Revised Final Report

Transportation Impact Study – 7085 Goreway Drive, Mississauga

Document Control Page

CLIENT:	Redwood Properties						
PROJECT NAME:	7085 Goreway Drive, Mississauga						
REPORT TITLE: Transportation Impact Study – 7085 Goreway Drive, Mississauga							
IBI REFERENCE: 120212							
VERSION: 7.0							
DIGITAL MASTER: J:\120212_7085_Goreway							
ORIGINATOR:	Andrae Griffith, Jeff Pascua						
REVIEWER:	Peter Richards, Jason Endrawis						
AUTHORIZATION:	Scott Arbuckle						
CIRCULATION LIST:							
HISTORY:	1.0 Draft Report – April 2020 2.0 Final Report – April 2020 3.0 Final Report – May 2020 4.0 Final Report – May 2020 5.0 Revised Final Report – June 2022 6.0 Revised Final Report – June 2022 7.0 Revised Final Report – March 2023						

Table of Contents

1	Introd	luction		5
	1.1	Study	Area	5
	1.2	Analys	sis Periods	9
	1.3	Propos	sed Development	9
2	2020 I	Existing	Conditions	11
	2.1	Existin	g Road Network	11
	2.2	Existin	g Transit Network	13
	2.3	Existin	g Cycling Network	14
	2.4	Turnin	g Movement Counts	15
	2.5	2020 E	Existing Conditions Analysis	17
3	2025 I	Future B	Background Conditions	20
	3.1	Horizo	n Year	20
	3.2	Growth	n Rate	20
	3.3	Future	Transportation Network	20
	3.4	Backg	round Developments	21
	3.5	2025 F	Future Background Analysis	24
4	2025 I	Future T	otal Conditions	27
	4.1	Site Ad	ccess and Lane Configuration	27
		4.1.1	Goreway Drive and Dorcas Street / Site Access / 7075 Goreway Drive Site Access Intersection Geometric Reconfiguration	
	4.2	Trip G	eneration	28
		4.2.1	Gross Trip Generation	29
		4.2.2	Trip Generation Summary	29
		4.2.3	Trip Distribution and Assignment	30
	4.3	2025 F	- 	32
	4.4	Mitigat	ion Measures	35
		4.4.1	Goreway Drive and Derry Road East	35
		4.4.2	Goreway Drive and Etude Drive	37
	4.5	Traffic	Analysis Summary	38

March 8, 2023

Table of Contents (continued)

5	Parki	ing Study3	9
	5.1	Zoning By-law Requirements39	9
6	Trans	sportation Demand Management Options4	0
7	Site /	Access Conceptual Design4	1
	7.1	Offset Intersection4	3
	7.2	Pavement Markings4	5
8	Vehic	cle Swept Path Analysis4	7
9	Conc	:lusions4	7
	9.1	Traffic Operations Analysis4	7
	9.2	Parking Study48	8
	9.3	Transportation Demand Management Options4	8
	9.4	Site Access Conceptual Design4	8
	9.5	Vehicle Swept Path Analysis49	9
10	Reco	mmendations4	9
l is	t of	Exhibits	
	,	LATIBITO	
Exhi	bit 1-1:	Development Study Area6	
Exhi	bit 1-2:	Existing Goreway Drive and Dorcas Street Intersection Configuration	
Exhi	bit 1-3:	Proposed Development Context Plan 8	
Exhi	bit 1-4:	Proposed Site Plan	
Exhi	bit 2-1:	Study Area Existing Road Network11	
Exhi	bit 2-2:	Existing Study Area Lane Configurations	
Exhi	bit 2-3:	Existing Transit Network	
Exhi	bit 2-4:	Existing Transit Service Patterns	
Exhi	bit 2-5:	Study Area Cycle Routes	
Exhi	bit 2-6:	2020 Existing Conditions Traffic Volumes	

Table of Contents (continued)

Exhibit 2-7:	2020 Existing Condition Traffic Operations – Signalized Intersection Summa	
Exhibit 3-1:	Summary of Compounded Annual Traffic Growth Rates	
Exhibit 3-2:	Summary of Background Developments	21
Exhibit 3-3:	Background Developments	21
Exhibit 3-4:	Background Development Site Trip Distribution	22
Exhibit 3-5:	Background Development Site Trips	23
Exhibit 3-6:	2025 Future Background Conditions Traffic Volumes	24
	2025 Future Background Conditions Traffic Operations – Signalized Intersection Summary	25
Exhibit 4-1:	Proposed Study Area Lane Configurations	28
Exhibit 4-2:	Trip Generation Summary	29
Exhibit 4-3:	Site Trip Distribution.	30
Exhibit 4-4:	Net New Site Traffic Volumes	31
Exhibit 4-5:	2025 Future Total Conditions Traffic Volumes	32
	2025 Future Total Condition Traffic Operations – Signalized Intersection Summary	33
Exhibit 4-7:	2025 Future Background and Future Total Conditions Traffic Operations (Weekday PM Peak Hour, Mitigated) – Goreway Drive and Derry Road East	36
Exhibit 4-8:	Goreway Drive and Derry Road East Intersection Queue Comparison	37
Exhibit 4-9:	Goreway Drive and Etude Drive Intersection Traffic Operations Comparison	37
Exhibit 5-1:	ZBL 0225-2007 Development Parking Space Requirements	39
Exhibit 7-1:	Existing Site Plan	41
Exhibit 7-2:	Existing Site Access Configuration	42
Exhibit 7-3:	Proposed Site Plan	43
Exhibit 7-4:	TAC Figure 8.9.3: Spacing Considerations for Opposing Driveways	44
Exhibit 7-5:	Goreway Drive and Dorcas Street Existing Lane Markings	45
Exhibit 7-6	Goreway Drive and Dorcas Street Conceptual Lane Markings	46

Table of Contents (continued)

List of Appendices

Appendix A: Scope of Investigation

Appendix B: Turning Movement Counts

Appendix C: Signal Timing Plans

Appendix D: 2020 Existing Conditions Synchro Reports

Appendix E: 2025 Future Background Conditions Synchro Reports

Appendix F: 2025 Future Total Conditions Synchro Reports

Appendix G: 2025 Future Background and 2025 Future Total Conditions (Mitigated) Synchro

Reports

Appendix H: Transportation Demand Management Options Memorandum

Appendix I: Vehicle Swept Path Analysis

1 Introduction

IBI Group was retained by Redwood Properties to undertake a transportation impact study for a proposed residential development, located at 7085 Goreway Drive in the City of Mississauga, Ontario. The proposed development site is located on the northeast corner of the Goreway Drive and Dorcas Street intersection, and currently contains a vacant commercial building.

The proposed development consists of a mixed-use residential apartment building of 14 storeys with 228 dwelling units and 388 m² (4,175 ft²) commercial usage GFA. In addition, 18 townhouse units are proposed, resulting in an overall total of 246 residential dwelling units. Existing structures on the site are proposed to be removed. The following changes, in comparison to the May 2020 iteration of the development concept, are noted:

- Only one apartment building is being proposed instead of two buildings linked by a common podium;
- The residential unit count has decreased from 271 dwellings to 246 dwellings.
 While the development now has a small commercial component, the trip generation and resulting traffic operations are expected to be lower or comparable to previous estimates;
- The proposed vehicle parking supply is now expected to comply with the zoning bylaw requirements; and
- The proposed development will only have one site access (at the location of the South Site Access) instead of two site accesses.

The purpose of this report is to analyze the impact that the proposed development may have on the surrounding transportation network, and to take into account the impacts of the background traffic growth in the area. The study also consists of a parking study, a transportation demand management (TDM) options memorandum, a site access conceptual design review, and an assessment of functional circulation for vehicular traffic.

This report is outlined as follows:

- Sections 2 to 4 discuss the transportation impact study;
- Section 0 discusses the parking study;
- Section 6 examines the options for TDM;
- Section 7 outlines the site access conceptual design review;
- Section 8 discusses the vehicle swept path analysis; and
- Section 9 summarizes the conclusions made based on the preceding sections.

This report adheres to the scope of investigation developed by IBI Group, which was presented to and confirmed by the City of Mississauga (City) staff on January 24, 2020. This correspondence is presented in **Appendix A**. As well, this report addresses City of Mississauga comments dated June 2022 and October 2022 and on earlier submissions.

1.1 Study Area

As discussed, the proposed development is located on the northeast corner of the Goreway Drive and Dorcas Street intersection, as illustrated in **Exhibit 1-1**.

Existing northern full-movement access to be removed. Existing southern access to be reconfigured at the Goreway Drive and Dorcas Street Intersection Legend = Study Area Intersection = Proposed Development

Exhibit 1-1: Development Study Area

Base Map Source: City of Mississauga. Retrieved April 2, 2020 from http://www6.mississauga.ca/missmaps/maps.aspx#map=17/-8864795.24/5421497.5/0

The study area intersections which will be most impacted by the proposed development site traffic consist of the following locations, as shown in **Exhibit 1-1**:

- 1. Goreway Drive and Derry Road East (Regional Road 5) (signalized);
- 2. Goreway Drive and Dorcas Street (signalized); and
- 3. Goreway Drive and Etude Drive (signalized).

Presently, the south access to 7085 Goreway Drive is located in between the southbound stop bar and the northern pedestrian crosswalk, approximately 10 metres to the north of the Dorcas Street centreline, as illustrated in **Exhibit 1-2**.

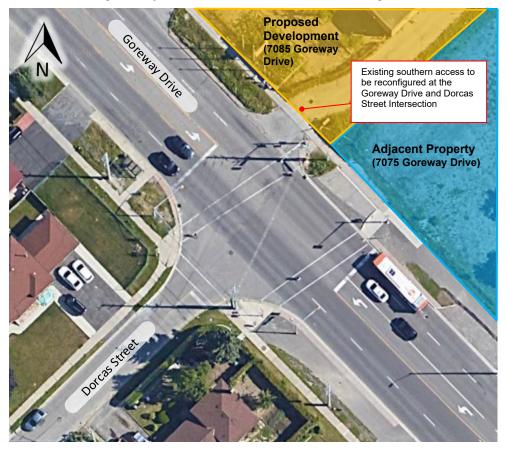


Exhibit 1-2: Existing Goreway Drive and Dorcas Street Intersection Configuration

Base Map Source: Google Earth. Retrieved April 21, 2020 from https://goo.gl/maps/gDPR3VhrMeeDBxeA9

The access to 7075 Goreway Drive, the property immediately adjacent to the south, is located within the Goreway Drive and Dorcas Street intersection, offset approximately 6 metres to the south of the Dorcas Street centreline. Both the site southern access and 7075 Goreway access are barricaded, with no traffic volumes observed under existing conditions. The proposed access configuration is further discussed in **Section 7**.

For the purposes of analysis, the intersection of Goreway Drive was modeled as a four-legged intersection with no east-leg volumes under existing and future background conditions.

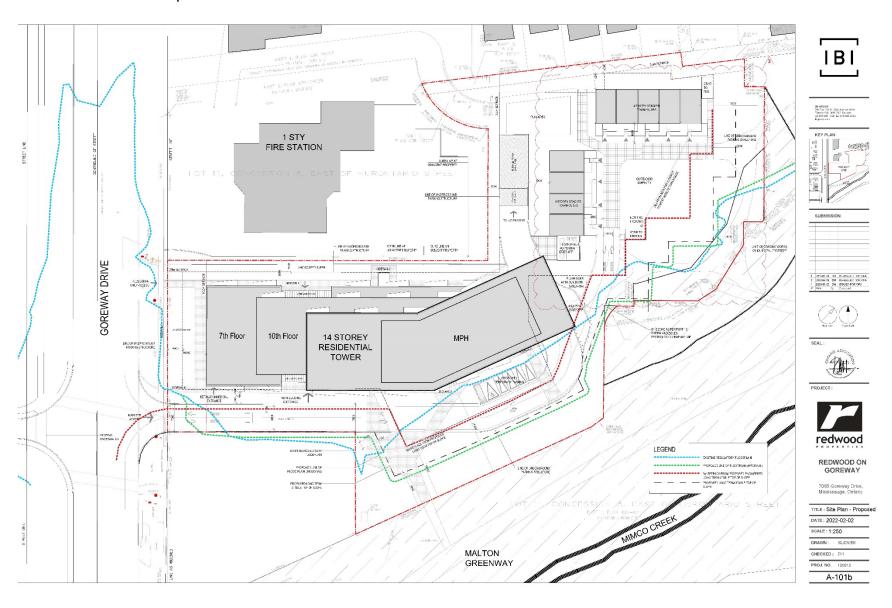
The area surrounding the proposed development is primarily residential to the west, with retail uses located to the north and south. The Malton Greenway, a multi-use trail, is located to the east of the proposed development site. A context plan of the proposed development site is provided in **Exhibit 1-3**.

Exhibit 1-3: Proposed Development Context Plan

March 8, 2023

1.2 Analysis Periods

Based on the proposed development's residential land uses, the following analysis periods were used in this study:


- AM Peak Period 7:00 a.m. to 9:00 a.m. on a typical weekday; and
- PM Peak Period 4:00 p.m. to 6:00 p.m. on a typical weekday.

1.3 Proposed Development

Redwood Properties is proposing to construct a mixed-use apartment building of 14 storeys with 228 dwelling units and 388 m^2 (4,175 ft²) commercial usage GFA. Also, 18 townhouse units are being proposed too – resulting in an overall development total of 246 residential dwelling units. Parking is to be provided primarily in a three-level, 359-space underground garage. A single full-movement access will be provided on Goreway Drive. This proposed access will be a reconfiguration of the existing access opposite to Dorcas Street – to better align with the existing traffic control signal, as mentioned in **Section 1.1** and discussed further in **Section 4.1.1** and **Section 7**.

The proposed site plan is illustrated in **Exhibit 1-4**. It must be noted that small changes in building sizes may occur as this development moves through the approval process. However, the assumptions in this report are conservative, and differences in traffic operations from these changes are expected to be negligible.

Exhibit 1-4: Proposed Site Plan

March 8, 2023

2 2020 Existing Conditions

This section documents the transportation network in the study area in 2020, including existing roadways, traffic control measures, intersection performance, and transit operations.

2.1 Existing Road Network

The existing study area roadways are illustrated in Exhibit 2-1.

Exhibit 2-1: Study Area Existing Road Network

Street Name	Class.	Orientation	Road Width (Lanes)	Traffic Direction	From	То	On-Street Parking	Speed Limit
Goreway Drive	Major Collector	North / South	4	Two-way	North City Limit	Highway 427 (East City Limit)	Prohibited	60 km/h
Derry Road East (Regional Road 5)	Regional	East / West	6	Two-way	Highway 427 (East City Limit)	Highway 407 (West City Limit)	Prohibited	60 km/h
Dorcas Street	Local	East / West	2	Two-way	Goreway Drive	Minotola Avenue / Justine Drive	Permitted	40 km/h
Etude Drive	Minor Collector	East / West	2	Two-way	Darcel Avenue	100 metres west of Lancaster Avenue	Prohibited	40 km/h west of Goreway Drive, 50 km/h east of Goreway Drive

Lane configurations for the study area intersections are illustrated in Exhibit 2-2.

Derry Road East

(Regional Road 5)

Etude Drive

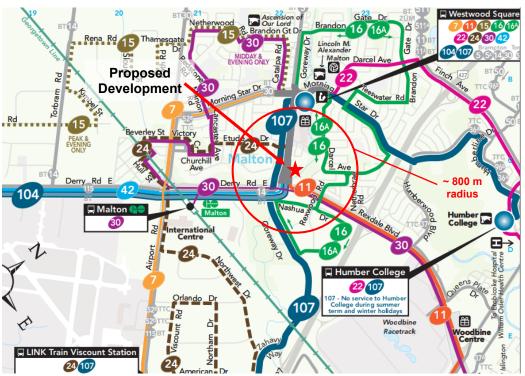
Etude Drive

The state of the s

Exhibit 2-2: Existing Study Area Lane Configurations

In **Exhibit 2-2**, the currently barricaded subject site south access is illustrated as the east leg of the existing Goreway Drive and Dorcas Street intersection. Access to the driveway is currently controlled by the existing traffic signal. As previously mentioned, the barricaded access contains no traffic volumes observed under existing conditions. The proponent proposes to adjust the placement of this access to improve intersection and crosswalk alignment, as discussed in **Section 4.1.1**.

Goreway Drive


Derry Road East

(Regional Road 5)

For the purposes of analysis, the intersection of Goreway Drive was modeled as a four-legged intersection with no east-leg volumes under existing and future background conditions.

2.2 Existing Transit Network

The proposed development site is directly served by several surface transit routes provided by MiWay and Brampton Transit. Transit services within an approximate 800 metre radius of the proposed development site are illustrated in **Exhibit 2-3**, while service patterns and destinations of the routes operating in close proximity are presented in **Exhibit 2-4**.

Exhibit 2-3: Existing Transit Network

Image Source: MiWay. Retrieved April 7, 2020 from https://web.mississauga.ca/wp-content/uploads/sites/6/2020/02/19143559/SystemMap Weekday.pdf

Exhibit 2-4: Existing Transit Service Patterns

Service Provider	Route	Onward Transit Connections	Walking Distance to Nearest Stop ¹	Average Peak Hour Frequency
MiWay	11 – Westwood	Westwood Square Bus Terminal, Woodbine Centre, Islington Subway Station (TTC Subway Line 2)	< 60 m (< 1 minute)	10 minutes
	24 – Northwest	Westwood Square Bus Terminal, Viscount Station (Toronto Pearson Airport LINK Train)	350 m (< 5 minutes)	30 minutes
	42 – Derry	Westwood Square Bus Terminal, Meadowvale Town Centre Bus Terminal	< 60 m (< 1 minute)	13 minutes
	104 – Derry Express	Westwood Square Bus Terminal, Meadowvale Town Centre Bus Terminal	130 m (< 2 minutes)	15 minutes
	107 – Malton Express	Westwood Square Bus Terminal, City Centre Transit Terminal (Square One), Humber College North Campus, Viscount Station (Toronto Pearson Airport LINK Train)	130 m (< 2 minutes)	10 minutes
Brampton Transit	14 – Torbram	Westwood Square Bus Terminal	< 60 m (< 1 minute)	10 minutes

As shown in **Exhibit 2-3** and **Exhibit 2-4**, the proposed development site is located within 800 metres of multiple bus routes operated by MiWay. All of the identified transit routes connect to the Westwood Square Bus Terminal, located approximately 1.0 kilometre north of the proposed development site. Further connections to other major transit hubs from the Westwood Square Bus Terminal are provided, such as the Mississauga City Centre Transit Terminal (Square One) and the Malton GO Station (located along the Kitchener GO Line).

2.3 Existing Cycling Network

The proposed development site is located in close proximity to a circuitous signed bicycle route that primarily runs along Etude Drive and Redstone Road. This signed bicycle route also connects to the West Humber Multi-Use Trail within the City of Toronto. The proposed development site is also located adjacent to the Malton Greenway Trail, which consists of park trails that connect to the Malton Community Centre. This is illustrated in **Exhibit 2-5**.

¹ Walking times are based on a walking speed of 1.2 m/s, as per the City's Traffic Impact Study Guidelines.

Legend

Signed Bike Route

Shared Lane Markings

Multi-Use Trails

Park Trails

Park Trails

Proposed Development

Proposed Developm

Exhibit 2-5: Study Area Cycle Routes

Base Map Source: City of Mississauga. Retrieved April 7, 2020 from https://www.mississaugabikes.ca/wp-content/uploads/2018/07/Mississauga-Cycling-Map-2018-web-with-panels.pdf

2.4 Turning Movement Counts

Horizon Data Services Ltd. (HDSL) was retained by IBI Group to conduct intersection turning movement counts. Data was collected on Tuesday, February 25, 2020 at the study area intersections. A summary of the balanced 2020 existing conditions traffic volumes is presented in **Exhibit 2-6**, with full turning movement count data presented in **Appendix B**.

Goreway Drive 58 (53) 41 (123) 147(168) **Etude Drive Etude Drive** (32) 30 (110) 59 (68) 125 (0) (682)1300 **North Site Access** (0) (678) (4) 0(0) 0(0) 0(0) **South Site Access Dorcas Street** 238 (566) 818 (746) 120 (76) **Derry Road East Derry Road East** (343)135 (1165)750 (Regional Road 5) (Regional Road 5) (101)266Legend Not to Scale = Stop Sign **Goreway Drive** = Signalized Intersection AM (PM) = Peak Hour Volumes

Exhibit 2-6: 2020 Existing Conditions Traffic Volumes

Note: The arrows in this diagram do not represent the lane configuration and are meant to represent turning movements.

2.5 2020 Existing Conditions Analysis

Using the turning movement counts described in **Section 2.4**, and signal timing plans obtained from the City and the Region of Peel (Region) staff (See **Appendix C**), the study area intersections were analyzed using the Synchro software package, which is based on the **Highway Capacity Manual** methodology.

Based on the Region's **Traffic Impact Study Guidelines**, the following criteria were used in identifying critical operations at signalized intersections under the jurisdiction of the Region:

- Volume to capacity ratio (v/c ratio) reaches or exceeds 0.90 for overall intersection operations, through movements, or shared through/turning movements;
- v/c ratio for exclusive movements exceed 1.00; and
- 95th percentile queue lengths for an individual movement exceed available storage.

Furthermore, based on the City's **Traffic Impact Study Guidelines**, the following criteria were used in identifying critical operations at signalized intersections under the jurisdiction of the City:

- v/c ratio increases to 0.85 or above for overall intersection operations, through movements, or shared through/turning movements;
- v/c ratios for exclusive movements exceed 0.90; and
- 95th percentile queue lengths for an individual movements exceed available storage.

With regards to unsignalized intersections under the jurisdiction of the City, the following criteria were referenced:

- Level of service (LOS), based on average delay per vehicle, on individual movements exceeds LOS "E"; and
- 95th percentile queue lengths for an individual movement exceed available storage.

It should be noted that the intersection of Goreway Drive and Derry Road East and its associated movements have been analyzed considering the Region's guidelines, given the regional road designation of Derry Road East.

It should also be noted that peak hour factors, which represent the ratio of the peak flow rate to the peak hour volume, are based on observed values.

The results of the 2020 existing conditions traffic operations analysis for the weekday AM and PM peak hours at the study area signalized intersections are presented in **Exhibit 2-7**.

Exhibit 2-7: 2020 Existing Condition Traffic Operations – Signalized Intersection Summary

	Intersection Summary				Individual Movement					
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue (m)	Storage Capacity (m)	
Weekday AM Peak Hour										
				EBL	E	73.4	0.51	33	120	
				EBT	D	40.2	0.47	83	-	
				EBR	D	35.6	0.19	20	100	
				WBL	С	34.6	0.44	36	78	
0 0 1				WBT	D	44.6	0.52	95	ı	
Goreway Drive and Derry Road East	D	47.7	0.63	WBR	D	39.2	0.18	21	90	
Bony Road Edot				NBL	ш	73.2	0.36	19	82	
				NBT	D	48.7	0.17	29	-	
				NBR	D	47.4	0.06	-	73	
				SBL	Е	68.9	0.79	99	101	
				SBTR	D	46.3	0.67	129	-	
Goreway Drive and	А		0.54	EBLR	D	53.2	0.56	31	ı	
Dorcas Street / South Site Access /		8.5		NBL	Α	3.7	0.09	4	60	
7075 Goreway		0.5		NBT	Α	3.1	0.21	24	•	
Drive Site Access				SBTR	Α	6.1	0.54	108	-	
				EBL	D	38.0	0.12	14	70	
				EBTR	D	38.8	0.35	39	-	
				WBL	F	92.0	0.93	57	37	
				WBT	D	36.2	0.11	16	-	
Goreway Drive and Etude Drive	С	22.5	0.61	WBR	D	37.2	0.05	9	33	
Etude Dilve				NBL	Α	8.9	0.17	8	53	
				NBTR	Α	7.2	0.20	30	-	
				SBL	Α	10.0	0.07	10	30	
				SBTR	В	14.4	0.56	119	-	

	Intersection Summary			Individual Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue (m)	Storage Capacity (m)	
Weekday PM Peak Hour										
				EBL	F	136	1.05	94	120	
				EBT	D	42.8	0.63	133	-	
				EBR	С	32.6	80.0	9	100	
				WBL	O	33.9	0.40	23	78	
0 0 1				WBT	D	43.6	0.48	85	-	
Goreway Drive and Derry Road East	Е	55.8	0.72	WBR	D	53.2	0.67	117	90	
Derry Road Last				NBL	Е	72.8	0.58	43	82	
				NBT	Е	56.4	0.69	125	-	
				NBR	D	44.5	0.12	21	73	
				SBL	E	70.7	0.69	66	101	
				SBTR	D	44.9	0.41	64	-	
Goreway Drive and	А	3.8	0.47	EBLR	D	53.3	0.12	6	120	
Dorcas Street / South Site Access /				NBL	Α	2.8	0.23	10	-	
7075 Goreway				NBT	Α	2.9	0.50	55	100	
Drive Site Access				SBTR	Α	1.3	0.28	11	78	
				EBL	D	37.3	0.21	16	70	
				EBTR	D	38.5	0.45	46	-	
				WBL	F	94.6	0.95	76	37	
				WBT	D	36.5	0.29	41	-	
Goreway Drive and Etude Drive	С	21.1	0.72	WBR	D	35.4	0.04	9	33	
Elude Dilve				NBL	Α	6.0	0.17	8	53	
				NBTR	В	11.1	0.65	136	-	
				SBL	В	17.0	0.28	13	30	
				SBTR	В	12.8	0.33	51	-	

Red text indicates a movement which exceeds critical thresholds.

As shown in **Exhibit 2-7**, the signalized study area intersections are observed to operate within capacity overall during the weekday AM and PM peak hours.

With regards to specific movements during the weekday AM peak hour, the following is noted:

• The westbound left-turn movement at the Goreway Drive and Etude Drive intersection is operating above critical capacity thresholds (v/c ratio of 0.93), with a queue storage spillover of up to three car lengths.

During the weekday PM peak hour, the following observations are noted:

- The eastbound left-turn movement at the Goreway Drive and Derry Road East intersection is operating above capacity (v/c ratio of 1.05);
- The westbound right-turn movement at the Goreway Drive and Derry Road East intersection is exceeding storage capacity by up to four car lengths; and
- The westbound left movement at the Goreway Drive and Etude Drive intersection is operating above critical capacity thresholds (v/c ratio of 0.95), with a queue storage spillover of up to six car lengths.

It should be noted that, as the site accesses are presently unused, no vehicle volumes were observed. Full Highway Capacity Manual analysis for the 2020 existing conditions scenario is presented in **Appendix D**.

3 2025 Future Background Conditions

This section discusses the development horizon year, the future transportation network, other developments impacting the study area, and future traffic conditions without the proposed development.

3.1 Horizon Year

As per the City's **Traffic Impact Study Guidelines**, and as confirmed by City staff, a horizon year of 2025 was considered, which represents 5 years from the date of this transportation impact study.

3.2 Growth Rate

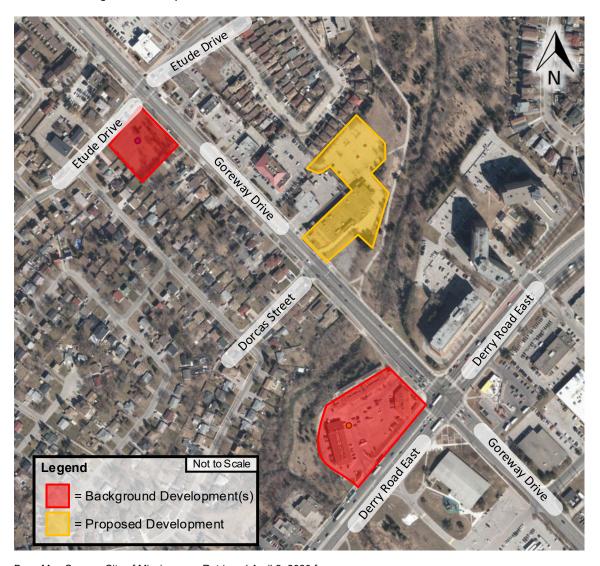
Through correspondence with City and Region staff, compounded annual traffic growth rates along Goreway Drive and Derry Road East were identified for the time period between 2020 and 2025. **Exhibit 3-1** summarizes the identified traffic growth rates.

Street Name	Peak Hour	Direction	Compounded Annual Traffic Growth Rate
O	Weekday AM	NB	1.5%
	Weekday Alvi	SB	0.0%
Goreway Drive	Weekdey DM	NB	0.0%
	Weekday PM	SB	0.0%
Derry Road East	Weekday AM and PM	EB and WB	1.5% (2020 to 2021) 1.0% (2021 to 2025)

The compounded annual growth rates were applied to respective through movements along Goreway Drive and Derry Road East. These rates result in absolute increases in traffic volumes along Goreway Drive (only for northbound traffic during the weekday AM peak hour) and Derry Road East (eastbound through and westbound through traffic during the weekday AM and PM peak hours) of approximately 7.7% and 5.6% from 2020 to 2025, respectively.

3.3 Future Transportation Network

Based on a review of the City of Mississauga's Roads and Stormwater Capital Plan (April 2019), various transportation plans and strategies, and other documents, no significant road network improvements in the study area are anticipated by 2025. Incremental transit service improvements to surface transit routes in the study area are likely by 2025, but no significant changes to services (e.g. dedicated transit lanes, grade separation, etc.) are anticipated.


3.4 Background Developments

A review of the City of Mississauga development applications online map indicated that there are two developments in the vicinity of the study area which are likely to generate notable numbers of new automobile trips. Details of the two background developments are summarized in **Exhibit 3-2**, and are illustrated geographically in **Exhibit 3-3**.

Exhibit 3-2: Summary of Background Developments

#	Address	Size and Nature of Development	Status
1	3427 Derry Road East	389.1 m ² , commercial uses	Withheld
2	7170 Goreway Drive	14 dwelling units, residential uses	Withheld

Exhibit 3-3: Background Developments

Base Map Source: City of Mississauga. Retrieved April 2, 2020 from http://www6.mississauga.ca/missmaps/maps.aspx#map=17/-8864795.24/5421497.5/0

In lieu of any transportation impact studies for the two background developments shown in **Exhibit 3-3**, background development site trips were estimated using trip generation rates from the

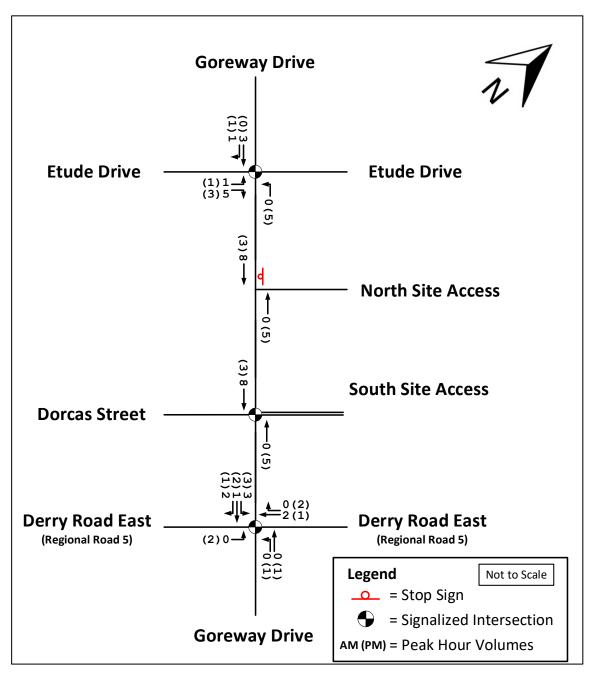
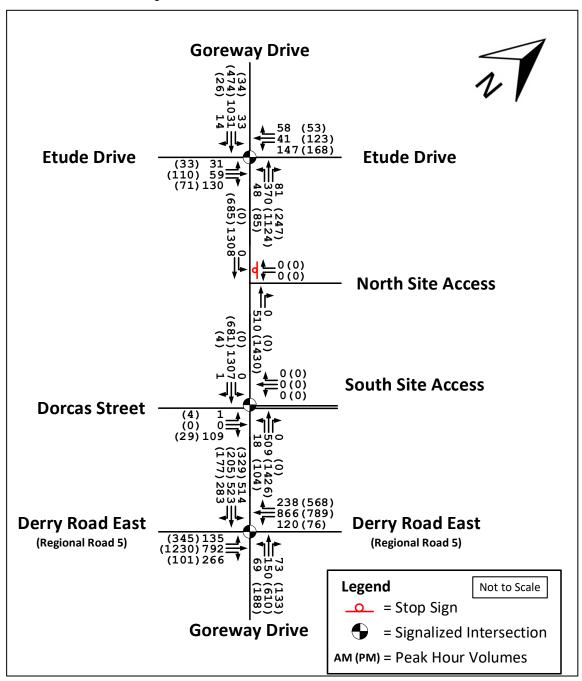

Institute of Transportation Engineers **Trip Generation Manual**, **10**th **Edition** (September 2017) publication and assigned to the road network based on logical travel patterns. For the 3427 Derry Road East development, vehicles were assumed to access the site via existing commercial accesses. For the 7170 Goreway Drive development, access was assumed to be via Etude Drive. The trip distribution for background development site trips was based on the travel patterns of existing traffic at the study area intersections, and is presented in **Exhibit 3-4**.`

Exhibit 3-4: Background Development Site Trip Distribution

Inbound T	rips		Outbound Trips				
From		Weekday PM Peak Hour	То	Weekday AM Peak Hour			
Goreway Drive (north)	35%	15%	Goreway Drive (north)	15%	30%		
Goreway Drive (south)	5%	20%	Goreway Drive (south)	20%	10%		
Derry Road East (east)	30%	30%	Derry Road East (east)	35%	35%		
Derry Road East (west)	30%	35%	Derry Road East (west)	30%	25%		
Total	100%	100%	Total	100%	100%		

Based on the above analysis, net new automobile trips added to the study area from background developments are illustrated in **Exhibit 3-5**.

Exhibit 3-5: Background Development Site Trips



Note: The arrows in this diagram do not represent the lane configuration and are meant to represent turning movements.

3.5 2025 Future Background Analysis

New trips resulting from background growth were added to the existing conditions scenario, producing the 2025 future background traffic volumes illustrated in **Exhibit 3-6**.

Exhibit 3-6: 2025 Future Background Conditions Traffic Volumes

Note: The arrows in this diagram do not represent the lane configuration and are meant to represent turning movements.

Using the 2025 Future Background traffic volumes illustrated in **Exhibit 3-6**, traffic operations analysis was conducted to determine future intersection performance without the impact of the proposed development for the 2025 Future Background Conditions. The results of the signalized intersection traffic operations analysis is presented in **Exhibit 3-7**.

Exhibit 3-7: 2025 Future Background Conditions Traffic Operations – Signalized Intersection Summary

	Inter	section	Summary	Individual Movement							
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue (m)	Storage Capacity (m)		
Weekday AM Peak I	Hour										
				EBL	E	73.4	0.51	33	120		
				EBT	D	40.8	0.50	88	-		
				EBR	D	35.6	0.19	20	100		
				WBL	D	35.0	0.46	36	78		
		47.9	0.65	WBT	D	45.3	0.55	101	-		
Goreway Drive and Derry Road East	D			WBR	D	39.2	0.18	21	90		
Don'y Road East				NBL	E	73.2	0.36	19	82		
				NBT	D	48.9	0.18	31	-		
				NBR	D	47.4	0.06	-	73		
				SBL	E	69.2	0.79	99	101		
				SBTR	D	46.3	0.67	129	-		
Goreway Drive and			0.54	EBLR	D	53.1	0.56	31	-		
Dorcas Street /	_	0.5		NBL	Α	3.8	0.09	4	60		
South Site Access / 7075 Goreway	Α	8.5		NBT	Α	3.2	0.21	24	-		
Drive Site Access				SBTR	Α	6.1	0.54	109	-		
				EBL	D	37.8	0.13	14	70		
				EBTR	D	38.8	0.35	40	-		
				WBL	F	94.9	0.94	58	37		
				WBT	D	36.1	0.11	16	-		
Goreway Drive and Etude Drive	С	22.8	0.62	WBR	D	37.0	0.05	9	33		
Liude Dilve				NBL	Α	9.0	0.18	8	53		
				NBTR	Α	7.3	0.20	31	-		
				SBL	В	10.1	0.07	10	30		
				SBTR	В	14.6	0.56	120	-		

	Intersection Summary			Individual Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue (m)	Storage Capacity (m)	
Weekday PM Peak I	Hour									
				EBL	F	138	1.06	94	120	
				EBT	D	43.9	0.67	143	-	
				EBR	С	32.6	0.08	9	100	
				WBL	C	34.8	0.42	23	78	
0 0 1				WBT	D	44.2	0.51	90	-	
Goreway Drive and Derry Road East	E	55.8	0.72	WBR	D	53.4	0.67	117	90	
Deny Road East				NBL	Е	72.7	0.58	43	82	
				NBT	D	54.6	0.64	114	-	
				NBR	D	44.3	0.10	18	73	
				SBL	Е	70.5	0.69	67	101	
				SBTR	D	43.0	0.31	46	-	
Goreway Drive and		3.4	0.46	EBLR	D	53.2	0.10	6	120	
Dorcas Street /	А			NBL	Α	2.5	0.19	8	-	
South Site Access / 7075 Goreway				NBT	Α	2.8	0.49	50	100	
Drive Site Access				SBTR	Α	1.2	0.26	10	78	
				EBL	D	36.2	0.17	14	70	
				EBTR	D	38.3	0.47	50	-	
				WBL	F	97.3	0.96	78	37	
				WBT	D	35.7	0.27	39	-	
Goreway Drive and Etude Drive	С	21.7	0.72	WBR	С	34.8	0.04	10	33	
Lidde Diive				NBL	Α	6.2	0.17	8	53	
				NBTR	В	11.5	0.65	134	-	
				SBL	В	17.9	0.28	13	30	
				SBTR	В	13.7	0.33	49	-	

Red text indicates a movement which exceeds critical thresholds.

As shown in **Exhibit 3-7**, the signalized study area intersections are anticipated to operate within capacity overall during the weekday AM and PM peak hours during the 2025 Future Background Traffic Conditions.

With regards to specific movements during the weekday AM peak hour, the following is noted:

• The westbound left-turn movement at the Goreway Drive and Etude Drive intersection is expected to continue operating above critical capacity thresholds (v/c ratio of 0.94), with a queue storage spillover of up to three car lengths.

During the weekday PM peak hour, the following observations are noted:

- The eastbound left-turn movement at the Goreway Drive and Derry Road East intersection is anticipated to continue operating above capacity (v/c ratio of 1.06);
- The westbound right-turn movement at the Goreway Drive and Derry Road East intersection is expected to continue experiencing queue storage spillovers (of up to four car lengths), similar to the 2020 existing conditions scenario; and
- The westbound left-turn movement at the Goreway Drive and Etude Drive intersection is anticipated to operate above critical capacity thresholds (v/c ratio of

0.96), with similar queue storage spillovers (up to six car lengths) as to those observed under existing conditions.

Possible measures to mitigate these constraints include signal timing adjustments and lane conversions. Measures to mitigate constraints anticipated under 2025 Future Background Traffic Conditions are discussed further with the addition of site traffic under 2025 Future Total Conditions in **Section 4.4**.

It should be noted that, as the site accesses would remain unused under future background conditions, no vehicle volumes would be observed. Full Highway Capacity Manual analysis for the 2025 future background conditions scenario is presented in **Appendix E**.

4 2025 Future Total Conditions

This section of the report analyzes the impact of the proposed development on the 2025 future transportation network.

4.1 Site Access and Lane Configuration

As discussed in **Section 1.3**, vehicular traffic is proposed to access the proposed development via a single full-movement access on Goreway Drive opposite to Dorcas Street. The existing North Site Access is proposed to be removed.

4.1.1 Goreway Drive and Dorcas Street / Site South Access Intersection Geometric Reconfiguration

As per discussions with City staff, the Goreway Drive and Dorcas Street / South Site Access intersection is proposed to be reconfigured to address various vehicle and pedestrian safety concerns.

Part of the proposed intersection reconfiguration involves the east leg (i.e. removing the northern access in favour of keeping the southern access) to provide better alignment with the Dorcas Street west leg, subject to property constraints. This proposed adjustment also requires that the north approach's stop bar and crosswalk to be re-aligned, due to a longer vehicle crossing distance and to reduce pedestrian-vehicle conflict points.

This reconfiguration will subsequently result in an increase of the northbound/southbound all-red interval by 1.0 second, as per clearance interval guidance provided in **Ontario Traffic Manual Book 12: Traffic Signals**. It should be noted that the northbound/southbound amber times remain unchanged. The 2025 future total traffic conditions scenario incorporates the proposed 1.0 second all-red interval adjustment.

The proposed study area lane configurations are illustrated in **Exhibit 4-1.** It should be noted that as the North Site Access is proposed to be removed, the remaining access will be referred to as the 'Site Access' in the Future Total Conditions scenario.

The specific geometric changes to the Goreway Drive and Dorcas Street / Site Access intersection are discussed in further detail in **Section 7.1**.

Goreway Drive Etude Drive Etude Drive Dorcas Street Site Access Derry Road East Derry Road East (Regional Road 5) (Regional Road 5) Legend Not to Scale = Signalized Intersection **Goreway Drive** AM (PM) = Peak Hour Volumes = Proposed Development

Exhibit 4-1: Proposed Study Area Lane Configurations

4.2 Trip Generation

The vehicle trips expected to be generated by the proposed development are examined in this section. These trips were then assigned and distributed to the study area road network.

4.2.1 Gross Trip Generation

Trip generation rates from the Institute of Transportation Engineers *Trip Generation Manual, 10th Edition* (September 2017) publication were used to estimate future automobile trips associated with the proposed development. Based on the nature of the proposed development and its location context, fitted curve data for Land Use Codes (LUCs) 220: Multifamily Housing (Low-Rise), General Urban / Suburban and 222: Multifamily Housing (High-Rise), General Urban / Suburban were used.

It should be noted that the following trip generation estimates and subsequent traffic analysis are based on an earlier development concept which had consisted of 245 apartment dwelling units and 16 townhouse units (17 more apartment dwelling units and two less townhouse units when compared to the current concept). In addition, this earlier iteration did not contain a commercial component. Given that the overall unit count has decreased, and that the commercial component is expected to primarily serve residents of the development and other dwellings within walking distance, the total number of net new vehicle trips – and the resulting traffic operations – is expected to be comparable to or lower than the estimates presented in this report.

4.2.2 Trip Generation Summary

The estimated automobile trips, and the net new inbound and outbound vehicle trips for the proposed development are presented in **Exhibit 4-2**.

Exhibit 4-2: Trip Generation Summary

Exhibit 4-2. The Generation Guilliary											
7085 Goreway Drive											
LUC 220: Multifamily Housing (Low-Rise) – General Urban / Suburban – 16 Dwelling Units											
Term	Unit	Weekday AM	I Peak Hour	Weekday PM Peak Hour							
Trip Generation Equation	-	Ln(T) = 0.95	Ln(X) - 0.51	Ln(T) = 0.89 Ln(X) - 0.02							
Trip Generation Rate	vehicle trips / unit		0.50		0.75						
Total Trips	vehicle trips / hour		8		12						
New Inbound Trips	vehicles / hour	2	23%	7	63%						
New Outbound Trips	vehicles / hour	6	77%	5	37%						
LUC 222 Multifamily Housing (High-Rise) – General Urban / Suburban – 245 Dwelling Units											
Term	Unit	Weekday AM Peak Hour		Weekday PN	/I Peak Hour						
Trip Generation Equation	-	T = 0.28(X) + 12.86		T = 0.34(X) + 8.56							
Trip Generation Rate	vehicle trips / unit		0.33	0.3							
Total Trips	vehicle trips / hour		81	92							
New Inbound Trips	vehicles / hour	19	24%	56	61%						
New Outbound Trips	vehicles / hour	62	76%	36	39%						
Net New Trips											
Term	Unit	Weekday AM	I Peak Hour	Weekday PM	Peak Hour						
Total Net New Trips	vehicle trips / hour	89		104							
Net New Inbound Trips	vehicles / hour		21	63							
Net New Outbound Trips	vehicles / hour	68 4									

Based on 245 apartment dwelling units and 16 townhouse units, the proposed development site is expected to produce up to 89 net new vehicle trips during the weekday AM peak hour (21 inbound trips and 68 outbound trips) and up to 104 net new vehicle trips during the weekday PM peak hour (63 inbound trips and 41 outbound trips).

4.2.3 Trip Distribution and Assignment

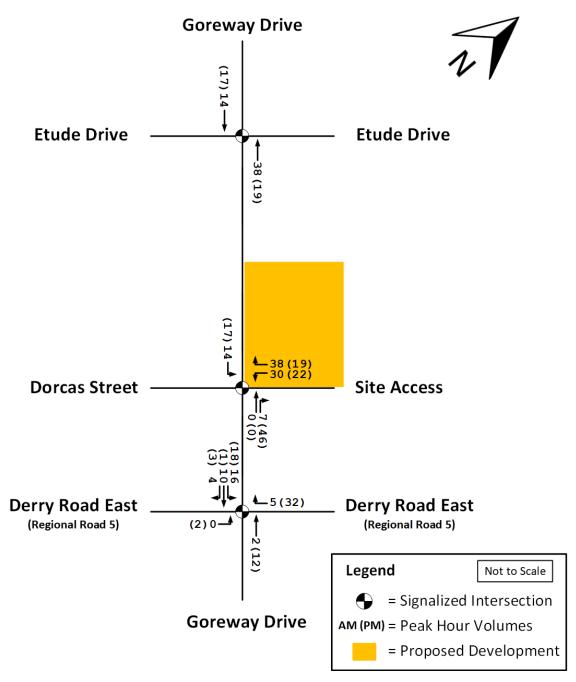
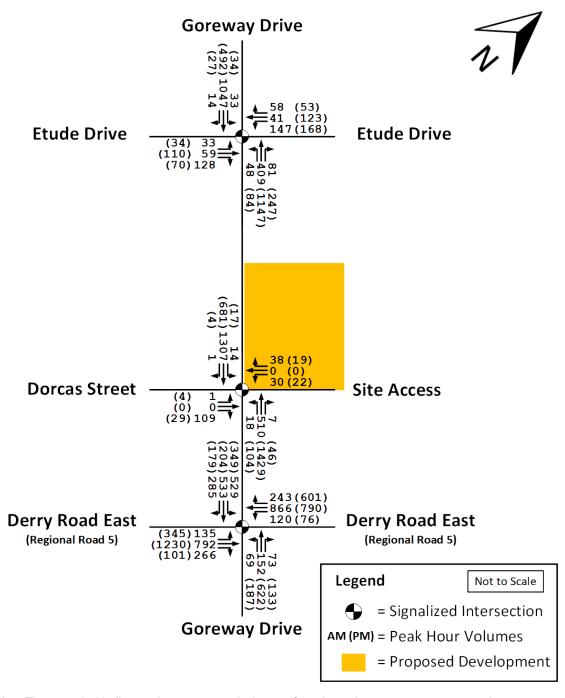

The trip distribution for site trips was based on the 2016 Transportation Tomorrow Survey (TTS) data and is presented in **Exhibit 4-3**.

Exhibit 4-3: Site Trip Distribution

Inbound Trips			Outbound Trips					
From	AM Peak	Weekday PM Peak Hour	То	Weekday AM Peak Hour				
Goreway Drive (north)	68%	28%	Goreway Drive (north)	56%	49%			
Goreway Drive (south)	6%	19%	Goreway Drive (south)	15%	0%			
Derry Road East (east)	26%	50%	Derry Road East (east)	23%	44%			
Derry Road East (west)	0%	3%	Derry Road East (west)	6%	7%			
Total	100%	100%	Total	100%	100%			

Site trips were assigned to the study area roadways based on the 2016 TTS data, as illustrated in **Exhibit 4-4**.

Exhibit 4-4: Net New Site Traffic Volumes



Note: The arrows in this diagram do not represent the lane configuration and are meant to represent turning movements.

4.3 2025 Future Total Conditions Analysis

New trips resulting from the construction of the proposed development were added to the 2025 future background conditions scenario, producing the 2025 future total traffic volumes illustrated in **Exhibit 4-5**.

Exhibit 4-5: 2025 Future Total Conditions Traffic Volumes

Note: The arrows in this diagram do not represent the lane configuration and are meant to represent turning movements.

Using the 2025 Future Total traffic volumes illustrated in **Exhibit 4-5**, traffic operations analysis was conducted to determine future intersection performance with the impact of the proposed development for the 2025 Future Total Conditions. The results of the signalized intersection traffic operations analysis is presented in **Exhibit 4-6**. It should be noted that the trip generation estimates for the proposed development are based on an earlier development concept with a higher dwelling unit count (as discussed in **Section 4.2.2**). Therefore, conditions experienced by road users are expected to be better than reported below in **Exhibit 4-6**..

Exhibit 4-6: 2025 Future Total Condition Traffic Operations - Signalized Intersection Summary

		Intersec Summa			Individual Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue (m)	Storage Capacity (m)		
Weekday AM Pea	k Hou	r									
				EBL	Е	73.4	0.51	33	120		
				EBT	D	41.0	0.50	88	-		
				EBR	D	35.8	0.19	20	100		
			0.65	WBL	D	35.3	0.47	36	78		
Goreway Drive		48.2		WBT	D	45.6	0.55	101	-		
and Derry Road	D			WBR	D	39.4	0.18	21	90		
East				NBL	Е	73.2	0.36	19	82		
				NBT	D	49.2	0.19	31	-		
				NBR	D	47.6	0.06	-	73		
				SBL	E	69.1	0.80	102	101		
				SBT	D	46.4	0.68	132	-		
	A	9.8	3 0.54	EBT	D	53.1	0.56	31	-		
				WBT	D	50.2	0.34	22	-		
Goreway Drive and Dorcas Street				NBL	Α	4.0	0.09	4	60		
/ Site Access	/ \			NBT	Α	3.2	0.22	25	-		
				SBL	Α	1.3	0.03	1	34		
				SBT	Α	6.1	0.54	104	-		
				EBL	D	38.0	0.14	15	70		
				EBT	D	38.8	0.35	40	-		
				WBL	F	95.0	0.94	58	37		
Corough Drive				WBT	D	36.1	0.11	16	-		
Goreway Drive and Etude Drive	С	22.5	5 0.62	WBR	D	37.1	0.05	9	33		
				NBL	Α	8.6	0.18	8	53		
				NBT	Α	7.1	0.22	32	-		
				SBL	В	10.1	0.07	10	30		
				SBT	В	14.7	0.57	122	-		

	Inter	section S	Summary	Individual Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue (m)	Storage Capacity (m)	
Weekday PM Pea										
				EBL	F	138.0	1.06	94	120	
				EBT	D	43.8	0.67	143	-	
				EBR	С	32.6	0.08	9	100	
				WBL	С	34.7	0.42	23	78	
Goreway Drive			0.75	WBT	D	44.2	0.51	90	-	
and Derry Road	Ε	56.5		WBR	Е	57.3	0.74	143	90	
East				NBL	Е	72.8	0.58	43	82	
				NBT	Е	56.4	0.67	118	=	
				NBR	D	45.2	0.11	19	73	
				SBL	Е	70.2	0.70	70	101	
				SBT	D	43.0	0.31	45	•	
	A		0.48	EBT	D	53.2	0.10	6		
Goreway Drive		4.4		WBT	D	53.4	0.12	13	•	
and Dorcas				NBL	Α	2.7	0.19	9	60	
Street / Site	^			NBT	Α	2.9	0.51	53		
Access				SBL	Α	1.7	0.08	1	34	
				SBT	Α	1.2	0.26	10		
				EBL	D	36.4	0.18	14	70	
			0.73	EBT	D	38.3	0.47	50	-	
		21.7		WBL	F	97.3	0.96	78	37	
				WBT	D	35.8	0.27	39	-	
Goreway Drive and Etude Drive	С			WBR	С	34.9	0.04	10	33	
and Lidde Dilve				NBL	Α	6.2	0.17	9	53	
				NBT	В	11.7	0.66	139	-	
				SBL	В	18.2	0.29	13	30	
				SBT	В	13.8	0.34	51	-	

Red text indicates a movement which exceeds critical thresholds.

As shown in **Exhibit 4-6**, the signalized study area intersections are expected to operate within capacity overall during the weekday AM and PM peak hours for the 2025 Future Total Conditions.

- With regards to specific movements during the weekday AM peak hour, the following is noted:
 - The southbound left-turn movement at the Goreway Drive and Derry Road
 East is anticipated to experience a queue storage spillover of up to one car
 length.
 - The westbound left-turn movement at the Goreway Drive and Etude Drive intersection is anticipated to continue operating above critical capacity thresholds (v/c ratio of 0.94), with similar queue storage spillovers (up to three car lengths) as anticipated under 2025 future background conditions.

- During the weekday PM peak hour, the following observations are noted:
 - The eastbound left-turn movement at the Goreway Drive and Derry Road
 East intersection is anticipated to operate above critical capacity thresholds
 (v/c ratio of 1.06), however the lane storage is not exceeded.
 - The westbound right-turn movement at the Goreway Drive and Derry Road East intersection is anticipated to continue experiencing queue storage spillovers (up to eight car lengths), as is already anticipated under 2025 future background conditions.
 - The westbound left-turn movement at the Goreway Drive and Etude Drive intersection is anticipated to continue operating above critical capacity thresholds (v/c ratio of 0.96), with similar queue storage spillovers (up to six car lengths) as anticipated under 2025 future background conditions.

Full Highway Capacity Manual analysis for the future total conditions scenario is presented in **Appendix F**.

4.4 Mitigation Measures

In the previous section, several critical movements at the signalized study area intersections were noted under future total traffic conditions. This section discusses measures to mitigate these critical movements, where feasible.

4.4.1 Goreway Drive and Derry Road East

Under 2025 future total conditions, the southbound left-turn movement at the Goreway Drive and Derry Road East intersection is expected to experience a queue storage spillover of up to one car length during the weekday AM peak hour (as noted in **Exhibit 4-6**). This estimated queue storage spillover is based on 95th percentile queue lengths, and is statistically unlikely to be experienced by motorists on average.

It should also be noted that under 2025 Future Background Conditions (i.e. without the proposed development), queues at the southbound left-turn movement during the weekday AM peak hour are expected to occupy all the available storage capacity, despite not surpassing critical thresholds. Furthermore, the impact of one additional vehicle within the available storage lanes is expected to be minimal on traffic operations. Therefore, as this queuing constraint is expected under future background conditions, no mitigation measures specific to the Goreway Drive and Derry Road East intersection's southbound left-turn movement during the weekday AM peak hour are recommended.

During the weekday PM peak hour, this intersection's eastbound left-turn movement was found to operate above capacity during existing, future background, and future total traffic conditions (v/c ratios of 1.05, 1.06, and 1.06, respectively). To mitigate this capacity constraint, 3.0 seconds of green time from the westbound through movement have been transferred to the eastbound left-turn movement during the weekday PM peak hour. Mitigated future background and future total traffic operations at the Goreway Drive and Derry Road East intersection resulting from this signal timing adjustment are summarized in **Exhibit 4-7**.

Exhibit 4-7: 2025 Future Background and Future Total Conditions Traffic Operations (Weekday PM Peak Hour, Mitigated) – Goreway Drive and Derry Road East

	Inter	section S	ummary			Individ	dual Mo	vement	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue (m)	Storage Capacity (m)
Weekday PM Pe	ak Hoı	ır (2025 F	uture Ba	ckground)					
Goreway Drive	D	53.5	0.71	EBL	F	92.5	0.89	84	120
and Derry Road East				EBT	D	43.9	0.67	143	-
Lasi				EBR	С	32.6	0.08	9	100
				WBL	D	36.3	0.42	23	78
				WBT	D	46.9	0.54	93	-
				WBR	Е	57.9	0.71	126	90
				NBL	Е	72.7	0.58	43	82
				NBT	D	54.6	0.64	114	-
				NBR	D	44.2	0.09	12	73
				SBL	E	70.5	0.69	67	101
				SBTR	D	43.0	0.31	46	-
Weekday PM Pe	ak Hoı	ur (2025 F	uture Tot	:al)					
Goreway Drive	E	54.5	0.75	EBL	F	92.5	0.89	84	120
and Derry Road East				EBT	D	43.8	0.67	143	-
Last				EBR	С	32.6	0.08	9	100
				WBL	D	36.2	0.42	23	78
				WBT	D	46.9	0.54	93	-
				WBR	E	63.1	0.79	160	90
				NBL	Е	72.8	0.58	43	82
				NBT	Е	56.4	0.67	118	-
				NBR	D	45.0	0.09	12	73
				SBL	E	70.2	0.70	70	101
				SBTR	D	43.0	0.31	45	-

Red text indicates a movement which exceeds critical thresholds.

When compared to unmitigated traffic operations, the v/c ratio for the Goreway Drive and Derry Road East intersection's eastbound left-turn movement under the signal timing adjustment is anticipated to decrease from 1.06 to 0.89 for future background conditions and future total conditions. Overall, the transfer of 3.0 seconds of green time from the westbound through movement split to the eastbound left-turn movement split during the weekday PM peak hour is expected to result in all movements at this intersection operating within capacity.

It should be noted that, due to the aforementioned signal timing adjustment for the eastbound left-turn movement, the queue storage spillover associated with the westbound right-turn movement is anticipated to increase from up to eight car lengths (before signal timing adjustments) to up to ten car lengths (after signal timing adjustments) during the weekday PM peak hour, under future total traffic conditions. Notwithstanding, these queue storage spillovers are observed under existing conditions and are expected to continue under future conditions regardless of the proposed development, as illustrated in **Exhibit 4-8**.

Exhibit 4-8: Goreway Drive and Derry Road East Intersection Queue Comparison

	Peak		2	2020 Exi Conditi		(with re	Conditi comme		(with re			Storage
Intersection	Hour	Movement	Delay	v/c Ratio	95 th Percentile Queue Length (m)	Delay	v/c Ratio	95 th Percentile Queue Length (m)	Delay	v/c Ratio	95 th Percentile Queue Length (m)	Capacity (m)
Goreway Drive and	AM	WBR	39.2	0.18	21	39.2	0.18	21	39.7	0.18	21	90
Derry Road East	PM		53.2	0.67	117	57.9	0.71	126	63.1	0.79	160	

Red text indicates a movement which exceeds critical thresholds.

As shown in **Exhibit 4-8**, the impact of the proposed development on the westbound right-turn queue lengths is expected to be between three and five car lengths, depending on the implementation of signal timing adjustments. This increase is unlikely to be perceived by the average road user, especially because it would only be apparent under 95th percentile volume conditions, which are statistically unlikely to occur. Furthermore, there are sufficient westbound through lanes along Derry Road East such that infrequent blockage of the westbound curbside through lane due to queue spillovers from the westbound right-turn lane will likely have minor impacts on overall intersection operations.

When comparing traffic operations of the eastbound left-turn and westbound right-turn movements, a trade-off can be observed. As the eastbound left-turn movement is expected to operate over capacity under future background conditions, the decision of mitigating the eastbound left-turn movement's capacity constraints at the cost of a minimal queue length increase of the westbound right-turn movement is sensible.

Full Highway Capacity Manual analysis for the mitigated 2025 future background and future total conditions scenarios is presented in **Appendix G**.

4.4.2 Goreway Drive and Etude Drive

For the Goreway Drive and Etude Drive intersection, capacity and queuing constraints were observed for the westbound left-turn movement during the weekday AM and PM peak hours under 2020 Existing Conditions. These constraints are anticipated to continue under 2025 Future Background conditions. It should be noted that there are no development site trips assigned to the constrained movement, resulting in minimal impacts as a result of the proposed development. This is illustrated in **Exhibit 4-9**.

Exhibit 4-9: Goreway Drive and Etude Drive Intersection Traffic Operations Comparison

			2	2020 Exi Conditi		2025 F	uture B Conditi	ackground ions	20	25 Futu Condit		
Intersection	Peak Hour	Movement	Delay Ratio		95 th Percentile Queue Length (m)	Delay	v/c Ratio	95 th Percentile Queue Length (m)	Delay	v/c Ratio	95 th Percentile Queue Length (m)	Storage Capacity (m)
Goreway	AM	WBL	92.0	0.93	57	94.9	0.94	58	95.0	0.94	58	37
Drive and Etude Drive	PM		94.6	0.95	76	97.3	0.96	78	97.3	0.96	78	

Red text indicates a movement which exceeds critical thresholds.

As shown in **Exhibit 4-9**, the 95th percentile queue at the westbound left-turn lane is anticipated to increase by up to 2 metres (less than one vehicle) between 2020 Existing Conditions and 2025

Future Background Conditions. Furthermore, since no site trips are anticipated to be added to this approach, no increase in queuing is anticipated under 2025 Future Total Conditions with the proposed development in place. Similarly, the v/c ratio at the westbound left-turn lane is anticipated to remain the same between future background and future total conditions in 2025. Consequently, the proposed development is not anticipated to impact the future traffic operations at this lane.

It should be noted that the westbound left-turn lane capacity constraints may be mitigated by the implementation of a protected westbound left-turn phase. However, given that the existing signal head for the westbound approach does not consist of a left-turn arrow display, it is recommended that further analysis to investigate the feasibility of this mitigation measure be undertaken.

4.5 Traffic Analysis Summary

The traffic operations analysis indicates that the addition of development site traffic to the study area is expected to have a minimal impact on the study area roadways. In comparison to 2025 future background traffic conditions, the only new critical movement detected under future total conditions is the southbound left-turn movement at the Goreway Drive and Derry Road East intersection during the weekday AM peak hour. This movement is expected to experience a queue storage spillover of up to one car length. However, the impact of one additional vehicle within the available storage lanes is expected to be minimal on traffic operations.

The eastbound left-turn movement at the Goreway Drive and Derry Road East intersection was observed to operate above capacity during the weekday PM peak hour (v/c ratio of 1.05), and is expected to continue doing so under future traffic conditions (v/c ratio of 1.06 under future background and future total conditions). To mitigate this capacity constraint, 3.0 seconds of green time from the westbound through movement split have been transferred to the eastbound left-turn movement. This results in all movements at this intersection expected to operate within capacity during the weekday PM peak hour.

Due to the above noted signal timing adjustment at the Goreway Drive and Derry Road East intersection, queues associated with the westbound right-turn movement are anticipated to increase from up to eight car lengths to up to ten car lengths during the weekday PM peak hour. Notwithstanding, these queue storage spillovers are observed under existing conditions and are expected to continue under future conditions regardless of the proposed development. When comparing traffic operations of the eastbound left-turn and westbound right-turn movements, a trade-off can be observed as a result of the aforementioned signal timing adjustment. As the eastbound left-turn movement is expected to operate over capacity under future background conditions, the decision of mitigating the eastbound left-turn movement's capacity constraints at the cost of a relatively minor queue length increase of the westbound right-turn movement is sensible.

Capacity and queuing constraints during the weekday AM and PM peak hours were noted for the westbound left-turn movement at the Goreway Drive and Etude Drive intersection under existing and future traffic conditions. As no development site trips have been assigned to the westbound left-turn movement at the Goreway Drive and Etude Drive intersection, further analyses to assess the feasibility of these mitigation measures is recommended.

5 Parking Study

As discussed in **Section 1.3**, the development proposes to provide 359 parking spaces for 246 dwelling units. The suitability of this parking supply, based on zoning by-law requirements and the regulations in other municipalities is discussed in this section.

5.1 Zoning By-law Requirements

The development site is presently governed by the City of Mississauga Zoning By-law 0225-2007 (ZBL), and would be classified as having 228 apartment dwelling units and 18 townhouse dwelling units in Parking Precinct 3. The following **Exhibit 5-1** assesses vehicular parking requirements for this development. For the purposes of analysis, tenure was assumed to be condominium, as rental units have lower parking requirements.

Exhibit 5-1: ZBL 0225-2007 Development Parking Space Requirements

Land Use	Proposed Units/GFA	Parking Rate Requirement	Required Spaces
Residential and Commer			
Condominium Apartmen	t		
Apartment	228	1.0 spaces per dwelling units	228
Condominium Townhous	se		
Townhouse	18	2.0 spaces per dwelling units	36
Commercial			
Commercial GFA	388 m ² (4,175 ft ²)	4.0 spaces per 100 m ²	16
Visitor Parking Requiren	nents		
Condominium Apartmen	t		
Visitor parking requirement	228	0.20 spaces per dwelling units	46
Condominium Townhous	se		
Visitor parking requirement	18	0.25 spaces per dwelling units	5
Total Parking Spaces Re	quired		
	Residential and Com	mercial Parking Spaces Required	280
		Visitor Parking Spaces Required	51
		Total Parking Spaces Required	331
		Proposed Parking Space Supply	359
		Surplus/Deficiency	+28

As shown in **Exhibit 5-1**, a ZBL surplus of 28 spaces is anticipated. This indicates that the proposed development is expected to comply with the ZBL requirements for condominium tenure, as well as the lower requirements for rental tenure.

6 Transportation Demand Management Options

Transportation Demand Management (TDM) refers to policies, design features, and incentives which encourage sustainable transportation choices. TDM can reduce the intensity of peak hour trips by encouraging deferred travel, can reduce general automobile trips by encouraging the use of non-automobile transportation modes, and can reduce the demand for parking by reducing the need to own and operate a personal vehicle.

A Transportation Demand Management Options memorandum in support of the 7085 Goreway Drive development is presented in **Appendix H**. The memorandum notes that the development proposes to provide approximately 292 secure bicycle parking spaces and excellent pedestrian connections to nearby amenities. In addition, the development is well served by transit, which provides for an easy connection to the existing GO Transit rail station at Malton, and to the future Finch West LRT station at Humber College. Together, these features encourage sustainable transportation choice by residents, and can reduce parking demand by making an auto-free lifestyle viable.

It should be noted that the Transportation Demand Management Options report considers an earlier iteration of the proposed development concept. While there may be minor differences between this document and the broader transportation impact study, the impact of the TDM measures on travel choices is expected to remain unchanged.

7 Site Access Conceptual Design

As discussed in **Section 1**, the development site presently contains a vacant commercial building whose south access is offset approximately 10 metres to the north of Dorcas Street. In addition, a vacant commercial property (7075 Goreway Drive) immediately south of the development site has an access offset approximately 6 metres to the south of Dorcas Street. This configuration is illustrated in **Exhibit 7-1** and **Exhibit 7-2**.

Exhibit 7-1: Existing Site Plan

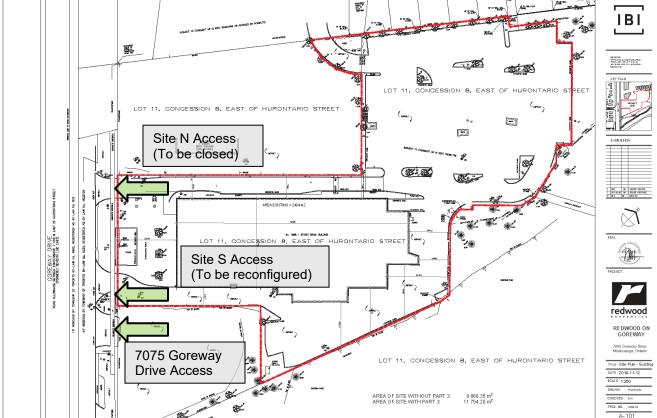


Exhibit 7-2: Existing Site Access Configuration

In order to rationalize the configuration of the Goreway Drive and Dorcas Street intersection, the development site access is proposed to be relocated to the south by 7.1m. Future conditions at the intersection are anticipated to consist of a signalized site access, which is offset from Dorcas Street by approximately 2.9 metres, as illustrated in **Exhibit 7-3**.

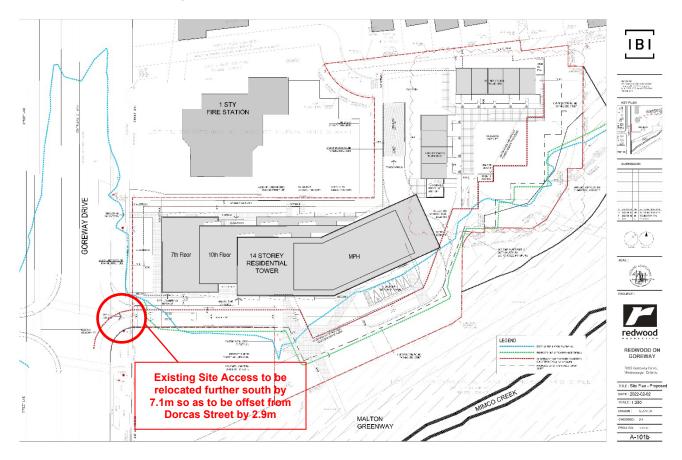


Exhibit 7-3: Proposed Site Plan

The operational implications of this configurations, as well as related changes to the intersection and configuration and pavement markings, are discussed in this section.

7.1 Offset Intersection

Signalized, offset intersections are not uncommon in redevelopment areas with pre-existing road alignments. Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (June 2017) indicates that offset intersection and offset access design must have regard for several factors:

- TAC chapter 8.9.9 states that "for low volume roadways, such as locals and most collectors, the spatial relationship between driveways on opposite sides of the road is not a necessary design consideration. Similarly, if one or both of the driveways are low volume, this relationship does not impact traffic operations."
 - As the development's 246 units² are only estimated to produce up to 89 new inbound and outbound weekday AM peak hour trips and 104 new inbound and outbound weekday PM peak hour trips [less than 2 new trips per minute, as per Institute of Transportation Engineers Trip Generation Manual, 10th Edition (September 2017)], volumes are such that impacts to traffic operations are expected to be low.

² As noted in **Section 4.2.2**, the trip generation estimates presented in this report are based on an earlier development concept which had consisted of 17 more condominium units and two fewer townhouses. The total number of trips generated under the current development concept is expected to be lower than what is reported.

- TAC chapter 8.9.9 states that "when the roadway has a moderate to high volume, and the driveway volumes are moderate to high... the examination of the relative location of opposite driveways constitutes good design practice. The key traffic movements in the analysis are the accommodation of left-turns into the opposite developments, and the inter-development traffic flow."
 - Offset intersections, compared to aligned intersections, can introduce additional conflict points due to overlapping turning paths and "straight through" moves which involve weaving. These potential conflicts are illustrated in **Exhibit 7-4**, which provides guidance on offset intersection design. The proposed offset at the site access is consistent with option "b", which eliminates overlapping left-turn conflicts from the major roadway;
 - With respect to inter-development traffic flow (i.e. straight through movements from Dorcas Street into the development), these volumes – and associated conflicts – are expected to be very low;
 - Potential conflicts could be further reduced by signal timing plans which separate
 Dorcas Street movements from development movements. This is commonly known as
 "split phasing", and is typically used at offset intersections with significant offsets.
 However, transportation impact analysis is necessary to determine the
 appropriateness of this measure.

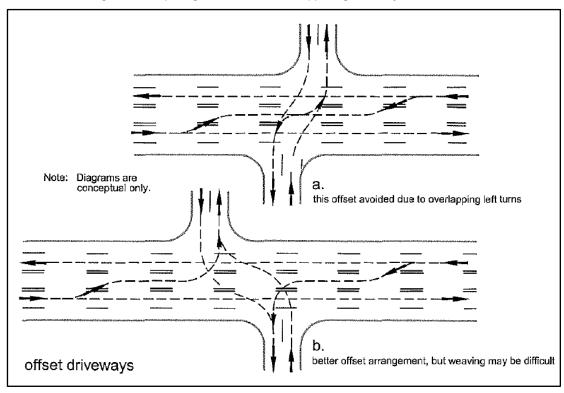


Exhibit 7-4: TAC Figure 8.9.3: Spacing Considerations for Opposing Driveways

Based on the above factors, the proposed offset of 2.9 metres is preferable to maintaining the existing configuration. Volumes, particularly development site to Dorcas Street volumes, are expected to be low, and the proposed design eliminates overlapping main street left-turns.

7.2 Pavement Markings

As illustrated in **Exhibit 7-5**, the existing north approach pavement markings are incompatible with the location of the proposed development access.

Exhibit 7-5: Goreway Drive and Dorcas Street Existing Lane Markings

As shown in **Exhibit 7-5**, the existing eastern pedestrian landing for the north approach crosswalk coincides with the location of the relocated access. In order to accommodate the development, and to allow for a more conventional intersection configuration, a conceptual design illustrating development opening day conditions is presented in **Exhibit 7-6**.

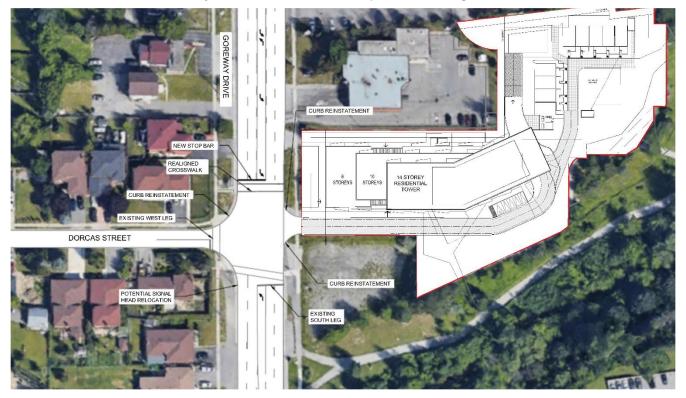


Exhibit 7-6: Goreway Drive and Dorcas Street Conceptual Lane Markings

As shown in **Exhibit 7-6**, modifications to pavement markings which accommodate the development site access include a re-aligned northern pedestrian crosswalk, and a relocated southbound stop bar.

For pedestrians, this configuration provides for a more familiar configuration, and reduces the crossing distance from approximately 23 metres to approximately 18 metres – though it should be noted that the existing pedestrian clearance time was maintained in the analysis presented in **Section 4**. In addition, the proposed alignment increases connectivity to the southbound transit stop on the west side of Goreway Drive.

For motorists, this configuration is expected to result in an approximate 1.0 second increase to the northbound and southbound all-red interval. This is expected to have a minimal impact on perceived traffic operations, and was taken into consideration in the analysis in this report.

8 Vehicle Swept Path Analysis

A vehicle swept path analysis was conducted using AutoTurn to demonstrate that waste collection, delivery, and emergency response vehicles can enter and exit the site in a forward motion, and that access to loading and waste collection areas are functional. In addition, AutoTURN confirmed that the underground parking ramps and stalls located near corners / walls and/or at the end of aisles are functional. The vehicle swept path analysis is presented in **Appendix I**.

In order to reduce conflicts between passenger vehicles entering and exiting the underground parking garage, the following measures are recommended:

A convex mirror be installed at the top and bottom of the ramp to the underground parking garage, and at the top and bottom of the ramps connecting the various levels of the underground parking garage.

9 Conclusions

This section summarizes the key findings of this transportation impact study.

9.1 Traffic Operations Analysis

- Under existing traffic conditions, several signalized movements within the study
 area intersections were observed to operate above critical capacity and/or queuing
 thresholds during the weekday AM and PM peak hours, including the eastbound
 left-turn and westbound right-turn movements at the Goreway Drive and Derry
 Road East intersection during the weekday PM peak hour, and the westbound leftturn movement at the Goreway Drive and Etude Drive intersection during both the
 weekday AM and PM peak hours.
- Under 2025 future background conditions, the identified operational constraints under existing conditions are expected to be exacerbated due to background traffic growth. No new critical movements are expected under future background conditions.
- Trip generation estimates and the corresponding future total traffic analysis are based from an earlier development concept, which consisted of 17 fewer condominium dwelling units and two less townhouse units over the current development concept of 228 apartment dwelling units and 18 townhouse units). Based on 245 apartment dwelling units and 16 townhouse units (259 total dwellings), the proposed development is anticipated to produce up to 89 new vehicle trips during the weekday AM peak hour (21 inbound trips and 68 outbound trips) and up to 104 new vehicle trips during the weekday PM peak hour (63 inbound trips and 41 outbound trips). The current 246-dwelling development concept is expected to produce less vehicle trips and a therefore more conservative analysis.
- Under 2025 future total conditions, the identified operational constraints under existing and future background conditions are expected to continue. The only new critical movement identified is the southbound left-turn movement at the Goreway Drive and Derry Road East intersection during the weekday AM peak hour. This movement is expected to experience a queue storage spillover of up to one car length. However, the impact of one additional vehicle within the available storage lanes is expected to be minimal on traffic operations.

- The eastbound left-turn capacity constraint at the Goreway Drive and Derry Road
 East intersection during the weekday PM peak hour may be mitigated by
 transferring 3.0 seconds of green time from the westbound through movement to
 the eastbound left-turn movement. This would result in all movements at this
 intersection expected to operate within capacity.
- Due to the above noted signal timing adjustment, queues associated with the
 westbound right-turn movement are anticipated to increase from up to eight car
 lengths to up to ten car lengths during the weekday PM peak hour. Notwithstanding,
 these queue storage spillovers are observed under existing conditions and are
 expected to continue under future conditions regardless of the proposed
 development.
- Capacity and queuing constraints at the Goreway Drive and Etude Drive intersection's westbound left-turn movement during the weekday AM and PM peak hours were noted under existing and future traffic conditions. These capacity constraints may be mitigated by the implementation of a protected westbound left-turn phase. As no development site trips have been assigned to the westbound left-turn movement at the Goreway Drive and Etude Drive intersection, further analyses to assess the feasibility of these mitigation measures is recommended.

9.2 Parking Study

Based on the ZBL parking space requirement, the proposed parking supply of 359
parking spaces is expected to translate to a ZBL surplus of 28 parking spaces.

9.3 Transportation Demand Management Options

A Transportation Demand Management Options memorandum in support of the
development is presented in **Appendix H**. It notes that the secure bicycle parking,
excellent pedestrian connectivity, and proximity to transit will encourage sustainable
transportation choices and can reduce parking demand from future residents.

9.4 Site Access Conceptual Design

- In order to rationalize the configuration of the Goreway Drive and Dorcas Street / Site Access intersection, the development site access is proposed to be relocated approximately 7.1 metres to the south. This would result in a single east leg of the intersection with an offset of approximately 2.9 metres to the north of the Dorcas Street centreline. Signalized, offset intersections are not uncommon in redevelopment areas with pre-existing road alignments, and the proposed configuration is consistent with guidance provided in TAC Geometric Design Guide for Canadian Roads (June 2017).
- Modifications to pavement markings which accommodate the reconfigured intersection include a re-aligned northern pedestrian crosswalk, and a relocated southbound stop bar. For pedestrians, this configuration provides for a more familiar intersection configuration, and reduces the crossing distance. For motorists, this configuration is expected to result in an approximate 1.0 second increase to the northbound and southbound all-red interval and a minimal impact on perceived traffic operations.

9.5 Vehicle Swept Path Analysis

- A vehicle swept path analysis was conducted using AutoTurn to demonstrate that
 vehicles can enter and exit the site in a forward motion, and that access to loading
 and waste collection areas are functional. In addition, AutoTURN confirmed that the
 underground parking ramps and stalls located near corners / walls and/or at the end
 of aisles are functional. In order to reduce conflicts between passenger vehicles
 entering and exiting the underground parking garage, the following measures are
 recommended:
 - A convex mirror be installed at the top and bottom of the ramp to the underground parking garage, and at the top and bottom of the ramps connecting the various levels of the underground parking garage.

10 Recommendations

The following measures are recommended to mitigate the capacity and queuing constraints identified in the traffic operations analysis:

- At the Goreway Drive and Derry Road East intersection, transfer 3.0 seconds of green time from the westbound through movement to the eastbound left-turn movement during the weekday PM peak hour. This would result in all movements at this intersection anticipated to operate within capacity under future conditions.
- At the intersection of Goreway Drive and Etude Drive, investigate the feasibility of implementing an advanced westbound left-turn phase during the weekday AM and PM peak hours. This would improve traffic operations for the westbound left-turn movement to levels below critical capacity thresholds. Further analysis to assess the feasibility of this measure is recommended.

Appendix A

Scope of Investigation

 From:
 Andrae Griffith

 To:
 Greg Borys

 Cc:
 Fadi Madi

Subject: RE: DARC 19-266 - Transportation Impact Study Scope of Work at 7085 Goreway Drive

Date: Wednesday, January 29, 2020 11:37:00 AM

Attachments: <u>image001.png</u>

Hi Greg,

Thank you for your comments. With regards to the Goreway Drive & Dorcas Street intersection, we understand that the City has noted that, due to the offset, a feasibility design for intersection improvements to improve vehicle and pedestrian safety should be provided with the transportation study. With respect to mentioned safety analysis, we propose to conduct a qualitative assessment based on on-site observations, and a review of the proposed development concept (which is likely to evolve as it approaches submission).

Thank you again for reviewing our terms of reference and providing comments.

Sincerely,

Andrae Griffith

IBI GROUP

7th Floor - 55 St. Clair Avenue West Toronto ON M4V 2Y7 Canada tel +1 416 596 1930 ext 61450 fax +1 416 596 0644

From: Fadi Madi <fadi.madi@ibigroup.com> Sent: Friday, January 24, 2020 12:21 PM

To: Greg Borys <Gregory.Borys@mississauga.ca>; Andrae Griffith <andrae.griffith@ibigroup.com> **Subject:** RE: DARC 19-266 - Transportation Impact Study Scope of Work at 7085 Goreway Drive

Thanks Greg! We truly appreciate your time and consideration.

Can you please provide some information on your expectations for the safety and operations analysis? Would this be a qualitative assessment identifying the potential issues?

Fadi

From: Greg Borys [mailto:Gregory.Borys@mississauga.ca]

Sent: Friday, January 24, 2020 10:27 AM

To: Fadi Madi < fadi.madi@ibigroup.com>; Andrae Griffith < andrae.griffith@ibigroup.com> **Subject:** RE: DARC 19-266 - Transportation Impact Study Scope of Work at 7085 Goreway Drive

Good morning Fadi,

Thank you for your patience, traffic planning has reviewed the proposed Terms of Reference for

7085 Goreway Drive and have the following comments:

Based on the concept plan shown in DARC, the proposed site access at Goreway Drive and
Dorcas Street will be offset with the pedestrian crosswalk leading into the access. Traffic
Impact Study required to analyze the safety and operations of that intersection and prepare a
feasibility design for improvements to the intersection to improve vehicle and pedestrian
safety due to the new access.

Regards,

Gregory Borys, C.E.T.

Transportation Planning Technologist, Transportation & Works T 905-615-3200 ext.3597 gregory.borys@mississauga.ca

City of Mississauga | Transportation & Works Department Transportation and Infrastructure Planning Division

Please consider the environment before printing.

From: Fadi Madi < fadi.madi@ibigroup.com>
Sent: Thursday, January 23, 2020 4:16 PM

To: Andrae Griffith <andrae.griffith@ibigroup.com>; Greg Borys <<u>Gregory.Borys@mississauga.ca</u>> **Subject:** RE: DARC 19-266 - Transportation Impact Study Scope of Work at 7085 Goreway Drive

Hi Greg,

Just a friendly follow-up regarding our proposed scope of work, below.

We are hoping to get started as soon as possible and would really appreciate your comment at your earliest convenience.

Warm Regards, Fadi

Fadi Madi P. ENG.

IBI GROUP

7th Floor - 55 St. Clair Avenue West
Toronto ON M4V 2Y7 Canada
tel +1 416 596 1930 ext 61867 fax +1 416 596 0644

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

From: Andrae Griffith

Sent: Friday, January 17, 2020 5:33 PM

To: Greg Borys < <u>Gregory.Borys@mississauga.ca</u>>

Cc: Fadi Madi < fadi.madi@ibigroup.com >

Subject: DARC 19-266 - Transportation Impact Study Scope of Work at 7085 Goreway Drive

Dear Mr. Borys,

IBI Group is working with a client who wishes to construct a residential development at 7085 Goreway Drive. The development would be located on the east side of Goreway Drive, opposite Dorcas Street, and would consist of two residential towers (18 and 16-storeys; 261 units) and 16 atgrade townhouses. Existing uses on the site are proposed to be removed.

As per discussions with the City of Mississauga during the DARC process, a transportation impact study has been requested to accompany this planning application. Below is our proposed scope of investigation for your review and acceptance, and we are happy to discuss this matter further if required.

Work Plan – Transportation Impact Study

The tasks that will be completed for the transportation impact study are as follows:

1. **Analysis Time Periods and Intersections:** Based on the proposed development's residential land uses and size, we plan to analyze the development peak hours, which will occur during the weekday AM peak period (between 7:00 a.m. and 9:00 a.m.) and the weekday PM peak period (between 4:00 p.m. and 6:00 p.m.).

The following intersections will be included in this analysis:

- a. Goreway Drive & Etude Drive (signalized);
- b. Goreway Drive & Proposed North Site Access (unsignalized);
- Goreway Drive & Dorcas Street / Proposed South Site Access (unsignalized);
 and
- d. Goreway Drive & Derry Road (Regional Road 5) (signalized).
- 2. **2020 Existing Conditions:** The 2020 existing traffic operations will be analyzed using the software program Synchro (version 9) for the weekday AM and weekday PM peak periods, for the intersections listed above. Traffic counts at the study area intersections will be obtained from the City of Mississauga and / Region of Peel, if available. If the City is unable to provide updated turning movement counts for these intersections, new turning movement counts will be collected.
- 3. **2025 Background Traffic Conditions:** The 2025 background traffic volumes will be determined for the study area intersections, which coincides with 5 years after the 2020 date of the transportation impact study. We will identify an applicable background traffic growth rate and other area developments which may introduce traffic into the

study area, based on a discussion with City of Mississauga staff. Any future road network or intersection changes proposed by the City, or outlined in the capital works program, will be taken into consideration.

The 2025 background traffic analysis will identify and determine the impacts of the adjacent developments without the proposed site traffic under existing and future roadway conditions.

4. **Site Traffic Generation and Trip Distribution:** The trip generation for the proposed development will be based the information presented in the Institute of Transportation Engineers ("ITE") publication, *Trip Generation*, *10th Edition*. A review of the modal split will also be undertaken to account for the trips being made by non-auto modes of travel. The City's Transportation Master Plan will be used as tools for this review.

The trip distribution for the proposed site will be based on a review of existing travel patterns, the 2016 Transportation Tomorrow Survey (TTS), and the available road network. The forecast site traffic for the development will be added to the road network based on the trip distribution, and assigned to the network based on logical travel routes and available traffic capacity.

5. **2025 Total Traffic Conditions:** The estimated site traffic volumes will be combined with the 2025 background traffic volumes to determine the 2025 total traffic volumes for the study area intersections.

Intersection operations analysis will be undertaken for the weekday peak periods. Any necessary road improvements required to accommodate total traffic volumes will be identified if necessary, such as additional turning lanes, storage length modifications, or traffic control measures.

6. **Vehicle Swept Path Analysis:** Using AutoTurn, we will confirm that SU-9 garbage truck traffic can enter/exit the site, and that access to the loading areas are functional. We will illustrate truck turning movements with one continuous path with AutoTurn on separate plans, and insert the design vehicles on the plan.

If you have any questions regarding the proposed scope of work for the 7085 Goreway Drive development, please do not hesitate to contact me. Please note that, as the city has requested a parking justification as well, we propose to submit a combined transportation, parking, and TDM report.

Sincerely,

Andrae Griffith

IBI GROUP

7th Floor - 55 St. Clair Avenue West

Toronto ON M4V 2Y7 Canada
tel +1 416 596 1930 ext 61450 fax +1 416 596 0644

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

Appendix B

Turning Movement Counts

318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

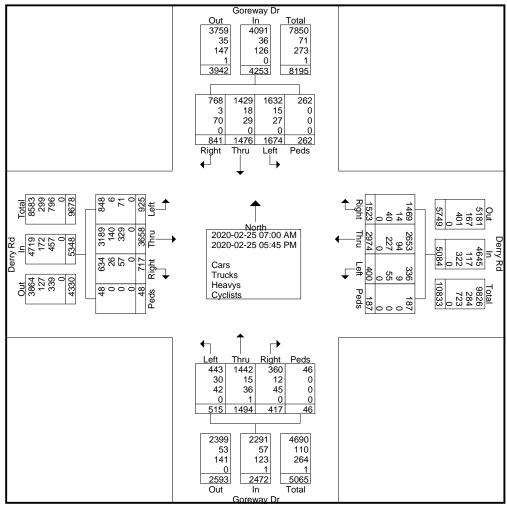
File Name: Derry Road at Goreway Drive

Site Code : 00000000 Start Date : 2020-02-25

Page No : 1

Groups Printed- Cars - Trucks - Heavys - Cyclists

			oreway outhbou					Derry Ro					oreway Iorthbou				į	Derry Ro			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	55	98	82	16	251	37	212	26	8	283	15	29	17	1	62	56	169	45	1	271	867
07:15 AM	45	112	131	9	297	44	198	34	8	284	17	42	29	0	88	58	165	38	1	262	931
07:30 AM	80	135	170	27	412	39	240	21	7	307	17	23	11	3	54	63	199	24	3	289	1062
07:45 AM	97	148	105	10_	360	55	225	33	9	322	12	40	15	0	67	78	183	44	0	305	1054
Total	277	493	488	62	1320	175	875	114	32	1196	61	134	72	4	271	255	716	151	5	1127	3914
08:00 AM	71	121	126	15	333	69	167	37	6	279	21	47	28	2	98	56	182	30	0	268	978
08:15 AM	33	118	110	20	281	75	186	29	5	295	23	29	15	0	67	69	186	37	1	293	936
08:30 AM	54	126	126	17	323	56	156	32	7	251	21	40	25	2	88	72	177	36	4	289	951
08:45 AM	41	179	145	21	386	47	156	52	12	267	32	56	16	2	106	72	166	29	3	270	1029
Total	199	544	507	73	1323	247	665	150	30	1092	97	172	84	6	359	269	711	132	8	1120	3894
					1					1					1				_		
04:00 PM	49	71	88	12	220	124	176	21	20	341	44	160	67	3	274	22	277	66	5	370	1205
04:15 PM	42	33	81	20	176	154	194	20	13	381	31	109	36	7	183	25	319	94	6	444	1184
04:30 PM 04:45 PM	43 43	51 53	86 75	13 11	193 182	129 160	175 180	24 18	14 12	342 370	35 34	183 151	57 47	6 8	281 240	30	259 309	85 69	4 8	378 413	1194 1205
Total	<u>43</u> 177	208	330	56	771	567	725	83	59	1434	<u>34</u> 144	603	207	24	978	27 104	1164	314	23	1605	4788
Total	177	200	330	30	771	307	123	03	39	1434	144	003	201	24	910	104	1104	314	23	1003	4700
05:00 PM	48	66	84	18	216	123	197	14	22	356	33	167	47	7	254	19	278	95	5	397	1223
05:15 PM	50	76	87	20	233	166	149	13	19	347	34	168	42	2	246	25	234	57	1	317	1143
05:30 PM	29	52	94	24	199	132	178	16	9	335	26	139	43	2	210	23	302	85	2	412	1156
05:45 PM	61	37	84	9	191	113	185	10	16	324	22	111	20	1	154	22	253	91	4	370	1039
Total	188	231	349	71	839	534	709	53	66	1362	115	585	152	12	864	89	1067	328	12	1496	4561
Grand Total	841	1476	1674	262	4253	1523	2974	400	187	5084	417	1494	515	46	2472	717	3658	925	48	5348	17157
Apprch %	19.8	34.7	39.4	6.2		30	58.5	7.9	3.7		16.9	60.4	20.8	1.9		13.4	68.4	17.3	0.9		
Total %	4.9	8.6	9.8	1.5	24.8	8.9	17.3	2.3	1.1	29.6	2.4	8.7	3	0.3	14.4	4.2	21.3	5.4	0.3	31.2	
Cars	768	1429	1632	262	4091	1469	2653	336	187	4645	360	1442	443	46	2291	634	3189	848	48	4719	15746
% Cars	91.3	96.8	97.5	100	96.2	96.5	89.2	84	100	91.4	86.3	96.5	86	100	92.7	88.4	87.2	91.7	100	88.2	91.8
Trucks	3	18	15	0	36	14	94	9	0	117	12	15 1	30	0	57	26	140	6	0	172	382
% Trucks Heavys	0.4 70	1.2 29	0.9 27	0	0.8 126	0.9 40	3.2 227	2.2 55	0	2.3 322	2.9 45	36	5.8 42	0	2.3 123	3.6 57	3.8	0.6 71	0	3.2 457	2.2 1028
% Heavys	8.3	29 2	∠7 1.6	0	3	2.6	7.6	13.8	0	6.3	45 10.8	2.4	8.2	0	5	7.9	329 9	7.7	0	45 <i>7</i> 8.5	1028
Cyclists	<u>6.3</u> 0	0	0	0	0	<u> </u>	7.6	13.6	0	0.3	10.8		<u> </u>	0	1	7.9	0	0	0	<u>8.5</u>	1
% Cyclists	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0	0	0	0	0	6



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Derry Road at Goreway Drive

Site Code : 00000000 Start Date : 2020-02-25

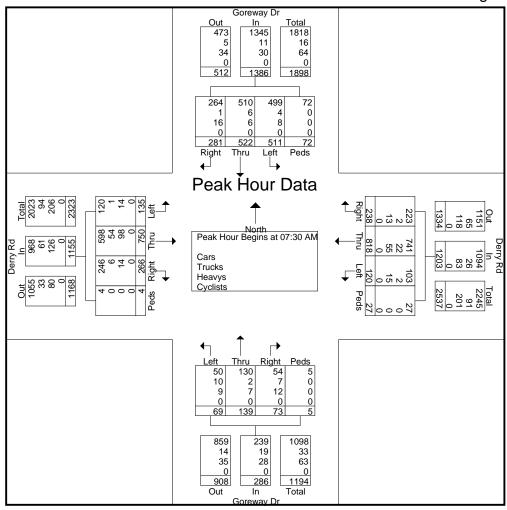
318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Derry Road at Goreway Drive

Site Code : 00000000 Start Date : 2020-02-25

			oreway					Derry Ro					oreway lorthbou					Derry Ro			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys						•				•		•				•					
Peak Hour for Ent	ire Interse	ection Be	gins at 0	7:30 AM	1 .																
07:30 AM	80	135	170	27	412	39	240	21	7	307	17	23	11	3	54	63	199	24	3	289	1062
07:45 AM	97	148	105	10	360	55	225	33	9	322	12	40	15	0	67	78	183	44	0	305	1054
08:00 AM	71	121	126	15	333	69	167	37	6	279	21	47	28	2	98	56	182	30	0	268	978
08:15 AM	33	118	110	20	281	75	186	29	5	295	23	29	15	0	67	69	186	37	1	293	936
Total Volume	281	522	511	72	1386	238	818	120	27	1203	73	139	69	5	286	266	750	135	4	1155	4030
% App. Total	20.3	37.7	36.9	5.2		19.8	68	10	2.2		25.5	48.6	24.1	1.7		23	64.9	11.7	0.3		
PHF	.724	.882	.751	.667	.841	.793	.852	.811	.750	.934	.793	.739	.616	.417	.730	.853	.942	.767	.333	.947	.949
Cars	264	510	499	72	1345	223	741	103	27	1094	54	130	50	5	239	246	598	120	4	968	3646
% Cars	94.0	97.7	97.7	100	97.0	93.7	90.6	85.8	100	90.9	74.0	93.5	72.5	100	83.6	92.5	79.7	88.9	100	83.8	90.5
Trucks	1	6	4	0	11	2	22	2	0	26	7	2	10	0	19	6	54	1	0	61	117
% Trucks	0.4	1.1	0.8	0	8.0	8.0	2.7	1.7	0	2.2	9.6	1.4	14.5	0	6.6	2.3	7.2	0.7	0	5.3	2.9
Heavys	16	6	8	0	30	13	55	15	0	83	12	7	9	0	28	14	98	14	0	126	267
% Heavys	5.7	1.1	1.6	0	2.2	5.5	6.7	12.5	0	6.9	16.4	5.0	13.0	0	9.8	5.3	13.1	10.4	0	10.9	6.6
Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Derry Road at Goreway Drive

Site Code : 00000000 Start Date : 2020-02-25

318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Derry Road at Goreway Drive

Site Code : 00000000 Start Date : 2020-02-25

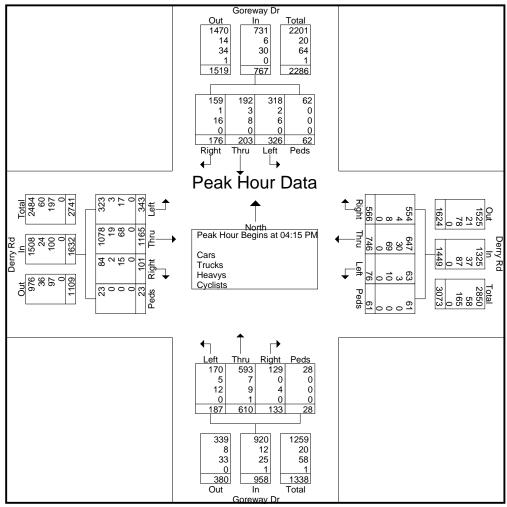
318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Derry Road at Goreway Drive

Site Code : 00000000 Start Date : 2020-02-25

			oreway l					Derry Ro					oreway					Derry Ro			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	is From 0	4:00 PM	to 05:45	PM - Pe	eak 1 of 1	•					•	•				•		•		·	
Peak Hour for Ent	ire Interse	ection Be	gins at 0	4:15 PM	Ι																
04:15 PM	42	33	81	20	176	154	194	20	13	381	31	109	36	7	183	25	319	94	6	444	1184
04:30 PM	43	51	86	13	193	129	175	24	14	342	35	183	57	6	281	30	259	85	4	378	1194
04:45 PM	43	53	75	11	182	160	180	18	12	370	34	151	47	8	240	27	309	69	8	413	1205
05:00 PM	48	66	84	18	216	123	197	14	22	356	33	167	47	7	254	19	278	95	5	397	1223
Total Volume	176	203	326	62	767	566	746	76	61	1449	133	610	187	28	958	101	1165	343	23	1632	4806
% App. Total	22.9	26.5	42.5	8.1		39.1	51.5	5.2	4.2		13.9	63.7	19.5	2.9		6.2	71.4	21	1.4		
PHF	.917	.769	.948	.775	.888	.884	.947	.792	.693	.951	.950	.833	.820	.875	.852	.842	.913	.903	.719	.919	.982
Cars	159	192	318	62	731	554	647	63	61	1325	129	593	170	28	920	84	1078	323	23	1508	4484
% Cars	90.3	94.6	97.5	100	95.3	97.9	86.7	82.9	100	91.4	97.0	97.2	90.9	100	96.0	83.2	92.5	94.2	100	92.4	93.3
Trucks	1	3	2	0	6	4	30	3	0	37	0	7	5	0	12	2	19	3	0	24	79
% Trucks	0.6	1.5	0.6	0	8.0	0.7	4.0	3.9	0	2.6	0	1.1	2.7	0	1.3	2.0	1.6	0.9	0	1.5	1.6
Heavys	16	8	6	0	30	8	69	10	0	87	4	9	12	0	25	15	68	17	0	100	242
% Heavys	9.1	3.9	1.8	0	3.9	1.4	9.2	13.2	0	6.0	3.0	1.5	6.4	0	2.6	14.9	5.8	5.0	0	6.1	5.0
Cyclists	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
% Cyclists	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0.1	0	0	0	0	0	0.0

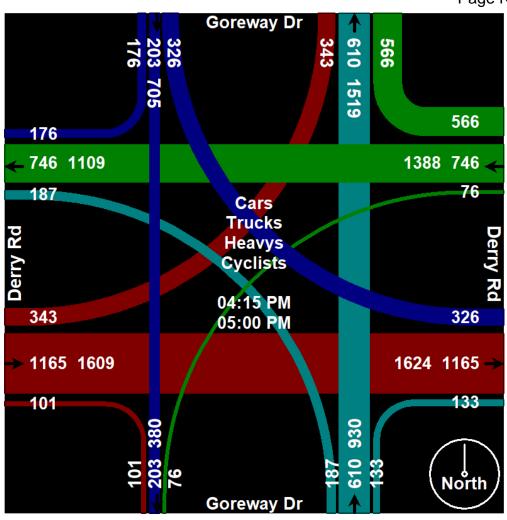


318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Derry Road at Goreway Drive

Site Code : 00000000 Start Date : 2020-02-25



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Derry Road at Goreway Drive

Site Code : 00000000 Start Date : 2020-02-25

318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

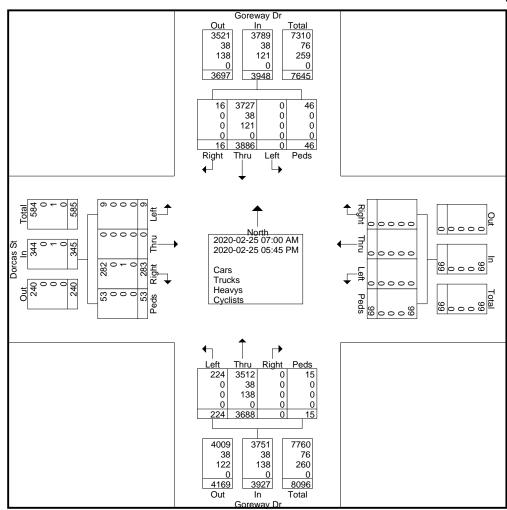
File Name: dorcas st at goreway dr

Site Code : 00000000 Start Date : 2020-02-25

Page No : 1

Groups Printed- Cars - Trucks - Heavys - Cyclists

			oreway					-		Cars - Truc	DRO 1100	G	oreway					Oorcas S			
0, , =	5		outhbou			5		Vestbou			5		Northbou			5		astboun			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	1	266	0	2	269	0	0	0	2	2	0	108	2	1	111	20	0	0	3	23	405
07:15 AM	1	273	0	0	274	0	0	0	3	3	0	114	2	0	116	14	0	1	3	18	411
07:30 AM	0	380	0	2	382	0	0	0	1	1	0	86	5	1	92	37	0	1	5	43	518
07:45 AM	0	376	0	2	378	0	0	0	4	4	0	137	2	2	141	25	0	0	1_	26	549
Total	2	1295	0	6	1303	0	0	0	10	10	0	445	11	4	460	96	0	2	12	110	1883
08:00 AM	0	292	0	3	295	0	0	0	4	4	0	139	6	1	146	32	0	0	0	32	477
08:15 AM	1	251	0	2	254	0	0	0	5	5	0	136	5	0	141	15	0	0	0	15	415
08:30 AM	1	349	0	1	351	0	0	0	1	1	0	122	7	1	130	18	0	0	1	19	501
08:45 AM	1_	297	0	1_	299	0	0	0	6	6	0	116	4	0	120	30	0	0	5	35	460
Total	3	1189	0	7	1199	0	0	0	16	16	0	513	22	2	537	95	0	0	6	101	1853
04:00 PM	4	194	0	5	203	0	0	0	14	14	0	326	14	0	340	16	0	0	5	21	578
04:15 PM	0	152	0	3	155	0	0	0	14	14	0	335	19	1	355	7	0	0	4	11	535
04:30 PM	2	168	0	4	174	0	0	0	12	12	0	371	30	1	402	10	0	1	3	14	602
04:45 PM	0	158	0	6	164	0	0	0	4	4	0	348	27	3	378	6	0	2	4	12	558
Total	6	672	0	18	696	0	0	0	44	44	0	1380	90	5	1475	39	0	3	16	58	2273
05:00 PM	2	200	0	2	204	0	0	0	3	3	0	367	28	2	397	6	0	1	7	14	618
05:15 PM	0	187	0	9	196	0	0	0	7	7	0	355	33	1	389	17	0	1	5	23	615
05:30 PM	2	170	0	0	172	0	0	0	10	10	0	334	19	0	353	14	0	1	3	18	553
05:45 PM	1_	173	0	4	178	0	0	0	9	9	0	294	21	1	316	16	0	1_	4	21	524
Total	5	730	0	15	750	0	0	0	29	29	0	1350	101	4	1455	53	0	4	19	76	2310
Grand Total	16	3886	0	46	3948	0	0	0	99	99	0	3688	224	15	3927	283	0	9	53	345	8319
Apprch %	0.4	98.4	0	1.2		0	0	0	100		0	93.9	5.7	0.4		82	0	2.6	15.4		
Total %	0.2	46.7	0	0.6	47.5	0	0	0	1.2	1.2	0	44.3	2.7	0.2	47.2	3.4	0	0.1	0.6	4.1	
Cars	16	3727	0	46	3789	0	0	0	99	99	0	3512	224	15	3751	282	0	9	53	344	7983
% Cars	100	95.9	0	100	96	0	0	0	100	100	0	95.2	100	100	95.5	99.6	0	100	100	99.7	96
Trucks	0	38	0	0	38	0	0	0	0	0	0	38	0	0	38	0	0	0	0	0	76
% Trucks	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0.9
Heavys	0	121	0	0	121	0	0	0	0	0	0	138	0	0	138	1	0	0	0	1	260
% Heavys	0	3.1	0	0	3.1	0	0	0	0	0	0	3.7	0	0	3.5	0.4	0	0	0	0.3	3.1
Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: dorcas st at goreway dr

Site Code : 00000000 Start Date : 2020-02-25

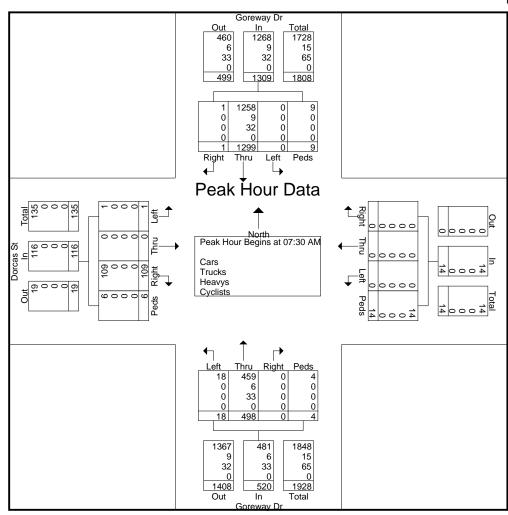
318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: dorcas st at goreway dr

Site Code : 00000000 Start Date : 2020-02-25

			oreway outhbou				V	/estbour	nd				oreway orthbou					Oorcas S astbour			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys							•	•			•	•				•	•	•			
Peak Hour for Ent	tire Interse	ection Be	gins at 0	7:30 AM	1																
07:30 AM	0	380	0	2	382	0	0	0	1	1	0	86	5	1	92	37	0	1	5	43	518
07:45 AM	0	376	0	2	378	0	0	0	4	4	0	137	2	2	141	25	0	0	1	26	549
08:00 AM	0	292	0	3	295	0	0	0	4	4	0	139	6	1	146	32	0	0	0	32	477
08:15 AM	1	251	0	2	254	0	0	0	5	5	0	136	5	0	141	15	0	0	0	15	415
Total Volume	1	1299	0	9	1309	0	0	0	14	14	0	498	18	4	520	109	0	1	6	116	1959
% App. Total	0.1	99.2	0	0.7		0	0	0	100		0	95.8	3.5	0.8		94	0	0.9	5.2		
PHF	.250	.855	.000	.750	.857	.000	.000	.000	.700	.700	.000	.896	.750	.500	.890	.736	.000	.250	.300	.674	.892
Cars	1	1258	0	9	1268	0	0	0	14	14	0	459	18	4	481	109	0	1	6	116	1879
% Cars	100	96.8	0	100	96.9	0	0	0	100	100	0	92.2	100	100	92.5	100	0	100	100	100	95.9
Trucks	0	9	0	0	9	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	15
% Trucks	0	0.7	0	0	0.7	0	0	0	0	0	0	1.2	0	0	1.2	0	0	0	0	0	0.8
Heavys	0	32	0	0	32	0	0	0	0	0	0	33	0	0	33	0	0	0	0	0	65
% Heavys	0	2.5	0	0	2.4	0	0	0	0	0	0	6.6	0	0	6.3	0	0	0	0	0	3.3
Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

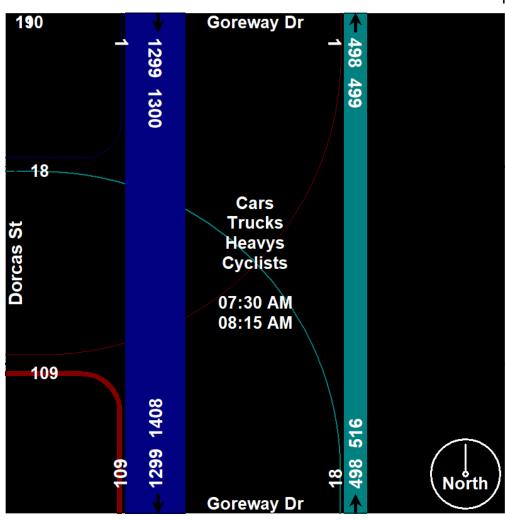


318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: dorcas st at goreway dr

Site Code : 00000000 Start Date : 2020-02-25



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: dorcas st at goreway dr

Site Code : 00000000 Start Date : 2020-02-25

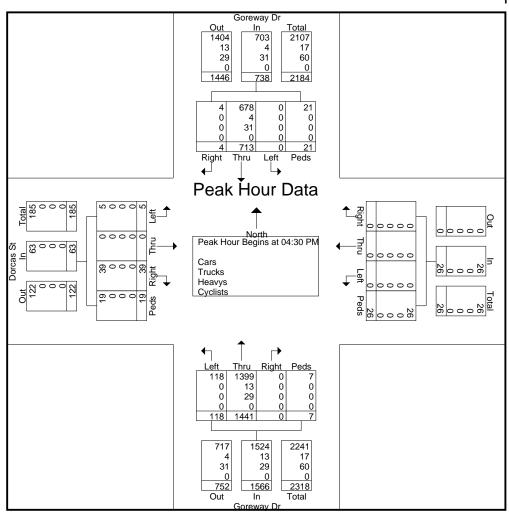
318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: dorcas st at goreway dr

Site Code : 00000000 Start Date : 2020-02-25

			oreway l				V	Vestbour	nd				oreway Iorthbou				-	Dorcas S astbour			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	is From 0	4:00 PM	to 05:45	PM - P	eak 1 of 1	·	•	•					•					,			
Peak Hour for Ent	ire Interse	ection Be	gins at 0	4:30 PM	1																
04:30 PM	2	168	0	4	174	0	0	0	12	12	0	371	30	1	402	10	0	1	3	14	602
04:45 PM	0	158	0	6	164	0	0	0	4	4	0	348	27	3	378	6	0	2	4	12	558
05:00 PM	2	200	0	2	204	0	0	0	3	3	0	367	28	2	397	6	0	1	7	14	618
05:15 PM	0	187	0	9	196	0	0	0	7	7	0	355	33	1	389	17	0	1	5	23	615
Total Volume	4	713	0	21	738	0	0	0	26	26	0	1441	118	7	1566	39	0	5	19	63	2393
% App. Total	0.5	96.6	0	2.8		0	0	0	100		0	92	7.5	0.4		61.9	0	7.9	30.2		
PHF	.500	.891	.000	.583	.904	.000	.000	.000	.542	.542	.000	.971	.894	.583	.974	.574	.000	.625	.679	.685	.968
Cars	4	678	0	21	703	0	0	0	26	26	0	1399	118	7	1524	39	0	5	19	63	2316
% Cars	100	95.1	0	100	95.3	0	0	0	100	100	0	97.1	100	100	97.3	100	0	100	100	100	96.8
Trucks	0	4	0	0	4	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0	17
% Trucks	0	0.6	0	0	0.5	0	0	0	0	0	0	0.9	0	0	8.0	0	0	0	0	0	0.7
Heavys	0	31	0	0	31	0	0	0	0	0	0	29	0	0	29	0	0	0	0	0	60
% Heavys	0	4.3	0	0	4.2	0	0	0	0	0	0	2.0	0	0	1.9	0	0	0	0	0	2.5
Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

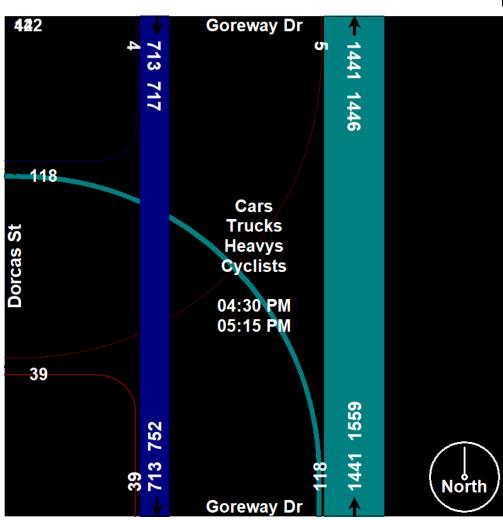


318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: dorcas st at goreway dr

Site Code : 00000000 Start Date : 2020-02-25



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: dorcas st at goreway dr

Site Code : 00000000 Start Date : 2020-02-25

318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

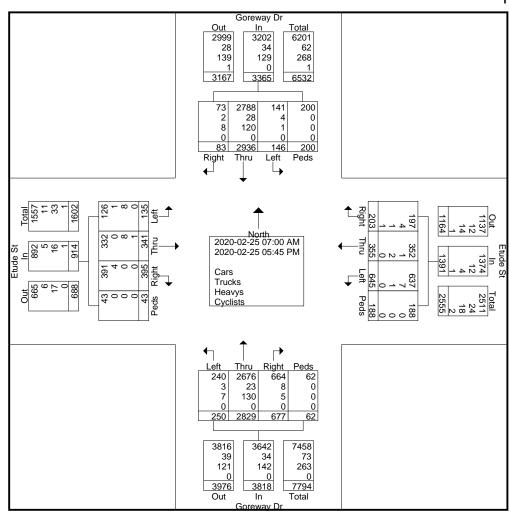
File Name: Etude St at Goreway Dr

Site Code : 00000000 Start Date : 2020-02-25

Page No : 1

Groups Printed- Cars - Trucks - Heavys - Cyclists

										Cars - Truc	cks - nea										ı
			oreway					Etude S					oreway					Etude S			
			<u>Southbou</u>					Vestbou					<u>lorthbou</u>					Eastbour			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	1	217	5	9	232	4	5	30	1	40	22	77	4	2	105	22	9	6	1	38	415
07:15 AM	6	214	7	4	231	4	9	27	2	42	20	96	7	1	124	31	11	8	1	51	448
07:30 AM	2	310	4	11	327	17	7	40	3	67	12	65	9	2	88	33	15	3	1	52	534
07:45 AM	2	293	11_	10	316	11	9	47	6	73	26	97	9	4	136	36	10	7	5	58	583
Total	11	1034	27	34	1106	36	30	144	12	222	80	335	29	9	453	122	45	24	8	199	1980
08:00 AM	1	228	9	7	245	19	10	32	9	70	17	103	15	0	135	29	23	7	3	62	512
08:15 AM	8	197	9	7	221	11	15	28	6	60	26	94	15	0	135	27	11	13	1	52	468
08:30 AM	2	275	15	11	303	12	23	44	2	81	25	84	13	1	123	36	21	7	0	64	571
08:45 AM	6	228	4	12	250	9	22	42	8	81	20	91	12	4	127	43	23	11	1	78	536
Total	17	928	37	37	1019	51	70	146	25	292	88	372	55	5	520	135	78	38	5	256	2087
04:00 PM	7	145	9	12	173	16	31	51	18	116	73	240	15	4	332	12	35	4	2	53	674
04:15 PM	4	100	10	19	133	17	29	41	20	107	60	267	22	6	355	17	35	9	2	63	658
04:30 PM	9	115	8	18	150	16	26	48	22	112	56	295	16	8	375	14	19	8	9	50	687
04:45 PM	7	98	6	20	131	8	41	46	25	120	58	280	19	6	363	23	36	10	2	71	685
Total	27	458	33	69	587	57	127	186	85	455	247	1082	72	24	1425	66	125	31	15	237	2704
05:00 PM	5	161	10	15	191	12	27	33	14	86	73	282	23	4	382	14	21	5	6	46	705
05:15 PM	2	119	11	18	150	16	36	41	18	111	78	257	24	7	366	26	18	15	2	61	688
05:30 PM	13	127	10	13	163	10	34	40	18	102	56	268	20	7	351	12	27	7	3	49	665
05:45 PM	8	109	18	14	149	21	31	55	16	123	55	233	27	6	321	20	27	15	4	66	659
Total	28	516	49	60	653	59	128	169	66	422	262	1040	94	24	1420	72	93	42	15	222	2717
Grand Total	83	2936	146	200	3365	203	355	645	188	1391	677	2829	250	62	3818	395	341	135	43	914	9488
Apprch %	2.5	87.3	4.3	5.9		14.6	25.5	46.4	13.5		17.7	74.1	6.5	1.6		43.2	37.3	14.8	4.7		
Total %	0.9	30.9	1.5	2.1	35.5	2.1	3.7	6.8	2	14.7	7.1	29.8	2.6	0.7	40.2	4.2	3.6	1.4	0.5	9.6	
Cars	73	2788	141	200	3202	197	352	637	188	1374	664	2676	240	62	3642	391	332	126	43	892	9110
% Cars	88	95	96.6	100	95.2	97	99.2	98.8	100	98.8	98.1	94.6	96	100	95.4	99	97.4	93.3	100	97.6	96
Trucks	2	28	4	0	34	4	1	7	0	12	8	23	3	0	34	4	0	1	0	5	85
% Trucks	2.4	1_	2.7	0	1	2	0.3	1.1	0	0.9	1.2	0.8	1.2	0	0.9	1	0	0.7	0	0.5	0.9
Heavys	8	120	1	0	129	1	2	1	0	4	5	130	7	0	142	0	8	8	0	16	291
% Heavys	9.6	4.1	0.7	0	3.8	0.5	0.6	0.2	0	0.3	0.7	4.6	2.8	0	3.7	0	2.3	5.9	0	1.8	3.1
Cyclists	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	1	2
% Cyclists	0	0	0	0	0	0.5	0	0	0	0.1	0	0	0	0	0	0	0.3	0	0	0.1	0



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Etude St at Goreway Dr

Site Code : 00000000 Start Date : 2020-02-25

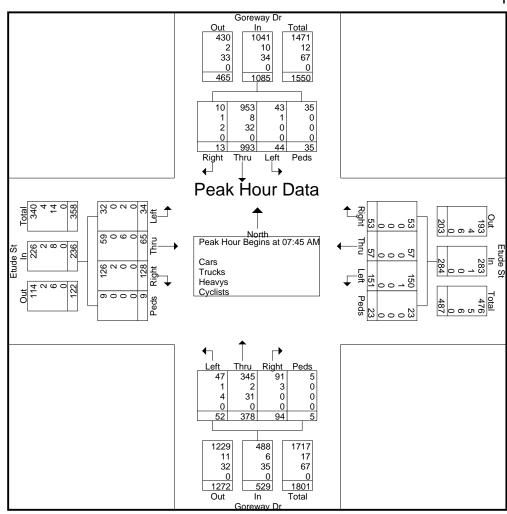
318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Etude St at Goreway Dr

Site Code : 00000000 Start Date : 2020-02-25

			oreway l					Etude S Vestbour					oreway lorthbou				E	Etude S Eastbour			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Int. Total
Peak Hour Analys											•	'		•							
Peak Hour for Ent	ire Interse	ection Be	gins at 0	7:45 AN	1																
07:45 AM	2	293	11	10	316	11	9	47	6	73	26	97	9	4	136	36	10	7	5	58	583
08:00 AM	1	228	9	7	245	19	10	32	9	70	17	103	15	0	135	29	23	7	3	62	512
08:15 AM	8	197	9	7	221	11	15	28	6	60	26	94	15	0	135	27	11	13	1	52	468
08:30 AM	2	275	15	11	303	12	23	44	2	81	25	84	13	1	123	36	21	7	0	64	571
Total Volume	13	993	44	35	1085	53	57	151	23	284	94	378	52	5	529	128	65	34	9	236	2134
% App. Total	1.2	91.5	4.1	3.2		18.7	20.1	53.2	8.1		17.8	71.5	9.8	0.9		54.2	27.5	14.4	3.8		
PHF	.406	.847	.733	.795	.858	.697	.620	.803	.639	.877	.904	.917	.867	.313	.972	.889	.707	.654	.450	.922	.915
Cars	10	953	43	35	1041	53	57	150	23	283	91	345	47	5	488	126	59	32	9	226	2038
% Cars	76.9	96.0	97.7	100	95.9	100	100	99.3	100	99.6	96.8	91.3	90.4	100	92.2	98.4	90.8	94.1	100	95.8	95.5
Trucks	1	8	1	0	10	0	0	1	0	1	3	2	1	0	6	2	0	0	0	2	19
% Trucks	7.7	0.8	2.3	0	0.9	0	0	0.7	0	0.4	3.2	0.5	1.9	0	1.1	1.6	0	0	0	0.8	0.9
Heavys	2	32	0	0	34	0	0	0	0	0	0	31	4	0	35	0	6	2	0	8	77
% Heavys	15.4	3.2	0	0	3.1	0	0	0	0	0	0	8.2	7.7	0	6.6	0	9.2	5.9	0	3.4	3.6
Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0

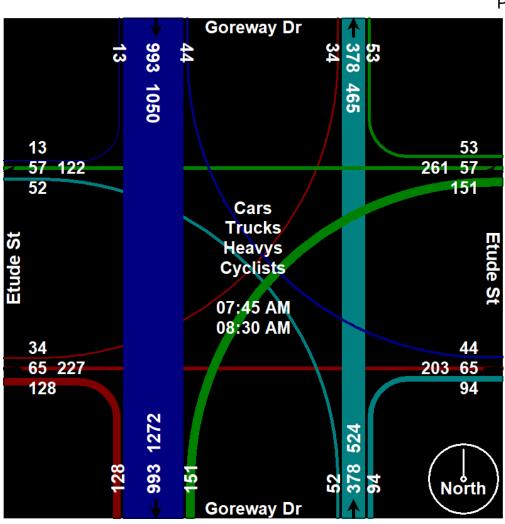


318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Etude St at Goreway Dr

Site Code : 00000000 Start Date : 2020-02-25



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Etude St at Goreway Dr

Site Code : 00000000 Start Date : 2020-02-25

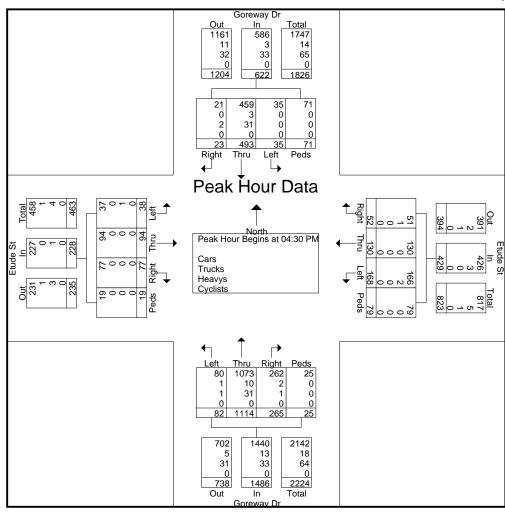
318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Etude St at Goreway Dr

Site Code : 00000000 Start Date : 2020-02-25

			oreway l					Etude S					oreway					Etude S			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analys	is From 0	4:00 PM	to 05:45	PM - Pe	eak 1 of 1	•		•	•			•				•		•		·	
Peak Hour for Ent	ire Interse	ection Be	gins at 0	4:30 PM	Ι																
04:30 PM	9	115	8	18	150	16	26	48	22	112	56	295	16	8	375	14	19	8	9	50	687
04:45 PM	7	98	6	20	131	8	41	46	25	120	58	280	19	6	363	23	36	10	2	71	685
05:00 PM	5	161	10	15	191	12	27	33	14	86	73	282	23	4	382	14	21	5	6	46	705
05:15 PM	2	119	11	18	150	16	36	41	18	111	78	257	24	7	366	26	18	15	2	61	688
Total Volume	23	493	35	71	622	52	130	168	79	429	265	1114	82	25	1486	77	94	38	19	228	2765
% App. Total	3.7	79.3	5.6	11.4		12.1	30.3	39.2	18.4		17.8	75	5.5	1.7		33.8	41.2	16.7	8.3		
PHF	.639	.766	.795	.888	.814	.813	.793	.875	.790	.894	.849	.944	.854	.781	.973	.740	.653	.633	.528	.803	.980
Cars	21	459	35	71	586	51	130	166	79	426	262	1073	80	25	1440	77	94	37	19	227	2679
% Cars	91.3	93.1	100	100	94.2	98.1	100	98.8	100	99.3	98.9	96.3	97.6	100	96.9	100	100	97.4	100	99.6	96.9
Trucks	0	3	0	0	3	1	0	2	0	3	2	10	1	0	13	0	0	0	0	0	19
% Trucks	0	0.6	0	0	0.5	1.9	0	1.2	0	0.7	8.0	0.9	1.2	0	0.9	0	0	0	0	0	0.7
Heavys	2	31	0	0	33	0	0	0	0	0	1	31	1	0	33	0	0	1	0	1	67
% Heavys	8.7	6.3	0	0	5.3	0	0	0	0	0	0.4	2.8	1.2	0	2.2	0	0	2.6	0	0.4	2.4
Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Cyclists	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

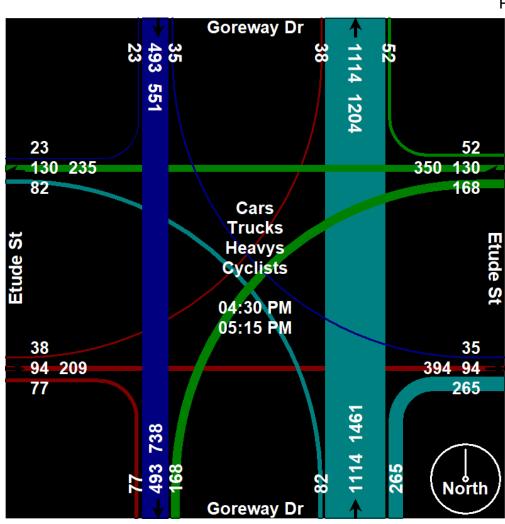


318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Etude St at Goreway Dr

Site Code : 00000000 Start Date : 2020-02-25



318 Simonston Boulevard Thornhill ON L3T 4T5 (416) 840-6619

"We do not estimate...we count"

File Name: Etude St at Goreway Dr

Site Code : 00000000 Start Date : 2020-02-25

Appendix C

Signal Timing Plans

		REGIONAL MUN	IICIPALI	TY OF P	EEL				
		Traffic Signal	Timing Pa	rameters					
Database [Date	March 19, 2020			Pre	pared Date		March 19, 202	20
Database F	Rev	iNET	[Cor	npleted By		BL	
Timing Ca	rd / Field rev	32	Ī		C	hecked By		MA	
Location		Derry R	oad @ G	oreway Dr	rive				
Phase #	Street Name - Direction	Vehicle Minimum (s)		strian num (s)	Amber (s)	All Red (s)		IME PERIOD en+Amber+A OFF	
#		Williniani (5)	WALK	FDWALK		(3)	SPLITS	SPLITS	SPLITS
1	Derry Road - W/B P.P LT	5	0	0	3	0	13	16	16
2	Derry Road - E/B	8	14	21	4.0	3.6	63	73	63
3	Goreway Drive - S/B Prot. LT	8	0	0	3.0	2.0	39	26	36
4	Goreway Drive - N/B	8	14	23	4.0	3.4	45	45	45
5	Derry Road - E/B Prot. LT	8	0	0	3.0	2.0	20	21	21
6	Derry Road - W/B	8	14	21	4.0	3.6	56	68	58
7	Goreway Drive - N/B Prot. LT	8	0	0	3.0	2.0	20	24	24
8	Goreway Drive - S/B	8	14	23	4.0	3.4	64	47	57
	System Control			TIME	(M-F)	PEAK	CYCLE LI	ENGTH (s)	OFFSET (s)
	Yes			06:00	- 09:30	AM	1	60	106
	Semi-Actuated Mode			09:30 - 19:30 -	- 15:00 - 00:00	OFF	10	60	75
	Yes			15:00 -	- 19:30	PM	1	60	128

Signal Timing Report

Runtime: 2020-03-23 10:52:38

	Devi	ice:	4710								
Region: Mississa	auga	Sigi	nal ID: 4	1710	Lo	cation:	Gorew	ay Drive N at D	orcas Street		
Phase	Units	1		2	3	4		5	6	7	8
Walk	Sec	0		8	0	11		0	0	0	0
Ped Clear	Sec	0		8	0	16		0	0	0	0
Min Green	Sec	0		8	0	8		0	0	0	0
Passage	Sec	0.0		3.0	0.0	3.0		0.0	0.0	0.0	0.0
Maximum 1	Sec	0		32	0	30		0	0	0	0
Maximum 2 Yellow Change	Sec Sec	0 3.0		32 4.0	3.0	30 4.0		0 3.0	0 4.0	0 3.0	0 4.0
Red Clearance	Sec	0.0		2.0	0.0	2.0		0.0	0.0	0.0	0.0
Red Revert	Sec	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
Added Initial	Sec	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
Max Initial	Sec	0		0	0	0		0	0	0	0
Time Before	Sec	0		0	0	0		0	0	0	0
Cars Before	Veh	0		0	0	0		0	0	0	0
Time To Reduce	Sec	0		0	0	0		0	0	0	0
Reduce By	Sec	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
Min Gap	Sec	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec Sec	0.0		0	0.0	0 0.0		0.0	0	0 0.0	0.0
Dynamic Max Step [P2] Start Up	Enum	other		redClear	other	phaseNot	tOn	other	other	other	other
[P2] Options	Bit	0		Enabled	0	Enabled	.011	0	0	0	0
				Non-Actuated 1 Max Veh Recall Ped Recall Act Rest In Walk		Non Lock	Det				
[P2] Ring	Ring	0		1	0	1		0	0	0	0
[P2] Concurrency	Phase (,)	()		0	0	()		()	()	0	0
Coord Pattern	Units	1		2	3	4		5	6	7	8
Cycle Time	Sec	120		120	120	0		0	0	0	0
Offset	Sec	114		112	91	0		0	0	0	0
Split	Split	1		2	3	4		5	6	7	8
Sequence	Sequence	1		1	1	1		1	1	1	1
Coord Split	Units	1		2	3	4		5	6	7	8
Split 1 - Mode	Enum	none		none	none	none		none	none	none	none
Split 1 - Time	Sec	0		84	0	36		0	0	0	0
Split 1 - Coord	Enum -	false		true	false	false		false	false	false	false
Split 2 - Mode	Enum	none		none	none	none		none	none	none	none
Split 2 - Time Split 2 - Coord	Sec Enum	0 false		84 true	0 false	36 false		0 false	0 false	0 false	0 false
Split 3 - Mode	Enum	none		none	none	none		none	none	none	none
Split 3 - Time	Sec	0		84	0	36		0	0	0	0
Split 3 - Coord	Enum	false		true	false	false		false	false	false	false
TB Schedule	Units	1		2	3	4		5	6	7	8
Month	Bit	JFMAN	MJJASOND	JFMAMJJASOND	JFMAMJJASOND	J		-F	A	M	J
Day of Week	Bit	-MTW	TF-	S	S	SMTWTF	s	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit		6789012345 1234567890	123456789012345 678901234567890 1				7	0	8	1
Day Plan	Number	1		3	2	3		3	3	3	3
TB Schedule	Units	9		10	11	12		13	14	15	16
Month	Bit	A		S	O			D	D	0	0
Day of Week	Bit	SMTW		SMTWTFS	SMTWTFS	SMTWTF	S	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	3		7	22	5		8	4	- 0	0
Day Plan	Number	3		3	3	3		3	3	0	0
TB Dayplan	Units	1		2	3	4		5	6	7	8
Plan 1 Hour	Hour	0		7	9	16		18	3	0	0
Plan 1 Minute	Min	0		0	0	0		30	0	0	0
Plan 1 Action	Number	8		1	2	3		8	7	0	0
Plan 2 Hour	Hour	0		3	0	0		0	0	0	0
Plan 2 Minute	Min	0		0	0	0		0	0	0	0
Plan 2 Action	Number	8		7	0	0		0	0	0	0
Plan 3 Hour	Hour	0		3	0	0		0	0	0	0
Plan 3 Minute Plan 3 Action	Min Number	0 8		0 7	0	0		0	0	0	0
		1		2	3	4		5	6	7	8
TB Action Pattern	Units Enum	Patterr	n 1	Pattern 2	Pattern 3	Pattern 4		Pattern 5	Pattern 6	Free	Free

 Aux. Functions
 Bit
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Signal Timing Report

Runtime: 2020-03-23 10:56:02

	ъ.	evice: 4700						Runtime:	2020-03-23 10:56:
		evice: 4709				SELVAN / D.D.I. /E.A.			
Region: Mississ	sauga	Signal ID: 4	1709			REWAY DRIVE N			
Phase	Units	1	2	3	4	5	6	7	8
Walk	Sec	0	9	0	13	0	0	0	0
Ped Clear Min Green	Sec	0	14	0	19	0	0	0	0
Passage	Sec Sec	5 2.0	3.0	0	3.0	0 0.0	0	0	0 0.0
Maximum 1	Sec	10	33	0.0	30	0.0	0.0	0.0	0
Maximum 2	Sec	10	33	0	30	0	0	0	0
Yellow Change	Sec	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0
Red Clearance	Sec	0.0	2.5	0.0	3.0	0.0	0.0	0.0	0.0
Red Revert	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before Time To Reduce	Veh Sec	0 0	0	0	0	0	0	0	0 0
Reduce By	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[P2] Start Up	Enum	phaseNotOn	redClear	other	phaseNotOn	other	other	other	other
[P2] Options	Bit	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Act Rest In Walk	0	Enabled Non Lock Det	0	0	0	0
[D2] Ping	Ding	1	1	0	1	0	0	0	0
[P2] Ring [P2] Concurrency	Ring Phase (,)	0	()	()	()	()	()	()	0
Coord Pattern	Units	1	2	3	4	5	6	7	8
Cycle Time	Sec	120	120	120	0	0	0	0	0
Offset	Sec	80	55	102	0	0	0	0	0
Split	Split	1	2	3	4	5	6	7	8
Sequence	Sequence	1	1	1	1	1	1	1	1
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode	Enum	none	none	none	none	none	none	none	none
Split 1 - Time	Sec	14	64	0	42	0	0	0	0
Split 1 - Coord	Enum	false	true	false	false	false	false	false	false
Split 2 - Mode	Enum	none	none	none	none	none	none	none	none
Split 2 - Time	Sec	14	64	0	42	0	0	0	0
Split 2 - Coord	Enum	false	true	false	false	false	false	false	false
Split 3 - Mode Split 3 - Time	Enum Sec	none 14	none 64	none 0	none 42	none 0	none 0	none 0	none 0
Split 3 - Coord	Enum	false	true	false	false	false	false	false	false
TB Schedule	Units	1	2	3	4	5	6	7	8
Month	Bit	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	J	-F	A	M	J
Day of Week	Bit	-MTWTF-	S	S	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	123456789012345 678901234567890 1	123456789012345 678901234567890 1	123456789012345 678901234567890 1		77	0	8	1
Day Plan	Number	1	3	2	3	3	3	3	3
TB Schedule	Units	9	10	11	12	13	14	15	16
Month	Bit	A	S	O	D	D	D	0	0
Day of Week	Bit	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	3	7	2	5	8	4	0	0
Day Plan	Number	3	3	3	3	3	3	0	0
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	7	9	16	18	3	0	0
Plan 1 Minute	Min	0	0	0	0	30	0	0	0
Plan 1 Action	Number	8	1	2	3	8	7	0	0
Plan 2 Hour	Hour	0	3	0	0	0	0	0	0
Plan 2 Minute	Min	0	0	0	0	0	0	0	0
Plan 2 Action	Number	8	7	0	0	0	0	0	0
Plan 3 Hour	Hour	0	3	0	0	0	0	0	0
Plan 3 Minute	Min	0	0	0	0	0	0	0	0
Plan 3 Action	Number	8	7	0	0	0	0	0	0
TB Action Pattern	Units Enum	1 Pattern 1	2 Pattern 2	3 Pattern 3	4 Pattern 4	5 Pattern 5	6 Pattern 6	7 Free	8 Free

 Aux. Functions
 Bit
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Appendix D

2020 Existing Conditions Synchro Reports

1: Goreway Drive & Derry Road East

	•	→	•	•	←	•	4	†	/	-	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	135	750	266	120	818	238	69	139	73	511	803	
v/c Ratio	0.51	0.47	0.38	0.42	0.52	0.40	0.36	0.17	0.18	0.79	0.68	
Control Delay	77.0	40.7	5.5	30.3	45.5	6.6	75.5	49.2	1.0	70.8	42.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	77.0	40.7	5.5	30.3	45.5	6.6	75.5	49.2	1.0	70.8	42.8	
Queue Length 50th (m)	21.4	67.4	0.0	21.6	78.1	0.0	10.9	18.7	0.0	80.0	104.3	
Queue Length 95th (m)	32.8	82.6	19.9	35.9	95.0	20.7	19.2	28.6	0.0	98.7	128.6	
Internal Link Dist (m)		563.5			156.8			158.8			208.0	
Turn Bay Length (m)	120.0		100.0	78.0		90.0	81.5		73.0	101.0		
Base Capacity (vph)	292	1587	692	286	1582	601	253	824	406	721	1184	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.46	0.47	0.38	0.42	0.52	0.40	0.27	0.17	0.18	0.71	0.68	
Intersection Summary												

	•	→	•	•	←	•	4	†	/	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	ተተተ	7	7	ተተተ	7	ሻሻ	^	7	77	∱ }	
Traffic Volume (vph)	135	750	266	120	818	238	69	139	73	511	522	281
Future Volume (vph)	135	750	266	120	818	238	69	139	73	511	522	281
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7
Total Lost time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Lane Util. Factor	0.97	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.89	1.00	1.00	0.95	1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3120	4371	1439	1565	4812	1343	2705	3444	1209	3395	3172	
Flt Permitted	0.95	1.00	1.00	0.32	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3120	4371	1439	527	4812	1343	2705	3444	1209	3395	3172	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	135	750	266	120	818	238	69	139	73	511	522	281
RTOR Reduction (vph)	0	0	169	0	0	160	0	0	56	0	44	0
Lane Group Flow (vph)	135	750	97	120	818	78	69	139	17	511	759	0
Confl. Peds. (#/hr)	72		5	5		72	4		27	27		4
Heavy Vehicles (%)	11%	20%	8%	14%	9%	6%	28%	6%	26%	2%	2%	6%
Bus Blockages (#/hr)	0	0	2	0	0	0	0	0	0	0	23	0
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2	6		6			4			
Actuated Green, G (s)	13.5	58.1	58.1	62.6	52.6	52.6	11.4	38.3	38.3	30.6	57.5	
Effective Green, g (s)	13.5	58.1	58.1	62.6	52.6	52.6	11.4	38.3	38.3	30.6	57.5	
Actuated g/C Ratio	0.08	0.36	0.36	0.39	0.33	0.33	0.07	0.24	0.24	0.19	0.36	
Clearance Time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	263	1587	522	271	1581	441	192	824	289	649	1139	
v/s Ratio Prot	c0.04	0.17		0.03	c0.17		0.03	0.04		c0.15	c0.24	
v/s Ratio Perm			0.07	0.15		0.06			0.01			
v/c Ratio	0.51	0.47	0.19	0.44	0.52	0.18	0.36	0.17	0.06	0.79	0.67	
Uniform Delay, d1	70.1	39.2	34.8	32.2	43.4	38.3	70.8	48.2	47.0	61.6	43.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	3.3	1.0	8.0	2.4	1.2	0.9	2.4	0.4	0.4	7.3	3.1	
Delay (s)	73.4	40.2	35.6	34.6	44.6	39.2	73.2	48.7	47.4	68.9	46.3	
Level of Service	Е	D	D	С	D	D	Е	D	D	Е	D	
Approach Delay (s)		43.0			42.5			54.4			55.0	
Approach LOS		D			D			D			E	
Intersection Summary												
HCM 2000 Control Delay			47.7	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.63									
Actuated Cycle Length (s)	<u> </u>		160.0	S	um of lost	t time (s)			25.0			
Intersection Capacity Utilizat	tion		102.1%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	→	•	†	. ↓
Lane Group	EBT	NBL	NBT	SBT
Lane Group Flow (vph)	152	20	560	1511
v/c Ratio	0.64	0.09	0.21	0.54
Control Delay	45.2	4.9	3.5	6.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	45.2	4.9	3.5	6.8
Queue Length 50th (m)	23.3	0.9	13.4	107.9
Queue Length 95th (m)	30.5	3.6	23.7	108.2
Internal Link Dist (m)	104.2		208.0	20.6
Turn Bay Length (m)		60.0		
Base Capacity (vph)	458	220	2692	2822
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.33	0.09	0.21	0.54
Intersection Summary				

2: Goreway Drive &	Dorca	s Sue	:vDeve	Piopine	in Site	South	1 Acce	55		L/	asang Co	iuiliuis
	۶	→	•	•	←	•	4	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	↑ ↑		ሻ	↑ ↑	
Traffic Volume (vph)	1	0	109	0	0	0	18	498	0	0	1299	1
Future Volume (vph)	1	0	109	0	0	0	18	498	0	0	1299	1
Ideal Flow (vphpl)	1900	1900	1640	1900	1900	1640	1900	1900	1640	1900	1900	1640
Total Lost time (s)		5.0					6.0	5.0			5.0	
Lane Util. Factor		1.00					1.00	0.95			0.95	
Frpb, ped/bikes		0.98					1.00	1.00			1.00	
Flpb, ped/bikes		1.00					1.00	1.00			1.00	
Frt		0.87					1.00	1.00			1.00	
Flt Protected		1.00					0.95	1.00			1.00	
Satd. Flow (prot)		1634					1822	3380			3543	
Flt Permitted		1.00					0.15	1.00			1.00	
Satd. Flow (perm)		1633					279	3380			3543	
Peak-hour factor, PHF	0.72	0.72	0.72	0.92	0.92	0.92	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	1	0	151	0	0	0	20	560	0	0	1510	1
RTOR Reduction (vph)	0	43	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	109	0	0	0	0	20	560	0	0	1511	0
Confl. Peds. (#/hr)	9		4	4		9	6		14	14		6
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	8%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	18	0	0	18
Turn Type	Perm	NA					Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		13.4					94.6	94.6			94.6	
Effective Green, g (s)		14.4					94.6	95.6			95.6	
Actuated g/C Ratio		0.12					0.79	0.80			0.80	
Clearance Time (s)		6.0					6.0	6.0			6.0	
Vehicle Extension (s)		3.0					3.0	3.0			3.0	
Lane Grp Cap (vph)		195					219	2692			2822	
v/s Ratio Prot								0.17			c0.43	
v/s Ratio Perm		c0.07					0.07					
v/c Ratio		0.56					0.09	0.21			0.54	
Uniform Delay, d1		49.8					2.9	3.0			4.3	
Progression Factor		1.00					1.00	1.00			1.26	
Incremental Delay, d2		3.4					0.8	0.2			0.6	
Delay (s)		53.2					3.7	3.1			6.1	
Level of Service		D					Α	Α			Α	
Approach Delay (s)		53.2			0.0			3.2			6.1	
Approach LOS		D			Α			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			8.5	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capacit	y ratio		0.54									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utilization	n		55.0%		:U Level o	. ,	:		В			
Analysis Period (min)			15									
c Critical Lane Group												

3: Goreway Drive & Etude Drive

	•	→	•	•	•	4	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	34	206	177	49	70	49	454	38	1210	
v/c Ratio	0.12	0.45	0.93	0.11	0.18	0.16	0.20	0.07	0.56	
Control Delay	35.4	22.9	94.4	33.5	8.6	8.3	7.4	13.3	16.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.4	22.9	94.4	33.5	8.6	8.3	7.4	13.3	16.1	
Queue Length 50th (m)	6.5	22.1	40.9	9.0	0.0	3.1	17.3	3.6	84.7	
Queue Length 95th (m)	13.7	39.3	57.4	15.9	8.6	8.4	29.7	9.9	119.1	
Internal Link Dist (m)		111.7		462.1			246.8		287.8	
Turn Bay Length (m)	70.0		37.0		33.0	53.0		30.0		
Base Capacity (vph)	365	577	255	592	488	363	2228	555	2176	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.09	0.36	0.69	0.08	0.14	0.13	0.20	0.07	0.56	
Intersection Summary										

o. Coleway Brive C	Liddo	<u> </u>										
	۶	→	•	•	←	•	4	†	<i>></i>	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	†	7	ሻ	↑ ↑		ሻ	∱ }	
Traffic Volume (vph)	30	59	125	147	41	58	48	359	81	33	1028	13
Future Volume (vph)	30	59	125	147	41	58	48	359	81	33	1028	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1860	1900	1640	1900	1900	1640
Total Lost time (s)	7.0	5.0		7.0	5.0	7.0	1.0	5.0		6.5	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	1.00	0.95	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	0.96	1.00		1.00	1.00	1.00	1.00	1.00		0.97	1.00	
Frt	1.00	0.90		1.00	1.00	0.85	1.00	0.97		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1643	1666		1799	1921	1505	1685	3245		1764	3493	
Flt Permitted	0.73	1.00		0.46	1.00	1.00	0.17	1.00		0.49	1.00	
Satd. Flow (perm)	1254	1666		877	1921	1505	297	3245		910	3493	
Peak-hour factor, PHF	0.89	0.89	0.89	0.83	0.83	0.83	0.97	0.97	0.97	0.86	0.86	0.86
Adj. Flow (vph)	34	66	140	177	49	70	49	370	84	38	1195	15
RTOR Reduction (vph)	0	70	0	0	0	55	0	13	0	0	0	0
Lane Group Flow (vph)	34	136	0	177	49	15	49	441	0	38	1210	0
Confl. Peds. (#/hr)	35		6	6		35	10		24	24		10
Heavy Vehicles (%)	7%	7%	0%	1%	0%	3%	6%	9%	2%	0%	4%	23%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	20	0	0	18
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		8			4		1	6			2	
Permitted Phases	8			4		4	6			2		
Actuated Green, G (s)	26.1	26.1		26.1	26.1	26.1	80.4	80.4		72.7	72.7	
Effective Green, g (s)	26.1	28.1		26.1	28.1	26.1	82.4	81.9		72.7	74.2	
Actuated g/C Ratio	0.22	0.23		0.22	0.23	0.22	0.69	0.68		0.61	0.62	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.5		6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	2.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	272	390		190	449	327	281	2214		551	2159	
v/s Ratio Prot		0.08			0.03		0.01	c0.14			c0.35	
v/s Ratio Perm	0.03			c0.20		0.01	0.11			0.04		
v/c Ratio	0.12	0.35		0.93	0.11	0.05	0.17	0.20		0.07	0.56	
Uniform Delay, d1	37.8	38.3		46.1	36.1	37.1	8.2	7.0		9.7	13.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.08	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.5		46.0	0.1	0.1	0.1	0.2		0.2	1.1	
Delay (s)	38.0	38.8		92.0	36.2	37.2	8.9	7.2		10.0	14.4	
Level of Service	D	D		F	D	D	Α	Α		Α	В	
Approach Delay (s)		38.7			69.8			7.4			14.3	
Approach LOS		D			Е			Α			В	
Intersection Summary												
HCM 2000 Control Delay			22.5	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.61									
Actuated Cycle Length (s)	ated Cycle Length (s) 1				um of los	t time (s)			11.0			
Intersection Capacity Utiliza	ation		77.6%	IC	CU Level	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	~	/	+	_
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		↑ ↑		*	^	
Traffic Volume (veh/h)	0	0	499	0	0	1300	
Future Volume (Veh/h)	0	0	499	0	0	1300	
Sign Control	Stop		Free		-	Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	542	0	0	1413	
Pedestrians			012		, ,	1110	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			TWLTL			TWLTL	
Median storage veh)			2			2	
Upstream signal (m)			45			271	
pX, platoon unblocked	0.82	0.96	40		0.96	2/1	
vC, conflicting volume	1248	271			542		
	1248 542	2/1			342		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol	706	1//			117		
vCu, unblocked vol	661	166			447		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	5.8	0.0			0.0		
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	521	824			1082		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	0	361	181	0	706	706	
Volume Left	0	0	0	0	0	0	
Volume Right	0	0	0	0	0	0	
cSH	1700	1700	1700	1700	1700	1700	
Volume to Capacity	0.00	0.21	0.11	0.00	0.42	0.42	
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Lane LOS	А						
Approach Delay (s)	0.0	0.0		0.0			
Approach LOS	А						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliz	ation		39.3%	IC	U Level	of Service	ž
Analysis Period (min)			15				

	•	→	•	•	•	•	4	†	~	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	343	1165	101	76	746	566	187	665	133	326	447	
v/c Ratio	1.05	0.64	0.18	0.38	0.48	0.78	0.58	0.69	0.28	0.69	0.45	
Control Delay	130.8	43.6	4.2	28.5	44.2	24.4	75.8	56.9	11.0	72.9	35.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	130.8	43.6	4.2	28.5	44.2	24.4	75.8	56.9	11.0	72.9	35.6	
Queue Length 50th (m)	~61.0	112.1	0.0	12.8	69.5	59.3	29.6	100.2	3.1	51.6	46.9	
Queue Length 95th (m)	#93.6	133.2	9.1	23.4	84.9	116.7	42.5	125.1	20.7	66.0	63.6	
Internal Link Dist (m)		563.5			156.8			158.8			208.0	
Turn Bay Length (m)	120.0		100.0	78.0		90.0	81.5		73.0	101.0		
Base Capacity (vph)	326	1832	555	214	1541	722	377	961	470	657	1001	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.05	0.64	0.18	0.36	0.48	0.78	0.50	0.69	0.28	0.50	0.45	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	→	•	•	+	•	•	†	/	\		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,614	ተተተ	7	ሻ	ተተተ	7	1,1	^	7	77	∱ ∱	
Traffic Volume (vph)	343	1165	101	76	746	566	187	665	133	326	271	176
Future Volume (vph)	343	1165	101	76	746	566	187	665	133	326	271	176
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7
Total Lost time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Lane Util. Factor	0.97	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.90	1.00	1.00	0.91	1.00	0.98	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3267	4902	1287	1525	4641	1416	3177	3544	1411	3395	3013	
Flt Permitted	0.95	1.00	1.00	0.16	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3267	4902	1287	254	4641	1416	3177	3544	1411	3395	3013	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	343	1165	101	76	746	566	187	665	133	326	271	176
RTOR Reduction (vph)	0	0	63	0	0	252	0	0	87	0	67	0
Lane Group Flow (vph)	343	1165	38	76	746	314	187	665	46	326	380	0
Confl. Peds. (#/hr)	62		28	28		62	23		61	61		23
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	6%	7%	17%	17%	13%	2%	9%	3%	3%	2%	5%	10%
Bus Blockages (#/hr)	0	0	2	0	0	0	0	0	0	0	23	0
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2	6		6			4			
Actuated Green, G (s)	16.0	59.9	59.9	64.5	53.2	53.2	16.2	43.4	43.4	22.4	49.6	
Effective Green, g (s)	16.0	59.9	59.9	64.5	53.2	53.2	16.2	43.4	43.4	22.4	49.6	
Actuated g/C Ratio	0.10	0.37	0.37	0.40	0.33	0.33	0.10	0.27	0.27	0.14	0.31	
Clearance Time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	326	1835	481	192	1543	470	321	961	382	475	934	
v/s Ratio Prot	c0.10	0.24		0.03	0.16		0.06	c0.19		c0.10	0.13	
v/s Ratio Perm			0.03	0.13		c0.22			0.03			
v/c Ratio	1.05	0.63	0.08	0.40	0.48	0.67	0.58	0.69	0.12	0.69	0.41	
Uniform Delay, d1	72.0	41.1	32.3	31.1	42.5	45.8	68.7	52.3	43.9	65.5	43.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	64.2	1.7	0.3	2.8	1.1	7.4	4.1	4.1	0.6	5.2	1.3	
Delay (s)	136.2	42.8	32.6	33.9	43.6	53.2	72.8	56.4	44.5	70.7	44.9	
Level of Service	F	D	С	С	D	D	E	E	D	Е	D	
Approach Delay (s)		62.0			47.0			57.9			55.8	
Approach LOS		E			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			55.8	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	acity ratio		0.72									
Actuated Cycle Length (s)			160.0		um of los				25.0			
Intersection Capacity Utiliza	ation		99.9%	IC	CU Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

2: Goreway Drive & Dorcas Street/Development Site South Access

	→	•	†	Ţ
		•		<u>, </u>
Lane Group	EBT	NBL	NBT	SBT
Lane Group Flow (vph)	72	122	1501	829
v/c Ratio	0.39	0.22	0.49	0.27
Control Delay	21.6	3.2	3.0	1.3
Queue Delay	0.0	0.0	0.2	0.0
Total Delay	21.6	3.2	3.3	1.3
Queue Length 50th (m)	1.8	4.5	37.7	9.3
Queue Length 95th (m)	5.7	10.2	54.6	10.9
Internal Link Dist (m)	104.2		208.0	20.6
Turn Bay Length (m)		60.0		
Base Capacity (vph)	457	549	3079	3017
Starvation Cap Reductn	0	0	737	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.16	0.22	0.64	0.27
Intersection Summary				
intersection Summary				

	۶	→	•	•	—	•	•	†	/	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ň	∱ }		7	∱ }	,
Traffic Volume (vph)	5	0	39	0	0	0	118	1456	0	0	734	4
Future Volume (vph)	5	0	39	0	0	0	118	1456	0	0	734	4
Ideal Flow (vphpl)	1900	1900	1640	1900	1900	1640	1900	1900	1640	1900	1900	1640
Total Lost time (s)		5.0					6.0	5.0			5.0	
Lane Util. Factor		1.00					1.00	0.95			0.95	
Frpb, ped/bikes		0.98					1.00	1.00			1.00	
Flpb, ped/bikes		1.00					0.98	1.00			1.00	
Frt		0.88					1.00	1.00			1.00	
Flt Protected		0.99					0.95	1.00			1.00	
Satd. Flow (prot)		1646					1787	3544			3473	
Flt Permitted		0.96					0.34	1.00			1.00	
Satd. Flow (perm)		1589					634	3544			3473	
Peak-hour factor, PHF	0.61	0.61	0.61	0.92	0.92	0.92	0.97	0.97	0.97	0.89	0.89	0.89
Adj. Flow (vph)	8	0	64	0	0	0	122	1501	0	0	825	4
RTOR Reduction (vph)	0	60	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	12	0	0	0	0	122	1501	0	0	829	0
Confl. Peds. (#/hr)	15		7	7		15	18		33	33		18
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	5%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	18	0	0	18
Turn Type	Perm	NA					Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		6.9					101.1	101.1			101.1	
Effective Green, g (s)		7.9					101.1	102.1			102.1	
Actuated g/C Ratio		0.07					0.84	0.85			0.85	
Clearance Time (s)		6.0					6.0	6.0			6.0	
Vehicle Extension (s)		3.0					3.0	3.0			3.0	
Lane Grp Cap (vph)		104					534	3015			2954	
v/s Ratio Prot								c0.42			0.24	
v/s Ratio Perm		c0.01					0.19					
v/c Ratio		0.12					0.23	0.50			0.28	
Uniform Delay, d1		52.8					1.8	2.3			1.8	
Progression Factor		1.00					1.00	1.00			0.60	
Incremental Delay, d2		0.5					1.0	0.6			0.2	
Delay (s)		53.3					2.8	2.9			1.3	
Level of Service		D					А	А			Α	
Approach Delay (s)		53.3			0.0			2.9			1.3	
Approach LOS		D			Α			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			3.8	H	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capacity	v ratio		0.47									
Actuated Cycle Length (s)	,		120.0	Sı	um of lost	time (s)			10.0			
Intersection Capacity Utilization	n		73.1%		U Level		:		D			
Analysis Period (min)			15									
c Critical Lane Group			-									

	۶	→	•	•	•	4	†	>	↓
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	50	225	183	141	57	85	1421	45	661
v/c Ratio	0.21	0.48	0.95	0.29	0.14	0.16	0.65	0.28	0.32
Control Delay	36.2	34.2	97.7	36.2	8.5	6.4	11.8	22.4	14.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	36.2	34.2	97.7	36.2	8.5	6.4	11.8	22.4	14.1
Queue Length 50th (m)	9.4	37.3	42.0	26.4	0.0	4.5	96.1	5.3	40.8
Queue Length 95th (m)	15.9	45.5	#76.2	41.0	9.4	8.1	135.7	13.3	50.7
Internal Link Dist (m)		111.7		462.1			246.8		287.8
Turn Bay Length (m)	70.0		37.0		33.0	53.0		30.0	
Base Capacity (vph)	299	567	238	592	474	567	2187	162	2038
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.17	0.40	0.77	0.24	0.12	0.15	0.65	0.28	0.32
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	*	•	←	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		Ĭ	†	7	¥	♦ ₽		¥	↑ ↑	
Traffic Volume (vph)	38	94	77	168	130	52	82	1114	265	35	493	23
Future Volume (vph)	38	94	77	168	130	52	82	1114	265	35	493	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1860	1900	1640	1900	1900	1640
Total Lost time (s)	7.0	5.0		7.0	5.0	7.0	1.0	5.0		6.5	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.91	1.00	0.96		1.00	1.00	
Flpb, ped/bikes	0.94	1.00		0.98	1.00	1.00	0.99	1.00		0.98	1.00	
Frt	1.00	0.93		1.00	1.00	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1612	1760		1741	1921	1484	1725	3272		1789	3408	
Flt Permitted	0.61	1.00		0.45	1.00	1.00	0.36	1.00		0.15	1.00	
Satd. Flow (perm)	1027	1760		820	1921	1484	650	3272		277	3408	
Peak-hour factor, PHF	0.76	0.76	0.76	0.92	0.92	0.92	0.97	0.97	0.97	0.78	0.78	0.78
Adj. Flow (vph)	50	124	101	183	141	57	85	1148	273	45	632	29
RTOR Reduction (vph)	0	26	0	0	0	44	0	15	0	0	2	0
Lane Group Flow (vph)	50	199	0	183	141	13	85	1406	0	45	659	0
Confl. Peds. (#/hr)	72		24	24		72	19		81	81		19
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	6%	0%	0%	3%	0%	0%	3%	4%	2%	0%	6%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	20	0	0	18
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		8			4		1	6			2	
Permitted Phases	8			4		4	6			2		
Actuated Green, G (s)	28.3	28.3		28.3	28.3	28.3	78.2	78.2		69.6	69.6	
Effective Green, g (s)	28.3	30.3		28.3	30.3	28.3	80.2	79.7		69.6	71.1	
Actuated g/C Ratio	0.24	0.25		0.24	0.25	0.24	0.67	0.66		0.58	0.59	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.5		6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	2.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	242	444		193	485	349	502	2173		160	2019	
v/s Ratio Prot		0.11			0.07		0.01	c0.43			0.19	
v/s Ratio Perm	0.05	0.45		c0.22	0.00	0.01	0.10	0.75		0.16	0.00	
v/c Ratio	0.21	0.45		0.95	0.29	0.04	0.17	0.65		0.28	0.33	
Uniform Delay, d1	36.8	37.8		45.1	36.2	35.4	7.2	11.9		12.6	12.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	0.82	0.82		1.00	1.00	
Incremental Delay, d2	0.4	0.7		49.4	0.3	0.0	0.1	1.4		4.3	0.4	
Delay (s)	37.3	38.5		94.6	36.5	35.4	6.0	11.1		17.0	12.8	
Level of Service	D	D		F	D	D	А	B		В	B	
Approach Delay (s)		38.3			64.2			10.8			13.1	
Approach LOS		D			E			В			В	
Intersection Summary												
HCM 2000 Control Delay			21.1	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.72									
Actuated Cycle Length (s)			120.0		um of lost				11.0			
Intersection Capacity Utilization	on		98.1%	IC	U Level	of Service	9		F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	~	>	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		† 1>		ሻ	^
Traffic Volume (veh/h)	0	0	1461	0	0	738
Future Volume (Veh/h)	0	0	1461	0	0	738
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	1588	0	0	802
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			TWLTL			TWLTL
Median storage veh)			2			2
Upstream signal (m)			45			271
pX, platoon unblocked	0.91	0.88			0.88	
vC, conflicting volume	1989	794			1588	
vC1, stage 1 conf vol	1588					
vC2, stage 2 conf vol	401					
vCu, unblocked vol	1624	505			1403	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	5.8	0.,			•••	
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	168	458			436	
			ND 0	CD 4		CD 0
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	0	1059	529	0	401	401
Volume Left	0	0	0	0	0	0
Volume Right	0	0	0	0	0	0
cSH	1700	1700	1700	1700	1700	1700
Volume to Capacity	0.00	0.62	0.31	0.00	0.24	0.24
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Lane LOS	А					
Approach Delay (s)	0.0	0.0		0.0		
Approach LOS	А					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliz	zation		43.7%	IC	U Level	of Service
Analysis Period (min)			15			
marjoro i oriou (iiiii)			10			

Appendix E

2025 Future Background Conditions Synchro Reports

1: Goreway Drive & Derry Road East

	٠	→	•	•	•	•	•	†	~	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	135	792	266	120	866	238	69	150	73	514	806	
v/c Ratio	0.51	0.50	0.38	0.44	0.55	0.40	0.36	0.18	0.18	0.79	0.68	
Control Delay	77.0	41.3	5.5	30.9	46.2	6.6	75.5	49.4	1.0	71.0	42.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	77.0	41.3	5.5	30.9	46.2	6.6	75.5	49.4	1.0	71.0	42.8	
Queue Length 50th (m)	21.4	72.1	0.0	21.6	83.8	0.0	10.9	20.2	0.0	80.5	104.6	
Queue Length 95th (m)	32.8	87.7	19.9	35.9	101.2	20.7	19.2	30.5	0.0	99.4	129.0	
Internal Link Dist (m)		563.5			156.8			158.8			208.0	
Turn Bay Length (m)	120.0		100.0	78.0		90.0	81.5		73.0	101.0		
Base Capacity (vph)	292	1587	692	273	1581	601	253	824	406	721	1184	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.46	0.50	0.38	0.44	0.55	0.40	0.27	0.18	0.18	0.71	0.68	
Intersection Summary												

	•	→	•	•	•	4	4	†	~	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1	ተተተ	7	ሻ	ተተተ	7	ቪኒ	^	7	1,1	∱ }	
Traffic Volume (vph)	135	792	266	120	866	238	69	150	73	514	523	283
Future Volume (vph)	135	792	266	120	866	238	69	150	73	514	523	283
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7
Total Lost time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Lane Util. Factor	0.97	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.89	1.00	1.00	0.95	1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3120	4371	1439	1565	4812	1343	2705	3444	1209	3395	3171	
Flt Permitted	0.95	1.00	1.00	0.30	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3120	4371	1439	491	4812	1343	2705	3444	1209	3395	3171	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	135	792	266	120	866	238	69	150	73	514	523	283
RTOR Reduction (vph)	0	0	169	0	0	160	0	0	56	0	45	0
Lane Group Flow (vph)	135	792	97	120	866	78	69	150	17	514	761	0
Confl. Peds. (#/hr)	72		5	5		72	4		27	27		4
Heavy Vehicles (%)	11%	20%	8%	14%	9%	6%	28%	6%	26%	2%	2%	6%
Bus Blockages (#/hr)	0	0	2	0	0	0	0	0	0	0	23	0
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2	6		6			4			
Actuated Green, G (s)	13.5	58.1	58.1	62.6	52.6	52.6	11.4	38.3	38.3	30.6	57.5	
Effective Green, g (s)	13.5	58.1	58.1	62.6	52.6	52.6	11.4	38.3	38.3	30.6	57.5	
Actuated g/C Ratio	0.08	0.36	0.36	0.39	0.33	0.33	0.07	0.24	0.24	0.19	0.36	
Clearance Time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	263	1587	522	259	1581	441	192	824	289	649	1139	
v/s Ratio Prot	c0.04	0.18		0.03	c0.18		0.03	0.04		c0.15	c0.24	
v/s Ratio Perm			0.07	0.15		0.06			0.01			
v/c Ratio	0.51	0.50	0.19	0.46	0.55	0.18	0.36	0.18	0.06	0.79	0.67	
Uniform Delay, d1	70.1	39.6	34.8	32.3	44.0	38.3	70.8	48.4	47.0	61.7	43.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	3.3	1.1	8.0	2.7	1.4	0.9	2.4	0.5	0.4	7.5	3.1	
Delay (s)	73.4	40.8	35.6	35.0	45.3	39.2	73.2	48.9	47.4	69.2	46.3	
Level of Service	Е	D	D	D	D	D	Е	D	D	Е	D	
Approach Delay (s)		43.3			43.1			54.3			55.2	
Approach LOS		D			D			D			Е	
Intersection Summary												
HCM 2000 Control Delay			47.9	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.65									
Actuated Cycle Length (s)	·		160.0	S	um of lost	time (s)			25.0			
Intersection Capacity Utiliza	tion		102.2%	IC	CU Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary

	-	4	†	↓
Lane Group	EBT	NBL	NBT	SBT
Lane Group Flow (vph)	152	20	572	1521
v/c Ratio	0.64	0.09	0.21	0.54
Control Delay	45.5	4.9	3.5	6.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	45.5	4.9	3.5	6.8
Queue Length 50th (m)	23.5	0.9	13.9	108.9
Queue Length 95th (m)	30.7	3.6	24.3	109.1
Internal Link Dist (m)	104.2		208.0	20.6
Turn Bay Length (m)		60.0		
Base Capacity (vph)	457	216	2689	2820
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.33	0.09	0.21	0.54

	۶	→	•	•	•	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	↑ ↑		ሻ	↑ ↑	•
Traffic Volume (vph)	1	0	109	0	0	0	18	509	0	0	1307	1
Future Volume (vph)	1	0	109	0	0	0	18	509	0	0	1307	1
Ideal Flow (vphpl)	1900	1900	1640	1900	1900	1640	1900	1900	1640	1900	1900	1640
Total Lost time (s)		5.0					6.0	5.0			5.0	
Lane Util. Factor		1.00					1.00	0.95			0.95	
Frpb, ped/bikes		0.98					1.00	1.00			1.00	
Flpb, ped/bikes		1.00					1.00	1.00			1.00	
Frt		0.87					1.00	1.00			1.00	
Flt Protected		1.00					0.95	1.00			1.00	
Satd. Flow (prot)		1634					1822	3380			3543	
Flt Permitted		1.00					0.14	1.00			1.00	
Satd. Flow (perm)		1633					275	3380			3543	
Peak-hour factor, PHF	0.72	0.72	0.72	0.92	0.92	0.92	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	1	0	151	0	0	0	20	572	0	0	1520	1
RTOR Reduction (vph)	0	42	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	110	0	0	0	0	20	572	0	0	1521	0
Confl. Peds. (#/hr)	9		4	4		9	6		14	14		6
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	8%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	18	0	0	18
Turn Type	Perm	NA					Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		13.5					94.5	94.5			94.5	
Effective Green, g (s)		14.5					94.5	95.5			95.5	
Actuated g/C Ratio		0.12					0.79	0.80			0.80	
Clearance Time (s)		6.0					6.0	6.0			6.0	
Vehicle Extension (s)		3.0					3.0	3.0			3.0	
Lane Grp Cap (vph)		197					216	2689			2819	
v/s Ratio Prot								0.17			c0.43	
v/s Ratio Perm		c0.07					0.07					
v/c Ratio		0.56					0.09	0.21			0.54	
Uniform Delay, d1		49.7					2.9	3.0			4.4	
Progression Factor		1.00					1.00	1.00			1.25	
Incremental Delay, d2		3.4					0.8	0.2			0.6	
Delay (s)		53.1					3.8	3.2			6.1	
Level of Service		D					Α	Α			Α	
Approach Delay (s)		53.1			0.0			3.2			6.1	
Approach LOS		D			А			А			А	
Intersection Summary												
HCM 2000 Control Delay			8.5	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	y ratio		0.54									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			10.0			
Intersection Capacity Utilizatio	n		55.3%	IC	CU Level	of Service	;		В			
Analysis Period (min)			15									
c Critical Lane Group												

3: Goreway Drive & Etude Drive

	•	→	•	←	•	•	†	\	Ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	35	212	177	49	70	49	465	38	1215	
v/c Ratio	0.13	0.45	0.94	0.11	0.18	0.16	0.21	0.07	0.56	
Control Delay	35.4	22.6	97.1	33.3	8.6	8.4	7.6	13.4	16.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.4	22.6	97.1	33.3	8.6	8.4	7.6	13.4	16.2	
Queue Length 50th (m)	6.6	22.4	41.0	9.0	0.0	3.1	17.9	3.6	85.9	
Queue Length 95th (m)	13.9	40.1	57.9	15.9	8.6	8.4	30.6	9.9	119.6	
Internal Link Dist (m)		111.7		462.1			246.8		287.8	
Turn Bay Length (m)	70.0		37.0		33.0	53.0		30.0		
Base Capacity (vph)	365	579	250	592	488	361	2223	548	2169	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.10	0.37	0.71	0.08	0.14	0.14	0.21	0.07	0.56	
Intersection Summary										

	۶	→	•	•	—	•	•	†	/	/	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	f)		¥	†	7	,	↑ 1>		J.	∱ 1≽	
Traffic Volume (vph)	31	59	130	147	41	58	48	370	81	33	1031	14
Future Volume (vph)	31	59	130	147	41	58	48	370	81	33	1031	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1860	1900	1640	1900	1900	1640
Total Lost time (s)	7.0	5.0		7.0	5.0	7.0	1.0	5.0		6.5	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	1.00	0.95	1.00	0.99		1.00	1.00	
Flpb, ped/bikes	0.96	1.00		1.00	1.00	1.00	1.00	1.00		0.97	1.00	
Frt	1.00	0.90		1.00	1.00	0.85	1.00	0.97		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1643	1664		1799	1921	1505	1685	3248		1765	3492	
Flt Permitted	0.73	1.00		0.45	1.00	1.00	0.17	1.00		0.48	1.00	
Satd. Flow (perm)	1254	1664		858	1921	1505	294	3248		901	3492	
Peak-hour factor, PHF	0.89	0.89	0.89	0.83	0.83	0.83	0.97	0.97	0.97	0.86	0.86	0.86
Adj. Flow (vph)	35	66	146	177	49	70	49	381	84	38	1199	16
RTOR Reduction (vph)	0	73	0	0	0	55	0	13	0	0	1	0
Lane Group Flow (vph)	35	139	0	177	49	15	49	452	0	38	1214	0
Confl. Peds. (#/hr)	35		6	6		35	10		24	24		10
Heavy Vehicles (%)	7%	7%	0%	1%	0%	3%	6%	9%	2%	0%	4%	23%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	20	0	0	18
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		8			4		1	6			2	
Permitted Phases	8			4		4	6			2		
Actuated Green, G (s)	26.3	26.3		26.3	26.3	26.3	80.2	80.2		72.5	72.5	
Effective Green, g (s)	26.3	28.3		26.3	28.3	26.3	82.2	81.7		72.5	74.0	
Actuated g/C Ratio	0.22	0.24		0.22	0.24	0.22	0.69	0.68		0.60	0.62	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.5		6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	2.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	274	392		188	453	329	279	2211		544	2153	
v/s Ratio Prot		0.08			0.03		0.01	c0.14			c0.35	
v/s Ratio Perm	0.03			c0.21		0.01	0.11			0.04		
v/c Ratio	0.13	0.35		0.94	0.11	0.05	0.18	0.20		0.07	0.56	
Uniform Delay, d1	37.6	38.2		46.1	36.0	37.0	8.3	7.1		9.8	13.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.08	1.01		1.00	1.00	
Incremental Delay, d2	0.2	0.6		48.8	0.1	0.1	0.1	0.2		0.2	1.1	
Delay (s)	37.8	38.8		94.9	36.1	37.0	9.0	7.3		10.1	14.6	
Level of Service	D	D		F	D	D	А	Α		В	В	
Approach Delay (s)		38.6			71.5			7.5			14.5	
Approach LOS		D			Е			А			В	
Intersection Summary												
HCM 2000 Control Delay			22.8	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.62									
Actuated Cycle Length (s)	,		120.0	S	um of lost	time (s)			11.0			
Intersection Capacity Utilizat	tion		77.7%		:U Level		9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	<i>></i>	\	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		† 1>		ሻ	† †
Traffic Volume (veh/h)	0	0	510	0	0	1308
Future Volume (Veh/h)	0	0	510	0	0	1308
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	554	0	0	1422
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			TWLTL			TWLTL
Median storage veh)			2			2
Upstream signal (m)			45			271
pX, platoon unblocked	0.82	0.96			0.96	
vC, conflicting volume	1265	277			554	
vC1, stage 1 conf vol	554					
vC2, stage 2 conf vol	711					
vCu, unblocked vol	670	168			456	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	5.8					
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	516	820			1072	
			ND 0	CD 1		CD 1
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	0	369	185	0	711	711
Volume Left	0	0	0	0	0	0
Volume Right	0	0	0	0	0	0
cSH	1700	1700	1700	1700	1700	1700
Volume to Capacity	0.00	0.22	0.11	0.00	0.42	0.42
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Lane LOS	А					
Approach Delay (s)	0.0	0.0		0.0		
Approach LOS	А					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliz	zation		39.5%	IC	U Level	of Service
Analysis Period (min)			15			

Future Background Conditions

	→	→	•	6	←	•	•	†	_	\	Ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	345	1230	101	76	789	568	188	610	133	329	382	
v/c Ratio	1.06	0.67	0.18	0.41	0.51	0.79	0.58	0.64	0.28	0.69	0.38	
Control Delay	132.2	44.7	4.2	29.5	44.8	24.4	75.8	55.1	9.1	72.8	27.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	132.2	44.7	4.2	29.5	44.8	24.4	75.8	55.1	9.1	72.8	27.6	
Queue Length 50th (m)	~61.7	120.4	0.0	12.8	74.3	59.5	29.8	90.4	0.9	52.1	31.0	
Queue Length 95th (m)	#94.2	142.6	9.1	23.4	90.3	116.9	42.6	114.0	18.1	66.5	46.1	
Internal Link Dist (m)		563.5			156.8			158.8			208.0	
Turn Bay Length (m)	120.0		100.0	78.0		90.0	81.5		73.0	101.0		
Base Capacity (vph)	326	1830	555	203	1540	723	377	960	476	657	1014	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.06	0.67	0.18	0.37	0.51	0.79	0.50	0.64	0.28	0.50	0.38	

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

1. Goleway Blive C	<u> </u>	-	_		—	4	•	+			l	7
	_	→	¥	•		`	-/		7	_	*	_
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1	ተተተ	7	ሻ	ተተተ	7	ሻሻ	^	7	77	↑ 1>	
Traffic Volume (vph)	345	1230	101	76	789	568	188	610	133	329	205	177
Future Volume (vph)	345	1230	101	76	789	568	188	610	133	329	205	177
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7
Total Lost time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Lane Util. Factor	0.97	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.90	1.00	1.00	0.91	1.00	0.98	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3267	4902	1287	1525	4641	1416	3177	3544	1411	3395	2962	
Flt Permitted	0.95	1.00	1.00	0.14	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3267	4902	1287	221	4641	1416	3177	3544	1411	3395	2962	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	345	1230	101	76	789	568	188	610	133	329	205	177
RTOR Reduction (vph)	0	0	63	0	0	253	0	0	94	0	97	0
Lane Group Flow (vph)	345	1230	38	76	789	315	188	610	39	329	285	0
Confl. Peds. (#/hr)	62		28	28		62	23		61	61		23
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	6%	7%	17%	17%	13%	2%	9%	3%	3%	2%	5%	10%
Bus Blockages (#/hr)	0	0	2	0	0	0	0	0	0	0	23	0
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2	6		6			4			
Actuated Green, G (s)	16.0	59.8	59.8	64.4	53.1	53.1	16.3	43.3	43.3	22.6	49.6	
Effective Green, g (s)	16.0	59.8	59.8	64.4	53.1	53.1	16.3	43.3	43.3	22.6	49.6	
Actuated g/C Ratio	0.10	0.37	0.37	0.40	0.33	0.33	0.10	0.27	0.27	0.14	0.31	
Clearance Time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	326	1832	481	181	1540	469	323	959	381	479	918	
v/s Ratio Prot	c0.11	c0.25		0.03	0.17		0.06	c0.17		c0.10	0.10	
v/s Ratio Perm			0.03	0.14		0.22			0.03			
v/c Ratio	1.06	0.67	0.08	0.42	0.51	0.67	0.58	0.64	0.10	0.69	0.31	
Uniform Delay, d1	72.0	41.9	32.3	31.5	43.0	45.9	68.6	51.4	43.8	65.3	42.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	66.0	2.0	0.3	3.3	1.2	7.5	4.1	3.2	0.5	5.2	0.9	
Delay (s)	138.0	43.9	32.6	34.8	44.2	53.4	72.7	54.6	44.3	70.5	43.0	
Level of Service	F	D	С	С	D	D	Е	D	D	Ε	D	
Approach Delay (s)		62.6			47.4			56.8			55.8	
Approach LOS		Е			D			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			55.8	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.72									
Actuated Cycle Length (s)			160.0		um of los				25.0			
Intersection Capacity Utiliza	ation		100.1%	IC	U Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	-	1	†	↓
Lane Group	EBT	NBL	NBT	SBT
Lane Group Flow (vph)	55	107	1470	769
v/c Ratio	0.33	0.18	0.48	0.25
Control Delay	22.8	2.8	2.9	1.2
Queue Delay	0.0	0.0	0.2	0.0
Total Delay	22.8	2.8	3.2	1.2
Queue Length 50th (m)	1.6	3.8	36.3	8.5
Queue Length 95th (m)	5.8	8.2	50.2	10.1
Internal Link Dist (m)	104.2		208.0	20.6
Turn Bay Length (m)		60.0		
Base Capacity (vph)	444	586	3083	3021
Starvation Cap Reductn	0	0	753	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.12	0.18	0.63	0.25
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 2: Goreway Drive & Dorcas Street/Development Site South Access

	۶	→	•	•	—	4	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ ⊅		ሻ	∱ ⊅	
Traffic Volume (vph)	4	0	29	0	0	0	104	1426	0	0	681	4
Future Volume (vph)	4	0	29	0	0	0	104	1426	0	0	681	4
Ideal Flow (vphpl)	1900	1900	1640	1900	1900	1640	1900	1900	1640	1900	1900	1640
Total Lost time (s)		5.0					6.0	5.0			5.0	
Lane Util. Factor		1.00					1.00	0.95			0.95	
Frpb, ped/bikes		0.98					1.00	1.00			1.00	
Flpb, ped/bikes		1.00					0.98	1.00			1.00	
Frt		0.88					1.00	1.00			1.00	
Flt Protected		0.99					0.95	1.00			1.00	
Satd. Flow (prot)		1649					1783	3544			3473	
Flt Permitted		0.95					0.36	1.00			1.00	
Satd. Flow (perm)		1583					675	3544			3473	
Peak-hour factor, PHF	0.61	0.61	0.61	0.92	0.92	0.92	0.97	0.97	0.97	0.89	0.89	0.89
Adj. Flow (vph)	7	0	48	0	0	0	107	1470	0	0	765	4
RTOR Reduction (vph)	0	45	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	10	0	0	0	0	107	1470	0	0	769	0
Confl. Peds. (#/hr)	15		7	7		15	18		33	33		18
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	5%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	18	0	0	18
Turn Type	Perm	NA					Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		6.8					101.2	101.2			101.2	
Effective Green, g (s)		7.8					101.2	102.2			102.2	
Actuated g/C Ratio		0.06					0.84	0.85			0.85	
Clearance Time (s)		6.0					6.0	6.0			6.0	
Vehicle Extension (s)		3.0					3.0	3.0			3.0	
Lane Grp Cap (vph)		102					569	3018			2957	
v/s Ratio Prot								c0.41			0.22	
v/s Ratio Perm		c0.01					0.16	00111			0.22	
v/c Ratio		0.10					0.19	0.49			0.26	
Uniform Delay, d1		52.8					1.8	2.3			1.7	
Progression Factor		1.00					1.00	1.00			0.59	
Incremental Delay, d2		0.4					0.7	0.6			0.2	
Delay (s)		53.2					2.5	2.8			1.2	
Level of Service		D					А	А			Α	
Approach Delay (s)		53.2			0.0			2.8			1.2	
Approach LOS		D			A			A			А	
Intersection Summary												
HCM 2000 Control Delay			3.4	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.46									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization	n		72.3%	IC	CU Level	of Service)		С			
Analysis Period (min)			15									
c Critical Lane Group												

Future Background Conditions

	•	→	•	←	•	4	†	\	↓
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	43	238	183	134	58	88	1414	44	641
v/c Ratio	0.17	0.49	0.96	0.27	0.14	0.17	0.65	0.28	0.33
Control Delay	34.8	35.7	99.6	35.3	8.6	6.6	12.2	22.8	14.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.8	35.7	99.6	35.3	8.6	6.6	12.2	22.8	14.8
Queue Length 50th (m)	7.9	41.0	41.7	24.6	0.0	4.7	99.0	5.3	40.4
Queue Length 95th (m)	14.1	49.8	#78.3	39.2	9.5	8.3	134.4	13.0	49.0
Internal Link Dist (m)		111.7		462.1			246.8		287.8
Turn Bay Length (m)	70.0		37.0		33.0	53.0		30.0	
Base Capacity (vph)	307	568	230	592	474	569	2176	158	1966
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.14	0.42	0.80	0.23	0.12	0.15	0.65	0.28	0.33

⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	4	†	/	>	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	f)		¥	^	7	¥	↑ 1>		¥	ħβ	
Traffic Volume (vph)	33	110	71	168	123	53	85	1124	247	34	474	26
Future Volume (vph)	33	110	71	168	123	53	85	1124	247	34	474	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1860	1900	1640	1900	1900	1640
Total Lost time (s)	7.0	5.0		7.0	5.0	7.0	1.0	5.0		6.5	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.91	1.00	0.96		1.00	1.00	
Flpb, ped/bikes	0.94	1.00		0.98	1.00	1.00	0.99	1.00		0.98	1.00	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1610	1781		1742	1921	1484	1725	3286		1788	3402	
Flt Permitted	0.62	1.00		0.43	1.00	1.00	0.36	1.00		0.15	1.00	
Satd. Flow (perm)	1054	1781		791	1921	1484	661	3286		281	3402	
Peak-hour factor, PHF	0.76	0.76	0.76	0.92	0.92	0.92	0.97	0.97	0.97	0.78	0.78	0.78
Adj. Flow (vph)	43	145	93	183	134	58	88	1159	255	44	608	33
RTOR Reduction (vph)	0	21	0	0	0	44	0	14	0	0	3	0
Lane Group Flow (vph)	43	217	0	183	134	14	88	1400	0	44	638	0
Confl. Peds. (#/hr)	72		24	24		72	19		81	81		19
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	6%	0%	0%	3%	0%	0%	3%	4%	2%	0%	6%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	20	0	0	18
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		8			4		1	6			2	
Permitted Phases	8			4		4	6			2		
Actuated Green, G (s)	29.1	29.1		29.1	29.1	29.1	77.4	77.4		67.7	67.7	
Effective Green, g (s)	29.1	31.1		29.1	31.1	29.1	79.4	78.9		67.7	69.2	
Actuated g/C Ratio	0.24	0.26		0.24	0.26	0.24	0.66	0.66		0.56	0.58	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.5		6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	2.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	255	461		191	497	359	514	2160		158	1961	
v/s Ratio Prot		0.12			0.07		0.01	c0.43			0.19	
v/s Ratio Perm	0.04			c0.23		0.01	0.10			0.16		
v/c Ratio	0.17	0.47		0.96	0.27	0.04	0.17	0.65		0.28	0.33	
Uniform Delay, d1	35.9	37.5		44.8	35.4	34.8	7.5	12.3		13.5	13.2	
Progression Factor	1.00	1.00		1.00	1.00	1.00	0.82	0.83		1.00	1.00	
Incremental Delay, d2	0.3	0.8		52.4	0.3	0.0	0.1	1.4		4.3	0.4	
Delay (s)	36.2	38.3		97.3	35.7	34.8	6.2	11.5		17.9	13.7	
Level of Service	D	D		F	D	С	Α	В		В	В	
Approach Delay (s)		38.0			65.6			11.2			13.9	
Approach LOS		D			E			В			В	
Intersection Summary												
HCM 2000 Control Delay			21.7	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.72		, , ,							
Actuated Cycle Length (s)	,		120.0	Sı	um of lost	time (s)			11.0			
Intersection Capacity Utilizati	on		97.7%		U Level		9		F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	~	>	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		∱ }		ሻ	^
Traffic Volume (veh/h)	0	0	1430	0	0	685
Future Volume (Veh/h)	0	0	1430	0	0	685
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	1554	0	0	745
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			TWLTL			TWLTL
Median storage veh)			2			2
Upstream signal (m)			45			271
pX, platoon unblocked	0.91	0.89			0.89	
vC, conflicting volume	1926	777			1554	
vC1, stage 1 conf vol	1554				. 30 1	
vC2, stage 2 conf vol	372					
vCu, unblocked vol	1599	500			1374	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	5.8	3.7				
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	175	464			450	
			ND 0	CD 1		CD 2
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	0	1036	518	0	372	372
Volume Left	0	0	0	0	0	0
Volume Right	0	0	0	0	0	0
cSH	1700	1700	1700	1700	1700	1700
Volume to Capacity	0.00	0.61	0.30	0.00	0.22	0.22
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Lane LOS	А					
Approach Delay (s)	0.0	0.0		0.0		
Approach LOS	А					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliz	ation		42.9%	IC	U Level	of Service
Analysis Period (min)	-		15			
arjoio i oriod (iliili)			10			

Appendix F

2025 Future Total Conditions Synchro Reports

1: Goreway Drive & Derry Road East

	•	→	•	•	←	•	4	†	/	-	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	135	792	266	120	866	243	69	152	73	529	818	
v/c Ratio	0.51	0.50	0.39	0.44	0.55	0.40	0.36	0.19	0.18	0.80	0.69	
Control Delay	77.0	41.6	5.5	31.1	46.4	6.6	75.5	49.6	1.0	71.1	43.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	77.0	41.6	5.5	31.1	46.4	6.6	75.5	49.6	1.0	71.1	43.1	
Queue Length 50th (m)	21.4	72.6	0.0	21.8	84.3	0.0	10.9	20.5	0.0	82.8	106.3	
Queue Length 95th (m)	32.8	87.7	19.9	35.9	101.2	21.3	19.2	30.8	0.0	102.4	131.7	
Internal Link Dist (m)		563.5			156.8			158.8			208.0	
Turn Bay Length (m)	120.0		100.0	78.0		90.0	81.5		73.0	101.0		
Base Capacity (vph)	292	1579	689	272	1572	602	253	818	404	721	1190	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.46	0.50	0.39	0.44	0.55	0.40	0.27	0.19	0.18	0.73	0.69	
Intersection Summary												

	۶	→	•	•	←	4	4	†	~	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	7	ሻ	^	7	ሻሻ	^	7	75	∱ ∱	
Traffic Volume (vph)	135	792	266	120	866	243	69	152	73	529	533	285
Future Volume (vph)	135	792	266	120	866	243	69	152	73	529	533	285
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7
Total Lost time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Lane Util. Factor	0.97	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.89	1.00	1.00	0.95	1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3120	4371	1439	1565	4812	1343	2705	3444	1209	3395	3173	
Flt Permitted	0.95	1.00	1.00	0.30	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3120	4371	1439	490	4812	1343	2705	3444	1209	3395	3173	_
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	135	792	266	120	866	243	69	152	73	529	533	285
RTOR Reduction (vph)	0	0	170	0	0	164	0	0	56	0	43	0
Lane Group Flow (vph)	135	792	96	120	866	79	69	152	17	529	775	0
Confl. Peds. (#/hr)	72		5	5		72	4		27	27		4
Heavy Vehicles (%)	11%	20%	8%	14%	9%	6%	28%	6%	26%	2%	2%	6%
Bus Blockages (#/hr)	0	0	2	0	0	0	0	0	0	0	23	0
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2	6		6			4			
Actuated Green, G (s)	13.5	57.8	57.8	62.3	52.3	52.3	11.4	38.0	38.0	31.2	57.8	
Effective Green, g (s)	13.5	57.8	57.8	62.3	52.3	52.3	11.4	38.0	38.0	31.2	57.8	
Actuated g/C Ratio	0.08	0.36	0.36	0.39	0.33	0.33	0.07	0.24	0.24	0.19	0.36	
Clearance Time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	263	1579	519	257	1572	438	192	817	287	662	1146	
v/s Ratio Prot	c0.04	0.18		0.03	c0.18		0.03	0.04		c0.16	c0.24	
v/s Ratio Perm			0.07	0.15		0.06			0.01			
v/c Ratio	0.51	0.50	0.19	0.47	0.55	0.18	0.36	0.19	0.06	0.80	0.68	
Uniform Delay, d1	70.1	39.9	35.0	32.5	44.2	38.5	70.8	48.7	47.2	61.4	43.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	3.3	1.1	8.0	2.8	1.4	0.9	2.4	0.5	0.4	7.7	3.2	
Delay (s)	73.4	41.0	35.8	35.3	45.6	39.4	73.2	49.2	47.6	69.1	46.4	
Level of Service	Е	D	D	D	D	D	E	D	D	Е	D	
Approach Delay (s)		43.5			43.4			54.4			55.3	
Approach LOS		D			D			D			Е	
Intersection Summary												
HCM 2000 Control Delay			48.2	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		0.65									
Actuated Cycle Length (s)			160.0	S	um of los	time (s)			25.0			
Intersection Capacity Utiliza	tion		102.6%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	-	←		†	-	↓
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	152	74	20	581	16	1521
v/c Ratio	0.64	0.50	0.09	0.22	0.03	0.54
Control Delay	45.5	36.0	5.3	3.6	1.8	6.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.5	36.0	5.3	3.6	1.8	6.8
Queue Length 50th (m)	23.5	7.2	0.9	14.2	0.5	109.5
Queue Length 95th (m)	30.7	21.6	3.7	24.6	m0.7	103.8
Internal Link Dist (m)	104.2	51.5		208.0		20.6
Turn Bay Length (m)			60.0		34.0	
Base Capacity (vph)	457	269	213	2684	634	2820
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.33	0.28	0.09	0.22	0.03	0.54
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	←	•	•	†	~	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	∱ ∱		7	∱ î≽	
Traffic Volume (vph)	1	0	109	30	0	38	18	510	7	14	1307	1
Future Volume (vph)	1	0	109	30	0	38	18	510	7	14	1307	1
Ideal Flow (vphpl)	1900	1900	1640	1900	1900	1640	1900	1900	1640	1900	1900	1640
Total Lost time (s)		5.0			5.0		7.0	5.0		7.0	5.0	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.98			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		0.98	1.00	
Frt		0.87			0.93		1.00	1.00		1.00	1.00	
Flt Protected		1.00			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1634			1713		1822	3373		1782	3543	
Flt Permitted		1.00			0.53		0.14	1.00		0.43	1.00	
Satd. Flow (perm)		1632			924		275	3373		812	3543	
Peak-hour factor, PHF	0.72	0.72	0.72	0.92	0.92	0.92	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	1	0	151	33	0	41	20	573	8	16	1520	1
RTOR Reduction (vph)	0	42	0	0	36	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	110	0	0	38	0	20	581	0	16	1521	0
Confl. Peds. (#/hr)	9		4	4		9	6		14	14		6
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	8%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	18	0	0	18
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		13.5			13.5		93.5	93.5		93.5	93.5	
Effective Green, g (s)		14.5			14.5		93.5	95.5		93.5	95.5	
Actuated g/C Ratio		0.12			0.12		0.78	0.80		0.78	0.80	
Clearance Time (s)		6.0			6.0		7.0	7.0		7.0	7.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		197			111		214	2684		632	2819	
v/s Ratio Prot								0.17			c0.43	
v/s Ratio Perm		c0.07			0.04		0.07			0.02		
v/c Ratio		0.56			0.34		0.09	0.22		0.03	0.54	
Uniform Delay, d1		49.7			48.4		3.2	3.0		3.0	4.4	
Progression Factor		1.00			1.00		1.00	1.00		0.43	1.25	
Incremental Delay, d2		3.4			1.8		0.9	0.2		0.1	0.6	
Delay (s)		53.1			50.2		4.0	3.2		1.3	6.1	
Level of Service		D			D		Α	Α		Α	Α	
Approach Delay (s)		53.1			50.2			3.2			6.1	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			9.8	Н	CM 2000	Level of S	Service		Α			,
HCM 2000 Volume to Capacity	ratio		0.54									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization	า		58.6%			of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

3: Goreway Drive & Etude Drive

	۶	-	•	←	•	4	†	>	↓	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	37	210	177	49	70	49	506	38	1233	
v/c Ratio	0.14	0.45	0.94	0.11	0.18	0.17	0.23	0.07	0.57	
Control Delay	35.6	22.7	96.9	33.4	8.6	8.0	7.5	13.4	16.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.6	22.7	96.9	33.4	8.6	8.0	7.5	13.4	16.3	
Queue Length 50th (m)	7.0	22.3	41.0	9.0	0.0	3.0	19.4	3.6	87.5	
Queue Length 95th (m)	14.6	39.9	57.7	15.9	8.6	8.0	31.9	9.9	122.1	
Internal Link Dist (m)		111.7		462.1			246.8		287.8	
Turn Bay Length (m)	70.0		37.0		33.0	53.0		30.0		
Base Capacity (vph)	365	579	251	592	488	356	2230	528	2172	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.10	0.36	0.71	0.08	0.14	0.14	0.23	0.07	0.57	
Intersection Summary										

<u> </u>	۶	→	•	•	←	•	•	†	<i>></i>	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	ĵ»		,	†	7	ň	∱ }		ř	∱ }	
Traffic Volume (vph)	33	59	128	147	41	58	48	409	81	33	1047	14
Future Volume (vph)	33	59	128	147	41	58	48	409	81	33	1047	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1860	1900	1640	1900	1900	1640
Total Lost time (s)	7.0	5.0		7.0	5.0	7.0	1.0	5.0		6.5	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.99		1.00	1.00	0.95	1.00	0.99		1.00	1.00	
Flpb, ped/bikes	0.96	1.00		1.00	1.00	1.00	1.00	1.00		0.97	1.00	
Frt	1.00	0.90		1.00	1.00	0.85	1.00	0.98		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1643	1665		1799	1921	1505	1685	3256		1768	3493	
Flt Permitted	0.73	1.00		0.46	1.00	1.00	0.16	1.00		0.47	1.00	
Satd. Flow (perm)	1254	1665		864	1921	1505	286	3256		867	3493	
Peak-hour factor, PHF	0.89	0.89	0.89	0.83	0.83	0.83	0.97	0.97	0.97	0.86	0.86	0.86
Adj. Flow (vph)	37	66	144	177	49	70	49	422	84	38	1217	16
RTOR Reduction (vph)	0	73	0	0	0	55	0	11	0	0	0	0
Lane Group Flow (vph)	37	137	0	177	49	15	49	495	0	38	1233	0
Confl. Peds. (#/hr)	35		6	6		35	10		24	24		10
Heavy Vehicles (%)	7%	7%	0%	1%	0%	3%	6%	9%	2%	0%	4%	23%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	20	0	0	18
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		8			4		1	6			2	
Permitted Phases	8			4		4	6			2		
Actuated Green, G (s)	26.2	26.2		26.2	26.2	26.2	80.3	80.3		72.6	72.6	
Effective Green, g (s)	26.2	28.2		26.2	28.2	26.2	82.3	81.8		72.6	74.1	
Actuated g/C Ratio	0.22	0.23		0.22	0.23	0.22	0.69	0.68		0.60	0.62	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.5		6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	2.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	273	391		188	451	328	274	2219		524	2156	
v/s Ratio Prot		0.08			0.03		0.01	c0.15			c0.35	
v/s Ratio Perm	0.03			c0.20		0.01	0.11			0.04		
v/c Ratio	0.14	0.35		0.94	0.11	0.05	0.18	0.22		0.07	0.57	
Uniform Delay, d1	37.8	38.3		46.1	36.0	37.0	8.4	7.2		9.8	13.6	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.02	0.96		1.00	1.00	
Incremental Delay, d2	0.2	0.5		48.8	0.1	0.1	0.1	0.2		0.3	1.1	
Delay (s)	38.0	38.8		95.0	36.1	37.1	8.6	7.1		10.1	14.7	
Level of Service	D	D		F	D	D	Α	Α		В	В	
Approach Delay (s)		38.7			71.5			7.2			14.5	
Approach LOS		D			Е			Α			В	
Intersection Summary												
HCM 2000 Control Delay			22.5	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.62									
Actuated Cycle Length (s)			120.0	Sı	um of lost	t time (s)			11.0			
Intersection Capacity Utilizat	ion		78.2%		U Level		Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

	ၨ	-	•	•	←	•	4	†	~	-	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	345	1230	101	76	790	601	187	622	133	349	383	
v/c Ratio	1.06	0.67	0.18	0.41	0.51	0.83	0.58	0.67	0.29	0.70	0.38	
Control Delay	132.2	44.7	4.2	29.4	44.8	28.8	75.8	57.0	9.8	72.1	27.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	132.2	44.7	4.2	29.4	44.8	28.8	75.8	57.0	9.8	72.1	27.1	
Queue Length 50th (m)	~61.7	120.4	0.0	12.8	74.5	74.2	29.6	93.2	1.4	55.2	30.4	
Queue Length 95th (m)	#94.2	142.6	9.1	23.4	90.4	#142.8	42.5	118.3	19.0	69.5	45.4	
Internal Link Dist (m)		563.5			156.8			158.8			208.0	
Turn Bay Length (m)	120.0		100.0	78.0		90.0	81.5		73.0	101.0		
Base Capacity (vph)	326	1832	555	203	1541	723	377	934	465	657	1018	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.06	0.67	0.18	0.37	0.51	0.83	0.50	0.67	0.29	0.53	0.38	

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	+	4	•	†	/	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	7	ሻ	^	7	ሻሻ	† †	7	1,1	↑ ↑	
Traffic Volume (vph)	345	1230	101	76	790	601	187	622	133	349	204	179
Future Volume (vph)	345	1230	101	76	790	601	187	622	133	349	204	179
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7
Total Lost time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Lane Util. Factor	0.97	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.90	1.00	1.00	0.91	1.00	0.98	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3267	4902	1287	1525	4641	1416	3177	3544	1411	3395	2959	
Flt Permitted	0.95	1.00	1.00	0.14	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3267	4902	1287	222	4641	1416	3177	3544	1411	3395	2959	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	345	1230	101	76	790	601	187	622	133	349	204	179
RTOR Reduction (vph)	0	0	63	0	0	253	0	0	94	0	101	0
Lane Group Flow (vph)	345	1230	38	76	790	348	187	622	39	349	282	0
Confl. Peds. (#/hr)	62		28	28		62	23	V	61	61	v_	23
Confl. Bikes (#/hr)	<u> </u>					<u> </u>			1	<u> </u>		
Heavy Vehicles (%)	6%	7%	17%	17%	13%	2%	9%	3%	3%	2%	5%	10%
Bus Blockages (#/hr)	0	0	2	0	0	0	0	0	0	0	23	0
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2	1 Cilli	1	6	1 Cilli	7	4	1 Cilli	3	8	
Permitted Phases	U		2	6	J	6	•	-	4	U	U	
Actuated Green, G (s)	16.0	59.9	59.9	64.5	53.2	53.2	16.2	42.2	42.2	23.6	49.6	
Effective Green, g (s)	16.0	59.9	59.9	64.5	53.2	53.2	16.2	42.2	42.2	23.6	49.6	
Actuated g/C Ratio	0.10	0.37	0.37	0.40	0.33	0.33	0.10	0.26	0.26	0.15	0.31	
Clearance Time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	326	1835	481	181	1543	470	321	934	372	500	917	
v/s Ratio Prot	c0.11	0.25	401	0.03	0.17	470	0.06	c0.18	312	c0.10	0.10	
v/s Ratio Prot v/s Ratio Perm	CU. 1 1	0.25	0.03	0.03	0.17	c0.25	0.06	CU. 10	0.03	CO. 10	0.10	
	1.06	0.67			0.51		0.50	0.67		0.70	0.21	
v/c Ratio	1.06	0.67	0.08	0.42	0.51	0.74	0.58	0.67	0.11	0.70	0.31	
Uniform Delay, d1	72.0	41.8	32.3	31.5	43.0	47.3	68.7	52.6	44.6	64.8	42.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	66.0	2.0	0.3	3.3	1.2	10.1	4.1	3.7	0.6	5.3	0.9	
Delay (s)	138.0	43.8	32.6	34.7	44.2	57.3	72.8	56.4	45.2	70.2	43.0	
Level of Service	F	D	С	С	D	E	E	E	D	E	D	
Approach Delay (s)		62.5			49.1			58.0			55.9	
Approach LOS		E			D			E			E	
Intersection Summary					014 000							
HCM 2000 Control Delay			56.5	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capac	ity ratio		0.75									
Actuated Cycle Length (s)			160.0		um of los	. ,			25.0			
Intersection Capacity Utilizat	ion		100.6%	IC	CU Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	→	←	1	†	-	↓
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	55	45	107	1520	19	769
v/c Ratio	0.33	0.30	0.18	0.50	0.08	0.25
Control Delay	22.8	26.4	3.0	3.0	2.0	1.2
Queue Delay	0.0	0.0	0.0	0.3	0.0	0.0
Total Delay	22.8	26.4	3.0	3.3	2.0	1.2
Queue Length 50th (m)	1.6	2.0	4.0	38.6	0.5	8.6
Queue Length 95th (m)	5.8	13.4	8.8	53.3	m1.1	10.2
Internal Link Dist (m)	104.2	51.5		208.0		20.6
Turn Bay Length (m)			60.0		34.0	
Base Capacity (vph)	447	410	582	3058	253	3021
Starvation Cap Reductn	0	0	0	716	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.11	0.18	0.65	0.08	0.25
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

2: Goreway Drive &		Soliee	er/Deve	зюртне	iii Site	. South	ACCE			ı ulule	TOTAL CO	·
	•	-	•	•	•	•	1	†		-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ħβ		ሻ	ተኈ	
Traffic Volume (vph)	4	0	29	22	0	19	104	1429	46	17	681	4
Future Volume (vph)	4	0	29	22	0	19	104	1429	46	17	681	4
Ideal Flow (vphpl)	1900	1900	1640	1900	1900	1640	1900	1900	1640	1900	1900	1640
Total Lost time (s)		5.0			5.0		7.0	5.0		7.0	5.0	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.98			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.98	1.00		0.99	1.00	
Frt		0.88			0.94		1.00	1.00		1.00	1.00	
Flt Protected		0.99			0.97		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1649			1720		1783	3515		1806	3473	
Flt Permitted		0.96			0.84		0.36	1.00		0.15	1.00	
Satd. Flow (perm)		1595			1485		675	3515		293	3473	
Peak-hour factor, PHF	0.61	0.61	0.61	0.92	0.92	0.92	0.97	0.97	0.97	0.89	0.89	0.89
Adj. Flow (vph)	7	0	48	24	0	21	107	1473	47	19	765	4
RTOR Reduction (vph)	0	45	0	0	34	0	0	1	0	0	0	0
Lane Group Flow (vph)	0	10	0	0	11	0	107	1519	0	19	769	0
Confl. Peds. (#/hr)	15	. •	7	7		15	18		33	33		18
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	5%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	18	0	0	18
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	4		7 01111	8		1 01111	2		1 01111	6	
Permitted Phases	4	•		8			2	_		6	•	
Actuated Green, G (s)	•	6.8			6.8		100.2	100.2		100.2	100.2	
Effective Green, g (s)		7.8			7.8		100.2	102.2		100.2	102.2	
Actuated g/C Ratio		0.06			0.06		0.84	0.85		0.84	0.85	
Clearance Time (s)		6.0			6.0		7.0	7.0		7.0	7.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		103			96		563	2993		244	2957	
v/s Ratio Prot		100			30		300	c0.43		277	0.22	
v/s Ratio Perm		0.01			c0.01		0.16	60.40		0.06	0.22	
v/c Ratio		0.10			0.12		0.19	0.51		0.08	0.26	
Uniform Delay, d1		52.8			52.9		1.9	2.3		1.7	1.7	
Progression Factor		1.00			1.00		1.00	1.00		0.64	0.59	
Incremental Delay, d2		0.4			0.6		0.7	0.6		0.6	0.2	
Delay (s)		53.2			53.4		2.7	2.9		1.7	1.2	
Level of Service		D			D		Α	2.5 A		Α	Α	
Approach Delay (s)		53.2			53.4			2.9			1.2	
Approach LOS		D			D			A			Α	
Intersection Summary												
HCM 2000 Control Delay			4.4	Н	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capac	ity ratio		0.48	11	2111 2000		231 1100		/\			
Actuated Cycle Length (s)	ity ratio		120.0	Si	um of lost	time (s)			10.0			
Intersection Capacity Utilizati	ion		75.6%		U Level				D			
Analysis Period (min)	OII		15.076	10	O LGVGI (JI OCI VICE			U			
c Critical Lane Group			10									
o Offical Laffe Oroup												

	•	→	•	←	•	4	†	\	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	45	237	183	134	58	87	1437	44	666
v/c Ratio	0.18	0.49	0.96	0.27	0.14	0.17	0.66	0.29	0.34
Control Delay	35.1	35.7	99.6	35.4	8.6	6.6	12.5	23.3	14.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	35.1	35.7	99.6	35.4	8.6	6.6	12.5	23.3	14.9
Queue Length 50th (m)	8.2	40.9	41.8	24.7	0.0	4.7	101.7	5.3	42.2
Queue Length 95th (m)	14.4	49.6	#78.2	39.2	9.5	8.5	139.3	13.2	51.0
Internal Link Dist (m)		111.7		462.1			246.8		287.8
Turn Bay Length (m)	70.0		37.0		33.0	53.0		30.0	
Base Capacity (vph)	306	568	231	592	474	557	2179	153	1968
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.42	0.79	0.23	0.12	0.16	0.66	0.29	0.34
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	٠	→	•	•	—	•	•	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		ሻ	^	7	ሻ	↑ ↑		ሻ	∱ 1≽	
Traffic Volume (vph)	34	110	70	168	123	53	84	1147	247	34	492	27
Future Volume (vph)	34	110	70	168	123	53	84	1147	247	34	492	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1860	1900	1640	1900	1900	1640
Total Lost time (s)	7.0	5.0		7.0	5.0	7.0	1.0	5.0		6.5	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.91	1.00	0.96		1.00	1.00	
Flpb, ped/bikes	0.94	1.00		0.98	1.00	1.00	0.99	1.00		0.98	1.00	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1610	1782		1742	1921	1484	1726	3290		1790	3401	
Flt Permitted	0.62	1.00		0.43	1.00	1.00	0.35	1.00		0.14	1.00	
Satd. Flow (perm)	1053	1782		792	1921	1484	639	3290		271	3401	
Peak-hour factor, PHF	0.76	0.76	0.76	0.92	0.92	0.92	0.97	0.97	0.97	0.78	0.78	0.78
Adj. Flow (vph)	45	145	92	183	134	58	87	1182	255	44	631	35
RTOR Reduction (vph)	0	21	0	0	0	44	0	13	0	0	3	0
Lane Group Flow (vph)	45	216	0	183	134	14	87	1424	0	44	663	0
Confl. Peds. (#/hr)	72		24	24		72	19		81	81		19
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	6%	0%	0%	3%	0%	0%	3%	4%	2%	0%	6%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	20	0	0	18
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		8			4		1	6			2	
Permitted Phases	8			4		4	6			2		
Actuated Green, G (s)	29.0	29.0		29.0	29.0	29.0	77.5	77.5		67.8	67.8	
Effective Green, g (s)	29.0	31.0		29.0	31.0	29.0	79.5	79.0		67.8	69.3	
Actuated g/C Ratio	0.24	0.26		0.24	0.26	0.24	0.66	0.66		0.56	0.58	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.5		6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	2.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	254	460		191	496	358	502	2165		153	1964	
v/s Ratio Prot		0.12			0.07		0.01	c0.43			0.19	
v/s Ratio Perm	0.04			c0.23		0.01	0.10			0.16		
v/c Ratio	0.18	0.47		0.96	0.27	0.04	0.17	0.66		0.29	0.34	
Uniform Delay, d1	36.0	37.6		44.9	35.5	34.8	7.5	12.4		13.6	13.3	
Progression Factor	1.00	1.00		1.00	1.00	1.00	0.82	0.83		1.00	1.00	
Incremental Delay, d2	0.3	0.8		52.4	0.3	0.0	0.1	1.4		4.7	0.5	
Delay (s)	36.4	38.3		97.3	35.8	34.9	6.2	11.7		18.2	13.8	
Level of Service	D	D		F	D	С	Α	В		В	В	
Approach Delay (s)		38.0			65.7			11.4			14.0	
Approach LOS		D			E			В			В	
Intersection Summary												
HCM 2000 Control Delay			21.7	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.73									
Actuated Cycle Length (s)			120.0	Sı	um of lost	t time (s)			11.0			
Intersection Capacity Utiliza	ation		98.3%		U Level		e		F			
Analysis Period (min)			15									
c Critical Lane Group												

Appendix G

2025 Future Background and 2025 Future Total Conditions (Mitigated) Synchro Reports

Future Background Conditions (Mitigated)

	•	-	•	•	←	•	4	†	1	\	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	345	1230	101	76	789	568	188	610	133	329	382	
v/c Ratio	0.89	0.67	0.18	0.41	0.54	0.82	0.58	0.64	0.27	0.69	0.38	
Control Delay	94.2	44.7	4.2	29.8	47.5	28.0	75.8	55.1	5.2	72.8	27.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	94.2	44.7	4.2	29.8	47.5	28.0	75.8	55.1	5.2	72.8	27.6	
Queue Length 50th (m)	56.7	120.4	0.0	12.8	76.5	65.8	29.8	90.4	0.0	52.1	31.0	
Queue Length 95th (m)	#83.9	142.6	9.1	23.4	92.9	#126.1	42.6	114.0	11.6	66.5	46.1	
Internal Link Dist (m)		563.5			156.8			158.8			208.0	
Turn Bay Length (m)	120.0		100.0	78.0		90.0	81.5		73.0	101.0		
Base Capacity (vph)	387	1830	555	203	1453	696	377	960	494	657	1014	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.89	0.67	0.18	0.37	0.54	0.82	0.50	0.64	0.27	0.50	0.38	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Future Background Conditions (Mitigated)

	•	-	*	•	•	•	1	1	~	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	^	7	ሻ	^	7	14.14	^	7	ሻሻ	∱ ∱	
Traffic Volume (vph)	345	1230	101	76	789	568	188	610	133	329	205	177
Future Volume (vph)	345	1230	101	76	789	568	188	610	133	329	205	177
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7
Total Lost time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Lane Util. Factor	0.97	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.90	1.00	1.00	0.91	1.00	0.98	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3267	4902	1287	1525	4641	1416	3177	3544	1411	3395	2962	
Flt Permitted	0.95	1.00	1.00	0.15	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3267	4902	1287	235	4641	1416	3177	3544	1411	3395	2962	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	345	1230	101	76	789	568	188	610	133	329	205	177
RTOR Reduction (vph)	0	0	63	0	0	253	0	0	97	0	97	0
Lane Group Flow (vph)	345	1230	38	76	789	315	188	610	36	329	285	0
Confl. Peds. (#/hr)	62		28	28		62	23		61	61		23
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	6%	7%	17%	17%	13%	2%	9%	3%	3%	2%	5%	10%
Bus Blockages (#/hr)	0	0	2	0	0	0	0	0	0	0	23	0
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2	1 01111	1	6	1 01111	7	4	1 01111	3	8	
Permitted Phases		_	2	6	J	6	,	•	4	Ü	· ·	
Actuated Green, G (s)	19.0	59.8	59.8	61.4	50.1	50.1	16.3	43.3	43.3	22.6	49.6	
Effective Green, g (s)	19.0	59.8	59.8	61.4	50.1	50.1	16.3	43.3	43.3	22.6	49.6	
Actuated g/C Ratio	0.12	0.37	0.37	0.38	0.31	0.31	0.10	0.27	0.27	0.14	0.31	
Clearance Time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	387	1832	481	181	1453	443	323	959	381	479	918	
v/s Ratio Prot	c0.11	0.25	401	0.03	0.17	443	0.06	c0.17	301	c0.10	0.10	
v/s Ratio Perm	CO. 1 1	0.23	0.03	0.03	0.17	c0.22	0.00	60.17	0.03	60.10	0.10	
v/c Ratio	0.89	0.67	0.03	0.42	0.54	0.71	0.58	0.64	0.09	0.69	0.31	
Uniform Delay, d1	69.5	41.9	32.3	33.0	45.5	48.6	68.6	51.4	43.7	65.3	42.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	23.0	2.0	0.3	3.3	1.5	9.4	4.1	3.2	0.5	5.2	0.9	
Delay (s)	92.5	43.9	32.6	36.3	46.9	57.9	72.7	54.6	44.2	70.5	43.0	
Level of Service	72.3 F	43.7 D	32.0 C	30.3 D	40.7 D	57.7 E	72.7 E	D D	D	70.5 E	45.0 D	
Approach Delay (s)	ı	53.2	C	U	50.7		L	56.8	U	L	55.8	
Approach LOS		55.2 D			D			50.0 E			55.0 E	
Intersection Summary												
HCM 2000 Control Delay			53.5	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.71									
Actuated Cycle Length (s)	,		160.0	S	um of los	t time (s)			25.0			
Intersection Capacity Utiliza	ation		100.1%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

2: Goreway Drive & Dorcas Street/Development Site South Access uture Background Conditions (Mitigated)

	-	•	†	Ţ
L	EDT	NDI	NDT	CDT
Lane Group	EBT	NBL	NBT	SBT
Lane Group Flow (vph)	55	107	1470	769
v/c Ratio	0.33	0.18	0.48	0.25
Control Delay	22.8	2.8	2.9	1.2
Queue Delay	0.0	0.0	0.2	0.0
Total Delay	22.8	2.8	3.2	1.2
Queue Length 50th (m)	1.6	3.8	36.3	8.5
Queue Length 95th (m)	5.8	8.2	50.2	10.1
Internal Link Dist (m)	104.2		208.0	20.6
Turn Bay Length (m)		60.0		
Base Capacity (vph)	444	586	3083	3021
Starvation Cap Reductn	0	0	753	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.12	0.18	0.63	0.25
Intersection Summers				
Intersection Summary				

2: Goreway Drive & Dorcas Street/Development Site South Access uture Background Conditions (Mitigated)

	۶	→	•	•	•	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	↑ ↑		ሻ	↑ ↑	•
Traffic Volume (vph)	4	0	29	0	0	0	104	1426	0	0	681	4
Future Volume (vph)	4	0	29	0	0	0	104	1426	0	0	681	4
Ideal Flow (vphpl)	1900	1900	1640	1900	1900	1640	1900	1900	1640	1900	1900	1640
Total Lost time (s)		5.0					6.0	5.0			5.0	
Lane Util. Factor		1.00					1.00	0.95			0.95	
Frpb, ped/bikes		0.98					1.00	1.00			1.00	
Flpb, ped/bikes		1.00					0.98	1.00			1.00	
Frt		0.88					1.00	1.00			1.00	
Flt Protected		0.99					0.95	1.00			1.00	
Satd. Flow (prot)		1649					1783	3544			3473	
Flt Permitted		0.95					0.36	1.00			1.00	
Satd. Flow (perm)		1583					675	3544			3473	
Peak-hour factor, PHF	0.61	0.61	0.61	0.92	0.92	0.92	0.97	0.97	0.97	0.89	0.89	0.89
Adj. Flow (vph)	7	0	48	0	0	0	107	1470	0	0	765	4
RTOR Reduction (vph)	0	45	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	10	0	0	0	0	107	1470	0	0	769	0
Confl. Peds. (#/hr)	15		7	7		15	18		33	33		18
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	5%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	18	0	0	18
Turn Type	Perm	NA					Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		6.8					101.2	101.2			101.2	
Effective Green, g (s)		7.8					101.2	102.2			102.2	
Actuated g/C Ratio		0.06					0.84	0.85			0.85	
Clearance Time (s)		6.0					6.0	6.0			6.0	
Vehicle Extension (s)		3.0					3.0	3.0			3.0	
Lane Grp Cap (vph)		102					569	3018			2957	
v/s Ratio Prot								c0.41			0.22	
v/s Ratio Perm		c0.01					0.16					
v/c Ratio		0.10					0.19	0.49			0.26	
Uniform Delay, d1		52.8					1.8	2.3			1.7	
Progression Factor		1.00					1.00	1.00			0.59	
Incremental Delay, d2		0.4					0.7	0.6			0.2	
Delay (s)		53.2					2.5	2.8			1.2	
Level of Service		D					Α	Α			Α	
Approach Delay (s)		53.2			0.0			2.8			1.2	
Approach LOS		D			А			А			А	
Intersection Summary												
HCM 2000 Control Delay			3.4	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacit	y ratio		0.46									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization	n		72.3%	IC	CU Level	of Service	;		С			
Analysis Period (min)			15									
c Critical Lane Group												

Future Background Conditions (Mitigated)

	•	_		•	4	•	†	_	1
	-	-	*		_)	ı	•	*
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	43	238	183	134	58	88	1414	44	641
v/c Ratio	0.17	0.49	0.96	0.27	0.14	0.17	0.65	0.28	0.33
Control Delay	34.8	35.7	99.6	35.3	8.6	6.6	12.2	22.8	14.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.8	35.7	99.6	35.3	8.6	6.6	12.2	22.8	14.8
Queue Length 50th (m)	7.9	41.0	41.7	24.6	0.0	4.7	99.0	5.3	40.4
Queue Length 95th (m)	14.1	49.8	#78.3	39.2	9.5	8.3	134.4	13.0	49.0
Internal Link Dist (m)		111.7		462.1			246.8		287.8
Turn Bay Length (m)	70.0		37.0		33.0	53.0		30.0	
Base Capacity (vph)	307	568	230	592	474	569	2176	158	1966
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.14	0.42	0.80	0.23	0.12	0.15	0.65	0.28	0.33
Intersection Summary									

⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	—	_	_	—	•	•	<u>†</u>	<i>></i>	<u> </u>	1	→
Movement	EBL	EBT	₽ EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T T	<u>₽</u>	LDIX	VVDL		VVDIX	NDL	↑	NDIX	JDL	↑	JUIN
Traffic Volume (vph)	33	110	71	168	123	53	85	1124	247	34	474	26
Future Volume (vph)	33	110	71	168	123	53	85	1124	247	34	474	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1860	1900	1640	1900	1900	1640
Total Lost time (s)	7.0	5.0	1700	7.0	5.0	7.0	1.0	5.0	1040	6.5	5.0	1040
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.91	1.00	0.96		1.00	1.00	
Flpb, ped/bikes	0.94	1.00		0.98	1.00	1.00	0.99	1.00		0.98	1.00	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1610	1781		1742	1921	1484	1725	3286		1788	3402	
Flt Permitted	0.62	1.00		0.43	1.00	1.00	0.36	1.00		0.15	1.00	
Satd. Flow (perm)	1054	1781		791	1921	1484	661	3286		281	3402	
· · · · · · · · · · · · · · · · · · ·			0.7/						0.07			0.70
Peak-hour factor, PHF	0.76	0.76	0.76	0.92	0.92	0.92	0.97	0.97	0.97	0.78	0.78	0.78
Adj. Flow (vph)	43	145	93	183	134	58	88	1159	255	44	608	33
RTOR Reduction (vph)	0	21	0	100	0	44	0	14	0	0	3	0
Lane Group Flow (vph)	43	217	0	183	134	14	88	1400	0	44	638	0
Confl. Peds. (#/hr)	72		24	24		72	19		81	81		19
Confl. Bikes (#/hr)		00/	1	20/	00/	00/	20/	407	20/	00/		00/
Heavy Vehicles (%)	6%	0%	0%	3%	0%	0%	3%	4%	2%	0%	6%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	20	0	0	18
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	0	8			4		1	6		0	2	
Permitted Phases	8	00.4		4	00.4	4	6			2		
Actuated Green, G (s)	29.1	29.1		29.1	29.1	29.1	77.4	77.4		67.7	67.7	
Effective Green, g (s)	29.1	31.1		29.1	31.1	29.1	79.4	78.9		67.7	69.2	
Actuated g/C Ratio	0.24	0.26		0.24	0.26	0.24	0.66	0.66		0.56	0.58	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.5		6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	2.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	255	461		191	497	359	514	2160		158	1961	
v/s Ratio Prot		0.12			0.07		0.01	c0.43			0.19	
v/s Ratio Perm	0.04			c0.23		0.01	0.10			0.16		
v/c Ratio	0.17	0.47		0.96	0.27	0.04	0.17	0.65		0.28	0.33	
Uniform Delay, d1	35.9	37.5		44.8	35.4	34.8	7.5	12.3		13.5	13.2	
Progression Factor	1.00	1.00		1.00	1.00	1.00	0.82	0.83		1.00	1.00	
Incremental Delay, d2	0.3	8.0		52.4	0.3	0.0	0.1	1.4		4.3	0.4	
Delay (s)	36.2	38.3		97.3	35.7	34.8	6.2	11.5		17.9	13.7	
Level of Service	D	D		F	D	С	А	В		В	В	
Approach Delay (s)		38.0			65.6			11.2			13.9	
Approach LOS		D			Е			В			В	
Intersection Summary												
HCM 2000 Control Delay			21.7	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.72									
Actuated Cycle Length (s)	,		120.0	Sı	um of lost	t time (s)			11.0			
Intersection Capacity Utilizat	city Utilization 97.7%				:U Level		9		F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	<i>></i>	-	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		↑ ↑		ሻ	^	
Traffic Volume (veh/h)	0	0	1430	0	0	685	
Future Volume (Veh/h)	0	0	1430	0	0	685	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	1554	0	0	745	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			TWLTL			TWLTL	
Median storage veh)			2			2	
Upstream signal (m)			45			271	
pX, platoon unblocked	0.91	0.89			0.89		
vC, conflicting volume	1926	777			1554		
vC1, stage 1 conf vol	1554						
vC2, stage 2 conf vol	372						
vCu, unblocked vol	1599	500			1374		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	5.8	5.7					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	175	464			450		
			ND 0	CD 1		CD 1	
Direction, Lane # Volume Total	WB 1	NB 1	NB 2 518	SB 1	SB 2	SB 3	
	0	1036		0	372	372	
Volume Left	0	0	0	0	0	0	
Volume Right	0	0	0	0	0	0	
cSH	1700	1700	1700	1700	1700	1700	
Volume to Capacity	0.00	0.61	0.30	0.00	0.22	0.22	
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Lane LOS	А						
Approach Delay (s)	0.0	0.0		0.0			
Approach LOS	А						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliz	ation		42.9%	IC	U Level	of Service	ڊ
Analysis Period (min)			15				

Future Total Conditions (Mitigated)

	•	-	•	•	←	•	4	†	~	>	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	345	1230	101	76	790	601	187	622	133	349	383	
v/c Ratio	0.89	0.67	0.18	0.41	0.54	0.86	0.58	0.67	0.27	0.70	0.38	
Control Delay	94.2	44.7	4.2	29.8	47.5	33.5	75.8	57.0	5.4	72.1	27.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	94.2	44.7	4.2	29.8	47.5	33.5	75.8	57.0	5.4	72.1	27.1	
Queue Length 50th (m)	56.7	120.4	0.0	12.8	76.7	81.4	29.6	93.2	0.0	55.2	30.4	
Queue Length 95th (m)	#83.9	142.6	9.1	23.4	93.0	#159.6	42.5	118.3	11.8	69.5	45.4	
Internal Link Dist (m)		563.5			156.8			158.8			208.0	
Turn Bay Length (m)	120.0		100.0	78.0		90.0	81.5		73.0	101.0		
Base Capacity (vph)	387	1832	555	203	1454	695	377	934	485	657	1018	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.89	0.67	0.18	0.37	0.54	0.86	0.50	0.67	0.27	0.53	0.38	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

1: Goreway Drive & Derry Road East

	•	→	•	•	+	•	•	†	~	\	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	7	ሻ	^	7	ሻሻ	^	7	1,1	↑ ↑	
Traffic Volume (vph)	345	1230	101	76	790	601	187	622	133	349	204	179
Future Volume (vph)	345	1230	101	76	790	601	187	622	133	349	204	179
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7
Total Lost time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Lane Util. Factor	0.97	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	0.97	0.95	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.90	1.00	1.00	0.91	1.00	0.98	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3267	4902	1287	1525	4641	1416	3177	3544	1411	3395	2959	
Flt Permitted	0.95	1.00	1.00	0.15	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3267	4902	1287	235	4641	1416	3177	3544	1411	3395	2959	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	345	1230	101	76	790	601	187	622	133	349	204	179
RTOR Reduction (vph)	0	0	63	0	0	252	0	0	98	0	101	0
Lane Group Flow (vph)	345	1230	38	76	790	349	187	622	35	349	282	0
Confl. Peds. (#/hr)	62		28	28		62	23		61	61		23
Confl. Bikes (#/hr)	<u>, , , , , , , , , , , , , , , , , , , </u>								1			
Heavy Vehicles (%)	6%	7%	17%	17%	13%	2%	9%	3%	3%	2%	5%	10%
Bus Blockages (#/hr)	0	0	2	0	0	0	0	0	0	0	23	0
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2	1 01111	1	6	1 01111	7	4	1 01111	3	8	
Permitted Phases		_	2	6		6	•	•	4	· ·	•	
Actuated Green, G (s)	19.0	59.9	59.9	61.5	50.2	50.2	16.2	42.2	42.2	23.6	49.6	
Effective Green, g (s)	19.0	59.9	59.9	61.5	50.2	50.2	16.2	42.2	42.2	23.6	49.6	
Actuated g/C Ratio	0.12	0.37	0.37	0.38	0.31	0.31	0.10	0.26	0.26	0.15	0.31	
Clearance Time (s)	5.0	7.6	7.6	3.0	7.6	7.6	5.0	7.4	7.4	5.0	7.4	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Grp Cap (vph)	387	1835	481	181	1456	444	321	934	372	500	917	
v/s Ratio Prot	c0.11	0.25	101	0.03	0.17		0.06	c0.18	012	c0.10	0.10	
v/s Ratio Perm	00.11	0.20	0.03	0.13	0.11	c0.25	0.00	00.10	0.02	00.10	0.10	
v/c Ratio	0.89	0.67	0.08	0.42	0.54	0.79	0.58	0.67	0.09	0.70	0.31	
Uniform Delay, d1	69.5	41.8	32.3	33.0	45.4	50.0	68.7	52.6	44.5	64.8	42.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	23.0	2.0	0.3	3.3	1.5	13.1	4.1	3.7	0.5	5.3	0.9	
Delay (s)	92.5	43.8	32.6	36.2	46.9	63.1	72.8	56.4	45.0	70.2	43.0	
Level of Service	F	D	C	D	D	E	E	E	D	E	D	
Approach Delay (s)	-	53.1		_	53.0			58.0	_		55.9	
Approach LOS		D			D			E			E	
Intersection Summary												
HCM 2000 Control Delay	54.5			H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa												
Actuated Cycle Length (s)	•			Sı	um of los	time (s)			25.0			
Intersection Capacity Utiliza	ity Utilization 100.6%					of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	-	←	1	†	-	ļ
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	55	45	107	1520	19	769
v/c Ratio	0.33	0.30	0.18	0.50	0.08	0.25
Control Delay	22.8	26.4	3.0	3.0	2.0	1.2
Queue Delay	0.0	0.0	0.0	0.3	0.0	0.0
Total Delay	22.8	26.4	3.0	3.3	2.0	1.2
Queue Length 50th (m)	1.6	2.0	4.0	38.6	0.5	8.6
Queue Length 95th (m)	5.8	13.4	8.8	53.3	m1.1	10.2
Internal Link Dist (m)	104.2	51.5		208.0		20.6
Turn Bay Length (m)			60.0		34.0	
Base Capacity (vph)	447	410	582	3058	253	3021
Starvation Cap Reductn	0	0	0	716	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.11	0.18	0.65	0.08	0.25
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

Future Total Conditions (Mitigated)

	۶	→	•	•	+	•	1	†	/	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		, J	∱ β		ķ	↑ ↑	
Traffic Volume (vph)	4	0	29	22	0	19	104	1429	46	17	681	4
Future Volume (vph)	4	0	29	22	0	19	104	1429	46	17	681	4
Ideal Flow (vphpl)	1900	1900	1640	1900	1900	1640	1900	1900	1640	1900	1900	1640
Total Lost time (s)		5.0			5.0		7.0	5.0		7.0	5.0	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.98			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.98	1.00		0.99	1.00	
Frt		0.88			0.94		1.00	1.00		1.00	1.00	
Flt Protected		0.99			0.97		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1649			1720		1783	3515		1806	3473	
FIt Permitted		0.96			0.84		0.36	1.00		0.15	1.00	
Satd. Flow (perm)		1595			1485		675	3515		293	3473	
Peak-hour factor, PHF	0.61	0.61	0.61	0.92	0.92	0.92	0.97	0.97	0.97	0.89	0.89	0.89
Adj. Flow (vph)	7	0	48	24	0	21	107	1473	47	19	765	4
RTOR Reduction (vph)	0	45	0	0	34	0	0	1	0	0	0	0
Lane Group Flow (vph)	0	10	0	0	11	0	107	1519	0	19	769	0
Confl. Peds. (#/hr)	15		7	7		15	18		33	33		18
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	5%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	18	0	0	18
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		6.8			6.8		100.2	100.2		100.2	100.2	
Effective Green, g (s)		7.8			7.8		100.2	102.2		100.2	102.2	
Actuated g/C Ratio		0.06			0.06		0.84	0.85		0.84	0.85	
Clearance Time (s)		6.0			6.0		7.0	7.0		7.0	7.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		103			96		563	2993		244	2957	
v/s Ratio Prot								c0.43			0.22	
v/s Ratio Perm		0.01			c0.01		0.16			0.06		
v/c Ratio		0.10			0.12		0.19	0.51		0.08	0.26	
Uniform Delay, d1		52.8			52.9		1.9	2.3		1.7	1.7	
Progression Factor		1.00			1.00		1.00	1.00		0.64	0.59	
Incremental Delay, d2		0.4			0.6		0.7	0.6		0.6	0.2	
Delay (s)		53.2			53.4		2.7	2.9		1.7	1.2	
Level of Service		D			D		Α	Α		Α	Α	
Approach Delay (s)		53.2			53.4			2.9			1.2	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			4.4	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ity ratio		0.48		O.W. 2000	2010101	5011100		,,			
Actuated Cycle Length (s)	.,		120.0	Si	um of lost	t time (s)			10.0			
Intersection Capacity Utilizati	on		75.6%			of Service			D			
Analysis Period (min)			15		, 10701							
c Critical Lane Group			. •									

Future Total Conditions (Mitigated)

	۶	→	•	←	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	45	237	183	134	58	87	1437	44	666	
v/c Ratio	0.18	0.49	0.96	0.27	0.14	0.17	0.66	0.29	0.34	
Control Delay	35.1	35.7	99.6	35.4	8.6	6.6	12.5	23.3	14.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.1	35.7	99.6	35.4	8.6	6.6	12.5	23.3	14.9	
Queue Length 50th (m)	8.2	40.9	41.8	24.7	0.0	4.7	101.7	5.3	42.2	
Queue Length 95th (m)	14.4	49.6	#78.2	39.2	9.5	8.5	139.3	13.2	51.0	
Internal Link Dist (m)		111.7		462.1			246.8		287.8	
Turn Bay Length (m)	70.0		37.0		33.0	53.0		30.0		
Base Capacity (vph)	306	568	231	592	474	557	2179	153	1968	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.15	0.42	0.79	0.23	0.12	0.16	0.66	0.29	0.34	
Intersection Summary										

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	*	•	←	4	1	†	~	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ.		ሻ	†	7	ሻ	∱ }		ሻ	↑ ↑	
Traffic Volume (vph)	34	110	70	168	123	53	84	1147	247	34	492	27
Future Volume (vph)	34	110	70	168	123	53	84	1147	247	34	492	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1860	1900	1640	1900	1900	1640
Total Lost time (s)	7.0	5.0		7.0	5.0	7.0	1.0	5.0		6.5	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.91	1.00	0.96		1.00	1.00	
Flpb, ped/bikes	0.94	1.00		0.98	1.00	1.00	0.99	1.00		0.98	1.00	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1610	1782		1742	1921	1484	1726	3290		1790	3401	
Flt Permitted	0.62	1.00		0.43	1.00	1.00	0.35	1.00		0.14	1.00	
Satd. Flow (perm)	1053	1782		792	1921	1484	639	3290		271	3401	
Peak-hour factor, PHF	0.76	0.76	0.76	0.92	0.92	0.92	0.97	0.97	0.97	0.78	0.78	0.78
Adj. Flow (vph)	45	145	92	183	134	58	87	1182	255	44	631	35
RTOR Reduction (vph)	0	21	0	0	0	44	0	13	0	0	3	0
Lane Group Flow (vph)	45	216	0	183	134	14	87	1424	0	44	663	0
Confl. Peds. (#/hr)	72		24	24		72	19		81	81		19
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	6%	0%	0%	3%	0%	0%	3%	4%	2%	0%	6%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	20	0	0	18
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		8			4		1	6			2	
Permitted Phases	8			4		4	6			2		
Actuated Green, G (s)	29.0	29.0		29.0	29.0	29.0	77.5	77.5		67.8	67.8	
Effective Green, g (s)	29.0	31.0		29.0	31.0	29.0	79.5	79.0		67.8	69.3	
Actuated g/C Ratio	0.24	0.26		0.24	0.26	0.24	0.66	0.66		0.56	0.58	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.5		6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	2.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	254	460		191	496	358	502	2165		153	1964	
v/s Ratio Prot		0.12			0.07		0.01	c0.43			0.19	
v/s Ratio Perm	0.04			c0.23		0.01	0.10			0.16		
v/c Ratio	0.18	0.47		0.96	0.27	0.04	0.17	0.66		0.29	0.34	
Uniform Delay, d1	36.0	37.6		44.9	35.5	34.8	7.5	12.4		13.6	13.3	
Progression Factor	1.00	1.00		1.00	1.00	1.00	0.82	0.83		1.00	1.00	
Incremental Delay, d2	0.3	0.8		52.4	0.3	0.0	0.1	1.4		4.7	0.5	
Delay (s)	36.4	38.3		97.3	35.8	34.9	6.2	11.7		18.2	13.8	
Level of Service	D	D		F	D	С	Α	В		В	В	
Approach Delay (s)		38.0			65.7			11.4			14.0	
Approach LOS		D			Е			В			В	
Intersection Summary												
HCM 2000 Control Delay			21.7	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	acity ratio 0.73											
Actuated Cycle Length (s)	(s) 120.0		Sı	um of lost	time (s)			11.0				
Intersection Capacity Utilizati					U Level		9		F			
Analysis Period (min)			15									
c Critical Lane Group												

Appendix H

Transportation Demand Management Options Memorandum

Memorandum

To/Attention City of Mississauga **Date** May 27, 2020

From IBI Group Project No 120212

Cc Redwood Properties

Subject Transportation Demand Management Options Memorandum - 7085

Goreway Drive

1.0 Introduction

Redwood Properties proposes to construct a high-rise residential development at 7085 Goreway Drive and has retained IBI Group Professional Services Canada Inc. ("IBI Group") to complete a Traffic Demand Management (TDM) options memorandum for this development. In accordance with the City of Mississauga's TIS Guidelines, IBI Group is pleased to submit this Transportation Demand Management (TDM) memo as part of this TIS.

2.0 Overview of Development

The subject lands are located at 7085 Goreway Drive in the City of Mississauga (refer to **Exhibit 2-1**) and are situated about 250 metres northwest of the Goreway Drive and Derry Road E intersection, on the northeast side of Goreway Drive. The subject lands cover an area of 9,870 m² and is currently the site of the former Starwind Supermarket.

The subject lands are located within the Malton Village neighbourhood in Mississauga, bordering both Brampton and Toronto. The site is located within a major thoroughfare of these municipalities.

The site is bordered by low-density residential neighbourhoods consisting of single-detached and multi-family homes to the southwest and northwest side. It borders a fire station and retail plaza directly northwest and abuts the Malton Greenway and Mimico Creek spanning southeast to the north. The subject lands are within walking and cycling distance of retail plazas, restaurants, a gas station, arena, medical services, light industrial buildings and other residential developments to the southeast, closer to the Goreway Drive and Derry Road E intersection.

The proposal is to construct a high-rise residential building with two towers, 18-storey with 138 residential units and 16-storey with 121 residential units along the southeast limits of the site, linked by a two storey amenities podium and a block of 12 two storey townhouse units along the northwest limit of the site, totaling 271 residential units.

On the ground floor, a bike room will be provided with 74 spaces, approximately 292 bike spaces will be provided through the site. Underground parking will be provided, with 318 residential spaces and 54 visitor spaces, totalling 372 parking spaces.

The subject lands will be accessible from Goreway Drive and will have an access point from the pedestrian connection to the Malton Greenway Trail.

City of Mississauga - May 27, 2020

Exhibit 2-1: Subject Lands (aerial view)

Source: Mississauga Maps (2018)

3.0 Existing TDM-supportive Infrastructure

3.1 Active Transportation

The subject lands are nearby to the following active transportation facilities:

- 1. An existing off-road paved multi-use trail, part of the Malton Greenway, abutting the subject lands (refer to **Exhibit 3-1**);
- 2. An existing off-road paved multi-use trail, part of the Derry Road Trail (Wildwood Trail), 250 metres southeast of the subject lands (refer to **Exhibit 3-1**);
- 3. Existing signed bike route, part of the Malton Loop, 280 metres northwest of the subject lands (refer to **Exhibit 3-2**).

There are sidewalks on both sides of the street on Goreway Drive. Derry Road E south of Goreway Drive has a sidewalk on the northwest side and a paved multi-use trail on the southeast side. The neighbourhood opposite the development site on Goreway Drive has sidewalks on one side of the street.

City of Mississauga - May 27, 2020

Exhibit 3-1: City of Mississauga Malton Greenway Trail



Exhibit 3-2: City of Mississauga Existing and Proposed Cycling Facilities

Source: Mississauga Cycling Map (2010)

3.2 Transit

MiWay has multiple routes that run adjacent and near the subject lands. The subject lands are also provided overlapping inter-municipal transit service from Brampton Transit and TTC due to the proximity of their respective municipalities. These transit routes provide access to major transfer points – Westwood Square, Humber College, Pearson International Airport, Malton GO Station, and Bramalea Terminal – within City of Mississauga, City of Toronto and the City of Brampton. The Malton GO Station and adjacent parking lot is approximately 1 KM from the subject

City of Mississauga - May 27, 2020

lands and provides vital regional transit access via GO train (Kitchener Line) and bus (Route 38 – Bolton/Malton). A list of weekday routes in the surrounding area that are within a 10-minute walk from the subject lands (400m-800m) include:

- Route 11 (MiWay) Westwood
- Route 14 (Brampton Transit) Torbram
- Route 16/A (MiWay) Malton
- Route 24 (MiWay) Northwest
- Route 30 (MiWay) Rexdale
- Route 42 (MiWay) Derry
- Route 52B (TTC) Lawrence West
- Express Route 104 (MiWay) Derry Express
- Express Route 107 (MiWay) Malton Express

Terminal Station

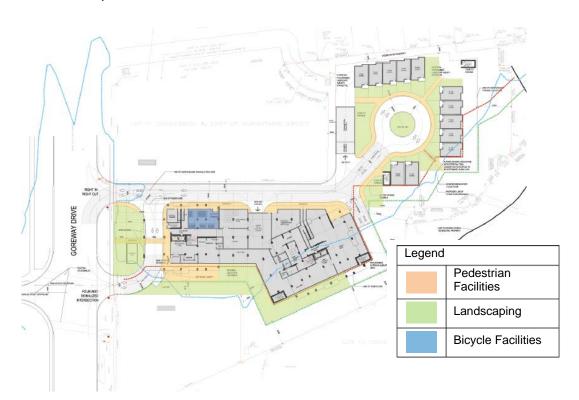
Towns Renard Renard

Exhibit 3-3: Existing Transit Routes

Source: City of Mississauga Transit System Map (Weekday)

City of Mississauga - May 27, 2020

4.0 Proposed On-Site TDM Measures


The TDM measures prescribed within this document are informed by The City of Mississauga's TDM Strategy and Implementation Plan, Peel Sustainable Transportation Strategy, Mississauga Official Plan, Region of Peel Official Plan, Region of Peel Long Range Transportation Plan, Mississauga Transportation Master Plan, and Mississauga Cycling Master Plan.

4.1 Active Transportation – Walking

The proposed site will have concrete sidewalks surrounding the high-rise residential buildings, with landscaped and amenity areas near the main entrance providing a pleasant pedestrian experience. Across the front loop, a crosswalk connecting to a concrete sidewalk will provide direct access from the building's main entrance to Goreway Drive. The laneway access has a concrete sidewalk adjacent to the north side of the high-rise residential buildings on one side and extends to the cul-de-sac of proposed townhouses on site. The sidewalks will be maintained with pedestrian amenities to provide safe and convenient pedestrian access to all development entrances. Pedestrian amenities include benches, textured surfaces, and planters. The proposed sidewalks will be complimented by landscaping.

Exhibit 4-1, shows the site plan including pedestrian facilities. The proposed development has one entrance to the main building off Goreway Drive and an east side entrance off the laneway. A path connection to the Malton Greenway Trail, paved multi-use trail, off the cul-de-sac is also established providing access to the subject lands. Signage will be provided for clear wayfinding to all active transportation.

Exhibit 4-1: Proposed Site Plan

City of Mississauga - May 27, 2020

4.2 Active Transportation – Cycling

The subject lands are adjacent to Goreway Drive where a cycle track/separated bike lane are proposed (refer to **Exhibit 4-2**). The subject lands are adjacent to the existing Malton Greenway multi-use trail that will directly connect with the proposed multi-use trail on Derry Road E. The existing and proposed cycling network surrounding the subject lands will support safe cycling in Mississauga and added infrastructure will encourage residents to cycle to and from their destination.

Based on the City of Mississauga's TDM guidelines, a recommended minimum bike parking requirement for the proposed development would be 0.8 spaces per unit and 6 spaces for visitors. The development will have short-term bike parking facilities, ring-and-post, located securely near the entrance of the main building and other convenient locations throughout the site to accommodate visitors. Approximately 292 bicycle parking spaces will be provided on site. The development will have a designated bike parking room on the ground floor with 74 bike parking spaces accessible from the north side of the main building (refer to **Exhibit 4-3**). The development will also have locker rooms within each of the three levels of the underground parking and on the second-floor podium, that can be used as bike lockers (refer to **Exhibit 4-4** and **Exhibit 4-5**). Safe and secure bicycle infrastructure is important in enabling and motivating cycling, as it can help both promote and security of bicycles.

In Mississauga 0.3% of all trips made by bicycles and 84% of these trips are 5km or less. The subject lands are surrounded by major hubs within this distance and make taking active transportation feasible. The Malton GO Station has cycling park and ride facilities for its riders, which will encourage the use of sustainable modes for the origin-destination trips.

Existing Facilities Bike Lane Paved Shoulder Shared Route Multi-Use Trail Connecting Trail Regional Connection **Proposed Facilities** Cycle Track/Separated Bike Lane Bike Lane Paved Shoulder **Shared Route** Multi-Use Trail Regional Connection SUBJECT LANDS Major Barrier Crossing

Exhibit 4-2: Existing and Proposed Cycling Facilities

Source: Mississauga Cycling Map 2018 Final Report

City of Mississauga - May 27, 2020

Exhibit 4-3: Proposed Site Plan (bicycle facilities

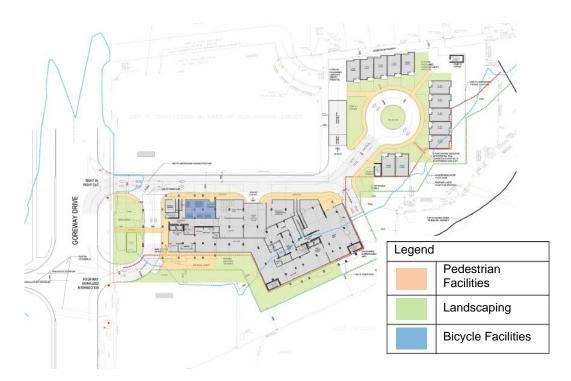
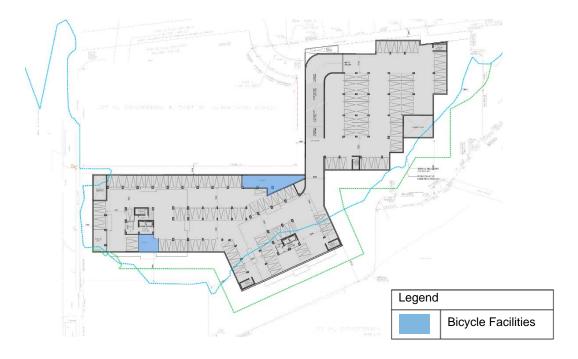
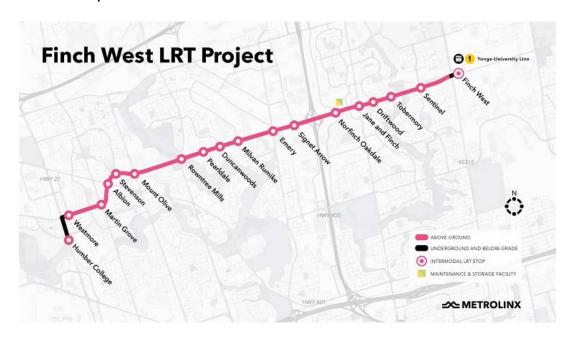



Exhibit 4-4: 2nd Floor Podium Plan

City of Mississauga - May 27, 2020

Exhibit 4-5: Parking 1-3 Plan

4.3 Transit


The proposed development has access to multiple local and regional transit options connecting to major transit hubs.

The Malton GO Station, part of the Kitchener Line, already has high AM peak boardings with four weekday morning and four weekday return rail trips between Kitchener and Union Station. Planned future two-way all-day service every 15 minutes between Bramalea Terminal and Union Station will continue to increase ridership and further connect the area regionally.

The proposed Finch West LRT (refer to **Exhibit 4-6**) at Humber College is accessible via MiWay and is within cycling distance (refer to **Exhibit 4-7**). The Finch West LRT is expected to be completed in 2023. The LRT will provide essential links to local and regional transit systems including TTC, GO Transit, MiWay, York Region Transit, VIVA, Brampton Transit, and ZUM services and give residents the opportunity to live, work, study, and play across these regions. The Finch West LRT will provide frequent, convenient, and reliable transit, service to support growth in northwest Toronto. The LRT will have dedicated tracks along Finch Avenue and will run every 5-7 minutes during peak hours, seamlessly connecting Humber College to TTC Finch West Subway Station in approximately 40 minutes. The new infrastructure will be accessible to carpoolers, transit riders, cyclists and pedestrians. With the completion of the Finch West LRT, a corresponding reduction in automobile dependence and usage is anticipated in the area.

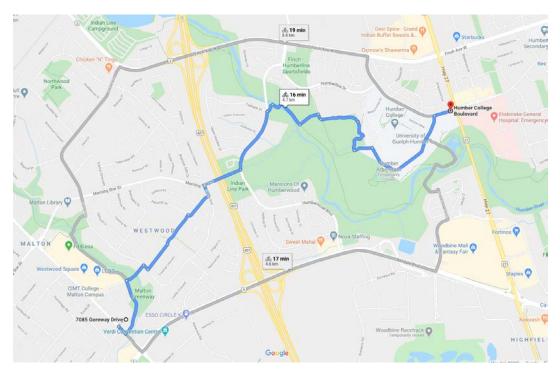

City of Mississauga - May 27, 2020

Exhibit 4-6: Proposed Finch West LRT

Source: Metrolinx.com

Exhibit 4-7: Distance from subject lands to the Finch West LRT by bike

Source: Google Maps

City of Mississauga - May 27, 2020

Existing transit service (Route 104) within the area will feed into the proposed Hurontario LRT corridor, to be completed late 2024. The LRT system will connect Mississauga and Brampton from Port Credit to Brampton Terminal and provide high-quality transit service with the capacity to accommodate Mississauga's growth. **Exhibit 4-8** shows the proposed Hurontario LRT Line and other proposed transit lines.

Residents of the proposed development will also have access to Zum Transitway, Mississauga Transitway, and future 407 Transitway via connecting local routes, supporting vital connections to York Region, City of Brampton, and the City of Toronto.

Furthermore, fare integration between MiWay, Brampton Transit and York Region Transit allows for seamless travel with no additional cost. In addition, transferring from GO Transit these transit agencies allows riders to pay a reduced face. Seamless travel between different transit systems contributes to the creation of a regional transit network.

Information regarding transit routes, schedules, connections, and other information regarding transit will be provided in print within the proposed development. Tenants of the development will also receive transit information in real-time via digital displays in shared amenities within the development such as lobbies, elevators, common areas, etc. Providing this real time information will encourage the use of the mode share because it is up-to-date and convenient.

Hurontario LRT

| BASTON LEN PRODUCTOR

| BASTON LEN P

Exhibit 4-8: Proposed Hurontario LRT Line

Source: Metrolinx.com

City of Mississauga - May 27, 2020

4.4 Parking

There are three pedestrian access points to the underground parking near the proposed townhomes. There is also pedestrian access to the underground parking from the main buildings. There is one vehicle access point to the underground parking.

The proposed development provides 372 parking spaces, included 318 resident spaces and 54 visitor spaces.

Providing unbundled parking ensures parking is not an automatic requirement with the sale of the unit, reducing the need for excessive parking beyond the minimum requirement. Providing TDM measures in lieu of parking will can ensure tenants consider sustainable transportation as a feasible option.

Designating some of the visitor parking spaces for carsharing vehicles will be investigated.

4.5 Carpooling

Residents of the development have access to the Smart Commute tool as a member of the public. The carpool ride-matching tool is a convenient online tool that matches users with other people in the Smart Commute network that are looking for a carpool rider, driver, or both by matching where people live and work. Information about the tool will be provided to tenants. Carpooling and carsharing reduces the load on the transportation network during peak periods, while increasing system efficiency.

4.6 Wayfinding and Travel Planning

Information regarding the suite of transportation options in the area will be available to residents at the concierge desk, property management office, mailroom, and daycare/community program area. Tenants will have access to bike maps, trail maps, bus route maps and schedules, and online resources in their resident welcome package.

In addition, the development will provide sustainable transformation information in real-time regarding (i.e. transit schedules) via digital displays in shared amenities such as lobbies, elevators, common spaces, etc. This real-time information provides up-to-date and a convenient method to encourage the use of sustainable modes as they pose as constant reminders.

Residents of the development will also have access to the Smart Commute website which allows citizens to explore their sustainable transportation options. In addition to providing public transit options and routes, it provides access to carpool ride-mating programs, information on active transportation, emergency ride home programs, workplace programs, and discounted transit pass programs amongst other fun events and promotions. There are two Smart Commute associations that serve in the City of Mississauga: Smart Commute Pearson Airport Area (SCPAA) and Smart Commute Mississauga (SCM).

4.7 Education/Promotion and Incentives

Existing residents, tenants, and employees of the building have access to the Smart Commute website which includes trip planning resources, online tools, and information on various promotions and incentives as a member of the public. As a member of the public, residents of the development are eligible to receive incentives and participate during various promotional campaigns such as Smart Commute Month, Carpool Week, Bike to Work Day, and Bike Month.

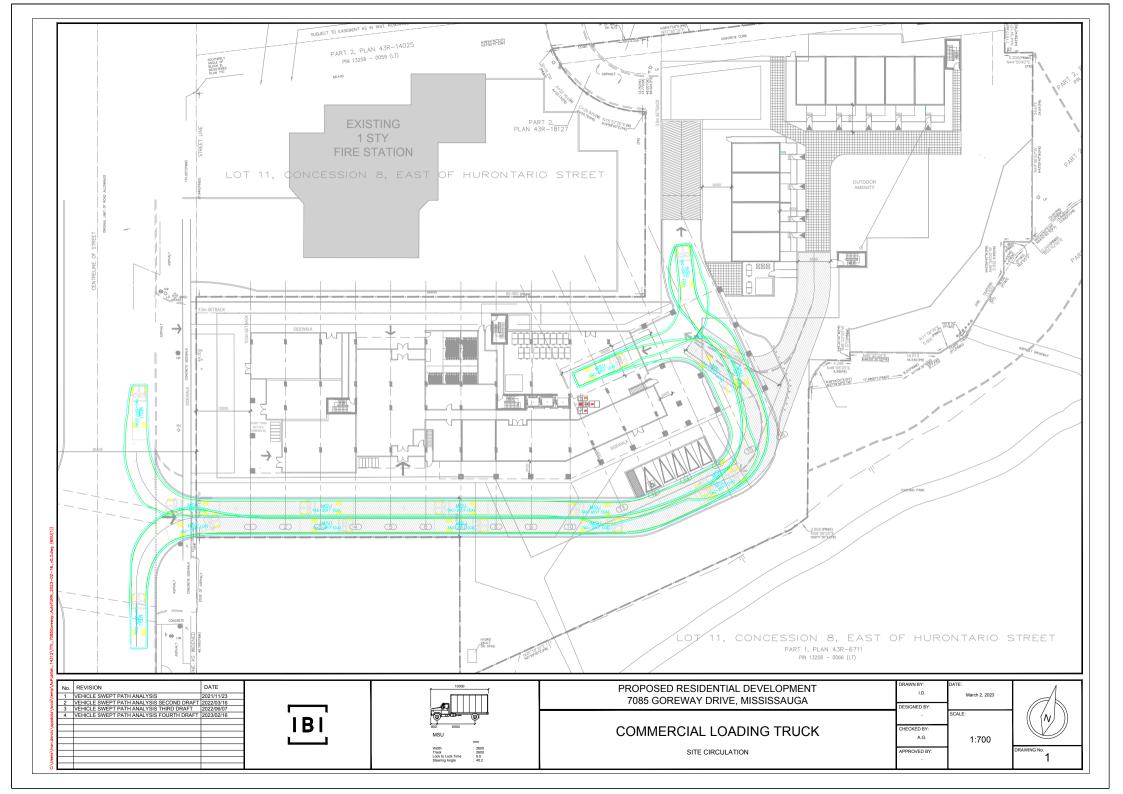
City of Mississauga - May 27, 2020

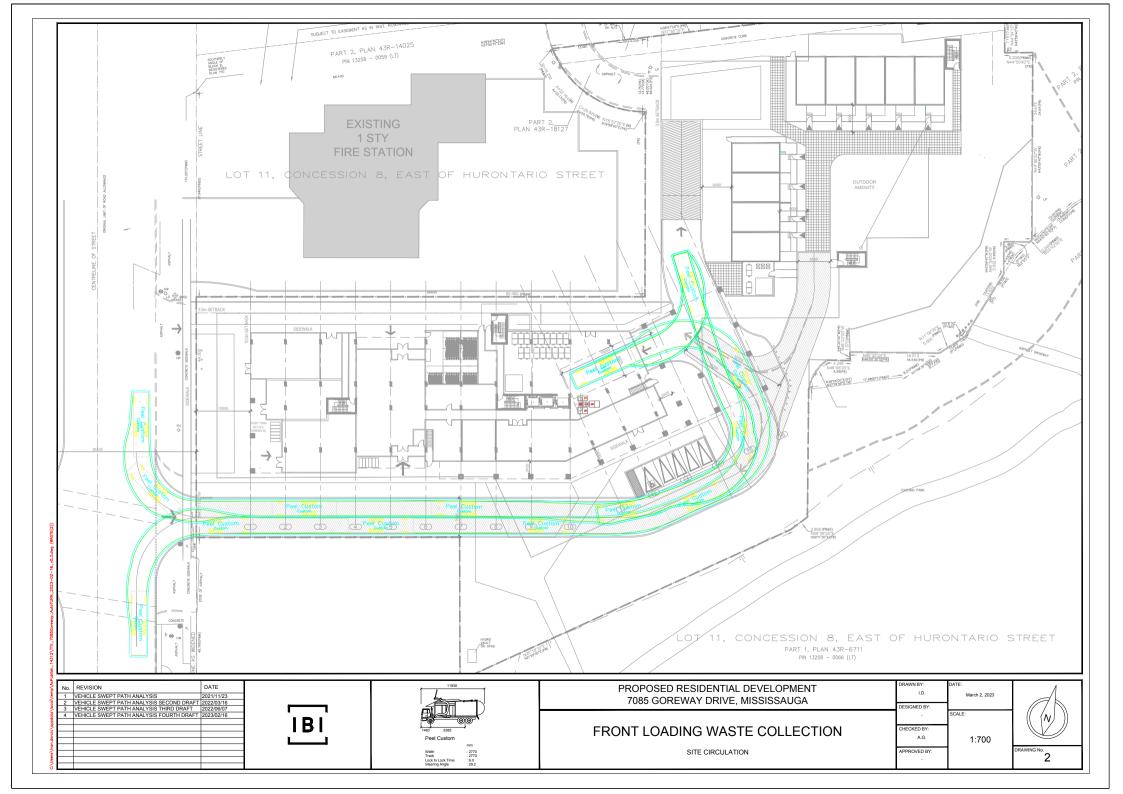
The development will also investigate potential partnership opportunities with the municipality to deliver transportation education programs, transportation fairs, training programs and community-based social marketing and travel planning programs.

5.0 Conclusion

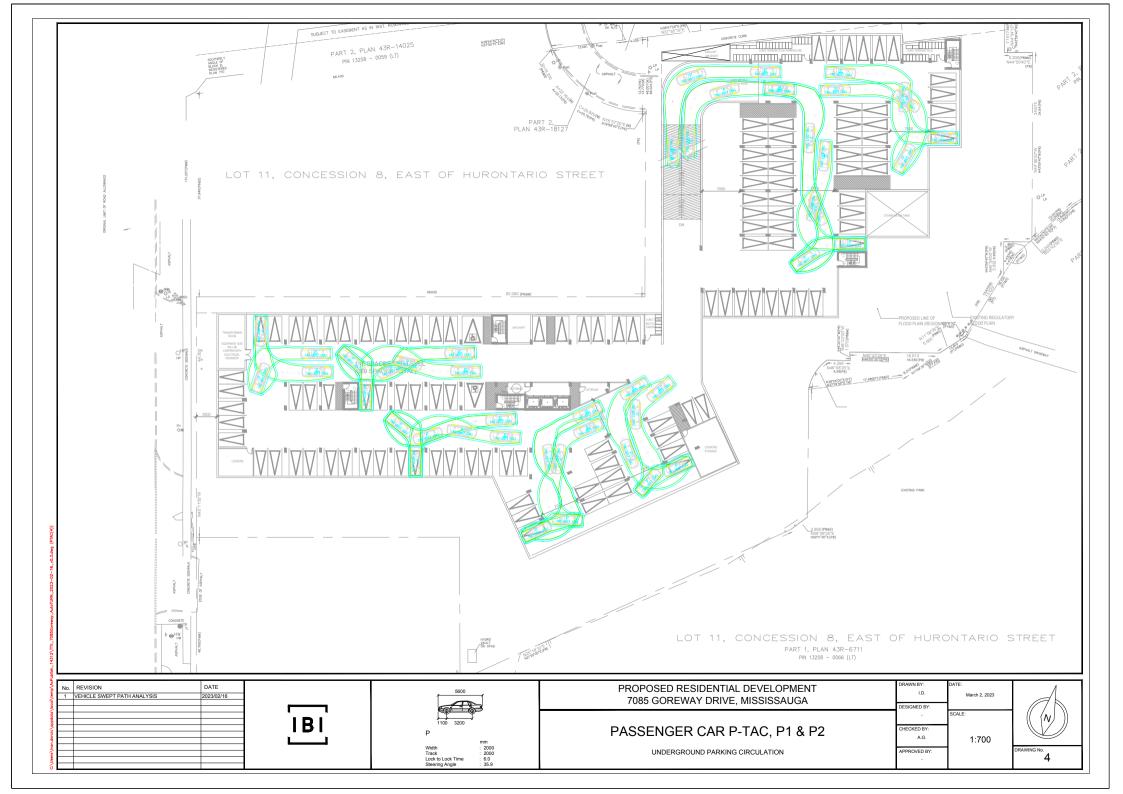
Based on the existing and proposed TDM measures noted in this memo, the Redwood Properties project is well suited to serve pedestrians, cyclists, and transit users. We trust the above will satisfy the requirements of the TDM plan.

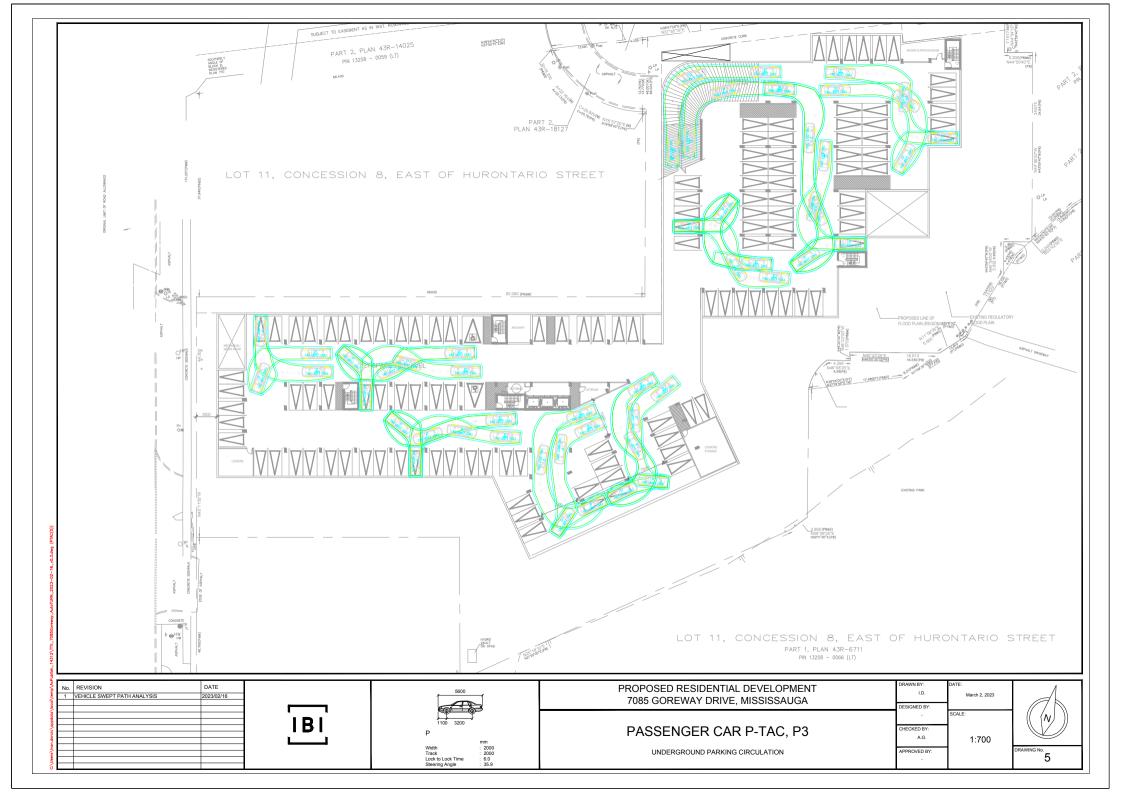
Due to the existing and proposed TDM measures noted within this memo, the proposed development at 7085 Goreway Drive supports the City of Mississauga's TDM goals. Whether it is cycling, walking, taking the bus, or taking the future LRT system, there is ample opportunity for future residents to choose sustainable transportation modes.


6.0 Recommendations


The following recommendations are highlighted throughout the memo, providing these measures will ensure the development will be well suited to serve sustainable transportation users.


- The proposed site will have concrete sidewalks surrounding the high-rise residential buildings with landscaped and amenity areas near the main entrance providing a pleasant pedestrian experience.
- The proposed sidewalks will have pedestrian amenities that provide safe and convenient pedestrian access to all entrances. Pedestrian amenities include benches, textured surfaces, and planters and will be complimented by landscaping.
- Signage should be provided for clear wayfinding to all active transportation facilities.
- The development will have 6 short-term bike parking facilities located securely near the entrance of the main building and other convenient locations throughout the site to accommodate visitors.
- The development will have a designated bike parking room on the ground floor with 74 bike parking spaces and there are storage lockers on each level of underground parking and on the second-floor podium, that can be used as bike lockers. In total, approximately 292 bicycle parking spaces will be provided on site.
- Information regarding transit routes, schedules, connections, and other information regarding transit will be provided in the resident welcome package.
- Tenants of the development will also receive transit information in real-time via digital displays in shared amenities within the development such as lobbies, elevators, common areas, etc.
- Parking spaces will be unbundled from the sale of the unit.
- Designating some of the visitor parking spaces for carsharing vehicles will be investigated.
- The development will investigate potential partnership opportunities with the municipality to deliver transportation education programs, transportation fairs, training programs and community-based social marketing and travel planning programs.


Appendix I


Vehicle Swept Path Analysis

