

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 1303 LAKESHORE ROAD EAST, **MISSISSAUGA, ONTARIO**

Prepared for:

1303 Lakeshore Rd E. GP Inc. 488 Huron Street, Toronto, Ontario M5R 2R3 C/O High Street Capital Partners

Attention:

Mr. Glen Letman

File No. 1-21-0265-42 October 11, 2022

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250

Hamilton – Niagara 903 Barton Street, Unit 22 Stoney Creek, Ontario L8E (905) 643-7560 Fax: 643-7559 (705) 739-8355 Fax: 739-8369 www.terraprobe.ca

Terraprobe Inc. **Central Ontario** 220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8

Northern Ontario

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

1.0 EXECUTIVE SUMMARY

Terraprobe Inc. (Terraprobe) was retained by Mr. Glen Letman C/O High Street Capital Partners to complete a Phase Two Environmental Site Assessment (ESA) of the Property (herein referred to as "Property" or "Site") with municipal address 1303 Lakeshore Road East, Mississauga, Ontario. The Property is situated on the northeast quadrant of the intersection of Lakeshore Road East and Fergus Road, in the City of Mississauga. The Phase Two ESA was required due to the conclusions of the Phase One ESA, which indicated Areas of Potential Environmental Concern (APECs) were present on the Property. The Phase Two ESA was completed in compliance with Ontario Regulation 153/04 (O. Reg. 153/04), as amended.

The Property is rectangular in shape and covers an area of approximately 0.31 hectares (approximately 0.77 acres) and is developed with a two-story motel building and associated parking area. The surrounding area is predominantly residential in land use. The Property is commercial in land use as per Ontario Regulation 153/04 (O. Reg. 153/04).

Based on the Preliminary Site Plan Provided by Mr. Glen Letman C/O High Street Capital Partners, the Property is proposed to be re-developed with a 10-storey residential building with three (3) levels of underground parking. Under the Ministry of the Environment, Conservation, and Parks (MECP) the Property is currently under commercial land use and the proposed development will place the Property under residential land use. Due to the change in land use from less sensitive (commercial) to more sensitive (residential), the filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP) is a statutory requirement.

Terraprobe conducted a Phase One ESA for the Property in February 2022. The Phase One ESA identified areas of potential environmental concern at the Property. The Phase Two ESA was conducted to assess the soil and ground water quality in the areas of potential environmental concerns identified on the Property and to determine what, if any, requirements exist for further investigation and/or remediation. The Phase One ESA had identified the following areas of potential environmental concern on the Property:

Areas of Potential Environmental Concern

The identified areas of potential environmental concern (APEC) and potential contaminants of concern (PCOC) are summarized below:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC 1	Entire Phase One Property	#30 - Importation of Fill Material of Unknown Quality	On-Site	Metals As, Sb, Se EC SAR B-HWS CN- Hg Cr (VI) Low or high pH Petroleum Hydrocarbons (PHCs), Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Polycyclic Aromatic Hydrocarbons (PAHs) Polychlorinated Biphenyls (PCBs)	Soil
APEC 2	Southwest Portion of the Phase One Property	#28 – Gasoline and Associated Product Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil Groundwater
APEC 3	Eastern and Southern Portion of Phase One Property in the Parking Lot	Others 3 – Use of Winter De-icing Salts	On-Site	EC, SAR	Soil

A Phase Two ESA of the Property was conducted to investigate these concerns.

The conclusions of the Phase Two ESA are presented below:

• A total of ten (10) boreholes were advanced on the Property to a depth of 2.4 to 12.3 meters below ground surface (mbgs). Boreholes BH1, BH2, BH3, BH4, and BH10 were installed with a monitoring well.

- Soil conditions encountered within the boreholes consisted primarily of a layer of surficial materials, followed by earth fill, and then native soils. The surficial materials layer was composed of asphaltic pavement structure and aggregate or Pavers block, or topsoil approximately 25 to 225 mm in thickness and was underlain by a layer of earth fill materials. The earth fill materials extended to a depth of 0.6 to 2.6 meters below ground surface (mbgs) (Elev. 83.6 to 81.2 masl). The earth fill primarily consisted of mixed composition predominantly comprising of clayey silt with trace sand to sandy and trace amounts of gravel and organics to sand and gravel with trace amounts of silt. Underlying the earth fill materials, an undisturbed cohesive glacial till was encountered to depths of 2.3 to 4.0 mbgs (Elev. 81.2 to 79.5 masl). Underlying the glacial till, bedrock was inferred in Boreholes BH1, BH3, BH8, and BH9 by split spoon samples and augering resistance observation at a depth of 2.3 to 3.8 mbgs (Elev. 81.2 to 80.2 masl). Bedrock was confirmed by rock coring in Boreholes BH2 and BH4 at depths of 3.0 to 3.8 mbgs (Elev. 81.2 to 80.2 masl) respectively and extended to a depth of 12.2 to 12.3 mbgs (Elev. 72.0 to 71.7 masl).
- One (1) grain size analysis was conducted to determine the on-site soil texture. The soil sample was identified to be of medium-fine texture.
- Ground water depths at the Property varies from 3.0 m (81.2 masl) to 4.8 m (79.2 masl) below ground surface. Additional ground water data is required to confirm ground water flow direction, however, based on local topography of the area, the ground water is expected to flow in the southeastern direction.
- The applicable Site Condition Standards are the Ministry of the Environment, Conservation and Parks (MECP) Table 8 Standards for use within 30 m of a water body in a potable ground water condition soil for Residential, Parkland, Institutional, Industrial, Commercial, Community Land Use (MECP Table 8 Standards).
- Select soil samples were analysed for metals & inorganics (M&I), selected other regulated parameters pH (ORPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylene (BTEX).
 - Applicable site condition standards were met for all soils on the Property with the exception of the following exceedances:
 - Lead
 - BH5-SS1 (0.0-0.6 m depth): 197 ug/g vs 120 ug/g MECP Table 8 Standards.
 - BH10-SS2 (0.8-1.4 m depth): 126 ug/g vs 120 ug/g MECP Table 8 Standards.
 - DUP1 (BH10-SS2) (0.8-1.4 m depth): 138 ug/g vs 120 ug/g MECP Table 8 Standards.

- Boron (Hot Water Soluble)
 - BH9-SS2 (0.8-1.4 m depth): 1.98 ug/g vs 1.5 ug/g MECP Table 8 Standards.
- Electrical Conductivity
 - BH5-SS1 (0.0-0.6 m depth): 0.889 mS/cm vs 0.7 mS/cm MECP Table 8 Standards.
 - BH7-SS2 (0.8-1.4 m depth): 1.14 mS/cm vs 0.7 mS/cm MECP Table 8 Standards.
- Sodium Adsorption Ratio
 - BH6-SS1 (0.0-0.6 m depth): 5.48 vs 5 MECP Table 8 Standards.
- Select ground water samples were analysed for petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and xylene (BTEX).
- Applicable site condition standards were met for ground water on the Property.

The EC and SAR exceedances in soil are likely due to the use of de-icing salts. De-icing salts used on roadways and parking lots on and adjacent to the Property as well as the placement of snow stockpiles on the parking lots on the Property, attribute to the SAR exceedances. As per the O.Reg.407/19 Section 49.1, the salt-related parameter (SAR) is not considered to be contaminants of concern for the Property, given that the de-icing salt has been applied to surfaces for the safety of vehicular and pedestrian traffic under conditions of snow, ice, or both.

The other identified soil impacts are considered to be localized within the fill material at the Property. Additional investigation is required to delineate the extent of the soil impacts. Removal of the impacted soil and confirmatory soil sampling would be needed to meet the applicable MECP Table 8 Standards prior to the submission of a Record of Site Condition (RSC).

TABLE OF CONTENTS

SEC	CTION	PAGE PAGE
1.0	EXI	ECUTIVE SUMMARY
2.0	INT	RODUCTION1
	2.1	SITE DESCRIPTION1
	2.2	PHASE TWO PROPERTY INFORMATION1
	2.3	CURRENT AND PROPOSED FUTURE USES
	2.4	APPLICABLE SITE CONDITION STANDARD
	2.5	OBJECTIVES OF INVESTIGATION
3.0	BAG	CKGROUND INFORMATION
	3.1	PHYSICAL SETTING
		3.1.1 Water Bodies, Wetlands and Areas of Natural Significance
		3.1.2 Topography and Surface water Drainage
	3.2	PAST INVESTIGATIONS
4.0	SCO	OPE OF THE INVESTIGATION
	4.1	OVERVIEW OF SITE INVESTIGATION
	4.2	Media Investigated
		4.2.1 Rational for Inclusion or Exclusion of Media
		4.2.2 Overview of Field Investigation of Media
	4.3	PHASE ONE CONCEPTUAL SITE MODEL
	4.4	DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN
	4.5	IMPEDIMENTS
5.0	INV	'ESTIGATION METHOD9
	5.1	GENERAL
	5.2	DRILLING
	5.3	SOIL SAMPLING
		5.3.1 Equipment Used
		5.3.2 Geological Description of Soil
	5.4	FIELD SCREENING MEASUREMENTS
	5.5	GROUND WATER MONITORING WELL INSTALLATION
	5.6	FIELD MEASUREMENT OF WATER QUALITY PARAMETERS GROUND WATER SAMPLING10
	5.7	GROUND WATER SAMPLING
	5.8	SEDIMENT SAMPLING
	5.9	ANALYTICAL TESTING

	5.10	RESID	UE MANAGEMENT PROCEDURES	. 12
		5.10.1	Soil Cuttings	. 12
		5.10.2	Ground Water	. 12
		5.10.3	Fluids from Equipment Cleaning	. 12
	5.11	ELEVA	TION SURVEYING	. 12
	5.12	QUALI	TY ASSURANCE AND QUALITY CONTROL MEASURES	. 12
		5.12.1	Containers, Labelling, Handling, and Chain of Custody	. 12
		5.12.2	Equipment Cleaning Procedures	. 13
		5.12.3	Field Quality Control Measures	. 13
		5.12.4	Deviations in the Quality Assurance and Quality Control Measures	. 13
6.0	REV	TEW A	ND EVALUATION	. 14
	6.1	GEOLO)GY	. 14
		6.1.1	Geological Unit Thickness (Estimate)	.14
		6.1.2	Elevations of Geological Units	. 14
		6.1.3	The Materials in Geologic Units	. 14
		6.1.4	Properties of Aquifers and Aquitards	. 15
	6.2	GROUI	ND WATER ELEVATIONS AND FLOW DIRECTION	. 15
		6.2.1	Rationale for Monitoring Well Locations and Screen Intervals	. 15
		6.2.2	Results of Interface Probe Measurements	. 15
		6.2.3	The Thickness of Free Flowing Product	.15
		6.2.4	Ground Water Elevations	. 15
		6.2.5	Interpreted Direction of Ground Water Flow	. 15
		6.2.6	Assessment of Temporal Variability	. 16
	6.3	GROUI	ND WATER HYDRAULIC GRADIENTS	. 16
		6.3.1	Hydraulic Conductivity	. 16
		6.3.2	Horizontal Hydraulic Gradients	. 16
		6.3.3	Vertical Hydraulic Gradients	. 16
	6.4	SOIL T	`EXTURE	. 17
		6.4.1	Results of Grain Size Analysis	. 17
	6.5	SOIL F	IELD SCREENING	. 17
	6.6	SOIL Q	UALITY	. 17
		6.6.1	Soil Samples	. 17
		6.6.2	Comparison to Applicable Standards (Soil)	. 18
		6.6.3	Contaminants of Concern (Soil)	. 19
		6.6.4	Chemical or Biological Transformations	. 19
		6.6.5	Contamination Impact on Other Media	. 19
		6.6.6	Presence of Light or Dense Non-Aqueous Phase Liquids (In Soil)	. 19
		6.6.7	Toxicity Characteristic Leaching Procedure (TCLP)	. 20

	6.7	GROUND WATER QUALITY		
		6.7.1	Location and Depth of Sample Locations	
		6.7.2	Field Filtering	
		6.7.3	Comparison to Applicable Standards (Ground Water)	
		6.7.4	Contaminants of Concern (Ground Water)	
		6.7.5	Chemical or Biological Transformations	21
		6.7.6	Contamination Impact on Other Media	21
		6.7.7	Presence of Light or Dense Non-Aqueous Phase Liquids (Ground Water)	21
	6.8	SEDIM	ENT QUALITY	21
	6.9	QUALI	TY ASSURANCE AND QUALITY CONTROL RESULTS	21
		6.9.1	Types of Quality Control Samples Collected and Results	21
		6.9.2	Samples Not Handled per the Analytical Methods	
		6.9.3	Subsection 47 (3) of the Regulation	
		6.9.4	Results Qualified by Laboratory	
		6.9.5	Overall Quality of Field Data	
7.0	CON	ICLUSI	IONS	23
	7.1	SIGNA	TURES	24
8.0	REF	ERENC	CES	
9.0	0 LIMITATIONS			

FIGURES:

Phase Two Property Location
PCA Locations
APEC Locations
Borehole/Monitoring Well Location Plan
Ground Water Elevations
Soil Exceedances

TABLES:

Table 1	Geological Units
Table 2	Monitoring Well Construction
Table 3	Ground Water Elevations
Table 4	pH in Soil Result
Table 5	Metals & Inorganics in Soil Result
Table 6	Polycyclic Aromatic Hydrocarbons in Soil Result
Table 7	Polychlorinated Biphenyls in Soil Result
Table 8	Petroleum Hydrocarbons in Soil Result
Table 9	Benzene, Toluene, Ethylbenzene and Xylene Soil Result
Table 10	Petroleum Hydrocarbons in Ground Water Result
Table 11	Volatile Organic Compounds in Ground Water Result
Table 12	Benzene, Toluene, Ethylbenzene and Xylene Ground Water Result

APPENDICES:

Appendix A	Phase One Conceptual Site Model
Appendix B	Sampling and Analysis Plan
Appendix C	Standard Operating Procedures
Appendix D	Borehole Logs
Appendix E	Grain Size Analysis
Appendix F	Laboratory Certificates of Analysis

2.0 INTRODUCTION

Terraprobe Inc. (Terraprobe) was retained by Mr. Glen Letman C/O High Street Capital Partners to complete a Phase Two Environmental Site Assessment (ESA) of the Property (herein referred to as "Property" or "Site") with municipal address 1303 Lakeshore Road East, Mississauga, Ontario. The Property is situated on the northeast quadrant of the intersection of Lakeshore Road East and Fergus Road, in the City of Mississauga. The Phase Two ESA was required due to the conclusions of the Phase One ESA, which indicated Areas of Potential Environmental Concern (APECs) were present on the Property. The Phase Two ESA was completed in compliance with Ontario Regulation 153/04 (O. Reg. 153/04), as amended.

2.1 Site Description

The Property is rectangular in shape and covers an area of approximately 0.31 hectares (approximately 0.77 acres) and is developed with a two-story motel building and associated parking area. The surrounding area is predominantly residential in land use. The Property is commercial in land use as per Ontario Regulation 153/04 (O. Reg. 153/04).

Based on the Preliminary Site Plan Provided by Mr. Glen Letman C/O High Street Capital Partners, the Property is proposed to be re-developed with a 10-storey residential building with three (3) levels of underground parking. Under the Ministry of the Environment, Conservation, and Parks (MECP) the Property is currently under commercial land use and the proposed development will place the Property under residential land use. Due to the change in land use from less sensitive (commercial) to more sensitive (residential), the filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP) is a statutory requirement.

The location of the Property is shown in Figure 1.

2.2 Phase Two Property Information

The Phase Two Property is currently owned by A Vidmar Enterprises Incorporated. Additional information regarding the Property is provided below:

Legal Description	Part Lots 5, 6 & 19 Plan H23 Pt 1 43R16549
PIN 13482-0074 (LT)	
Municipal Address	1303 Lakeshore Road East., Mississauga
Zoning	Commercial – C4
Property Owner Information	A. Vidmar Enterprises Incorporated

2.3 Current and Proposed Future Uses

The Phase Two Property is currently occupied by a two-story motel building and associated parking area. Based on the Preliminary Development Concept Plan, it is understood that the Property would be a 12storey residential building with three (3) levels of underground parking. As such the future land use of the Property will be residential land use.

2.4 Applicable Site Condition Standard

The applicable Site Condition Standards (SCS) for the Subject Property were considered to be those contained in Table 8 of the April 15, 2011 Ontario Ministry of Environment, Conservation and Parks (MECP) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*" for use within 30 m of a water body in a potable ground water condition - for Residential, Parkland, Institutional, Industrial, Commercial, Community Land Use (MECP Table 8 Standards). These are considered to be the applicable Standards for the Property based on the following reasons:

- The intended use for the Property is residential use.
- Bedrock across the Property is located at a depth of greater than 2 m.
- The site is located within 30 m of a surface water body.
- The soil pH on the Property was determined to be between 5 and 9.
- The Property is located in an area of the City of Mississauga which obtains its potable ground water from surface water sources (Lake Ontario). However, drinking water wells were reported by the MECP Water Well Database to be within the Study Area.

Based on the above, MECP Table 8 Standards are applicable to the Property.

2.5 Objectives of Investigation

The general objectives of the investigation include the following:

- To determine if Contaminants of Potential Concern identified in a Phase One ESA for the Property are found through the course of conducting the Phase Two ESA, in soil, sediment, and/or ground water, as applicable.
- To determine if the concentrations of the potential Contaminants of Concern identified in the investigation met the generic Site Condition Standard.

To ensure that the general objectives of the investigation were met, the Qualified Person (QP) ensured the following:

• That the investigation provided sufficient information to provide an understanding of the geological and hydrogeological conditions at the Phase Two Property; and

• That one or more rounds of field sampling are conducted for all Potential Contaminants of Concern (PCoCs) identified for each Area of Potential Environmental Concern (APEC), as identified in the Sampling and Analysis Plan (Appendix C) of the Phase Two ESA and found through the course of conducting the Phase Two ESA, in soil, sediment, and ground water, as applicable.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

3.1.1 Water Bodies, Wetlands and Areas of Natural Significance

Mapping from the Ontario Ministry of Natural Resources and Forest (MNRF) was reviewed to determine if water bodies were present on the Property and within 250 m of the Property. The MNRF National Heritage Information Centre database for listings of Areas of Natural of Scientific Interest (ANSIs) was reviewed. The information is summarized below.

Water Bodies (Study Area)	Applewood Creek is approximately 28 m to the southeast.				
Wetland	Provincially Significant				
(Property)	• No Provincially Significant wetlands are present on the Property.				
	Non- Provincially Significant				
	No Non- Provincially Significant wetlands are present on the Property.				
	Unevaluated				
	• No Unevaluated wetlands are present on the Property.				
Wetland	Provincially Significant				
(Study Area)	• No Provincially Significant wetlands are present in the Study Area.				
	Non- Provincially Significant				
	• No Non- Provincially Significant wetlands are present in the Study Area.				
	Unevaluated				
	• No Unevaluated wetlands are present in the Study Area.				
ANSIs	Provincially Significant Life Science ANSI				
(Property)	• No Life Science ANSIs were identified on the Property.				
	Provincially Significant Earth Science ANSI				
	• No Earth Science ANSIs were identified on the Property.				

ANSIs	Provincially Significant Life Science ANSI		
(Study Area)	• No Life Science ANSIs were identified in the Study Area.		
	Provincially Significant Earth Science ANSI		
	• No Earth Science ANSIs were identified in the Study Area.		

3.1.2 Topography and Surface water Drainage

A topographic map from the Ontario Ministry of Natural Resources and Forestry (MNRF) and the geological mapping produced by the Ontario Ministry of Northern Development and Mines - *Ontario Geological Survey* was reviewed. The information gleaned from the mapping is summarized below.

Topography	The approximate elevation of the Property is 89 masl and slopes to the southeast towards Applewood Creek, located approximately 28 m to the southeast.
Hydrogeology	The nearest water body is Applewood Creek, located approximately 28 m to the southeast of the Property. Groundwater and surface water is expected to flow southeast towards Applewood Creek and discharging into Lake Ontario, approximately 0.8 km to the southeast of the Property.
Geology (overburden)	The overburden on the Property is comprised of sand, gravelly sand and gravel, minor silt and clay, nearshore and beach deposits derived from glaciolacustrine deposits, coarse- textured glaciolacustrine deposits (9c) and fine-textured glacial deposits(8b).
Geology (bedrock)	The bedrock within the study area is part of the Georgian Bay Formation, generally comprised of shale, limestone, dolostone and siltstone. (55b).
Geology (depth to bedrock)	Based on the MECP well records, the bedrock in the vicinity of the Property is approximately 21 m below ground level.

3.2 Past Investigations

Terraprobe previously prepared geotechnical investigation and hydrogeological assessment reports at the Property. Based on the findings of the studies, a layer of earth fill material extending to depths of 0.6 m to 2.6 m below ground surface was identified at the Property. The groundwater was noted at 3.0 to 4.4 m below ground surface. Bedrock (Georgian Bay Formation) was encountered at about 3 to 3.8 m depth below grade (Elev. 80.2 to $81.2 \pm m$).

A Phase One ESA was completed as per the requirement of O. Reg. 153/04 by Terraprobe Inc. in February 2022. The Phase One ESA identified the following areas of potential environmental concern (APECs) on the Property:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC 1	Entire Phase One Property	#30 - Importation of Fill Material of Unknown Quality	On-Site	Metals As, Sb, Se EC SAR B-HWS CN- Hg Cr (VI) Low or high pH Petroleum Hydrocarbons (PHCs), Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Polycyclic Aromatic Hydrocarbons (PAHs) Polychlorinated Biphenyls (PCBs)	Soil
APEC 2	Southwest Portion of the Phase One Property	#28 – Gasoline and Associated Product Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil Groundwater
APEC 3	Eastern and Southern Portion of Phase One Property in the Parking Lot	Others 3 – Use of Winter De-icing Salts	On-Site	EC, SAR	Soil

Based on the findings of the Phase One ESA, a Phase Two ESA was recommended.

4.0 SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

The scope of the Phase Two ESA was determined to assess the soil and ground water quality at the Property, based on the findings of the Phase One ESA completed at the Property. The Phase Two ESA utilized existing monitoring wells installed as part of geotechnical and hydrogeological investigation completed at the Property.

Terraprobe conducted the following work at the Property as part of the Phase Two ESA:

- A total of ten (10) boreholes were advanced on the Property to a depth of 2.4 to 12.3 meters below ground surface (mbgs). Boreholes BH1, BH2, BH3 and BH4 were drilled between June 22-24, 2021, as part of geotechnical and hydrogeological investigation completed at the Property. Boreholes BH5, BH6, BH7, BH8, BH9, and BH10 were drilled between March 10-11, 2022.
- Laboratory analysis of selected soil samples for parameters including:
 - Metals & Inorganics (M&I)
 - Selected Other Regulated Parameters (ORPs)
 - pH
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - Polychlorinated Biphenyls (PCBs)
 - Petroleum Hydrocarbons (PHCs)
 - Benzene, Toluene, Ethylbenzene, and Xylene (BTEX)
- Boreholes BH1, BH2, BH3, BH4, and BH10 were installed with a monitoring well.
- Survey of all boreholes and monitoring wells to a geodetic benchmark.
- Measurement of ground water elevations to determine ground water elevation and flow direction.
- Development and sampling of all monitoring wells.
- Laboratory analysis of ground water samples for:
 - o PHCs
 - Volatile Organic Compounds (VOCs)
 - o BTEX

4.2 Media Investigated

4.2.1 Rational for Inclusion or Exclusion of Media

Media	Included or Excluded	Rational
Soil	Included	Based upon the Phase One ESA, soil sampling was required on the Property of the identified Potential Contaminants of Concern (PCoCs). Sample locations were selected to investigate all the identified Areas of Potential Environmental Concern (APECs).
Sediment	Excluded	Surface water bodies were not present on the Property. As such, sediment sampling was not conducted during the investigation.
Ground Water	Included	Based upon the Phase One ESA, ground water sampling was required on the Property of the identified PCoCs. Sample locations were selected to investigate all the identified Areas of Potential Environmental Concern (APECs).
Surface Water	Excluded	Surface water bodies were not present on the Property. As such, surface water sampling was not conducted during the investigation.

4.2.2 Overview of Field Investigation of Media

Soil sampling was conducted during the drilling program by the use of split spoon sampling. Groundwater sampling was conducted from monitoring wells installed within the completed boreholes.

4.3 Phase One Conceptual Site Model

The Phase One Conceptual Site Model (CSM) was developed as part of the Phase One ESA for the Property through a review of historical records and a reconnaissance of the area. The Phase One CSM from the Phase One ESA is provided in Appendix A.

4.4 Deviations from Sampling and Analysis Plan

The sampling and analysis plan is provided in Appendix B. There were no deviations from the sampling and analysis plan with the exception that ground water was also tested for VOCs.

4.5 Impediments

Impediments were not encountered during the investigation.

5.0 INVESTIGATION METHOD

5.1 General

Public and private utility clearances were undertaken prior to commencing the subsurface investigation. The Phase Two ESA generally followed the methods outlined in the following documents:

• Ontario Ministry of the Environment and Climate Change "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996)

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures. The Standard Operating Procedures is presented in Appendix C.

5.2 Drilling

The drilling information for the Phase Two ESA is provided below:

Borehole	BH1, BH2, BH3 & BH4
Date of Work	June 22 to 24, 2021
Borehole	BH5, BH6, BH7, BH8, BH9 & BH10
Date of Work	March 10 to 11, 2022
Equipment Used	Track Mount Rig
Decontamination Measures	Spoons were cleaned prior to sampling which prevents the potential for cross contamination.
Sampling Frequency	Please refer to the borehole logs in Appendix D for the sampling frequency

5.3 Soil Sampling

5.3.1 Equipment Used

- Laboratory supplied sampling containers
- Nitrile gloves
- Cooler with loose ice
- RKI Instruments EAGLE 2 Monitor.

5.3.2 Geological Description of Soil

Please refer to the borehole logs in Appendix D for the geological description of each soil sample collected.

5.4 Field Screening Measurements

Soil samples were screened in the field using portable hydrocarbon vapour testing equipment and following the procedure outlined in the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" published by the Ontario Ministry of the Environment.

Samples were screened using an RKI Instruments EAGLE 2 Monitor. The monitor has a range of 0 parts per million (ppm) to 50,000 ppm and an accuracy of +/- 5%. The monitor was calibrated with hexane prior to field screening as per the calibration procedure outlined by RKI Instruments in "Instruction Manual Eagle Series Portable Multi-Gas Detector 71-0028RK" released August 8, 2010.

Field screening measurements were used to help select samples for petroleum hydrocarbon and volatile organic compounds laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix D.

5.5 Ground Water Monitoring Well Installation

Monitoring wells were installed in five (5) boreholes - Boreholes BH1, BH2, BH3, BH4, and BH10, by the drilling sub-contractor on dates noted in Section 5.2, under the supervision of an experienced Terraprobe field technician. The wells were constructed of 50-mm (2-in) ID PVC screens and risers. Filter sand was placed around the well screen to approximately 0.6 m above the top of the screen. The wells were then backfilled with bentonite to approximately 0.3 m below ground surface. The wells were finished with flush mount caps.

As per Ontario Regulation 903 the monitoring wells were tagged with a single water well records. The borehole/monitoring well locations are provided in Figure 4. The monitoring well installation details are provided on the borehole logs in Appendix D.

5.6 Field Measurement of Water Quality Parameters Ground Water Sampling

Field measurements of water quality parameters were measured using a Hanna Instruments portable pH/EC/TDS/Temperature meter (model HI 991301).

Range

- pH 0.00 to 14.00 pH
- EC 0.00 to 20.00 mS/cm
- TDS 0.00 to 10.00 ppt (g/L)
- Temperature 0.0 to 60.0°C

Resolution

• pH 0.01 pH

- EC 0.01 mS/cm
- TDS 0.01 ppt
- Temperature 0.1°C

Accuracy

- pH ±0.01 pH
- EC ±2% F.S.
- TDS ±2% F.S.
- Temperature $\pm 0.5^{\circ}$ C

5.7 Ground Water Sampling

The monitoring wells were purged and sampled using inertia pump and tubing. Stabilization of parameters (pH, D.O., conductivity, temperature, etc.) and turbidity of the purged water are monitored before a sample is taken, thus sampling methods facilitate equilibrium with the surrounding formation water and produces samples that are representative of the formation water. One round of ground water sampling was conducted in April 2022.

Stabilization was considered to occur when consecutive readings were within the following:

- <u>Conductivity</u> \pm 3%
- <u>Temperature $\pm 3\%$ </u>
- $\underline{pH} \pm 0.1$ unit

5.8 Sediment Sampling

No sediment sampling was conducted as part of this investigation. No requirement for sediment sampling was identified as there was no surface water bodies (creeks, ponds, lakes) found on the Property.

5.9 Analytical Testing

The soil and ground water analyses were completed by AGAT Laboratories, located at 5835 Coopers Avenue in Mississauga, Ontario. AGAT Laboratories is accredited of approved for specific analyses by the following national or provincial (Ontario) agencies:

- The Canadian Association for Laboratory Accreditation (CALA)
- The Standards Council of Canada (SCC)
- Canadian Council of Ministers of the Environment (CCME)
- Ontario Ministry of the Environment
- Ontario Ministry of Environment Drinking Water Testing License Laboratories Limited

5.10 Residue Management Procedures

5.10.1 Soil Cuttings

Soil cuttings generated during the drilling activities were left on the Property in drums.

5.10.2 Ground Water

The development and purging water generated during the ground water sampling was disposed of to the drums on the Property.

5.10.3 Fluids from Equipment Cleaning

The fluids from cleaning were removed from the Property and disposed of by the driller.

5.11 Elevation Surveying

The elevations of the boreholes on the Property were surveyed by Terraprobe using a Trimble R10 survey system. The Trimble R10 is a differential global positioning system (GPS) which involves the cooperation of two receivers, one that's stationary and another that's roving around making position measurements. The elevation of each borehole on the Property is presented on the borehole logs in Appendix D.

5.12 Quality Assurance and Quality Control Measures

5.12.1 Containers, Labelling, Handling, and Chain of Custody

Containers

Soil Parameters	Container				
pH, M&I	250 mL glass jar, Teflon lined lid				
BTEX, PHCs (F1)	40–60 mL glass vial (charged with methanol preservative, pre- weighed) and glass jar (for moisture content)				
PHCs (F2–F4), PCBs, PAHs	120 mL glass jar, Teflon lined lid				
Ground Water Parameters	Container				
BTEX, PHCs (F1)	40–60 mL glass vials (minimum of 2)				
PHCs (F2–F4)	2 x 100 mL amber glass bottle, Teflon lined lid				

Labelling

All sampling containers were identified with laboratory supplied labels. The labels included the following information:

- Unique Sample ID
- Company Name
- Date and Time
- Project Number

<u>Handling</u>

Samples were placed in coolers with loose ice after collection for transportation to the laboratory. Sample hold times were met for all submitted soil and ground water samples.

Chain of Custody

Laboratory supplied Chain of Custody forms were completed for all samples submitted for analysis.

5.12.2 Equipment Cleaning Procedures

All non-dedicated sampling and monitoring equipment must be cleaned following each use. During soil sampling a dedicated sampling device was used for each sample to prevent cross-contamination. During ground water sampling any part of the interface meter which came into contact with the ground water was cleaned between monitoring wells.

Dedicated equipment (nitrile gloves, terra core samplers, tubing) were changed between each sample to avoid cross contamination.

5.12.3 Field Quality Control Measures

- All non-dedicated sampling and monitoring equipment must be cleaned following each use.
- Sufficient field duplicate samples were collected in each medium being sampled so that at least one (1) field duplicate sample can be submitted for laboratory analysis for every ten (10) samples submitted for laboratory analysis
- Calibration checks on field instruments occurred daily before the commencement of sampling

5.12.4 Deviations in the Quality Assurance and Quality Control Measures

No deviations from the quality assurance and quality control measures plan occurred.

6.0 REVIEW AND EVALUATION

6.1 Geology

The detailed soil profiles encountered in each borehole are provided on the attached borehole logs presented Appendix B. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change. Soil conditions encountered within the boreholes consisted primarily of a layer of surficial materials, followed by earth fill, and then native soils. A brief description of the soil stratigraphy at the Property, in order of depth, is summarized in the following sections.

6.1.1 Geological Unit Thickness (Estimate)

The geological unit thicknesses are presented in Table 1.

6.1.2 Elevations of Geological Units

The geologic unit elevations are presented in Table 1.

6.1.3 The Materials in Geologic Units

Surficial Materials

The surficial materials layer was composed of asphaltic pavement structure and aggregate or Pavers block, or topsoil approximately 25 to 225 mm in thickness and was underlain by a layer of earth fill materials.

<u>Earth Fill</u>

The earth fill materials extended to a depth of 0.6 to 2.6 meters below ground surface (mbgs) (Elev. 83.6 to 81.2 masl). The earth fill primarily consisted of mixed composition predominantly comprising of clayey silt with trace sand to sandy and trace amounts of gravel and organics to sand and gravel with trace amounts of silt.

Native Soil

Underlying the earth fill materials, an undisturbed cohesive glacial till was encountered to depths of 2.3 to 4.0 mbgs (Elev. 81.2 to 79.5 masl).

Bedrock

Underlying the glacial till, bedrock was inferred in Boreholes BH1, BH3, BH8, and BH9 by split spoon samples and augering resistance observation at a depth of 2.3 to 3.8 mbgs (Elev. 81.2 to 80.2 masl).

Bedrock was confirmed by rock coring in Boreholes BH2 and BH4 at depths of 3.0 to 3.8 mbgs (Elev. 81.2 to 80.2 masl) respectively and extended to a depth of 12.2 to 12.3 mbgs (Elev. 72.0 to 71.7 masl).

6.1.4 Properties of Aquifers and Aquitards

<u>Earth Fill</u>

The earth fill on the Property is an unconfined and drained aquifer. The ground water table on the Property is located below the fill. The fill is hydraulically interconnected to the native soils. Any water within the fill material is expected to migrate downwards into the native soils.

Native Soil

The native soil consisting of cohesive glacial till deposit is considered to be low permeability soil. Ground water within native soils is considered to be perched water due to recharge primarily through rainfall events. The water elevations taken within the monitoring wells indicated the glacial till layer is an aquifer.

6.2 Ground Water Elevations and Flow Direction

6.2.1 Rationale for Monitoring Well Locations and Screen Intervals

Monitoring wells were located across the Property in order to provide full site coverage. The monitoring wells were screened within the native soil unit across the Property to allow for the collection of ground water samples within the water bearing aquifer.

6.2.2 Results of Interface Probe Measurements

Interface probe measurements indicated that only water was present on the Property. No light nonaqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected.

6.2.3 The Thickness of Free Flowing Product

No free-flowing product was encountered on the Property.

6.2.4 Ground Water Elevations

Groundwater elevations are presented in Table 3.

6.2.5 Interpreted Direction of Ground Water Flow

Additional ground water data is required to confirm ground water flow direction, however, based on local topography of the area, the ground water is expected to flow in the southeastern direction.

6.2.6 Assessment of Temporal Variability

Two (2) ground water level measurements were collected on the Property. However, additional rounds of ground water level measurements are required to comment on the temporal variability of ground water at the Property.

6.3 Ground Water Hydraulic Gradients

6.3.1 Hydraulic Conductivity

The hydraulic conductivity of the subsurface soils was assessed based on grain size analysis completed on one (1) soil sample. In addition, hydraulic conductivity estimates were obtained based on published data. The results are summarized below:

		Hydraulic Conductivity (m/s)				
Monitoring Well	Strata	Grain Size	Published Data			
BH3	Clayey Silt	4.9 x 10 ⁻⁷	10 ⁻⁶ to 10 ⁻⁹			

The hydraulic conductivity value of the native clayey silt layer based on the grain size analysis is approximately on the order of 10^{-7} m/s. This is comparable to the hydraulic conductivity in published data for the soil identified at the Property.

6.3.2 Horizontal Hydraulic Gradients

The horizontal hydraulic gradient of the ground water for the Property was determined to be approximately 0.033 m/m to the southeast.

6.3.3 Vertical Hydraulic Gradients

The vertical hydraulic gradient cannot be determined at this time because there are no nested monitoring wells installed on the Property. The vertical hydraulic gradient is measured between two neighbouring monitoring wells installed in two different strata or at different depths within the same unit with both monitoring wells having water.

6.4 Soil Texture

6.4.1 Results of Grain Size Analysis

The results of the grain size analysis is provided in Appendix E and noted on the borehole logs at respective sampling depths. A summary of the grain size analysis results is presented below:

	Sampling	Percentage						
Borehole No. Sample No.	Depth below Grade	Gravel	Sand	Silt	Clay	(MIT System)	Sample Soll Texture	
Borehole 3 Sample 4	2.3	0.0	9.5	60.9	29.5	Clayey Silt, trace sand	Medium-Fine	

According to O.Reg.153/04, a soil is considered coarse textured if at least 50 percent by weight of the particles are larger than 75 μ m (0.075 mm), and a soil is considered medium-fine textured if at least 50 percent by weight of the particles are smaller than 75 μ m (0.075 mm). The soil sample was identified to be of medium-fine. The grain size curves are presented in Appendix E.

6.5 Soil Field Screening

All recovered soil samples were screened in the field using portable hydrocarbon vapour testing equipment and following the procedure outlined in the "*Guidance on Sampling and Analytical Methods* for Use at Contaminated Sites in Ontario" published by the Ontario Ministry of the Environment.

There were no visual or olfactory observations that would suggest possible impact to the soil. Field screening for soil vapour did not indicate presence of any concentration of volatile compounds. No headspace reading was detected for any of the soil samples. Complete field screening readings are provided on the borehole logs in Appendix D.

6.6 Soil Quality

6.6.1 Soil Samples

Soil sampling was conducted from the boreholes installed from March 10-11, 2022. Based on scope of work and the field screening, a total of 16 soil samples were submitted for chemical analysis of metals and inorganics (M&I), Other Regulated Parameters – pH (ORPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylene (BTEX). A summary of the soil samples and selected analyses is presented below:

Sample	Sample Depth				Chemical Analysis			sis							
Identification	mbgs	masl	Metals	Metals – HF	Cr (VI)	Hg	B- HWS	CN-	EC	SAR	рН	PAHs	PCBs	PHCs	BTEX
BH5															
SS1	0.0-0.6	84.3-83.7	Х	\checkmark	~	~	~	✓	X	~	~	~	~	-	-
DUP3	0.0-0.6	84.3-83.7	-	-	-	-	-	-	-	-	-	~	-	-	-
BH6															
SS1	0.0-0.6	84.4-83.8	✓	~	~	~	~	~	~	Х	~	-	-	-	-
SS2	0.8-1.4	83.6-83.0	-	-	-	-	-	-	-	-	-	~	✓	-	-
BH7															
SS2	0.8-1.4	83.4-82.8	✓	~	~	~	~	✓	X	✓	~	~	✓	-	-
BH8															
SS2	0.8-1.4	83.2-82.6	✓	~	~	~	~	✓	>	>	~	~	~	-	-
]	BH9										
SS1	0.0-0.6	83.5-82.9	-	-	-	-	-	-	1	1	-	-	~	-	-
DUP4	0.0-0.6	83.5-82.9	-	-	-	-	-	-	1	1	-	-	~	-	-
SS2	0.8-1.4	82.7-82.1	✓	~	~	~	X	~	>	>	~	~	I	~	✓
SS3	1.5-2.1	82.0-81.4	-	-	-	-	-	-	1	1	~	-	I	-	-
DUP5	1.5-2.1	82.0-81.4	-	-	-	-	-	-	1	1	~	-	I	-	-
				E	BH10										
SS1	0.0-0.6	83.5-82.9	-	-	-	-	-	-	1	1	-	-	~	~	~
DUP2	0.0-0.6	83.5-82.9	-	-	-	-	-	-	-	-	-	-	-	✓	~
SS2	0.8-1.4	82.7-82.1	Х	~	~	~	~	✓	~	✓	~	-	-	-	-
DUP1	0.8-1.4	82.7-82.1	Х	✓	~	~	~	✓	~	✓	~	-	-	-	-
SS4	2.3-2.9	81.2-80.6	-	-	-	-	-	-	-	-	~	~	-	\checkmark	~

Note: ✓- Meets MECP Table 8 Standards

X - Exceeds MECP Table 8 Standards

- Not sampled

6.6.2 Comparison to Applicable Standards (Soil)

Applicable site condition standards (Table 8 Standards) were met for all soils on the Property with the exception of the following exceedances summarized below:

- Lead
 - BH5-SS1 (0.0-0.6 m depth): 197 ug/g vs 120 ug/g MECP Table 8 Standards.
 - BH10-SS2 (0.8-1.4 m depth): 126 ug/g vs 120 ug/g MECP Table 8 Standards.
 - DUP1 (BH10-SS2) (0.8-1.4 m depth): 138 ug/g vs 120 ug/g MECP Table 8 Standards.
- Boron (Hot Water Soluble)

- BH9-SS2 (0.8-1.4 m depth): 1.98 ug/g vs 1.5 ug/g MECP Table 8 Standards.
- Electrical Conductivity
 - BH5-SS1 (0.0-0.6 m depth): 0.889 mS/cm vs 0.7 mS/cm MECP Table 8 Standards.
 - BH7-SS2 (0.8-1.4 m depth): 1.14 mS/cm vs 0.7 mS/cm MECP Table 8 Standards.
- Sodium Adsorption Ratio
 - BH6-SS1 (0.0-0.6 m depth): 5.48 vs 5 MECP Table 8 Standards.

The EC and SAR exceedances are likely due to the use of de-icing salts. De-icing salts used on roadways and parking lots on and adjacent to the Property as well as the placement of snow stockpiles on the parking lots on the Property, attribute to the SAR exceedances. As per the O.Reg.407/19 Section 49.1, the salt-related parameter (SAR) is not considered to be contaminants of concern for the Property, given that the de-icing salt has been applied to surfaces for the safety of vehicular and pedestrian traffic under conditions of snow, ice, or both. The other identified soil impacts are considered to be localized within the fill material at the Property. No other exceedances of the MECP Table 8 Standards were observed in the selected soil samples. The soil exceedances are shown in Figure 6.

6.6.3 Contaminants of Concern (Soil)

The Contaminants of Concern associated with the soil within the earth fill on the Property are:

- Lead
- Boron (Hot Water Soluble)

6.6.4 Chemical or Biological Transformations

No chemical or biological transformations of the contaminants of concern are likely to occur.

6.6.5 Contamination Impact on Other Media

Contamination impact on other media is unlikely to occur.

6.6.6 Presence of Light or Dense Non-Aqueous Phase Liquids (In Soil)

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected in the soil on the Property.

6.6.7 Toxicity Characteristic Leaching Procedure (TCLP)

One (1) composite sample was collected and submitted for analyses of Ontario Regulation 347 Schedule 4 Parameters, Toxicity Characteristic Leaching Procedure (TCLP), for waste classification purposes. The analyses were conducted for M&I, PCBs, VOCs, and Benzo(a)Pyrene.

The results of the chemical analysis indicate that the soil is considered **<u>non-hazardous</u>** and should be handled accordingly. The laboratory certificates of analysis are presented in Appendix F.

6.7 Ground Water Quality

6.7.1 Location and Depth of Sample Locations

Ground water sampling was completed for the monitoring wells on the Property. Ground water samples were analysed for PHCs, VOCs, and BTEX. The laboratory certificates of analysis are provided in Appendix F. The ground water sampling and analysis is summarized below:

Monitoring Woll	Screet	DUCa	VOCa	DTEV		
Monitoring wen	(mbgs)	(masl)	rncs	vocs	DIEA	
BH2	4.6-7.6	79.6-76.6	~	✓	✓	
BH4	7.6-10.7	76.4-73.3	~	✓	~	
DUP	7.6-10.7	76.4-73.3	~	✓	~	
BH10	0.9-4.0	82.6-79.5	✓	✓	\checkmark	

Note: ✓- Meets MECP Table 8 Standards

X - Exceeds MECP Table 8 Standards

- Not sampled

6.7.2 Field Filtering

No field filtering was required for the parameters as per the laboratory protocol.

6.7.3 Comparison to Applicable Standards (Ground Water)

The results of the laboratory analysis indicated that there were no exceedances in ground water compared against the applicable MECP Table 8 Standards.

The laboratory certificate of analysis is provided in Appendix F, and the results of the ground water chemical analysis are provided in Tables 10-12.

6.7.4 Contaminants of Concern (Ground Water)

No Contaminants of Concern associated with the ground water on the Property were identified.

6.7.5 Chemical or Biological Transformations

No Contaminants of Concern associated with the ground water on the Property were identified, as such no chemical or biological transformations are expected to occur.

6.7.6 Contamination Impact on Other Media

No Contaminants of Concern associated with the ground water on the Property were identified.

6.7.7 Presence of Light or Dense Non-Aqueous Phase Liquids (Ground Water)

Light non-aqueous phase liquids (LNAPL) and dense non-aqueous phase liquids (DNAPL) were not detected in the ground water on the Property.

6.8 Sediment Quality

No sediment sampling was conducted as part of this investigation.

6.9 Quality Assurance and Quality Control Results

6.9.1 Types of Quality Control Samples Collected and Results

In general, samples were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement and sample container type. Laboratory results were compared to MECP standards for quality control under Ontario Regulation 153/04 which require laboratory results to meet specific method detection limit (MDL) requirements. The sampling and analyses performed conformed with the following:

- Ministry of the Environment Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.I of the Environmental Protection Act of Ontario.

Duplicate samples were submitted at a rate of 10% for both soil and ground water samples.

6.9.2 Samples Not Handled per the Analytical Methods

Holding Time

All samples met the holding times as specified in Ontario Ministry of Environment, Conservation and Parks (MECP) - Laboratory Services Branch "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 1, 2011

Preservation Method

All samples met the preservation methods as specified in MECP - Laboratory Services Branch "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 1, 2011

Storage Requirement

All samples met the storage requirements as specified in MECP - Laboratory Services Branch "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 1, 2011

Container Type

All samples met the container type as specified in MECP - Laboratory Services Branch "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 1, 2011

6.9.3 Subsection 47 (3) of the Regulation

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis. All certificates of analysis or analytical reports received have been included in full in Appendix F.

6.9.4 Results Qualified by Laboratory

The laboratory did not make any significant comments that changed the outcome of the analytical results regarding the soil and groundwater samples.

6.9.5 Overall Quality of Field Data

Decision-making regard the environmental condition of the Property was not affected by the overall quality of the field data. The overall quality of the field data was considered by the Qualified Person to meet the objectives of the investigation and assessment.

7.0 CONCLUSIONS

The conclusions of the Phase Two ESA are presented below:

- A total of ten (10) boreholes were advanced on the Property to a depth of 2.4 to 12.3 meters below ground surface (mbgs). Boreholes BH1, BH2, BH3, BH4, and BH10 were installed with a monitoring well.
- Soil conditions encountered within the boreholes consisted primarily of a layer of surficial materials, followed by earth fill, and then native soils. The surficial materials layer was composed of asphaltic pavement structure and aggregate or Pavers block, or topsoil approximately 25 to 225 mm in thickness and was underlain by a layer of earth fill materials. The earth fill materials extended to a depth of 0.6 to 2.6 meters below ground surface (mbgs) (Elev. 83.6 to 81.2 masl). The earth fill primarily consisted of mixed composition predominantly comprising of clayey silt with trace sand to sandy and trace amounts of gravel and organics to sand and gravel with trace amounts of silt. Underlying the earth fill materials, an undisturbed cohesive glacial till was encountered to depths of 2.3 to 4.0 mbgs (Elev. 81.2 to 79.5 masl). Underlying the glacial till, bedrock was inferred in Boreholes BH1, BH3, BH8, and BH9 by split spoon samples and augering resistance observation at a depth of 2.3 to 3.8 mbgs (Elev. 81.2 to 80.2 masl). Bedrock was confirmed by rock coring in Boreholes BH2 and BH4 at depths of 3.0 to 3.8 mbgs (Elev. 81.2 to 80.2 masl) respectively and extended to a depth of 12.2 to 12.3 mbgs (Elev. 72.0 to 71.7 masl).
- One (1) grain size analysis was conducted to determine the on-site soil texture. The soil sample was identified to be of medium-fine texture.
- Ground water depths at the Property varies from 3.0 m (81.2 masl) to 4.8 m (79.2 masl) below ground surface. Additional ground water data is required to confirm ground water flow direction, however, based on local topography of the area, the ground water is expected to flow in the southeastern direction.
- The applicable Site Condition Standards are the Ministry of the Environment, Conservation and Parks (MECP) Table 8 Standards for use within 30 m of a water body in a potable ground water condition soil for Residential, Parkland, Institutional, Industrial, Commercial, Community Land Use (MECP Table 8 Standards).
- Select soil samples were analysed for metals & inorganics (M&I), selected other regulated parameters pH (ORPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylene (BTEX).
 - Applicable site condition standards were met for all soils on the Property with the exception of the following exceedances:
 - Lead

- BH5-SS1 (0.0-0.6 m depth): 197 ug/g vs 120 ug/g MECP Table 8 Standards.
- BH10-SS2 (0.8-1.4 m depth): 126 ug/g vs 120 ug/g MECP Table 8 Standards.
- DUP1 (BH10-SS2) (0.8-1.4 m depth): 138 ug/g vs 120 ug/g MECP Table 8 Standards.
- Boron (Hot Water Soluble)
 - BH9-SS2 (0.8-1.4 m depth): 1.98 ug/g vs 1.5 ug/g MECP Table 8 Standards.
- Electrical Conductivity
 - BH5-SS1 (0.0-0.6 m depth): 0.889 mS/cm vs 0.7 mS/cm MECP Table 8 Standards.
 - BH7-SS2 (0.8-1.4 m depth): 1.14 mS/cm vs 0.7 mS/cm MECP Table 8 Standards.
- Sodium Adsorption Ratio
 - BH6-SS1 (0.0-0.6 m depth): 5.48 vs 5 MECP Table 8 Standards.
- Select ground water samples were analysed for petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and xylene (BTEX).
- Applicable site condition standards were met for ground water on the Property.

The EC and SAR exceedances in soil are likely due to the use of de-icing salts. De-icing salts used on roadways and parking lots on and adjacent to the Property as well as the placement of snow stockpiles on the parking lots on the Property, attribute to the SAR exceedances. As per the O.Reg.407/19 Section 49.1, the salt-related parameter (SAR) is not considered to be contaminants of concern for the Property, given that the de-icing salt has been applied to surfaces for the safety of vehicular and pedestrian traffic under conditions of snow, ice, or both.

The other identified soil impacts are considered to be localized within the fill material at the Property. Additional investigation is required to delineate the extent of the soil impacts. Removal of the impacted soil and confirmatory soil sampling would be needed to meet the applicable MECP Table 8 Standards prior to the submission of a Record of Site Condition (RSC).

7.1 Signatures

The Phase Two ESA has been completed under the direction and supervision of Muhammad I. Shahid, P.Geo., QP_{ESA} . The findings and conclusions presented in this report have been determined on the basis of the information that was obtained and reviewed, and on an assessment of the existing conditions on the Property.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly, **Terraprobe Inc.**

gh.

Syed Ali, EIT Project Manager

Muhammad I. Shahid, P.Geo., $\ensuremath{QP_{\text{ESA}}}$ Senior Project Manager

8.0 **REFERENCES**

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment. Specific reference is made to the following:

- 1. Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- 2. Chapman, L.J. and Putnam, D.F. 2007. *The Physiography of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 228.
- 3. Freeze, R. Allen and Cherry, John A., 1979. Groundwater. Page 29.
- 4. Ontario Ministry of the Environment, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.*
- 5. Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV. 10f the Environmental Protection Act.
- 6. Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.
- 7. Terraprobe Inc. Phase One Environmental Site Assessment, 1303 Lakeshore Road East, Mississauga, Ontario, February 2, 2022, File Number 1-21-0265-41
- 8. Terraprobe Inc. *Hydrogeological Assessment, 1303 Lakeshore Road East, Mississauga, Ontario,* October 13, 2021, File Number 1-21-0265-46
- 9. Terraprobe Inc. *Geotechnical Investigation and Slope Stability Assessment, 1303 Lakeshore Road East, Mississauga, Ontario,* September 22, 2021, File Number 1-21-0265-01

9.0 LIMITATIONS

This report was prepared for the exclusive use of High Street Capital Partners and is intended to provide an assessment of the environmental conditions on the Property identified as 1303 Lakeshore Road West, Mississauga, Ontario. The report was prepared for the purpose of identifying potential environmental concerns, including an assessment of the likelihood that the environmental quality of the soil and ground water at the site may have been adversely affected by past and present practices at the site, and/or those of the surrounding properties prior to development of the Property. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Terraprobe accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or Property values, or requirements for follow-up actions and costs.

The assessment should not be considered a comprehensive audit that eliminates all risks of encountering environmental problems. The information presented in this report is based on information collected during the completion of the investigation conducted by Terraprobe Inc. It is based on conditions at the subject Property at the time of the site inspection. The subsurface conditions were assessed based on information collected at specific borehole and monitoring well locations. The actual subsurface conditions between the sampling points may vary.

There is no warranty expressed or implied by this report regarding the environmental status of the subject Property. Professional judgment was exercised in gathering and analyzing information collected by our staff, as well as that submitted by others. The conclusions presented are the product of professional care and competence, and cannot be construed as an absolute guarantee.

In the event that during future work new information regarding the environmental condition of the subject Property is encountered, or in the event that the outstanding responses from the regulatory agencies indicate outstanding issues on file with respect to the subject Property, Terraprobe should be notified in order that we may re-evaluate the findings of this assessment and provide amendments, as required.

FIGURES

TERRAPROBE INC

	<image/> Constraints Constraints Cons
A N N A A A A A A A	
	Project Title: Phase Two Environmental Site Assessment
	1303 Lakeshore Road East, Mississauga, Ontario
	Figure Title: Phase Two Property Location
	Designed By: SA Drawn By: Drawn By:
	HK Scale: Reviewed By: MS
	Date: Figure No.: Sept 2022

PCA: Acid and Alkali Manufacturing, Processing and Bulk Storage Chemical Manufacturing, Processing and Bulk Storage Cosmetics Manufacturing, Processing and Bulk Storage Dye Manufacturing, Processing and Bulk Storage Explosives and Firing Range Gasoline and Associated Products Storage in Fixed Tanks Ink Manufacturing, Processing and Bulk Storage Iron and Steel Manufacturing and Processing Metal Treatment, Coating, Plating and Finishing	11 Indeil Lane - I	Sulting Geotechnic Construction Mate Brampton Ont Reference:	A Environmental Engineering rinds. Inspection & Testing ario L6T 3Y3 (905) 796-2650 Mississauga Interactive Maps
Metal Fabrication Paints Manufacturing, Processing and Bulk Storage Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications Pulp, Paper and Paperboard Manufacturing and Processing Storage, maintenace, fuelling and repair of opument upbiclos, and material used to	PCA - Potentia Red PCA Ca Green PCA No	ally Contamir Ausing APEC Autor Causing Al	nating Activity PEC
Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditilrs Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products Waste Generator Ontario Spill	Legend:	ase Two Prope ase Two Study	erty Boundary / Area, 250m
,			
	Project Title: Phase Tw Site Location:	o Environme	ental Site Assessment
	1303 Lakest	nore Road Ea	ast, Mississauga, Ontario
	Figure Title:	PCA Lo	cations
	Designed By: SA Drawn By:		File No.: 1-21-0265-42
	HK <i>Reviewed By:</i> MS		Scale: As Shown
0 30 60m	Date: Sept 2	2022	Pigure No.: 2

		Terra onsulting Geotechnica Construction Mate	probe inc.
ma and M	11 Indell Lane	- Brampton Ont	ario L6T 3Y3 (905) 796-2650
1 8	$\left(\mathbb{Z} \right)$	Reference:	Mississauga nteractive Maps
	Notes: Legend:		
	P	hase Two Prop	erty Boundary
	• A	pproximate Bor	ehole Location
ANO PAR	₽	pproximate Mor	ntoring Well Location
A A A A A A A A A A A A A A A A A A A	Project Title:		
And And	Filase I		
AND CONTRACT	Site Location:		
the second	1303 Lakes	shore Road Ea	ast, Mississauga, Ontario
and the	Figure Title:		
The second second		BH/MW Lo	cation Plan
1.1	Designed By: S/	Ą	File No.: 1-21-0265-42
104	Drawn By: HI	к	Scale:
1 (1)	Reviewed By: M	S	As Shown
0 5 10m	Date: Sept	2022	4

		Terro	Probe	Inc.
Mar and Mar	11 Indell Lane	- Brampton Ont	tario L6T 3Y3 (905) 7	96-2650
1 8		Reference:	Mississauga Interactive Maps	
	Legend:			
1	——— Р ф А	hase Two Prop pproximate Bor	erty Boundary ehole Location	
5	A	pproximate Mo	nitoring Well Location	
	81.2 G M	roundwater Ele arch 9, 2022 (m	vation above sea leve nasl)	l as on
and the second				
A Ada a	Project Title:			
Jack Carts	Phase I		ental Site Assessme	ent
ALL	Site Location:			
and and the	1303 Lakes	shore Road Ea	ast, Mississauga, O	ntario
*	Figure Title:	Groundwate	er Elevations	
1 1 1 1	Designed By: Si	A	File No.: 1-21-0265	-42
124	Drawn By: H	к	Scale: As Shown	
111	Reviewed By: M	S	Figure No.:	
0 5 10m	Date: Sept	2022	5	

				. / .
CONTRACT AND			FRANK SAL	
att Barry			A A A A	· · /
Carlos Antonio			State State	
A 307 /			ALC: NO DE CONTRACTOR DE C	
	A HUR II	1.9 1	A REAL PROPERTY	100 14
THE I			Sanda Tala	in the
				NY / Y
Sample Description	BH5-SS1	Sample Description	BH6-SS1	
Date Sampled	11-Mar-22	Date Sampled	11-Mar-22	13.44
AGAT Workorder	22T872781	AGAT Workorder	0.0-0.6 22T872781	
Parameter Name ON T8 S RPIICC L Lead 120 H	Jnit 3613332 Jg/g 197	Parameter Name Sodium Absorption Ratio	ON T8 S RPIICC Unit 3613334 5 _ 5.48	
Electrical Conductivity 0.7 m	S/cm 0.889 BH1	0 0	A. Same	ALL STAT
Mart 1 Mar a .		And A	2.3	
	BH5-	Partial 1	C	COLUMN COURSE
and the second second	m. 11 66		- 10 Joh	
and the second se		-/- DIVERSION		
1	and a start		11-200	The state
	and the second second		Sample Description	BH7-SS2
		BH6	Depth of Sample (m)	0.8-1.4
	BHO		Parameter Name ON T	8 S RPIICC Unit 3613335
		BH2	Electrical Conductivity	0.7 mS/cm 1.14
C. Crass		BH7		
	a the second sec			10000010
Sample Description	BH9-SS2	the start	P _{BH3}	1. 1 20 1/1/
Date Sampled	11-Mar-22	A all have	DI IO	S.
AGAT Workorder	22T872781	A det the second	7	
Parameter Name ON T8 S RPIICC Unit Boron (Hot Water Soluble) 1.5 ug/a	3613337	(DIMA	1	A INT
		BH10	F	9
Provide Alexandre	1 The second second	A PERSON A	BH8	11/1/10/2014
A SON PELL		The second second	N ALL	
			BH4	11 Jan Holly
		Service and a	CALL ROOM	CALL REAL
0	Charles 1 .	140		2 1. 1 1
	A REALES		CARD AND	The second for
	Sample Description	BH10-SS2 BH10-SS2 (DUP1)	ALL CAL	
S San SPL St	Date Sampled Depth of Sample (m)	11-Mar-22 11-Mar-22 0.8-1.4 0.8-1.4		
Y III	AGAT Workorder Parameter Name ON T8 S RPIICC	22T872781 22T872781 Unit 3613346 3613359	Contraction 1	Sold Star
	Lead 120	µg/g 126 138	1 The state	TE COL
A THE AND A			1 Materia Ville	
18 3.	Colle 1		All Anton	1101
			In Star	11.1
55 m			La US	4
	1	Can land	a Bill	1 160
				B. C. C.

	11 Indell Lane	Consulting Geotechnic Construction Mate	A Environmental Engineering rais, Inspection & Testing ario LGT 3Y3 (905) 796-2650
		Reference:	Mississauga nteractive Maps
0	Notes:		
	Legend:		
1 1 1 1 1 1	F	Phase Two Prop	erty Boundary
CONFERENCE IN	•	Approximate Bor	ehole Location
1 1 day allow	•	Approximate Mor	nitoring Well Location
	Project Title:		
	Phase	Two Environme	ental Site Assessment
Contract to the	Site Location:		
The the	1303 Lake	eshore Road Ea	ast, Mississauga, Ontario
These is a	Figure Title:		
A State of the second		Soil Excee	idances
	Designed By:	SA	File No.: 1-21-0265-42
\$ 7 P P	Drawn By:	IK	Scale: As Shown
11:3	Reviewed By: N	IS	Figure No.:
0 5 10m	Date: Sep	t 2022	6

TERRAPROBE INC

Geological Units 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

		BH1			BH2			BH3			BH4			BH5	
Borehole	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)
Asphaltic Concrete/ Pavers Block/ Aggregate/ Topsoil	84.2	84.0	0.2	84.2	84.0	0.2	84.1	83.9	0.2	84.0	83.9	0.1	84.3	84.2	0.1
Fill (Clayey Silt)	84.0	83.0	1	-	-	-	83.9	82.1	1.8	83.9	81.4	2.5	84.2	82.9	1.3
Fill (Sand and Gravel)	-	-	-	84.0	83.6	0.4	-	-	-	-	-	-	-	-	-
Native Soil (Clayey Silt - Glacial Till)	83.0	81.2	1.8	83.6	81.2	2.4	82.1	80.3	1.8	81.4	80.2	1.2	82.9	81.2	1.7
Bedrock (weathered)	81.2	80.9	0.3	81.2	72.0	9.2	80.3	80.2	0.1	80.2	71.7	8.5	-	-	-
		BH6			BH7			BH8			BH9			BH10	
Borehole	Elev. Top	Elev. Bottom	Thickness	Elev. Top	Elev. Bottom	Thickness	Elev. Top	Elev. Bottom	Thickness	Elev. Top	Elev. Bottom	Thickness	Elev. Top	Elev. Bottom	Thickness
	(masl)	(masl)	(m)	(masl)	(masl)	(m)	(masl)	(masl)	(m)	(masl)	(masl)	(m)	(masl)	(masl)	(m)
Asphaltic Concrete/ Pavers Block/ Aggregate/ Topsoil	84.4	84.2	0.2	84.2	84.0	0.2	84	83.8	0.25	83.5	83.4	0.1	83.5	83.4	0.1
Fill (Clayey Silt)	-	-	-	84.0	82.1	1.9	83.8	81.9	1.85	83.4	82.1	1.3	83.4	82.1	1.3
Fill (Sand and Gravel)	84.2	83.0	1.2	-	-	-	-	-	-	-	-	-	-	-	-
Native Soil (Clayey Silt - Glacial Till)	83.0	81.2	1.8	82.1	81.1	1.0	81.9	80.2	1.7	82.1	81.2	0.9	82.1	79.5	2.6
Bedrock (weathered)	-	-	-	-	-	-	80.2	80.1	0.1	81.2	81.1	0.1	-	-	-

Monitoring Well Construction 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Well ID	B	H1	B	BH2		BH3		BH4		BH10	
Stick Up (m)	C	0.00	0	0.00		0.00	0.00		1.06		
Ground Elev. (masl)	8	34.2	8	4.2	84.1		84		83.5		
Well Component	Depth (m)	Elev. (masl)									
Concrete - Top	-	-	-	-	-	-	-	-	-	-	
Bentonitie - Top	0.0	84.2	0.0	84.2	0.0	84.2	0.0	84.2	0.0	84.2	
Bentonitie - Bottom	0.9	83.3	4.0	80.2	1.7	82.4	7.0	77.0	0.3	83.2	
Sand - Top	0.9	83.3	4.0	80.2	1.7	82.4	7.0	77.0	0.3	83.2	
Screen - Top	1.5	82.7	4.6	79.6	2.3	81.8	7.6	76.4	0.9	82.6	
Screen - Bottom	3.1	81.1	7.6	76.6	3.8	80.3	10.7	73.3	4.0	79.5	
Sand - Bottom	3.1	81.1	7.6	76.6	3.8	80.3	10.7	73.3	4.0	79.5	
Bentonite - Top	3.1	81.1	7.6	76.6	3.8	80.3	10.7	73.3	-	-	
Bentonite - Bottom	3.3	80.9	12.2	72	3.94	80.2	12.32	71.7	-	-	

TABLE 3 Ground Water Elevations 1303 Lakeshore Road East, Mississauga, ON

Project: 1-21-0265-42

Well ID	BH1		BH2		BH3		В	H4	BH10	
Stick Up (m)		-	-		-		-		1.06	
Depth (mbgs)	3	5.1	7.6		3.8		10.7		4.0	
Ground Elev. (masl)	84	4.2	84.2		84.1		84.0		83.5	
Date	WL(m)	Elev. (masl)	WL (m)	Elev. (masl)						
7/19/2021	3.0	81.2	4.3	79.9	3.6	80.5	4.4	79.6	-	-
2022/03/09	3.0	81.2	4.7	79.5	3.6	80.5	4.8	79.2	3.3	80.2

TABLE 4 pH (Soil) 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Sample Name		MECD	BH5-SS1	BH6-SS1	BH7-SS2	BH8-SS2	BH9-SS2	BH9-SS3	DUP5 (BH9-SS3)	BH10-SS2	DUP1 (BH10-SS2)	BH10-SS4
AGAT ID#	Thai+	Table 8	3613332	3613334	3613335	3613336	3613337	3613358	3613365	3613346	3613359	3613353
Date	Unit		3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022
Parameter/Depth of Sample (mbgs)		Kriice	0.0-0.6	0.0-0.6	0.8-1.4	0.8-1.4	0.8-1.4	1.5-2.1	1.5-2.1	0.8-1.4	0.8-1.4	2.3-2.9
pH, 2:1 CaCl2 Extraction	-	-	6.93	6.45	7.07	7.25	6.46	7.05	6.97	6.91	7.13	6.84

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Community Land Use

RDL - Reported Detection Limit; G/S - Guideline / Standard

<150 Detection limit exceeded Standard 150

Sample result exceeded Standard

Results are based on sample dry weight.

Quality Control Data is available upon request.

NV- No Value

Metals & Inorganics - Soil

1303 Lakeshore Road East, Mississauga, ON

Project: 1-21-0265-42

Sample Name			BH5-SS1	BH6-SS1	BH7-SS2	BH8-SS2	BH9-SS2	BH10-SS2	DUP1 (BH10-SS2)
AGAT ID#	TL.*4	MECP	3613332	3613334	3613335	3613336	3613337	3613346	3613359
Date	Unit	RPIICC	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022
Parameter/Depth of Sample (mbgs)		MACC	0.0-0.6	0.0-0.6	0.8-1.4	0.8-1.4	0.8-1.4	0.8-1.4	0.0-0.6
Antimony	µg/g	1.3	1	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	5	6	4	6	5	7	7
Barium	µg/g	220	64.1	40.8	74.7	90.6	87.5	77.8	79.8
Beryllium	µg/g	2.5	0.8	1.0	0.7	0.6	0.8	1.0	0.8
Boron	µg/g	36	8	12	7	9	11	13	12
Boron (Hot Water Soluble)	µg/g	1.5	0.64	0.22	0.42	0.43	1.98	0.29	0.3
Cadmium	µg/g	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	70	23	31	25	24	27	33	33
Cobalt	µg/g	22	11.5	17.2	11.7	14.0	12.0	18.8	19.7
Copper	µg/g	92	21.5	30.2	22.7	32.4	24.8	62.3	42.2
Lead	µg/g	120	197	7	15	13	20	126	138
Molybdenum	µg/g	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	µg/g	82	21	31	20	24	23	33	34
Selenium	µg/g	1.5	<0.8	<0.8	<0.8	<0.8	0.9	<0.8	<0.8
Silver	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g	2.5	0.55	0.55	0.53	0.53	0.67	0.52	0.53
Vanadium	µg/g	86	35.6	41.4	37.7	32.60	40.6	40.1	40.8
Zinc	µg/g	290	71	78	72	67.0	80	124	138.0
Chromium, Hexavalent	µg/g	0.66	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, Free	µg/g	0.051	< 0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040
Mercury	µg/g	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	mS/cm	0.7	0.889	0.471	1.14	0.324	0.2	0.6	0.599
Sodium Adsorption Ratio	-	5	1.01	5.48	3.58	0.702	0.3	4.4	4.25

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Commercial/Community Land Use

RDL - Reported Detection Limit; G/S - Guideline / Standard

<150	Detection limit exceeded Standard
150	Sample result exceeded Standard

Results are based on sample dry weight.

Quality Control Data is available upon request.

NV- No Value

Polycyclic Aromatic Hydrocarbons - Soil 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Sample Name			BH5-SS1	DUP3 (BH5-SS1)	BH6-SS2	BH7-SS2	BH8-SS2	BH9-SS2	BH10-SS4
AGAT ID#	TT.*4	MECP	3613332	3613363	3613355	3613335	3613336	3613337	3613353
Date	Unit	RPIICC	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022
Parameter/Depth of Sample (mbgs)		MILCO	0.0-0.6	0.0-0.6	0.8-1.4	0.8-1.4	0.8-1.4	0.8-1.4	2.3-2.9
Naphthalene	µg/g	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	µg/g	0.093	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	µg∕g	0.072	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	µg/g	0.19	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	µg∕g	0.69	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05
Anthracene	µg∕g	0.22	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	µg∕g	0.69	< 0.05	< 0.05	< 0.05	< 0.05	0.45	< 0.05	< 0.05
Pyrene	µg∕g	1	< 0.05	< 0.05	< 0.05	< 0.05	0.4	< 0.05	< 0.05
Benz(a)anthracene	µg∕g	0.36	< 0.05	< 0.05	< 0.05	< 0.05	0.3	< 0.05	< 0.05
Chrysene	µg∕g	2.8	< 0.05	< 0.05	< 0.05	< 0.05	0.22	< 0.05	< 0.05
Benzo(b)fluoranthene	µg∕g	0.47	< 0.05	< 0.05	< 0.05	< 0.05	0.24	< 0.05	< 0.05
Benzo(k)fluoranthene	µg∕g	0.48	< 0.05	< 0.05	< 0.05	< 0.05	0.08	< 0.05	< 0.05
Benzo(a)pyrene	µg∕g	0.3	0.2	< 0.05	< 0.05	< 0.05	0.21	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	µg∕g	0.23	< 0.05	< 0.05	< 0.05	< 0.05	0.08	< 0.05	< 0.05
Dibenz(a,h)anthracene	µg∕g	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(g,h,i)perylene	µg∕g	0.68	< 0.05	< 0.05	< 0.05	< 0.05	0.07	< 0.05	< 0.05
1 and 2 Methlynaphthalene	µg∕g	0.59	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene-d8	%	-	69	77	74	65	62	65	69
Acridine-d9	%	-	74	84	75	89	89	76	69
Terphenyl-d14	%	-	85	95	71	67	97	60	65
Moisture Content	%	-	8.5	12.3	9.1	9.1	10.3	15.0	7.8

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Community Land Use RDL - Reported Detection Limit; G/S - Guideline / Standard

Detection limit exceeded Standard

Sample result exceeded Standard

Results are based on sample dry weight.

Quality Control Data is available upon request.

<150

150

NV- No Value

Polychlorinated Biphenyls (PCBs) - Soil 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Sample Name			BH5-SS1	BH6-SS2	BH7-SS2	BH8-SS2	BH9-SS1	DUP4 (BH9-SS1)	BH10-SS
AGAT ID#	Unit Table	MECP Table 9	3613332	3613355	3613335	3613336	3613356	3613364	361335
Date			RPIICC	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022	3/11/2022
Parameter/Depth of Sample (mbgs)			0.0-0.6	0.8-1.4	0.8-1.4	0.8-1.4	0.0-0.6	0.0-0.6	0.0-0.6
Polychlorinated Biphenyls	µg/g	0.3	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Decachlorobiphenyl	%	-	76	84	84	96	112	68	104
Moisture Content	%	_	8.5	9.1	9.1	10.3	12.8	14.6	17.9

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Commercial/Community Land Use

RDL - Reported Detection Limit; G/S - Guideline / Standard

<150 150 Detection limit exceeded Standard

Sample result exceeded Standard

Results are based on sample dry weight.

Quality Control Data is available upon request.

NV- No Value

Petroleum Hydrocarbons (PHCs) - Soil 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Sample Name		MECD	BH9-SS2	BH10-SS1	DUP2 (BH10-SS1)	BH10-SS4
AGAT ID#	Tha:4		3613337	3613357	3925724	3613353
Date	Unit		3/11/2022	3/11/2022	5/24/2022	3/11/2022
Parameter/Depth of Sample (mbgs)		N FIECC	0.8-1.4	0.0-0.6	0.8-1.4	2.3-2.9
F1 (C6 to C10)	µg/g	-	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	25	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	240	<50	<50	<50	<50
F4 (C34 to C50)	µg/g	120	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	NA	NA	NA	NA
Moisture Content	%	-	17.8	17.8	7.4	7.8
Terphenyl	%	-	78	78	86	86

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Community Land Use

RDL - Reported Detection Limit; G/S - Guideline / Standard

<150 Detection limit exceeded Standard 150

Sample result exceeded Standard

Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that

hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

NV- No Value

Benzene, Toluene, Ethylbenzene and Xylene (BTEX) - Soil 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Sample Name		MECP Table 8	BH9-SS2	BH10-SS1	DUP2 (BH10-SS1)	BH10-SS4
AGAT ID#	Thit		3613337	3613357	3925724	3613353
Date	Unit		3/11/2022	3/11/2022	5/24/2022	3/11/2022
Parameter/Depth of Screens (mbgs)		Kriice	0.8-1.4	0.0-0.6	0.8-1.4	2.3-2.9
Benzene	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02
Toluene	μg/L	0.2	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylene (Total)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Commercial/Community Land Use

RDL - Reported Detection Limit; G/S - Guideline / Standard

<150 Detection limit exceeded Standard 150

Sample result exceeded Standard

Results are based on sample dry weight. Quality Control Data is available upon request. NV- No Value NA-Not Analyzed

Petroleum Hydrocarbons (PHCs) - Ground Water 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Sample Name		MECD	BH2	BH4	DUP (BH4)	BH10
AGAT ID#	Linit	Table 8	3735594	3735597	3735599	3735598
Date		RPIICC	4/6/2022	4/6/2022	4/6/2022	4/6/2022
Parameter/Depth of Screens (mbgs)			4.6-7.6	7.6-10.7	7.6-10.7	0.9-4.0
F1 (C6 - C10)	μg/L	-	<25	<25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	420	<25	<25	<25	<25
F2 (C10 to C16)	μg/L	150	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L	-	NA	NA	NA	NA
Sediment	-	_	NO	NO	NO	NO

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Community Land Use RDL - Reported Detection Limit; G/S - Guideline / Standard

<150 Detection limit exceeded Standard

Sample result exceeded Standard

150SResults are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that

hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

NV- No Value

Volatile Organic Compounds (VOCs) - Ground Water 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Sample Name		MECD	BH2	BH4	DUP (BH4)	BH10
AGAT ID#	T T. *		3735594	3735597	3735599	3735598
Date	Unit	Table 8	4/6/2022	4/6/2022	4/6/2022	4/6/2022
Parameter/Depth of Screens (mbgs)	1	RELICC	4.6-7.6	7.6-10.7	7.6-10.7	0.9-4.0
Dichlorodifluoromethane	μg/L	590	< 0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	< 0.17	<0.17	<0.17	< 0.17
Bromomethane	µg/L	0.89	< 0.20	<0.20	<0.20	< 0.20
Trichlorofluoromethane	µg/L	150	<0.40	<0.40	<0.40	<0.40
Acetone	µg/L	2700	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	1.6	< 0.30	< 0.30	<0.30	< 0.30
Methylene Chloride	µg/L	50	< 0.30	< 0.30	<0.30	< 0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	< 0.20	< 0.20	<0.20	< 0.20
Methyl tert-butyl ether	µg/L	15	< 0.20	< 0.20	<0.20	< 0.20
1,1-Dichloroethane	μg/L	5	< 0.30	< 0.30	<0.30	< 0.30
Methyl Ethyl Ketone	μg/L	1800	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethylene	μg/L	1.6	< 0.20	< 0.20	<0.20	< 0.20
Chloroform	μg/L	2.4	2.37	< 0.20	0.72	< 0.20
1,2-Dichloroethane	μg/L	1.6	< 0.20	< 0.20	<0.20	< 0.20
1,1,1-Trichloroethane	μg/L	200	< 0.30	< 0.30	< 0.30	< 0.30
Carbon Tetrachloride	μg/L	0.79	< 0.20	< 0.20	<0.20	< 0.20
Benzene	μg/L	5	< 0.20	< 0.20	<0.20	< 0.20
1,2-Dichloropropane	μg/L	5	< 0.20	< 0.20	<0.20	< 0.20
Trichloroethylene	μg/L	1.6	< 0.20	< 0.20	<0.20	< 0.20
Bromodichloromethane	μg/L	16	< 0.20	< 0.20	<0.20	< 0.20
Methyl Isobutyl Ketone	μg/L	640	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	4.7	< 0.20	< 0.20	<0.20	< 0.20
Toluene	μg/L	22	< 0.20	< 0.20	<0.20	< 0.20
Dibromochloromethane	μg/L	25	< 0.10	< 0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.2	< 0.10	< 0.10	<0.10	< 0.10
Tetrachloroethylene	μg/L	1.6	< 0.20	< 0.20	<0.20	< 0.20
1,1,1,2-Tetrachloroethane	μg/L	1.1	< 0.10	< 0.10	<0.10	< 0.10
Chlorobenzene	μg/L	30	< 0.10	< 0.10	<0.10	< 0.10
Ethylbenzene	µg/L	2.4	< 0.10	<0.10	<0.10	< 0.10
m & p-Xylene	µg/L	-	< 0.20	< 0.20	0.35	< 0.20
Bromoform	µg/L	25	< 0.10	<0.10	<0.10	< 0.10
Styrene	µg/L	5.4	< 0.10	<0.10	<0.10	< 0.10
1,1,2,2-Tetrachloroethane	μg/L	1	< 0.10	< 0.10	<0.10	< 0.10
o-Xylene	μg/L	-	< 0.10	< 0.10	<0.10	< 0.10
1,3-Dichlorobenzene	µg/L	59	< 0.10	<0.10	<0.10	< 0.10
1,4-Dichlorobenzene	µg/L	1	< 0.10	<0.10	<0.10	< 0.10
1,2-Dichlorobenzene	µg/L	3	< 0.10	<0.10	<0.10	< 0.10
1,3-Dichloropropene	µg/L	0.5	< 0.30	< 0.30	<0.30	< 0.30
Xylenes (Total)	μg/L	300	< 0.20	<0.20	0.35	< 0.20
n-Hexane	μg/L	51	< 0.20	<0.20	<0.20	< 0.20
Toluene-d8	% Recovery	-	106	112	104	106
4-Bromofluorobenzene	% Recovery	-	78	77	79	77

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Commercial/Community Land Use RDL - Reported Detection Limit; G/S - Guideline / Standard

<150 Detection limit exceeded Standard

150 Sample result exceeded Standard

Results are based on sample dry weight.

Quality Control Data is available upon request. NV- No Value NA-Not Analyzed

Benzene, Toluene, Ethylbenzene and Xylene (BTEX) - Ground Water 1303 Lakeshore Road East, Mississauga, ON Project: 1-21-0265-42

Sample Name		MECD	BH2	BH4	DUP (BH4)	BH10
AGAT ID#	Th:+	Table 8	3735594	3735597	3735599	3735598
Date	Umt		4/6/2022	4/6/2022	4/6/2022	4/6/2022
Parameter/Depth of Screens (mbgs)		RFILCC	4.6-7.6	7.6-10.7	7.6-10.7	0.9-4.0
Benzene	µg/L	5	< 0.20	< 0.20	< 0.20	< 0.20
Toluene	µg/L	22	< 0.20	<0.20	< 0.20	< 0.20
Ethylbenzene	µg/L	2.4	< 0.10	< 0.10	< 0.10	< 0.10
Xylenes (Total)	μg/L	300	< 0.20	<0.20	0.35	< 0.20

Comments:

Results compared to MECP Table 8 Site Condition Standards for use within 30 m of a water body in a potable ground water condition for Residential/Parkland/Institutional/Industrial/Community Land Use

RDL - Reported Detection Limit; G/S - Guideline / Standard

<150 Detection limit exceeded Standard 150

Sample result exceeded Standard

Results are based on sample dry weight. Quality Control Data is available upon request. NV- No Value NA-Not Analyzed

PHASE ONE CONCEPTUAL SITE MODEL

1303 Lakeshore Road East, Mississauga, ONTARIO

Phase One CSM		Information Pertaining to Property			
Figures of t	the Phase One Study Area are pro	wided that:			
i.	Show any existing buildings and structures,	The Property is currently occupied by Green Acres Motel - a two- story motel building and associated parking area. The Property is identified with municipal address of 1303 Lakeshore Road East, Mississauga, Ontario.			
		Location of the structure are on the Property shown on Figure 2.			
ii.	Identify and locate water bodies located in whole or in part on the Phase One Study Area	The nearest water body is Applewood Creek, located approximately 28 m to the southeast of the Property. Groundwater and surface water is expected to flow southeast towards Applewood Creek and discharging into Lake Ontario, approximately 0.8 km to the southeast of the Property.			
		All water bodies on the Phase One Property and Phase One Study Area are shown on Figure 1.			
iii.	Identify and locate any Areas of Natural Significance located in whole or in part on the Phase One Study Area	Terraprobe reviewed the Ontario Ministry of Natural Resources and Forestry (MNRF) NHIC database and visited the Credit Valley Conservation (CVC) website, based on the information no Area of Natural or Scientific Interests (ANSIs) were located within the Phase One Study Area.			
iv.	Locate any drinking water wells at the Phase One Property	No drinking water wells, are located on the on the Phase One Property. However, four (4) monitoring wells were located on the Phase One Property.			
V.	Show roads, including names, within the Phase One Study Area	The Property is situated on the northwest quadrant of the intersection of Lakeshore Road and Fergus Avenue, in the City of Mississauga.			
		Other roads and properties within the Study Area are presented on Figure 3.			
vi.	Show use of properties adjacent to the Phase One Property	The Land Uses of the adjacent properties are shown on Figure 3.			
vii.	Identify and locate area where any potentially contaminating activity has occurred, and show tanks in such areas	Potentially Contaminating Activities (PCAs) located on the Property and within the Study Area are shown on Figure 4.			
viii.	Identify and locate any areas of potential environmental concern	Three (3) Areas of Potential Environmental Concern (APECs) were identified on the Property			

The following is a description and assessment of:

Phase On	e CSM	Information Pertaining to Property
i.	Any areas where potentially contaminating activity on or potentially affecting the Phase One Property has occurred,	See above list of APECs and Figure 6.
ii.	Any contaminants of potential concern	The following Contaminants of Potential Concern (CoPCs) were identified for the Property or Phase One Study Area. Metals As, Sb, Se EC SAR B-HWS CN- Hg Cr (VI) Low or high pH Petroleum Hydrocarbons (PHCs), Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Polycyclic Aromatic Hydrocarbons (PAHs) Polychlorinated Biphenyls (PCBs)
iii.	The potential for underground utilities, if any present, to affect contaminant distribution and transport,	 The following list the location of utilities located on the Property: Gas and communications services to the west side of the building. Water services to the east side of the building. A fire hydrant located on the west side of the Property.

Phase On	ne CSM	Information Pertaining to Property			
iv.	Available regional or site specific geological and hydrogeological information,	 Topography The approximate elevation of the Property is 89 masl and slopes to the east towards Applewood Creek, located 28 m to the southeast. 			
		Hydrogeology			
		• The nearest water body is Applewood Creek, located 28 m to the Southeast of the Property. Groundwater and surface water is expected to flow southeast towards Applewood Creek and discharging into Lake Ontario, approximately 0.8 km to the southeast of the Property.			
		Geology (overburden)			
		• The overburden on the Property is comprised of sand, gravelly sand and gravel, minor silt and clay, nearshore and beach deposits derived from glaciolacustrine deposits, coarse-textured glaciolacustrine deposits (9c) and fine-textured glacial deposits(8b).			
		Geology (bedrock)			
		• The bedrock within the study area is part of the Georgian Bay Formation, generally comprised of Shale, limestone, dolostone and siltstone. (55b).			
		Geology (depth to bedrock)			
		• Based on the MECP well records, the bedrock in the vicinity of the Property is approximately 21 m below ground level.			
v.	How any uncertainty or absence of information obtained in each of the components of the Phase One ESA could affect the validity of the model.	No uncertainty was encountered while conducting the Phase One ESA that could affect the validity of the model.			
Figures:					

Figure 1 – Phase One Property Location Figure 2 – Phase One Property Figure 3 – Phase One Study Area Figure 4 – Cf lcegpv/Rtqr gtv{" Hki wtg'7"/"REC'Nqecvkqpu Hki wtg'8"/"CRGE'Nqecvkqp

	<image/> Central Contraction A Environmental Environmente Envital Environmental Environmental Environmental En
A A A A A A A A A A A A A A A A A A A	Project Title:
	Phase One Environmental Site Assessment Site Location:
	1303 Lakeshore Road East, Mississauga, Ontario
	Phase One Property Location
	Designed By: File No.: NM 1-21-0265-41
	Drawn By: AA Scale: Reviewed By: As Shown
0 50 100ml	Date: Figure No.:
	February 2022

1335	11 Indell Lane	Terra onsulting Geotechnic Construction Mate - Brampton Ont	al & Environmental Engineering rials, Inspection & Testing tario LGT 3Y3 (905) 796-2650
			Mississauga nteractive Maps
	Notes:		
1.31	Legend:	haas One Dree	att. Doundorr
1 1	s	ump	erty Boundary
	• T. • V	ank (Removed) ent / Fill Pipes	
	G	as Line ommunication	
10	W	later Lines	
1			
198			
The second			
Aaa			
PAY .	Project Title: Phase (One Environme	ental Site Assessment
181		_	
00	Site Location:	shore Road Er	ast Mississaura Ontario
Par la			aor, mississauga, Ontano
2 1 21	Figure Title:	Phase On	e Property
S 1 10	Designed (D		
	Designed By: N	Μ	гле мо.: 1-21-0265-41
15 1	Drawn By: A	A	Scale: As Shown
1. 11	Reviewea By: B	W	Figure No.:
	Februa	ary 2022	2

	11 Indell Lane	Construction Mate Construction Mate - Brampton Ont Reference:	A Environmental Engineering rials, Inspection & Testing ario LGT 3Y3 (905) 796-2650 Mississauga nteractive Maps
	Legend:		
	PI	hase One Prope hase One Study	erty Boundary / Area, 250m
	Project Title:		
	Phase C	One Environme	ental Site Assessment
	Site Location: 1303 Lakes	shore Road Ea	ast, Mississauga, Ontario
	Figure Title:	Phase One	Study Area
	Designed By: N Drawn By:	M	File No.: 1-21-0265-41
	A Reviewed By: B	A W	Scale: As Shown
0 30 60m	Date: Februa	ıry 2022	3

	11 Indeil Lane -	Reference:	A Environmental Engineering raise, Inspection & Testing arrio LGT 3Y3 (905) 796-2650 Mississauga Interactive Maps
	Legend:	ase One Prop	erty Boundary
	Pha	ase One Study mmunity Land mmunity Land sidential Land mmercial Land titutional Land ustrial Land U ricultural/Othe	/ Area, 250m Use (Roads) Use Use Huse Use se r Land Use
AT AN AN AN AN ANY			
	Project Title: Phase Or	ne Environme	ental Site Assessment
	Site Location: 1303 Lakesł	nore Road Ea	ast, Mississauga, Ontario
N N N N N N N	Figure Title:	Adjacent I	and Uses
97 ep 44 74 69 74 69 47 ep 66 69 69			
	Designed By: NN	1	File No.: 1-21-0265-41
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AA Reviewed Put		Scale: As Shown
A REAL	Date:	I	Figure No.:
0 30 60m	Februar	y 2022	4

PCA: Acid and Alkali Manufacturing, Processing and Bulk Storage Chemical Manufacturing, Processing and Bulk Storage Cosmetics Manufacturing, Processing and Bulk Storage Dye Manufacturing, Processing and Bulk Storage Explosives and Firing Range Gasoline and Associated Products Storage in Fixed Tanks Ink Manufacturing, Processing and Bulk Storage Iron and Steel Manufacturing and Processing Metal Teatment, Coating, Plating and Finishing Metal Fabrication Paints Manufacturing, Processing and Bulk Storage Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing and Processing Storage, maintenace, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems Mata Disposal and Waste Managament	Notes: PCA - Poten Red PCA (Green PCA)	Terro	A Environmental Engineering wirals, Inspection & Testing arrio LGT 3Y3 (905) 796-2650 Mississauga Interactive Maps
including thermal treatment, landfilling and transfer of waste, other than use of biosoils	Legend:		
as soil conditilrs Wood Treating and Preservative Facility	P	Phase One Prope	erty Boundary
and Bulk Storage of Treated and Preserved Wood Products		ndse Offe Sillay	r Aied, 20011
Waste Generator Ontario Spill			
1 19 10 19 19 19 19 19 19 19			
a management of the second			
W W W W W W W Constitution	Project Title:		
	Phase (One Environme	ental Site Assessment
19 96 10 19 19 19 19 19 19 19 19 19 19 19 19 19			
N ¹⁰ 10 10 10 10 10 10	Site Location:		
	1303 Lake	shore Road Ea	ast, Mississauga, Ontario
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Figure Title:		
	rigure ride:		cations
		FUA LU	นแบทอ
1 0 0 0 0 0 0 0 0 0	Designed By:	IM	File No.:
	Drawn By:	(1)	1-21-0265-41
	A	A	Scale: As Shown
	<i>Reviewed By:</i> B	SW	Eieuro No I
0 60m	Date: Februa	ary 2022	5
			-

1335	11 Indell Lane	Ferra onsulting Geotechnic Construction Mate	al & Environmental Engineering rrais, Inspection & Testing tario LGT 3Y3 (905) 796-2650			
		Kererence:	Mississauga nteractive Maps			
	Notes: APEC - Area	of Potential E	nvironmental Concern			
	Legend:	ase One Prope PEC 1 (PCA#3)	erty Boundary 0 - Importation of Fill Material			
	A	of Unk PEC 2 (PCA#2 Produc PEC 3 (PCA O Salts)	nown Quality) 8 - Gasoline and Associated ts Storage in Fixed Tanks) thers 3 - Use of Winter De-Icing			
PP	<i>Project Title:</i> Phase C	ne Environme	ental Site Assessment			
199	Site Location: 1303 Lakes	hore Road Ea	ast, Mississauga, Ontario			
1. 1. 5	Figure Title: APEC Locations					
15	Designed By: NI Drawn By:	М	File No.: 1-21-0265-41			
18 11	A/ Reviewed By: B\	N N	Scale: As Shown			
SCALE	<i>Date:</i> Februa	ry 2022	6			

APPENDIX B

TERRAPROBE INC

Soil Sampling Plan

Sample	Sam	ple Depth	Chemical Analysis												
Identification	mbgs	masl	Metals	Metals – HF	Cr (VI)	Hg	B- HWS	CN-	EC	SAR	рН	PAHs	PCBs	PHCs	BTEX
BH5															
SS1	0.0-0.6	84.3-83.7	Х	~	~	✓	~	~	Х	✓	~	~	~	-	-
DUP3	0.0-0.6	84.3-83.7	-	-	-	-	-	-	-	-	-	~	-	-	-
BH6															
SS1	0.0-0.6	84.4-83.8	~	~	~	>	~	~	>	Х	~	I	-	-	-
SS2	0.8-1.4	83.6-83.0	-	-	-	-	-	-	1	1	-	~	~	-	-
	BH7														
SS2	0.8-1.4	83.4-82.8	✓	✓	~	~	~	~	Х	✓	~	~	~	-	-
BH8															
SS2	0.8-1.4	83.2-82.6	~	~	~	~	~	~	~	~	~	~	~	-	-
]	BH9										
SS1	0.0-0.6	83.5-82.9	-	-	-	-	-	-	-	-	-	-	~	-	-
DUP4	0.0-0.6	83.5-82.9	-	-	-	-	-	-	-	-	-	-	~	-	-
SS2	0.8-1.4	82.7-82.1	~	~	~	>	Х	~	>	~	~	~	-	~	~
SS3	1.5-2.1	82.0-81.4	-	-	-	-	-	-	1	I	~	I	-	-	-
DUP5	1.5-2.1	82.0-81.4	-	-	-	-	-	-	-	-	~	-	-	-	-
BH10															
SS1	0.0-0.6	83.5-82.9	-	-	-	-	-	-	-	-	-	-	~	~	✓
DUP2	0.0-0.6	83.5-82.9	-	-	-	-	-	-	-	-	-	-	-	✓	✓
SS2	0.8-1.4	82.7-82.1	Х	~	\checkmark	~	~	✓	~	~	~	-	-	-	-
DUP1	0.8-1.4	82.7-82.1	X	✓	✓	~	~	~	~	✓	~	-	-	-	-
SS4	2.3-2.9	81.2-80.6	-	-	-	-	-	-	-	-	~	~	-	~	✓

Note: \checkmark , X – Soil sample submitted for chemical analysis.

Ground Water Sampling Plan

Monitoring Woll	Screer	DUCa	VOCa	DTEV		
Wollitoring wen	(mbgs)	(masl)	rnes	vocs	DILA	
BH2	4.6-7.6	79.6-76.6	~	~	~	
BH4	7.6-10.7	76.4-73.3	~	~	~	
DUP	7.6-10.7	76.4-73.3	~	~	~	
BH10	0.9-4.0	82.6-79.5	✓	~	~	

Note: \checkmark – Ground Water sample submitted for chemical analysis.

APPENDIX C

TERRAPROBE INC

SUMMARY OF FIELD INVESTIGATION PROTOCOL

1. Drilling and Soil Sampling Procedures

Drilling and sampling of overburden materials are generally conducted using a mobile power auger. During augering operations, soil samples are recovered using a standard 50 mm diameter split-spoon sampling device. The sampler is generally advanced by a drop hammer to obtain standard penetration values (N values) for assessment of soil consistency.

In some instances, soil samples are obtained by directly pushing a sampling device into the soil using specialized drilling equipment.

Soil samples obtained from the split-spoon are examined in the field by qualified engineering staff. The soil is classified according to: grain size distribution, texture, colour, odour, moisture content, and other pertinent details. Field borehole logs are prepared and notes are made regarding visual or olfactory evidence of potential contamination of soil materials.

Following logging, all samples are placed into laboratory-cleaned 500 mL glass jars, with foil-lined lids. The samples are transported to Terraprobe's laboratory for detailed inspection by the site engineer. Where samples are collected for analysis of volatile organic compounds, they are placed into laboratory-cleaned, 50 mL glass septum jars with Teflon-lined caps. Following review by the project engineer, samples are forwarded to a CAEAL-certified laboratory for analysis.

During the drilling procedure, no lubricants are used on any of the drilling and sampling equipment in order to ensure there is no contamination with hydrocarbon-based or other lubricating materials.

If significant contamination of the soil or ground water is expected, then drill cuttings are placed into 205 L steel drums stored on thesite. The drill cuttings and water are later characterized for proper off-site disposal, where necessary.

The sample collection and preservation techniques follow the general requirements of *Table 5.2(d)*, *Required Container Preservation Techniques and Maximum Handling Times for Water Samples*, and from *MOE Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* (May 1996).

Chain of custody forms are filled out for all samples which are shipped to commercial laboratories. The chain of custody forms are provided by the laboratory and include the following information:

- 1. Terraprobe's project number
- 2. Sample number and locations
- 3. Name of party shipping the samples to the laboratory
- 4. Required scope of analysis
- 5. Date of submission
- 6. Date of receipt by the laboratory
- 7. Any special notes or items of clarification appropriate to the project

2. Test Pit Excavation and Sampling

Test pits are generally excavated using a hydraulic backhoe of appropriate size and capacity depending on test pit depth and soil consistency. The test pit operations are carried out under the full-time supervision of Terraprobe engineering staff. During excavation, the test pits are logged based on the exposed soil and ground water profile. Soil samples are generally recovered from each soil strata noted during the investigation. Depending on the depth of the test pit, samples are obtained either by a spade or shovel from the side wall, or directly from the backhoe bucket.

In all cases, operations are carried out in strict accordance with the requirements of the Occupational Health and Safety Act. Personnel are not permitted to enter unsupported test pits with depths in excess of 1.2 m below prevailing grade.

3. Equipment Clean-up

All drilling equipment is cleaned by the contractor prior to beginning each project. This includes augers, drill rods, sampling spoons, and the like.

In the event that significant contamination is expected or noted during drilling, then the drilling equipment is also cleaned between each borehole location. The cleaning is conducted using high pressure washing equipment and a phosphate detergent. A decontamination pad or cleaning area is set up well away from the general work area.

All sampling equipment used during the investigation is cleaned between collection of each sample. This includes split-spoon equipment, shovels, trowels, and any other sampling equipment. Sampling equipment is cleaned as follows:

- All sampling equipment is wiped to remove excess soil material.
- Equipment is rinsed in municipal water.
- Equipment is further rinsed with distilled water.
- In the event of significant organic contamination (such as hydrocarbons), the material is rinsed with detergent and/or methanol to remove materials.
- A final rinse with distilled water is carried out prior to utilizing the sampling equipment.

4. Soil Gas Monitoring

Soil gas monitoring is conducted to assess the potential presence of volatile organic compounds in soil materials. The monitoring is conducted by obtaining headspace measurements from soil samples. Headspace measurement is conducted by placing the tip of a photo-ionization detector or flame ionization detector through an aluminum foil cover placed over the 500 mL sample jars. Alternatively, samples may be placed into polyethylene sampling bags and vapour analysis can be conducted through the wall of the sampling bag.

When the ambient air temperature is less than 10°C, samples are generally transported to Terraprobe's laboratory and allowed to remain in sealed containers until reaching room temperature. Vapour analysis is then conducted at room temperature.
All testing equipment is calibrated each day prior to conducting soil vapour measurements. Measurements are generally taken with respect to equivalent hexane concentration (concentration of parts per million), or in relation to the lower explosive limit of hexane. Where appropriate, the results are converted to represent concentrations of other gases such as methane.

The results of vapour monitoring are generally utilized to provide guidance for the selection of samples for later chemical analysis. They may also be used in assessing the presence of volatile organic compounds for the siting of monitoring wells.

5. Monitoring Well Installation

Monitoring wells are generally constructed using new, pre-packaged 50 mm diameter Schedule 40 PVC pipe and screens. The screen length and opening are dependent on the project requirements.

All wells are constructed using threaded joints without glues or solvents.

A silica sand pack is placed around the well screen and typically to a height of approximately 500 mm above the top of the well screen. A well seal, consisting of bentonite clay or cementitious bentonite grout, is then placed to a thickness of at least 1 m above the sand zone. The remainder of the hole is then filled to surface with an appropriate grout material or drill cuttings.

A locking security cap is fitted in areas which may be subject to vandalism or tampering of the well installation.

Specialized drilling procedures and monitoring well installation procedures are used where aquifer zones may be penetrated. All drilling is conducted in accordance with the general requirements of Regulation 903 to ensure that there is no cross-contamination or cross flow between aquifer zones.

6. Ground Water Sampling and Water Level Measurement

Water level measurements are conducted using an electronic water level finder. The water level finder is cleaned with distilled water, detergent, and where appropriate, methanol, prior to insertion into each well.

Measurements of non-aqueous phase liquids are conducted using specialized monitoring equipment which detects the presence of both the water column and non-aqueous phase liquids.

All measurements in the field are taken relative to a fixed point, which is generally the top of the well casing or top of the well protective cap. These are later referenced to appropriate elevations or ground surface.

Ground water sampling is conducted following proper development of the well. Wells are generally developed using a dedicated Waterra inertial pump. The wells are developed by removing a minimum of three casing volumes of water, or by bailing to dryness. Where possible, the wells are developed until clear, sediment-free water is obtained.

Ground water samples are obtained only following well bailing and development, as noted above. Samples are obtained either from a dedicated inertial pump, or a dedicated bailer.

During sampling, measurements are made for selected parameters including pH, conductivity, and temperature.

Samples are collected directly into laboratory-supplied containers. Samples collected for analysis of metals are filtered through a 0.45 micron disposable filter to eliminate suspended solids.

Sample bottles are stored in an insulated cooler to protect from freezing, and to maintain temperatures of less than 10°C.

The sample collection and preservation techniques follow the general requirements of *Table 5.2(d)*, *Required Container Preservation Techniques and Maximum Handling Times for Water Samples*, and from *MOE Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* (May 1996).

Chain of custody forms are filled out for all samples which are shipped to commercial laboratories. The chain of custody forms are provided by the laboratory and include the following information:

- Terraprobe's project number
- Sample number and locations
- Name of party shipping the samples to the laboratory
- Required scope of analysis
- Date of submission
- Date of receipt by the laboratory
- Any special notes or items of clarification appropriate to the project

7. Sample Quality Assurance and Quality Control

All chemical analysis of soil and ground water samples is carried out only by CAEAL certified laboratories. These laboratories provide internal quality control checks regarding laboratory analytical procedures. This includes the use of sample spikes, surrogate samples, and duplicate analysis.

For each sampling program, one trip blank is included. The trip blank consists of deionized water that is placed in the sample containers provided by the laboratory, and is prepared by the laboratory.

Field duplicate samples are prepared at the rate of approximately one sample per ten soil or ground water samples submitted. The number of duplicate samples depends on site and project-specific requirements. Duplicate samples are provided with a fictitious sample number in order that the laboratory is not aware of the duplicate sample.

A field blank sample is obtained at the rate of approximately one sample per ten ground water samples submitted. A field blank is obtained by filling the appropriate laboratory containers with the deionized water in the field during the sampling procedure.

The results of all laboratory analysis are carefully examined and compared to the results of visual, olfactory, and soil vapour monitoring conducted in the field. Any unusual results or unexpected results are discussed carefully with the field technician and the laboratory. Where appropriate, resampling is conducted to ensure the veracity of all results.

.

APPENDIX D

TERRAPROBE INC

\mathbf{U}							
Projec	t No. : 1-21-0265-42	Clie	nt	: 1	303 I	akesł	re Rd E Limited Partnership Originated by : RS
Date s	tarted :June 24, 2021	Proj	ect	: 1	303 L	akesh	ore Road East Compiled by : CM
Sheet	No. : 1 of 1	Loca	atio	n : N	lissis	sauga	, Ontario Checked by : MM
Position	: E: 616820, N: 4826656 (UTM 17T)			I	Elevati	on Datu	n : Geodetic
Rig type	: Track-mounted			I	Drilling	Method	: Solid stem augers
	SOIL PROFILE		5	SAMPI	ES	Ð	Penetration Test Values
Depth Scale (m	ev oth Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scal (m)	(bilows / 0.3m) Moisture / Plasticity and X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) Plastic Natural Liquid O Unconfined + Field Vane Φ Pocket Penetometer Lab Vane 40 80 120
84	100mm ASPHALTIC CONCRETE					04	
	90mm AGGREGATE] 🗱	1	SS	9	64 -	
-	FILL , clayey silt, sandy, trace gravel, trace organics, firm to stiff, dark brown, moist					-	
-1			2	SS	7		
-	CLAYEY SILT, trace to some sand, trace gravel, very stiff to hard, brownish					83 -	
	(GLACIAL TILL)		3	SS	22	-	
-2						00	
			\vdash		50/	62-	
			4	SS	125mm	-	
-3 8	.2 ^{3.0} WEATHERED SHALE		5A	SS	50 /	81	
80	(BEDROCK)		28 28	_ 55 _	50 /	01	
	END OF BOREHOLE Auger refusal				<u>100mm</u>		WATER LEVEL READINGS
	Borehole was dry and open upon completion of drilling.						<u>Juite Water Depth (m)</u> Jui 19, 2021 3.0 81.2 Mar 9, 2022 3.0 81.2
	50 mm dia. monitoring well installed.						

Pro	ject l	No. : 1-21-0265-42	Clie	ent	: 1	303	Lakesl	nre Rd	E Li	mite	d Pa	rtners	ship					Origi	nated	by : DH
Dat	e sta	rted :June 22, 2021	Pro	jec	t :1	303	Lakesl	nore R	oad	East								Corr	piled	by : CM
She	et N	o. :1 of 2	Loc	atio	on:N	Aissis	sauda	Onta	rio									Che	cked	bv : MM
Posi	tion	· F· 616836 N· 4826629 (UTM 17T)				Flevat	ion Datu	m Ge	odetic	;					Core [Diamete	er · HQ (DD=96m	m ID=	:64mm
Rig t	vpe	: Track-mounted				Drilling	a Method	: Sol	lid ste	m aud	aers. ⊢	IQ rocl	c corine	a	00101	Diamot	51 . 11 Q , (0011	, ie	0
	1	SOIL PROFILE			SAMP	LES	υ	Penetrat	ion Tes	t Value	is									Lab Data
Depth Scale (m	Elev Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scal (m)	(Blows / X Dyna 10 Undraine O Unc ● Poc 40	unic Con 20 2d Shea confined cket Pen 8(ne) 3 ar Stren etromete) 1	0 4 igth (kP) igth	40 a) eld Vane ab Vane 60	Plast Limit	loisture ic Na Water PL № IO 2	/ Plastic atural · Content //C 20	Liquid Limit LL L 30	Headspace Vapour (ppm)	Instrument Details	Unstabilized Water Level	and Comments GRAIN SIZE DISTRIBUTION (% (MIT) CR SA SI C
-0	84.0	100mm ASPHALTIC CONCRETE	/:																	
	0.2 83.6	90mm AGGREGATE FILL, sand and gravel, trace silt, loose,	_/ 🎆	1	SS	7	84 -						0							
- 1	0.6	CLAYEY SILT, trace to some sand, trace gravel, very stiff to hard, brownish grey, moist (GLACIAL TILL)		2	SS	16	83 -		\backslash					0						
-				3	SS	29	-							0						
-2							82-													
F				4	SS	57								ο						
-3	81.2 3.0 80.9 3.3	WEATHERED SHALE (BEDROCK)		5	SS	50/ 125mm	81 -						0							
-		GEORGIAN BAY FORMATION (See rock core log for details)		1	RUN															
-4							80 -													
-				2	RUN															
- 5						-	79 -													
-6				3	RUN														· · · ·	
-																			· · · · · · · · · · · · · · · · · · ·	
-7				4	RUN		77 -												· · · · · · · · · · · · · · · · · · ·	
				5	RUN		76 -													
2				6	RUN	-	75 -													

(continued next page)

LOG OF BOREHOLE 2

Ferraprobe

Proj	ect No	o. : 1-21-0265-42	Clie	nt	: 1	303 I	_akesł	re Rd E L	.imited	Partners	ship				Origina	ated by :DH
Date	e start	ted :June 22, 2021	Proj	ect	: 1	303 I	Lakesh	ore Road	East						Comp	oiled by :CM
She	et No	. : 2 of 2	Loca	atio	n : N	lissis	sauga	, Ontario							Chec	ked by:MMT
Positi	on :	E: 616836, N: 4826629 (UTM 17T)			E	Elevati	on Datu	n : Geodet	ic			Core D	Diamete	er : HQ , O	D=96mn	n, ID=64mm
Rig ty	vpe :	Track-mounted			[Drilling	Method	: Solid st	em auge	ers, HQ rock	coring					
Ê		SOIL PROFILE		5	SAMPL	ES	<u>e</u>	Penetration Te	est Values	<u> </u>	Moi	eturo / Diastic	sity	a	t	Lab Data
epth Scale (n	Elev Depth (m)	Description	aphic Log	Number	Type	T 'N' Value	evation Sca (m)	X Dynamic C 10 Undrained Sho O Unconfine	one 20 30 ear Streng	4 <u>0</u> th (kPa) + Field Vane	Plastic Limit	Natural Water Content	Liquid Limit	Headspac Vapour (ppm)	Instrumen Details	and Comments GRAIN SIZE DISTRIBUTION (%)
Ō	(,	(continued)	Ğ			SP'	Ш	 Pocket Pe 40 	netrometer 30 120	 Lab Vane 160 	10	20 3	30			(MII) GR SA SI CL
-		GEORGIAN BAY FORMATION (See rock core log for details) (continued)		6	RUN		74 —									
- 11 - - 12	72.0			7	RUN											
	12.2	END OF BOREHOLE Borehole was dry and open upon completion of drilling. 50 mm dia. monitoring well installed.							<mark>Date</mark> Jul 19, 2 Mar 9, 2	WATER LE <u>Wate</u> 021 022	EVEL RE <u>r Depth (</u> 4.3 4.7	ADINGS <u>m) Eleva</u> T	ation (m 79.9 79.5	<u>n</u>		

9						
Project No. : 1-21-0265-42	Clie	ent	: 1	303 I	_akesh	rre Rd E Limited Partnership Originated by : RS
Date started : June 24, 2021	Pro	ject	: :1	303 I	_akesh	nore Road East Compiled by : CM
Sheet No. : 1 of 1	Loc	atio	on : N	lissis	sauga	, Ontario Checked by : MMT
Position : E: 616864, N: 4826618 (UTM 17T)			l	Elevati	on Datu	m : Geodetic
Rig type : Track-mounted			I	Drilling	Method	: Solid stem augers
E SOIL PROFILE		5	SAMPI	ES	e	Penetration Test Values (Blows / 0.3m) Moisture / Plasticity 0 + Lab Data
Elev Depth O B C B C C D C D C D C D D D D C C D C C D C C C C C C C C C C C C C	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sca (m)	× Dynamic Cone <u>10 20 30 40</u> Undrained Shear Strength (kPa) 0 Unconfined + Field Vane 40 80 1120 160 110 20 30 ¹ Bidlic Natural Limit Water Content ¹ Limit Wa
83.9 100mm ASPHALTIC CONCRETE	/:···				84 -	
0.2 80mm AGGREGATE] 🕅		ss	Q		
- FILL , clayey silt, sandy, trace gravel, trace organics, firm to very stiff, brownish	· 👹				-	
- 1		2	SS	6	83 -	o
92.1		3	SS	22	-	
-2 CLAYEY SILT , trace to some sand, trace gravel, hard, brownish grey, moist					82 -	
(GLAČIAL TILL)		4	SS	68	-	
-3						
		5	SS	50 / 125mm	81 –	
- 80.3 80.2 WEATHERED SHALE 3.9 (BEDROCK)		6	SS	50 / 125mm	-	
END OF BOREHOLE Auger refusal	_					WATER LEVEL READINGS <u>Date</u> <u>Water Depth (m)</u> <u>Elevation (m)</u> Jul 19, 2021 3.6 80.5 Mar 9, 2022 3.6 80.5
Develople start day and so an en-						

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

		Terraprobe												LO	G	OF	BO	RE	HOLE 4
Proj	ject I	No. : 1-21-0265-42	Clie	ent	: 1	303	Lakes	nre R	dEL	imite	d Pa	rtners	ship					Origin	ated by : RS
Date	e sta	rted :June 23, 2021	Pro	ject	: :1	303	Lakesl	nore	Road	East								Com	oiled by :CM
She	et N	o. :1 of 2	Loc	atic	on:N	lissis	ssauga	, Ont	ario									Che	cked by:MMT
Posit	tion	: E: 616861, N: 4826592 (UTM 17T)				Elevat	ion Datu	m : (Geodet	ic					Core I	Diamet	er : HQ , (DD=96mr	n, ID=64mm
Rig t	уре	: Track-mounted		_		Drilling	g Methoo	: 8	Solid st	em au	gers, ⊦	IQ rocl	k coring	g					
Ê		SOIL PROFILE		:	SAMP	LES □	gale	Penet (Blows	ration Te s / 0.3m)	st Value	\geq		N	loisture	/ Plasti	city	e - ce	s	Lab Data
Depth Scale	Elev Depth (m)		Graphic Lo	Number	Type	SPT 'N' Valu	Elevation So (m)	Undra	ined She Unconfine Pocket Pe	ar Strer d netromete	0 4 ngth (kP + Fie er ■ La 20 1	40 a) eld Vane b Vane 60	Plast Limit	ic Na Water PL № IO 2	tural Content	Liquid Limit	Headspa Vapou (ppm)	Instrume Detail	GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CI
-0		80mm PAVERS BLOCKS	/ 🖮	×															
-		FILL, clayey silt, trace to some sand, trace gravel, trace organics, firm to stiff, brown, moist		1	SS	10		-						0					
-1				2	SS	12	83 -							с			-		
-				3	SS	6	-								0				
-2				4A	<u> </u>	11	- 82 -							0					
-3	81.4 2.6	CLAYEY SILT, trace to some sand, trace sand, trace stone fragments, hard, brownish grey, moist		4B			81 -							0			_		
		(GLACIAL TILL)		5	SS	54 / 150mn	n	_						0					
	80.2				SS	50/	-						0						
-4		(BEDROCK)				125mn	9 80 -	<u> </u>					0					Ţ	
ŀ	79.4 4.6	GEORGIAN BAY FORMATION		T	SS	50 / 75mm													
-5		(See rock core log for details)		1	RUN	-	79 -										-	⊥	
-								-											
- 6				2	RUN		78 -										_		
-7							77 -	-					Ì						
				3	RUN														
-8							76 -						ļ				-		
						-													
-								-											
E Book																			
-9				4	RUN		75 -												
			Ň																
F							· ·	1											
10				5	RUN	1	74												
± 10			\mathbb{N}				/4 -												1

Т

_	,																			
P	roject	No. : 1-21-0265-42	Clie	nt	: 1	303 I	Lakesł	nre Ro	dEL	imite	d Par	rtners	ship					Origina	ated b	by : RS
D	ate sta	arted : June 23, 2021	Proj	ect	t :1	303 I	Lakesh	nore F	Road	East								Comp	oiled b	by : CM
S	heet N	lo. : 2 of 2	Loca	atic	on : N	lissis	sauga	, Ont	ario									Chec	ked b	y : MMT
Po	sition	: E: 616861, N: 4826592 (UTM 17T)			I	Elevati	ion Datu	m : G	ieodeti	с					Core D)iamete	er : HQ , O	D=96mn	n, ID=6	4mm
Ri	g type	: Track-mounted			I	Drilling	Method	: S	olid ste	em aug	jers, H	Q rock	coring	1						
Í		SOIL PROFILE	_	:	SAMPI	ES	<u>a</u>	Penetr (Blows	ation Te / 0.3m)	st Value	s		м	oisture	Plastic	ity	ø	¥		Lab Data
Denth Scale (Elev Deptr (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	X Dy 1 Undrai O U • P 4	namic Co 0 2 ned She Inconfined locket Per 0 8	ne 0 <u>3</u> ar Stren hetromete 0 12	0 4 gth (kPa + Fie r ■ Lal 20 16	0 a) eld Vane b Vane 30	Plastic Limit P	c Na Water ∟ № 0 2	tural Content	Liquid Limit	Headspac Vapour (ppm)	Instrumer Details	Unstabilized Water Level	and Comments GRAIN SIZE STRIBUTION (%) (MIT) GR SA SI CI
- -1 -1:	1 2 71.7 12.3	GEORGIAN BAY FORMATION (See rock core log for details) (continued)		5	RUN															
		Borehole was dry and open upon completion of drilling. 50 mm dia. monitoring well installed.							ļ	<mark>Dat</mark> Jul 19, Mar 9,	WA1 <u>e</u> 2021 2022	TER LE <u>Wate</u>	EVEL R <u>r Depth</u> 4.4 4.8	EADIN L <u>(m)</u>	GS <u>Eleva</u> 7 7	<u>tion (m</u> '9.6 '9.2	р			

Project No. : 1-21-0265-42	Clie	ent	: 1	303 L	akesh	nre	Rd E L	.imite	d Pa	rtners	ship					Origin	ated by :OE
Date started : March 10, 2022	Pro	oject	: :1	303 L	akesh	nore	Road	East	t							Comp	oiled by :NM
Sheet No. : 1 of 1	Loo	catic	n : ۸	lissis	sauga	, O	ntario									Cheo	ked by:MS
Position : E: 616817, N: 4826651 (UTM 17T)				Elevati	on Datur	m :	Geodet	ic									
Rig type : Track-mounted				Drilling	Method	:	Solid st	em au	gers								
SOIL PROFILE			SAMPI	LES	e	Pen (Blo	etration Te ws / 0.3m)	est Value	es		M	oisture /	Plastic	itv	υ	÷	Lab Data
Elev Depth 0 (m) 0 84.3	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sca (m)	Unc	Dynamic Co 10 2 Irained She Unconfine Pocket Pe 40 8	one 20 3 ear Strer d netromete 30 1	3 <u>0</u> ngth (kP + Fi er ■ La 20 1	4 <u>0</u> a) eld Vane ab Vane 60	Plastic Limit Pl Pl 1	c Na Water ∟ M ↓ Q 2		Liquid Limit L	Headspac Vapour (ppm)	Instrumen Details	Band Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CI
75mm ASPHALT	/***																
FILL, clayey silt, sandy, trace gravel, trace organics, firm to stiff, dark brow moist	n,	1	SS	2	84 —										PID: 0		<u>SS1 Analysis:</u> M&I, PAH, PCB
-1 82.9		2	SS	4	- 83 -										PID: 0		
 CLAYEY SILT, trace to some sand, trace gravel, very stiff to hard, brown grey, moist (GLACIAL TILL) 	sh	3	SS	12	_	-									PID: 0		
		4	SS	90 / 275mm	82										PID: 0		
-3 [81.2] 3.1 END OF BOREHOLE		45	SS	50 / 50mm													1

Borehole was dry and open upon completion of drilling.

Proj	ect N	lo. : 1-21-0265-42	Clie	nt	: 1	303 L	akesh	nre R	d E L	imite	d Pa	rtners	ship					Origina	ated by :OE
Date	e star	rted :March 10, 2022	Pro	ject	: :1	303 L	_akesh	ore I	Road	East								Comp	oiled by :NM
She	et No	o. :1 of 1	Loc	atio	on : N	/lissis	sauga	, Ont	ario									Chec	ked by :MS
Positi	on :	E: 616838, N: 4826631 (UTM 17T)			1	Elevatio	on Datur	n : G	Geodeti	с									
Rig ty	vpe :	Track-mounted			1	Drilling	Method	: S	Solid ste	em aug	jers								
Ê		SOIL PROFILE		5	SAMPI	LES	e	Penetr (Blows	ration Te s / 0.3m)	st Value	s		Mc	isture	Plastic	itv	Ð	t	Lab Data
Depth Scale (n	Elev Depth (m)		Graphic Log	Number	Type	sPT 'N' Value	Elevation Sca (m)	× Dy 1 Undrai O U	ynamic Co 10 2 ined She Jnconfined Pocket Per	ar Stren	0 4 gth (kPa + Fie r ■ La	ļ0 a) eld Vane b Vane	Plastic Limit	Water		Liquid Limit	Headspac Vapour (ppm)	Instrumen Details	Comments Comments GRAIN SIZE DISTRIBUTION (%) (MIT)
-0	84.4					0)		4	+0 0	0 12	.0 1			5 2	0 3	0			GR SA SI CL
	04.2	75mm AGGREGATE	1		SS	19											-PID: 0		SS1 Apolysis:
-		FILL, sand and gravel, trace silt, loose, brown, moist			<u> </u>		84 —			\mathbf{n}									M&I
-1				2	SS	34					\mathbf{i}						-PID: 0		SS2 Analysis:
	83.0		_ X		<u> </u>	<u> </u>	83 -												РАН, РСВ
-	1.4	CLAYEY SILT , trace to some sand, trace gravel, hard, brownish grey, moist				70 /													
		(GLACIAL TILL)		3	SS	767 275mm	_										-PID: 0		
-2																			
							00												
-				4	SS	73 / 290mm	02-										-PID: 0		
							_												
-3	81.2			5	SS	50 /											-PID: 0		
	3.2					1201111													

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

		-											-			•			
Pro	ject N	No. : 1-21-0265-42	Clie	ent	: 1	303	Lakesł	nre R	d E Li	imite	d Pa	rtners	ship					Origin	ated by:OE
Dat	e sta	rted :March 10, 2022	Pro	jec	t :1	303	Lakesł	nore I	Road	East	t							Comp	oiled by :NM
She	et No	o. :1 of 1	Loc	atic	on : N	lissis	sauga	, Ont	ario									Cheo	cked by:MS
Posit	tion	: E: 616861, N: 4826621 (UTM 17T)				Elevati	ion Datu	m : G	Geodeti	С									
Rig t	ype	: Track-mounted				Drilling	Method	: S	olid ste	em au	gers								
Ê		SOIL PROFILE			SAMP	LES	ale	Penetr (Blows	ation Tes / 0.3m)	st Value	es		м	loisture	e / Plasti	city	e	ιt	Lab Data
Depth Scale (Elev Depth (m) 84.2	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sca (m)	× Dy 1 Undrai 0 U € F	namic Cor 0 20 ned She Jnconfined Pocket Pen 0 80	ne 0 <u>3</u> ar Strer I netromete 0 1	3 <u>0</u> ngth (kP + Fi er ■ La 20 1	4 <u>0</u> a) eld Vane b Vane 60	Plasti Limit F	ic I Wat P∟ 0	Matural er Content	Liquid Limit	Headspac Vapour (ppm)	Instrumer Details	P = P Zijet Server GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-0	84.0	150mm ASPHALT					04												
-	84.0 0.2	√75mm AGGREGATE FILL, clayey silt, sandy, trace gravel, trace organics, firm to very stiff, brownisł	_/ 👹	1	SS	24	04 -			/							-PID: 0		
- 1		black, moist		2	ss	4	83 -	<									-PID: 0		<u>SS2 Analysis:</u> M&I, PAH, PCB
- 2	82.1			3	ss	27		-									-PID: 0		
-	2.1	CLAYEY SILT, trace to some sand, trace gravel, hard, brownish grey, moist (GLACIAL TILL)	11111	4	SS	73	82-	-									PID: 0		
-3	81.1 3.1			(<u>ss</u>	50 /	-										PID: 0		
1		END OF BOREHOLE				1901111	J												

Borehole was dry and open upon completion of drilling.

file: 1-21-0265-01 and 42 bh logs.gpj

Proj	ect N	lo. : 1-21-0265-42	Clie	nt	: 1	303 I	akesł	nre R	d E L	imite	d Pa	rtners	ship				Origina	ated by :OE
Date	sta	rted :March 10, 2022	Proj	ect	: 1	303 I	_akesh	ore	Road	East	:						Comp	oiled by :NM
She	et No	o. :1 of 1	Loca	atio	n : N	lissis	sauga	, Ont	ario								Chec	ked by:MS
Positi	on	E: 616868, N: 4826598 (UTM 17T)			I	Elevati	on Datu	m : C	Geodeti	С								
Rig ty	ре	Track-mounted				Drilling	Method	: 5	Solid st	em au	gers							
Depth Scale (m)	Elev Depth (m) 84.0	Description GROUND SURFACE	Graphic Log	Number	SAMPI add	SPT 'N' Value	Elevation Scale (m)	Penet (Blows X D Undra	ration Te (0.3m) (namic Co (0 2 ined She Jnconfine Pocket Pe (0 8	st Value 0 3 ar Strer d netromete	es 100 / 100	40 a) eld Vane ab Vane 60	Moistur Plastic Limit Wa PL IO	e / Plastic Natural ter Content	Liquid Limit Limit	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-		25mm AGGREGATE FILL, clayey silt, trace to some sand, trace gravel, trace organics, firm to stiff, brown, moist		1	SS	10	-									-PID: 0		
-1				2	SS	4	83 —	/								-PID: 0		<u>SS2 Analysis:</u> M&I, PAH, PCB
- 2	81.9			3	SS	6	- 82 –									-PID: 0		
-	2.1	CLAYEY SILT, trace to some sand, trace stone fragments, hard, brownish grey, moist (GLACIAL TILL)		4	SS	17	-									-PID: 0		
-3				5	SS	29	81 –									-PID: 0		
	80.2	WEATHERED SHALE (bedrock)	_ KEE	6	SS	50 /	1											

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project No. : 1-21-0265-42	Client : 1303 Lakeshre Rd E Limited Partnership	Originated by :OE
Date started : March 11, 2022	Project : 1303 Lakeshore Road East	Compiled by : NM
Sheet No. : 1 of 1	Location : Mississauga, Ontario	Checked by : MS
Position : E: 616813, N: 4826626 (UTM 17T)	Elevation Datum : Geodetic	
Rig type : Track-mounted	Drilling Method : Solid stem augers	
E SOIL PROFILE	SAMPLES Penetration Test Values Moisture / Plasticity 9	Lab Data
Elev Description a (m) a 83.5	Boold and a construction Boold and a con	Lin Gud A Lin Comments Lin Comments Lin Comments Lin Comments Lin Comments
140mm TOPSOIL		
FILL, clayey silt, sandy, trace organics trace clay, loose, brown, moist	S, 1 SS 7PID:	: 0 <u>SS1 Analysis:</u> PCB
-1 82.1	2 SS 9	: 0 <u>SS2 Analysis:</u> M&I, PAH, PHC
1.4 CLAYEY SILT , trace to some sand,	82	
-2	mp 3 SS 14 - PID:	: 0 <u>SS3 Analysis:</u> .pH
		:0
2.4 WEATHERED SHALE		

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

Project No.	: 1-21-0265-42	Client	: 1303 Lakeshre Rd E Limited Partnership
Date started	: March 11, 2022	Project	: 1303 Lakeshore Road East

Originated by : OE

Compiled by : NM

Sheet No. :1 of 1

Project : 1303 Lakeshore Road East Location : Mississauga, Ontario

Checked by : MS

Posi	tion	n : E: 616837, N: 4826602 (UTM 17T)				Elevati	ion Datu	m:G	Geodeti	с									
Rig t	уре	: Track-mounted			l	Drilling	Method	: S	olid st	em au	gers								
Ê		SOIL PROFILE	-		SAMPI	ES	le	Penetr (Blows	ation Te / 0.3m)	st Value	s		Mo	oisture	e / Plasti	city	ė	t	Lab Data
Depth Scale (r	Elev Depth (m)	Description	Graphic Log	Number	Type	PT 'N' Value	Elevation Sca (m)	X Dy 1 Undrai 0 U	namic Co 0 2 ned She Jnconfine Pocket Pe	one 03 ar Strer d netromete	igth (kP + Fi ≄r ■ La	40 a) eld Vane ab Vane	Plastic Limit	Wate	Aatural er Content	Liquid Limit	Headspac Vapour (ppm)	Instrumen Details	Para and Comments Comments GRAIN SIZE DISTRIBUTION (%) (MIT)
-0	83.5		<u>x⁴ 1_y.</u>			S S	ш	4	0 8	0 1	20 1	60)	20	30			GR SA SI CL
_		FILL, clayey silt, sandy, trace organics, trace clay, loose, brown, moist		1	SS	5	83 -										-PID: 0		SS1 Analysis: PCB, PHC
																			· ·
-1	82.1			2	SS	8											-PID: 0		<u>SS2 Analysis:</u> M&I
- -2	1.4	CLAYEY SILT, trace to some sand, trace gravel, hard, brownish grey, damp (GLACIAL TILL)		3	SS	11	82-												
-				4	SS	64	81 -										-PID: 0		. <u>SS4 Analysis:</u> PAH, PHC, .pH
-3 -				5	SS	88	80 -										PID: 0		· · ·
	79.5																		

WATER LEVEL READINGS
<u>Water Depth (m)</u>
Elevation (m)
022
3.3
80.2

<u>Date</u> Mar 9, 2022

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

APPENDIX E

TERRAPROBE INC

SIEVE AND HYDROMETER ANALYSIS TEST FORM

PROJECT: 1303 Lakeshore Road East, Mississauga LOCATION: Greater Toronto Area, On. CLIENT: 1303 Lakeshore Rd E Limited Partnership BOREHOLE: 3 SAMPLE NUMBER: 4 SAMPLE DEPTH: SAMPLE DESCRIPTION: CLAYEY SILT, trace sand FILE NO.: 1-21-0265 -01 SAMPLE DATE: Jun 22, 2021 SAMPLED BY: R.S. TEST DATE: Oct 9, 2020 TESTED BY: A.K. LAB NO.: 1200

COARSE SIEVES

Dry Weight (g)		368.7		
SIEVE	E SIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
1.5"	37.5	0.00	0.0	100.0
3/4"	19.0	0.00	0.0	100.0
3/8"	9.5	0.00	0.0	100.0
No. 4	4.75	0.00	0.0	100.0
No. 10	2.00	0.00	0.0	100.0
P/	AN	368.56		
Dry Weight Aft	er Sieving (g)	368.6		
Percent Loss A	fter Sieving	0.02		

FINE SIEVES (after washing)

Dry Weight		51.76]	
Percent Passin	g No.4 (%)	100		
SIEVE	E SIZE	CUM. WT.	PERCENT	PERCENT
Standard	(mm)	RET.	RET.	PASSING
No. 20	0.840	0.40	0.8	99.2
No. 40	0.425	0.92	1.8	98.2
No. 60	0.250	1.40	2.7	97.3
No. 140	0.105	2.69	5.2	94.8
No. 200	0.075	3.51	6.8	93.2

HYGROSCOPIC MOISTURE CONTENT

Wt. of wet soil and tare (q)	100.00
Wt. of dry soil and tare (g)	100.00
Wt. of water (g)	0.00
Wt. of tare (g)	0.00
Wt. of wet soil (g) (W _A)	100.00
Wt. of dry soil (g) (W ₀)	100.00
Water content (%)	0.00

HYDROMETER

Hygroscopic C Corrected San Test sample ro Gs Correction Specific Gravi	Correction Fact nple Weight (M epresented by Factor ty	or ₀) soil (W)	1.000000 51.76 51.76 0.985209 2.717							
Date and		H _s in	H _c in	Temp. T _c	Corrected	Percent		n in		Particle
time	Elapsed lime	Divisions (G/L)	Divisions	(C)	Reading	Passing P in %	L in cm	milliPoise	K	Diameter Din mm
	1	50.0	6.0	23.7	44.0	83.75	7.3029	9.2416	0.0128	0.0347
	2	47.0	6.0	23.7	41.0	78.04	7.9029	9.2416	0.0128	0.0255
	5	43.0	6.0	23.7	37.0	70.43	8.7029	9.2416	0.0128	0.0169
	15	39.0	6.0	23.6	33.0	62.81	9.5029	9.2629	0.0129	0.0102
	30	35.0	6.0	23.6	29.0	55.20	10.3029	9.2629	0.0129	0.0075
	60	31.0	6.0	23.5	25.0	47.59	11.1029	9.2843	0.0129	0.0055
	250	25.0	6.0	23.9	19.0	36.16	12.3029	9.1993	0.0128	0.0028
	1440	17.0	6.0	23.3	11.0	20.94	13.9029	9.3273	0.0129	0.0013

UNIFIED SYSTEM ASTM D2487

COARSE

GRAVEL

COARSE

FINE

MEDIUM

SAND

FINE

SIEVE AND HYDROMETER ANALYSIS **TEST REPORT**

SILT AND CLAY

PROJECT: 1303 Lakeshore Road East, Mississauga LOCATION: Greater Toronto Area, On. CLIENT: 1303 Lakeshore Rd E Limited Partnership BOREHOLE: 3 SAMPLE NUMBER: 4 SAMPLE DEPTH: SAMPLE DESCRIPTION: CLAYEY SILT, trace sand

FILE NO.: 1-21-0265 LAB NO.: 1200 SAMPLE DATE: Jun 22, 2021 SAMPLED BY: R.S.

GRAIN SIZE DISTRIBUTION

APPENDIX F

TERRAPROBE INC

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650 ATTENTION TO: Nazika Makrod PROJECT: 1-21-0265-42 AGAT WORK ORDER: 22T872779 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer DATE REPORTED: Mar 18, 2022 PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Nember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T872779 PROJECT: 1-21-0265-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-03-11

DATE RECEIVED: 2022-03-11					DATE REPORTED: 2022-03-18
	SA	MPLE DES	CRIPTION:	TCLP	
		SAME	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2022-03-11	
Parameter	Unit	G/S	RDL	3613001	
Antimony	µg/g	1.3	0.8	<0.8	
Arsenic	µg/g	18	1	8	
Barium	µg/g	220	2.0	57.1	
Beryllium	µg/g	2.5	0.4	1.0	
Boron	µg/g	36	5	13	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.79	
Cadmium	µg/g	1.2	0.5	<0.5	
Chromium	µg/g	70	5	30	
Cobalt	µg/g	22	0.5	19.1	
Copper	µg/g	92	1.0	34.5	
Lead	µg/g	120	1	8	
Molybdenum	µg/g	2	0.5	<0.5	
Nickel	µg/g	82	1	36	
Selenium	µg/g	1.5	0.8	<0.8	
Silver	µg/g	0.5	0.5	<0.5	
Thallium	µg/g	1	0.5	<0.5	
Uranium	µg/g	2.5	0.50	<0.50	
Vanadium	µg/g	86	0.4	41.4	
Zinc	µg/g	290	5	80	
Chromium, Hexavalent	µg/g	0.66	0.2	<0.2	
Cyanide, Free	µg/g	0.051	0.040	<0.040	
Mercury	µg/g	0.27	0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.267	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.380	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.07	

AGAT WORK ORDER: 22T872779 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-03-11 Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use v

DATE REPORTED: 2022-03-18

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3613001 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

.....

AGAT WORK ORDER: 22T872779 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - PCBs (Soil)

DATE RECEIVED: 2022-03-11

3613001

	S	AMPLE DESC	CRIPTION:	TCLP
		SAME	PLE TYPE:	Soil
	DATE SAMPLED: Parameter Unit G / S RDL			2022-03-11
Parameter	Unit	G/S	RDL	3613001
Polychlorinated Biphenyls	µg/g	0.3	0.1	<0.1
Moisture Content	%		0.1	14.2
wet weight PCB	g		0.01	10.58
Surrogate	Unit	Acceptab	le Limits	
Decachlorobiphenyl	%	50-1	40	76

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

finkal Jata

DATE REPORTED: 2022-03-18

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872779 ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

Soil Analysis

						•									
RPT Date: Mar 18, 2022			0	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SPIKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce	eptable mits	Recovery	Acce Lir	ptable nits
		la					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	3612590		<0.8	<0.8	NA	< 0.8	128%	70%	130%	95%	80%	120%	103%	70%	130%
Arsenic	3612590		6	6	0.0%	< 1	118%	70%	130%	101%	80%	120%	100%	70%	130%
Barium	3612590		157	160	1.9%	< 2.0	111%	70%	130%	105%	80%	120%	104%	70%	130%
Beryllium	3612590		0.8	0.9	NA	< 0.4	78%	70%	130%	85%	80%	120%	81%	70%	130%
Boron	3612590		12	10	NA	< 5	75%	70%	130%	91%	80%	120%	91%	70%	130%
Boron (Hot Water Soluble)	3611671		<0.10	<0.10	NA	< 0.10	101%	60%	140%	104%	70%	130%	105%	60%	140%
Cadmium	3612590		<0.5	<0.5	NA	< 0.5	96%	70%	130%	104%	80%	120%	103%	70%	130%
Chromium	3612590		33	32	3.1%	< 5	95%	70%	130%	106%	80%	120%	103%	70%	130%
Cobalt	3612590		15.7	15.8	0.6%	< 0.5	104%	70%	130%	111%	80%	120%	103%	70%	130%
Copper	3612590		25.1	24.4	2.8%	< 1.0	100%	70%	130%	112%	80%	120%	97%	70%	130%
Lead	3612590		13	13	0.0%	< 1	112%	70%	130%	110%	80%	120%	106%	70%	130%
Molybdenum	3612590		0.6	0.6	NA	< 0.5	106%	70%	130%	110%	80%	120%	107%	70%	130%
Nickel	3612590		32	31	3.2%	< 1	98%	70%	130%	107%	80%	120%	95%	70%	130%
Selenium	3612590		<0.8	<0.8	NA	< 0.8	132%	70%	130%	111%	80%	120%	107%	70%	130%
Silver	3612590		<0.5	<0.5	NA	< 0.5	112%	70%	130%	107%	80%	120%	99%	70%	130%
Thallium	3612590		<0.5	<0.5	NA	< 0.5	103%	70%	130%	103%	80%	120%	101%	70%	130%
Uranium	3612590		0.95	0.91	NA	< 0.50	107%	70%	130%	103%	80%	120%	104%	70%	130%
Vanadium	3612590		47.2	46.6	1.3%	< 0.4	102%	70%	130%	106%	80%	120%	105%	70%	130%
Zinc	3612590		72	71	1.4%	< 5	106%	70%	130%	113%	80%	120%	111%	70%	130%
Chromium, Hexavalent	3612433		<0.2	<0.2	NA	< 0.2	98%	70%	130%	93%	80%	120%	104%	70%	130%
Cyanide, Free	3618845		<0.040	<0.040	NA	< 0.040	99%	70%	130%	102%	80%	120%	113%	70%	130%
Mercury	3612590		<0.10	<0.10	NA	< 0.10	115%	70%	130%	102%	80%	120%	105%	70%	130%
Electrical Conductivity (2:1)	3613144		0.710	0.728	2.5%	< 0.005	100%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	3613144		18.6	19.5	4.7%	NA									
pH, 2:1 CaCl2 Extraction	3612428		6.41	6.70	4.4%	NA	99%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Page 5 of 10

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872779

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

			Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: Mar 18, 2022		DUPLICATE				REFERE	REFERENCE MATERIAL			BLAN	K SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper	r	Lower	Upper		Lower	Upper
O. Reg. 153(511) - PCBs (Soil) Polychlorinated Biphenyls	3607402		< 0.1	< 0.1	NA	< 0.1	100%	50%	140%	101%	50%	140%	110%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Amkal Jata

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 6 of 10

QA Violation

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

AGAT WORK ORDER: 22T872779 ATTENTION TO: Nazika Makrod

RPT Date: Mar 18, 2022	REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE				
PARAMETER	Sample Id	Sample Description	Measured	Acceptabl d Limits		Recovery	Acceptable Limits		Recovery	Acce	ptable nits
			value	Lower	Upper	•	Lower	Upper]	Lower	Upper
O. Reg. 153(511) - Metals & Inorganics (S	Soil)										
Selenium		TCLP	132%	70%	130%	111%	80%	120%	107%	70%	130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document. Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872779

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

AGAT WORK ORDER: 22T872779

ATTENTION TO: Nazika Makrod

SAMPLING SITE:1303 Lakeshore East		SAMPLED BY:Omar Elgergawy							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis	•	•							
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD						
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD						
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE						
wet weight PCB	ORG-91-5113		BALANCE						

Chain of Custody Record	If this Is a D	Lab	orat	Orie	Ph: king Water Chain of Custody Form (potab	Mis 905,712	58 sissaug 5100 wel	35 Coo ga, Onta Fax: 90 pearth.a	oers Ave io L4Z 5,712 (gatlabs ns)	enue 1Y2 5122 com		Labora Work Ord Cooler Q Arrival Te	er #:	Jse (Only T B	8	tre	-7 e 41	70 ice 7	<u>1</u>). Z
Cliant of Custory Record If this is a Drinking Water sample, please if Report Information: Contact: Marsha Marsha Marsha Marsha Address: II End M Gange Phone: 905-796 2650 Fax: Reports to be sent to: N ma krad@ ferrup robe 1. Email: N ma krad@ ferrup robe Project Information: Project: 1-21-0265-42 Site Location:					Regulatory Requirements: (Please check all applicable backs) Regulation 153/04 Excess Soils R406 Table Indicate One Indicate One Indicate One Region Region Regulation 153/04 Regulation 558 Indicate One Prov. Water Quality Objectives (PWQO) Objectives (PWQO) Soil Texture (check One) CCME Prine Indicate One Is this submission for a Report Guideline on Record of Site Condition? Yes Yes No						Custody Seal Intact: Yes No N/A Notes: Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Next Business Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays					Isiness 				
Sampled By: Omar Elgergews AGAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis. Invoice Information: Bill To Same: Yes INO I Company: 4 craptobe Contact: 4 craptobe Address: Todat I and Email: Elgergews			Sam B GW O P S SD SW	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water		s & Inorganics .	У. Reg 123 Г. С. VI, □ Hg, □ HWSB Г. F4 PHCs в F4 G if reoutred □ Yes □ No				I Disposal Characterization TCLP:	□ Metals □ vocs □ svocs a s Soils Characterization Package b PMS Metals RTFX F1-F4 9	EC/SAR						ally Hazardous or High Concentration (Y/N)	
Sample Identification TELP	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N	Metals	Metals	Analyz PAHs	PCBs	voc	Landah La	SPUE: SPUE:	Salt - F						Potenti
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	22	Date Magand Date Date	Time Time Time		Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	ips	H	Pi	nk Copy	Dat Dat Dat	e e nt Y	rellow Copy	ime ime - AGAT	Whit	Nº: ce Copy	Pag T 1 /- AGAT	3 1	of 1	7: 74	13pm

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650 ATTENTION TO: Nazika Makrod PROJECT: 1-21-0265-42 AGAT WORK ORDER: 22T872781 SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Mar 21, 2022 PAGES (INCLUDING COVER): 19 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- · This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Iember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T872781 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-03-18								Γ	DATE REPORTE	ED: 2022-03-21	
		SAMPLE DES	CRIPTION:	BH5-SS1	BH6-SS1	BH7-SS2	BH8-SS2	BH9-SS2	BH10-SS2	DUP1	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11	
Parameter	Unit	G/S	RDL	3613332	3613334	3613335	3613336	3613337	3613346	3613359	
Antimony	µg/g	1.3	0.8	1.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	5	6	4	6	5	7	7	
Barium	µg/g	220	2.0	64.1	40.8	74.7	90.6	87.5	77.8	79.8	
Beryllium	µg/g	2.5	0.4	0.8	1.0	0.7	0.6	0.8	1.0	0.8	
Boron	µg/g	36	5	8	12	7	9	11	13	12	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.64	0.22	0.42	0.43	1.98	0.29	0.30	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	µg/g	70	5	23	31	25	24	27	33	33	
Cobalt	µg/g	22	0.5	11.5	17.2	11.7	14.0	12.0	18.8	19.7	
Copper	µg/g	92	1.0	21.5	30.2	22.7	32.4	24.8	62.3	42.2	
Lead	µg/g	120	1	197	7	15	13	20	126	138	
Molybdenum	µg/g	2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Nickel	µg/g	82	1	21	31	20	24	23	33	34	
Selenium	µg/g	1.5	0.8	<0.8	<0.8	<0.8	<0.8	0.9	<0.8	<0.8	
Silver	µg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	µg/g	2.5	0.50	0.55	0.55	0.53	0.53	0.67	0.52	0.53	
Vanadium	µg/g	86	0.4	35.6	41.4	37.7	32.6	40.6	40.1	40.8	
Zinc	µg/g	290	5	71	78	72	67	80	124	138	
Chromium, Hexavalent	µg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.889	0.471	1.14	0.324	0.235	0.592	0.599	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	1.01	5.48	3.58	0.702	0.294	4.41	4.25	
pH, 2:1 CaCl2 Extraction	pH Units		NA	6.93	6.45	7.07	7.25	6.46	6.91	7.13	

AGAT WORK ORDER: 22T872781 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-03-18

DATE REPORTED: 2022-03-21

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3613332-3613359 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 22T872781 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

		DATE REPORTED: 2022-03-21
BH10-SS4 BH	H9-SS3 DUP5	
Soil	Soil Soil	
2022-03-11 202	22-03-11 2022-03-11	
3613353 36	613358 3613365	
6.84	7.05 6.97	
3⊢ 20: 3(110-SS4 B Soil 22-03-11 20 613353 3 6.84	H0-SS4 BH9-SS3 DUP5 Soil Soil Soil 22-03-11 2022-03-11 2022-03-11 613353 3613358 3613365 6.84 7.05 6.97

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 3613353-3613365 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

Haulo Chartere

AGAT WORK ORDER: 22T872781 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2022-03-18							[DATE REPORTI	ED: 2022-03-21	
		SAMPLE DESCRIPTION	DN: BH5-SS1	BH7-SS2	BH8-SS2	BH9-SS2	BH10-SS4	BH6-SS2	DUP3	
		SAMPLE TY	PE: Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLI	ED: 2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11	
Parameter	Unit	G / S RDL	3613332	3613335	3613336	3613337	3613353	3613355	3613363	
Naphthalene	µg/g	0.09 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.093 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	0.072 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	0.19 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	0.69 0.05	< 0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	
Anthracene	µg/g	0.22 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.69 0.05	<0.05	<0.05	0.45	<0.05	<0.05	<0.05	<0.05	
Pyrene	µg/g	1 0.05	< 0.05	<0.05	0.40	<0.05	<0.05	<0.05	<0.05	
Benz(a)anthracene	µg/g	0.36 0.05	< 0.05	<0.05	0.30	<0.05	<0.05	<0.05	<0.05	
Chrysene	µg/g	2.8 0.05	< 0.05	<0.05	0.22	<0.05	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.47 0.05	<0.05	<0.05	0.24	<0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.48 0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3 0.05	0.20	< 0.05	0.21	<0.05	<0.05	<0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.23 0.05	< 0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	0.68 0.05	< 0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	
1 and 2 Methlynaphthalene	µg/g	0.59 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%	0.1	8.5	9.1	10.3	15.0	7.8	9.1	12.3	
Surrogate	Unit	Acceptable Limit	s							
Naphthalene-d8	%	50-140	69	65	62	65	69	74	77	
Acridine-d9	%	50-140	74	89	89	76	69	75	84	
Terphenyl-d14	%	50-140	85	67	97	60	65	71	95	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Lise

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3613332-3613363 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 22T872781 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

DATE RECEIVED: 2022-03-18								[DATE REPORTI	ED: 2022-03-21		
		SAMPLE DES	CRIPTION:	BH5-SS1	BH7-SS2	BH8-SS2	BH6-SS2	BH9-SS1	BH10-SS1	DUP4		
		SAMPLE TYPE:		Soil	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE SAMPLED:		2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11	2022-03-11		
Parameter	Unit	G/S	RDL	3613332	3613335	3613336	3613355	3613356	3613357	3613364		
Polychlorinated Biphenyls	µg/g	0.3	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Moisture Content	%		0.1	8.5	9.1	10.3	9.1	16.2	17.9	14.6		
wet weight PCB	g		0.01	10.45	10.74	10.74	10.19	10.62	10.21	10.51		
Surrogate	Unit	Acceptab	le Limits									
Decachlorobiphenyl	%	50-140		76	84	96	84	84 104		68		

O. Reg. 153(511) - PCBs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3613332-3613364 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

NPopukolof

AGAT WORK ORDER: 22T872781 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2022-03-18

DATE RECEIVED: 2022 03 10					DATE NEL OKTED. 2022 00 21
	:	SAMPLE DESCRIPTIO	N: BH10-SS1	DUP2	
		SAMPLE TYP	E: Soil	Soil	
		DATE SAMPLE	D: 2022-03-11	2022-03-11	
Parameter	Unit	G/S RDL	3613351	3613361	
Benzene	µg/g	0.02 0.02	<0.02	<0.02	
Toluene	µg/g	0.2 0.05	<0.05	<0.05	
Ethylbenzene	µg/g	0.05 0.05	<0.05	<0.05	
m & p-Xylene	µg/g	0.05	<0.05	<0.05	
o-Xylene	µg/g	0.05	<0.05	<0.05	
Xylenes (Total)	µg/g	0.05 0.05	<0.05	<0.05	
F1 (C6 - C10)	µg/g	5	<5	<5	
F1 (C6 to C10) minus BTEX	µg/g	25 5	<5	<5	
F2 (C10 to C16)	µg/g	10 10	<10	<10	
F3 (C16 to C34)	µg/g	240 50	<50	<50	
F4 (C34 to C50)	µg/g	120 50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	120 50	NA	NA	
Moisture Content	%	0.1	17.8	7.4	
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	60-140	80	117	
Terphenyl	%	60-140	78	86	

Certified By:

NPopukolof

DATE REPORTED: 2022-03-21

AGAT WORK ORDER: 22T872781

RDL - Reported Detection Limit; G/S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil -

PROJECT: 1-21-0265-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVE	ED: 2022-03-18	

Comments:

DATE REPORTED: 2022-03-21

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 3613351-3613361 Results are based on sample dry weight. The C6-C10 fraction is calculated using Toluene response factor. Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX contribution. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. Fractions 1-4 are guantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 22T872781 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2022-03-18

		SAMPLE DESCRIPT	ION: BH9-SS2	BH10-SS4		
		SAMPLE T	YPE: Soil	Soil		
		DATE SAMP	LED: 2022-03-11	2022-03-11		
Parameter	Unit	G/S RE	DL 3613337	3613353		
Benzene	µg/g	0.02 0.0	02 <0.02	<0.02		
Toluene	µg/g	0.2 0.0	05 <0.05	<0.05		
Ethylbenzene	µg/g	0.05 0.0	05 <0.05	<0.05		
m & p-Xylene	µg/g	0.0	05 <0.05	<0.05		
o-Xylene	µg/g	0.0	05 <0.05	<0.05		
Xylenes (Total)	µg/g	0.05 0.0	05 <0.05	<0.05		
F1 (C6 - C10)	µg/g	5	5 <5	<5		
F1 (C6 to C10) minus BTEX	µg/g	25 5	5 <5	<5		
F2 (C10 to C16)	µg/g	10 1	0 <10	<10		
F2 (C10 to C16) minus Naphthalene	µg/g	1	0 <10	<10		
F3 (C16 to C34)	µg/g	240 5	0 <50	<50		
F3 (C16 to C34) minus PAHs	µg/g	5	0 <50	<50		
F4 (C34 to C50)	µg/g	120 5	0 <50	<50		
Gravimetric Heavy Hydrocarbons	µg/g	120 5	0 NA	NA		
Moisture Content	%	0.	1 15.0	7.8		
Surrogate	Unit	Acceptable Lim	nits			
Toluene-d8	% Recovery	60-140	79	119		
Terphenyl	%	60-140	80	86		

Certified By:

NPopukolof

DATE REPORTED: 2022-03-21

AGAT WORK ORDER: 22T872781 PROJECT: 1-21-0265-42

RDL - Reported Detection Limit; G/S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil -

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2022-03-18

Comments:

DATE REPORTED: 2022-03-21

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 3613337-3613353 Results are based on sample dry weight. The C6-C10 fraction is calculated using toluene response factor. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

		Laboratori	es	Guideline Viol AGAT WORK ORDER: 22T8 PROJECT: 1-21-0265-42	ation 372781	4 - 1 - 1	5835 C MISSIS http://	OOPERS AVENUE SAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 /www.agatlabs.com
CLIENT NAM	IE: TERRAPROBE INC.				ATTENTION TO: Nazika N	lakrod		
SAMPLEID	SAMPLE TITLE	GUIDELINE		ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
3613332	BH5-SS1	ON T8 S RPI/ICC	O. Reg.	153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.889
3613332	BH5-SS1	ON T8 S RPI/ICC	O. Reg.	153(511) - Metals & Inorganics (Soil)	Lead	µg/g	120	197
3613334	BH6-SS1	ON T8 S RPI/ICC	O. Reg.	153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	5.48
3613335	BH7-SS2	ON T8 S RPI/ICC	O. Reg.	153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.14
3613337	BH9-SS2	ON T8 S RPI/ICC	O. Reg.	153(511) - Metals & Inorganics (Soil)	Boron (Hot Water Soluble)	µg/g	1.5	1.98
3613346	BH10-SS2	ON T8 S RPI/ICC	O. Reg.	153(511) - Metals & Inorganics (Soil)	Lead	µg/g	120	126
3613359	DUP1	ON T8 S RPI/ICC	O. Reg.	153(511) - Metals & Inorganics (Soil)	Lead	µg/g	120	138

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872781 ATTENTION TO: Nazika Makrod SAMPLED BY:Omar Elgergawy

Soil Analysis

RPT Date: Mar 21, 2022			C	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorg	anics (Soi	I)													
Antimony	3613332	3613332	1.0	1.0	NA	< 0.8	110%	70%	130%	103%	80%	120%	73%	70%	130%
Arsenic	3613332	3613332	5	5	0.0%	< 1	112%	70%	130%	109%	80%	120%	120%	70%	130%
Barium	3613332	3613332	64.1	65.6	2.3%	< 2.0	107%	70%	130%	106%	80%	120%	103%	70%	130%
Beryllium	3613332	3613332	0.8	0.7	NA	< 0.4	93%	70%	130%	89%	80%	120%	93%	70%	130%
Boron	3613332	3613332	8	6	NA	< 5	80%	70%	130%	92%	80%	120%	77%	70%	130%
Boron (Hot Water Soluble)	3613332	3613332	0.64	0.65	1.6%	< 0.10	94%	60%	140%	104%	70%	130%	102%	60%	140%
Cadmium	3613332	3613332	<0.5	<0.5	NA	< 0.5	91%	70%	130%	105%	80%	120%	95%	70%	130%
Chromium	3613332	3613332	23	23	NA	< 5	105%	70%	130%	111%	80%	120%	111%	70%	130%
Cobalt	3613332	3613332	11.5	11.2	2.6%	< 0.5	104%	70%	130%	113%	80%	120%	105%	70%	130%
Copper	3613332	3613332	21.5	21.2	1.4%	< 1.0	98%	70%	130%	117%	80%	120%	107%	70%	130%
Lead	3613332	3613332	197	199	1.0%	< 1	114%	70%	130%	109%	80%	120%	111%	70%	130%
Molybdenum	3613332	3613332	<0.5	<0.5	NA	< 0.5	99%	70%	130%	107%	80%	120%	102%	70%	130%
Nickel	3613332	3613332	21	19	10.0%	< 1	94%	70%	130%	101%	80%	120%	91%	70%	130%
Selenium	3613332	3613332	<0.8	<0.8	NA	< 0.8	97%	70%	130%	102%	80%	120%	103%	70%	130%
Silver	3613332	3613332	<0.5	<0.5	NA	< 0.5	112%	70%	130%	113%	80%	120%	98%	70%	130%
Thallium	3613332	3613332	<0.5	<0.5	NA	< 0.5	107%	70%	130%	100%	80%	120%	97%	70%	130%
Uranium	3613332	3613332	0.55	0.56	NA	< 0.50	112%	70%	130%	103%	80%	120%	103%	70%	130%
Vanadium	3613332	3613332	35.6	34.9	2.0%	< 0.4	108%	70%	130%	108%	80%	120%	102%	70%	130%
Zinc	3613332	3613332	71	68	4.3%	< 5	104%	70%	130%	116%	80%	120%	NA	70%	130%
Chromium, Hexavalent	3612433		<0.2	<0.2	NA	< 0.2	98%	70%	130%	93%	80%	120%	104%	70%	130%
Cyanide, Free	3618845		<0.040	<0.040	NA	< 0.040	99%	70%	130%	102%	80%	120%	113%	70%	130%
Mercury	3613332	3613332	<0.10	<0.10	NA	< 0.10	113%	70%	130%	102%	80%	120%	100%	70%	130%
Electrical Conductivity (2:1)	3613332	3613332	0.889	0.903	1.6%	< 0.005	115%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	3613332	3613332	1.01	1.02	1.0%	NA									
pH, 2:1 CaCl2 Extraction	3613334	3613334	6.45	6.72	4.1%	NA	92%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

O. Reg. 153(511) - Metals &	Inorganics (Soil)										
pH, 2:1 CaCl2 Extraction	3613337 3613337	6.46	6.58	1.9%	NA	101%	80%	120%			
Comments: NA signifies Not Ap pH duplicates QA acceptance of	oplicable. criteria was met relative as s	stated in Ta	ble 5-15 of	Analytica	I Protocol c	locument	i.				
O. Reg. 153(511) - Metals &	Inorganics (Soil)										
Cyanide, Free	3626438	<0.040	<0.040	NA	< 0.040	101%	70%	130%	110%	80%	120%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 19

70% 130%

106%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872781

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

Soil Analysis (Continued)

RPT Date: Mar 21, 2022			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits
		Ia					value	Lower	Upper		Lower	Upper	,	Lower	Upper

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document. Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - ORPs (Soil)								
pH, 2:1 CaCl2 Extraction	3613334 3613334	6.45	6.72	4.1%	NA	92%	80%	120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

F1 (C6 - C10)

S

AGAT WORK ORDER: 22T872781 ATTENTION TO: Nazika Makrod

SAMPLING SITE: 1303 Lakesh			5	SAMP	LED B	Y:Omar	Elger	gawy							
			Trac	e Or	ganio	cs Ar	nalys	is							
RPT Date: Mar 21, 2022			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits	Recovery	Acce Lir	ptable nits
		id					Fuide	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	113%	50%	140%	82%	50%	140%	85%	50%	140%
Acenaphthylene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	115%	50%	140%	86%	50%	140%	74%	50%	140%
Acenaphthene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	113%	50%	140%	78%	50%	140%	96%	50%	140%
Fluorene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	106%	50%	140%	78%	50%	140%	85%	50%	140%
Phenanthrene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	96%	50%	140%	75%	50%	140%	79%	50%	140%
Anthracene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	115%	50%	140%	79%	50%	140%	86%	50%	140%
Fluoranthene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	108%	50%	140%	80%	50%	140%	85%	50%	140%
Pyrene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	103%	50%	140%	80%	50%	140%	84%	50%	140%
Benz(a)anthracene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	92%	50%	140%	75%	50%	140%	79%	50%	140%
Chrysene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	115%	50%	140%	68%	50%	140%	86%	50%	140%
Benzo(b)fluoranthene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	65%	50%	140%	79%	50%	140%	82%	50%	140%
Benzo(k)fluoranthene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	91%	50%	140%	91%	50%	140%	102%	50%	140%
Benzo(a)pyrene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	70%	50%	140%	77%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	67%	50%	140%	75%	50%	140%	97%	50%	140%
Dibenz(a,h)anthracene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	67%	50%	140%	76%	50%	140%	106%	50%	140%
Benzo(g,h,i)perylene	3613363 3	3613363	<0.05	<0.05	NA	< 0.05	65%	50%	140%	85%	50%	140%	87%	50%	140%
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	3607402		< 0.1	< 0.1	NA	< 0.1	100%	50%	140%	101%	50%	140%	110%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs)	(Soil)													
Benzene	3613361 3	3613361	<0.02	<0.02	NA	< 0.02	83%	60%	140%	89%	60%	140%	113%	60%	140%
Toluene	3613361 3	3613361	<0.05	<0.05	NA	< 0.05	120%	60%	140%	93%	60%	140%	95%	60%	140%
Ethylbenzene	3613361 3	3613361	<0.05	<0.05	NA	< 0.05	99%	60%	140%	91%	60%	140%	109%	60%	140%
m & p-Xylene	3613361 3	3613361	<0.05	<0.05	NA	< 0.05	116%	60%	140%	92%	60%	140%	121%	60%	140%
o-Xylene	3613361 3	3613361	<0.05	<0.05	NA	< 0.05	82%	60%	140%	119%	60%	140%	93%	60%	140%
F1 (C6 - C10)	3613361 3	3613361	<5	<5	NA	< 5	94%	60%	140%	112%	60%	140%	92%	60%	140%
F2 (C10 to C16)	3596507		21	28	NA	< 10	104%	60%	140%	101%	60%	140%	68%	60%	140%
F3 (C16 to C34)	3596507		88	93	NA	< 50	106%	60%	140%	105%	60%	140%	78%	60%	140%
F4 (C34 to C50)	3596507		< 50	< 50	NA	< 50	106%	60%	140%	88%	60%	140%	80%	60%	140%
Comments: When the average of the	sample and	d duplicate	results is l	ess than 5	5x the RDI	_, the Rela	tive Perce	nt Diffe	rence (F	RPD) will b	be indic	ated as	Not Applic	able (N	IA).
O. Reg. 153(511) - PHCs F1 - F4 (Soil)														
Benzene	3613361 3	3613361	<0.02	<0.02	NA	< 0.02	83%	60%	140%	89%	60%	140%	113%	60%	140%
Toluene	3613361 3	3613361	<0.05	<0.05	NA	< 0.05	120%	60%	140%	93%	60%	140%	95%	60%	140%
Ethylbenzene	3613361 3	3613361	<0.05	<0.05	NA	< 0.05	99%	60%	140%	91%	60%	140%	109%	60%	140%
m & p-Xylene	3613361 3	3613361	<0.05	<0.05	NA	< 0.05	116%	60%	140%	92%	60%	140%	121%	60%	140%

Et m & p-Xylene 3613361 3613361 < 0.05 < 0.05 < 0.05 NA o-Xylene 3613361 3613361 < 0.05 < 0.05 < 0.05 NA

3613361 3613361

<5

<5

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 19

60% 140%

60% 140%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

NA

< 5

82%

94%

60%

140%

60% 140%

119%

112%

60%

140%

60% 140%

93%

92%

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872781

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

Trace Organics Analysis (Continued)

RPT Date: Mar 21, 2022			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper

Certified By:

NPopukot

Page 15 of 19

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872781

ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			•
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872781

ATTENTION TO: Nazika Makrod

SAMPLING SITE: 1303 Lakeshore East		SAMPLED BY:Off	iar Eigergawy
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	I		
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
wet weight PCB	ORG-91-5113		BALANCE
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T872781 ATTENTION TO: Nazika Makrod

SAMPLED BY:Omar Elgergawy

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

GG		ı Iəł	ora	tori	26			1983 1979 1977	10:	1.1.1		Labo Work C	rator	y Use	e Only .こう	10:	72	70	<u>5)</u>	
Chain of Custody Recor	'd If this is a D	Drinking Water s	ample, plea	se use Drint	king Water Chain of Custody Form (por	table water o	consum	ed by hu	11ans)	alnos	-	Cooler Arrival	Quantit Temper	y: atures:	9	S	2	8	8_0	Ē
Report Information:		• • • • <u>• • • • • • • • • • • • • • • </u>		Reg	gulatory Requirements:				_			Custod	v Seał i	ntact:			1	No		
Company: Contact: Address: Phone: Recent to be sent to: Company: Terraprobe Inc. NG72 fo More II Indell Lane Brampton 16'F 3Y'3 905-796-2650	9 Ktod m, Ontario				education 153/04 Excess Soils ble BRPI Indicate con Indicate Res/Park Agriculture	R406	Sev	wer Use anitary Pegion v. Wate	Qual	torm Ity O)		Notes: Turna Regula Rush 1	round ar TAT 'AT (Rost	(Most Ar	e (TA)	с д Г) Rei	quire	e d: usiness l	Days	
1. Email: <u>hmakrad(w</u>)	terrapio	be.ca		Soil T	Exture (Oracis Day)	[Oth	ier anderte	154				3 Busir Days OR Dat	ess e Requ	iired (Ru	2 Busine Days Jsh Surc	ess charges	May App	xt Busin y ply):	oss
Project Information: Project: 1-21-03 Site Location: 1303 Lake	65-42 shore Ea	st		ls Rec	this submission for a cord of Site Condition?	Re Cer	eport tifica Yes	Guide ate of	eline Ana	on Iysis No		0	Plea *TAT is c	ise pro exclusiv	vide pric ve of wee	ər notific ekenas	cation fi and sta	or rush T itulory n	AT olidays	
Sampled By: Nazifa AGAT ID #: Please eloic (*) quotation number	PO: materiovided, glient wiji z	e telles fell crue for æ	Diriyais.	- San	nple Matrix Legend	VI. DOC	0	Reg 15	3 0N			D. Rog 558 (8004 U	Same D	ay' ana	alysis, pi	lease co	ontact	your AG	AT CPM	00 (Y) 10
Invoice Information: Company: Contact: Address: Email: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Contac	si SSI CINC .	l To Same: Yes	5 🗹 No 🗌	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, C	& Inorganics	Crvi, C Hg, L HWSB	F4G if required D Yes			Disposal Characterization 10 Miki	Dimetals CUVOUS CUNVOUS Soils Characterization Pac	MS Metals, BTEX, F1-F4 C/SAR						IJ, Ha. ardous or High Consentra
Sample Identification	Date Sampled	Time Sampled	≓ of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Nictals	Analyze	PAHS	VOC	Landfill TCLP- [] Excess	SPLP: [Excess	pH, ICP Salt E	Ha					Potentia
BHG - SS1	MarchII	AM Phi	1	Solid			X													
BH10-552	11	414 PM	1	Solid			X			_					~		1			
BH8 - 554		PM	1	Solid	Replace BHY-953		-	\vdash		_	-		-	-	X		+			-
Dup 1 Dup 5	11	PM AM PM	1					\vdash	-		-			-	X				_	-
wp s		AM PM	24																	
		AM PM aM				_					-		_							
		PM AM							-	-	+									-
		AM																		
1 1	110	AM PM															00153	3.0.43		
NGZIFA Matrice Marked By Print Name and San	lp.	March 1	Time Time		Samples Received By (Front Name and Bagn)	RZSF	E		Z	2	ats) #1#		Server Server			Page		of_	3	12 1 3
lavrolar Paripticies d Ba (Peri frame and Sim)		Date	Tame		Samples Received By Print Name and Sign					0	ube		me		N:					

Pink Copy Client I Yellow Copy - AGAT I White Copy AGAT

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650 ATTENTION TO: Nazika Makrod PROJECT: 1-21-0265-42 AGAT WORK ORDER: 22T875076 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Mar 24, 2022 PAGES (INCLUDING COVER): 8 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- · This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Iember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 8

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T875076 PROJECT: 1-21-0265-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Nazifa

			O. Reg.	558 Metals and Inorganics
DATE RECEIVED: 2022-03-18				DATE REPORTED: 2022-03-24
	SA	AMPLE DESCRIPTION:	TCLP	
		SAMPLE TYPE:	Solid	
		DATE SAMPLED:	2022-03-11	
Parameter	Unit	G/S RDL	3636536	
Arsenic Leachate	mg/L	0.010	<0.010	
Barium Leachate	mg/L	0.010	0.161	
Boron Leachate	mg/L	0.050	0.050	
Cadmium Leachate	mg/L	0.010	<0.010	
Chromium Leachate	mg/L	0.050	<0.050	
Lead Leachate	mg/L	0.010	<0.010	
Mercury Leachate	mg/L	0.01	<0.01	
Selenium Leachate	mg/L	0.010	<0.010	
Silver Leachate	mg/L	0.010	<0.010	
Uranium Leachate	mg/L	0.050	<0.050	
Fluoride Leachate	mg/L	0.10	0.15	
Cyanide Leachate, Free	mg/L	0.05	< 0.05	
(Nitrate + Nitrite) as N Leachate	mg/L	0.70	<0.70	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T8 S RPI/ICC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 22T875076 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Nazifa

O. Reg. 558 - PCBs

	S	AMPLE DESC	RIPTION:	TCLP
		SAMP	LE TYPE:	Solid
		DATE S	AMPLED:	2022-03-11
Parameter	Unit	G / S	RDL	3636536
PCB's Leachate	mg/L		0.005	<0.005
Surrogate	Unit	Acceptable	ə Limits	
Decachlorobiphenyl	%	50-14	40	109

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T8 S RPI/ICC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. The soil sample was leached using the Regulation 558 procedure. Analysis was performed on the leachate.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2022-03-24

AGAT WORK ORDER: 22T875076 PROJECT: 1-21-0265-42

O. Reg. 558 - VOCs

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore East

ATTENTION TO: Nazika Makrod

SAMPLED BY:Nazifa

DATE RECEIVED: 2022-03-18 DATE REPORTED: 2022-03-24 TCLP SAMPLE DESCRIPTION: SAMPLE TYPE: Solid DATE SAMPLED: 2022-03-11 G/S 3636536 Parameter Unit RDL Vinyl Chloride Leachate mg/L 0.030 < 0.030 1,1 Dichloroethene Leachate mg/L 0.020 < 0.020 Dichloromethane Leachate mg/L 0.030 < 0.030 Methyl Ethyl Ketone Leachate 0.090 mg/L < 0.090 Chloroform Leachate 0.020 < 0.020 mg/L 1.2-Dichloroethane Leachate mg/L 0.020 < 0.020 Carbon Tetrachloride Leachate mg/L 0.020 < 0.020 Benzene Leachate mg/L 0.020 < 0.020 0.020 <0.020 Trichloroethene Leachate mg/L Tetrachloroethene Leachate mg/L 0.050 < 0.050 Chlorobenzene Leachate mg/L 0.010 < 0.010 0.010 < 0.010 1,2-Dichlorobenzene Leachate mg/L 0.010 1,4-Dichlorobenzene Leachate mg/L <0.010 Unit Surrogate Acceptable Limits Toluene-d8 % Recovery 50-140 100 4-Bromofluorobenzene % Recovery 50-140 78

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T8 S RPI/ICC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3636536 Sample was prepared using Regulation 558 protocol and a zero headspace extractor.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T875076

ATTENTION TO: Nazika Makrod

SAMPLED BY:Nazifa

				Soi	l Ana	alysis	6									
RPT Date: Mar 24, 2022 DUPLICATE							REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	AMETER Batch Sample Dup #1 Dup #2 RPD Blar		Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits	Recovery	Acce Lir	ptable nits				
							Value	Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 558 Metals and Inorganic	s															
Arsenic Leachate	3628074		<0.010	<0.010	NA	< 0.010	94%	70%	130%	107%	80%	120%	108%	70%	130%	
Barium Leachate	3628074		0.237	0.271	13.4%	< 0.010	99%	70%	130%	111%	80%	120%	114%	70%	130%	
Boron Leachate	3628074		<0.050	<0.050	NA	< 0.050	106%	70%	130%	101%	80%	120%	92%	70%	130%	
Cadmium Leachate	3628074		<0.010	<0.010	NA	< 0.010	100%	70%	130%	104%	80%	120%	109%	70%	130%	
Chromium Leachate	3628074		<0.050	<0.050	NA	< 0.050	91%	70%	130%	102%	80%	120%	100%	70%	130%	
Lead Leachate	3628074		<0.010	<0.010	NA	< 0.010	95%	70%	130%	102%	80%	120%	97%	70%	130%	
Mercury Leachate	3628074		<0.01	<0.01	NA	< 0.01	91%	70%	130%	96%	80%	120%	97%	70%	130%	
Selenium Leachate	3628074		<0.010	<0.010	NA	< 0.010	98%	70%	130%	113%	80%	120%	110%	70%	130%	
Silver Leachate	3628074		<0.010	<0.010	NA	< 0.010	99%	70%	130%	107%	80%	120%	104%	70%	130%	
Uranium Leachate	3628074		<0.050	<0.050	NA	< 0.050	95%	70%	130%	100%	80%	120%	99%	70%	130%	
Fluoride Leachate	3628074		0.34	0.35	NA	< 0.10	99%	90%	110%	98%	90%	110%	95%	70%	130%	
Cyanide Leachate, Free	3628074		<0.05	<0.05	NA	< 0.05	98%	70%	130%	106%	80%	120%	105%	70%	130%	
(Nitrate + Nitrite) as N Leachate	3628074		<0.70	<0.70	NA	< 0.70	104%	80%	120%	96%	80%	120%	99%	70%	130%	

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 8

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T875076

ATTENTION TO: Nazika Makrod

SAMPLED BY:Nazifa

Trace Organics Analysis

					•		•								
RPT Date: Mar 24, 2022	DUPLICATE				REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
							value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 558 - PCBs															
PCB's Leachate	3636536 3	3636536	< 0.005	< 0.005	NA	< 0.005	107%	50%	140%	90%	50%	140%	100%	50%	140%
O. Reg. 558 - VOCs															
Vinyl Chloride Leachate	3629658		<0.030	<0.030	NA	< 0.030	101%	50%	140%	102%	50%	140%	119%	50%	140%
1,1 Dichloroethene Leachate	3629658		<0.020	<0.020	NA	< 0.020	79%	50%	140%	84%	60%	130%	96%	50%	140%
Dichloromethane Leachate	3629658		<0.030	<0.030	NA	< 0.030	74%	50%	140%	103%	60%	130%	101%	50%	140%
Methyl Ethyl Ketone Leachate	3629658		<0.090	<0.090	NA	< 0.090	108%	50%	140%	98%	50%	140%	86%	50%	140%
Chloroform Leachate	3629658		<0.020	<0.020	NA	< 0.020	118%	50%	140%	93%	60%	130%	97%	50%	140%
1,2-Dichloroethane Leachate	3629658		<0.020	<0.020	NA	< 0.020	86%	50%	140%	79%	60%	130%	87%	50%	140%
Carbon Tetrachloride Leachate	3629658		<0.020	<0.020	NA	< 0.020	88%	50%	140%	74%	60%	130%	77%	50%	140%
Benzene Leachate	3629658		<0.020	<0.020	NA	< 0.020	89%	50%	140%	102%	60%	130%	88%	50%	140%
Trichloroethene Leachate	3629658		<0.020	<0.020	NA	< 0.020	97%	50%	140%	85%	60%	130%	74%	50%	140%
Tetrachloroethene Leachate	3629658		<0.050	<0.050	NA	< 0.050	117%	50%	140%	92%	60%	130%	90%	50%	140%
Chlorobenzene Leachate	3629658		<0.010	<0.010	NA	< 0.010	102%	50%	140%	90%	60%	130%	85%	50%	140%
1,2-Dichlorobenzene Leachate	3629658		<0.010	<0.010	NA	< 0.010	105%	50%	140%	72%	60%	130%	72%	50%	140%
1,4-Dichlorobenzene Leachate	3629658		<0.010	<0.010	NA	< 0.010	111%	50%	140%	80%	60%	130%	78%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 6 of 8

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore East

AGAT WORK ORDER: 22T875076

ATTENTION TO: Nazika Makrod SAMPLED BY:Nazifa

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		1	1
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Fluoride Leachate	INOR-93-6018	EPA 1311 & modified from SM4500-F-C	ION SELECTIVE ELECTRODE
Cyanide Leachate, Free	INOR-93-6052	EPA 1311 modified from MOE 3015 SM 4500 CN-I,G387	TECHNICON AUTO ANALYZER
(Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & modified from SM 4500 - NO3- I	LACHAT FIA
Trace Organics Analysis			
PCB's Leachate	ORG-91-5112	Regulation 558, EPA SW846 3510C/8082	GC/ECD
Decachlorobiphenyl	ORG-91-5112	EPA SW846 3510C/8082	GC/ECD
Vinyl Chloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,1 Dichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Dichloromethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chloroform Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Benzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Trichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Tetrachloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

	AC	AU	Lał	oora	torie	25		251	165. 177 20		1990 1970 - La 1970 - La 1		Lak Work	orat	ory L	Jse Zi Z	Only ZT ,2T	8	72	277 09	7 G	?
Chain of Cu	stody Recor	d If this is a D	Drinking Water s	ample, plea	se use Drinl	king Water Chain of Custody Form (pota	ible water	ดจกรมกา	ed by hui	ians)		3	Arriv	al Tem	iperatu	res:	9.	S	0	1.8	8	4
Report Informa	tion:				Reg	ulatory Requirements:				_			Cust	ody So	eal Inta	ct:	Yes	5		No	0	
Company: Contact:	Nazifa Ma	akind			- ۲۰ بر	netwarappears and the Excess Souls R	406	Se	wer Use				Note	es:		Le	203-	e	Ŀ	CA	-	
Address:	I i Indell Lane Brampto	on, Ontario			Ta		400		Sanitary	St	errite.		Turn	arou	und T	ime	(TAT)	Re	quire	ed:		
<u>.</u>	.6T 3Y3					Ind/Com	10:	-	Region				Reg	ular T	AT (Me	ost Anal	ysos) [_ 5	5 to 7 E	Busines	s Days	S
Phone: <u>9</u>	05-796-2650	Fax:				Res/Park Agriculture Regulation 55	8	Pro	v, Water	Qualit	У		Rush	TAT	(Rush Sur	rcharge:	s Apply)					
Reports to be sent to: 1. Email:	nana kiad @+	terraprobe	. Ca		Soll T	exture ches ches		(d0 	ectives	PWQC				, ЗВ	usiness	5	_ 2	Busin	ess		Jan B	lusiness
2 Email	<u> </u>	1			Ź	Marse		00	- Lar					_ Day	S . D		L Da	ays		5	Day	
2. cilian.						this submiss on for s			Indicate i	819 17			1	OR	Date R	equire	ea (Rus	กรมก	marge	s way i	чррту≞	
Project Informa	ation: $(-2) - (-2)$	5-42			Re	cord of Site Condition?	Ce	eport rtifica	ate of	Anal	on /sis				Please	provid	de prior	notifi	cation	for rusi	TAT r	
Site Location	1303 Lakesh	ne fast			5	Yes TI No	Г	l Yes	5	п ⁻	No			+TA7	is excl	usive	of week	ends	and st	atutory	holida	ауз
Sampled By:	Nazifa								0 157				Fo. Reg	r 'Sam	ne Day'	analy	/sis, ple	ase c	ontact	t your A	GAT C	PM
AGAT ID #:	Given and the shares -	PO:			San	ple Matrix Legend	DOC		Reg 15.	-			558	U Ke	0							N N
	- Ausendeen, geoneon aumoe	on up: publicator control web	ce clined for price for a	arrangero.	В	Biota	CrVI.			2 D			ang a	cach	ackag				1			Itratio
Invoice Informa	Terranche	B	III To Same: Ye	s 🖌 No 🗌	GW	Ground Water Oil	s. Hg		IWSB	Yes			tion [3(a)	svous	ion Pa							loncer
Contact:	rempion	•			Р	Paint	Meta			ed	octor		acters, ABNS	ainwa cs D	erizal TEX. I							High (
Address:					S SD	Soil	ered	Bhics	Ξ. č	eduir	- Ar		Chara	ILP R.	aract als, B							ous or
Email:	lrossi@terraprohe.ca				- SW	Surface Water	ld Frite	norga	CrVI.	4G If r	5		posal	ils SP fetals	its Ch	SAR						Ha, ard
				1	 p			als &	IS - T	/20 F.	PCB		fill Dis	ss So	ss So CPMS	EC/						tually
Sample	Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Special Instructions	Y./18	Meta	Micta	Anal	PAH	VOC	Land TCLP	Exce SPLF	Exce pH, I	Salt						Pole
TCLP		Mar II	AM PD/	3	Solid								X			-						
1.021			450 P 10		Solid																	
			AM PN	1	Solid							1						_	-		-	
			AM PM		ļ		_	_			_	-				-			-	-		
			AM PV							_	_	1			-			-	_		-	
			PN	1					++	-	_	+				-		-		-		
			PN 	1						-		+	-		-	-		-		1	-	
		-	PN AV	1								1-	-			-						
			PV AV	1				-		-		-	-			-		-	-			
		/	PM	1								-			-	-		7	221	(AR	18	3:44
Teltiples Helinguished By (Print)		1	PA Date	1 Tune	I	Samples Person Exponent and Soge	0				Sp		1	Time	L				10.0	142	551	
Mazifa M	scikica /////	p.	March	.11		NEM 60	129	SP	E	1	P	te		Tiros								
and the second state of the second			Linte	1.1168										-			-	Pag	e	of		-
Semator Anno Constitution (Point	teams and group		Conta	Turne		Subgras Heidrich by Gest name and Light					Lint	1.6		- HILE			N .				_	

1.11

1205 N

CLIENT NAME: TERRAPROBE INC. **11 INDELL LANE** BRAMPTON, ON L6T3Y3 (905) 796-2650 ATTENTION TO: Nazifa Makrod PROJECT: 1-21-0265-42 AGAT WORK ORDER: 22T883127 TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer DATE REPORTED: Apr 18, 2022 PAGES (INCLUDING COVER): 9 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

es	
laimer	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Nember of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T883127 PROJECT: 1-21-0265-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore Rd E

ATTENTION TO: Nazifa Makrod

SAMPLED BY:PA

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2022-04-11

	ç	SAMPLE DESC	RIPTION:	BH 2	BH 4	BH 10	DUP	
		SAMP	LE TYPE:	Water	Water	Water	Water	
		DATE S	AMPLED:	2022-04-06	2022-04-06	2022-04-11	2022-04-06	
Parameter	Unit	G/S	RDL	3735594	3735597	3735598	3735599	
F1 (C6 - C10)	µg/L		25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	µg/L	420	25	<25	<25	<25	<25	
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100	<100	
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100	<100	
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA	NA	NA	
Sediment				No	No	No	No	
Surrogate	Unit	Acceptable	e Limits					
Toluene-d8	% Recovery	50-14	40	101	120	120	87.8	
Terphenyl	%	60-14	10	89	73	88	74	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3735594-3735599 The C6-C10 fraction is calculated using Toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2022-04-18

AGAT WORK ORDER: 22T883127 PROJECT: 1-21-0265-42

O. Reg. 153(511) - VOCs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore Rd E

ATTENTION TO: Nazifa Makrod

SAMPLED BY:PA

				5 ()	`	/	
DATE RECEIVED: 2022-04-11							DATE REPORTED: 2022-04-18
		SAMPLE DESCRIPTI	ON: BH 2	BH 4	BH 10	DUP	
		SAMPLE TY	PE: Water	Water	Water	Water	
		DATE SAMPL	ED: 2022-04-06	2022-04-06	2022-04-11	2022-04-06	
Parameter	Unit	G/S RDI	3735594	3735597	3735598	3735599	
Dichlorodifluoromethane	µg/L	590 0.40) <0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	µg/L	0.5 0.1	/ <0.17	<0.17	<0.17	<0.17	
Bromomethane	µg/L	0.89 0.20) <0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	µg/L	150 0.40) <0.40	<0.40	<0.40	<0.40	
Acetone	µg/L	2700 1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6 0.30) <0.30	<0.30	<0.30	<0.30	
Methylene Chloride	µg/L	50 0.30) <0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6 0.20) <0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	15 0.20) <0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	5 0.30) <0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	µg/L	1800 1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6 0.20) <0.20	<0.20	<0.20	<0.20	
Chloroform	µg/L	2.4 0.20) 2.37	<0.20	0.72	<0.20	
1,2-Dichloroethane	µg/L	1.6 0.20) <0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	200 0.30) <0.30	< 0.30	<0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79 0.20) <0.20	<0.20	<0.20	<0.20	
Benzene	µg/L	5 0.20) <0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	µg/L	5 0.20) <0.20	<0.20	<0.20	<0.20	
Trichloroethylene	µg/L	1.6 0.20) <0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	µg/L	16 0.20) <0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	640 1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7 0.20) <0.20	<0.20	<0.20	<0.20	
Toluene	µg/L	22 0.20) <0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	µg/L	25 0.10) <0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	µg/L	0.2 0.10) <0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	µg/L	1.6 0.20) <0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	1.1 0.10) <0.10	<0.10	<0.10	<0.10	
Chlorobenzene	µg/L	30 0.10) <0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2.4 0.10) <0.10	<0.10	<0.10	<0.10	
m & p-Xylene	µg/L	0.20) <0.20	<0.20	<0.20	<0.20	

Certified By:

Jinkal Jouted

AGAT WORK ORDER: 22T883127 PROJECT: 1-21-0265-42

O. Reg. 153(511) - VOCs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE: 1303 Lakeshore Rd E

ATTENTION TO: Nazifa Makrod

SAMPLED BY:PA

DATE RECEIVED: 2022-04-11								DATE REPORTED: 2022-04-18
	S	SAMPLE DESC	CRIPTION:	BH 2	BH 4	BH 10	DUP	
		SAMF	PLE TYPE:	Water	Water	Water	Water	
		DATE S	SAMPLED:	2022-04-06	2022-04-06	2022-04-11	2022-04-06	
Parameter	Unit	G / S	RDL	3735594	3735597	3735598	3735599	
Bromoform	µg/L	25	0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	µg/L	5.4	0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	µg/L		0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	µg/L	59	0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	µg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	µg/L	3	0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	
Xylenes (Total)	µg/L	300	0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	µg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	e Limits					
Toluene-d8	% Recovery	50-1	40	104	102	110	93	
4-Bromofluorobenzene	% Recovery	50-1	40	93	88	104	94	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3735594-3735599 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Inkal Jatel

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore Rd E

AGAT WORK ORDER: 22T883127

ATTENTION TO: Nazifa Makrod

SAMPLED BY:PA

Trace Organics Analysis

						1							-			
RPT Date: Apr 18, 2022			0	UPLICAT	E		REFEREI	NCE MA	TERIAL	METHOD	BLAN	< SPIKE	MAT	RIX SPI	IKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	eptable mits	Recovery	Acce Lir	ptable: mits	
								Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Wa	ater)														
F1 (C6 - C10)	3735594	,	< 25	< 25	NA	< 25	89%	60%	140%	85%	60%	140%	86%	60%	140%	
F2 (C10 to C16)	3730040		1300	1100	16.7%	< 100	123%	60%	140%	91%	60%	140%	85%	60%	140%	
F3 (C16 to C34)	3730040		< 100	< 100	NA	< 100	104%	60%	140%	105%	60%	140%	93%	60%	140%	
F4 (C34 to C50)	3730040		< 100	< 100	NA	< 100	90%	60%	140%	98%	60%	140%	92%	60%	140%	
O. Reg. 153(511) - VOCs (Water)																
Dichlorodifluoromethane	3735599	3735599	<0.40	<0.40	NA	< 0.40	88%	50%	140%	108%	50%	140%	84%	50%	140%	
Vinyl Chloride	3735599	3735599	<0.17	<0.17	NA	< 0.17	95%	50%	140%	95%	50%	140%	112%	50%	140%	
Bromomethane	3735599	3735599	<0.20	<0.20	NA	< 0.20	114%	50%	140%	112%	50%	140%	118%	50%	140%	
Trichlorofluoromethane	3735599	3735599	<0.40	<0.40	NA	< 0.40	88%	50%	140%	84%	50%	140%	111%	50%	140%	
Acetone	3735599	3735599	<1.0	<1.0	NA	< 1.0	93%	50%	140%	85%	50%	140%	85%	50%	140%	
1,1-Dichloroethylene	3735599	3735599	<0.30	<0.30	NA	< 0.30	83%	50%	140%	80%	60%	130%	89%	50%	140%	
Methylene Chloride	3735599	3735599	<0.30	<0.30	NA	< 0.30	87%	50%	140%	116%	60%	130%	101%	50%	140%	
trans- 1,2-Dichloroethylene	3735599	3735599	<0.20	<0.20	NA	< 0.20	88%	50%	140%	89%	60%	130%	114%	50%	140%	
Methyl tert-butyl ether	3735599	3735599	<0.20	<0.20	NA	< 0.20	109%	50%	140%	106%	60%	130%	113%	50%	140%	
1,1-Dichloroethane	3735599	3735599	<0.30	<0.30	NA	< 0.30	85%	50%	140%	91%	60%	130%	117%	50%	140%	
Methyl Ethyl Ketone	3735599	3735599	<1.0	<1.0	NA	< 1.0	85%	50%	140%	106%	50%	140%	107%	50%	140%	
cis- 1,2-Dichloroethylene	3735599	3735599	<0.20	<0.20	NA	< 0.20	77%	50%	140%	95%	60%	130%	107%	50%	140%	
Chloroform	3735599	3735599	<0.20	<0.20	NA	< 0.20	81%	50%	140%	110%	60%	130%	117%	50%	140%	
1,2-Dichloroethane	3735599	3735599	<0.20	<0.20	NA	< 0.20	85%	50%	140%	113%	60%	130%	85%	50%	140%	
1,1,1-Trichloroethane	3735599	3735599	<0.30	<0.30	NA	< 0.30	108%	50%	140%	92%	60%	130%	84%	50%	140%	
Carbon Tetrachloride	3735599	3735599	<0.20	<0.20	NA	< 0.20	88%	50%	140%	89%	60%	130%	117%	50%	140%	
Benzene	3735599	3735599	<0.20	<0.20	NA	< 0.20	101%	50%	140%	97%	60%	130%	94%	50%	140%	
1,2-Dichloropropane	3735599	3735599	<0.20	<0.20	NA	< 0.20	111%	50%	140%	104%	60%	130%	91%	50%	140%	
Trichloroethylene	3735599	3735599	<0.20	<0.20	NA	< 0.20	96%	50%	140%	91%	60%	130%	105%	50%	140%	
Bromodichloromethane	3735599	3735599	<0.20	<0.20	NA	< 0.20	106%	50%	140%	100%	60%	130%	82%	50%	140%	
Methyl Isobutyl Ketone	3735599	3735599	<1.0	<1.0	NA	< 1.0	81%	50%	140%	105%	50%	140%	106%	50%	140%	
1,1,2-Trichloroethane	3735599	3735599	<0.20	<0.20	NA	< 0.20	114%	50%	140%	115%	60%	130%	102%	50%	140%	
Toluene	3735599	3735599	<0.20	<0.20	NA	< 0.20	89%	50%	140%	86%	60%	130%	115%	50%	140%	
Dibromochloromethane	3735599	3735599	<0.10	<0.10	NA	< 0.10	105%	50%	140%	100%	60%	130%	111%	50%	140%	
Ethylene Dibromide	3735599	3735599	<0.10	<0.10	NA	< 0.10	104%	50%	140%	108%	60%	130%	112%	50%	140%	
Tetrachloroethylene	3735599	3735599	<0.20	<0.20	NA	< 0.20	78%	50%	140%	77%	60%	130%	119%	50%	140%	
1,1,1,2-Tetrachloroethane	3735599	3735599	<0.10	<0.10	NA	< 0.10	94%	50%	140%	84%	60%	130%	104%	50%	140%	
Chlorobenzene	3735599	3735599	<0.10	<0.10	NA	< 0.10	94%	50%	140%	89%	60%	130%	110%	50%	140%	
Ethylbenzene	3735599	3735599	<0.10	<0.10	NA	< 0.10	84%	50%	140%	78%	60%	130%	103%	50%	140%	
m & p-Xylene	3735599	3735599	<0.20	<0.20	NA	< 0.20	88%	50%	140%	83%	60%	130%	115%	50%	140%	
Bromoform	3735599	3735599	<0.10	<0.10	NA	< 0.10	113%	50%	140%	99%	60%	130%	118%	50%	140%	
Styrene	3735599	3735599	<0.10	<0.10	NA	< 0.10	89%	50%	140%	82%	60%	130%	86%	50%	140%	
1,1,2,2-Tetrachloroethane	3735599	3735599	<0.10	<0.10	NA	< 0.10	111%	50%	140%	119%	60%	130%	81%	50%	140%	
o-Xylene	3735599	3735599	<0.10	<0.10	NA	< 0.10	91%	50%	140%	88%	60%	130%	115%	50%	140%	
AGAT QUALITY ASSURAN		RT (V1)												Page	5 of 9	

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore Rd E

AGAT WORK ORDER: 22T883127

ATTENTION TO: Nazifa Makrod

SAMPLED BY:PA

Trace Organics Analysis (Continued)

			-			-	-			-						
RPT Date: Apr 18, 2022			0	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper	
1,3-Dichlorobenzene	3735599 3	3735599	<0.10	<0.10	NA	< 0.10	98%	50%	140%	102%	60%	130%	74%	50%	140%	
1,4-Dichlorobenzene	3735599 3	3735599	<0.10	<0.10	NA	< 0.10	103%	50%	140%	106%	60%	130%	116%	50%	140%	
1,2-Dichlorobenzene	3735599 3	3735599	<0.10	<0.10	NA	< 0.10	106%	50%	140%	113%	60%	130%	112%	50%	140%	
n-Hexane	3735599 3	3735599	<0.20	<0.20	NA	< 0.20	94%	50%	140%	83%	60%	130%	110%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Imkal Jata

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 6 of 9

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore Rd E

AGAT WORK ORDER: 22T883127 ATTENTION TO: Nazifa Makrod

SAMPLED BY:PA

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F1 (C6 - C10)	VOL-91- 5010	modified from MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5009	modified from MOE PHC E3421	GC/FID
Sediment			
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-21-0265-42

SAMPLING SITE: 1303 Lakeshore Rd E

AGAT WORK ORDER: 22T883127 ATTENTION TO: Nazifa Makrod SAMPLED BY:PA

Shim Ente on E. 1000 Eakconore Na E		ON MINI EED BILLIN	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Chain of Custody Record	If this is a D	Lat	SOLO Samble, blea	itorie	es king Water Chain o	Pi f Custody Form (pota	M 1: 905.71 ble water o	E ississa 2.5100 we	835 (uga, O) Fax: ebeart	Coopers ntario 905.7: h.agati umans)	Aveni 142 11 12.512 abs.cc	10 72 22 m	La Wo Co Arr	abora ork Orde ooler Qu rival Ter	er #:	Use C 22		88 262	3	12	7
Report Information: Company: Terraprobe Contact: Nazifa Ma Address: 11 Incle11 La	krod Ne				Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Indicate One Indicate One Indicate One Region						Custody Seal Intact: Notes: Dagge ice Turnaround Time (TAT) Required: Regular TAT F5 to 7 Business Days										
Phone: <u>416 570 474</u> Reports to be sent to: 1. Email: <u>makrod@+</u> 2. Email:	ertapro	ope ca		Soil T	Agriculture Regulation 558 Prov. Water Quality Soil Texture (check One) CCME Objectives (PWQO) Prine CCME Indicate One						Rush TAT (Rush Surcharges Apply) 3 Business Days Days OR Date Required (Rush Surcharges May Apply):										
Project Information: Project: <u>1-21-0265-6</u> Site Location: <u>1303 Lakesho</u> Sampled By: <u>Parisa Aga</u>	12 ire Kol 1 jani	-			s this submission cord of Site Co	on for a ondition ? No	Re Cer	yes	Guid te of	eline Anal	on ysis No		F O Bei	*TA For 'Sar	Please T is excl me Day'	provide lusive o analys	e prior f week	notifica ends ai ase coi	ition for nd statu ntact yo	rush TA tory hol ur AGA	Г 'idays Г СРМ
Invoice Information: Company: <u>Terraprobe</u> Contact: <u>Lovena</u> <u>Po</u> Address: <u>Il Indell (c</u> Email: <u>Irossi@terra</u>	Bi s si une eprobe	I To Same: Yes	s 🛛 No 🗆	B GW O P S SD SD SW	Biota Ground Water Oil Paint Soil Sediment Surface Water		Field Filtered - Metals, Hg, CrVI,	& Inorganics	- CrVI, CHg, CHWSB	L-F4 PHUS F4G if required TYes INO			Disposal Characterization TCLP: M&I □ VOCs □ ABNs □ Braip □ PC	Soils SPLP Rainwater Leach	Soils Characterization Packag MS Metals, BTEX, F1-F4	c/SAR					v Hazardous or High Concentration
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Com Special I	ments/ nstructions	Y/N	Metals	Metals	Analyze	PCRs	VOC	TCLP:	Excess SPLP: [Excess pH, ICP	Salt - E					Potential
BH Z BH 4	6/4/22	AM PM AM PM	8	GN			2 1			1											
DUP DUP	6/4/22	PM AM PM AM PM AM PM	1		Grade que	I PM	2										0				
		AM PM AM PM AM PM AM PM																			
Samples Reliequished By (Print Name and Sign): Partsa Samples Reliequished By (Print Name and Sign):	72	Dare 14/2 Date	Z Z		Samples Received By (P Samples Received By (P	rint Name and Sign):	d L	n	M	or	The	te		Time	-			Page_	ZAPI	(11 of (1:20
Samples Relinquished By (Print Name and Sign):		Date	Time		Samples Received By (P	rint Name and Sign):			P	ink Cop	v - Clie	ie int L Y	ellow C	Time	GATIV	Nhite Cr	J°: T opv- AG		320)41	- Hitti S. 91721

Page 9 of 9