-22
Molybdenum (Mo)-Di	ssolved		99.1		%		70-130	31-MAY-22
Nickel (Ni)-Dissolved			92.3		%		70-130	31-MAY-22
Selenium (Se)-Disso	lved		113.5		%		70-130	31-MAY-22
Silver (Ag)-Dissolved			83.7		%		70-130	31-MAY-22
Sodium (Na)-Dissolv	ed		N/A	MS-B	%		-	31-MAY-22
Thallium (TI)-Dissolv	ed		95.7		%		70-130	31-MAY-22
Uranium (U)-Dissolve	ed		N/A	MS-B	%		-	31-MAY-22
Vanadium (V)-Dissol	ved		100.8		%		70-130	31-MAY-22

Workorder: L2710170 Report Date: 03-JUN-22 Page 5 of 11

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client:

74 Berkeley Street Toronto ON M5V 1E3

Contact: **Bailey Fleet**

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R579109 WG3733063-5 MS Zinc (Zn)-Dissolved	56	WG3733063-6	97.3		%		70-130	31-MAY-22
VOC-511-HS-WT	Water							
Batch R57914	63							
WG3733556-4 DUI 1,1,1,2-Tetrachloroet		WG3733556-3 <0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,1,2,2-Tetrachloroet	hane	<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,1,1-Trichloroethane)	<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,1,2-Trichloroethane)	<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	01-JUN-22
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
Acetone		<30	<30	RPD-NA	ug/L	N/A	30	01-JUN-22
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
Bromodichlorometha	ne	<2.0	<2.0	RPD-NA	ug/L	N/A	30	01-JUN-22
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	01-JUN-22
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	01-JUN-22
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
Chloroform		1.0	1.0		ug/L	2.0	30	01-JUN-22
cis-1,2-Dichloroethyle	ene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
cis-1,3-Dichloroprope	ene	<0.30	<0.30	RPD-NA	ug/L	N/A	30	01-JUN-22
Dibromochlorometha	ne	<2.0	<2.0	RPD-NA	ug/L	N/A	30	01-JUN-22
Dichlorodifluorometha	ane	<2.0	<2.0	RPD-NA	ug/L	N/A	30	01-JUN-22
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	01-JUN-22
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	01-JUN-22

Workorder: L2710170 Report Date: 03-JUN-22 Page 6 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5791463								
WG3733556-4 DUP		WG3733556-3			4			
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	01-JUN-22
Methylene Chloride		<5.0	<5.0	RPD-NA	ug/L	N/A	30	01-JUN-22
MTBE		<2.0	<2.0	RPD-NA	ug/L	N/A	30	01-JUN-22
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	01-JUN-22
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
trans-1,2-Dichloroethyle	ene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
trans-1,3-Dichloroprope	ne	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	01-JUN-22
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
Trichlorofluoromethane		<5.0	<5.0	RPD-NA	ug/L	N/A	30	01-JUN-22
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	01-JUN-22
WG3733556-1 LCS								
1,1,1,2-Tetrachloroetha			103.2		%		70-130	01-JUN-22
1,1,2,2-Tetrachloroetha	ne		102.8		%		70-130	01-JUN-22
1,1,1-Trichloroethane			107.0		%		70-130	01-JUN-22
1,1,2-Trichloroethane			108.3		%		70-130	01-JUN-22
1,1-Dichloroethane			106.0		%		70-130	01-JUN-22
1,1-Dichloroethylene			104.3		%		70-130	01-JUN-22
1,2-Dibromoethane			105.2		%		70-130	01-JUN-22
1,2-Dichlorobenzene			107.2		%		70-130	01-JUN-22
1,2-Dichloroethane			105.7		%		70-130	01-JUN-22
1,2-Dichloropropane			105.1		%		70-130	01-JUN-22
1,3-Dichlorobenzene			106.5		%		70-130	01-JUN-22
1,4-Dichlorobenzene			111.0		%		70-130	01-JUN-22
Acetone			115.1		%		60-140	01-JUN-22
Benzene			107.3		%		70-130	01-JUN-22
Bromodichloromethane			114.1		%		70-130	01-JUN-22
Bromoform			104.6		%		70-130	01-JUN-22
Bromomethane			109.5		%		60-140	01-JUN-22
Carbon tetrachloride			103.2		%		70-130	01-JUN-22
Chlorobenzene			103.1		%		70-130	01-JUN-22
Chloroform			106.5		%		70-130	01-JUN-22

Workorder: L2710170 Report Date: 03-JUN-22 Page 7 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

VOC-511-HS-WT	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Wa2733586-1 LCS Cis-1,2-Dichloroethylene 95.6 % 70-130 01-JUN-22 cis-1,3-Dichloropropene 102.6 % 70-130 01-JUN-22 Dibromochloromethane 109.6 % 70-130 01-JUN-22 Dichlorodfluoromethane 123.1 % 50-140 01-JUN-22 Eihylbenzene 103.7 % 70-130 01-JUN-22 n-Hexane 104.5 % 70-130 01-JUN-22 m+p-Xylenes 101.2 % 70-130 01-JUN-22 Methyl Ethyl Ketone 109.5 % 60-140 01-JUN-22 Methyl Isobulyl Ketone 98.2 % 60-140 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 Tetrachloroethylene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130	VOC-511-HS-WT	Water							
cis-1,2-Dichloroethylene 95.6 % 70-130 01-JUN-22 cis-1,3-Dichloropropene 102.6 % 70-130 01-JUN-22 Dibromochloromethane 109.6 % 70-130 01-JUN-22 Dichlorodifluoromethane 123.1 % 50-140 01-JUN-22 Ethylbenzene 103.7 % 70-130 01-JUN-22 n-Hexane 104.5 % 70-130 01-JUN-22 m-thylagene 101.2 % 70-130 01-JUN-22 Methyl Ethyl Ketone 109.5 % 60-140 01-JUN-22 Methyle Choride 107.4 % 70-130 01-JUN-22 Methyle Choride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 M**TISE 101.8 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Toluene 100.7 % 70-130 01-JUN-22 Toluene </td <td>Batch R5791463</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Batch R5791463								
cis-1,3-Dichloropropene 102.6 % 70-130 01-JUN-22 Dibromochloromethane 109.6 % 70-130 01-JUN-22 Dichlorodifluoromethane 123.1 % 50-140 01-JUN-22 Ethybenzene 103.7 % 70-130 01-JUN-22 n-Hexane 104.5 % 70-130 01-JUN-22 mt-by Slemes 101.2 % 70-130 01-JUN-22 Methyl Ethyl Ketone 98.2 % 60-140 01-JUN-22 Methyl Ethyl Ketone 107.4 % 70-130 01-J				05.0		0/			
Dibromochloromethane 109.6 % 70-130 01-JUN-22 Dichlorodfluoromethane 123.1 % 50-140 01-JUN-22 Ethylbenzene 103.7 % 70-130 01-JUN-22 n-Hexane 104.5 % 70-130 01-JUN-22 m+p-Xylenes 101.2 % 60-140 01-JUN-22 Methyl Ethyl Ketone 109.5 % 60-140 01-JUN-22 Methyl Isobutyl Ketone 98.2 % 60-140 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 MTBE 103.4 % 70-130 01-JUN-22 c-Xylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Totaloroethy									
Dichlorodifluoromethane 123.1 % 50-140 01-JUN-22 Ethylbenzene 103.7 % 70-130 01-JUN-22 n-Hexane 104.5 % 70-130 01-JUN-22 m+p-Xylenes 101.2 % 70-130 01-JUN-22 Methyl Ethyl Ketone 109.5 % 60-140 01-JUN-22 Methyl Isobutyl Ketone 98.2 % 60-140 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Totalene 100.7 % 70-130 01-JUN-22 Trans-1,2-Dichloroethylene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 104.7 % 70-130 01-JUN-22 Trichloroethylene 105.6 % 60-140 01-JUN-22									
Ethylbenzene 103.7 % 70-130 01-JUN-22 n-Hexane 104.5 % 70-130 01-JUN-22 m+p-Xyfenes 101.2 % 70-130 01-JUN-22 Methyl Ethyl Ketone 109.5 % 60-140 01-JUN-22 Methyl Isobuyl Ketone 99.2 % 60-140 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 MTBE 103.4 % 70-130 01-JUN-22 O-Yylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloroethylene 104.7 % 70-130 01-JUN-22 Trichloroethyl									
n-Hexane 104.5 % 70-130 01-JUN-22 m+p-Xylenes 101.2 % 70-130 01-JUN-22 Methyl Ethyl Ketone 109.5 % 60-140 01-JUN-22 Methyl Ethyl Ketone 98.2 % 60-140 01-JUN-22 Methyl Ethyl Ketone 98.2 % 70-130 01-JUN-22 Methyl Endityl Ketone 98.2 % 70-130 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 o-Xylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Tetrachloroethylene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 104.7 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 trans-1,3-Dichloroethylene 105.6 % 60-140 01-JUN-22 Trichloroethylene 105.6 % 60-140 01-JUN-22 Trichloroethylene 105.6 % 60-140 01-JUN-22 Word Chlorofluoromethane 105.6 % 60-140 01-JUN-22 Word Chloroethane 105.6 % 60-140 01-JUN-22 Trichloroethane 105.6 % 60-140 01-JUN-22 Trichloroethane 105.6 % 60-140 01-JUN-22 Unityl chloride 103.2 % 60-140 01-JUN-22 Unityl chloride 103.2 % 60-140 01-JUN-22 Unityl chloride 103.2 % 60-140 01-JUN-22 Trichloroethane 105.6 % 60-140 01-JUN-22 Unityl chloride 103.2 % 60-14									
m+p-Xylenes 101.2 % 70-130 01-JUN-22 Methyl Ethyl Ketone 109.5 % 60-140 01-JUN-22 Methyl Isobutyl Ketone 98.2 % 60-140 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 O-Xylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 104.7 % 70-130 01-JUN-22 trans-1,3-Dichloroethylene 104.7 % 70-130 01-JUN-22 Trichlorothylene 105.6 % 60-140 01-JUN-22 Trichloroethylene 105.6 % 60-140 01-JUN-22	•								
Methyl Ethyl Ketone 109.5 % 60-140 01-JUN-22 Methyl Isobutyl Ketone 98.2 % 60-140 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 O-Xylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22									
Methyl Isobutyl Ketone 98.2 % 60-140 01-JUN-22 Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 o Xylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Trichlorofluoromethane 105.8 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22									
Methylene Chloride 107.4 % 70-130 01-JUN-22 MTBE 101.8 % 70-130 01-JUN-22 o-Xylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 Trichloroethane <0.50								60-140	
MTBE 101.8 % 70-130 01-JUN-22 o-Xylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichloroffuoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 Trichloroftuoromethane 0.5 01-JUN-22 01-JUN-22 1,1,2-Tetrachloroethane <0.50									
o-Xylene 103.4 % 70-130 01-JUN-22 Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 WG3733556-2 MB MB 1,1,1,2-Tetrachloroethane <0.50	-							70-130	01-JUN-22
Styrene 103.4 % 70-130 01-JUN-22 Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 Trichlorofluoromethane <0.50								70-130	01-JUN-22
Tetrachloroethylene 100.7 % 70-130 01-JUN-22 Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichloroffluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 WG3733556-2 MB 1,1,1,2-Tetrachloroethane <0.50	,			103.4				70-130	01-JUN-22
Toluene 104.4 % 70-130 01-JUN-22 trans-1,2-Dichloroethylene 101.9 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 WG3733556-2 MB MB 1,1,2-Tetrachloroethane <0.50	,			103.4		%		70-130	01-JUN-22
trans-1,2-Dichloroethylene trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 WG3733556-2 MB 1,1,1,2-Tetrachloroethane <0.50 ug/L 0.5 01-JUN-22 1,1,2-Tetrachloroethane <0.50 ug/L 0.5 01-JUN-22 1,1,1-Trichloroethane <0.50 ug/L 0.5 01-JUN-22 1,1,2-Trichloroethane <0.50 ug/L 0.5 01-JUN-22 1,1,2-Trichloroethane <0.50 ug/L 0.5 01-JUN-22 1,1,2-Trichloroethane <0.50 ug/L 0.5 01-JUN-22 1,1-Dichloroethane <0.50 ug/L 0.5 01-JUN-22 1,1-Dichloroethylene <0.50 ug/L 0.5 01-JUN-22 1,2-Dibromoethane <0.50 ug/L 0.5 01-JUN-22 1,2-Dibromoethane <0.50 ug/L 0.5 01-JUN-22 1,2-Dichloroethane <0.50 ug/L 0.5 01-JUN-22 1,3-Dichloroethane <0.50 ug/L 0.5 01-JUN-22	Tetrachloroethylene			100.7		%		70-130	01-JUN-22
trans-1,3-Dichloropropene 104.7 % 70-130 01-JUN-22 Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 WG3733556-2 MB NB <	Toluene			104.4		%		70-130	01-JUN-22
Trichloroethylene 99.9 % 70-130 01-JUN-22 Trichloroffluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 WG3733556-2 MB 1.1,1,2-Tetrachloroethane <0.50	trans-1,2-Dichloroethyler	ne		101.9		%		70-130	01-JUN-22
Trichlorofluoromethane 105.6 % 60-140 01-JUN-22 Vinyl chloride 103.2 % 60-140 01-JUN-22 WG3733556-2 MB WB MB MB 1,1,1,2-Tetrachloroethane <0.50	trans-1,3-Dichloropropen	ne		104.7		%		70-130	01-JUN-22
Vinyl chloride 103.2 % 60-140 01-JUN-22 WG3733556-2 MB 1,1,1,2-Tetrachloroethane <0.50	Trichloroethylene			99.9		%		70-130	01-JUN-22
WG3733556-2 MB 1,1,1,2-Tetrachloroethane <0.50	Trichlorofluoromethane			105.6		%		60-140	01-JUN-22
1,1,1,2-Tetrachloroethane <0.50	Vinyl chloride			103.2		%		60-140	01-JUN-22
1,1,2,2-Tetrachloroethane <0.50	WG3733556-2 MB								
1,1,1-Trichloroethane <0.50	1,1,1,2-Tetrachloroethan	е				ug/L			01-JUN-22
1,1,2-Trichloroethane <0.50	1,1,2,2-Tetrachloroethan	е		<0.50		ug/L		0.5	01-JUN-22
1,1-Dichloroethane <0.50	1,1,1-Trichloroethane			<0.50		ug/L		0.5	01-JUN-22
1,1-Dichloroethylene <0.50	1,1,2-Trichloroethane			< 0.50		ug/L		0.5	01-JUN-22
1,2-Dibromoethane <0.20	1,1-Dichloroethane			< 0.50		ug/L		0.5	01-JUN-22
1,2-Dichlorobenzene <0.50	1,1-Dichloroethylene			< 0.50		ug/L		0.5	01-JUN-22
1,2-Dichloroethane <0.50	1,2-Dibromoethane			<0.20		ug/L		0.2	01-JUN-22
1,2-Dichloropropane <0.50	1,2-Dichlorobenzene			<0.50		ug/L		0.5	01-JUN-22
1,3-Dichlorobenzene <0.50	1,2-Dichloroethane			<0.50		ug/L		0.5	01-JUN-22
1,4-Dichlorobenzene <0.50 ug/L 0.5 01-JUN-22	1,2-Dichloropropane			< 0.50		ug/L		0.5	01-JUN-22
	1,3-Dichlorobenzene			< 0.50		ug/L		0.5	01-JUN-22
Acetone <30 ug/L 30 01-JUN-22	1,4-Dichlorobenzene			<0.50		ug/L		0.5	01-JUN-22
	Acetone			<30		ug/L		30	01-JUN-22

Workorder: L2710170 Report Date: 03-JUN-22 Page 8 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R57914	63							
WG3733556-2 MB			0.50				0.5	
Benzene			<0.50		ug/L		0.5	01-JUN-22
Bromodichlorometha	ne		<2.0		ug/L		2	01-JUN-22
Bromoform			<5.0		ug/L		5	01-JUN-22
Bromomethane			<0.50		ug/L		0.5	01-JUN-22
Carbon tetrachloride			<0.20		ug/L		0.2	01-JUN-22
Chlorobenzene			<0.50		ug/L		0.5	01-JUN-22
Chloroform			<1.0		ug/L		1	01-JUN-22
cis-1,2-Dichloroethyle			<0.50		ug/L		0.5	01-JUN-22
cis-1,3-Dichloroprope			<0.30		ug/L		0.3	01-JUN-22
Dibromochlorometha			<2.0		ug/L		2	01-JUN-22
Dichlorodifluorometha	ane		<2.0		ug/L		2	01-JUN-22
Ethylbenzene			<0.50		ug/L		0.5	01-JUN-22
n-Hexane			<0.50		ug/L		0.5	01-JUN-22
m+p-Xylenes			<0.40		ug/L		0.4	01-JUN-22
Methyl Ethyl Ketone			<20		ug/L		20	01-JUN-22
Methyl Isobutyl Keton	е		<20		ug/L		20	01-JUN-22
Methylene Chloride			< 5.0		ug/L		5	01-JUN-22
MTBE			<2.0		ug/L		2	01-JUN-22
o-Xylene			<0.30		ug/L		0.3	01-JUN-22
Styrene			<0.50		ug/L		0.5	01-JUN-22
Tetrachloroethylene			<0.50		ug/L		0.5	01-JUN-22
Toluene			<0.50		ug/L		0.5	01-JUN-22
trans-1,2-Dichloroeth	ylene		< 0.50		ug/L		0.5	01-JUN-22
trans-1,3-Dichloropro	pene		< 0.30		ug/L		0.3	01-JUN-22
Trichloroethylene			<0.50		ug/L		0.5	01-JUN-22
Trichlorofluorometha	ne		<5.0		ug/L		5	01-JUN-22
Vinyl chloride			<0.50		ug/L		0.5	01-JUN-22
Surrogate: 1,4-Difluor	robenzene		98.2		%		70-130	01-JUN-22
Surrogate: 4-Bromofl	uorobenzene		92.9		%		70-130	01-JUN-22
WG3733556-5 MS		WG3733556-3			0/			
1,1,1,2-Tetrachloroet			96.7		%		50-140	01-JUN-22
1,1,2,2-Tetrachloroet			85.6		%		50-140	01-JUN-22
1,1,1-Trichloroethane			102.8		%		50-140	01-JUN-22
1,1,2-Trichloroethane	•		95.5		%		50-140	01-JUN-22

Workorder: L2710170 Report Date: 03-JUN-22 Page 9 of 11

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client:

74 Berkeley Street Toronto ON M5V 1E3

Contact: **Bailey Fleet**

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5791463								
WG3733556-5 MS		WG3733556-			0/			
1,1-Dichloroethane			103.7		%		50-140	01-JUN-22
1,1-Dichloroethylene			97.2		%		50-140	01-JUN-22
1,2-Dibromoethane			91.9		%		50-140	01-JUN-22
1,2-Dichlorobenzene			102.1		%		50-140	01-JUN-22
1,2-Dichloroethane			99.9		%		50-140	01-JUN-22
1,2-Dichloropropane			98.3		%		50-140	01-JUN-22
1,3-Dichlorobenzene			105.2		%		50-140	01-JUN-22
1,4-Dichlorobenzene			109.2		%		50-140	01-JUN-22
Acetone			100.8		%		50-140	01-JUN-22
Benzene			102.2		%		50-140	01-JUN-22
Bromodichloromethane			109.4		%		50-140	01-JUN-22
Bromoform			91.2		%		50-140	01-JUN-22
Bromomethane			95.8		%		50-140	01-JUN-22
Carbon tetrachloride			102.0		%		50-140	01-JUN-22
Chlorobenzene			96.1		%		50-140	01-JUN-22
Chloroform			102.4		%		50-140	01-JUN-22
cis-1,2-Dichloroethylene			88.5		%		50-140	01-JUN-22
cis-1,3-Dichloropropene			94.6		%		50-140	01-JUN-22
Dibromochloromethane			101.0		%		50-140	01-JUN-22
Dichlorodifluoromethane	;		97.9		%		50-140	01-JUN-22
Ethylbenzene			95.0		%		50-140	01-JUN-22
n-Hexane			95.7		%		50-140	01-JUN-22
m+p-Xylenes			94.9		%		50-140	01-JUN-22
Methyl Ethyl Ketone			92.8		%		50-140	01-JUN-22
Methyl Isobutyl Ketone			82.6		%		50-140	01-JUN-22
Methylene Chloride			101.2		%		50-140	01-JUN-22
MTBE			96.5		%		50-140	01-JUN-22
o-Xylene			94.4		%		50-140	01-JUN-22
Styrene			92.8		%		50-140	01-JUN-22
Tetrachloroethylene			95.3		%		50-140	01-JUN-22
Toluene			95.4		%		50-140	01-JUN-22
trans-1,2-Dichloroethyle	ne		98.2		%		50-140	01-JUN-22
trans-1,3-Dichloroproper			90.1		%		50-140	01-JUN-22

Workorder: L2710170 Report Date: 03-JUN-22 Page 10 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
VOC-511-HS-WT	Water								
Batch R5791463									
WG3733556-5 MS		WG3733556-3							
Trichloroethylene			97.9		%		50-140	01-JUN-22	
Trichlorofluoromethane			97.5		%		50-140	01-JUN-22	
Vinyl chloride			87.9		%		50-140	01-JUN-22	

Workorder: L2710170 Report Date: 03-JUN-22

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client:

74 Berkeley Street

Toronto ON M5V 1E3

Contact: **Bailey Fleet**

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

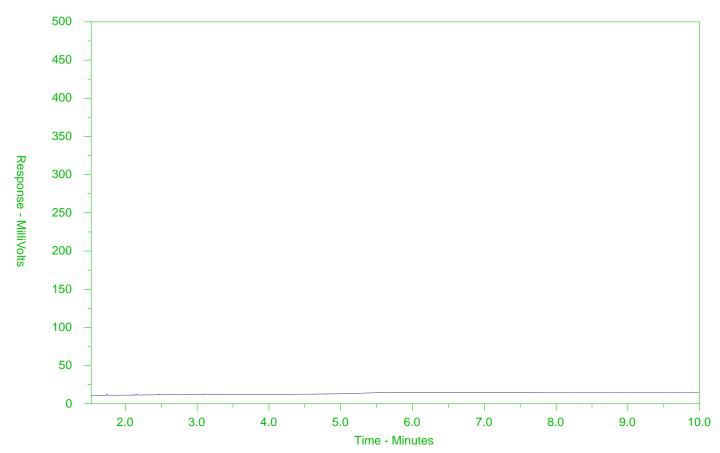
Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.


Page 11 of 11

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2710170-1

Client Sample ID: BH1

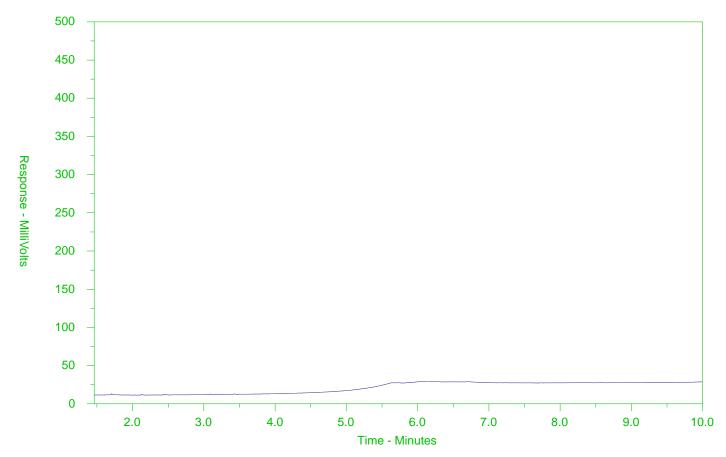
← F2-	→←	—F3 —→← —F4−	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →							
←	- Diesel/Jet	◆ Diesel/Jet Fuels →						

Printed on 5/31/2022 4:39:04 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.


Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2710170-2

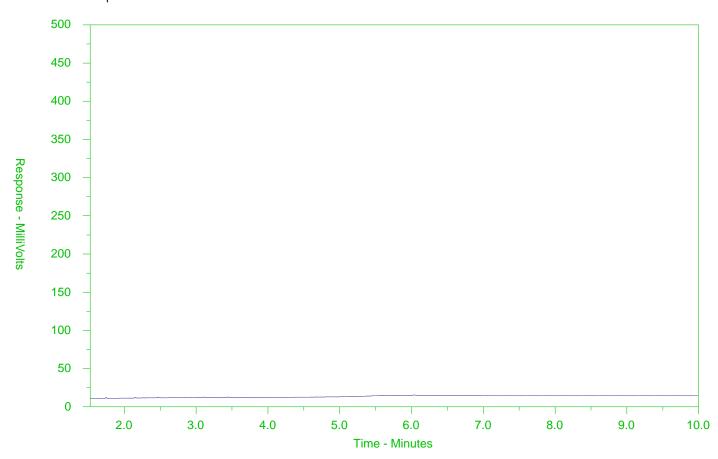
Client Sample ID: BH4

← F2-	→←	—F3—→ ← —F4—	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067⁰F					
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →							
←	-Diesel/Je	◆ Diesel/Jet Fuels →						

Printed on 5/31/2022 4:39:08 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

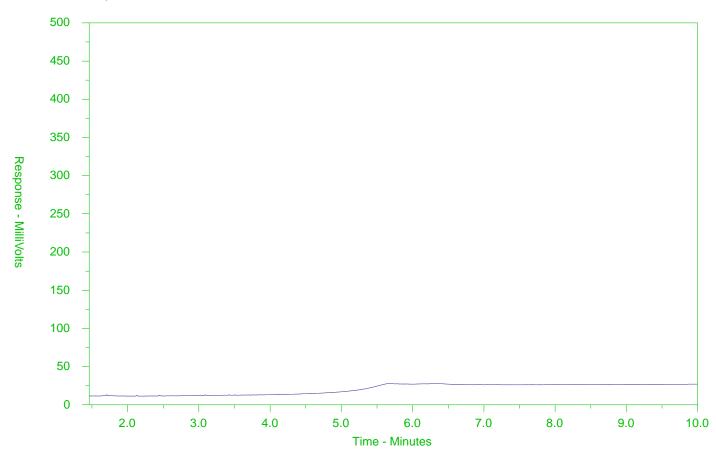
ALS Sample ID: L2710170-3 Client Sample ID: BH4D

← F2-	→←	—F3—→ ← —F4—	→				
nC10	nC16	nC34	nC50				
174°C	287°C	481°C	575℃				
346°F	549°F	898°F	1067°F				
Gasolin	ie →	← Mot	or Oils/Lube Oils/Grease				
←	◆ Diesel/Jet Fuels →						

Printed on 5/31/2022 4:39:12 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

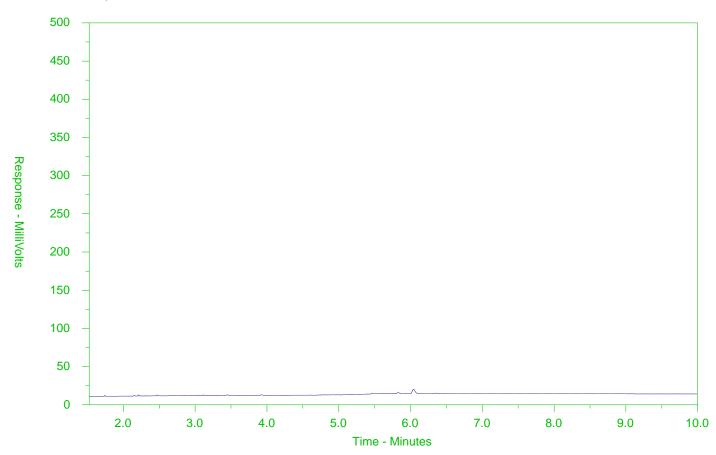
ALS Sample ID: L2710170-4 Client Sample ID: MW2-20

← F2-	→←	—F3 —→← —F4−	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasoline → ← Mo			otor Oils/Lube Oils/Grease————	-				
←	← Diesel/Jet Fuels →							

Printed on 5/31/2022 4:39:15 PM

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

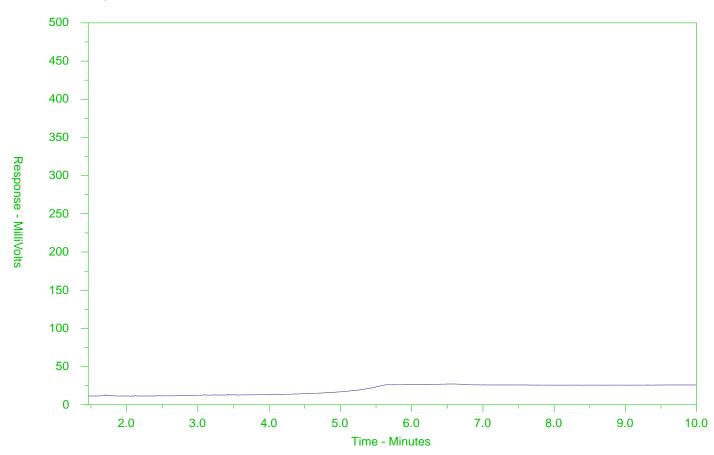
ALS Sample ID: L2710170-5 Client Sample ID: MW3-20

← F2-	→-	—F3—→ ← —F4—	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasoline → ← Me			or Oils/Lube Oils/Grease					
•	← Diesel/Jet Fuels →							

Printed on 5/31/2022 4:39:17 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2710170-7 Client Sample ID: MW4-20

← F2-	→-	—F3—→ ← —F4—	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasoline → ← Me			or Oils/Lube Oils/Grease					
•	← Diesel/Jet Fuels →							

Printed on 5/31/2022 4:39:20 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

L2710170-COFC

COC Number: 20 - 951780

www.alsglobal.com Contact and company name below will appear on the final report Report To Reports / Recipients Turnaround Time (TAT) Requested Environ Mental Consonna Every Select Report Format: Company: PDF Z EXCEL [] EDD (DIGITAL) Routine [R] if received by 3pm M-F - no surcharges apply Contact: Carley Fleet Merge QC/QCI Reports with COA ☑ YES ☐ NO ☐ N/A 4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum AFFIX ALS BARCODE LABEL HERE Phone: Compare Results to Criteria on Report - provide details below if box checked 3 day [93] if received by 3pm M-F - 25% rush surcharge minimum (ALS use only) 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum MAIL | FAX Company address below will appear on the final report Select Distribution: ☐ 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum Street: Berbley Street Email 1 or Fax Daylow HPOF @ OPCa. Ca Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional fees City/Province: Toronto /ontaño Email 2 Kalina. Natide nova 6 Peca. Ca may apply to rush requests on weekends, statutory holidays and non-routine tests MGA 2W7 Postal Code: Email 3 Sarah SiDak @ Deca. Ca Date and Time Required for all E&P TATs: YES NO Invoice To Same as Report To Invoice Recibients For all tests with rush TATs requested, please contact your AM to confirm availability. Copy of Invoice with Report YES 🗌 NO Select Invoice Distribution: MAIL | MAIL | FAX **Analysis Request** Palmer Environmental Consulting Company: Email 1 or Fax ()C() WHO TO (Deca. Ca Grado CONTAINERS indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below EXTENDED STORAGE REQUIRED SUSPECTED HAZARD (see notes) Accounting @ pera ca Email 2 Sarah-Silak Offeca. Ca Contact: Project Information Oil and Gas Required Fields (client use) ALS Account # / Quote #: SAMPLES ON HOLD AFE/Cost Center: PO# 220476 Routing Code: Maior/Minor Code: PO / AFE: Requisitioner: Ľ. SD: Location: NUMBER Š ALS Lab Work Order # (ALS use only): ALS Contact: Sampler: ALS Sample # Sample Identification and/or Coordinates Date Time Sample Type (ALS use only) (This description will appear on the report) (dd-mmm-yy) (hh:mm) 10.00 G W : 07) : O7 K OU 2:00 SAMPLE RECEIPT DETAILS (ALS use only) Notes / Specify Limits for result evaluation by selecting from drop-down below Drinking Water (DW) Samples¹ (client use) (Excel COC only) Cooling Method: NONE IZ ICE VZ ICE PACKS IT PROZEN COOLING INITIATED Are samples taken from a Regulated DW System? Submission Comments identified on Sample Receipt Notification: ☐ Y£S П NO TYES VO NO Cooler Custody Seals Intact. ☐ YES ☐ WA Sample Custody Seals Intact: TIYES | NA Are samples for human consumption/ use? INITIAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES C. metals field filtered ☐ YES 🗹 NO INITIAL SHIPMENT RECEPTION (ALS use only) SHIPMENT RELEASE (client use) FINAL SHIPMENT RECEPTION (ALS use only) Released by: 8 12022 Time: Received by: Time: Received by REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy 1, if any water samples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form.

PALMER ENVIRONMENTAL CONSULTING

GROUP INC. (Richmond Hill)

ATTN: Bailey Fleet 74 Berkeley Street Toronto ON M5V 1E3 Date Received: 02-JUN-22

Report Date: 22-JUN-22 12:12 (MT)

Version: FINAL REV. 3

Client Phone: 647-795-8153

Certificate of Analysis

 Lab Work Order #:
 L2711704

 Project P.O. #:
 2204701

 Job Reference:
 2204701

 C of C Numbers:
 20-951920

Legal Site Desc:

Comments: ADDITIONAL 15-JUN-22 14:54

KARANPARTAP SINGH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD | Part of the ALS Group | An ALS Limited Company

L2711704 CONT'D....

Job Reference: 2204701

PAGE 2 of 12

22-JUN-22 12:12 (MT)

Summary of Guideline Exceedances

Guideline
ALS ID Client ID Grouping Analyte Result Guideline Limit Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Soil-Res/Park/Inst. Property Use (Coarse)

(No parameter exceedances)

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Soil-Res/Park/Inst. Property Use (Fine)

(No parameter exceedances)

L2711704 CONT'D.... Job Reference: 2204701 PAGE 3 of 12 22-JUN-22 12:12 (MT)

Physical Tests - SOII

riiyaicai ieala - aoil											
		Lab ID	L2711704-1	L2711704-2	L2711704-3	L2711704-4	L2711704-5	L2711704-7	L2711704-8	L2711704-9	L2711704-10
	S	Sample Date	01-JUN-22								
		Sample ID	22-5-6	22-5-6D	22-6-2B	22-7-5B	22-8-6	22-9-3	22-9-3D	22-10-2	22-10-2D
Analyte	(Unit	Guide Limits #1 #2	ı								
Grain Size Curve											
% Moisture	%		17.5	17.5	9.26	31.3	23.2	6.51	6.33		
pH	pH units									7.74	7.75

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2711704 CONT'D....

Job Reference: 2204701

PAGE 4 of 12

22-JUN-22 12:12 (MT)

Physical Tests - SOIL

i ilyaicai reala - cole				
			Lab ID	L2711704-12
	5	Sample	e Date	01-JUN-22
		Sam	ple ID	22-10-7
Analyte	(Unit	Guide #1	Limits #2	
Grain Size Curve		-	-	SEE ATTACHED
% Moisture	%	-	-	16.7
pH	pH units	-	-	

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)
Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2711704 CONT'D....

Job Reference: 2204701

PAGE 5 of 12

22-JUN-22 12:12 (MT)

Particle Size - SOIL

. 41 11 51 5 51 2 5 5 1 2					
			Lab ID	L2711704-11	L2711704-12
			e Date	01-JUN-22	01-JUN-22
		San	nple ID	22-10-5	22-10-7
Analyte	Unit	Guide #1	Limits #2		
Gravel (4.75mm - 3in.)	%	-	-		<1.0
Medium Sand (0.425mm - 2.0mm)	%	-	-		<1.0
Coarse Sand (2.0mm - 4.75mm)	%	-	-		<1.0
Fine Sand (0.075mm - 0.425mm)	%	-	-		22.3
Silt (0.002mm - 0.075mm)	%	-	-		73.3
Silt (0.005mm - 0.075mm)	%	-	-		71.6
Clay (<0.002mm)	%	-	-		4.4
Clay (<0.005mm)	%	-	-		6.0
General Texture Class		-	-	Coarse	
MUST PSA % > 75um	%	-	-	84.4	

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2711704 CONT'D.... Job Reference: 2204701 PAGE 6 of 12 22-JUN-22 12:12 (MT)

Metals - SOIL

Motalo COIL							
			Lab ID	L2711704-5	L2711704-6	L2711704-7	L2711704-12
		Sample		01-JUN-22	01-JUN-22	01-JUN-22	01-JUN-22
		Sam	ple ID	22-8-6	22-8-6D	22-9-3	22-10-7
		Guida	Limits				
Analyte	Unit	#1	#2				
Antimony (Sb)	ug/g	7.5	7.5	<1.0	<1.0	<1.0	<1.0
Arsenic (As)	ug/g	18	18	1.5	1.4	1.3	1.7
Barium (Ba)	ug/g	390	390	10.2	10.0	13.4	14.6
Beryllium (Be)	ug/g	4	5	<0.50	<0.50	<0.50	<0.50
Boron (B)	ug/g	120	120	<5.0	<5.0	<5.0	<5.0
Cadmium (Cd)	ug/g	1.2	1.2	<0.50	<0.50	<0.50	<0.50
Chromium (Cr)	ug/g	160	160	7.2	7.0	6.9	8.2
Cobalt (Co)	ug/g	22	22	7.6	9.3	2.4	3.4
Copper (Cu)	ug/g	140	180	8.1	7.8	5.9	9.7
Lead (Pb)	ug/g	120	120	3.1	2.9	4.2	3.1
Molybdenum (Mo)	ug/g	6.9	6.9	<1.0	<1.0	<1.0	<1.0
Nickel (Ni)	ug/g	100	130	6.7	6.6	4.6	6.4
Selenium (Se)	ug/g	2.4	2.4	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	ug/g	20	25	<0.20	<0.20	<0.20	<0.20
Thallium (TI)	ug/g	1	1	<0.50	<0.50	<0.50	<0.50
Uranium (U)	ug/g	23	23	<1.0	<1.0	<1.0	<1.0
Vanadium (V)	ug/g	86	86	15.8	15.6	14.1	16.6
Zinc (Zn)	ug/g	340	340	15.2	14.6	18.9	15.7

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2711704 CONT'D....

Job Reference: 2204701

PAGE 7 of 12

22-JUN-22 12:12 (MT)

Volatile Organic Compounds - SOIL

		Sample	Lab ID e Date ple ID	L2711704-1 01-JUN-22 22-5-6	L2711704-2 01-JUN-22 22-5-6D	L2711704-3 01-JUN-22 22-6-2B	L2711704-4 01-JUN-22 22-7-5B	L2711704-5 01-JUN-22 22-8-6	L2711704-7 01-JUN-22 22-9-3	L2711704-8 01-JUN-22 22-9-3D	L2711704-12 01-JUN-22 22-10-7
Analyte	Unit	Guide #1	Limits #2								
Acetone	ug/g	16	28					<0.50	<0.50	<0.50	<0.50
Benzene	ug/g	0.21	0.17	<0.0068	<0.0068	<0.0068	0.0194	<0.0068	<0.0068	<0.0068	<0.0068
Bromodichloromethane	ug/g	13	13					< 0.050	< 0.050	<0.050	<0.050
Bromoform	ug/g	0.27	0.26					< 0.050	< 0.050	<0.050	<0.050
Bromomethane	ug/g	0.05	0.05					< 0.050	< 0.050	<0.050	<0.050
Carbon tetrachloride	ug/g	0.05	0.12					< 0.050	< 0.050	<0.050	<0.050
Chlorobenzene	ug/g	2.4	2.7					< 0.050	< 0.050	<0.050	<0.050
Dibromochloromethane	ug/g	9.4	9.4					< 0.050	< 0.050	<0.050	<0.050
Chloroform	ug/g	0.05	0.18					< 0.050	< 0.050	<0.050	<0.050
1,2-Dibromoethane	ug/g	0.05	0.05					< 0.050	< 0.050	<0.050	<0.050
1,2-Dichlorobenzene	ug/g	3.4	4.3					< 0.050	< 0.050	<0.050	<0.050
1,3-Dichlorobenzene	ug/g	4.8	6					< 0.050	< 0.050	<0.050	<0.050
1,4-Dichlorobenzene	ug/g	0.083	0.097					< 0.050	< 0.050	<0.050	<0.050
Dichlorodifluoromethane	ug/g	16	25					< 0.050	< 0.050	<0.050	<0.050
1,1-Dichloroethane	ug/g	3.5	11					< 0.050	< 0.050	<0.050	<0.050
1,2-Dichloroethane	ug/g	0.05	0.05					< 0.050	< 0.050	<0.050	<0.050
1,1-Dichloroethylene	ug/g	0.05	0.05					< 0.050	< 0.050	<0.050	<0.050
cis-1,2-Dichloroethylene	ug/g	3.4	30					< 0.050	< 0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	ug/g	0.084	0.75					< 0.050	< 0.050	<0.050	<0.050
Methylene Chloride	ug/g	0.1	0.96					< 0.050	< 0.050	<0.050	<0.050
1,2-Dichloropropane	ug/g	0.05	0.085					< 0.050	< 0.050	<0.050	<0.050
cis-1,3-Dichloropropene	ug/g	-	-					< 0.030	< 0.030	<0.030	<0.030
trans-1,3-Dichloropropene	ug/g	-	-					< 0.030	< 0.030	<0.030	<0.030
1,3-Dichloropropene (cis & trans)	ug/g	0.05	0.083					<0.042	<0.042	<0.042	<0.042
Ethylbenzene	ug/g	2	15	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
n-Hexane	ug/g	2.8	34					<0.050	<0.050	<0.050	<0.050
Methyl Ethyl Ketone	ug/g	16	44					<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	1.7	4.3					<0.50	<0.50	<0.50	<0.50
MTBE	ug/g	0.75	1.4					<0.050	<0.050	<0.050	<0.050
Styrene	ug/g	0.7	2.2					<0.050	<0.050	<0.050	<0.050

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

L2711704 CONT'D.... Job Reference: 2204701 PAGE 8 of 12 22-JUN-22 12:12 (MT)

Volatile Organic Compounds - SOIL

		L	₋ab ID	L2711704-1	L2711704-2	L2711704-3	L2711704-4	L2711704-5	L2711704-7	L2711704-8	L2711704-12
		Sample	e Date	01-JUN-22							
		Sam	ple ID	22-5-6	22-5-6D	22-6-2B	22-7-5B	22-8-6	22-9-3	22-9-3D	22-10-7
Analyte	Unit	Guide #1	Limits #2								
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.05					<0.050	<0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05					<0.050	<0.050	< 0.050	<0.050
Tetrachloroethylene	ug/g	0.28	2.3					<0.050	<0.050	< 0.050	<0.050
Toluene	ug/g	2.3	6	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
1,1,1-Trichloroethane	ug/g	0.38	3.4					<0.050	<0.050	< 0.050	<0.050
1,1,2-Trichloroethane	ug/g	0.05	0.05					<0.050	<0.050	< 0.050	<0.050
Trichloroethylene	ug/g	0.061	0.52					<0.010	<0.010	<0.010	<0.010
Trichlorofluoromethane	ug/g	4	5.8					<0.050	<0.050	< 0.050	<0.050
Vinyl chloride	ug/g	0.02	0.022					<0.020	<0.020	<0.020	<0.020
o-Xylene	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m+p-Xylenes	ug/g	-	-	<0.030	<0.030	< 0.030	<0.030	<0.030	< 0.030	< 0.030	<0.030
Xylenes (Total)	ug/g	3.1	25	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Surrogate: 4-Bromofluorobenzene	%	-	-	99.8	104.4	108.0	95.3	95.1	95.1	94.5	92.7
Surrogate: 1,4-Difluorobenzene	%	-	-	101.4	108.0	112.1	103.4	99.0	100.7	102.0	99.0

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2711704 CONT'D.... Job Reference: 2204701 PAGE 9 of 12 22-JUN-22 12:12 (MT)

Hvdrocarbons - SOIL

riyurocarbons - SOIL											
		l	₋ab ID	L2711704-1	L2711704-2	L2711704-3	L2711704-4	L2711704-5	L2711704-7	L2711704-8	L2711704-12
		Sample	e Date	01-JUN-22							
		Sam	ple ID	22-5-6	22-5-6D	22-6-2B	22-7-5B	22-8-6	22-9-3	22-9-3D	22-10-7
Analyte	Unit	Guide #1	Limits #2								
F1 (C6-C10)	ug/g	55	65	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F1-BTEX	ug/g	55	65	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F2 (C10-C16)	ug/g	98	150	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16-C34)	ug/g	300	1300	<50	<50	<50	62	<50	<50	<50	<50
F4 (C34-C50)	ug/g	2800	5600	<50	<50	<50	75	<50	<50	<50	<50
Total Hydrocarbons (C6-C50)	ug/g	-	-	<72	<72	<72	137	<72	<72	<72	<72
Chrom. to baseline at nC50		-	-			YES		YES		YES	YES
Chrom. to baseline at nC50	ppm	-	-	YES	YES		YES		YES		
Surrogate: 2-Bromobenzotrifluoride	%	-	-	87.2	78.6	87.5	83.8	85.2	79.8	86.2	88.9
Surrogate: 3,4-Dichlorotoluene	%	-	-	94.5	91.0	98.6	86.4	85.1	85.6	84.5	80.9

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

L2711704 CONT'D.... Job Reference: 2204701 PAGE 10 of 12 22-JUN-22 12:12 (MT)

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**
BTX-511-HS-WT	Soil	BTEX-O.Reg 153/04 (July 2011)	SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-F4-511-CALC-WT

Soil

F1-F4 Hydrocarbon Calculated

CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011)

CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sg cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.

Reference Information

L2711704 CONT'D.... Job Reference: 2204701 PAGE 11 of 12 22-JUN-22 12:12 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

GRAIN SIZE-HYD-SK

Soil

Grain Size by Hydrometer

ASTM D6913/D7928

Particle size curve is generated from dry sieving (particles > 2 mm), wet sieving (particles 2 mm-75 um) and hydrometer readings (particles < 75 um)

ASTM D422-63 has been withdrawn, the ASTM D6913/D7928 standard serves as the successor method.

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT

Soil

% Moisture

CCME PHC in Soil - Tier 1 (mod)

PH-WT

Soil

pН

MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

PSA-MUST-SK

Soil

% Particles > 75um (Coarse/Fine)

ASTM D6913

An air-dried sample is reduced to < 2 mm size and mixed with a dispersing agent (Calgon solution). The sample is washed through a 200 mesh (75 µm) sieve. The retained mass of sample is used to determine % sand fraction.

Reference: ASTM D422-63

VOC-1,3-DCP-CALC-WT

Soil

Regulation 153 VOCs

SW8260B/SW8270C

VOC-511-HS-WT

Soil

VOC-O.Reg 153/04 (July 2011)

SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil

Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

Reference Information

L2711704 CONT'D.... Job Reference: 2204701 PAGE 12 of 12 22-JUN-22 12:12 (MT)

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**				
**ALS test methods may incorporate modifications from specified reference methods to improve performance.							
Chain of Custody Numbers	s:						
20-951920							
The last two letters of the a	The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:						
Laboratory Definition Cod	le Labora	tory Location					
SK	ALS EN	IVIRONMENTAL - SASKATO	DN, SASKATCHEWAN, CANADA				

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

WT

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2711704 Report Date: 22-JUN-22 Page 1 of 12

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client:

74 Berkeley Street Toronto ON M5V 1E3

Contact: **Bailey Fleet**

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R5794	4926							
WG3734987-4 D Benzene	OUP	WG3734987-3 <0.0068	<0.0068	RPD-NA	ug/g	N/A	40	07-JUN-22
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	07-JUN-22
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	07-JUN-22
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	07-JUN-22
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	07-JUN-22
WG3734987-2 L Benzene	cs		101.9		%		70-130	07-JUN-22
Ethylbenzene			100.5		%		70-130	07-JUN-22
m+p-Xylenes			102.5		%		70-130	07-JUN-22
o-Xylene			102.3		%		70-130	07-JUN-22
Toluene			105.5		%		70-130	07-JUN-22
WG3734987-1 N Benzene	1B		<0.0068		ug/g		0.0068	07-JUN-22
Ethylbenzene			<0.018		ug/g		0.018	07-JUN-22
m+p-Xylenes			<0.030		ug/g		0.03	07-JUN-22
o-Xylene			<0.020		ug/g		0.02	07-JUN-22
Toluene			<0.080		ug/g		0.08	07-JUN-22
Surrogate: 1,4-Diflo	uorobenzene		118.1		%		50-140	07-JUN-22
Surrogate: 4-Bromofluorobenzene			113.4		%		50-140	07-JUN-22
WG3734987-5 N	ıs	WG3734987-3						
Benzene			121.7		%		60-140	07-JUN-22
Ethylbenzene			114.6		%		60-140	07-JUN-22
m+p-Xylenes			117.9		%		60-140	07-JUN-22
o-Xylene			117.9		%		60-140	07-JUN-22
Toluene			122.3		%		60-140	07-JUN-22
F1-HS-511-WT	Soil							
Batch R5794	4788							
WG3734963-4 D F1 (C6-C10)	OUP	WG3734963-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	06-JUN-22
WG3734963-2 L F1 (C6-C10)	cs		102.4		%		80-120	06-JUN-22
WG3734963-1 N F1 (C6-C10)	1B		<5.0		ug/g		5	06-JUN-22
Surrogate: 3,4-Dicl	hlorotoluene		92.6		%		60-140	06-JUN-22
	18	WG3734963-3						

Workorder: L2711704 Report Date: 22-JUN-22 Page 2 of 12

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Soil							
Batch R5794788								
WG3734963-5 F1 (C6-C10)	MS	WG3734963-3	112.2		%		60-140	06-JUN-22
Batch R5	794926							
WG3734987-4 F1 (C6-C10)	DUP	WG3734987-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	07-JUN-22
WG3734987-2 F1 (C6-C10)	LCS		108.6		%		80-120	07-JUN-22
WG3734987-1	МВ							
F1 (C6-C10)			<5.0		ug/g		5	07-JUN-22
Surrogate: 3,4-Dichlorotoluene			103.4		%		60-140	07-JUN-22
WG3734987-5 F1 (C6-C10)	MS	WG3734987-3	119.5		%		60-140	07-JUN-22
F2-F4-511-WT	Soil							
Batch R5	794798							
WG3735164-3 F2 (C10-C16)	DUP	WG3735164-5 <10	<10	RPD-NA	ug/g	N/A	40	06-JUN-22
F3 (C16-C34)		<50	<50	RPD-NA	ug/g	N/A	40	06-JUN-22
F4 (C34-C50)		<50	<50	RPD-NA	ug/g	N/A	40	06-JUN-22
WG3735164-2 F2 (C10-C16)	LCS		97.7		%		70-130	06-JUN-22
F3 (C16-C34)			100.7		%		70-130	06-JUN-22
F4 (C34-C50)			102.5		%		70-130	06-JUN-22
WG3735164-1 F2 (C10-C16)	МВ		<10		ua/a		10	00 11111 00
F3 (C16-C34)			<50		ug/g ug/g		50	06-JUN-22 06-JUN-22
F4 (C34-C50)			<50		ug/g		50	06-JUN-22
` ,	omobenzotrifluoride		86.3		%		60-140	06-JUN-22
WG3735164-4	MS	WG3735164-5					-	30 00 22
F2 (C10-C16)			91.2		%		60-140	06-JUN-22
F3 (C16-C34)			99.8		%		60-140	06-JUN-22
F4 (C34-C50)			106.7		%		60-140	06-JUN-22
Batch R5	795307							
WG3734983-3	DUP	WG3734983-5		DD2 ***	/~	A1/A	40	07 1111 00
F2 (C10-C16)		<10	<10	RPD-NA	ug/g	N/A	40	07-JUN-22
F3 (C16-C34)		<50	<50	RPD-NA	ug/g	N/A	40	07-JUN-22

Workorder: L2711704 Report Date: 22-JUN-22 Page 3 of 12

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Bailey Fleet

Contact:

Test Matrix Reference Result Qualifier Units **RPD** Limit Analyzed F2-F4-511-WT Soil R5795307 **Batch** WG3734983-3 DUP WG3734983-5 F4 (C34-C50) <50 <50 RPD-NA ug/g N/A 40 07-JUN-22 WG3734983-2 **LCS** F2 (C10-C16) % 100.4 70-130 07-JUN-22 F3 (C16-C34) 105.6 % 70-130 07-JUN-22 F4 (C34-C50) % 101.0 70-130 07-JUN-22 WG3734983-1 MB 10 F2 (C10-C16) <10 ug/g 08-JUN-22 F3 (C16-C34) <50 50 ug/g 08-JUN-22 F4 (C34-C50) <50 ug/g 50 08-JUN-22 Surrogate: 2-Bromobenzotrifluoride 87.8 60-140 % 08-JUN-22 WG3734983-4 WG3734983-5 F2 (C10-C16) 97.1 % 60-140 08-JUN-22 F3 (C16-C34) 106.6 % 60-140 08-JUN-22 F4 (C34-C50) 112.4 % 60-140 08-JUN-22 Soil **GRAIN SIZE-HYD-SK** Batch R5805630 WG3740142-1 DUP L2708487-2 Gravel (4.75mm - 3in.) <1.0 <1.0 RPD-NA % N/A 25 22-JUN-22 Coarse Sand (2.0mm - 4.75mm) 5.7 5.7 % J 0.0 5 22-JUN-22 Medium Sand (0.425mm - 2.0mm) 15.0 % 14.7 J. 0.3 5 22-JUN-22 Fine Sand (0.075mm - 0.425mm) 28.2 25.6 % 2.6 5 22-JUN-22 Silt (0.005mm - 0.075mm) 41.4 43.5 % 2.1 5 J 22-JUN-22 9.7 Clay (<0.005mm) 10.6 % 0.9 5 J 22-JUN-22 Silt (0.002mm - 0.075mm) 44.7 46.7 % 5 J 2.0 22-JUN-22 Clay (<0.002mm) 7.3 % 6.4 J 0.9 5 22-JUN-22 WG3740142-2 2020-PSA_SOIL IRM Medium Sand (0.425mm - 2.0mm) 7.0 % 2-12 22-JUN-22 Fine Sand (0.075mm - 0.425mm) 35.5 % 29.6-39.6 22-JUN-22 Silt (0.005mm - 0.075mm) 32.7 % 27.4-37.4 22-JUN-22 Clay (<0.005mm) 24.8 % 21-31 22-JUN-22 Silt (0.002mm - 0.075mm) 37.7 % 32.3-42.3 22-JUN-22

19.8

%

16.1-26.1

22-JUN-22

MET-200.2-CCMS-WT Soil

Clay (<0.002mm)

Workorder: L2711704 Report Date: 22-JUN-22 Page 4 of 12

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client:

74 Berkeley Street Toronto ON M5V 1E3

Contact: **Bailey Fleet**

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5795170								
WG3736376-2 CRM		WT-SS-2	05.0		0/			
Antimony (Sb)			95.6		%		70-130	07-JUN-22
Arsenic (As)			98.3		%		70-130	07-JUN-22
Barium (Ba)			103.4		%		70-130	07-JUN-22
Beryllium (Be)			99.3		%		70-130	07-JUN-22
Boron (B)			8.4		mg/kg		3.5-13.5	07-JUN-22
Cadmium (Cd)			102.2		%		70-130	07-JUN-22
Chromium (Cr)			98.8		%		70-130	07-JUN-22
Cobalt (Co)			99.5		%		70-130	07-JUN-22
Copper (Cu)			102.9		%		70-130	07-JUN-22
Lead (Pb)			96.2		%		70-130	07-JUN-22
Molybdenum (Mo)			102.4		%		70-130	07-JUN-22
Nickel (Ni)			100.5		%		70-130	07-JUN-22
Selenium (Se)			0.13		mg/kg		0-0.34	07-JUN-22
Silver (Ag)			99.2		%		70-130	07-JUN-22
Thallium (TI)			0.070		mg/kg		0.029-0.129	07-JUN-22
Uranium (U)			90.1		%		70-130	07-JUN-22
Vanadium (V)			100.1		%		70-130	07-JUN-22
Zinc (Zn)			98.8		%		70-130	07-JUN-22
WG3736376-6 DUP Antimony (Sb)		WG3736376-5 <0.10	<0.10	RPD-NA	ug/g	N/A	30	07-JUN-22
Arsenic (As)		1.63	1.62	111 2 1111	ug/g	0.8	30	07-JUN-22
Barium (Ba)		33.0	33.6		ug/g	1.6	40	07-JUN-22
Beryllium (Be)		0.24	0.24		ug/g	2.3	30	07-JUN-22
Boron (B)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	07-JUN-22
Cadmium (Cd)		0.057	0.053	IVI D-IVA	ug/g ug/g	8.4	30	07-JUN-22 07-JUN-22
Chromium (Cr)		9.87	9.50		ug/g	3.8	30	07-JUN-22 07-JUN-22
Cobalt (Co)		3.39	3.35		ug/g ug/g	3.8 0.9	30	
Copper (Cu)		6.22	6.15					07-JUN-22
, ,					ug/g	1.3	30	07-JUN-22
Lead (Pb)		3.34	3.41		ug/g	1.9	40	07-JUN-22
Molybdenum (Mo)		0.19	0.20		ug/g	2.2	40	07-JUN-22
Nickel (Ni)		6.62	6.58		ug/g	0.6	30	07-JUN-22
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	07-JUN-22
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	07-JUN-22

Workorder: L2711704 Report Date: 22-JUN-22 Page 5 of 12

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client:

74 Berkeley Street Toronto ON M5V 1E3

Contact: **Bailey Fleet**

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5795170								
WG3736376-6 DUP		WG3736376-5	0.074					
Thallium (TI)		0.076	0.071		ug/g	7.6	30	07-JUN-22
Uranium (U)		0.423	0.430		ug/g	1.7	30	07-JUN-22
Vanadium (V)		20.5	20.1		ug/g	1.8	30	07-JUN-22
Zinc (Zn)		19.0	18.7		ug/g	1.4	30	07-JUN-22
WG3736376-4 LCS Antimony (Sb)			106.0		%		80-120	07-JUN-22
Arsenic (As)			103.0		%		80-120	07-JUN-22
Barium (Ba)			100.9		%		80-120	07-JUN-22
Beryllium (Be)			96.2		%		80-120	07-JUN-22
Boron (B)			95.6		%		80-120	07-JUN-22
Cadmium (Cd)			101.1		%		80-120	07-JUN-22
Chromium (Cr)			99.5		%		80-120	07-JUN-22
Cobalt (Co)			99.97		%		80-120	07-JUN-22
Copper (Cu)			97.7		%		80-120	07-JUN-22
Lead (Pb)			100.5		%		80-120	07-JUN-22
Molybdenum (Mo)			102.3		%		80-120	07-JUN-22
Nickel (Ni)			99.2		%		80-120	07-JUN-22
Selenium (Se)			103.7		%		80-120	07-JUN-22
Silver (Ag)			82.8		%		80-120	07-JUN-22
Thallium (TI)			99.2		%		80-120	07-JUN-22
Uranium (U)			99.1		%		80-120	07-JUN-22
Vanadium (V)			101.9		%		80-120	07-JUN-22
Zinc (Zn)			100.1		%		80-120	07-JUN-22
WG3736376-1 MB								
Antimony (Sb)			<0.10		mg/kg		0.1	07-JUN-22
Arsenic (As)			<0.10		mg/kg		0.1	07-JUN-22
Barium (Ba)			<0.50		mg/kg		0.5	07-JUN-22
Beryllium (Be)			<0.10		mg/kg		0.1	07-JUN-22
Boron (B)			<5.0		mg/kg		5	07-JUN-22
Cadmium (Cd)			<0.020		mg/kg		0.02	07-JUN-22
Chromium (Cr)			<0.50		mg/kg		0.5	07-JUN-22
Cobalt (Co)			<0.10		mg/kg		0.1	07-JUN-22
Copper (Cu)			<0.50		mg/kg		0.5	07-JUN-22
Lead (Pb)			<0.50		mg/kg		0.5	07-JUN-22

Workorder: L2711704 Report Date: 22-JUN-22 Page 6 of 12

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5795170 WG3736376-1 MB								
Molybdenum (Mo)			<0.10		mg/kg		0.1	07-JUN-22
Nickel (Ni)			<0.50		mg/kg		0.5	07-JUN-22
Selenium (Se)			<0.20		mg/kg		0.2	07-JUN-22
Silver (Ag)			<0.10		mg/kg		0.1	07-JUN-22
Thallium (TI)			<0.050		mg/kg		0.05	07-JUN-22
Uranium (U)			<0.050		mg/kg		0.05	07-JUN-22
Vanadium (V)			<0.20		mg/kg		0.2	07-JUN-22
Zinc (Zn)			<2.0		mg/kg		2	07-JUN-22
MOISTURE-WT	Soil							
Batch R5794231								
WG3735277-3 DUP % Moisture		L2711704-8 6.33	6.80		%	7.2	20	04-JUN-22
WG3735277-2 LCS % Moisture			100.3		%		90-110	04-JUN-22
WG3735277-1 MB % Moisture			<0.25		%		0.25	04-JUN-22
PH-WT	Soil							
Batch R5793798								
WG3734979-1 DUP pH		L2711120-1 7.57	7.60	J	pH units	0.03	0.3	03-JUN-22
WG3735098-1 LCS pH			7.09		pH units		6.9-7.1	03-JUN-22
PSA-MUST-SK	Soil							
Batch R5796629								
WG3738159-1 DUP MUST PSA % > 75um		L2711704-11 84.4	84.1	J	%	0.3	5	10-JUN-22
WG3738159-2 IRM MUST PSA % > 75um		2020-PSA_SOI	IL 42.7		%		37.9-47.9	10-JUN-22
VOC-511-HS-WT	Soil							
Batch R5794788								
WG3734963-4 DUP 1,1,1,2-Tetrachloroethar	ne	WG3734963-3 < 0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,1,2,2-Tetrachloroethar	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22

Qualifier

Workorder: L2711704 Report Date: 22-JUN-22 Page 7 of 12

RPD

Limit

Analyzed

Units

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

Reference

Result

74 Berkeley Street Toronto ON M5V 1E3

Matrix

Contact: Bailey Fleet

Test

								7 thai y 2 o a
VOC-511-HS-WT	Soil							
Batch R5794788	1							
WG3734963-4 DUP		WG3734963-3	0.050	555				
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	06-JUN-22
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	06-JUN-22
Bromodichloromethane	•	<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Carbon tetrachloride		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
cis-1,2-Dichloroethylene	е	<0.050	< 0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
cis-1,3-Dichloropropene	Э	<0.030	<0.030	RPD-NA	ug/g	N/A	40	06-JUN-22
Dibromochloromethane	•	<0.050	< 0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Dichlorodifluoromethan	е	<0.050	< 0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	06-JUN-22
n-Hexane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Methylene Chloride		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
MTBE		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
m+p-Xylenes		<0.030	< 0.030	RPD-NA	ug/g	N/A	40	06-JUN-22
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	06-JUN-22
Methyl Isobutyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	06-JUN-22
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	06-JUN-22
Styrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Tetrachloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	06-JUN-22
trans-1,2-Dichloroethyle	ene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
trans-1,3-Dichloroprope		<0.030	< 0.030		ug/g		-	06-JUN-22
		-			3 3			00 0011 <u>LL</u>

Workorder: L2711704 Report Date: 22-JUN-22 Page 8 of 12

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5794788								
WG3734963-4 DUP		WG3734963-3			,			
trans-1,3-Dichloropropene	•	<0.030	<0.030	RPD-NA	ug/g	N/A	40	06-JUN-22
Trichloroethylene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	06-JUN-22
Trichlorofluoromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	06-JUN-22
Vinyl chloride		<0.020	<0.020	RPD-NA	ug/g	N/A	40	06-JUN-22
WG3734963-2 LCS 1,1,1,2-Tetrachloroethane			102.6		%		60-130	06-JUN-22
1,1,2,2-Tetrachloroethane			97.7		%		60-130	06-JUN-22
1,1,1-Trichloroethane			105.2		%		60-130	06-JUN-22
1,1,2-Trichloroethane			99.9		%		60-130	06-JUN-22
1,1-Dichloroethane			100.3		%		60-130	06-JUN-22
1,1-Dichloroethylene			99.3		%		60-130	06-JUN-22
1,2-Dibromoethane			98.4		%		70-130	06-JUN-22
1,2-Dichlorobenzene			103.1		%		70-130	06-JUN-22
1,2-Dichloroethane			101.4		%		60-130	06-JUN-22
1,2-Dichloropropane			104.0		%		70-130	06-JUN-22
1,3-Dichlorobenzene			105.5		%		70-130	06-JUN-22
1,4-Dichlorobenzene			107.3		%		70-130	06-JUN-22
Acetone			96.9		%		60-140	06-JUN-22
Benzene			105.1		%		70-130	06-JUN-22
Bromodichloromethane			109.9		%		50-140	06-JUN-22
Bromoform			88.8		%		70-130	06-JUN-22
Bromomethane			98.8		%		50-140	06-JUN-22
Carbon tetrachloride			105.2		%		70-130	06-JUN-22
Chlorobenzene			102.9		%		70-130	06-JUN-22
Chloroform			103.3		%		70-130	06-JUN-22
cis-1,2-Dichloroethylene			102.0		%		70-130	06-JUN-22
cis-1,3-Dichloropropene			103.1		%		70-130	06-JUN-22
Dibromochloromethane			103.6		%		60-130	06-JUN-22
Dichlorodifluoromethane			77.7		%		50-140	06-JUN-22
Ethylbenzene			103.3		%		70-130	06-JUN-22
n-Hexane			99.7		%		70-130	06-JUN-22
Methylene Chloride			103.1		%		70-130	06-JUN-22
MTBE			102.6		%		70-130	06-JUN-22
m+p-Xylenes			104.7				70-130	

Workorder: L2711704 Report Date: 22-JUN-22 Page 9 of 12

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R579478	88							
WG3734963-2 LCS	3		1017		0/			
m+p-Xylenes			104.7		%		70-130	06-JUN-22
Methyl Ethyl Ketone	_		87.7		%		60-140	06-JUN-22
Methyl Isobutyl Keton	е		92.4		%		60-140	06-JUN-22
o-Xylene			101.9		%		70-130	06-JUN-22
Styrene			102.1		%		70-130	06-JUN-22
Tetrachloroethylene			107.8		%		60-130	06-JUN-22
Toluene			103.0		%		70-130	06-JUN-22
trans-1,2-Dichloroeth	•		104.5		%		60-130	06-JUN-22
trans-1,3-Dichloropro	pene		91.5		%		70-130	06-JUN-22
Trichloroethylene			105.1		%		60-130	06-JUN-22
Trichlorofluorometha	ne		99.6		%		50-140	06-JUN-22
Vinyl chloride			87.5		%		60-140	06-JUN-22
WG3734963-1 MB 1,1,1,2-Tetrachloroet	hane		<0.050		ug/g		0.05	06-JUN-22
1,1,2,2-Tetrachloroet			<0.050		ug/g		0.05	06-JUN-22
1,1,1-Trichloroethane			<0.050		ug/g		0.05	06-JUN-22
1,1,2-Trichloroethane			<0.050		ug/g		0.05	06-JUN-22
1,1-Dichloroethane	,		<0.050		ug/g		0.05	06-JUN-22
1,1-Dichloroethylene			<0.050		ug/g		0.05	06-JUN-22
1,2-Dibromoethane			<0.050		ug/g		0.05	06-JUN-22
1,2-Dichlorobenzene			<0.050		ug/g		0.05	06-JUN-22
1,2-Dichloroethane			<0.050		ug/g		0.05	
1,2-Dichloropropane			<0.050		ug/g ug/g		0.05	06-JUN-22
1,3-Dichlorobenzene			<0.050		ug/g ug/g		0.05	06-JUN-22
1,4-Dichlorobenzene			<0.050		ug/g ug/g		0.05	06-JUN-22
Acetone			<0.50		ug/g ug/g		0.5	06-JUN-22
								06-JUN-22
Benzene Bromodichlorometha	~~		<0.0068 <0.050		ug/g		0.0068 0.05	06-JUN-22
	ile		<0.050		ug/g			06-JUN-22
Bromoform Bromomethane					ug/g		0.05	06-JUN-22
Carbon tetrachloride			<0.050		ug/g		0.05	06-JUN-22
			<0.050		ug/g		0.05	06-JUN-22
Chlorobenzene			<0.050		ug/g		0.05	06-JUN-22
Chloroform			<0.050		ug/g		0.05	06-JUN-22
cis-1,2-Dichloroethyle	ene		<0.050		ug/g		0.05	06-JUN-22

Workorder: L2711704 Report Date: 22-JUN-22 Page 10 of 12

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5794788								
WG3734963-1 MB cis-1,3-Dichloropropene			<0.030		ug/g		0.03	00 1111 00
Dibromochloromethane			<0.050		ug/g ug/g		0.05	06-JUN-22
Dichlorodifluoromethane			<0.050		ug/g ug/g		0.05	06-JUN-22 06-JUN-22
Ethylbenzene	7		<0.018		ug/g ug/g		0.03	
n-Hexane			<0.050		ug/g ug/g		0.016	06-JUN-22
Methylene Chloride			<0.050		ug/g ug/g		0.05	06-JUN-22
MTBE			<0.050				0.05	06-JUN-22
m+p-Xylenes			<0.030		ug/g		0.03	06-JUN-22
Methyl Ethyl Ketone			<0.50		ug/g		0.03	06-JUN-22
Methyl Isobutyl Ketone			<0.50		ug/g		0.5	06-JUN-22
•					ug/g		0.02	06-JUN-22
o-Xylene Styrene			<0.020		ug/g		0.02	06-JUN-22
Tetrachloroethylene			<0.050 <0.050		ug/g		0.05	06-JUN-22
Toluene			<0.080		ug/g		0.03	06-JUN-22
trans-1,2-Dichloroethyle	no		<0.050		ug/g		0.05	06-JUN-22
•					ug/g		0.03	06-JUN-22
trans-1,3-Dichloroprope Trichloroethylene	ne		<0.030		ug/g		0.03	06-JUN-22
Trichlorofluoromethane			<0.010		ug/g		0.01	06-JUN-22
			<0.050		ug/g			06-JUN-22
Vinyl chloride	2022020		<0.020		ug/g		0.02	06-JUN-22
Surrogate: 1,4-Difluorob			107.2		% %		50-140 50-140	06-JUN-22
Surrogate: 4-Bromofluor	roberizerie	144.0070.4000.0	100.7		70		30-140	06-JUN-22
WG3734963-5 MS 1,1,1,2-Tetrachloroetha	ne	WG3734963-3	133.8		%		50-140	06-JUN-22
1,1,2,2-Tetrachloroetha	ne		134.4		%		50-140	06-JUN-22
1,1,1-Trichloroethane			139.2		%		50-140	06-JUN-22
1,1,2-Trichloroethane			134.9		%		50-140	06-JUN-22
1,1-Dichloroethane			138.3		%		50-140	06-JUN-22
1,1-Dichloroethylene			134.2		%		50-140	06-JUN-22
1,2-Dibromoethane			132.9		%		50-140	06-JUN-22
1,2-Dichlorobenzene			128.6		%		50-140	06-JUN-22
1,2-Dichloroethane			141.5	K	%		50-140	06-JUN-22
1,2-Dichloropropane			141.0	K	%		50-140	06-JUN-22
1,3-Dichlorobenzene			127.5		%		50-140	06-JUN-22
1,4-Dichlorobenzene			129.8		%		50-140	06-JUN-22

Workorder: L2711704 Report Date: 22-JUN-22 Page 11 of 12

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5794788								
WG3734963-5 MS		WG3734963-						
Acetone			134.7		%		50-140	06-JUN-22
Benzene			141.0	K	%		50-140	06-JUN-22
Bromodichloromethane			150.6	K	%		50-140	06-JUN-22
Bromoform			119.9		%		50-140	06-JUN-22
Bromomethane			140.5	K	%		50-140	06-JUN-22
Carbon tetrachloride			139.6		%		50-140	06-JUN-22
Chlorobenzene			131.4		%		50-140	06-JUN-22
Chloroform			139.9		%		50-140	06-JUN-22
cis-1,2-Dichloroethylene)		138.3		%		50-140	06-JUN-22
cis-1,3-Dichloropropene	•		141.0	K	%		50-140	06-JUN-22
Dibromochloromethane			138.8		%		50-140	06-JUN-22
Dichlorodifluoromethane	Э		126.0		%		50-140	06-JUN-22
Ethylbenzene			129.1		%		50-140	06-JUN-22
n-Hexane			136.7		%		50-140	06-JUN-22
Methylene Chloride			142.2	K	%		50-140	06-JUN-22
MTBE			122.3		%		50-140	06-JUN-22
m+p-Xylenes			130.8		%		50-140	06-JUN-22
Methyl Ethyl Ketone			126.4		%		50-140	06-JUN-22
Methyl Isobutyl Ketone			132.1		%		50-140	06-JUN-22
o-Xylene			128.5		%		50-140	06-JUN-22
Styrene			130.1		%		50-140	06-JUN-22
Tetrachloroethylene			133.0		%		50-140	06-JUN-22
Toluene			131.1		%		50-140	06-JUN-22
trans-1,2-Dichloroethyle	ne		137.5		%		50-140	06-JUN-22
trans-1,3-Dichloroprope	ne		122.4		%		50-140	06-JUN-22
Trichloroethylene			138.2		%		50-140	06-JUN-22
Trichlorofluoromethane			138.2		%		50-140	06-JUN-22
Vinyl chloride			124.7		%		50-140	06-JUN-22

Page 12 of 12

Workorder: L2711704 Report Date: 22-JUN-22

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 1E3

Contact: Bailey Fleet

Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate RPD Relative Percent Difference N/A Not Available LCS Laboratory Control Sample Standard Reference Material SRM MS Matrix Spike **MSD** Matrix Spike Duplicate Average Desorption Efficiency ADE Method Blank MB

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
K	Matrix Spike recovery outside ALS DQO due to sample matrix effects.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

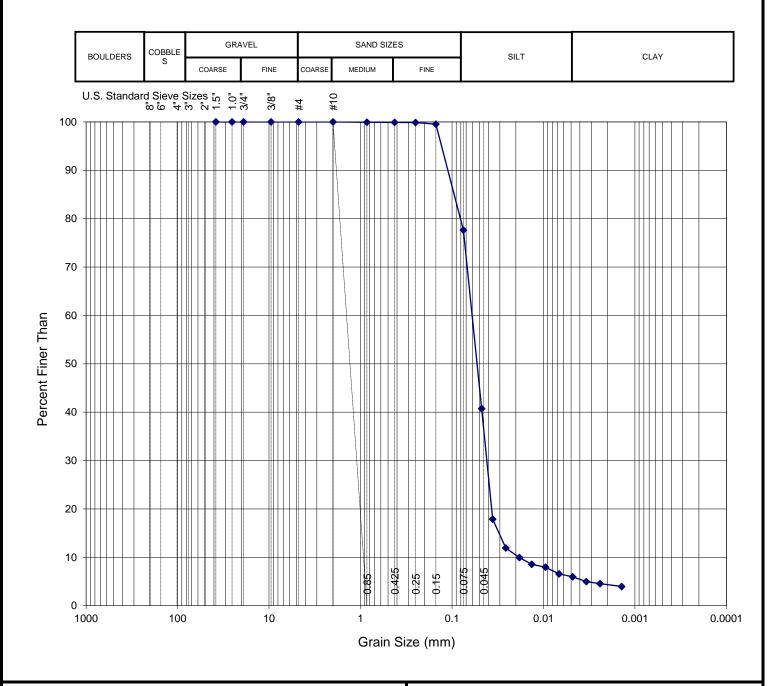
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Laboratory Group

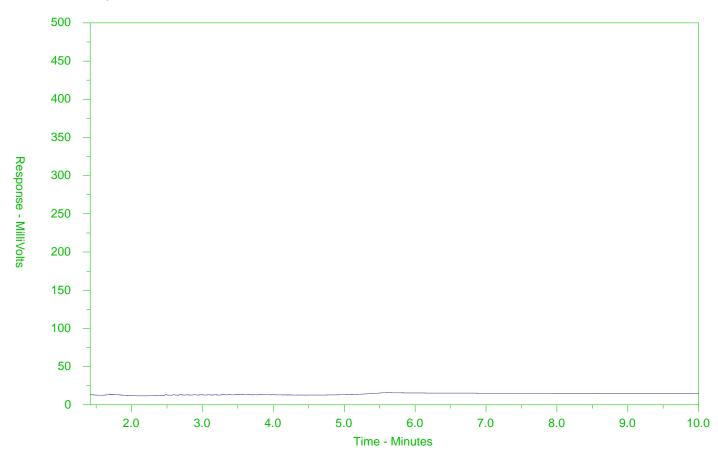
819-58th Street, Saskatoon,SK


PARTICLE SIZE DISTRIBUTION CURVE

Client Name: PALMER ENVIRONMENTAL CONSUL

Project Number:

Client Sample ID 22-10-7
Lab Sample ID L2711704-12
Date Sample Received 02-Jun-22
Test Completion Date: 20-Jun-22

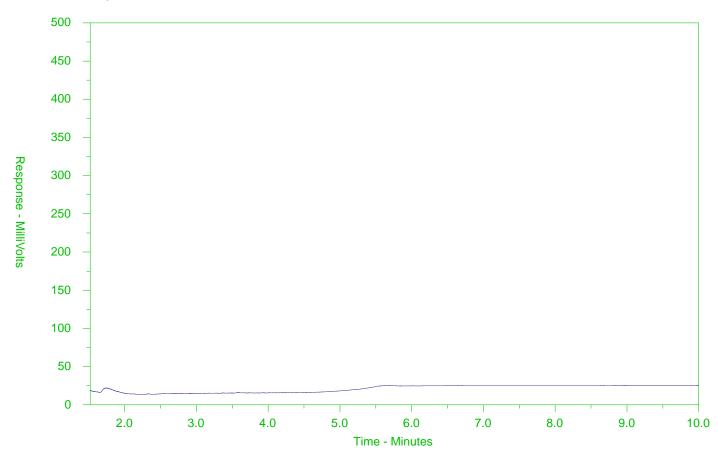

Analyst: SIH

METHOD DESCRIPTION		SUMMARY OF RESU	JLTS	
Method Reference: ASTM D6913 & D792	28	GRAIN SIZE	WT %	DIA. RANGE (mm)
Dispersion method: Mechanical		% GRAVEL :	<1	> 4.75
Dispesion period: 1 minute	cm/s	% COARSE SAND :	<1	2.0 - 4.75
		% MEDIUM SAND :	<1	0.425 - 2.0
		% FINE SAND :	22.28	0.075 - 0.425
DESCRIPTION OF SAND AND GRAVEL P	ARTICLES	% SILT :	71.60	0.075 - 0.005
Shape: Angular		% CLAY :	6.03	< 0.005
Hardness: Hard				

ALS Sample ID: L2711704-1 Client Sample ID: 22-5-6

← F2-	→-	—F3—→ ← —F4—	→
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067°F
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease
•	-Diesel/Je	et Fuels→	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

ALS Sample ID: L2711704-2 Client Sample ID: 22-5-6D

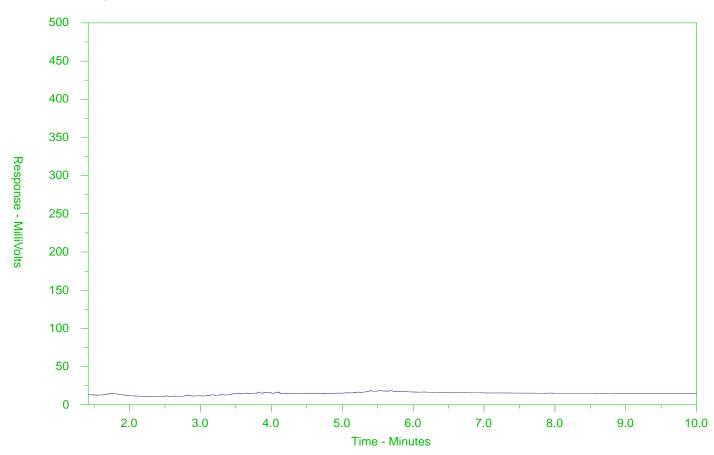
← F2-	→←	—F3 —→← —F4−	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ıe →	otor Oils/Lube Oils/Grease————	-	
←	- Diesel/Jet	t Fuels→		

Printed on 6/7/2022 6:52:24 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.


Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

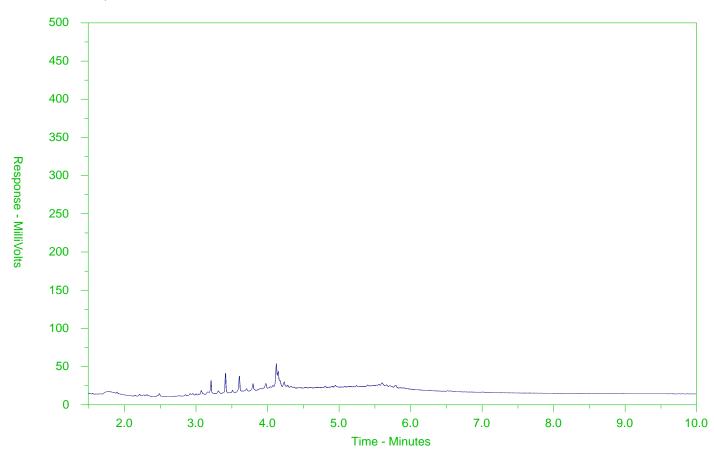
Printed on 6/7/2022 6:52:24 PM

Page 2 of 2

ALS Sample ID: L2711704-3 Client Sample ID: 22-6-2B

← F2-	→-	—F3—→ ← —F4—	→
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067°F
Gasoline → ← M		← Mot	or Oils/Lube Oils/Grease
•	-Diesel/Je	et Fuels→	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

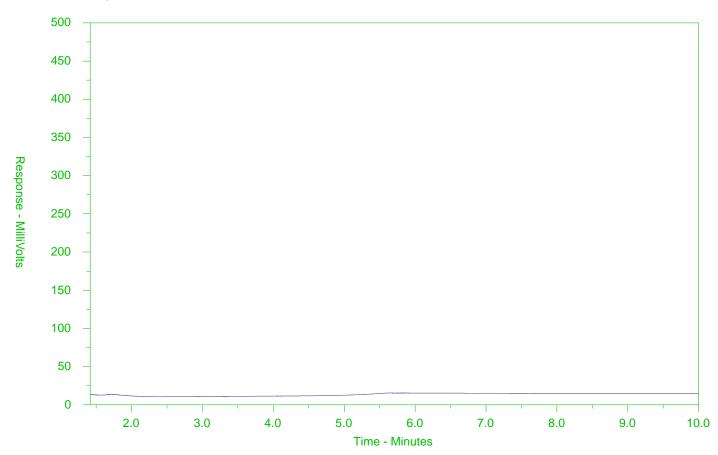
ALS Sample ID: L2711704-4 Client Sample ID: 22-7-5B

← F2-	→←	—F3 —→← —F4−	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline → ← Mo		← Mo	otor Oils/Lube Oils/Grease————	-
←	- Diesel/Jet	t Fuels→		

Printed on 6/7/2022 6:52:26 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

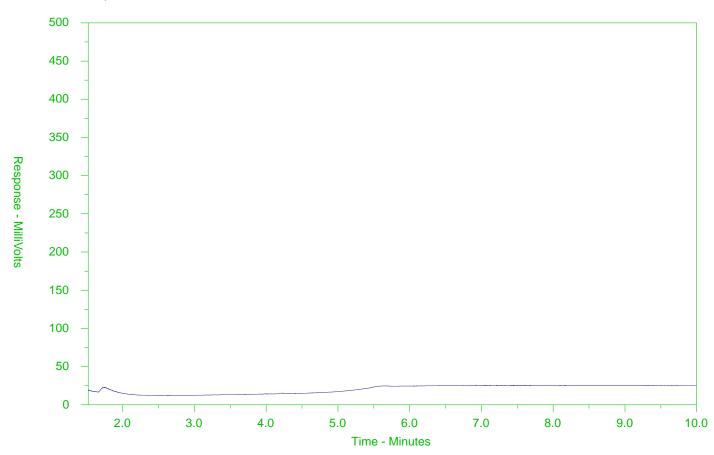
Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

Printed on 6/7/2022 6:52:26 PM Page 2 of 2

ALS Sample ID: L2711704-5 Client Sample ID: 22-8-6

← F2-	→←	—F3—→ ← —F4—	→
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575℃
346°F	549°F	898°F	1067°F
Gasoline → ← Mo		← Mot	or Oils/Lube Oils/Grease
←	– Diesel/Je	t Fuels→	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

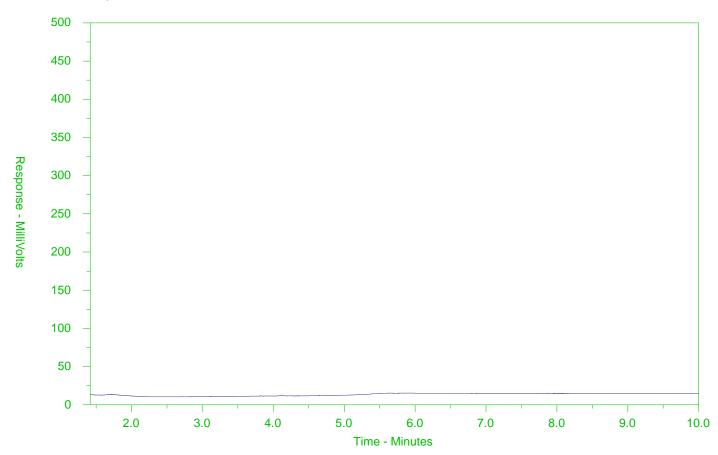
ALS Sample ID: L2711704-7 Client Sample ID: 22-9-3

← F2-	→←	—F3 —→← —F4−	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline → ← Mo		← Mo	otor Oils/Lube Oils/Grease————	-
←	- Diesel/Jet	t Fuels→		

Printed on 6/7/2022 6:52:28 PM Page 1 of 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

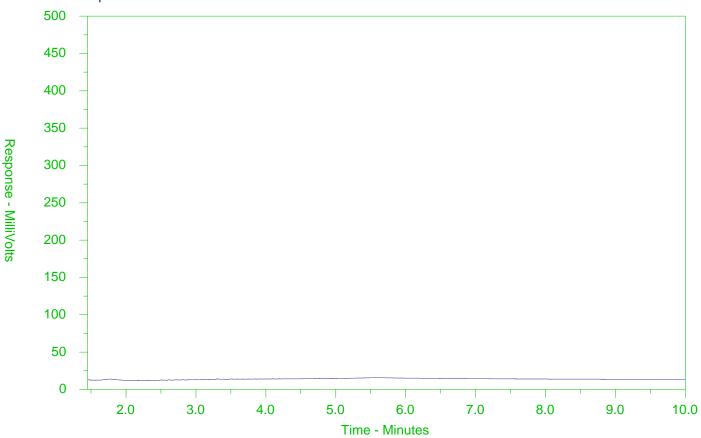
Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

Printed on 6/7/2022 6:52:28 PM Page 2 of 2

ALS Sample ID: L2711704-8 Client Sample ID: 22-9-3D

← F2-	→-	—F3—→ ← —F4—	→
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067°F
Gasoline → ← M		← Mot	or Oils/Lube Oils/Grease
•	-Diesel/Je	et Fuels→	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsqlobal.com.

ALS Sample ID: L2711704-12 Client Sample ID: 22-10-7

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline → ← Mor			tor Oils/Lube Oils/Grease———	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

Chain of Custody (COC) / Analytical Request Form

ALS

www.alsgiobal.com

Canada Toll Free: 1 800 668 9878

coc Number: 20 - 951920

Page (of)

Report To	Contact and company name	below will appear on the final report																
Company:	Halmer-Environm		- 6-1-15		/ Recipients			· · ·	T	Urnaro	und Time	(TAĭ) Requ	-		CHO CONTRACTOR			
Contact:	Paley Heet	= mar as armid or	Select Report Forma			EDD (DIGITAL)	$\neg \forall$	S Postino	[R] if rec		and me	(IAI) Requ	iested					
Phone:			Merge QC/QCI Re	ports with COA	A DEYES DO	NO 🗖	- -	J Admir	P4] if rece	erved by	^{3c}							200
_	Company address below will appe	ar on the final report	Compare Results to	Criteria on Report	- provide details belov	w if box checked] 3 day i	(P3) if rece	ived by Elived by	3pr							
Street:	1 44 Berlete	s S	Select Distribution:	Ç EMAIL	MAIL [] FAX	ļ]2 dayi	[P2] if rece	eived by	3DI 11 1							3
ity/Province:	16/0N/w	4 31		adous	-fleeta	PRICACO	.— □] 1 day [t	[] if receiv	ed by 3	pim		L2711	704-0	COFC			
ostal Code:	TOO W	A 211 2	Email 2 KCI (V	10 M	aydeno	124	_	Same da	y [E2] if n	eceived t	l yc							
voice To			Email 3 SCR / CL	n . S. 100	ita jen	3 VCO (00 / 10(4C	<u> </u>	ly torush r									
	Ţ 	YES CX NO		Invoice	Recipients	1		Date	and Time	Require	d for all Ea	PTATS:		······································	Tow	5 0 1	7.7	
ompany:	Copy of Invoice with Report	X YES [] NO	Select Invoice Distribu				_ <u> </u>			For	all tests with	rush TATs rei	quested, plea	e contact vo	UF AM Is som	$\sim \sigma_{\Lambda}$	4-	*************
ntact:	+am	ex	Email 1 or Fax		EMAIL MAIL	☐ FAX					THE PERSON NAMED OF THE PE		Analysis I		or war to con	ifirm availabili	ity.	and the same of th
TRACE.	L actor	ntire		wah.	zinting (PORCO 1	ુ જ			ndicate	Filtered (F)	Preserved (i	P) or Filtered	request	Williams .	Service Commence of the Commen	in the second second second	
C 4	Project Informati	on		<u> </u>	Sipalfa	e perde	CONTAINERS		\Box	$\neg T$		1,000	7 di Filleres	and Presen	/ed (F/P) be	low		B
S Account #/			AFE/Cost Center:	oas Require	ed Fields (client ı	use)¹ J	ΠŞ					 		-				REQUIRED
o#: <u>22</u>	204701				PO#		7 2		2	- 1	9	1 1		ĺ				3
/AFE:	2204751		Major/Minor Code:		Routing Code:		78	\perp	8	- 1	30	4		- [1 1		19	
):			Requisitioner:	*					ر الحا		10	1)		ĺ			0	l iii
J S Lantina			Location:] 5	18/1	2 ($\forall 1$	2	}					ON HOLD	STORAGE
ses can work	Order# (ALS use only): / [71170m	ALS Contact: DV O	ท	Ī			12	, , , , , , , , , , , , , , , , , , ,	3	13.		1 1] }	1 1	Ιō	Į
S Sample #	Sample Ma	11101	To to intuot,	• (Sampler:	·			PMS	$\leq $	ì		1 1	-	1 1	1 1	်	
S use only)	(This descri	tification and/or Coordinates		Date	Time	T	NUMBER	19	26	ال	ara'r] [1 1	SAMPLES	EXTENDED
9	20 S S	otion will appear on the report)	(d	d-mmm-yy)	(bh:mm)	Sample Type	15	臣	واو	FI			1 1	1 .	İ		Ē	l z
			10	net					- 0	- 2	힟	>	1 1				₹	
	<u> </u>		`	<u> </u>	12:00	201.	3	$ \mathcal{V} $.	ļ			***************************************				(<i>O</i>)	<u> 111 </u>
	22-10-2	6		 	12:00	<u> </u>	3			7-				+				
	27-I SR				1:00	1 1	131	トント		+-		-+-						
	22 - 8 - 6				2:00			17		+-	+		 _		_			
10.00		<u></u>	T-7			 		V			\perp					+-+		\vdash
	- 22-X-CeD					├ ─ <i>├</i>	4	W.	$\leq V $	ĺ						╁┈┼╴		
	_22-9-3				3:00		31	' Ti	7	\top	 		 	\dashv		┼┼-	_Ļ↓	
	22 - 9 - 3D				4:00		3	<u> </u>	7	4-	+-+		$\vdash \vdash$	+				
100	22 = 10 = 0		/		4:00					+-	+				1		7 1	
	20		11			 -	3	Ĺ-		1_						 - 	\dashv	
	$\frac{12-10-20}{2}$							[- 1	ーレ	4 T			 	_+	├		
	22-10-5				<u>5:00 </u>	. /	1	$\neg au$		11/	1-+	\neg		╅┷╅		 _		_ 1
	22-112-2			<	5:00丁	$\mathcal{J}^{}$		$\neg +$	\dashv	+-		\rightarrow	——	+]		
					2 . 572		3			↓	1			1 1			 	
Drinking Wa	ater (DW) Samples ¹ (client use)	Notes / Specify L	imits for result evaluation	by selecting to	som drop de la		עב		V			1 1					╁╌╂╴	
npies taken fron	m a Regulated DW System?		(~~~~	only)	гозп агар-аруул Бе	E .			e frabilitation (ing e.c.	SAMPL	E RECEIF	T DETAIL	S(ALS)	se only)	LL_		
☐ YES Y	Ø NO	Compare to	0.800	54101	1-1-6			Metho		NON	13-1	CE TT to	*E DACKE	100	Charles West and		relian ide	
ples for human	n consumption/ use?		inceg is	7 D1 0-	Hable	23	Submis	sion Co	mments	identi	fied on Sa	mple Rec	eipt Notific	ation:	et was a second at the	Сооці		D
☐ Yes 19		RPI					Cooler (Custody	/ Seals I	ntact:	m	VEC TO N			<u>. Ц</u>	YES [7.NO	
		`						INIITI	AL COOL	RTEM	PERATUR	8°C	Necial Value	FIN	AL COOLER	ntact;	□YES	□WA
ed by:	SHIPMENT RELEASE (client	use)	- IAITIM	HIDMENT	ECEPTION (ALS			e e e e e e e e e e e e e e e e e e e			lanca de la	105.	1-	K) 1	T	CMPERA	URES °C	
().F	Date:	(20 Time: R	eceived by:	The	ECEPTION (ALS	And the second s	10000			340	FIN	AL SHIPN	IENT DEC	EDTION			5 4 5	
O BACK PAGE	FOR ALS LOCATIONS AND SAMPLI		CONTRACTOR STREET	Call of Man Sales	a, Horaseana and Charles		ime:	Re	ceived b	v:	·/\\	Ζ Ππ	Date:	-FRUNI	MLD USE	only)	4.6	
complete all portion	ns of this form may delay analysis. Please fi aken from a Regulated Drinking Water (Di	Fig this form LEGIBLY Budbarra		WHITE -	LABORATORY CO	PV VELLOW	O I I	38 82.2			4	1	TIT's	100	5 10	<u>ን</u> ኤ	Time	,

HERE	
SUSPECTED HAZARD (see notes)	
VA.	

PALMER ENVIRONMENTAL CONSULTING

GROUP INC. (Richmond Hill)

ATTN: BAILEY FLEET 74 Berkeley Street Toronto ON M5V 1E3 Date Received: 03-JUN-22

Report Date: 13-JUN-22 07:06 (MT)

Version: FINAL

Client Phone: 647-795-8153

Certificate of Analysis

 Lab Work Order #:
 L2712120

 Project P.O. #:
 2204701

 Job Reference:
 2204701

 C of C Numbers:
 20-951595

Legal Site Desc:

Kdingh

KARANPARTAP SINGH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2712120 CONT'D....

Job Reference: 2204701

PAGE 2 of 9

13-JUN-22 07:06 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)

(No parameter exceedances)

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

(No parameter exceedances)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2712120 CONT'D....

Job Reference: 2204701

PAGE 3 of 9

13-JUN-22 07:06 (MT)

Dissolved Metals - WATER

		Sample		L2712120-4 02-JUN-22	L2712120-5 02-JUN-22	L2712120-6 02-JUN-22
		Sam	ple ID	22-8	22-9	22-10
Analyte	Unit	Guide #1	Limits #2			
Dissolved Metals Filtration Location		-	-	FIELD	FIELD	FIELD
Antimony (Sb)-Dissolved	ug/L	20000	20000	<1.0 DLHC	<1.0 DLHC	<1.0 DLHC
Arsenic (As)-Dissolved	ug/L	1900	1900	<1.0 DLHC	<1.0 DLHC	<1.0 DLHC
Barium (Ba)-Dissolved	ug/L	29000	29000	45.2 DLHC	39.8 DLHC	169 DLHC
Beryllium (Be)-Dissolved	ug/L	67	67	<1.0 DLHC	<1.0 DLHC	<1.0 DLHC
Boron (B)-Dissolved	ug/L	45000	45000	<100 DLHC	<100 DLHC	<100 DLHC
Cadmium (Cd)-Dissolved	ug/L	2.7	2.7	<0.050 ^{DLHC}	< 0.050 DLHC	<0.050 ^{DLHC}
Chromium (Cr)-Dissolved	ug/L	810	810	<5.0 DLHC	<5.0 DLHC	<5.0 DLHC
Cobalt (Co)-Dissolved	ug/L	66	66	<1.0 DLHC	<1.0 DLHC	<1.0 DLHC
Copper (Cu)-Dissolved	ug/L	87	87	2.9 DLHC	<2.0 DLHC	3.6 DLHC
Lead (Pb)-Dissolved	ug/L	25	25	<0.50 DLHC	<0.50 DLHC	<0.50 DLHC
Molybdenum (Mo)-Dissolved	ug/L	9200	9200	2.84 DLHC	2.38 DLHC	0.84 DLHC
Nickel (Ni)-Dissolved	ug/L	490	490	<5.0 DLHC	<5.0 DLHC	<5.0 DLHC
Selenium (Se)-Dissolved	ug/L	63	63	0.60 DLHC	0.82 DLHC	1.97 DLHC
Silver (Ag)-Dissolved	ug/L	1.5	1.5	<0.50 DLHC	<0.50 DLHC	<0.50 DLHC
Sodium (Na)-Dissolved	ug/L	2300000	2300000	1500008LHC	2020008 ^{LHC}	2190000 BLHC
Thallium (TI)-Dissolved	ug/L	510	510	<0.10 DLHC	<0.10 DLHC	<0.10 DLHC
Uranium (U)-Dissolved	ug/L	420	420	1.61 DLHC	0.79 DLHC	4.43 DLHC
Vanadium (V)-Dissolved	ug/L	250	250	<5.0 DLHC	<5.0 DLHC	<5.0 DLHC
Zinc (Zn)-Dissolved	ug/L	1100	1100	<10 DLHC	<10 DLHC	<10 DLHC

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2712120 CONT'D....

Job Reference: 2204701

PAGE 4 of 9

13-JUN-22 07:06 (MT)

Volatile Organic Compounds - WATER

		Sample	ab ID Date ple ID	L2712120-1 02-JUN-22 22-5	L2712120-2 02-JUN-22 22-6	L2712120-3 02-JUN-22 22-7	L2712120-4 02-JUN-22 22-8	L2712120-5 02-JUN-22 22-9	L2712120-6 02-JUN-22 22-10	L2712120-7 02-JUN-22 22-10D
Analyte	Unit	Guide #1	Limits #2							
Acetone	ug/L	130000	130000				<30	<30	<30	<30
Benzene	ug/L	44	430	<0.50	<0.50 OWP	<0.50 OWP	<0.50	<0.50	<0.50	< 0.50
Bromodichloromethane	ug/L	85000	85000				<2.0	<2.0	<2.0	<2.0
Bromoform	ug/L	380	770				<5.0	<5.0	<5.0	<5.0
Bromomethane	ug/L	5.6	56				<0.50	<0.50	<0.50	<0.50
Carbon tetrachloride	ug/L	0.79	8.4				<0.20	<0.20	<0.20	<0.20
Chlorobenzene	ug/L	630	630				<0.50	<0.50	<0.50	<0.50
Dibromochloromethane	ug/L	82000	82000				<2.0	<2.0	<2.0	<2.0
Chloroform	ug/L	2.4	22				<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	ug/L	0.25	0.83				<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene	ug/L	4600	9600				<0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	ug/L	9600	9600				<0.50	<0.50	<0.50	< 0.50
1,4-Dichlorobenzene	ug/L	8	67				<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	ug/L	4400	4400				<2.0	<2.0	<2.0	<2.0
1,1-Dichloroethane	ug/L	320	3100				<0.50	<0.50	<0.50	<0.50
1,2-Dichloroethane	ug/L	1.6	12				<0.50	<0.50	<0.50	< 0.50
1,1-Dichloroethylene	ug/L	1.6	17				<0.50	<0.50	<0.50	<0.50
cis-1,2-Dichloroethylene	ug/L	1.6	17				<0.50	<0.50	<0.50	<0.50
trans-1,2-Dichloroethylene	ug/L	1.6	17				<0.50	<0.50	<0.50	<0.50
Methylene Chloride	ug/L	610	5500				<5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	ug/L	16	140				<0.50	<0.50	<0.50	< 0.50
cis-1,3-Dichloropropene	ug/L	-	-				<0.30	<0.30	<0.30	< 0.30
trans-1,3-Dichloropropene	ug/L	-	-				<0.30	<0.30	<0.30	<0.30
1,3-Dichloropropene (cis & trans)	ug/L	5.2	45				<0.50	<0.50	<0.50	<0.50
Ethylbenzene	ug/L	2300	2300	<0.50	<0.50 OWP	<0.50 OWP	<0.50	<0.50	<0.50	<0.50
n-Hexane	ug/L	51	520				<0.50	<0.50	<0.50	<0.50
Methyl Ethyl Ketone	ug/L	470000	1500000				<20	<20	<20	<20
Methyl Isobutyl Ketone	ug/L	140000	580000				<20	<20	<20	<20
MTBE	ug/L	190	1400				<2.0	<2.0	<2.0	<2.0
Styrene	ug/L	1300	9100				<0.50	<0.50	<0.50	<0.50

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2712120 CONT'D....

Job Reference: 2204701

PAGE 5 of 9

13-JUN-22 07:06 (MT)

Volatile Organic Compounds - WATER

		L	₋ab ID	L2712120-1	L2712120-2	L2712120-3	L2712120-4	L2712120-5	L2712120-6	L2712120-7
		Sample	e Date	02-JUN-22						
		Sam	ple ID	22-5	22-6	22-7	22-8	22-9	22-10	22-10D
Analyte	Unit	Guide #1	Limits #2							
1,1,1,2-Tetrachloroethane	ug/L	3.3	28				<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	ug/L	3.2	15				<0.50	<0.50	<0.50	<0.50
Tetrachloroethylene	ug/L	1.6	17				<0.50	<0.50	<0.50	<0.50
Toluene	ug/L	18000	18000	<0.50	<0.50 OWP	<0.50 OWP	<0.50	<0.50	<0.50	<0.50
1,1,1-Trichloroethane	ug/L	640	6700				<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/L	4.7	30				<0.50	<0.50	<0.50	<0.50
Trichloroethylene	ug/L	1.6	17				<0.50	<0.50	<0.50	<0.50
Trichlorofluoromethane	ug/L	2500	2500				<5.0	<5.0	<5.0	<5.0
Vinyl chloride	ug/L	0.5	1.7				<0.50	<0.50	<0.50	<0.50
o-Xylene	ug/L	-	-	<0.30	<0.30 OWP	<0.30 OWP	<0.30	<0.30	<0.30	<0.30
m+p-Xylenes	ug/L	-	-	<0.40	<0.40 OWP	<0.40 OWP	<0.40	<0.40	<0.40	<0.40
Xylenes (Total)	ug/L	4200	4200	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Surrogate: 4-Bromofluorobenzene	%	-	-	89.0	84.8	89.0	92.1	90.3	91.0	90.8
Surrogate: 1,4-Difluorobenzene	%	-	-	95.2	95.2	95.3	97.3	97.6	96.6	97.3

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2712120 CONT'D....

Job Reference: 2204701

PAGE 6 of 9

13-JUN-22 07:06 (MT)

Hydrocarbons - WATER

,										
		ı	Lab ID	L2712120-1	L2712120-2	L2712120-3	L2712120-4	L2712120-5	L2712120-6	L2712120-7
		Sample Date		02-JUN-22						
		Sam	ple ID	22-5	22-6	22-7	22-8	22-9	22-10	22-10D
Analyte	Unit	Guide #1	Limits #2							
F1 (C6-C10)	ug/L	750	750	<25	<25 OWP	<25 OWP	<25	<25	<25	<25
F1-BTEX	ug/L	750	750	<25	<25	<25	<25	<25	<25	<25
F2 (C10-C16)	ug/L	150	150	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	ug/L	500	500	<250	<250	<250	<250	<250	<250	<250
F4 (C34-C50)	ug/L	500	500	<250	<250	<250	<250	<250	<250	<250
Total Hydrocarbons (C6-C50)	ug/L	-	-	<370	<370	<370	<370	<370	<370	<370
Chrom. to baseline at nC50		-	-	YES						
Surrogate: 2-Bromobenzotrifluoride	%	-	-	85.2	89.4	86.0	91.1	86.0	84.8	80.0
Surrogate: 3,4-Dichlorotoluene	%	-	-	79.7	65.3	61.9	84.7	98.1	91.3	86.9

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

Reference Information

L2712120 CONT'D.... Job Reference: 2204701 PAGE 7 of 9 13-JUN-22 07:06 (MT)

Qualifiers for Individual Parameters Listed:

Qualificity for individual Furdinctors bistor.								
Qualifier	Description							
OWP	Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of							

Reference Information

L2712120 CONT'D.... Job Reference: 2204701 PAGE 8 of 9 13-JUN-22 07:06 (MT)

sediment.

DLHC Detection Limit

Methods Listed (if applicable):

BTX-511-HS-WT

Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

BTEX by Headspace

ALS Test Code Matrix Test Description Method Reference**

BTX is determined by analyzing by headspace-GC/MS.

Water

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

SW846 8260 (511)

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-L Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

L2712120 CONT'D.... Job Reference: 2204701 PAGE 9 of 9 13-JUN-22 07:06 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 (July SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

20-951595

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2712120 Report Date: 13-JUN-22 Page 1 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Water							
Batch R5	795986							
WG3737173-4 Benzene	DUP	WG3737173-3 <0.50	<0.50	RPD-NA	ug/L	N/A	30	09-JUN-22
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	09-JUN-22
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	09-JUN-22
o-Xylene		<0.30	< 0.30	RPD-NA	ug/L	N/A	30	09-JUN-22
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	09-JUN-22
WG3737173-1 Benzene	LCS		110.5		%		70-130	09-JUN-22
Ethylbenzene			89.8		%		70-130	09-JUN-22
m+p-Xylenes			102.1		%		70-130 70-130	09-JUN-22
o-Xylene			95.3		%		70-130 70-130	09-JUN-22
Toluene			98.8		%			
WG3737173-2	МВ		50.0		70		70-130	09-JUN-22
Benzene	IVID		<0.50		ug/L		0.5	09-JUN-22
Ethylbenzene			<0.50		ug/L		0.5	09-JUN-22
m+p-Xylenes			<0.40		ug/L		0.4	09-JUN-22
o-Xylene			< 0.30		ug/L		0.3	09-JUN-22
Toluene			<0.50		ug/L		0.5	09-JUN-22
Surrogate: 1,4-D	Difluorobenzene		95.8		%		70-130	09-JUN-22
Surrogate: 4-Bro	omofluorobenzene		88.9		%		70-130	09-JUN-22
WG3737173-5	MS	WG3737173-3						
Benzene			102.8		%		50-140	09-JUN-22
Ethylbenzene			80.0		%		50-140	09-JUN-22
m+p-Xylenes			92.2		%		50-140	09-JUN-22
o-Xylene			85.3		%		50-140	09-JUN-22
Toluene			93.4		%		50-140	09-JUN-22
F1-HS-511-WT	Water							
Batch R5	794652							
WG3735733-4 F1 (C6-C10)	DUP	WG3735733-3 <25	<25	RPD-NA	ug/L	N/A	30	06-JUN-22
WG3735733-1 F1 (C6-C10)	LCS		111.8		%		80-120	06-JUN-22
WG3735733-2 F1 (C6-C10)	МВ		<25		ug/L		25	06-JUN-22
Surrogate: 3,4-I	Dichlorotoluene		100.2		%		60-140	06-JUN-22
WG3735733-5	MS	WG3735733-3						

Workorder: L2712120 Report Date: 13-JUN-22 Page 2 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Contact: BAILEY FLEET

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Water							
Batch R5 WG3735733-5 F1 (C6-C10)	3794652 MS	WG3735733-3	92.3		%		60-140	06-JUN-22
Batch R5 WG3737173-4 F1 (C6-C10)	5795986 DUP	WG3737173-3 <25	<25	RPD-NA	ug/L	N/A	30	09-JUN-22
WG3737173-1 F1 (C6-C10)	LCS		101.9		%		80-120	09-JUN-22
WG3737173-2 F1 (C6-C10)	МВ		<25		ug/L		25	09-JUN-22
Surrogate: 3,4-	Dichlorotoluene		99.4		%		60-140	09-JUN-22
WG3737173-5 F1 (C6-C10)	MS	WG3737173-3	97.7		%		60-140	09-JUN-22
F2-F4-511-WT	Water							
Batch R5 WG3735786-2	5796385 LCS							
F2 (C10-C16)			98.9		%		70-130	10-JUN-22
F3 (C16-C34)			104.7		%		70-130	10-JUN-22
F4 (C34-C50)			115.2		%		70-130	10-JUN-22
WG3735786-1 F2 (C10-C16)	МВ		<100		ug/L		100	10-JUN-22
F3 (C16-C34)			<250		ug/L		250	10-JUN-22
F4 (C34-C50)			<250		ug/L		250	10-JUN-22
Surrogate: 2-Br	omobenzotrifluoride		82.7		%		60-140	10-JUN-22
Batch R5	796662							
WG3735790-2 F2 (C10-C16)	LCS		97.1		%		70-130	10-JUN-22
F3 (C16-C34)			102.4		%		70-130	10-JUN-22
F4 (C34-C50)			101.4		%		70-130	10-JUN-22
WG3735790-1	МВ							
F2 (C10-C16)			<100		ug/L		100	10-JUN-22
F3 (C16-C34)			<250		ug/L		250	10-JUN-22
F4 (C34-C50)			<250		ug/L		250	10-JUN-22
Surrogate: 2-Br	omobenzotrifluoride		83.2		%		60-140	10-JUN-22

MET-D-UG/L-MS-WT Water

Workorder: L2712120 Report Date: 13-JUN-22 Page 3 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R579506	60							
WG3736171-4 DUF Antimony (Sb)-Dissolv		WG3736171- <1.0	3 <1.0	RPD-NA	ug/L	N/A	20	07-JUN-22
Arsenic (As)-Dissolve	d	<1.0	<1.0	RPD-NA	ug/L	N/A	20	07-JUN-22
Barium (Ba)-Dissolve	d	297	291		ug/L	2.2	20	07-JUN-22
Beryllium (Be)-Dissolv	/ed	<1.0	<1.0	RPD-NA	ug/L	N/A	20	07-JUN-22
Boron (B)-Dissolved		<100	<100	RPD-NA	ug/L	N/A	20	07-JUN-22
Cadmium (Cd)-Dissol	ved	0.065	0.072		ug/L	10	20	07-JUN-22
Chromium (Cr)-Disso	lved	<5.0	<5.0	RPD-NA	ug/L	N/A	20	07-JUN-22
Cobalt (Co)-Dissolved	i	3.5	3.4		ug/L	2.6	20	07-JUN-22
Copper (Cu)-Dissolve	d	4.8	4.6		ug/L	5.3	20	07-JUN-22
Lead (Pb)-Dissolved		<0.50	<0.50	RPD-NA	ug/L	N/A	20	07-JUN-22
Molybdenum (Mo)-Dis	ssolved	0.87	0.82		ug/L	5.5	20	07-JUN-22
Nickel (Ni)-Dissolved		8.6	8.2		ug/L	3.8	20	07-JUN-22
Selenium (Se)-Dissolv	ved	<0.50	<0.50	RPD-NA	ug/L	N/A	20	07-JUN-22
Silver (Ag)-Dissolved		<0.50	<0.50	RPD-NA	ug/L	N/A	20	07-JUN-22
Sodium (Na)-Dissolve	ed	492000	495000		ug/L	0.8	20	07-JUN-22
Thallium (TI)-Dissolve	ed	<0.10	<0.10	RPD-NA	ug/L	N/A	20	07-JUN-22
Uranium (U)-Dissolve	d	5.28	4.99		ug/L	5.7	20	07-JUN-22
Vanadium (V)-Dissolv	red	<5.0	<5.0	RPD-NA	ug/L	N/A	20	07-JUN-22
Zinc (Zn)-Dissolved		<10	<10	RPD-NA	ug/L	N/A	20	07-JUN-22
WG3736171-2 LCS Antimony (Sb)-Dissolv			104.9		%		90 120	07 11 181 22
Arsenic (As)-Dissolve			98.5		%		80-120 80-120	07-JUN-22 07-JUN-22
Barium (Ba)-Dissolve			103.9		%		80-120	07-JUN-22
Beryllium (Be)-Dissolv			99.4		%		80-120	07-JUN-22
Boron (B)-Dissolved			102.8		%		80-120	07-JUN-22
Cadmium (Cd)-Dissol	ved		99.8		%		80-120	07-JUN-22
Chromium (Cr)-Disso			103.4		%		80-120	07-JUN-22
Cobalt (Co)-Dissolved			99.4		%		80-120	07-JUN-22
Copper (Cu)-Dissolve	d		100.2		%		80-120	07-JUN-22
Lead (Pb)-Dissolved			103.9		%		80-120	07-JUN-22
Molybdenum (Mo)-Dis	ssolved		100.5		%		80-120	07-JUN-22
Nickel (Ni)-Dissolved			102.8		%		80-120	07-JUN-22
Selenium (Se)-Dissol	ved		92.2		%		80-120	07-JUN-22

Workorder: L2712120 Report Date: 13-JUN-22 Page 4 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R5795060)							
WG3736171-2 LCS			05.0		0/			
Silver (Ag)-Dissolved Sodium (Na)-Dissolved	ı		95.6 109.6		%		80-120	07-JUN-22
Thallium (TI)-Dissolved			109.6		%		80-120	07-JUN-22
,			102.2		% %		80-120	07-JUN-22
Uranium (U)-Dissolved Vanadium (V)-Dissolve			101.5		% %		80-120	07-JUN-22
Zinc (Zn)-Dissolved	:u		97.4		%		80-120	07-JUN-22
			37.4		76		80-120	07-JUN-22
WG3736171-1 MB Antimony (Sb)-Dissolve	ed		<0.10		ug/L		0.1	07-JUN-22
Arsenic (As)-Dissolved			<0.10		ug/L		0.1	07-JUN-22
Barium (Ba)-Dissolved			<0.10		ug/L		0.1	07-JUN-22
Beryllium (Be)-Dissolve	ed		<0.10		ug/L		0.1	07-JUN-22
Boron (B)-Dissolved			<10		ug/L		10	07-JUN-22
Cadmium (Cd)-Dissolv	ed		<0.0050		ug/L		0.005	07-JUN-22
Chromium (Cr)-Dissolv	red		<0.50		ug/L		0.5	07-JUN-22
Cobalt (Co)-Dissolved			<0.10		ug/L		0.1	07-JUN-22
Copper (Cu)-Dissolved			<0.20		ug/L		0.2	07-JUN-22
Lead (Pb)-Dissolved			<0.050		ug/L		0.05	07-JUN-22
Molybdenum (Mo)-Diss	solved		<0.050		ug/L		0.05	07-JUN-22
Nickel (Ni)-Dissolved			<0.50		ug/L		0.5	07-JUN-22
Selenium (Se)-Dissolve	ed		<0.050		ug/L		0.05	07-JUN-22
Silver (Ag)-Dissolved			<0.050		ug/L		0.05	07-JUN-22
Sodium (Na)-Dissolved	I		<50		ug/L		50	07-JUN-22
Thallium (TI)-Dissolved	l		<0.010		ug/L		0.01	07-JUN-22
Uranium (U)-Dissolved			<0.010		ug/L		0.01	07-JUN-22
Vanadium (V)-Dissolve	d		<0.50		ug/L		0.5	07-JUN-22
Zinc (Zn)-Dissolved			<1.0		ug/L		1	07-JUN-22
WG3736171-5 MS	1	WG3736171-6	400.5		0/			
Antimony (Sb)-Dissolve			103.5		%		70-130	07-JUN-22
Arsenic (As)-Dissolved			104.7	.40.5	%		70-130	07-JUN-22
Barium (Ba)-Dissolved			N/A	MS-B	%		-	07-JUN-22
Beryllium (Be)-Dissolve			104.5		%		70-130	07-JUN-22
Cadmium (Cd)-Dissolv			99.0		%		70-130	07-JUN-22
Chromium (Cr)-Dissolv	e u		100.4		%		70-130	07-JUN-22
Cobalt (Co)-Dissolved			82.5		%		70-130	07-JUN-22

Workorder: L2712120 Report Date: 13-JUN-22 Page 5 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R5795060)							
WG3736171-5 MS		WG3736171-						
Copper (Cu)-Dissolved			87.6		%		70-130	07-JUN-22
Lead (Pb)-Dissolved			99.4		%		70-130	07-JUN-22
Molybdenum (Mo)-Diss	olved		96.7		%		70-130	07-JUN-22
Nickel (Ni)-Dissolved			79.7		%		70-130	07-JUN-22
Selenium (Se)-Dissolve	ed		105.1		%		70-130	07-JUN-22
Silver (Ag)-Dissolved			92.9		%		70-130	07-JUN-22
Sodium (Na)-Dissolved			N/A	MS-B	%		-	07-JUN-22
Thallium (TI)-Dissolved			98.1		%		70-130	07-JUN-22
Uranium (U)-Dissolved			N/A	MS-B	%		-	07-JUN-22
Vanadium (V)-Dissolve	d		106.4		%		70-130	07-JUN-22
Zinc (Zn)-Dissolved			100.4		%		70-130	07-JUN-22
VOC-511-HS-WT	Water							
Batch R5794652								
WG3735733-4 DUP		WG3735733-			11			
1,1,1,2-Tetrachloroetha		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,1,2,2-Tetrachloroetha	ine	<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,1,1-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	06-JUN-22
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
Acetone		<30	<30	RPD-NA	ug/L	N/A	30	06-JUN-22
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
Bromodichloromethane)	<2.0	<2.0	RPD-NA	ug/L	N/A	30	06-JUN-22
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	06-JUN-22
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	06-JUN-22
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
					-	•		

Workorder: L2712120 Report Date: 13-JUN-22 Page 6 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

No.2-511-HS-WT Water Batch R5794652 WG3735733-3 Chloroform <1.0 <1.0 RPD-NA Ug/L N/A 30 06-JUN-22 dis-1,2-Dichloropropene <0.50 <0.50 RPD-NA Ug/L N/A 30 06-JUN-22 dis-1,2-Dichloropropene <0.30 <0.50 RPD-NA Ug/L N/A 30 06-JUN-22 dis-1,2-Dichloropropene <0.30 <0.50 RPD-NA Ug/L N/A 30 06-JUN-22 dis-1,2-Dichloropropene <0.30 <0.50 RPD-NA Ug/L N/A 30 06-JUN-22 dis-1,2-Dichloropropene <0.50 <0.50 RPD-NA Ug/L N/A 30 06-JUN-22 dis-1,3-Dichloropropene <0.50 <0.50 RPD-NA Ug/L	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Chicroform	VOC-511-HS-WT	Water							
Chieforform	Batch R5794652								
cis-1,2-Dichloroethylene <0.50						4			
cis-1,3-Dichloropropene <0.30 <0.30 RPD-NA ug/L N/A 30 06-JUN-22 Dibromochloromethane <2.0									
Dibromochloromethane <2.0 <2.0 RPD-NA ug/L N/A 30 06-JUN-22 Dichlorodifluoromethane <2.0	•					•			
Dichlorodifluoromethane <2.0 <2.0 RPD-NA ug/L N/A 30 06-JUN-22 Ethylbenzene <0.50						•			
Ethylbenzene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 n-Hexane <0.50						•			
n-Hexane			<2.0	<2.0	RPD-NA	ug/L	N/A	30	06-JUN-22
m+p-Xylenes c0.40 0.40">c.0.40 RPD-NA ug/L N/A 30 06-JUN-22 Methyl Ethyl Ketone 20">c.20 RPD-NA ug/L N/A 30 06-JUN-22 Methyl Isobutyl Ketone 20">c.20 RPD-NA ug/L N/A 30 06-JUN-22 MTBE 2.0">c.2.0 c.2.0 RPD-NA ug/L N/A 30 06-JUN-22 O'Sylene 0.50">c.0.50 c.0.30 0.50">c.0.50 RPD-NA ug/L N/A 30 06-JUN-22 Styrene 0.50">c.0.50 RPD-NA ug/L N/A 30 06-JUN-22 Totachoreethylene 0.50">c.0.50 RPD-NA ug/L N/A 30 06-JUN-22 trans-1,2-Dichloroethylene 0.50">c.0.50 RPD-NA ug/L N/A 30 06-JUN-22 trichloroethylene 0.50">c.0.50 RPD-NA ug/L N/A <td>Ethylbenzene</td> <td></td> <td><0.50</td> <td><0.50</td> <td>RPD-NA</td> <td>ug/L</td> <td>N/A</td> <td>30</td> <td>06-JUN-22</td>	Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
Methyl Ethyl Ketone <20 <20 RPD-NA Ug/L N/A 30 06-JUN-22 Methyl Isobutyl Ketone <20	n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
Methyl Isobutyl Ketone <20 <20 RPD-NA ug/L N/A 30 06-JUN-22 Methylene Chloride <5.0 <5.0 RPD-NA ug/L N/A 30 06-JUN-22 MTBE <2.0 <2.0 RPD-NA ug/L N/A 30 06-JUN-22 o-Xylene <0.30 <0.30 RPD-NA ug/L N/A 30 06-JUN-22 Styrene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 Tetrachloroethylene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 Toluene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 trans-1,2-Dichloroethylene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 trans-1,3-Dichloroptopropene <0.30 RPD-NA ug/L N/A 30 06-JUN-22 Trichloroethylene <0.50 RPD-NA ug/L N/A 30 <	m+p-Xylenes		<0.40	< 0.40	RPD-NA	ug/L	N/A	30	06-JUN-22
Methylene Chloride <5.0 <5.0 RPD-NA ug/L N/A 30 06-JUN-22 MTBE <2.0	Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	06-JUN-22
MTBE <2.0 <2.0 RPD-NA ug/L N/A 30 06-JUN-22 0-Xylene <0.30	Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	06-JUN-22
o-Xylene <0.30 <0.30 RPD-NA ug/L N/A 30 06-JUN-22 Styrene <0.50	Methylene Chloride		<5.0	<5.0	RPD-NA	ug/L	N/A	30	06-JUN-22
Styrene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 Tetrachloroethylene <0.50	MTBE		<2.0	<2.0	RPD-NA	ug/L	N/A	30	06-JUN-22
Tetrachloroethylene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 Toluene <0.50	o-Xylene		<0.30	< 0.30	RPD-NA	ug/L	N/A	30	06-JUN-22
Toluene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 trans-1,2-Dichloroethylene <0.50	Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
trans-1,2-Dichloroethylene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 trans-1,3-Dichloropropene <0.30	Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
trans-1,3-Dichloropropene <0.30 <0.30 RPD-NA ug/L N/A 30 06-JUN-22 Trichloroethylene <0.50	Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
Trichloroethylene <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 Trichlorofluoromethane <5.0	trans-1,2-Dichloroethyler	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
Trichlorofluoromethane <5.0 <5.0 RPD-NA ug/L N/A 30 06-JUN-22 Vinyl chloride <0.50 RPD-NA ug/L N/A 30 06-JUN-22 WG3735733-1 LCS LCS V 70-130 06-JUN-22 1,1,2-Tetrachloroethane 101.5 % 70-130 06-JUN-22 1,1,1-Trichloroethane 101.4 % 70-130 06-JUN-22 1,1,2-Trichloroethane 100.2 % 70-130 06-JUN-22 1,1-Dichloroethane 95.6 % 70-130 06-JUN-22 1,2-Dichloroethane 102.6 % 70-130 06-JUN-22 1,2-Dichloroethane 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	trans-1,3-Dichloroproper	ne	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	06-JUN-22
Vinyl chloride <0.50 <0.50 RPD-NA ug/L N/A 30 06-JUN-22 WG3735733-1 LCS LCS 1,1,2-Tetrachloroethane 101.5 % 70-130 06-JUN-22 1,1,2-Tetrachloroethane 99.0 % 70-130 06-JUN-22 1,1,1-Trichloroethane 101.4 % 70-130 06-JUN-22 1,1,2-Trichloroethane 100.2 % 70-130 06-JUN-22 1,1-Dichloroethane 95.6 % 70-130 06-JUN-22 1,1-Dichloroethylene 92.3 % 70-130 06-JUN-22 1,2-Dibloroethane 102.6 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
WG3735733-1 LCS 1,1,1,2-Tetrachloroethane 101.5 % 70-130 06-JUN-22 1,1,2,2-Tetrachloroethane 99.0 % 70-130 06-JUN-22 1,1,1-Trichloroethane 101.4 % 70-130 06-JUN-22 1,1,2-Trichloroethane 100.2 % 70-130 06-JUN-22 1,1-Dichloroethane 95.6 % 70-130 06-JUN-22 1,1-Dichloroethylene 92.3 % 70-130 06-JUN-22 1,2-Dibloromoethane 102.6 % 70-130 06-JUN-22 1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	Trichlorofluoromethane		<5.0	<5.0	RPD-NA	ug/L	N/A	30	06-JUN-22
1,1,1,2-Tetrachloroethane 101.5 % 70-130 06-JUN-22 1,1,2,2-Tetrachloroethane 99.0 % 70-130 06-JUN-22 1,1,1-Trichloroethane 101.4 % 70-130 06-JUN-22 1,1,2-Trichloroethane 100.2 % 70-130 06-JUN-22 1,1-Dichloroethane 95.6 % 70-130 06-JUN-22 1,1-Dichloroethylene 92.3 % 70-130 06-JUN-22 1,2-Dibromoethane 102.6 % 70-130 06-JUN-22 1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-JUN-22
1,1,2,2-Tetrachloroethane 99.0 % 70-130 06-JUN-22 1,1,1-Trichloroethane 101.4 % 70-130 06-JUN-22 1,1,2-Trichloroethane 100.2 % 70-130 06-JUN-22 1,1-Dichloroethane 95.6 % 70-130 06-JUN-22 1,1-Dichloroethylene 92.3 % 70-130 06-JUN-22 1,2-Dibromoethane 102.6 % 70-130 06-JUN-22 1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	WG3735733-1 LCS								
1,1,1-Trichloroethane 101.4 % 70-130 06-JUN-22 1,1,2-Trichloroethane 100.2 % 70-130 06-JUN-22 1,1-Dichloroethane 95.6 % 70-130 06-JUN-22 1,1-Dichloroethylene 92.3 % 70-130 06-JUN-22 1,2-Dibromoethane 102.6 % 70-130 06-JUN-22 1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	1,1,1,2-Tetrachloroethan	ie		101.5		%		70-130	06-JUN-22
1,1,2-Trichloroethane 100.2 % 70-130 06-JUN-22 1,1-Dichloroethane 95.6 % 70-130 06-JUN-22 1,1-Dichloroethylene 92.3 % 70-130 06-JUN-22 1,2-Dibromoethane 102.6 % 70-130 06-JUN-22 1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	1,1,2,2-Tetrachloroethan	ie		99.0		%		70-130	06-JUN-22
1,1-Dichloroethane 95.6 % 70-130 06-JUN-22 1,1-Dichloroethylene 92.3 % 70-130 06-JUN-22 1,2-Dibromoethane 102.6 % 70-130 06-JUN-22 1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	1,1,1-Trichloroethane			101.4		%		70-130	06-JUN-22
1,1-Dichloroethylene 92.3 % 70-130 06-JUN-22 1,2-Dibromoethane 102.6 % 70-130 06-JUN-22 1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	1,1,2-Trichloroethane			100.2		%		70-130	06-JUN-22
1,2-Dibromoethane 102.6 % 70-130 06-JUN-22 1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	1,1-Dichloroethane			95.6		%		70-130	06-JUN-22
1,2-Dichlorobenzene 102.1 % 70-130 06-JUN-22 1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	1,1-Dichloroethylene			92.3		%		70-130	06-JUN-22
1,2-Dichloroethane 105.2 % 70-130 06-JUN-22 1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	1,2-Dibromoethane			102.6		%		70-130	06-JUN-22
1,2-Dichloropropane 105.7 % 70-130 06-JUN-22	1,2-Dichlorobenzene			102.1		%		70-130	06-JUN-22
	1,2-Dichloroethane			105.2		%		70-130	06-JUN-22
1,3-Dichlorobenzene 100.2 % 70-130 06-JUN-22	1,2-Dichloropropane			105.7		%		70-130	06-JUN-22
	1,3-Dichlorobenzene			100.2		%		70-130	06-JUN-22

Workorder: L2712120 Report Date: 13-JUN-22 Page 7 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5794652								
WG3735733-1 LCS			404.5		0/		70.400	
1,4-Dichlorobenzene Acetone			101.5 97.5		%		70-130	06-JUN-22
							60-140	06-JUN-22
Benzene			105.9		%		70-130	06-JUN-22
Bromodichloromethane	•		112.6		%		70-130	06-JUN-22
Bromoform			103.0		%		70-130	06-JUN-22
Bromomethane			90.7		%		60-140	06-JUN-22
Carbon tetrachloride			102.6		%		70-130	06-JUN-22
Chlorobenzene			100.8		%		70-130	06-JUN-22
Chloroform	_		106.8		%		70-130	06-JUN-22
cis-1,2-Dichloroethylene			103.4		%		70-130	06-JUN-22
cis-1,3-Dichloropropene			106.8		%		70-130	06-JUN-22
Dibromochloromethane			105.2		%		70-130	06-JUN-22
Dichlorodifluoromethan	е		49.7	MES	%		50-140	06-JUN-22
Ethylbenzene			89.7		%		70-130	06-JUN-22
n-Hexane			91.7		%		70-130	06-JUN-22
m+p-Xylenes			94.1		%		70-130	06-JUN-22
Methyl Ethyl Ketone			97.5		%		60-140	06-JUN-22
Methyl Isobutyl Ketone			82.2		%		60-140	06-JUN-22
Methylene Chloride			109.7		%		70-130	06-JUN-22
MTBE			100.8		%		70-130	06-JUN-22
o-Xylene			88.3		%		70-130	06-JUN-22
Styrene			91.6		%		70-130	06-JUN-22
Tetrachloroethylene			103.0		%		70-130	06-JUN-22
Toluene			95.0		%		70-130	06-JUN-22
trans-1,2-Dichloroethyle	ene		103.6		%		70-130	06-JUN-22
trans-1,3-Dichloroprope	ene		100.1		%		70-130	06-JUN-22
Trichloroethylene			104.6		%		70-130	06-JUN-22
Trichlorofluoromethane			90.7		%		60-140	06-JUN-22
Vinyl chloride			69.9		%		60-140	06-JUN-22
WG3735733-2 MB 1,1,1,2-Tetrachloroetha	ine		<0.50		ug/L		0.5	06-JUN-22
1,1,2,2-Tetrachloroetha			<0.50		ug/L		0.5	06-JUN-22
1,1,1-Trichloroethane	•		<0.50		ug/L		0.5	06-JUN-22
1,1,2-Trichloroethane			<0.50		ug/L		0.5	06-JUN-22

Workorder: L2712120 Report Date: 13-JUN-22 Page 8 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5794652								
WG3735733-2 MB							0.5	
1,1-Dichloroethane			<0.50		ug/L		0.5	06-JUN-22
1,1-Dichloroethylene			<0.50		ug/L		0.5	06-JUN-22
1,2-Dibromoethane			<0.20		ug/L		0.2	06-JUN-22
1,2-Dichlorobenzene			<0.50		ug/L		0.5	06-JUN-22
1,2-Dichloroethane			<0.50		ug/L		0.5	06-JUN-22
1,2-Dichloropropane			<0.50		ug/L		0.5	06-JUN-22
1,3-Dichlorobenzene			<0.50		ug/L		0.5	06-JUN-22
1,4-Dichlorobenzene			<0.50		ug/L		0.5	06-JUN-22
Acetone			<30		ug/L		30	06-JUN-22
Benzene			< 0.50		ug/L		0.5	06-JUN-22
Bromodichloromethane			<2.0		ug/L		2	06-JUN-22
Bromoform			<5.0		ug/L		5	06-JUN-22
Bromomethane			< 0.50		ug/L		0.5	06-JUN-22
Carbon tetrachloride			<0.20		ug/L		0.2	06-JUN-22
Chlorobenzene			<0.50		ug/L		0.5	06-JUN-22
Chloroform			<1.0		ug/L		1	06-JUN-22
cis-1,2-Dichloroethylene	e		< 0.50		ug/L		0.5	06-JUN-22
cis-1,3-Dichloropropene)		< 0.30		ug/L		0.3	06-JUN-22
Dibromochloromethane			<2.0		ug/L		2	06-JUN-22
Dichlorodifluoromethan	е		<2.0		ug/L		2	06-JUN-22
Ethylbenzene			<0.50		ug/L		0.5	06-JUN-22
n-Hexane			< 0.50		ug/L		0.5	06-JUN-22
m+p-Xylenes			< 0.40		ug/L		0.4	06-JUN-22
Methyl Ethyl Ketone			<20		ug/L		20	06-JUN-22
Methyl Isobutyl Ketone			<20		ug/L		20	06-JUN-22
Methylene Chloride			<5.0		ug/L		5	06-JUN-22
MTBE			<2.0		ug/L		2	06-JUN-22
o-Xylene			< 0.30		ug/L		0.3	06-JUN-22
Styrene			<0.50		ug/L		0.5	06-JUN-22
Tetrachloroethylene			<0.50		ug/L		0.5	06-JUN-22
Toluene			<0.50		ug/L		0.5	06-JUN-22
trans-1,2-Dichloroethyle	ene		<0.50		ug/L		0.5	06-JUN-22
trans-1,3-Dichloroprope	ene		< 0.30		ug/L		0.3	06-JUN-22

Workorder: L2712120 Report Date: 13-JUN-22 Page 9 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT Water							
Batch R5794652							
WG3735733-2 MB Trichloroethylene		<0.50		ug/L		0.5	00 11111 00
Trichlorofluoromethane		<0.50 <5.0		ug/L		5	06-JUN-22
Vinyl chloride		<0.50		ug/L		0.5	06-JUN-22 06-JUN-22
Surrogate: 1,4-Difluorobenzene		99.1		ug/∟ %		70-130	
		93.8		%		70-130	06-JUN-22
Surrogate: 4-Bromofluorobenzene	W00705700 0	93.6		70		70-130	06-JUN-22
WG3735733-5 MS 1,1,1,2-Tetrachloroethane	WG3735733-3	96.5		%		50-140	06-JUN-22
1,1,2,2-Tetrachloroethane		94.3		%		50-140	06-JUN-22
1,1,1-Trichloroethane		98.4		%		50-140	06-JUN-22
1,1,2-Trichloroethane		94.5		%		50-140	06-JUN-22
1,1-Dichloroethane		93.3		%		50-140	06-JUN-22
1,1-Dichloroethylene		87.1		%		50-140	06-JUN-22
1,2-Dibromoethane		95.6		%		50-140	06-JUN-22
1,2-Dichlorobenzene		96.4		%		50-140	06-JUN-22
1,2-Dichloroethane		103.4		%		50-140	06-JUN-22
1,2-Dichloropropane		102.7		%		50-140	06-JUN-22
1,3-Dichlorobenzene		93.4		%		50-140	06-JUN-22
1,4-Dichlorobenzene		95.7		%		50-140	06-JUN-22
Acetone		98.6		%		50-140	06-JUN-22
Benzene		102.3		%		50-140	06-JUN-22
Bromodichloromethane		111.5		%		50-140	06-JUN-22
Bromoform		96.7		%		50-140	06-JUN-22
Bromomethane		83.2		%		50-140	06-JUN-22
Carbon tetrachloride		99.7		%		50-140	06-JUN-22
Chlorobenzene		94.5		%		50-140	06-JUN-22
Chloroform		105.4		%		50-140	06-JUN-22
cis-1,2-Dichloroethylene		99.2		%		50-140	06-JUN-22
cis-1,3-Dichloropropene		96.7		%		50-140	06-JUN-22
Dibromochloromethane		99.6		%		50-140	06-JUN-22
Dichlorodifluoromethane		41.8	MES	%		50-140	06-JUN-22
Ethylbenzene		79.7		%		50-140	06-JUN-22
n-Hexane		82.8		%		50-140	06-JUN-22
m+p-Xylenes		85.6		%		50-140	06-JUN-22
Methyl Ethyl Ketone		92.5		%		50-140	06-JUN-22

Workorder: L2712120 Report Date: 13-JUN-22 Page 10 of 11

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Contact: BAILEY FLEET

Client:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5794652								
WG3735733-5 MS		WG3735733-						
Methyl Isobutyl Ketone			73.2		%		50-140	06-JUN-22
Methylene Chloride			107.4		%		50-140	06-JUN-22
MTBE			95.2		%		50-140	06-JUN-22
o-Xylene			78.6		%		50-140	06-JUN-22
Styrene			80.5		%		50-140	06-JUN-22
Tetrachloroethylene			92.7		%		50-140	06-JUN-22
Toluene			85.7		%		50-140	06-JUN-22
trans-1,2-Dichloroethyle	ene		98.5		%		50-140	06-JUN-22
trans-1,3-Dichloroprope	ene		84.0		%		50-140	06-JUN-22
Trichloroethylene			99.7		%		50-140	06-JUN-22
Trichlorofluoromethane			85.2		%		50-140	06-JUN-22
Vinyl chloride			63.1		%		50-140	06-JUN-22

Workorder: L2712120 Report Date: 13-JUN-22

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 1E3

Contact: BAILEY FLEET

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

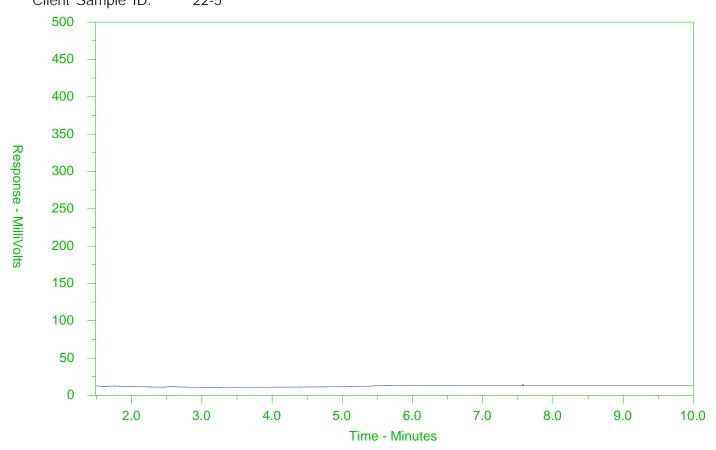
Sample Parameter Qualifier Definitions:

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

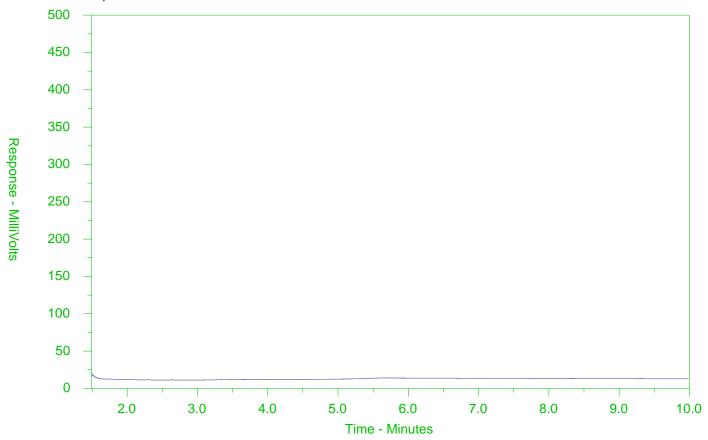
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 11 of 11

ALS Sample ID: L2712120-1 Client Sample ID: 22-5

← -F2-	→←	_F3 → F4-	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasoline →			tor Oils/Lube Oils/Grease	-		
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

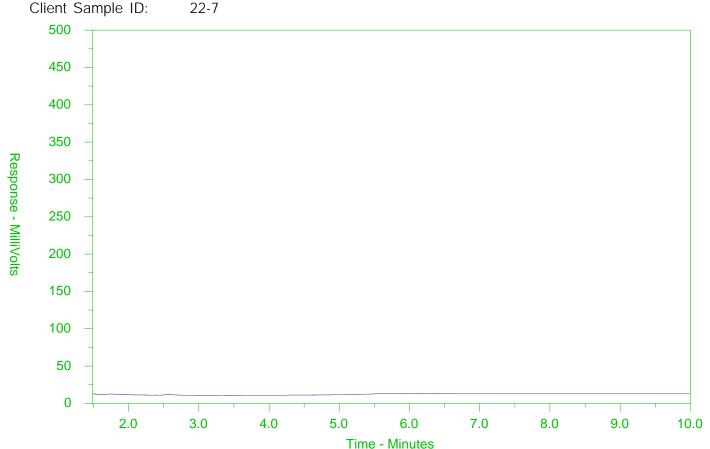

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2712120-2

Client Sample ID: 22-6

← -F2-	→←	_F3 → F4-	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasoline →			tor Oils/Lube Oils/Grease	-		
←	← Diesel/Jet Fuels →					

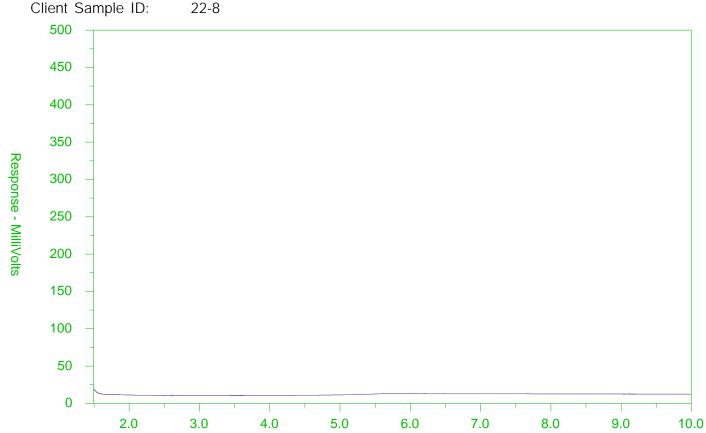

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2712120-3

← -F2-	→←	_F3 → F4-	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasoline →			tor Oils/Lube Oils/Grease	-		
←	← Diesel/Jet Fuels →					


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

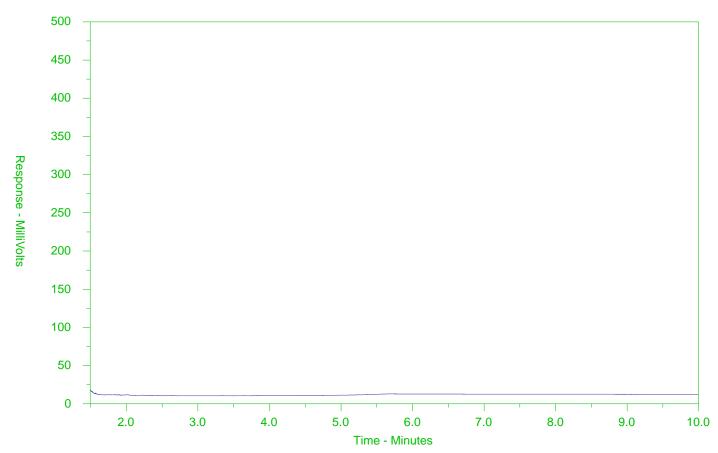
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2712120-4

← -F2-	→ ←	—F3 → ← F4—	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasolin	ıe →	← Mot	or Oils/Lube Oils/Grease-			
←	← Diesel/Jet Fuels →					

Time - Minutes

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

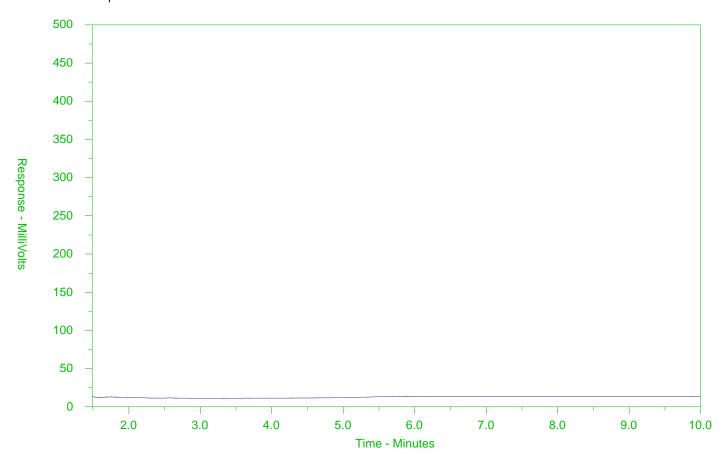

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2712120-5

Client Sample ID: 22-9

← F2-	→ ←	—F3—→ ← F4—	>		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasoline → ← Motor Oils/Lu			or Oils/Lube Oils/Grease-		
•	← Diesel/Jet Fuels →				

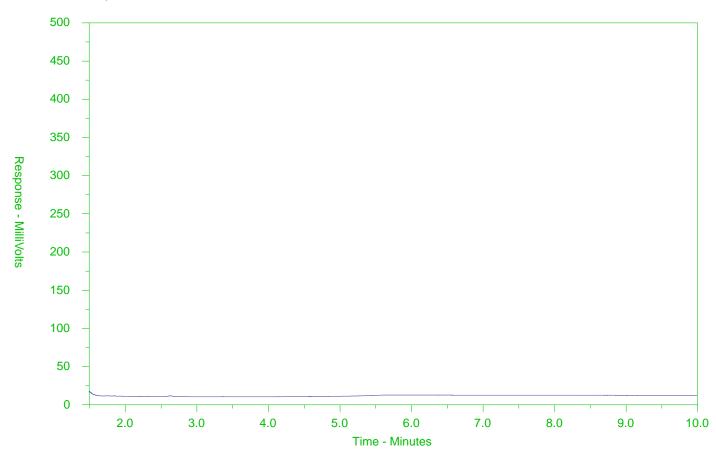

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2712120-6 Client Sample ID: 22-10

← F2-	→←	—F3—→ ← —F4—	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575℃			
346°F	549°F	898°F	1067°F			
Gasolin	ie →	← Mot	or Oils/Lube Oils/Grease			
←	← Diesel/Jet Fuels →					


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2712120-7 Client Sample ID: 22-10D

← F2-	→-	—F3—→ ← —F4—	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasoline → ← Motor Oils/Lube			or Oils/Lube Oils/Grease		
•	← Diesel/Jet Fuels →				

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Numbe	er: 20 -	. 9	5	159	15	Pa)
	Page	1	of	K		Ū	
around Time (TAT) Requested	*******					100 100 100	
d by 3pm M-F - no surcharges apply				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
L2712		OF(ABEL y):	HERE

Report To Contact and company name below will appear on the final report	Reports / R	ecipients	Turnar	round Time (TAT) Requested	10 (10 m) 10 (10
company: ramplefuli commentary consulting Grou		EXCEL BDD (DIGITAL)	Routine [R] if received	by 3pm M-F - no surcharges apply	The second secon
Contact: Bailly Float	Merge QC/QCI Reports with COA	XX YES ☐ NO ☐ N/A	4 day [P4] if received h	• · · · · · · · · · · · · · · · · · · ·	I and the second
Phone:	Compare Results to Criteria on Report - p		3 day [P3] if received		ABEL HERE
Company address below will appear on the final report		MAIL D FAX	2 day (P2) if received		
Street: 31 Olivally St	Email 1 or Fax DOLLUG	theto peca. ca	ay [E] if received I Same day [E2] if receired I may apply to rush requ		
City/Province: TYDYD.	Email 2 Kalla a Nau	identible approprie	may apply to rush requ	L2712120-COF	;-C
Postal Code: WA 2W4	Email 3 SOLYA 0 SIG	lakonem'. a	Date and Time Re		Acres to the Control of the Control
Invoice To Same as Report To ♣ YES 😿 NO	Invoice Ří			For an tests with rush TA15 requestion, prease services,	Ant com as well as a security of the second
Copy of Invoice with Report (X YES (NO		MAIL FAX	Service Control of the Control of th	Analysis Request	(
Company: Falmy		hing opleg, on	- I BZ 1	cate Filtered (F), Preserved (P) or Filtered and Prese	aved (F/P) below Ω Ω
Contact: 9 CCUVITACS		renderation	<u> </u>		
Project Information	Oil and Gas Require		1 2 7	9	LD REGULRED seem notes)
ALS Account # / Quote #.	AFE/Cost Center:	PO#	F CONTA	된	HOLD AGE RE
Job#: 220475)	Major/Minor Code:	Routing Code:	J호[시리S)	S ON HO STORAGE
PO/AFE: 2204701	Requisitioner:	100764		-	ON TOR
LSD:	Location:	The state of the s	1010121	a	ES (
ALS Lab Work Order# (ALS use only): LD7 12120	ALS Contact: KA(A)	Sampler: DF	NUMBER PHC/ PHC/		SAMPLES ON HOLD EXTENDED STORAGE REQUIRED SUSPECTED HAZARD (see notes)
ALS Sample # Sample Identification and/or Coordinates	Date	Time Sample Type	1	7	A A A A A A A A A A A A A A A A A A A
(ALS use only) (This description will appear on the report)	(sd-mmn-yy)	(hh:mm)			
22-S	June 2	12:00 GW	TY, IV		
22-6	1	1:08	141/		Passedis
12-7		2:50	UV V		
22-9		3:00	13 1/1/		WOODS CONTROL OF THE
		4:01	12 1/1	/ 	
22-9		17:00		/ 	
22-10		<u> </u>	13 1 1/1/	- - - - -	
22-10D		2:28	17 V		
###VDE DEV. 73.7 g					
					All Maries and All Ma
	If the last the second and the secon	t l		SAMPLE RECEIPT DETAILS ((ALS use only)
Drinking Water (DW) Samples' (client use)	Ify Limits for result evaluation by selectin (Excel COC only)		Gooling Method:	NONE CECCE CICEPACKS	FRÖZEN TO COOLING INITIATED
Are samples taken from a Regulated DW System?	to buble 5 +	K41	Submission Commen	ts identified on Sample Receipt Notification	
KA YES X NO	52/24	•	Cooler Gustody Seals		Gustody Seals Intact: YES NA
Are samples for human consumption/ use?	to louble 5 +		INITIAL CO	DLER TEMPERATURES °C	FINAL COOLER TEMPERATURES °C
□ YES 1/2 NO			100 00 00 00 00 00 00 00 00 00 00 00 00	<u> </u>	
SHIPMENT RELEASE (client use)		T RECEPTION (ALS use only) Date:	Time: Received	FINAL SHIPMENT RECËP	ZHON (ALS USE ONLY)
Released by: Bahala Date: 1922 Since	Received by:	Control of the second	inne. Treceive		3700 MOO
PEEER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		ITE - LABORATORY COPY YELL	OW - CLIENT COPY		ALKI 1270 FRON

PALMER ENVIRONMENTAL CONSULTING

GROUP INC. (Richmond Hill)

ATTN: BAILEY FLEET 74 Berkeley Street Toronto ON M5V 1E3 Date Received: 03-JUN-22

Report Date: 07-JUN-22 15:20 (MT)

Version: FINAL

Client Phone: 647-795-8153

Certificate of Analysis

Lab Work Order #: L2712128 Project P.O. #: 2204701

 Project P.O. #:
 2204701

 Job Reference:
 2204701

 C of C Numbers:
 20-951594

Legal Site Desc:

Kdingh

KARANPARTAP SINGH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2712128 CONT'D....

Job Reference: 2204701

PAGE 2 of 4

07-JUN-22 15:20 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Soil-Res/Park/Inst. Property Use (Coarse)

(No parameter exceedances)

L2712128 CONT'D....

Job Reference: 2204701

PAGE 3 of 4

07-JUN-22 15:20 (MT)

Physical Tests - SOIL

,		
	Lab	ID L2712128-1
	Sample Da	te 01-JUN-22
	Sample	ID 22-6-5
	Guide Lim	its
Analyte	Unit #1 #2	
pH	pH units	7.67

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

L2712128 CONT'D.... Job Reference: 2204701 PAGE 4 of 4 07-JUN-22 15:20 (MT)

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**	
PH-WT	Soil	На	MOEE E3137A	

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

20-951594

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code La

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2712128 Report Date: 07-JUN-22 Page 1 of 2

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Contact: BAILEY FLEET

Client:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT	Soil							
Batch R5795182 WG3735883-1 DUP pH	!	L2711787-2 10.86	10.81	J	pH units	0.05	0.3	07-JUN-22
WG3736361-1 LCS pH			7.01		pH units		6.9-7.1	07-JUN-22

Page 2 of 2

Workorder: L2712128 Report Date: 07-JUN-22

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 1E3

Contact: BAILEY FLEET

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

151594

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

H	Ш		Н	,	11	Ш	ı			. !	H		11	ı	H	1	138
	L	2	7	1:	2	12	35	3-	C)(F(С				

Report To	Contact and company name below will appear	on the final report		Reports / R	ecipients	**************************************	<u> </u>		Turna	round Ti	me (TAT) Reques	ted		li St	100				
Company:		TO CONSULTING STOW Select Report Format: X POF DEXCEL DEDD (DIGITAL)				YZ ∫Ro	Routine [R] If received by 3pm M-F - no surcharges apply									•				
Contact:	Bailey Fleet	8	-	Reports with COA	, ,		4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum							AFFIX ALS BARCODE LABEL HERE						
Phone:		<i>Y</i>	Compare Result	ts to Criteria on Report - p	ovide details below if b	ox checked	[] 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum							(ALS use only)						
	Company address below will appear on the final re	eport Si	elect Distribution		☐ MAÎL ☐ F		$l \cap \iota_i$	tav (F) if re	eceived h	nv Room Mi-	E - 100%	rish succ	haroe min	mum		a residence		30.0		
Street:	74 Blokeley St	E	mail 1 or Fax	bailey	toote pr	log, ca	_ Sa	me day [£2]	if receiv	red by 10an	1 M-S - 2	00% rush s	urcharge.	Additional	foes					
City/Province:	Toronto		mail 2 Kot	ling on the	jalnovaj	2) programme		7					ays and n	an-noutine		.	4			
Postal Code:	MISAZWA	· · · · · · · · · · · · · · · · · · ·	mail 3 SQ Y	an. supar		<u> </u>	Date and Time Required for all E&P TATs:							3400122 as p =						
Invoice To	Same as Report To, ☐ YES 💆			Invoice Re				***************************************		For all tost	s with rus	h TATs requ				te confirm	availability	•		
	Copy of Invoice with Report X YES		elect Invoice Dis		AIL MAIL		L.,						nalysis	-	***************************************		******************************	Assironing-ososos		
Company:	R Palmer		mail 1 or Fax	<u>acrount</u>	in a pla	<u> </u>	82		Indi	icate Filter	ed (F), Pro	eserved (P) or Filters	d and Pre	sserved (F	/P) below			[i î
Contact:	. accounting	E.	mail 2 📉	(an · Sipa	riabeca.	<u> </u>	CONTAINERS		_	-		***************************************		<u> </u>			-			notes)
	Project Information 2	<u></u>	no actions so reasonment to to	ll and Gas Required		e)	₹											c	ן נ	, e
ALS Account # /			E/Cost Center:	4	PO#		₹₽									ĺ		Č) [L	ا ا
Job #: 2	204701		ajor/Minor Code:		Routing Code:		무용											Ţ	- 0	{ X
PO / AFE:	2204707	-	equisitioner:				QF(Į.				STOPAGE BEOLIBED	2 4
LSD:		L	ocation:		T							ĺ			1		1 1			2 🚊
ALS Lab Worl	k Order# (ALS use only): /) /	1178 4	LS Contact:	Yaran	Sampler: 8	F	NUMBER		1									SH ION AN	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	SUSPECTED HAZARD (see
	Sample Identification a	C J- C - Z-T	WILLIAM TO THE TAX TO	Date	Time		┪┋╽	引							1		1	12		SPE
ALS Sample # (ALS use only)	(This description will ap			(dd-mmm-yy)	(hh:mm)	Sample Type	2	9+										V U		í lä
	00 -1 0			John I ha	5:00pm	407	1	VI					Mercenta	-						-
	720-5			1 1 1 1/6	00011	<u> </u>	+	-	1					1				\top	┪	1-1
							+		-					 		1	1 1	+	+	+
garage and a							+		-	<u> </u>			-		_		++			
		WHEN THE					-	ļļ					_					$-\!\!\!\!+$	- -	
e varietist stra							<u> </u>											\bot	Ц	
estar de la la					1															
Tag error																			and the same	
2.96 (5.7)				 														\neg		
							1	 				_	_	T		-	1 1			
							-		+				\dashv	 				-		\dashv
THE RESIDENCE				<u> </u>		•	 		+	-			-	\vdash		-	+		- -	
										-				(_	1			
100						<u></u>		<u> </u>		wassan	<u>l </u>			1						
	Martin (DIA) Complet (dient yea)	Notes / Specify L		evaluation by selectin	g from drop-down t	oelow	2.5			****		LEREC		Secretary and the second	CHENT SOLF (SOLF)	un anniverse anniverse		TO THE RESERVE OF THE PARTY OF		
	g Water (DW) Samples ¹ (client use)		· · · · · · · · · · · · · · · · · · ·	Excel COC only)	- 3 <i>1</i> 1		1,117,000	ng Metho	COLUMN TO BE OF								Control of the Control	OLING IN	Carlo commence (Carlo	X parameter
	n from a Regulated DW System?	2000 100 1C.0 . 1	九 Dit	Kla 1531	04		2001200000	nission Co		wall of the first of		Section Sections		21423	374 74) YES	שאם	under die beiter	# 0.00
l .	s 12 № /\	- Trace a	1.0.		h. cal.	Haral	Cook	er Custod		11.00		YES (ERATURE	****	□ MA □
Are samples for h	numan consumption/ use?	compare Table 3 4	111 -	-metals-	nglan	112/190	a signisi	University in	(ME OU	JEC (E)	gwiller b				- ()"			de Parico		建 000000000000000000000000000000000000
☐ YE	ES 150 NO		Owners and the Company of the Compan			00-0-000	1 /4/52	5 (8)				INAL SI	HOMEN	T DEC) 1	FAT C 10	e anka			
	SHIPMENT RELEASE (client use)	On Time: 18	Received by:	INITIAL SHIPMEN	Date:	.a use only)	Time	R	Receive	d by;	N W	HAME OF	Date	. NEUI	11UN	ر م استو ب	aa omy)	- Ti	me) _	<u> الله المنافقة</u> المستركزية
Released by:	Sabia12 Date June 21	02 3:10pt		Control of the State	300 (30, 2000)		0.000	616	r Politica	(_(数	rate of	<u> ICY</u>	1ھ	0 (5 <i>13</i>	>>	علا	(0	XX.
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFO	ORMATION		WH	TE - LABORATORY	COPY YELLO	W - CLI	ENT COP	Υ		V	1			,	,	_ X	1	C	AUG 2220 FRÖM

PALMER ENVIRONMENTAL CONSULTING

GROUP INC. (Richmond Hill)

ATTN: BAILEY FLEET 74 Berkeley Street Toronto ON M5V 1E3 Date Received: 06-JUN-22

Report Date: 05-JUL-22 15:37 (MT)

Version: FINAL REV. 2

Client Phone: 647-795-8153

Certificate of Analysis

 Lab Work Order #:
 L2712466

 Project P.O. #:
 2204701

 Job Reference:
 2204701

 C of C Numbers:
 20-951934

Legal Site Desc:

KARANPARTAP SINGH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD | Part of the ALS Group | An ALS Limited Company

L2712466 CONT'D....

Job Reference: 2204701

PAGE 2 of 6

05-JUL-22 15:37 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) (No parameter exceedances)

Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

(No parameter exceedances)

L2712466 CONT'D....

Job Reference: 2204701

PAGE 3 of 6

05-JUL-22 15:37 (MT)

Volatile Organic Compounds - WATER

	L	_ab ID	L2712466-1
			03-JUN-22
	Sam	ple ID	BH6
Unit	Guide #1	Limits #2	
ug/L	44	430	<0.50
ug/L	2300	2300	<0.50
ug/L	18000	18000	<0.50
ug/L	-	-	< 0.30
ug/L	-	-	<0.40
ug/L	4200	4200	<0.50
%	-	-	86.8
%	-	-	95.1
	ug/L ug/L ug/L ug/L ug/L	#1 Ug/L 44 Ug/L 2300 Ug/L 18000 Ug/L - Ug/L - Ug/L 4200 % -	ug/L 44 430 ug/L 2300 2300 ug/L 18000 18000 ug/L ug/L ug/L 4200 4200 %

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2712466 CONT'D....

Job Reference: 2204701

PAGE 4 of 6

05-JUL-22 15:37 (MT)

Hydrocarbons - WATER

i iyalocalbolis - WATEN				
			Lab ID	L2712466-1 03-JUN-22
		Sample Sam	e Date iple ID	03-30N-22 BH6
		Ouii	ipio ib	5110
			Limits	
Analyte	Unit	#1	#2	
F1 (C6-C10)	ug/L	750	750	<25
F1-BTEX	ug/L	750	750	<25
F2 (C10-C16)	ug/L	150	150	<100
F3 (C16-C34)	ug/L	500	500	<250
F4 (C34-C50)	ug/L	500	500	<250
Total Hydrocarbons (C6-C50)	ug/L	-	-	<370
Chrom. to baseline at nC50	ppm	-	-	YES
Surrogate: 2-Bromobenzotrifluoride	%	-	-	79.6
Surrogate: 3,4-Dichlorotoluene	%	-	-	93.0

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

L2712466 CONT'D.... Job Reference: 2204701 PAGE 5 of 6 05-JUL-22 15:37 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

BTX-511-HS-WT Water BTEX by Headspace SW846 8260 (511)

BTX is determined by analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-F4-511-CALC-WT

Water

F1-F4 Hydrocarbon Calculated

CCME CWS-PHC, Pub #1310, Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Water

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Water

F2-F4-O.Reg 153/04 (July 2011)

EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water

Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

^{**}ALS test methods may incorporate modifications from specified reference methods to improve performance.

Reference Information

L2712466 CONT'D.... Job Reference: 2204701 PAGE 6 of 6 05-JUL-22 15:37 (MT)

Chain of Custody Numbers:

20-951934

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2712466 Report Date: 05-JUL-22 Page 1 of 3

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Contact: **BAILEY FLEET**

Client:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Water							
Batch R5	795986							
WG3737173-4	DUP	WG3737173-3						
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	09-JUN-22
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	09-JUN-22
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	09-JUN-22
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	09-JUN-22
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	09-JUN-22
WG3737173-1 Benzene	LCS		110.5		%		70-130	09-JUN-22
Ethylbenzene			89.8		%		70-130	09-JUN-22
m+p-Xylenes			102.1		%		70-130	09-JUN-22
o-Xylene			95.3		%		70-130	09-JUN-22
Toluene			98.8		%		70-130	09-JUN-22
WG3737173-2 Benzene	MB		<0.50		ug/L		0.5	09-JUN-22
Ethylbenzene			<0.50		ug/L		0.5	09-JUN-22
m+p-Xylenes			<0.40		ug/L		0.4	09-JUN-22
o-Xylene			<0.30		ug/L		0.3	09-JUN-22
Toluene			<0.50		ug/L		0.5	09-JUN-22
Surrogate: 1,4-[Difluorobenzene		95.8		%		70-130	09-JUN-22
Surrogate: 4-Bro	omofluorobenzene		88.9		%		70-130	09-JUN-22
WG3737173-5	MS	WG3737173-3						
Benzene			102.8		%		50-140	09-JUN-22
Ethylbenzene			80.0		%		50-140	09-JUN-22
m+p-Xylenes			92.2		%		50-140	09-JUN-22
o-Xylene			85.3		%		50-140	09-JUN-22
Toluene			93.4		%		50-140	09-JUN-22
F1-HS-511-WT	Water							
Batch R5	795986							
WG3737173-4	DUP	WG3737173-3						
F1 (C6-C10)		<25	<25	RPD-NA	ug/L	N/A	30	09-JUN-22
WG3737173-1 F1 (C6-C10)	LCS		101.9		%		80-120	09-JUN-22
WG3737173-2 F1 (C6-C10)	МВ		<25		ug/L		25	09-JUN-22
Surrogate: 3,4-[Dichlorotoluene		99.4		%		60-140	09-JUN-22
WG3737173-5	MS	WG3737173-3						

Quality Control Report

Workorder: L2712466 Report Date: 05-JUL-22

Page 2 of 3

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street Toronto ON M5V 1E3

Contact: BAILEY FLEET

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Water							
	795986								
WG3737173-5 F1 (C6-C10)	MS		WG3737173-3	97.7		%		00.440	00 11111 00
F1 (C0-C10)				31.1		/0		60-140	09-JUN-22
F2-F4-511-WT		Water							
Batch R5	795248								
WG3736080-2	LCS								
F2 (C10-C16)				92.9		%		70-130	07-JUN-22
F3 (C16-C34)				97.5		%		70-130	07-JUN-22
F4 (C34-C50)				98.2		%		70-130	07-JUN-22
WG3736080-1	MB								
F2 (C10-C16)				<100		ug/L		100	07-JUN-22
F3 (C16-C34)				<250		ug/L		250	07-JUN-22
F4 (C34-C50)				<250		ug/L		250	07-JUN-22
Surrogate: 2-Br	omobenz	otrifluoride		79.6		%		60-140	07-JUN-22

Quality Control Report

Page 3 of 3

Workorder: L2712466 Report Date: 05-JUL-22

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 1E3

Contact: BAILEY FLEET

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

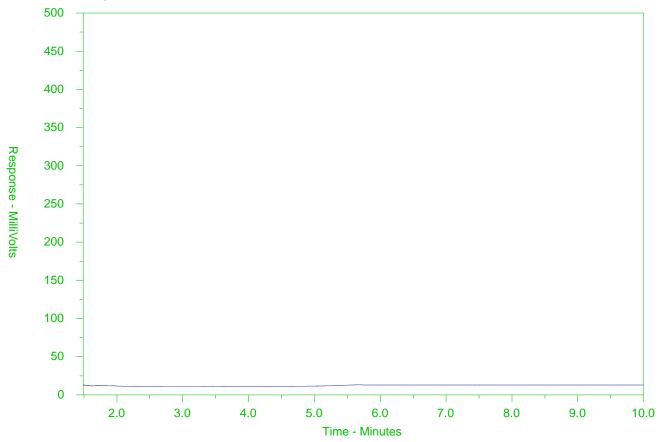
Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

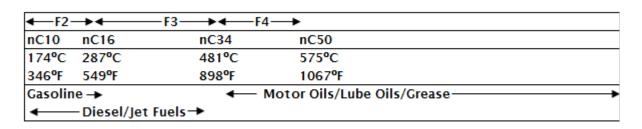
Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.


CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2712466-1

Client Sample ID: 22-6

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

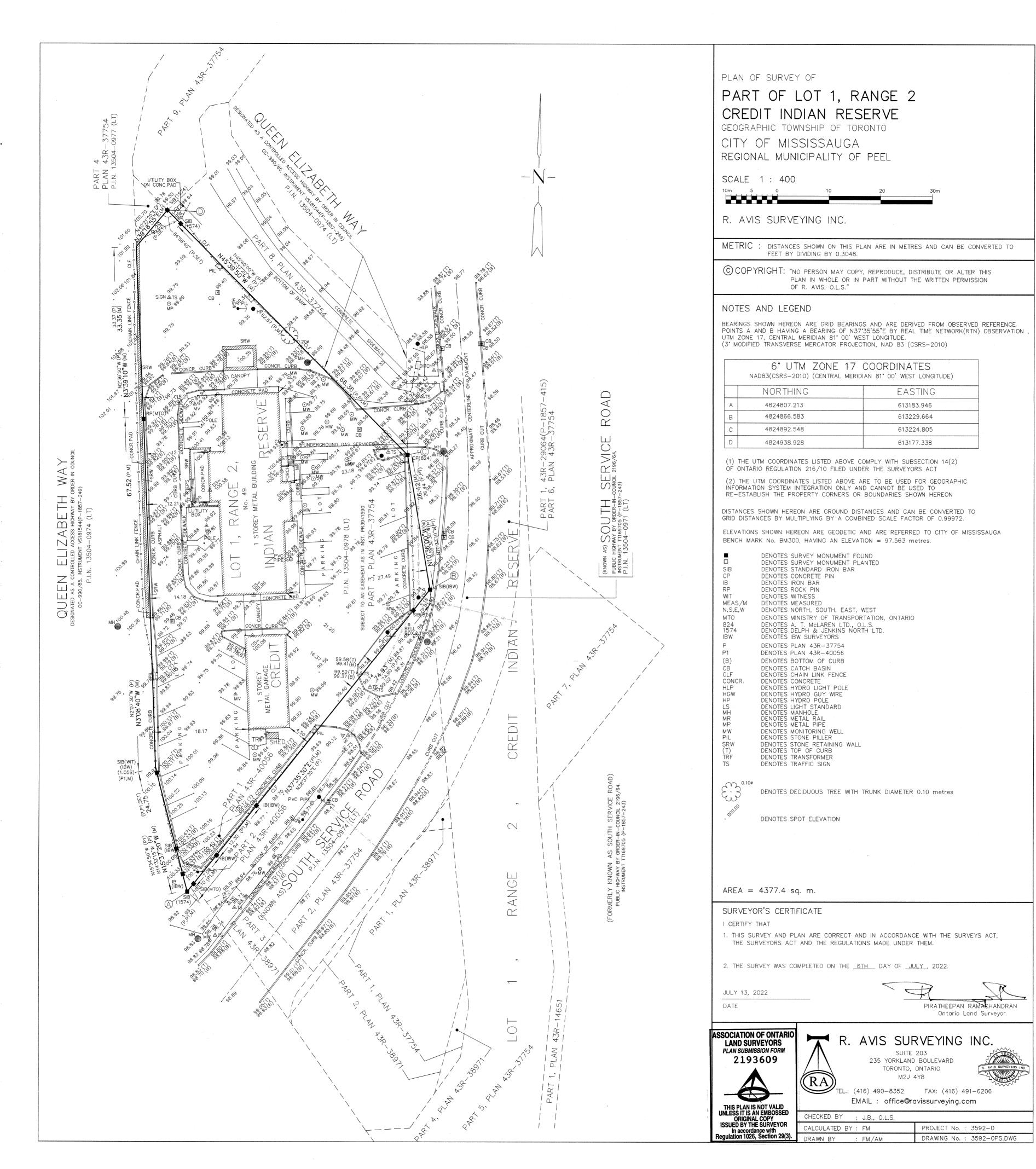
Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

Printed on 6/7/2022 4:46:20 PM

Chain of Custody (COC)

L2712466-COFC

coc number: 20 - 951934


Canada Toll Fr

ALC: OF ED	***************************************			OI IENT CODY	200 VELLOW	A ADOLAGOUY TAKEN	10.	01 707 1. 0. 00 110 120 MID 0410 1310 1310 1310 1310 1310 1310 1310	V - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
	3	9/00	A Pale Nato Goo	time" Received by:		Uale:) Ime: Received by:	19 (July 2) 27	Released by:
	S	(ALS use onl				INITIAL SHIPMENT RECEPTION (ALS use only)	<u>-</u> !	SHIPMENT RELEASE (client use)	
			5.1				を一		□ YES
် င	MPERATURE	FINAL COOLER TEMPERATURES °C	NITIAL COOLER TEMPERATURES °C FIN	INITIAL CO	***	٠.))	Are samples for human consumption/ use?	Are samples for hurr
□YES □ N/A		Sample Custody Seals Intact:	ls Intact: ☐ YES ☐ N/A Sample Custo	Cooler Custody Seals Intact:		COMMONE TO BY THE TOWN THE ROLL OF	on and mounted		
Y	ଘଞ		d on Sample Receipt Notific	Submission Comme			+	Are samples taken from a Regulated DW System?	Are samples taken fi
(TIATED	COOLING INITIATED		SAMPLE RECEIPT DETAILS (ALS use only) None	Cooling Method:		Notes / Specify Limits for resuit evaluation by selecting from drop-down below {Excel COC only}	Notes / Specify Limits for resu	Drinking Water (DW) Samples ¹ (client use)	Drinking V
						AND AND THE PROPERTY AND AND THE PROPERTY AND	«Хотино стинисти» «Котиний в применти в поставлений в п	ятняятсяят Выпаниятичная предуствення предуствення предуствення предуствення по предуствення пре	

	a mensooniu	_							
	***************************************							WARREN LAND TO THE TOTAL	
	***************************************					A CONTRACTOR OF THE CONTRACTOR		Ass.	
	антыкна							The second and the second seco	
					7 MD	11M2321 2-00		22-10	
EX	C #			T	Sample Type	-yy) (hh:mm)	r on the report)	(This description will appear on the report)	(ALS use only)
TE				1M 3		Time	- [Sample Identification and/or Coordinates	ALS Sample #
NDED	1PLES			IBER C/	88%	Sampler:	Wolf Asis Contact: KAYOM	ALS Lab Work Order # (ALS use only): \J+\J+\J+\J\O\O	ALS Lab Work C
ST				OF B			Location:		LSD:
OR/	F F S						Requisitioner:	220476)	PO / AFE:
AGE	Lic			<u>0</u> 0 入		Routing Code:	MajorMinor Code:	2204761	Job #:
E RI	\			<u> </u>		PO#	AFE/Cost Center:	lote #.	ALS Account # / Quote #.
ΞQι	``			\	٥	Oil and Gas Required Fields (client use)		Project Information	
					37.	salah, si	Email 2	accountry	Contact:
	Andrea	*/P) below	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below		R	12 47 12 12 12 12 12 12 12 12 12 12 12 12 12	Email 1 or Eav		Company:
	Control of the Contro		Analysis Request	***************************************	AX.	Distribution: XI EMAIL MAIL FAX	Select Invoice Distribution:	Report	
	sility.	to confirm availabl	s requested, please contact ;			Invoice Recipients		Same as Report To	
	2 10000	0-91-22	Date and Time Required for all E&P TATS: () MO:	Date and Time Re	h 1 3	, 02/00 co	Email 3	M < 2 2 4	Postal Code:
		•	Same day [±2] if received by tham innon- zarva ricki surcitative, auditional teastamay apply to rush requests on weekends, statutory holidays and non-routine tests	may apply to rush requ	Topogra!	ALLON CONTRACTOR OF THE PARTY O	Email 2	THE THE STATE OF	City/Province:
			1 day [E] if received by 3pm M-F - 100% rush surcharge minimum	1 day [E] if received	2			21 Company according to the control of the control	Street.
*	(ALS use only)	Ž	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	☐ 2 day [P2] if receive	******	ion: Mail Fax		Company address below will appear on the final report	
ABEL HERE	ARCODEL	AFFIX ALS BARCODE LABEL HERE	ad by 3pm M-F - 25% rush surcharge minimum	3 day [P3] if received by 3pm M-F -	checked	provide details below if box	M Compare Re		Phone:
			4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum	4 day [P4] if received		orts with COA IX YES II NO	Merge QC/C	Va: 0814 001	
			Routine (R) If reveived by 3xm M-F - no surcharges apply	Routine (R) if receive			Whith the Land Belect Report Format:	IN I DA AMMODINA - I MINDI	
			Turnaround Time (TAT) Requested	Turn		Reports / Recipients	e final report	Contact and company name below will appear on the final report	Report To

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. Failure to complete all portions of this form may delay analysis, Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Appendix A – General A4 – Survey of Phase Two

Appendix B – Historical Data B1 – GHD Phase I ESA Summary

1. Executive Summary

GHD Limited (GHD) was retained by Infrastructure Ontario (IO) to conduct a Phase One Environmental Site Assessment (ESA) of a parcel of land located at 49 South Service Road in Mississauga, Ontario (herein referred to as the Site or Property). The Site is owned by Her Majesty the Queen in Right of Ontario, as represented by the Minister of Government and Consumer Services (MGCS), and represented by Ontario Infrastructure and Lands Corporation (Infrastructure Ontario).

The Site is a 1.09 acre property located at 49 South Service Road in Mississauga, Ontario, and consists of a former Ontario Provincial Police (OPP) detachment building (B12278) and associated garage (B12279) and two canopy structures. The building contains a two storey portion including a 334 square-metre (m²) (3,600 square-foot [ft²]) main floor, a 334 m² (3,600 ft²) basement, and a one storey 111 m² (1,200 ft²) detention area. The garage is 143 m² (1,534 ft²) in size. A paved parking lot surrounds the buildings which can accommodate approximately 45 vehicles. Other portions of the Property include landscaped areas. OPP recently moved to a new facility, and the Site has been unoccupied since August of 2020. The Site is maintained by CBRE Group Inc. (CBRE) on behalf of Infrastructure Ontario.

The purpose of the Phase One ESA was to identify, through a non-intrusive investigation, the existence of any Potentially Contaminating Activities (PCAs) and Areas of Potential Environmental Concern (APECs) associated with the Site. PCAs and APECs are defined in Ontario Regulation 153/04 (O. Reg. 153/04). It is GHD's understanding that the Phase One ESA was completed to document environmental conditions for the potential disposition of the Property; and that a Record of Site Condition (RSC) is not being completed at this time

Based on the results of the Phase One ESA, including the Site inspection, information provided by Site representatives and regulatory agencies, documents reviewed, the review of Site history, and pending receipt and review of information from the Ministry of the Environment, Conservation, and Parks (MECP), the following APECs were identified to be associated with the Site:

APEC #1 – Historical Pesticide Use (on-Site): Based on a review of the aerial photographs for the Site, the Site appears to have been utilized for agricultural purposes (possibly including a portion of an orchard) around 1946 and up to the redevelopment of the Site in 1957. Based on the time frame, the operation of agricultural areas on the Site likely would have included the application of pesticides. No information was available regarding the potential historic use of pesticides for agricultural purposes on Site. The potential use of pesticides on Site is included in O. Reg. 153/04 as a PCA (#40 – Pesticides (including Herbicides, Fungicides, and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage, and Large-Scale Applications). As required by O. Reg. 153/04, GHD has identified this PCA as having the potential to contribute to an APEC across the Site, and has been identified in this report as APEC #1.

APEC #2 – Unknown Fill Material Quality (on-Site): Based on the review of historical records and discussion with facility personnel, the Property was redeveloped in 1957. Based on GHD's observations, the southern portion of the Site appeared at a higher elevation than the surrounding areas and South Service Road. In addition, previous aerial images indicate a low lying area may

have been located on the eastern portion of the Site in the past, and several buildings were located on the Site in the past. No information was available regarding whether fill material was used to raise grades at the Site, or if fill material related to the former buildings remains at the Site. The potential use of fill of unknown quality during development is included in O. Reg. 153/04 as a PCA (#30 – Importation of Fill Material of Unknown Quality). As required by O. Reg. 153/04, GHD has identified this PCA as having the potential to contribute to an APEC across the Site, and has been identified in this report as **APEC #2.**

APEC #3 – Vehicle Servicing Garage (on-Site): Based on GHD's review of historical documents, and interview with Mr. Besir, the Site was redeveloped in 1957 with two buildings: Building B12278 (Office/OPP Detachment) and Building B12279 (Garage Building). Building B12279 was utilized as a garage building for vehicle servicing. According to Mr. Besir, there were minimal vehicle maintenance activities in recent times. No other information was available regarding the historical utilization of the Building B12279 as a garage. The operation of a garage is included in O. Reg. 153/04 as a PCA (#52 – Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems). As required by O. Reg. 153/04, GHD has identified this PCA as having the potential to contribute to an APEC in the immediate vicinity of the garage building, and has been identified in this report as APEC #3.

APEC #4 – Potential Historical UST (on-Site): Based on GHD's observations, a levelometer was identified in the boiler room in the basement of Building B12278 with a scale going up to 1,000, suggesting the historic presence of a 1,000 gallon UST outside of the boiler room. Historical records identified a Phase I and Phase II ESA completed in 2008 and light fuels generated in 2009, suggesting that previous investigations have been completed at the Site. No information was available regarding the potential presence of a UST, or the current status of the UST. The potential historical operation of an UST on the Property represents a PCA (#28 – Gasoline and Associated Products Storage in Fixed Tanks) and has been identified in this report as APEC #4.

APEC #5 – Fuel Storage Tank (on-Site): At the time of the Site inspection, GHD identified a standby diesel generator on Site, located in the northwest corner of the property within building B12279. The generator included a 50 gallon diesel fuel storage tank which is integrated into the base of the generator. Mr. Besir indicated that no spills or releases have occurred from the AST, and GHD did not observe any evidence of spills or releases. The operation of a fuel storage tank on-Site is included in O. Reg. 153/04 as a PCA (#28 – Gasoline and Associated Products Storage in Fixed Tanks). As required by O. Reg. 153/04, GHD has identified this PCA as having the potential to contribute to an APEC in the immediate vicinity of the garage building, and has been identified in this report as APEC #5.

Appendix B – Historical Data B2 – GHD Phase II Borehole Logs

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

LOCATION: 49 South Service Road, Mississauga, Ontario

PROJECT NUMBER: 11220510

CLIENT: Infrastructure Ontario

DATE COMPLETED: December 7, 2020

MW1-20

DRILLING METHOD: Direct Push and Hollow Stem Augering

FIELD PERSONNEL: Chris Cini

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m BGS	MONITORING WELL		1	SAMF	PLE	
	GROUND SURFACE TOP OF RISER	99.58		NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	ASPHALT, 150 mm in thickness			+-	= /			
	FILL, sand and gravel, well graded, brown/grey,	99.43						2.0
	moist	8		1	$ \wedge $			2.8
0.5 	SAND, trace silt, trace gravel, medium to fine	98.97						
- 0.5 - 1.0 - 1.5 - 2.0 - 2.5	grained, poorly graded, brown, moist		■ BENTONITE		\backslash			
_ 1.0				2	X			2.5
-		: :						
- -					\backslash			
 1.5				3	X			2.2
-		:	SAND					
- 2.0			SAND		Λ /	1		
_				4	X			2.7
		릙						
2.5								
_				5	X			2.7
		릙			$/ \setminus$			
- 3.0 -			SCREEN					
_	- wet at 3.35m BGS			6				2.8
- 3.5					$ /\rangle$			
-								
-				,				4.0
4.0 		j		7	$ \wedge $			4.0
_								
- 4.5				8	X			3.0
-3.0 -3.5 4.0 4.5 5.0	END OF BOREHOLE @ 4.57m BGS	95.01	WELL DETAILS					
-			Screened interval: 98.06 to 95.01m BGS					
 5.0			1.52 to 4.57m BGS					
-			Length: 3.05m Diameter: 51mm					
- 5.5			Slot Size: 10					
_ 5.5			Material: Aluminium Seal:					
			99.28 to 98.36m BGS 0.30 to 1.22m BGS					
 6.0			Material: CEMENT					
			Sand Pack: 98.36 to 95.01m BGS					
			1.22 to 4.57m BGS Material: SAND					
─- 6.5 -								
-	OTEO. MEAGUIDING BOILT ELEVATIONS MAY SUM OF SE	 	DDENT ELEVATION TARLE					
<u>NC</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REI STATIC WATER L		RRENT ELEVATION TABLE 12/9/2020					
	CHEMICAL ANALYSIS	1	12/0/2020					

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

LOCATION: 49 South Service Road, Mississauga, Ontario

PROJECT NUMBER: 11220510

CLIENT: Infrastructure Ontario

DATE COMPLETED: December 7, 2020

DRILLING METHOD: Direct Push and Hollow Stem Augering

MW2-20

FIELD PERSONNEL: Chris Cini

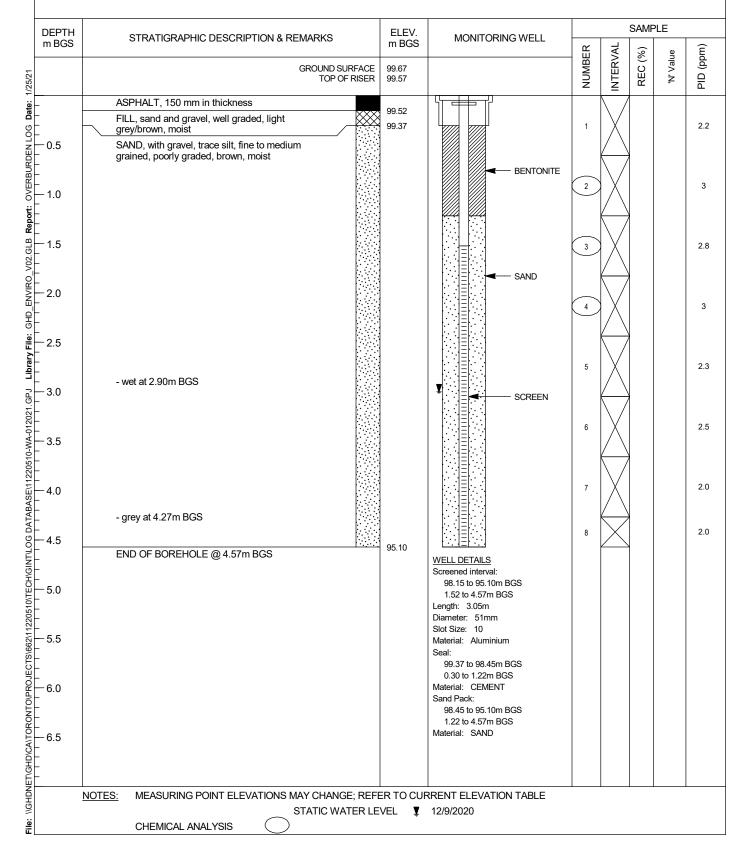
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITORING WELL			SAMF	PLE	
m BGS		m BGS	WOINT OINING WELL	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	GROUND SURFACE TOP OF RISER	99.44 99.32		NON	INTE	REC	<u>'</u> Ž	PID (
	ASPHALT, 150 mm in thickness	99.28			/	1		
	FILL, gravel and sand, well graded, brown/grey,	99.28		1	$ \vee $			3.2
	moist	\$		'				0.2
- 0.5 -		}						
	SAND, trace gravel, trace silt, fine to medium	98.68	■ BENTONITE		\setminus			
- 1.0	grained, poorly graded, brown, moist			(2)	X (2.4
- 1.0]			$ / \setminus$			
Ļ		:				1		
- 1.5		1			\			
- 1.3				3	1 /			3.2
F	- wet at 1.83m BGS	.]	SAND					
- 2.0	West at 1.00m Bos]			\setminus /	1		
<u> </u>				4	ΙX			3.1
F					$ / \setminus$			
- 2.5		:			$\langle - \rangle$			
-					$ \setminus /$			
- 0.5 - 1.0 - 1.5 - 2.0 - 2.5]		5	IX			3.3
3.0]	SCREEN		/ \			
L]	SCREEN			1		
-		}		6	$ \vee $			3.6
- 3.5		1			$ / \setminus$			
_	- grey spotting from 3.66 to 4.27m BGS]			$\langle - \rangle$			
L		.]			$ \setminus $			
-4.0		}		7	X			2.8
ļ.		:			/ \			
		1		8		1		3.6
- 4.5		94.87		°				0.0
-3.0 -3.5 -4.0 -4.5 5.0	END OF BOREHOLE @ 4.57m BGS	0	WELL DETAILS					
Ė			Screened interval: 97.91 to 94.87m BGS					
5.0			1.52 to 4.57m BGS					
F			Length: 3.05m					
Ē			Diameter: 51mm Slot Size: 10					
 5.5			Material: Aluminium					
L			Seal: 99.13 to 98.22m BGS					
-			0.30 to 1.22m BGS					
6.0			Material: CEMENT Sand Pack:					
			98.22 to 94.87m BGS					
_ 6.5			1.22 to 4.57m BGS Material: SAND					
- 0.3								
F								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REF							
	STATIC WATER LE	:VEL Ţ	12/9/2020					
	CHEMICAL ANALYSIS							

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

PROJECT NUMBER: 11220510


CLIENT: Infrastructure Ontario

LOCATION: 49 South Service Road, Mississauga, Ontario

HOLE DESIGNATION: MW3-20

DATE COMPLETED: December 7, 2020

DRILLING METHOD: Direct Push

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

PROJECT NUMBER: 11220510

CLIENT: Infrastructure Ontario LOCATION: 49 South Service Road, Mississauga, Ontario HOLE DESIGNATION: MW4-20

DATE COMPLETED: December 7, 2020

DRILLING METHOD: Direct Push

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITORING WELL			SAMF	PLE	
	m BGS	STRATIGICAL FILE DESCRIPTION & REMARKS	m BGS	WONT ONING WELL	R.	VAL	(%)	en	(md
1/25/21		GROUND SURFACE TOP OF RISER	99.69 99.54		NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
ite:		ASPHALT, 150 mm in thickness	99.54	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		/			
6		FILL, sand and gravel, well graded, brown, moist	99.54		1	$ \vee $			2.3
3	- 0.5	SAND, trace silt, trace gravel, fine to medium	99.23			$ / \setminus$			
N. C.		grained, poorly graded, brown, moist							
RBU				■ BENTONITE					0.7
OVE	- - 1.0		1		2				2.7
ü		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)							
8 8						\backslash			
i.G.E.	- 1.5		}		3	ΙX			2.4
8	·			SAND					
Library File: GHD_ENVIRO_V02.GLB Report: OVERBURDEN LOG Date:	- -2.0			SAND		\setminus	1		
타]		4	X			2.7
탕						$/ \setminus$			
File	-2.5		}						
rary		- wet at 2.74m BGS			5	$ \vee $			2.6
=						$ / \setminus$			
99.	- 3.0]	▼ SCREEN			1		
2021			1						1.4
VA-01	- 3.5				6	$ \wedge $			1.4
510-V]			$\langle - \rangle$			
1220			1			$ \setminus /$			
SEVI	-4.0				7	IX			1.0
TABA		- grey at 4.27m BGS	1						
3 DA	- 4.5				8	\times			1.1
0510\TECH\GINT\LOG DATABASE\11220510-WA-012021.GPJ	- 4.5	END OF BOREHOLE @ 4.57m BGS	95.12	WELL DETAILS					
N S		_		WELL DETAILS Screened interval:					
함	-5.0			98.17 to 95.12m BGS 1.52 to 4.57m BGS					
)510/				Length: 3.05m					
11220				Diameter: 51mm Slot Size: 10					
/662\	- 5.5			Material: Aluminium Seal:					
CTS	- -			99.39 to 98.47m BGS					
2	- 6.0			0.30 to 1.22m BGS Material: CEMENT					
10 P				Sand Pack:					
NO.				98.47 to 95.12m BGS 1.22 to 4.57m BGS					
A/TO	6.5			Material: SAND					
HD/C									
File: \\GHDNET\GHD\CA\TORONTO\PROJECTS\662\1122									
NDH		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFI	ER TO CUI	RRENT ELEVATION TABLE					
) (a)		STATIC WATER LE	VEL Ţ	12/9/2020					
ĒL		CHEMICAL ANALYSIS							

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

PROJECT NUMBER: 11220510

DATE COMPLETED: December 7, 2020

BH5-20

CLIENT: Infrastructure Ontario

DRILLING METHOD: Direct Push

HOLE DESIGNATION:

LOCATION: 49 South Service Road, Mississauga, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS			SAMF	PLE	_
- 0.5 - 1.0 - 1.5 2.0		111 200	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	ASPHALT, 150 mm in thickness	0.45					
-	FILL, sand and gravel, well graded, brown, moist	0.15 0.30	1	$ \vee $			2.9
- 0.5	SAND, trace silt, trace gravel, fine to medium grained, poorly graded, brown, moist	0.00		$ /\rangle$			
. 0.5				\leftarrow			
				\backslash			
- 1.0			2	ΙX			2.9
-				/	1		
- 1.5			3	ΙX			3.3
-				$ / \setminus$			
	- with gravel at 1.83m BGS				1		
- 2.0				\bigvee			3.5
			4	1/			3.0
- 2.5	- wet, trace gravel from 2.44 to 3.05m BGS			\leftarrow			
. 2.3				\backslash			
			5	ΙX			3.0
- 3.0		3.05					
-	END OF BOREHOLE @ 3.05m BGS	3.03					
-							
-3.0							
-							
-4.0							
-							
- 4.5							
- 1							
-							
-5.0							
-							
5.5 -							
- 6.0							
-							
_							
-6.5							
-							
NC	NEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TO	ABLE	•	•			
	CHEMICAL ANALYSIS						
	CHEMICAL ANALYSIS						

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

PROJECT NUMBER: 11220510

DATE COMPLETED: December 7, 2020

BH6-20

CLIENT: Infrastructure Ontario

DRILLING METHOD: Direct Push

HOLE DESIGNATION:

LOCATION: 49 South Service Road, Mississauga, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS		_	SAMF		
			NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	ASPHALT, 150 mm in thickness	0.15					
	FILL, sand and gravel, well graded, brown, moist	0.15	1	$ \vee $			1.8
-0.5	SAND, with silt, fine to medium grained, trace gravel, poorly graded, brown, moist	0.46		$/ \setminus$			
					1		
- 1.0			2	X			3.0
- 1.0				/\			
					1		
- 1.5	(2)		3	X			2.8
-2.0							
	사용 (1985년 - 1985년 - 1 - 1985년 - 1985		4	X			2.4
-2.5	[발생] [발생]						
	- sand and gravel at 2.70m BGS		5	\bigvee			2.:
			Ů	1/\			
- 3.0	END OF BOREHOLE @ 3.05m BGS	3.05					
- 3.5							
-4.0							
-4.5							
5.0							
-5.0							
- 5.5							
-6.0							
- 6.5							
NC	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TA	ABLE		_			
	CHEMICAL ANALYSIS						

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

PROJECT NUMBER: 11220510

DATE COMPLETED: December 7, 2020

BH7-20

CLIENT: Infrastructure Ontario

DRILLING METHOD: Direct Push

LOCATION: 49 South Service Road, Mississauga, Ontario

FIELD PERSONNEL: Chris Cini

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS			SAMF		
			NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	ASPHALT, 150 mm in thickness	0.15					
	FILL, sand and gravel, well graded, light brown, moist	0.15	1				3.0
-0.5	SAND, trace silt, trace gravel, fine to medium grained, poorly graded, brown, moist	0.46		$/ \setminus$			
					1		
- 1.0			2	X			1.8
1.0							
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			\setminus	1		
1.5			(3)	X			3.
- 2.0							
	CANDY CILT trees ground leverlesticity block resistives trees used forwards	2.29	4	$ \wedge $			2.
-2.5	SANDY SILT, trace gravel, low plasticity, black, moist/wet, trace wood fragments						
	SAND, with silt, trace gravel, fine to medium grained, poorly graded, brown, moist	2.59	5				3.
- 3.0				$/ \setminus$			
5.0	END OF BOREHOLE @ 3.05m BGS	3.05		/			
- 3.5							
-4.0							
-4.5							
- 5.0							
- 5.5							
-6.0							
- 6.5							
	OTES: MEASURING DOINT ELEVATIONS MAY CHANGE, REFER TO CURRENT ELEVATION T	ADI E					
<u>NC</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TA	HÖLE					
	CHEMICAL ANALYSIS						

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

PROJECT NUMBER: 11220510

DATE COMPLETED: December 7, 2020

BH8-20

CLIENT: Infrastructure Ontario

DRILLING METHOD: Direct Push

HOLE DESIGNATION:

LOCATION: 49 South Service Road, Mississauga, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS			SAMF		
			NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	TOPSOIL SATING S			=			
- 0.5	FILL, sand and gravel, well graded, grey, moist	0.46	1				2.3
- 1.0	SAND, trace silt, trace gravel, fine to medium grained, brown, moist	0.76	2				1.
1.0							
1.5			3	X			2.4
- 2.0							
	- wet at 2.29m BGS		4				1.5
2.5			5				2.3
3.0	END OF BOREHOLE @ 3.05m BGS	3.05					
- 3.5							
-4.0							
-4.5							
- 5.0							
- 5.5							
-6.0							
- 6.5							
NC	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TA	ABLE		1			
	CHEMICAL ANALYSIS						

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

PROJECT NUMBER: 11220510

DATE COMPLETED: December 7, 2020

BH9-20

CLIENT: Infrastructure Ontario

DRILLING METHOD: Direct Push

HOLE DESIGNATION:

LOCATION: 49 South Service Road, Mississauga, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS			SAMF		
			NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
	ASPHALT, 150 mm in thickness	0.45					
	FILL, sand and gravel, well graded, brown/grey, moist	0.15	1	$ \vee $			1.5
-0.5	SAND, trace gravel, trace silt, fine to medium grained, poorly graded, brown, moist	0.46		$ / \setminus$			
	OAND, trace gravel, trace sit, line to mediant grained, poorly graded, brown, most						
			2	$ \bigvee$			1.4
- 1.0			~	1/			1.5
				$\left\langle -\right\rangle$			
- 1.5]\/			
1.5			$\left(\begin{array}{c}3\end{array}\right)$	1/\			1.0
				$\langle - \rangle$			
-2.0				$ \setminus $			
			4	IX			1.3
0.5				$\langle - \rangle$			
- 2.5				\backslash			
			5	X			1.
- 3.0							
				\setminus /	1		
			6	X			3.
- 3.5				/ \			
				\setminus	1		
-4.0			7	X			1.5
		4.07		/ \			
	SILT, with sand, trace gravel, fine grained sand, soft/firm, brown/grey	4.27	8		1		0.4
-4.5	- wet at 4.57m BGS	4.57					
	END OF BOREHOLE @ 4.57m BGS						
- 5.0							
- 5.5							
-6.0							
- 6.5							
<u>NC</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TA	ABLE					
	CHEMICAL ANALYSIS						

Page 1 of 1

PROJECT NAME: Phase Two Environmental Site Assessment

PROJECT NUMBER: 11220510

DATE COMPLETED: December 7, 2020

BH10-20

CLIENT: Infrastructure Ontario

DRILLING METHOD: Direct Push

LOCATION: 49 South Service Road, Mississauga, Ontario

FIELD PERSONNEL: Chris Cini

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS			SAMF	LL	Τ_
		111 200	NUMBER	INTERVAL	REC (%)	'N' Value	PID (ppm)
_	ASPHALT, 150 mm in thickness	0.15		/			
-	FILL, sand and gravel, well graded, brown/grey, moist	0.15	1				2.9
- 0.5	SAND, trace gravel, trace silt, fine to medium grained, poorly graded, brown, moist	0.46		$ / \setminus$			
-	SAND, trace graver, trace siit, line to medium gramed, poorly graded, brown, moist						
			2	$ \bigvee$			2.8
- 1.0			2	1/\			2.0
-				$\left\langle -\right\rangle$			
- 1.5							
- 1.5	1993 1993		3				2.8
-							
-2.0							
-			4] X			3.5
				$\langle - \rangle$			
2.5 				\backslash			
-			5	X			3.1
-				\setminus /			
-	- wet at 3.35m BGS		6	X			1.0
- 3.5 -				$\langle \ \ \rangle$			
-				\setminus	1		
- 4.0			7	X			1.1
-				/ \			
-			8				1.4
-3.0 -3.5 3.5 4.0 4.5 5.0	END OF BOREHOLE @ 4.57m BGS	4.57					
-	END OF BONEHOLD & 4.0111 BOO						
- 5.0							
-							
-							
5.5 -							
- -							
- 6.0							
-							
-							
6.5 -							
-							
No	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TA	ABLE					
	CHEMICAL ANALYSIS						