

HYDROGEOLOGICAL REVIEW REPORT

4094 Tomken Road, Mississauga, Ontario PREPARED FOR: UPRC c/o Kindred Works 49 Bogert Ave. Toronto, ON M2N 1K4

ATTENTION: Edwin Cheng

Grounded Engineering Inc.File No.22-087IssuedAugust 31, 2022

Executive Summary

Grounded Engineering Inc. (Grounded) was retained by UPRC c/o Kindred Works to conduct a Hydrogeological Review for the proposed redevelopment of 4094 Tomken Road in Mississauga, Ontario. The conclusions of the investigation are summarized as follows:

Site Information

Existing Development					
	Abovo		Belo	w Grade Levels	
Site	Grade		Lowest Finished Floor		Approximate Base
	Levels	Level #	Depth (m)	Elevation (masl)	of Foundations (masl)
4094 Tomken Road	1	2	Approx. 6	Approx. 129.0	Unknown.

Proposed Development							
	Abovo		Below Grade Levels				
Site	Grade Levels	Level #	Lowest Finished Floor		Approximate Base		
			Depth (m)	Elevation (masl)	of Foundations (masl)		
North Building	13	3	Approx. 12	126.8	126.0		
South Building	13	4	Approx. 13	125.7	125.0		

Site Conditions

Site Stratigraphy					
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)	Method
Fill	Aquifer	0.1 to 1.5	136.7 to 138.0	1.0 x 10 ⁻⁵	Literature ¹
Clayey Silt Till	Aquitard	0.8 to 3.8	134.2 to 137.2	5.0 x 10 ⁻⁹	Grain size
Weathered Bedrock	Aquifer	3.0 to 7.5	130.4 to 134.9	1.0 x 10⁻ ⁶	Slug test
Sound Bedrock	Aquitard	7.5	130.4	1.0 x 10 ⁻⁶	Slug test

Groundwater Qualit	y			
Sample ID	Sample Date	Sample Expiry Date	City of Mississauga Storm Sewer Limits	Region of Peel Sanitary and Combined Sewer Limits
SW-UF-BH2	June 14, 2022	N/A	Exceeds	Exceeds

¹ Freeze and Cherry (1979)

	Stored Groundwat	ter (pre-excavatio	on/dewatering)			
	Volume of Excavation (m ³)	Volume of Volume of Excavation Excavation (m ³) Below Water		lume of Stored ndwater	Estimated Volume of Available Groundwater	
		Table (m ³)	m ³	L	m ³	L
North Building	18,498	12,016	1,500	1,500,000	900	900,000
South Building	34,816	23,664	2,700	2,700,000	1,700	1,700,000

North Building:

Short Term (Construction) Steady State Groundwater Quantity – Safety Factor of 2.0Used						
Estimated Groun	water Seepage Design Rainfall Event (25mm)		Estimated Total Daily Wate Takings			
L/day	L/min	L/day	L/min	L/day	L/min	
70,000	48.6	40,000	27.8	110,000	76.4	

Long Term (Permanent) Steady State Groundwater Quantity – Safety Factor of 2.0 Used							
Estimated Groun	dwater Seepage	Estimated Infiltrated Stormwater – Design Rainfall Event (25mm)		Estimated Total Daily Water Takings			
L/day	L/min	L/day	L/min	L/day	L/min		
70,000	48.6	4,000	2.8	74,000	51.4		

South Building:

Short Term (Construction) Steady State Groundwater Quantity – Safety Factor of 2.0Used							
Estimated Groun	Estimated Groundwater Seepage		Design Rainfall Event (25mm)		al Daily Water ngs		
L/day	L/min	L/day	L/min	L/day	L/min		
125,000	86.8	68,000	47.2	193,000	134.0		

Long Term (Permanent) Steady State Groundwater Quantity – Safety Factor of 2.0 Used						
Estimated Groun	dwater Seepage	Estimated Infiltrated Stormwater – Design Rainfall Event (25mm)		Estimated Total Daily Water Takings		
L/day	L/min	L/day	L/min	L/day	L/min	
125,000	86.8	11,000	7.6	136,000	94.4	

Land Stability		
	Short Term (Construction)	Long Term (Permanent)
Maximum Zone of Influence (m)	26	26
Maximum Potential Settlement (mm)	0	0

Regulatory Requirements	
Environmental Activity and Sector Registry (EASR) Posting	Required
Short Term Permit to Take Water (PTTW)	Not Required
Long Term Permit to Take Water (PTTW)	Required
Short Term Discharge Agreement City of Mississauga/Region of Peel	Required
Long Term Discharge Agreement City of Mississauga/Region of Peel	Required

TABLE OF CONTENTS

1	INTRODUCTI	ON	1				
2	STUDY AREA	STUDY AREA MAP					
3	GEOLOGY AN	ND PHYSICAL HYDROGEOLOGY	3				
4	MONITORIN	G WELL INFORMATION	4				
5	GROUNDWA	TER ELEVATIONS	4				
6	AQUIFER TES 6.1 PUMP 6.2 SINGLE 6.3 SOIL G 6.4 LITERA	STING Test Well Response Test (Slug Test) RAIN SIZE DISTRIBUTION TURE	4 4 5 5 5				
7	WATER QUA	LITY	6				
8	PROPOSED (CONSTRUCTION METHOD	6				
9	PRIVATE WA	TER DRAINAGE SYSTEM (PWDS)	7				
10	GROUNDWA	TER EXTRACTION AND DISCHARGE	8				
11	EVALUATION 11.1 11.2 11.3 11.4 11.5 11.6	N OF IMPACT Zone of Influence (ZOI) Land Stability City's Sewage Works Natural Environment Local Drinking Water Wells Contamination Source	10 10 11 11 12 12 12				
12	PROPOSED N	MITIGATION MEASURES AND MONITORING PLAN	12				
13	LIMITATION	S	12				
14	CLOSURE		13				

FIGURES

- Figure 1 Study Area Map
- Figure 2 Borehole and Monitoring Well Location Plan Existing
- Figure 3 Borehole and Monitoring Well Location Plan Proposed
- Figure 4 Proposed Underground Parking Structures
- Figure 5 Subsurface Cross-Section

APPENDICES

- Appendix A Borehole Logs
- Appendix B Aquifer Response Tests
- Appendix C Grain Size Analysis
- Appendix D HydrogeoSieveXL Data
- Appendix E Laboratory Certificate of Analysis
- Appendix F Finite Element Model
- Appendix G Dewatering Calculations

1 Introduction

UPRC c/o Kindred Works has retained Grounded Engineering Inc. ("Grounded") to provide hydrogeological engineering design advice for their proposed development at 4094 Tomken Road, in Mississauga, Ontario.

Property Information	
Location of Site	4094 Tomken Road, Mississauga, Ontario, L4W 4H5
Ownership of Site	Trustees of the Westminster Congregation of The United Church of Canada
Site Dimensions (m)	124 x 81 (irregular shape)
Site Area (m ²)	10,000

Existing Development	
Number of Building Structures	2
Number of Above Grade Levels	1
Number of Underground Levels	2
Sub-Grade Depth of Development (m)	Approx. 6
Sub-Grade Area (m ²)	Approx. 900 each
Land Use Classification	Institutional

Proposed Development	
Number of Building Structures	2
Number of Above Grade Levels	North Building: 13
	South Building: 13
Number of Underground Levels	North Building: 3
	South Building: 4
Sub-Grade Depth of Development (m)	North Building: Approx 12
	South Building: Approx 13
Sub-Grade Area (m ²)	North Building: 1,700
	South Building: 2,750
Land Use Classification	Residential

Qualified Person and Hydrogeologica	al Review Information		
Qualified Person	Matthew Bielaski, P.Eng., QP _{ESA/RA}		
Consulting Firm	Grounded Engineering Inc.		
Date of Hydrogeological Review	August 31, 2022		
Scope of Work	 Review of MECP Water Well Records for the area Review of geological information for the area Review of topographic information for the area 		
	 Advancement of 3 boreholes to a maximum depth of 10.1 m, which were instrumented with 3 monitoring wells Completion of a 24 hour pump test (if feasible) 		
	 Completion of slug tests in two available monitoring wells due to one well being dry 		
	 Groundwater sampling and analysis to the City of Mississauga/Region of Peel Sewer Use Limits 		
	 Assessment of groundwater controls and potential impacts 		
	 Report preparation in accordance with Ontario Water Resources Act, Ontario Regulation 387/04 		

General Hydrogeological Characterization			
Site Topography	The site has an approximate ground surface elevation of 138.0 masl.		
Local Physiographic Features	The site is composed of fill overlying clayey silt glacial till deposits and consists of drumlinized till plains.		
Regional Physiographic Features	The site is located in southern portion of the South Slope. The South Slope contains a variety of soils developed upon tills which are sandier in the east and clayey in the west. The South Slope is bounded in the north by the Oak Ridges and in the south by the Iroquois Plain.		
Watershed	The site is located within the Etobicoke Creek Watershed. Locally, groundwater is anticipated to flow northeast towards a branch of Etobicoke Creek.		
Surface Drainage	Surface water is expected to flow towards municipal catch basins located on or adjacent to the site, via Rathburn Road to the Northeast/Southwest or Tomken Road to the Northwest/Southeast.		

2 Study Area Map

A map has been enclosed which shows the following information:

- All monitoring wells identified on site
- All monitoring wells identified off site within the study area
- All boreholes identified on site
- All buildings identified on site and within the study area
- The Site boundaries
- Any watercourses and drainage features within the study area.

3 Geology and Physical Hydrogeology

The site stratigraphy, including soil materials, composition and texture are presented in detail on the borehole logs in Appendix A. A summary of stratigraphic units that were encountered at the site are as follows:

Site Stratigraphy					
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)	Method of Determination
Fill	Aquifer	0.1 to 1.5	136.7 to 138.0	1.0 x 10 ⁻⁵	Literature ²
Clayey Silt Till	Aquitard	0.8 to 3.8	134.2 to 137.2	5.0 x 10 ⁻⁹	Grain size

Bedrock				
Stratum/Formation	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)	Method of Determination
Weathered	3.0 to 7.5	130.4 to 134.9	1.0 x 10 ⁻⁶	Slug test
Sound	7.5	130.4	1.0 x 10 ⁻⁶	Slug test

² Freeze and Cherry (1979)

Surface Water				
Surface Water Body	Distance from site (m)	Direction from site	Hydraulically Connected to Site (yes/no)	
Etobicoke Creek	550	Northeast	No	

4 Monitoring Well Information

Well ID	Well Diameter (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit
BH1	50	137.9	130.9	127.8	Sound Bedrock
BH2	50	138	134.1	132.5	Weathered Bedrock
BH3	50	138.2	135.1	133.6	Weathered Bedrock

5 Groundwater Elevations

Well ID ——		Groundwater Elevation (masl))	
	June 14, 2022	June 27, 2022	July 29, 2022	Maximum
BH1	n/a	133.8	133.7	133.8
BH2	133.9	133.5	133.5	133.5
BH3	dry	133.9	133.7	133.9

For design purposes, the groundwater table is at Elev. 133.9 m in the bedrock.

Groundwater levels fluctuate with time depending on the amount of precipitation and surface runoff and may be influenced by known or unknown dewatering activities at nearby sites.

6 Aquifer Testing

6.1 Pump Test

A pumping test was not completed at the site. Due to the nature of the soil materials present and slow ground recharge of the aquifer it was not feasible to complete a 24-hour pumping test. Please note however that in-situ single well response tests were completed on each of the monitoring wells installed at the site.

6.2 Single Well Response Test (Slug Test)

The hydraulic conductivities from the monitoring wells were determined based on slug tests (single-well response tests). These tests involve rapid removal of water or addition of a "slug" which displaces a known volume of water from a single well, and then monitoring the water level in the well until it recovers. The results of the slug tests were analyzed using the Bouwer and Rice method (1976).

Well ID	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)
BH1	130.9 - 127.8	Sound Bedrock	1.0 x 10 ⁻⁶
BH2	134.1 - 132.5	Weathered Bedrock	4.4 x 10 ⁻⁷
BH3	135.1 - 133.6	Weathered Bedrock	n/a

The hydraulic properties of the strata applicable to the site are as follows:

6.3 Soil Grain Size Distribution

The hydraulic conductivities of various soil types can also be estimated from grain size analyses. An assessment of the grain sizes was conducted using the excel-based tool, HydrogeoSieve XL (*HydrogeoSieve XL ver.2.2, J.F. Devlin, University of Kansas, 2015*). HydrogeoSieve XL compares the results of the grain size analyses against fifteen (15) different analytical methods.

Given our experience in the area as well as published literature, some of the geometric means provided for the soil were biased low by one or more methods. In these instances, the values determined by these methods were excluded from the mean. The table below illustrates the hydraulic conductivity values estimated from the mean of the analytical methods where the soil met the applicable analysis criteria.

Sample ID	Soil Description	Applicable Analysis Methods	Hydraulic Conductivity (m/s)
BH1 SS3	Clayey silt till	Alyamani and Sen, Barr, Sauerbrei	1.4 x 10 ⁻⁹
BH2 SS2B	Clayey silt till	Alyamani and Sen, Barr, Sauerbrei	4.1 x 10 ⁻⁹
BH3 SS5	Clayey silt till	Alyamani and Sen, Barr, Sauerbrei	5.0 x 10 ⁻⁹

The results of the analyses are presented in Appendix D.

6.4 Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Stratum/Formation	Hydraulic Conductivity (m/s)
Earth Fill	10 ⁻² to 10 ⁻⁶
Silts	10 ⁻⁵ to 10 ⁻⁹
Glacial Tills	10 ⁻⁶ to 10 ⁻¹²
Clays	10 ⁻⁹ to 10 ⁻¹²
Bedrock (Shale)	10 ⁻⁶ to 10 ⁻¹³

7 Water Quality

One (1) unfiltered groundwater sample was collected and analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and or Canadian Association for Laboratory Accreditation.

The sample was collected directly from monitoring well BH2 on June 14, 2022. The sample was analyzed for the following parameters:

- Mississauga Storm Sewer (0046-2022)
- STM Reg. Mun. of Peel Storm By-Law #53-2010

The groundwater sample **exceeded** the **Limits for Storm Sewer Discharge** for the following parameters:

- Total Suspended Solids (Limit 15 mg/L, Result 177 mg/L)
- Total Kjeldahl Nitrogen (Limit 1 mg/L, Result 4.90 mg/L)
- Total Manganese (Limit 0.05 mg/L, Result 0.695 mg/L)
- Total Aluminum (Limit 1 mg/L, Result 4.18 mg/L)

The groundwater sample **exceeded** the **Limits for Sanitary and Combined Sewer Discharge** for the following parameters:

Nonylphenols (Limit 20 μg/L, Result 77.9 μg/L)

A true copy of the analysis report, Certificate of Analysis and a chain of custody record for the sample are enclosed.

8 Proposed Construction Method

For design purposes, the groundwater table is in the bedrock. This deposit has a very low permeability and will yield only minor seepage in the long term.

The proposed shoring methodology at the site is currently undetermined. For the purposes of this report, numerical analyses were conducted employing conventional soldier piling and lagging in order to determine a "worst-case scenario" with respect to dewatering volumes and groundwater seepage at the site.

For design purposes, the stabilized groundwater table is at about Elev. 133.9± m. The groundwater table is present in bedrock. The lowest (P4) FFE is at about Elev. 125.7 m. Therefore,

- Bulk excavation will extend below the elevation of the design groundwater table.
- Foundation excavations will extend below the design groundwater table.

Excavations will generally be made below the groundwater table, in relatively mediumpermeability bedrock of the Georgian Bay Formation.

On this basis, seepage into excavations may be allowed to drain into the excavation and then controlled by a conventional sump pump arrangement. Nevertheless, delays in excavation will occur as the seepage is controlled and these delays should be anticipated in the construction schedule.

Dewatering of the bedrock is not required, however, stored water within the excavation will need to be considered prior to excavation/dewatering.

A professional dewatering contractor must be consulted to review the subsurface conditions and to design a site-specific dewatering system. It is the dewatering contractor's responsibility to assess the factual data and to provide recommendations on dewatering system requirements.

9 Private Water Drainage System (PWDS)

If the proposed development consists of drained foundations, then a private water drainage system will be required. The total sub floor drain area will be approximately 4,450 m² based on the drawings which have been provided (1,700 m² for the North Building, and 2,750 m² for the south building).

If the development is designed with a private water drainage system, the drainage system is a critical structural element since it keeps water pressure from acting on the basement walls and floor slab. As such, the sump that ensures the performance of this system must have a duplexed pump arrangement for 100% pumping redundancy and these pumps must be on emergency power. The size of the sump should be adequate to accommodate the estimated groundwater seepage. It is anticipated that the groundwater seepage can be controlled with typical, widely available, commercial/residential sump pumps.

If the proposed development is designed as a watertight structure, then a private water drainage system will not be required. However, the structure must then be designed to resist hydrostatic pressure and uplift forces.

10 Groundwater Extraction and Discharge

Numerical analyses were conducted for both short-term and long-term dewatering scenarios. The modeling was conducted using computer software, which deploys the finite element modelling method. The Finite Element Model (FEM) for groundwater seepage indicates the short-term (construction) and long-term (permanent) dewatering requirements as provided below. The finite element model results are presented in Appendix F.

The groundwater seepage estimates, which have been provided, represent the steady state groundwater seepage. There will be an initial drawdown of the groundwater before a steady state condition is reached. The rate of the initial drawdown, and therefore discharge, is dependent on the dewatering contractor and how the groundwater is being dealt with at the site. An estimated initial volume of stored groundwater for each excavation which will require removal before steady state is reached has been provided below.

Please note that if excavations are exposed to the elements, stormwater will have to be managed. The short-term control of groundwater should consider stormwater management from rainfall events. A dewatering system should be designed to consider the removal of rainfall from excavation. A design storm of 25 mm has been used in the quantity estimates.

As required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of stormwater from a 100-year storm. The additional volume that will be generated for the North and South building in the occurrence of a 100-year storm event are approximately 149,000 L and 256,000L, respectively.

The following design considerations and values have been incorporated into the numerical modelling / dewatering estimates:

- A Factor of Safety of 2.0 was used for all groundwater seepage volume calculations.
- The design hydraulic conductivities for the site are:

Design Hydraulic Conductivity		
Stratum/Formation	K (m/s)	
Fill	1.0 x 10⁻⁵	
Clayey Silt Till	5.0 x 10 ⁻⁹	
Weathered Bedrock	1.0 x 10 ⁻⁶	
Sound Bedrock	1.0 x 10 ⁻⁶	

	Stored Groundwat	ter (pre-excavatio	on/dewatering)			
	Volume of Excavation (m ³)	Volume of Excavation Below Water	Estimated Vo Groun	lume of Stored ndwater	Estimated Available (l Volume of Groundwater
		Table (m ³)	m ³	L	m ³	L
North Building	18,498	12,016	1,500	1,500,000	900	900,000
South Building	34,816	23,664	2,700	2,700,000	1,700	1,700,000

North Building:

Short Term (Construction) Steady State Groundwater Quantity – Safety Factor of 2.0Used					
Estimated Groundwater Seepage Design Rainfall Event (25mm) Estimated Total Daily Water Takings				al Daily Water ngs	
L/day	L/min	L/day	L/min	L/day	L/min
70,000	48.6	40,000	27.8	110,000	76.4

Long Term (Permanent) Steady State Groundwater Quantity – Safety Factor of 2.0 Used					
Estimated Groun	dwater Seepage	Estimated Infiltrated Stormwater – Estimated Total Daily V Design Rainfall Event (25mm) Takings			al Daily Water ings
L/day	L/min	L/day	L/min	L/day	L/min
70,000	48.6	4,000	2.8	74,000	51.4

South Building:

Short Term (Construction) Steady State Groundwater Quantity – Safety Factor of 2.0Used					
Estimated Groundwater Seepage Design Rainfall Event (25mm) Estimated Total Daily Water Takings				al Daily Water ngs	
L/day	L/min	L/day	L/min	L/day	L/min
125,000	86.8	68,000	47.2	193,000	134.0

Long Term (Permanent) Steady State Groundwater Quantity – Safety Factor of 2.0 Used					
Estimated Groun	Estimated Groundwater Seepage		ted Stormwater – Event (25mm)	Estimated Tota Taki	al Daily Water ngs
L/day	L/min	L/day	L/min	L/day	L/min
125,000	86.8	11,000	7.6	136,000	94.4

Regulatory Requirements	
Environmental Activity and Sector Registry (EASR) Posting	Required
Short Term Permit to Take Water (PTTW)	Not Required
Long Term Permit to Take Water (PTTW)	Required
Short Term Discharge Agreement City of Mississauga/Region of Peel	Required
Long Term Discharge Agreement City of Mississauga/Region of Peel	Required

Please note:

- The proposed pump schedule for short-term construction dewatering has not been completed. As such, the actual peak short term discharge rate is not available at the time of writing this report. The pump schedule must be specified by either the dewatering contractor retained or the mechanical consultant.
- The proposed pump schedule for long-term permanent drainage has not been completed. As such the actual peak long term discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant.
- A watertight structure (structure that has not included a private water drainage system) has not been considered as part of the proposed development at this time.
- On-site containment (infiltration gallery/dry well etc.) has not been considered as part of the proposed development at this time. If this option is considered, additional work will have to be conducted (i.e. infiltration testing).

11 Evaluation of Impact

11.1 Zone of Influence (ZOI)

The Zone of Influence (ZOI) with respect to groundwater was calculated based on the estimated groundwater taking rate and the hydraulic conductivity of the unit which water will be taken at the Site.

The ZOI was calculated using the Sichardt equation below.

Equation:

 $R_0 = 3000(\Delta H)\sqrt{K}$

The ZOI with respect to groundwater seepage at the site is summarized as follows.

Zone of Influence (ZOI)		
	Short Term (Construction)	Long Term (Permanent)
Maximum Zone of Influence (m)	26	26

11.2 Land Stability

The impacts to land stability on adjacent structures due to the proposed short and long term dewatering at the site are summarized as follows:

Land Stability		
	Short Term (Construction)	Long Term (Permanent)
Dewatering Thickness (m)	8.2	8.2
Increase in Effective Stress (kPa)	80	80
Maximum Theoretical Settlement due to Dewatering (mm)	0	0
Public Realm Theoretical Settlement due to Dewatering (mm)	0	0

The maximum induced settlement occurs directly adjacent to the proposed excavation and decreases in a nonlinear fashion with distance away from the excavation.

On this basis, the impact of the proposed dewatering on the existing adjacent structures is considered by Grounded to be within acceptable limits.

11.3 City's Sewage Works

Negative impacts to municipal/regional sewage works may occur in terms of the quantity or quality of the groundwater discharged. This report provided the estimated quantity of the water discharge. However, this report does not speak to the sewer capacities. The sewer capacity analysis is provided under a separate cover by the civil consultant.

The quality of the proposed groundwater discharge is provided in Section 7. As noted in that section, the groundwater sample exceeded the Limits for Storm Sewer Discharge and the Limits for Sanitary and Combined Sewer Discharge.

As such additional treatment will be required before the water can be discharged to the Storm Sewer and additional treatment will be required before the water can be discharged to the Sanitary and Combined Sewer, to avoid impacts to the City and Regional sewage works caused by groundwater quality.

11.4 Natural Environment

There are no natural waterbodies within the ZOI that will be affected by the proposed construction dewatering or permanent drainage. Any groundwater which will be taken from the site will be discharged (if required) into the City / Region's sewer systems and not into any natural waterbody. As such, there will be no impact to the natural environment caused by the water takings at the site.

11.5 Local Drinking Water Wells

The site is located within the municipal boundaries of the City of Mississauga. The site and surrounding area are provided with municipal piped water and sewer supply. There is no use of the groundwater for water supply in this area of Peel Region. As such, there will be no impact to drinking water wells.

11.6 Contamination Source

The site and immediately surrounding area currently consist mostly of residential and commercial areas. Evaluation of the environmental condition of the site has been completed under a separate cover.

12 Proposed Mitigation Measures and Monitoring Plan

The extent of the negative impact identified in previous sections will be limited to the ZOI caused by the groundwater taking at the site.

As a result of dewatering and draining the soil, changes in groundwater level have the potential to cause settlement based on the change in the effective stresses within the ZOI.

If adjacent buildings or municipal infrastructure are within the ZOI and will undergo settlement that may be considered unacceptable as identified the Land Stability Section, consideration should be given to implement a monitoring and mitigation program during dewatering activities.

Both the temporary construction dewatering system and the permanent building drainage system must be properly installed and screened to ensure sediments and fines will not be removed, which is typically a primary cause of dewatering related settlement.

13 Limitations

Natural occurrences, the passage of time, local construction, and other human activity all have the potential to directly or indirectly alter the subsurface conditions at or near the project site. Contractual obligations related to groundwater or stormwater control must be considered with attention and care as they relate this potential site alteration.

The hydrogeological engineering advice provided in this report is based on the factual observations made from the site investigations as reported. It is intended for use by the owner and their retained design team. If there are changes to the features of the development or to the scope, the interpreted subsurface information, geotechnical engineering design parameters, advice, and discussion on construction considerations may not be relevant or complete for the project. Grounded should be retained to review the implications of such changes with respect to the contents of this report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Grounded accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

The authorized users of this report are UPRC c/o Kindred Works and their design team, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc. The City of Mississauga/Region of Peel may also make use of and rely upon this report, subject to the limitations as stated.

14 Closure

If there are any questions regarding the discussion and advice provided, please do not hesitate to contact our office. We trust that this report meets your requirements at present.

For and on behalf of our team,

Nico Piers, EIT Project Coordinator

Matthew Bielaski, P.Eng., QP_{ESA/RA} Principal

Colden Orchard Or GROUNDED ENGINEERING Applewood Hills Park 1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G www.groundedeng.ca LEGEND APPROXIMATE PROPERTY BOUNDARY STUDY AREA (250m) MECP MONITORING WELL LOCATION Note Reference Autumn Harvest C ArcGIS MyMaps 2021. Project 4094 Tomken Rd., Mississauga, ON, L4W 1J5 Figure Title SITE LOCATION PLAN Nortl Date AUGUST 2022 Scale Twinmaple Dr AS INDICATED Job No 22-087 Figure No FIGURE 1

GROUNDED E N G I N E E R I N G 1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3 www.groundedeng.ca
L E G E N D APPROXIMATE PROPERTY BOUNDARY ↔ ↔ MONITORING WELL/BOREHOLE BY GROUNDED
Note
Reference Survey Drawing job no. 201-0277. Dated: Dec. 3, 2021. Prepared by Speight, Van Nortrand & Gibson Limited. Received on June 06, 2022.
Project 4094 Tomken Rd., Mississauga, ON, L4W 1J5
Figure Title BOREHOLE LOCATION PLAN - EXISTING CONDITIONS
PROJECT
Date AUGUST 2022 Scale AS INDICATED
Job No 22-087 Figure No FIGURE 2

	GROUNDED ENGINEERING
NO.	1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3 www.groundedeng.ca
	APPROXIMATE PROPERTY BOUNDARY
	Note
	Reference Site Plan Project no. 2112., Drawing no. A1-04, Mar 14, 2022, Prepared by KPMB Architects.
	Project 4094 Tomken Rd., Mississauga, ON, L4W 1J5
	Figure Title BOREHOLE LOCATION PLAN - PROPOSED CONDITIONS
	PROJECT
	Date AUGUST 2022
	Scale AS INDICATED
	Job No 22-087
	Figure No FIGURE 3

APPENDIX A

Date Started : Jun 10, 2022 Position : E: 611693, N: 4830108 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 1

Fil	e No	о.	: 22-087			F	Projec	:t : U	PRC -	Westmi	nster - 4094 T	omken	Rd., Mi	ssissaug	a, ON	Client	: UPRC
			stratigraphy			samp	les	Ē			undrained shear streng O unconfined +	th (kPa) field vane	headspace X hexa	vapour (ppm) ane 🛛 isob	utylene	lab	data
							er	cale (r	tails	(L)	pocket penetrometer 40 80 120	Lab Vane	100	methane 200 30	00	a e ^{eld} i≣zed	nd ments
ethod	dep	ev oth	description	lic loc	ber		N-valı	oth so	ell de	vatio	SPT N-values (bpf)		moisture / p	plasticity		water	grain size
drill m	137	7.9	GROUND SURFACE	grapł	hum	type	SPT	de	Ň	ele	X dynamic cone	40	10	20 3	l 0	G	(MIT)
		F	50mm TOPSOIL	/ 🗱	1A	-		0-			10 20 00		0				
			FILL, sandy silt, clayey, trace gravel, trace		1B	SS	10	.	_				0				
	137	7.1						1									
		.0	CLAYEY SILT, trace sand, trace gravel, orange staining, very stiff, brownish grey,		2	SS	17	1-	-	- 137			0				-
			moist (GLACIAL TILL)							_							
		-			<u> </u>			- ·									
auger:					3	SS	25			- 136			(• –	LL=43.6		6 8 55 31 <u></u>
stem	1017-				<u> </u>			- 2-									
vollo	20	_	at 2.4 m, some shale and limestone		4A 4B	SS	74/] .	-	-			0				
Ì			nagments, naro				2751111			405			Ŭ				
	134 3	4.9 3.0	INFERDED BENDOCK abole fragmente		5	22	50 /	3-		- 135							-
			limestone fragments, grey				<u>,50mm</u>	4		_							
								·									
		_			6	SS	50 / 125mm	4-	-	- 134			0				-
	133	3.6			<u> </u>			1	_								
ĪĨ		-	(See rock core log for details)							-							
					1	RUN				- 133							-
		_						5-									
					_				_	-							
		_						6 -	-	- 132							-
					2	RUN				_							
		-															
(HQ)		_						7-		- 131							-
coring								,									
Rock	5	-														at 7.5 m. top	· of sound
					3	RUN				- 130						bedrock	
		-						8-	十目	100							
							1										
		_						9 -		- 129							-
					4	RUN											
		-							十目								
	127	, 。						10		- 128							-
F	10	0.1			-		1	1 10-	1	ا ف							
			END OF BOREHOLE								GROUNDWAT		LS				
1			Borehole was filled with drill water upon							<u>da</u> Jun 27	<u>ite depth</u> 7,2022 4.1	(<u>m)</u>	elevation 133.	<u>n (m)</u> 8 7			
1										Jul 29,	4.2	_	133.	/			
			50 mm dia. monitoring well installed. No. 10 screen														
1																	

Date Started : Jun 10, 2022 Position : E: 611693, N: 4830108 (UTM 17T) Elev. Datum : Geodetic

ROCK CORE LOG 1

Fi	e No.	: 22-087		Proje	ct∶l	JPRC - Wes	stminster - 4	4094 T	omken Rd., Mis	ssissauga, ON Client : UPRC
depth (m)	graphic log	stratigraphy Rock coring started at 4.3m below grade	Ling Ling <u>elev</u> depth (m)	recovery	elevation (m)	shale weathering zones	UCS (MPa) 5 25 50 100 250 estimated strength	natural fracture frequency	laboratory testing	notes and comments
- - -5		GEORGIAN BAY FORMATION Shale, grey, very thinly bedded to medium bedded, weak; joints are horizontal, closed, clean, smooth, planar; interbedded with limestone , light grey, laminated to thinly bedded, medium strong, occasionally fossiliferous	4.3 R1	TCR = 88% SCR = 56% RQD = 0%	 - 133 - - -			>10 >10 6 4		4.3 / 133.6 - 4.6 / 133.3m: Rubblized Zone 4.7 / 133.2m: JT T CN 133 -
- - - -		Overall shale: 90%, limestone: 10% Run 1: 4% limestone 96% shale	132.4 5.5 R2	TCR = 97% SCR = 63% RQD = 17%	 132 -			6 >10 5		5.6 / 132.3m: IS clay 5.6 / 132.3m: JT T CN 5.8 / 132.1m: Rubblized Zone 132- 5.9 / 132.0m: IS clay 6.2 / 131.6m: IS clay
- - -7 -		Run 2 : 5% limestone 95% shale	<u>130.9</u> 7.0		- 131 - -			3 4 N/A		6.5 / 131.4m: JT T CN 6.7 / 131.2m: JT T CN 131 - 7.0 / 130.9 - 7.3 / 130.6m: No recovery, washed out
- - -8		at 7.5 m (Elev. 130.4 m), transition to sound rock	R3	TCR = 83 % SCR = 67 % RQD = 58 %	- 130 — -			RZ+5 2 3	-	130 -
- - -9 -		85% shale	129.4 8.5 R4	TCR = 103 % SCR = 98 % RQD = 43 %	129 -			3 3 1		8.5 / 129.4m: IS clay 9.0 / 128.9m: Rubblized Zone
- - - 10		Run 4 : 12% limestone 88% shale	127.8 10.1m		128 -			2 3		128 -

END OF COREHOLE

file: 22-087.gpj

BOREHOLE LOG 2

File	le No. : 22-087 Project : UPRC - Westminster - 4094 Tomken Rd., Mississauga, ON Client : UPRC															
		stratigraphy			samp	les	Ê			undrained sl O unconfined	hear strength (kF + field	Pa) vane	headspace va	pour (ppm)		lab data
drill method :	elev depth (m)	description	graphic log	number	type	SPT N-value	depth scale (n	well details	elevation (m)	pocket pener 40 SPT N-value X dynamic ce 10	trometer ■ Lab V 80 120 1 es (bpf) one	/ane 160	100 moisture / pla	Image: Second	unstabilized water level	and comments grain size distribution (%) (MIT) CP SA SL CL
Ă	137.8	75mm ASPHALT					0-		- 138	10	20 30 .	40			-	
	0.2	75mm AGGREGATE	/ 🔆			14										
	- 137.2	FILL, sand, trace silt, trace gravel, stiff, brown, moist		24/	55	14	-		-							-
	0.8	CLAYEY SILT, some sand, trace gravel, orange staining, hard, brownish grey, moist (GLACIAL TILL)		2B	SS	30	1-		- 137		$\left \right\rangle$		0		-	17 18 40 25
	_	at 1.5 m, very stiff		3	SS	22			_				0			-
	-						2-		- 136						-	-
stem augers – =215 mm	_	at 2.3 m, trace rock fragments, grey, hard		4A 4B	SS	78	-		-				0 0			-
hollow OD	_			5	SS	50 / 125mm	3-		- 135				0		-	-
	- 134.2 3.8			6	SS	50 /	-		-				0			-
		limestone fragments, grey				125mm	4 -		- 134						-	-
	_			7/	<u>ss</u>	50 / 50mm	5-		- 199				0			-
V	132.5	x at 55 m wat				50 /	-		133							
	5.5		/	٣		50mm										
		END OF BOREHOLE								GROU	NDWATER I	EVEL	.S	(m)		
		Borehole was dry upon completion of drilling.							<u>da</u> Jun 14 Jun 27 Jul 29,	4, 2022 7, 2022 2022	4.1 4.5 4.5		133.9 133.5 133.5	ίπτ		

END OF BOREHOLE

50 mm dia. monitoring well installed. No. 10 screen

Image: Second	sauga, ON Client : UPR	Rd., Mississauga	- 4094 Tomken	tminster -	RC - We	t:UP	'rojec	P			: 22-087	e No. :	File
image: select depth description image: select depth (m) description image: select depth (m) image: select dephi (m) image: select depth (m)	ppm) lab data	headspace vapour (ppm)	ned shear strength (kPa)	undraine		Ê	les	samp			stratigraphy		
Image: Second state in the second state state is the second state state state state is the second state	ane and and comments 300 E S S S S S S S S S S S S S S S S S S	X hexane isobu methane 100 200 300 moisture / plasticity PL MC LL	trenetrometer Lab Vane Lab Vane Ab 120 160 -values (bpf) mamic cone	● pocket p 40 SPT N-va ×dynam	vell details	depth scale (m	T N-value	e	mber	Iphic log	description	<u>elev</u> depth (m)	method :
138.0 75mm ASPHALT 75mm AGGREGATE FILL, sand, trace silt, trace gravel, loose, brown, moist at 0.8 m, clayey silt, some sand, trace black staining, grey, moist, firm 136.7 136.7 1.5 CLAYEY SILT, some sand, trace gravel, orange staining, very stiff, brownish grey, moist 136.7	30 GR SA SI	10 20 30	0 20 30 40	U 1,0	>	<u> </u>	SP	typ	, Inu	gra	GROUND SURFACE	138.2	drill
0.2 75mm AGGREGATE FILL, sand, trace silt, trace gravel, loose, brown, moist 1 SS 6 - - - - - - - - - - - - - - - - - - - - - - - - - 136.7 - - - - 136.7 - - - - 136.7 - - - - 136.7 - - - - 0 - - - - 136.7 - - - - 136.7 - - - - 0 - - - - - 136.7 - - - - - 0 - - - - - 0 - - - - - - 10 -				38			<u> </u>		<u>_</u>	/	75mm ASPHALT	138.0	
FILL, sand, trace silt, trace gravel, loose, brown, moist at 0.8 m, clayey silt, some sand, trace black staining, grey, moist, firm 136.7 1.5 CLAYEY SILT, some sand, trace gravel, orange staining, very stiff, brownish grey, moist 0 1 1 1 1 1 1 1 1 1 1 1 1 1							6		×.	/ 🗱	75mm AGGREGATE	0.2	
Image: staining, grey, moist, firm 2 SS 4 1 -						-	0	33	<u> </u>		FILL, sand, trace silt, trace gravel, loose, brown, moist		
136.7 -		0				1 —	4	SS	2		at 0.8 m, clayey silt, some sand, trace black staining, grey, moist, firm		
1.5 CLAYEY SILT, some sand, trace gravel, orange staining, very stiff, brownish grey, moist 0				37			<u> </u>	<u> </u>	×			136.7	
		0				2-	16	SS	3		CLAYEY SILT, some sand, trace gravel, orange staining, very stiff, brownish grey, moist	1.5	
(GLACIAL TILL) –136				36						Ê P	(GLACIAL TILL)		
at 2.3 m, hard						_	21	22			at 2.3 m, hard		
unat 3.0 m, sandy				35	이 (전) 가=가	3-					at 3.0 m, sandy	_	stem augers =215 mm
	9 20 50	0				_	45	SS	5			-	wollow
134.4 6 SS 50 / 125mm 4		0				4	50 / 125mm	SS	6		INFERRED BEDROCK, shale fragments,	3.8	
				34							linestone nagments, grey		
7 SS 50/ 7 SS 75mm		0					50 / 75mm	SS	\$7				
5-						5						-	
				33									
					-	_							
6-						6 -						132 0	
6.2 50 / 132 - 132 - 10				32			50 / 75mm	<u> </u>	4 8	/		6.2	
END OF BOREHOLE GROUNDWATER LEVELS		s		GRO							END OF BOREHOLE		
Borehole was dry upon completion ofdate depth (m) elevation (m)Borehole was dry upon completion ofJun 14, 2022dryn/adrilling.Jun 27, 20224.3133.9		elevation (m) n/a 133.9	depth (m) dry 4.3	<u>date</u> n 14, 2022 n 27, 2022							Borehole was dry upon completion of drilling.		

50 mm dia. monitoring well installed. No. 10 screen

<8wg3	
je-It-dj	
2-087-6	
file: 22	
	ł

Page 1 of 1

APPENDIX B

 Slug Test Analysis Report

 Project:
 UPRC - Westminster - 4094 Tomken Road

 Number:
 22-087

 Client:
 UPRC

 Test Well:
 BH1

Test Date: 2022-06-27

Analysis Date: 2022-07-27

Location: 4094 Tomken Road, Mississauga Slug Test: BH1 RHT Test Conducted by: DI Analysis Performed by: NP BH1 RHT

Aquifer Thickness: 14.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH1	1.03 × 10 ⁻⁶	

Slug Test Analysis Report Project: UPRC - Westminster - 4094 Tomken Road Number: 22-087 Client: UPRC Location: 4094 Tomken Road, Mississauga Slug Test: BH2 RHT Test Conducted by: DI Test Date: 2022-06-27 Analysis Performed by: NP BH2 RHT Analysis Date: 2022-07-27

Aquifer Thickness: 6.00 m

APPENDIX C

APPENDIX D

Aydrogeo XL Steve	K from Grain Size Analysis Report	t		Date: 22-Jun-21		
	Sample Name:		BH1 SS3			
	Mass Sample (g):	289.8		T (oC)	20	

Poorly sorted clay with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	2.1E-07	2.1E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	3.2E-07	3.2E-09	0.00	
Slichter	4.4E-08	4.4E-10	0.00	
Terzaghi	6.7E-08	6.7E-10	0.00	
Beyer	2.5E-07	2.5E-09	0.00	
Sauerbrei	1.4E-07	1.4E-09	0.00	
Kruger	1.4E-05	1.4E-07	0.01	
Kozeny-Carmen	3.9E-06	3.9E-08	0.00	
Zunker	2.8E-06	2.8E-08	0.00	
Zamarin	3.4E-06	3.4E-08	0.00	
USBR	7.9E-08	7.9E-10	0.00	
Barr	4.9E-08	4.9E-10	0.00	
Alyamani and Sen	4.1E-07	4.1E-09	0.00	
Chapuis	7.7E-10	7.7E-12	0.00	
Krumbein and Monk	1.6E-05	1.6E-07	0.01	
geometric mean	1.4E-07	1.4E-09	0.00	
arithmetic mean	2.0E-07	2.0E-09	0.00	

Aydrogeo XL Stave	K from Grain Size Analysis Report	t	Date: 22-Jun-22			
	Sample Name:	BH2 S				
	Mass Sample (g):	189.6	T (oC)	20		

Poorly sorted clay with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	2.3E-07	2.3E-09	0.00	
Hazen K (cm/s) = d_{10} (mm)	4.1E-07	4.1E-09	0.00	
Slichter	4.5E-08	4.5E-10	0.00	
Terzaghi	6.5E-08	6.5E-10	0.00	
Beyer	2.0E-07	2.0E-09	0.00	
Sauerbrei	1.4E-07	1.4E-09	0.00	
Kruger	3.0E-05	3.0E-07	0.03	
Kozeny-Carmen	5.4E-06	5.4E-08	0.00	
Zunker	4.1E-06	4.1E-08	0.00	
Zamarin	4.8E-06	4.8E-08	0.00	
USBR	1.1E-07	1.1E-09	0.00	
Barr	4.9E-08	4.9E-10	0.00	
Alyamani and Sen	1.0E-05	1.0E-07	0.01	
Chapuis	6.2E-10	6.2E-12	0.00	
Krumbein and Monk	1.9E-05	1.9E-07	0.02	
geometric mean	4.1E-07	4.1E-09	0.00	
arithmetic mean	3.5E-06	3.5E-08	0.00	

 K from Grain Size Analysis Report
 Date:
 22-Jun-22

 Sample Name:
 BH3 SS5

 Mass Sample (g):
 126
 T (oC)

Poorly sorted clay with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.6E-07	3.6E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	6.3E-07	6.3E-09	0.00	
Slichter	7.1E-08	7.1E-10	0.00	
Terzaghi	1.0E-07	1.0E-09	0.00	
Beyer	3.8E-07	3.8E-09	0.00	
Sauerbrei	2.3E-07	2.3E-09	0.00	
Kruger	2.6E-05	2.6E-07	0.02	
Kozeny-Carmen	6.2E-06	6.2E-08	0.01	
Zunker	4.7E-06	4.7E-08	0.00	
Zamarin	5.6E-06	5.6E-08	0.00	
USBR	2.9E-07	2.9E-09	0.00	
Barr	7.6E-08	7.6E-10	0.00	
Alyamani and Sen	7.1E-06	7.1E-08	0.01	
Chapuis	1.2E-09	1.2E-11	0.00	
Krumbein and Monk	1.4E-05	1.4E-07	0.01	
geometric mean	5.0E-07	5.0E-09	0.00	
arithmetic mean	2.5E-06	2.5E-08	0.00	

APPENDIX E

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2205574	Page	: 1 of 11
Amendment	: 2		
Client	: Grounded Engineering Inc.	Laboratory	: Waterloo - Environmental
Contact	: Emma Leet	Account Manager	E Amanda Overholster
Address	: 1 Banigan Drive Toronto ON Canada M4H 1G3	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	: 647 264 7932	Telephone	: 1 416 817 2944
Project	: 22-087	Date Samples Received	: 14-Jun-2022 17:00
PO	:	Date Analysis Commenced	: 15-Jun-2022
C-O-C number	: 20-951655	Issue Date	: 25-Aug-2022 16:54
Sampler	: AJ		-
Site	: 4094 TOMKEN RO, MISSISSAUGA		
Quote number	: Q88323 - SOA		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Andrea Armstrong	Department Manager - Air Quality and Volatiles	Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jihun Jeon	Laboratory Analyst	LCMS, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Metals, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre
CFU/100mL	colony forming units per 100 mL
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit.

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Workorder Comments

Amendment (25/AUG/2022): This report has been amended and re-released to allow additional pertinent comments to be added to the report. All analysis results are as per the previous report. Adding Mississauga Storm/Peel San criteria per client request.

Amendment (23/AUG/2022): This report has been amended following minor LIMS report formatting corrections. All analysis results are as per the previous report.

RRQC: BOD Duplicate within low level acceptance criteria

Page	: 4 of 11
Work Order	: WT2205574 Amendment 2
Client	: Grounded Engineering Inc.
Project	: 22-087

Qualifiers

Qualifier	Description
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample tested.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLUI	Detection Limit Raised: Unknown interference generated an apparent false positive test result.

Analytical Results Evaluation

	Client s	sample ID	SW-UF-BH2	 	 	
Matrix: Groundwater				 		
	Sampling	date/time	14-Jun-2022 15:00	 	 	
	S	Sub-Matrix	Groundwater	 	 	
Analyte	CAS Number	Unit	WT2205574-001	 	 	
Physical Tests						
pН	p	pH units	7.77	 	 	
solids, total suspended [TSS]		mg/L	177	 	 	
Anions and Nutrients						
fluoride	16984-48-8	mg/L	0.360 DLDS	 	 	
Kjeldahl nitrogen, total [TKN]		mg/L	4.90	 	 	
phosphorus, total	7723-14-0	mg/L	0.127	 	 	
sulfate (as SO4)	14808-79-8	mg/L	85.6 DLDS	 	 	
Cyanides						
cyanide, strong acid dissociable (total)		mg/L	0.0037	 	 	
Microbiological Tests						
coliforms, Escherichia coli [E. coli]	CF	=U/100mL	Not Detected	 	 	
Total Metals						
aluminum, total	7429-90-5	mg/L	4.18	 	 	
antimony, total	7440-36-0	mg/L	<0.00100 DLHC	 	 	
arsenic, total	7440-38-2	mg/L	0.00430 DLHC	 	 	
cadmium, total	7440-43-9	mg/L	0.0000641 DLHC	 	 	
chromium, total	7440-47-3	mg/L	0.00704 DLHC	 	 	
cobalt, total	7440-48-4	mg/L	0.00993 DLHC	 	 	
copper, total	7440-50-8	mg/L	<0.00500 DLHC	 	 	
lead, total	7439-92-1	mg/L	0.00195 DLHC	 	 	
manganese, total	7439-96-5	mg/L	0.695 DLHC	 	 	
mercury, total	7439-97-6	mg/L	<0.000050	 	 	
molybdenum, total	7439-98-7	mg/L	0.00988 DLHC	 	 	
nickel, total	7440-02-0	mg/L	0.00922 DLHC	 	 	
selenium, total	7782-49-2	mg/L	<0.000500 DLHC	 	 	
silver, total	7440-22-4	mg/L	<0.000100 DLHC	 	 	
tin, total	7440-31-5	mg/L	0.00223 DLHC	 	 	

Analytical Results Evaluation

	Clie	nt sample ID	SW-UF-BH2	 	 	
Matrix: Groundwater				 	 	
	Sampl	ing date/time	14-Jun-2022 15:00	 	 	
		Sub-Matrix	Groundwater	 	 	
Analyte	CAS Number	Unit	WT2205574-001	 	 	
Total Metals						
titanium, total	7440-32-6	mg/L	<0.0660 DLHC, DLUI	 	 	
zinc, total	7440-66-6	mg/L	<0.0300 DLHC	 	 	
Aggregate Organics						
carbonaceous biochemical oxygen demand [CBOD]		mg/L	<3.0 BODL	 	 	
oil & grease (gravimetric)		mg/L	<5.0	 	 	
oil & grease, animal/vegetable (gravimetric)		mg/L	<5.0	 	 	
oil & grease, mineral (gravimetric)		mg/L	<5.0	 	 	
phenols, total (4AAP)		mg/L	0.0011	 	 	
Volatile Organic Compounds						
benzene	71-43-2	µg/L	<0.50	 	 	
chloroform	67-66-3	µg/L	<0.50	 	 	
dichlorobenzene, 1,2-	95-50-1	µg/L	<0.50	 	 	
dichlorobenzene, 1,4-	106-46-7	µg/L	<0.50	 	 	
dichloroethylene, cis-1,2-	156-59-2	µg/L	<0.50	 	 	
dichloromethane	75-09-2	µg/L	<1.0	 	 	
dichloropropylene, trans-1,3-	10061-02-6	µg/L	<0.30	 	 	
ethylbenzene	100-41-4	µg/L	<0.50	 	 	
methyl ethyl ketone [MEK]	78-93-3	µg/L	<20	 	 	
styrene	100-42-5	µg/L	<0.50	 	 	
tetrachloroethane, 1,1,2,2-	79-34-5	µg/L	<0.50	 	 	
tetrachloroethylene	127-18-4	µg/L	<0.50	 	 	
toluene	108-88-3	µg/L	<0.50	 	 	
trichloroethylene	79-01-6	µg/L	<0.50	 	 	
xylene, m+p-	179601-23-1	µg/L	<0.40	 	 	
xylene, o-	95-47-6	µg/L	<0.30	 	 	
xylenes, total	1330-20-7	µg/L	<0.50	 	 	
Volatile Organic Compounds Surrogates						
bromofluorobenzene, 4-	460-00-4	%	86.1	 	 	
difluorobenzene, 1,4-	540-36-3	%	99.2	 	 	

Analytical Results Evaluation

Client sample ID			SW-UF-BH2	 	 	
Matrix: Groundwater						
	Sample	ing date/time	14-Jun-2022 15:00	 	 	
		Sub-Matrix	Groundwater	 	 	
Analyte	CAS Number	Unit	WT2205574-001	 	 	
Phthalate Esters						
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	µg/L	<2.0	 	 	
di-n-butyl phthalate	84-74-2	µg/L	<1.0	 	 	
Semi-Volatile Organics Surrogates						
fluorobiphenyl, 2-	321-60-8	%	87.7	 	 	
terphenyl-d14, p-	1718-51-0	%	86.5	 	 	
Phenolics Surrogates						
tribromophenol, 2,4,6-	118-79-6	%	110	 	 	
Nonylphenols						
nonylphenol diethoxylates [NP2EO]	n/a	µg/L	<0.10	 	 	
nonylphenol ethoxylates, total	n/a	µg/L	<2.0	 	 	
nonylphenol monoethoxylates [NP1EO]	n/a	µg/L	<2.0	 	 	
nonylphenols [NP]	84852-15-3	µg/L	77.9 DLHC	 	 	
Polychlorinated Biphenyls						
Aroclor 1016	12674-11-2	µg/L	<0.020	 	 	
Aroclor 1221	11104-28-2	µg/L	<0.020	 	 	
Aroclor 1232	11141-16-5	µg/L	<0.020	 	 	
Aroclor 1242	53469-21-9	µg/L	<0.020	 	 	
Aroclor 1248	12672-29-6	µg/L	<0.020	 	 	
Aroclor 1254	11097-69-1	µg/L	<0.020	 	 	
Aroclor 1260	11096-82-5	µg/L	<0.020	 	 	
Aroclor 1262	37324-23-5	µg/L	<0.020	 	 	
Aroclor 1268	11100-14-4	µg/L	<0.020	 	 	
polychlorinated biphenyls [PCBs], total		µg/L	<0.060	 	 	
Polychlorinated Biphenyls Surrogates						
decachlorobiphenyl	2051-24-3	%	74.6	 	 	
tetrachloro-m-xylene	877-09-8	%	107	 	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page	: 8 of 11
Work Order	: WT2205574 Amendment 2
Client	: Grounded Engineering Inc.
Project	22-087

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary			Result	Limit
SW-UF-BH2	Water	solids, total suspended [TSS]		MISSUB	STM	177 mg/L	15 mg/L
	Water	Kjeldahl nitrogen, total [TKN]		MISSUB	STM	4.90 mg/L	1 mg/L
	Water	aluminum, total		MISSUB	STM	4.18 mg/L	1 mg/L
	Water	manganese, total		MISSUB	STM	0.695 mg/L	0.05 mg/L
	Water	nonylphenols [NP]		RMPSUB	SAN	77.9 µg/L	20 µg/L

Summary of Guideline Limits

Analyte	CAS Number	Unit	MISSUB STM	RMPSUB SAN	
Physical Tests					
рН		pH units	6 - 9 pH units	5.5 - 10 pH	ſ
				units	l
solids, total suspended [TSS]		mg/L	15 mg/L	350 mg/L	L
Anions and Nutrients					ļ
fluoride	16984-48-8	mg/L		10 mg/L	
Kjeldahl nitrogen, total [TKN]		mg/L	1 mg/L	100 mg/L	l
phosphorus, total	7723-14-0	mg/L	0.4 mg/L	10 mg/L	
sulfate (as SO4)	14808-79-8	mg/L			
Cyanides					
cyanide, strong acid dissociable (total)		mg/L	0.02 mg/L	2 mg/L	ſ
Microbiological Tests					
coliforms, Escherichia coli [E. coli]		CFU/100mL	200		ſ
			CFU/100mL		Γ
Total Metals					
aluminum, total	7429-90-5	mg/L	1 mg/L	50 mg/L	Г
antimony, total	7440-36-0	mg/L		5 mg/L	
arsenic, total	7440-38-2	mg/L	0.02 mg/L	1 mg/L	Γ
cadmium, total	7440-43-9	mg/L	0.008 mg/L	0.7 mg/L	
chromium, total	7440-47-3	mg/L	0.08 mg/L	5 mg/L	
cobalt, total	7440-48-4	mg/L	_	5 mg/L	
copper, total	7440-50-8	mg/L	0.04 mg/L	3 mg/L	
lead, total	7439-92-1	mg/L	0.12 mg/L	3 mg/L	
manganese, total	7439-96-5	mg/L	0.05 mg/L	5 mg/L	Г
mercury, total	7439-97-6	mg/L	0.0004 mg/L	0.01 mg/L	
molybdenum, total	7439-98-7	mg/L	J	5 ma/L	ſ
nickel, total	7440-02-0	ma/L	0.08 ma/L	3 ma/L	
selenium, total	7782-49-2	ma/L	0.02 ma/L	1 ma/L	f
silver. total	7440-22-4	mg/L	0.12 mg/L	5 mg/L	
tin, total	7440-31-5	mg/L		5 mg/L	ſ
titanium, total	7440-32-6	mg/L		5 mg/L	
zinc total	7440-66-6	mg/L	0.04 mg/l	3 mg/L	F
Aggregate Organics	1110 30-0		0.04 mg/L	o nig/E	l
carbonaceous biochemical oxygen demand [CBOD]		mg/l		300 mg/l	ſ
oil & grease (gravimetric)		mg/L		500 mg/L	f
oil & grease, animal/vegetable (gravimetric)		mg/L		150 mg/l	
oil & grease, mineral (gravimetric)		mg/L		150 mg/L	F
oli & grease, mineral (gravimetric)		mg/L	0.000	15 mg/L	
pnenois, totai (4AAP)		mg/L	0.008 mg/L	1 mg/L	

Page	: 10 of 11
Work Order	: WT2205574 Amendment 2
Client	: Grounded Engineering Inc.
Project	: 22-087

Analyte	CAS Number	Unit	MISSUB STM	RMPSUB SAN			
Volatile Organic Compounds							
benzene	71-43-2	µg/L	2 µg/L	10 µg/L			
chloroform	67-66-3	µg/L		40 µg/L			
dichlorobenzene, 1,2-	95-50-1	µg/L		50 µg/L			
dichlorobenzene, 1,4-	106-46-7	µg/L		80 µg/L			
dichloroethylene, cis-1,2-	156-59-2	µg/L		4000 µg/L			
dichloromethane	75-09-2	µg/L		2000 µg/L			
dichloropropylene, trans-1,3-	10061-02-6	µg/L		140 µg/L			
ethylbenzene	100-41-4	µg/L	2 µg/L	160 µg/L			
methyl ethyl ketone [MEK]	78-93-3	µg/L		8000 µg/L			
styrene	100-42-5	µg/L		200 µg/L			
tetrachloroethane, 1,1,2,2-	79-34-5	µg/L		1400 µg/L			
tetrachloroethylene	127-18-4	µg/L		1000 µg/L			
toluene	108-88-3	µg/L	2 µg/L	270 µg/L			
trichloroethylene	79-01-6	µg/L		400 µg/L			
xylene, m+p-	179601-23-1	µg/L					
xylene, o-	95-47-6	µg/L					
xylenes, total	1330-20-7	µg/L	4.4 µg/L	1400 µg/L			
Phthalate Esters							
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	µg/L		12 µg/L			
di-n-butyl phthalate	84-74-2	µg/L		80 µg/L			
Nonylphenols							
nonylphenol diethoxylates [NP2EO]	n/a	µg/L					
nonylphenol ethoxylates, total	n/a	µg/L		200 µg/L			
nonylphenol monoethoxylates [NP1EO]	n/a	µg/L					
nonylphenols [NP]	84852-15-3	µg/L		20 µg/L			
Polychlorinated Biphenyls							
Aroclor 1016	12674-11-2	µg/L					
Aroclor 1221	11104-28-2	µg/L					
Aroclor 1232	11141-16-5	µg/L					
Aroclor 1242	53469-21-9	µg/L					
Aroclor 1248	12672-29-6	µg/L					
Aroclor 1254	11097-69-1	µg/L					
Aroclor 1260	11096-82-5	µg/L					
Aroclor 1262	37324-23-5	µg/L					
Aroclor 1268	11100-14-4	µg/L					
polychlorinated biphenyls [PCBs], total		µg/L		1 µg/L			

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page	: 11 of 11
Work Order	: WT2205574 Amendment 2
Client	: Grounded Engineering Inc.
Project	22-087

Key:

MISSUB		Ontario Mississauga Storm Sewer Use By-Law (0046-2022) (March 2022)
	STM	Mississauga Storm Sewer (0046-2022)
RMPSUB		Ontario Reg. Mun. of Peel Sewer Bylaw #53-2010 (APR. 2011)
	SAN	Reg. Mun. of Peel Sanitary by-law #53-2010

QUALITY CONTROL INTERPRETIVE REPORT

	W/T0005574	_	
Work Order	: W12205574	Page	: 1 of 11
Amendment	: 2		
Client	: Grounded Engineering Inc.	Laboratory	: Waterloo - Environmental
Contact	: Emma Leet	Account Manager	: Amanda Overholster
Address	: 1 Banigan Drive	Address	≑60 Northland Road, Unit 1
	Toronto ON Canada M4H 1G3		Waterloo, Ontario Canada N2V 2B8
Telephone	647 264 7932	Telephone	: 1 416 817 2944
Project	: 22-087	Date Samples Received	: 14-Jun-2022 17:00
PO	:	Issue Date	: 25-Aug-2022 16:54
C-O-C number	: 20-951655		
Sampler	: AJ		
Site	: 4094 TOMKEN RO, MISSISSAUGA		
Quote number	: Q88323 - SOA		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Matrix Spike outliers occur.
- Duplicate outliers occur please see following pages for full details.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Duplicate (DUP) RPDs								
Microbiological Tests	WT2205574-001	SW-UF-BH2	coliforms, Escherichia coli [E. coli]		E012A.EC	198 %	65%	Duplicate RPD does not meet the DQO for this test.
Aggregate Organics	WT2205574-001	SW-UF-BH2	carbonaceous biochemical oxygen demand [CBOD]		E555	37.0 % RRQC	30%	RPD exceeds DQO
Result Qualifiers								

Qualifier	Description
RRQC	Refer to report comments for info

Refer to report comments for information regarding this QC result.

Laboratory Control Sample (LCS) Recoveries								
Aggregate Organics	QC-MRG2-5255110		oil & grease, mineral	E567SG	66.2 % LCS-ND	70.0-130%	Recovery less than lower	
	02		(gravimetric)				control limit	
Result Qualifiers					·			
Qualifier L	escription							
LCS-ND Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.								

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group	Method	Sampling Date	e Extraction / Preparation Analysis					is		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand (Carbonaceous) - 5 day										
HDPE [ON MECP]										
SW-UF-BH2	E555	14-Jun-2022					15-Jun-2022	4 days	0 days	✓
Aggregate Organics : Mineral Oil & Grease by Gravimetry										
Amber glass total (hydrochloric acid)										
SW-UF-BH2	E567SG	14-Jun-2022	16-Jun-2022	28	2 days	~	27-Jun-2022	40 days	11 days	•
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass total (hydrochloric acid)	F 507	44 100 0000	10 1		0.1	,	07 1 0000	40	44.1	,
SW-UF-BH2	E567	14-Jun-2022	16-Jun-2022	28	2 days	*	27-Jun-2022	40 days	11 days	•
				days						
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid) [ON MECP]	E562	14 Jun 2022	15 Jun 2022		1 daya	1	16 Jun 2022	27 dava	1 daya	
SW-OF-BHZ	L302	14-5011-2022	15-Juli-2022	28 dave	Tuays	•	10-Juli-2022	21 uays	i uays	•
				uays						
Anions and Nutrients : Fluoride in Water by IC										
SW-LIE-BH2	F235 F	14-Jun-2022	16-Jun-2022				16-Jun-2022	28 days	2 days	1
								20 44,0	2 44,90	
Anions and Nutrients : Sulfate in Water by IC										
HDPE ION MECP1										
SW-UF-BH2	E235.SO4	14-Jun-2022	16-Jun-2022				16-Jun-2022	28 days	2 days	✓
									-	
Anions and Nutrients : Total Kieldahl Nitrogen by Fluorescence (Low Level)							1			
Amber glass total (sulfuric acid) [ON MECP]										
SW-UF-BH2	E318	14-Jun-2022	16-Jun-2022				16-Jun-2022	28 days	2 days	✓

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation							
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) [ON MECP]										
SW-UF-BH2	E372-U	14-Jun-2022	16-Jun-2022				17-Jun-2022	28 days	3 days	✓
Cyanides : Total Cyanide									1	
HDPE - total (sodium hydroxide)										
SW-UF-BH2	E333	14-Jun-2022	16-Jun-2022				17-Jun-2022	14 days	3 days	~
Microbiological Tests : E. coli (MF-mFC-BCIG)										
HDPE (sodium thiosulfate)										
SW-UF-BH2	E012A.EC	14-Jun-2022					15-Jun-2022	0 hrs	23 hrs	✓
Nonylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode										
Amber glass/Teflon lined cap [ON MECP]	57405					,				,
SW-UF-BH2	E749B	14-Jun-2022	21-Jun-2022	/ days	7 days	~	21-Jun-2022	7 days	0 days	•
Nonylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative	/e Mode						1			
Amber glass/letion lined cap [ON MECP]	E749A	14- lun-2022	21_ lun_2022	7 days	7 days	1	21_ lun_2022	7 days	0 dave	1
5W-01-0112	2/40/(14-0411-2022	21-3011-2022	/ uays	r uays	·	21-0011-2022	r uays	0 days	
Phthalata Ectors : BNA (Ontaria Sanitary Sowar SVOC Target List) by GC MS										
Amber class/Teflon lined can ION MECP1										
SW-UF-BH2	E655F	14-Jun-2022	20-Jun-2022	14	6 days	1	21-Jun-2022	40 days	1 days	✓
				days	-					
Physical Tests : pH by Meter									1	
HDPE [ON MECP]										
SW-UF-BH2	E108	14-Jun-2022	16-Jun-2022				16-Jun-2022	14 days	2 days	✓
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP]										
SW-UF-BH2	E160	14-Jun-2022					18-Jun-2022	7 days	4 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
SW-UF-BH2	E687	14-Jun-2022	21-Jun-2022	14	7 days	✓	22-Jun-2022	40 days	1 days	✓
				days			1			

Matrix: Water Evaluation: **x** = Holding time exceedance ; **√** = Within Holding Time Analyte Group Sampling Date Extraction / Preparation Analysis Method Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Total Metals : Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) [ON MECP] SW-UF-BH2 E508 14-Jun-2022 16-Jun-2022 16-Jun-2022 28 days 2 days ✓ --------Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid) ✓ E420 14-Jun-2022 1 days SW-UF-BH2 15-Jun-2022 ----16-Jun-2022 180 ---days Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS Glass vial (sodium bisulfate) SW-UF-BH2 E611D 14-Jun-2022 19-Jun-2022 19-Jun-2022 14 days 5 days ✓ --------

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: 😕 = QC frequency outside specification; 🗹 = QC frequency within specification							
Quality Control Sample Type			Co	unt		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	524543	1	15	6.6	5.0	1	
E. coli (MF-mFC-BCIG)	E012A.EC	524818	1	14	7.1	5.0	✓	
Fluoride in Water by IC	E235.F	526077	1	3	33.3	5.0	✓	
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	532554	1	13	7.6	5.0	1	
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	532553	1	13	7.6	5.0	✓	
pH by Meter	E108	526075	1	19	5.2	5.0	✓	
Phenols (4AAP) in Water by Colorimetry	E562	524985	1	13	7.6	5.0	✓	
Sulfate in Water by IC	E235.SO4	526078	1	4	25.0	5.0	✓	
Total Cyanide	E333	526811	1	17	5.8	5.0	1	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	524986	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	525751	1	3	33.3	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	525412	1	13	7.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	524984	1	19	5.2	5.0	✓	
TSS by Gravimetry	E160	528998	1	20	5.0	4.7	✓	
VOCs (ON List) by Headspace GC-MS	E611D	529792	1	12	8.3	5.0	✓	
Laboratory Control Samples (LCS)								
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	524543	1	15	6.6	5.0	✓	
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	530120	1	4	25.0	5.0	✓	
Fluoride in Water by IC	E235.F	526077	1	3	33.3	5.0	✓	
Mineral Oil & Grease by Gravimetry	E567SG	525512	1	1	100.0	5.0	✓	
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	532554	1	13	7.6	5.0	✓	
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	532553	1	13	7.6	5.0	✓	
Oil & Grease by Gravimetry	E567	525511	1	4	25.0	5.0	✓	
PCB Aroclors by GC-MS	E687	532378	1	15	6.6	4.7	✓	
pH by Meter	E108	526075	1	19	5.2	5.0	✓	
Phenols (4AAP) in Water by Colorimetry	E562	524985	1	13	7.6	5.0	✓	
Sulfate in Water by IC	E235.SO4	526078	1	4	25.0	5.0	✓	
Total Cyanide	E333	526811	1	17	5.8	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	524986	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	525751	1	3	33.3	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	525412	1	13	7.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	524984	1	19	5.2	5.0	✓	
TSS by Gravimetry	E160	528998	1	20	5.0	4.7	✓	
VOCs (ON List) by Headspace GC-MS	E611D	529792	1	12	8.3	5.0	✓	
Method Blanks (MB)								
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	524543	1	15	6.6	5.0	1	
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	530120	1	4	25.0	5.0	✓	

Wiaurix: water		Evaluat	ion. × = QC frequ	ency outside spe		ac irrequency wit	min specification
Quality Control Sample Type			С	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
E. coli (MF-mFC-BCIG)	E012A.EC	524818	1	14	7.1	5.0	✓
Fluoride in Water by IC	E235.F	526077	1	3	33.3	5.0	✓
Mineral Oil & Grease by Gravimetry	E567SG	525512	1	1	100.0	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	532554	1	13	7.6	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	532553	1	13	7.6	5.0	✓
Oil & Grease by Gravimetry	E567	525511	1	4	25.0	5.0	✓
PCB Aroclors by GC-MS	E687	532378	1	15	6.6	4.7	✓
Phenols (4AAP) in Water by Colorimetry	E562	524985	1	13	7.6	5.0	✓
Sulfate in Water by IC	E235.SO4	526078	1	4	25.0	5.0	\checkmark
Total Cyanide	E333	526811	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	524986	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	525751	1	3	33.3	5.0	✓
Total Metals in Water by CRC ICPMS	E420	525412	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	524984	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	528998	1	20	5.0	4.7	✓
VOCs (ON List) by Headspace GC-MS	E611D	529792	1	12	8.3	5.0	✓
Matrix Spikes (MS)							
Fluoride in Water by IC	E235.F	526077	1	3	33.3	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	532554	1	13	7.6	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	532553	1	13	7.6	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	524985	1	13	7.6	5.0	✓
Sulfate in Water by IC	E235.SO4	526078	1	4	25.0	5.0	✓
Total Cyanide	E333	526811	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	524986	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	525751	1	3	33.3	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	525412	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	524984	1	19	5.2	5.0	<u> </u>
VOCs (ON List) by Headspace GC-MS	E611D	529792	1	12	8.3	5.0	<u> </u>

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC Waterloo - Environmental	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
pH by Meter	E108 Waterloo - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160 Waterloo - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Fluoride in Water by IC	E235.F Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Waterloo - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Cyanide	E333 Waterloo - Environmental	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Waterloo - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Metals in Water by CRC ICPMS	E420 Waterloo - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Project

WT2205574 Amendment 2 Grounded Engineering Inc.

:

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Mercury in Water by CVAAS	E508 Waterloo -	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Environmental			
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555 Waterloo - Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.
				Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry	E562 Waterloo - Environmental	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to form a red complex which is measured colorimetrically.
Oil & Grease by Gravimetry	E567 Waterloo - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
Mineral Oil & Grease by Gravimetry	E567SG Waterloo - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane, followed by silica gel treatment after which the extract is evaporated to dryness. The residue is then weighed to determine Mineral Oil and Grease.
VOCs (ON List) by Headspace GC-MS	E611D Waterloo - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F Waterloo -	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
PCB Aroclors by GC-MS	Environmental E687	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
	Waterloo - Environmental			
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A Waterloo - Environmental	Water	J. Chrom A849 (1999) p.467-482	An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol-D4, Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and analyzed by LC-MS/MS.
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B Waterloo - Environmental	Water	J. Chrom A849 (1999) p.467-482	Water samples are filtered and analyzed on LCMS/MS by direct injection.

Page Work Order	: 11 of 11 : WT2205574 Amendment 2
Client	: Grounded Engineering Inc.
Project	22-087

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Animal & Vegetable Oil & Grease by Gravimetry	EC567A.SG	Water	APHA 5520 (mod)	Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric) minus Mineral Oil & Grease (gravimetric)
	Waterloo -			
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Waterloo -			analytical method as TKN. This method is unsuitable for samples containing high levels
	Environmental			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Waterloo -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
			(Oil & Grease) (mod)	
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Environmental			
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
Pesticides, PCB, and Neutral Extractable Chlorinated Hydrocarbons Extraction	EP660	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid -liquid extraction.
	Waterloo -			
	Environmental			
Preparation of Nonylphenol and Nonylphenol	EP749	Water	J. Chrom A849 (1999)	An aliquot of $5.0 \pm 0.10 \text{ mL}$ of filtered sample is spiked with Nonylphenol-D4,
Ethoxylates			p.467-482	Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	Waterloo -			analyzed by LC-MS/MS.
	Environmental			

QUALITY CONTROL REPORT

Work Order	WT2205574	Page	: 1 of 12
Amendment	:2		
Client	: Grounded Engineering Inc.	Laboratory	: Waterloo - Environmental
Contact	: Emma Leet	Account Manager	: Amanda Overholster
Address	∶1 Banigan Drive	Address	:60 Northland Road, Unit 1
	Toronto ON Canada M4H 1G3		Waterloo, Ontario Canada N2V 2B8
Telephone	: 647 264 7932	Telephone	: 1 416 817 2944
Project	: 22-087	Date Samples Received	: 14-Jun-2022 17:00
PO	:	Date Analysis Commenced	: 15-Jun-2022
C-O-C number	: 20-951655	Issue Date	25-Aug-2022 16:54
Sampler	: AJ		
Site	: 4094 TOMKEN RO, MISSISSAUGA		
Quote number	: Q88323 - SOA		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Andrea Armstrong	Department Manager - Air Quality and Volatiles	Waterloo Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jihun Jeon	Laboratory Analyst	Waterloo LCMS, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Metals, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	: Lot: 526075)										
WT2205672-001	Anonymous	рН		E108	0.10	pH units	8.31	8.35	0.04	Diff <2x LOR	
Physical Tests (QC	Lot: 528998)										
WT2205574-001	SW-UF-BH2	solids, total suspended [TSS]		E160	3.0	mg/L	177	185	4.20%	20%	
Anions and Nutrien	ts (QC Lot: 524984)										
WT2205414-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0093	0.0087	0.0006	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 524986)										
WT2205541-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.10	1.08	2.16%	20%	
Anions and Nutrien	ts (QC Lot: 526077)	fluorida	16984-48-8	E235 E	0.020	ma/l	1 19	1 19	0.0163%	20%	
		inonae	10004 40 0	2200.1	0.020	ing/L	1.10	1.10	0.010070	2070	
Anions and Nutrien	Anonymous	sulfate (as SO4)	14808-79-8	E235 SO4	0.30	ma/l	39.5	39.6	0 191%	20%	
	500044)										
EO2204473-001	Anonymous	cyanide, strong acid dissociable (total)		E333	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Microbiological Tes	sts (QC Lot: 524818)							1			I
WT2205574-001	SW-UF-BH2	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	210	198%	65%	
Total Metals (QC L	ot: 525412)										I
WT2205590-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0459	0.0461	0.544%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	0.00022	0.00001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000155	0.0000184	0.0000029	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00079	0.00078	0.000010	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00227	0.00229	1.04%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000640	0.000649	1.38%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00062	0.00058	0.00003	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000148	0.000132	0.000016	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	

Page	: 4 of 12
Work Order	: WT2205574 Amendment 2
Client	: Grounded Engineering Inc.
Project	· 22-087

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	t: 525412) - continued										
WT2205590-001	Anonymous	zinc, total	7440-66-6	E420	0.0030	mg/L	0.0101	0.0101	0.00004	Diff <2x LOR	
Total Metals (QC Lo	t: 525751)										
WT2205546-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	0.0000152	0.0000157	0.0000005	Diff <2x LOR	
Aggregate Organics	(QC Lot: 524543)										
WT2205574-001	SW-UF-BH2	carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	<3.0	4.4	37.0%	30%	RRQC
Aggregate Organics	(QC Lot: 524985)										
WT2205416-001	Anonymous	phenols, total (4AAP)		E562	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Volatile Organic Con	npounds (QC Lot: 5297	92)									
WT2205531-001	Anonymous	benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		styrene	100-42-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
Nonylphenols (QC L	ot: 532553)										
VA22B3407-001	Anonymous	nonylphenols [NP]	84852-15-3	E749A	1.0	µg/L	1.8	1.9	0.10	Diff <2x LOR	
Nonylphenols (QC L	ot: 532554)										
VA22B3407-001	Anonymous	nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.10	µg/L	<0.10	<0.10	0	Diff <2x LOR	
		nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2.0	µg/L	<2.0	<2.0	0	Diff <2x LOR	

0	112	lifi	ore
S.	uai		CI 3

Qualifier	
RRQC	

Refer to report comments for information regarding this QC result.

Description

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyse CAS Number (Methad) Unit Result Quarther Phylical Cost: S283991 180 3 mgl. 4.3.0 4.3.0 Antione sand Nutrients (OLCL: S28394) EV2-U 0.002 mgl. 0.0000 9.000000 9.000000 9.000000 9.00000 9.000000 9.000000 9.0000000 9.0000000 9.0000000 9.0000000 9.0000000 9.0000000 9.0000000	Sub-Matrix: Water						
Physical code:Physical code:Sampa of the state st	Analyte	CAS Number	r Method	LOR	Unit	Result	Qualifier
aniors and Nutrients (ACLot: 524984) Aniors and Nutrients (ACLot: 524984) Aniors and Nutrients (ACLot: 524984) Aniors and Nutrients (ACLot: 524986) Aniors and Nutrients (ACLot: 526077) Aniors and Nutrients (ACLot: 526077) Aniors and Nutrients (ACLot: 526078) Aniors and Nutrients (ACLot: 526078) Aniors and Nutrients (ACLot: 526078) Aniors and Section (Section	Physical Tests (QCLot: 528998)						
Ahlone and Nutrients (QCLot: 524984) 7723-14-0 573-44-0	solids, total suspended [TSS]		E160	3	mg/L	<3.0	
sheaphone, bail 7723-140 572-0 0.002 mgl, <0.002	Anions and Nutrients (QCLot: 524984)						
Anions and Mutrionts (OCLot: 524986) (galdath indegen, total [TAN] E318 0.05 mgl. <0.059	phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Global Antiogen, total [TKN] — E38 0.05 mg/L <0.050 mg/L <0.050<	Anions and Nutrients (QCLot: 524986)						
Anions and Nutrients (QCLot: 528077)	Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Nuorde 1988-448 E23.F 0.02 mg/L <0.029 mg/L mg/L mg/L mg/L mg/L mg/L <thmg <="" td=""><td>Anions and Nutrients (QCLot: 526077)</td><td></td><td></td><td></td><td></td><td></td><td></td></thmg>	Anions and Nutrients (QCLot: 526077)						
Anions and Nutrients (QCLot: 526078) Vertice	fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Sublite (as SOA) 14808-79-8 235 SOA 0.0.3 mg/L <0.30 -0.30	Anions and Nutrients (QCLot: 526078)						
Cyanides (QCLot: 526811) Image: Cyanide dissociable (total) Image	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
spanie, stong acid dissociable (otal) Image: stand acid dissociable (otal) Stand acid dissociable (otal) <td>Cyanides (QCLot: 526811)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cyanides (QCLot: 526811)						
Microbiological Tests (QCLot: 524818) E012AEC 1 CFU/100mL <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	cyanide, strong acid dissociable (total)		E333	0.002	mg/L	<0.0020	
cold orms, Escherichia coll [E. coll] E012A EC 1 CFU/100mL <1 CH Total Markanow 7429-05-5 5420 0.003 mg/L <0.0030	Microbiological Tests (QCLot: 524818)						
Total Metals (QCLot: 525412) Alexanom A	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	
aluminum, total 7429405 E420 0.003 mg/L 4.0.0030 antimony, total 7440.360 E420 0.0001 mg/L <0.00010	Total Metals (QCLot: 525412)						
animony, total 7440-36-0 E420 0.0001 mgL <0.00010	aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
arsenic, total 7440-38-2 E420 0.0001 mg/L <0.000005	antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
cadmium, total 7440-439 E420 0.000050 mg/L <0.000050	arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
chronium, total 7440-47-3 E420 0.0005 mg/L <0.00050	cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
cobalt, total 7440.48 E420 0.0001 mg/L <0.00010	chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cooper, total 7440-50-8 E420 0.0005 mg/L <0.00050	cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
ead, total 7439-921 E420 0.00055 mg/L <0.00050	copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
maganese, total 7439-965 E420 0.0001 mg/L <0.00050	lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
molybdenum, total 7439-987 E420 0.0005 mg/L <0.00050	manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nickel, total 7440-020 E420 0.0005 mg/L <0.00050	molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
selenium, total 7782-49-2 E420 0.00005 mg/L <0.000050	nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
silver, total 7440-22-4 E420 0.0001 mg/L <0.00010	selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
in, total 7440-31-5 E420 0.0001 mg/L <0.00010	silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
itanium, total 7440-32-6 E420 0.0003 mg/L <0.0030	tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
zinc, total 7440-66- E420 0.003 mg/L <0.0030 Fotal Metals (QCLot: 525751) nercury, total 7439-97-6 E508 0.000050 mg/L <0.0000050 Aggregate Organics (QCLot: 524543)	titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
Total Metals (QCLot: 525751)	zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
nercury, total 7439-97-6 E508 0.000005 mg/L <0.0000050	Total Metals (QCLot: 525751)						
Aggregate Organics (OCLot: 524543)	mercury, total	7439-97-6	E508	0.00005	mg/L	<0.000050	
	Aggregate Organics (QCI of: 524543)						

Page	: 6 of 12
Work Order	: WT2205574 Amendment 2
Client	: Grounded Engineering Inc.
Project	: 22-087

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Aggregate Organics (QCLot: 524543) - conti	nued					
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	<2.0	
Aggregate Organics (QCLot: 524985)						
phenols, total (4AAP)		E562	0.001	mg/L	<0.0010	
Aggregate Organics (QCLot: 525511)						
oil & grease (gravimetric)		E567	5	mg/L	<5.0	
Aggregate Organics (QCLot: 525512)						
oil & grease, mineral (gravimetric)		E567SG	5	mg/L	<5.0	
Volatile Organic Compounds (QCLot: 529792	2)					
benzene	71-43-2	E611D	0.5	µg/L	<0.50	
chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	<0.50	
dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	<0.50	
dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	<0.30	
ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	
methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	
styrene	100-42-5	E611D	0.5	µg/L	<0.50	
tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	<0.50	
tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
toluene	108-88-3	E611D	0.5	µg/L	<0.50	
trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
xylene, m+p-	179601-23-1	E611D	0.4	µg/L	<0.40	
xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	
Phthalate Esters (QCI of: 530120)						
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	µg/L	<2.0	
di-n-butyl phthalate	84-74-2	E655F	1	µg/L	<1.0	
Nonviphenois (QCLot: 532553)						
nonylphenols [NP]	84852-15-3	E749A	1	µg/L	<1.0	
Nonylphenols (QCLot: 532554)						
nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	µg/L	<0.10	
nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	µg/L	<2.0	
Polychlorinated Biphenyls (QCLot: 532378)						
Aroclor 1016	12674-11-2	E687	0.02	µg/L	<0.020	
Aroclor 1221	11104-28-2	E687	0.02	µg/L	<0.020	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	<0.020	

Page	: 7 of 12
Work Order	: WT2205574 Amendment 2
Client	: Grounded Engineering Inc.
Project	: 22-087

Sub-Matrix: Water

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 526075)								
рН	E108		pH units	7 pH units	101	98.0	102	
Physical Tests (QCLot: 528998)								
solids, total suspended [TSS]	E160	3	mg/L	150 mg/L	108	85.0	115	
Anions and Nutrients (QCLot: 524984)								
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.431 mg/L	99.3	80.0	120	
Anions and Nutrients (QCLot: 524986)								
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	99.0	75.0	125	
Anions and Nutrients (QCLot: 526077)								
fluoride	16984-48-8 E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 526078)								
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Cvanides (QCLot: 526811)								
cyanide, strong acid dissociable (total)	E333	0.002	mg/L	0.25 mg/L	92.9	80.0	120	
Total Metals (QCLot: 525412)								
aluminum, total	7429-90-5 E420	0.003	mg/L	0.1 mg/L	100	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	0.05 mg/L	95.4	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	0.05 mg/L	99.1	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.005 mg/L	99.3	80.0	120	
chromium, total	7440-47-3 E420	0.0005	mg/L	0.0125 mg/L	98.3	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.0125 mg/L	97.7	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.0125 mg/L	96.2	80.0	120	
lead, total	7439-92-1 E420	0.00005	mg/L	0.025 mg/L	95.1	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.0125 mg/L	97.4	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.0125 mg/L	97.3	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.025 mg/L	97.2	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	0.05 mg/L	96.4	80.0	120	
silver, total	7440-22-4 E420	0.00001	mg/L	0.005 mg/L	89.6	80.0	120	
tin, total	7440-31-5 E420	0.0001	mg/L	0.025 mg/L	95.8	80.0	120	
titanium, total	7440-32-6 E420	0.0003	mg/L	0.0125 mg/L	96.9	80.0	120	
zinc, total	7440-66-6 E420	0.003	mg/L	0.025 mg/L	97.4	80.0	120	
Total Metals (QCLot: 525751)								

Page: 9 of 12Work Order: WT2205574 Amendment 2Client: Grounded Engineering Inc.Project: 22-087

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	v Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 525751) - continued										
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	89.6	80.0	120		
Aggregate Organics (OCL of: 524543)						1				
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	198 mg/L	96.5	85.0	115		
Aggregate Organics (QCLot: 524985)						1				
phenols, total (4AAP)		E562	0.001	mg/L	0.02 mg/L	93.3	85.0	115		
Aggregate Organics (QCLot: 525511)						1				
oil & grease (gravimetric)		E567	5	mg/L	200 mg/L	80.4	70.0	130		
Aggregate Organics (QCLot: 525512)										
oil & grease, mineral (gravimetric)		E567SG	5	mg/L	100 mg/L	# 66.2	70.0	130	LCS-ND	
Volatile Organic Compounds (QCLot: 52979)2)									
benzene	71-43-2	E611D	0.5	µg/L	100 µg/L	105	70.0	130		
chloroform	67-66-3	E611D	0.5	µg/L	100 µg/L	109	70.0	130		
dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	100 µg/L	102	70.0	130		
dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	100 µg/L	109	70.0	130		
dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	100 µg/L	91.7	70.0	130		
dichloromethane	75-09-2	E611D	1	µg/L	100 µg/L	108	70.0	130		
dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	100 µg/L	97.8	70.0	130		
ethylbenzene	100-41-4	E611D	0.5	µg/L	100 µg/L	91.3	70.0	130		
methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	100 µg/L	88.6	70.0	130		
styrene	100-42-5	E611D	0.5	µg/L	100 µg/L	91.4	70.0	130		
tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	100 µg/L	94.0	70.0	130		
tetrachloroethylene	127-18-4	E611D	0.5	µg/L	100 µg/L	96.4	70.0	130		
toluene	108-88-3	E611D	0.5	µg/L	100 µg/L	91.8	70.0	130		
trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	98.1	70.0	130		
xylene, m+p-	179601-23-1	E611D	0.4	µg/L	200 µg/L	98.7	70.0	130		
xylene, o-	95-47-6	E611D	0.3	µg/L	100 µg/L	91.2	70.0	130		
Phthalate Esters (QCLot: 530120)										
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	µg/L	6.4 µg/L	130	50.0	140		
di-n-butyl phthalate	84-74-2	E655F	1	μg/L	6.4 µg/L	110	50.0	140		
Nonylphenols (QCLot: 532553)		57404					75.0	405		
	84852-15-3	E/49A	1	µg/L	10 µg/L	104	75.0	125		
Nonylphenols (QCLot: 532554)										
nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	µg/L	1 µg/L	117	75.0	125		
Page	: 10 of 12									
------------	-----------------------------									
Work Order	: WT2205574 Amendment 2									
Client	: Grounded Engineering Inc.									
Project	· 22-087									

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Nonylphenols (QCLot: 532554) - co	ntinued								
nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	µg/L	20 µg/L	87.7	75.0	125	
Polychlorinated Biphenyls (QCLot:	532378)								
Aroclor 1016	12674-11-2	E687	0.02	µg/L	0.2 µg/L	95.6	60.0	140	
Aroclor 1221	11104-28-2	E687	0.02	µg/L	0.2 µg/L	95.6	60.0	140	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	0.2 µg/L	95.6	60.0	140	
Aroclor 1242	53469-21-9	E687	0.02	µg/L	0.2 µg/L	95.6	60.0	140	
Aroclor 1248	12672-29-6	E687	0.02	µg/L	0.2 µg/L	95.8	60.0	140	
Aroclor 1254	11097-69-1	E687	0.02	µg/L	0.2 µg/L	102	60.0	140	
Aroclor 1260	11096-82-5	E687	0.02	μg/L	0.2 µg/L	87.0	60.0	140	
Aroclor 1262	37324-23-5	E687	0.02	μg/L	0.2 µg/L	87.0	60.0	140	
Aroclor 1268	11100-14-4	E687	0.02	µg/L	0.2 μg/L	87.0	60.0	140	
Qualifiers									
Qualifier	Description								
LCS-ND	Lab Control Sample recov	ery was slightly outside A	ALS DQO. Repo	rted non-detect re	sults for associated sa	mples were unaffecte	ed.		

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water						Matrix Spike (MS) Report							
					Sp	ike	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Anions and Nutr	ients (QCLot: 524984)												
WT2205414-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0879 mg/L	0.1 mg/L	87.9	70.0	130				
Anions and Nutr	ients (QCLot: 524986)												
WT2205541-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.78 mg/L	2.5 mg/L	111	70.0	130				
Anions and Nutr	ients (QCLot: 526077)												
WT2205679-001	Anonymous	fluoride	16984-48-8	E235.F	ND mg/L	1 mg/L	ND	75.0	125				
Anions and Nutrients (QCLot: 526078)													
WT2205679-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	98.6 mg/L	100 mg/L	98.6	75.0	125				
Cyanides (QCLo	ot: 526811)												
EO2204473-001	Anonymous	cyanide, strong acid dissociable (total)		E333	0.254 mg/L	0.25 mg/L	102	70.0	130				
Total Metals (QC	CLot: 525412)												
WT2205590-002	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	0.1 mg/L	ND	70.0	130				
		antimony, total	7440-36-0	E420	0.0503 mg/L	0.05 mg/L	101	70.0	130				
		arsenic, total	7440-38-2	E420	0.0524 mg/L	0.05 mg/L	105	70.0	130				
		cadmium, total	7440-43-9	E420	0.00520 mg/L	0.005 mg/L	104	70.0	130				
		chromium, total	7440-47-3	E420	0.0128 mg/L	0.0125 mg/L	103	70.0	130				
		cobalt, total	7440-48-4	E420	0.0128 mg/L	0.0125 mg/L	103	70.0	130				
		copper, total	7440-50-8	E420	0.0121 mg/L	0.0125 mg/L	96.6	70.0	130				
		lead, total	7439-92-1	E420	0.0239 mg/L	0.025 mg/L	95.7	70.0	130				
		manganese, total	7439-96-5	E420	0.0124 mg/L	0.0125 mg/L	99.3	70.0	130				
		molybdenum, total	7439-98-7	E420	0.0130 mg/L	0.0125 mg/L	104	70.0	130				
		nickel, total	7440-02-0	E420	0.0257 mg/L	0.025 mg/L	103	70.0	130				
		selenium, total	7782-49-2	E420	0.0502 mg/L	0.05 mg/L	100	70.0	130				
		silver, total	7440-22-4	E420	0.00468 mg/L	0.005 mg/L	93.6	70.0	130				
		tin, total	7440-31-5	E420	0.0246 mg/L	0.025 mg/L	98.4	70.0	130				
		titanium, total	7440-32-6	E420	0.0123 mg/L	0.0125 mg/L	98.3	70.0	130				
		zinc, total	7440-66-6	E420	0.0244 mg/L	0.025 mg/L	97.4	70.0	130				
Total Metals (QC	CLot: 525751)												
WT2205574-001	SW-UF-BH2	mercury, total	7439-97-6	E508	0.0000940 mg/L	0.0001 mg/L	94.0	70.0	130				
Aggregate Organ	nics (QCLot: 524985)												
WT2205416-001	Anonymous	phenols, total (4AAP)		E562	0.0198 mg/L	0.02 mg/L	98.9	75.0	125				

Page: 12 of 12Work Order: WT2205574 Amendment 2Client: Grounded Engineering Inc.Project: 22-087

Sub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Volatile Organic	Compounds (QCLot	t: 529792)										
WT2205531-001	Anonymous	benzene	71-43-2	E611D	98.1 µg/L	100 µg/L	98.1	60.0	140			
		chloroform	67-66-3	E611D	103 µg/L	100 µg/L	103	60.0	140			
		dichlorobenzene, 1,2-	95-50-1	E611D	96.3 µg/L	100 µg/L	96.3	60.0	140			
		dichlorobenzene, 1,4-	106-46-7	E611D	103 µg/L	100 µg/L	103	60.0	140			
		dichloroethylene, cis-1,2-	156-59-2	E611D	85.1 µg/L	100 µg/L	85.1	60.0	140			
		dichloromethane	75-09-2	E611D	99.8 µg/L	100 µg/L	99.8	60.0	140			
		dichloropropylene, trans-1,3-	10061-02-6	E611D	86.8 µg/L	100 µg/L	86.8	60.0	140			
		ethylbenzene	100-41-4	E611D	84.1 µg/L	100 µg/L	84.1	60.0	140			
		methyl ethyl ketone [MEK]	78-93-3	E611D	79 µg/L	100 µg/L	79.1	60.0	140			
		styrene	100-42-5	E611D	83.4 µg/L	100 µg/L	83.4	60.0	140			
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	86.0 µg/L	100 µg/L	86.0	60.0	140			
		tetrachloroethylene	127-18-4	E611D	88.0 µg/L	100 µg/L	88.0	60.0	140			
		toluene	108-88-3	E611D	84.6 µg/L	100 µg/L	84.6	60.0	140			
		trichloroethylene	79-01-6	E611D	90.6 µg/L	100 µg/L	90.6	60.0	140			
		xylene, m+p-	179601-23-1	E611D	184 µg/L	200 µg/L	91.9	60.0	140			
		xylene, o-	95-47-6	E611D	84.4 µg/L	100 µg/L	84.4	60.0	140			
Nonylphenols (0	QCLot: 532553)											
VA22B3407-001	Anonymous	nonylphenols [NP]	84852-15-3	E749A	10.5 µg/L	10 µg/L	105	60.0	140			
Nonylphenols (0	QCLot: 532554)											
VA22B3407-001	Anonymous	nonylphenol diethoxylates [NP2EO]	n/a	E749B	1.11 µg/L	1 µg/L	111	60.0	140			
		nonylphenol monoethoxylates [NP1EO]	n/a	E749B	22.0 µg/L	20 µg/L	110	60.0	140			

Released by:	Are samples taken fr	Drinking W		the state of the s						ALS Sample # (ALS use only)	ALS Lab Work O	LSD: HO 94	Job #: PO / AFE:	ALS Account # / Qu		Contact:	Company:	Co	Invoice To Sa	City/Province:	Street		Contact:	Company:	Report To	ALS W	
SHIPMENT RELEASE (client use)	om a Regulated DW System? A NO an consumption/ use? K NO	Vater (DW) Samples ¹ (client use) Notes / Spec		A Distance and the second second	and the second se		A A A A A A A A A A A A A A A A A A A		SW-UP-BH2	Sample Identification and/or Coordinates (This description will appear on the report)	rder# (ALS use only): WT 2205574 SO1	I TOMKEN RO / MISSISSANGA	12021	Jote #	Project Information	and the local and the second second second second		py of Invoice with Report	me as Report To	TOKENIO , UN	BANGAN DR	Company address below will appear 60% form 981 -2891	ENANGY STATES SAM BASTAN	GROWNED ENGINEERING	Contact and company name below will appear on the final report	ww.alsglobal.com	MM -102 861012
Received by:	phere u	fy Limits for result (E			S IN Street		ALL SALES				ALS Contact:	Location:	Requisitioner:	AFE/Cost Center:	0	Email 2	Email 1 or Fax	Select Invoice Dis		Email 3	Email 1 or Fax	Select Distribution	Merge QC/QCI	Select Report For		N AND AND A	180
INITIAL STILLINE	and Sa	evaluation by select Excel COC only)						+	H-JWN-	Date (dd-mmm-yy)					il and Gas Require			stribution:	Invoice F	in the second	cleete	n: P BMAIL	Reports with COA ts to Criteria on Report -	rmat: A PDF	Reports / I	- Hr - Hr	Canada Toll
Date:	initary	ing from drop-down			1 mm 10 10				12 15:20	Time (hh.mm)	Sampler:			Routing Code:	ed Fields (client u			MAIL I MAIL I	Recipients	970moled	graindede	D WALL	provide details below if	A BURNER	Recipients	a show in	Free: 1 800 668
102	Combined	below							Gw	Sample Type	E	X	THE COMPANY		se)] FAX	0	leng - ca	19. ca	FAX	box checked	(DIGITAL)		100	9878
Time:	Cooler C	Cooling		-		1			107	NU	MBE	RO	FC	ON.	TAI	NE	RS			Date	a Same d	1 day [Routine			L
Received by:	INITIAL COOLER TEMP	Method: NONE								222	WEI EL	REG	SIC M	Cov	100	A	Indicate Filtered		For all tests v	and Time Required for all	ay (E2) if received by 10am 1 by to rush requests on weeke	E] if neceived by 3pm M-F -	[P3] If received by 3pm M-F	[R] if received by 3pm M-F	Turnaround Time		200
A DE	ERATURES °C	ICE CICE P											1	A North Control of the second			(F), Preserved (P) or Filte	Analysi	with rush TATs requested, pl	E&P TATS:	M-S - 200% rush surcharge ruls, statutory holidays and	100% rush surcharge mi	 25% rush surcharge m 50% rush surcharge mi 	 no surcharges apply 	e (TAT) Requested	No Sacharan	4 5.0 4 -
10/10	Sample C	ACK 1		12										1		1	red and Pr	s Reque	lease conta-		non-routine	inimum	inimum	amum			age
2130	FINAL COOLER TEMPE	IS use only)	d rtt w				10 Mar 1									-	Telephone : +1 519						WT22	Work Order	Environment		of
Time	INATURES "C	UNG INTIATED	-						and the con-	SA	MPL	ES	ON TOR/	HO			886 6910		043				0557	Reference	tal Divisio		
A	N/II		1			-	-			التم	SPEC	TED	HAZA	ARD	(see			Ξ	-				4		on		

APPENDIX F

APPENDIX G

	SHORT TERM -I	NO	ORTH BUILDING ST	EADY STATE								
Excavation Di	imensions [m]		Rainfall Data									
N-S	51		Year	2	100							
E-W	31		Hour	3	12							
Area (m2)	1581	ĺ	Depth (mm)	25	94							
Perimeter (m)	164		Depth (m)	0.025	0.094							
S	ection		Flow [m3/day]	Length [m]	Volume [L/day]							
	Base		0.25864	51	13,191							
	Sides		0.12563	164	20,603							
	Total				33,794							
Factor of	of Safety 2	.0			67,588							
Storm Events			Summary	L/day	L/min							
2 Year [L/day]	100 Year [L/day]		Groundwater	70,000	48.6							
39,525	149,000		Rainfall	40,000	27.8							
			Total	110,000	76.4							

	LONG TERM - NORTH BUILDING STEADY STATE											
Excavation Di	imensions [m]		Rainfall Data									
N-S	51		Year	2	100							
E-W	31		Hour	3	12							
Area (m2)	1581		Depth (mm)	25	94							
Perimeter (m)	164		Depth (m)	0.025	0.094							
S	ection		Flow [m3/day]	Length [m]	Volume [L/day]							
	Base		0.25864	51	13,191							
	Sides		0.12563	164	20,603							
	Total				33,794							
Factor of	of Safety	2.0			67,588							
				-								
Infiltratio	on [L/day]		Summary	L/day	L/min							
	3555		Groundwater	70,000	48.6							
			Infiltration	4,000	2.8							
			Total	74,000	51.4							

	SHORT TERM - S	OUTH BUILDING ST	TEADY STATE									
Excavation Di	mensions [m]	Rainfall Data										
N-S	80	Year	2	100								
E-W	34	Hour	3	12								
Area (m2)	2720	Depth (mm)	25	94								
Perimeter (m)	228	Depth (m)	0.025	0.094								
S	ection	Flow [m3/day]	Length [m]	Volume [L/day]								
	Base	0.29384	80	23,507								
	Sides	0.16738	228	38,163								
	Total			61,670								
Factor o	of Safety 2.0			123,340								
Storm Events		Summary	L/day	L/min								
2 Year [L/day]	100 Year [L/day]	Groundwater	125,000	86.8								
68,000	256,000	Rainfall	68,000	47.2								
		Total	193,000	134.0								

	LONG TERM - SOUTH BUILDING STEADY STATE												
Excavation Di	mensions [m]		Rainfall Data										
N-S	80	Year	Year 2										
E-W	34	Hour	3	12									
Area (m2)	2720	Depth (mm)	25	94									
Perimeter (m)	228	Depth (m)	0.025	0.094									
S	ection	Flow [m3/day]	Length [m]	Volume [L/day]									
	Base	0.29384	80	23,507									
	Sides	0.16738	228	38,163									
	Total			61,670									
Factor of	of Safety 2.0			123,340									
		•	•										
Infiltratio	on [L/day]	Summary	L/day	L/min									
	10327.5	Groundwater	125,000	86.8									
		Infiltration	11,000	7.6									
		Total	136,000	94.4									