GEOHYDROLOGY ASSESSMENT 3085 - 3105 HURONTARIO STREET MISSISSAUGA, ONTARIO

DISTRIBUTION:
1 COPY (electronic) MATTAMY HOMES CANADA
1 COPY MCR ENGINEERS LTD.

PREPARED FOR:

Mattamy Homes Canda
3300 Bloor St. West, Suite 1800,
Toronto, Ontario
M8X 2X2

TABLE OF CONTENTS

Item Page
1.0 INTRODUCTION 1
1.1 Scope of Work 1
1.2 Site Description 1
1.3 Proposed Development 2
1.4 PROPERTY OWNERSHIP 2
1.5 Review of Previous Reports 3
2.0 HYDROGEOLOGICAL CONDITIONS 4
2.1 Physical Setting 4
2.2 TOPOGRAPHY 4
2.3 Regional Geology and Hydrogeology 4
2.4 Local Geology and Hydrogeology 5
3.0 SCOPE OF INVESTIGATION 6
3.1 OVERVIEW OF SITE INVESTIGATION 6
3.2 Monitoring Well Installation 6
3.3 ElEVATION SURVEYING 6
3.4 Groundwater Sampling 7
3.5 GROUNDWATER ANALYSIS 7
4.0 INVESTIGATION RESULTS 8
4.1 GEOLOGY 8
4.2 Groundwater Level Monitoring 9
4.3 GROUNDWATER QUALITY 10
4.4 Groundwater Discharge Assessment 10
5.0 REVIEW AND EVALUATION 11
5.1 TEMPORARY DEWATERING AsSESSMENT 11
5.1.1 NUMERICAL ANALYSIS 13
5.2 Permanent Foundation Drain Flow Rates 13
5.2.1 NUMERICAL ANALYSIS 14
5.3 MECP Permit to Take Water Requirement 14
5.4 Municipal Water Discharge Permit Requirements. 15
5.5 ENVIRONMENTAL PROTECTION 16
6.0 CONCLUSIONS AND RECOMMENDATIONS 17
7.0 REFERENCES 20
8.0 STATEMENT OF LIMITATIONS 21
9.0 CLOSURE 22

NeR ENGINEERS LTD.

Figures

Drawing No. 1 Borehole Location Plan
Drawing No. 2 Cross Section A-A'
Drawing No. 3 Cross Section B-B'
Drawing No. 4 Private Water Drainage System

Tables
Table $1 \quad$ Construction Details and Elevation of Monitoring Wells
Table 2 Groundwater Analytical Results - Mississauga Sewers By-Law Discharge Criteria
Table 3 Groundwater Monitoring Data
Table 4 Discharge Estimation of Construction Dewatering
Table 5 Discharge Estimation of Permanent Drainage System

Appendices

Appendix A	Legal Survey
Appendix B	Proposed Redevelopment Drawings
Appendix C	Borehole Logs by MCR
Appendix D	Borehole Logs by Others
Appendix E	Certificates of Analysis

M.R ENGINEERS LTD.

1.0 INTRODUCTION

Mattamy Homes Canda intends to redevelop the property located at $3085-3105$ Hurontario Street, Mississauga, Ontario (hereafter referred to as the Site). MCR Engineers Ltd. (MCR) was retained to conduct a Geohydrology Assessment for the Site to evaluate the requirement for temporary dewatering and permanent drainage in relation to the proposed redevelopment.

1.1 Scope of Work

The objectives of the Geohydrology Assessment are to determine the following:

- Determine Hydrogeological conditions of the Site, including the groundwater and phreatic surface, subsurface elevations and flow patterns and the interaction with the design and construction of the proposed development.
- Review the available background information for the Site obtained from MCR's files, City of Toronto, and architectural drawings.
- Estimate the potential temporary dewatering flow rates during construction and assessment of potential impacts on the surrounding environment.
- Estimate the long term flow rates from the Private Water Drainage System (PWDS) of the proposed building.
- Assess the permitting requirements for both dewatering and discharge with the Ministry of Environment, Conservation and Parks (MECP) and the City of Toronto - Toronto Water (the City), respectively.
- Summarize the findings in a Geohydrology Assessment Report.

1.2 Site Description

The site is located on the east side of Hurontario Street, between Kirwin Avenue and Dundas Street East, in the City of Mississauga.

The Site is presently occupied by two [2] storey commercial building in the southwestern portion and a two [2] storey above grade parking structure on the eastern portion of the Site. The Site is bounded by Kirwin Avenue to the north, residential building to the east, commercial buildings to the south and Hurontario

N. \cdot R ENGINEERS LTD.

Street to the west.

According to a Survey Plan by R-PE Surveying Ltd. presented in Appendix A, the Site is legally described as: Lot 15, Concession 1, North of Dundas Street, Part of Blocks A and B, Registered Plan 645 and Part of Village Lot 9, Savigney's Plan of Cooksville (Plan TOR-12), City of Mississauga, Regional Municipality of Peel.

1.3 Proposed Development

The Site is proposed for a residential and commercial development consisting of a forty [40] storey building with four [4] storey podium (Building 1), a forty-four [44] storey building with four [4] storey podium (Building 2), a twenty-eight [28] storey building with six [6] storey podium (Building 3) and a twenty-four [24] storey building with six [6] storey podium (Buidling 4) over four [4] levels of combined underground parking (Appendix B).

It is understood that the ground floor finished elevation (FFE) ranges from 117.96 to 116.00 masl and P4 FFE will be at 100.95 masl.

Presently, it is assumed that the proposed building structure can be supported on conventional spread/strip footings. The size of the shoring plan layout was assumed to cover approximately 100 m by 130 m .

A sub-floor Private Water Drainage System (PWDS) with perimeter weeping tile will be required. A soldier pile and lagging shoring system is expected for temporary dewatering/excavation except where adjacent structures exist, or heritage structures are to remain, in which case a caisson shoring system would be necessary.

1.4 Property Ownership

The Site is intended for redevelopment by Mattamy Homes Canda. The Client is represented by Ms. Helen Xie with the following contact information:

Mattamy Homes Canda
3300 Bloor St. West, Suite 1800

N. \cdot E ENGINEERS LTD.

Toronto, Ontario
M8X 2X2
Ms. Helen Xie
Development Manager
Email: Helen.Xie@mattamycorp.com

1.5 ReVIew of Previous Reports

The following geo-environmental reports were provided for review prior to initiating the investigation:

- MCR report titled, Geotechnical Report, Proposed Development, 3085 3105 Hurontario Street, Mississauga, Ontario, prepared for Mattamy Homes Canada., dated August 2023.

N.R ENGINEERS LTD.

2.0 HYDROGEOLOGICAL CONDITIONS

2.1 Physical Setting

The Site is located in the southern portion of the City of Mississauga and is situated in a mixed-use residential and commercial area. The nearest major intersection is Hurontario Street and Dundas Street East, approximately 300 m south of the Site. There are no areas of natural significance within 250 m . There are no water bodies or areas of natural significance within 30 m of the Site boundaries. The nearest surface water bodies are Cooksville Creek, at approximately 0.3 km east of the Site and Mary Fix Creek, at approximately 1.3 km west of the Site

The Site is located at an elevation of approximately 115 m above sea level (asl) (377 ft) and the topography across the Site is generally flat. Surrounding area slopes gently down to the southwest.

The Site is bounded by the following properties/features:

North	Residential buildings and asphalt parking area
South	Hurontario Street
East	Residential buildings and asphalt parking area
West	Hurontario Street and Kirwin Ave

2.2 TOPOGRAPHY

According to the topographic map, Map $30 \mathrm{M} / 11$, 9th Edition published by Government of Canada; Natural Resources Canada; Earth Sciences Sector; Canada Centre for Mapping and Earth Observation, on July 19, 2013, the ground surface at the Site is relatively flat with the surrounding area sloping gently to the southwest towards Credit River.

2.3 Regional Geology and Hydrogeology

According to the geological map entitled "Quaternary Geology of Ontario, Southern Sheet" Map 2556, published by the Ontario Ministry of Development and Mines, dated 1991, the overburden in the study area consists of predominantly undifferentiated carbonate and clastic sedimentary rock, exposed at surface or

N. \cdot R ENGINEERS LTD.

covered by a discontinuous, thin layer of drift. The groundwater typically tends to flow southwest, towards Lake Ontario.

According to Ontario Ministry of Development and Mines, Map No. 2544, "Bedrock Geology of Ontario, Southern Sheet, 1991", the bedrock typically consists of Upper Ordovician shale, limestone, dolostone and siltstone. Groundwater tends to flow south-west, towards the Credit River.

2.4 LOcAl GeOlogy and Hydrogeology

On a local scale, geological conditions and hydrogeology are similar to the ones at a regional scale. Locally, near surface groundwater flow may be influenced by underground structures (e.g., service trenches, catch basins, and building foundations or surface watercourses). No surface water features are present onsite and there are no Provincially Significant Wetlands in the vicinity of the Site.

N 0 R ENGINEERS LTD.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

- Three [3] boreholes, BH 1, BH 2 and BH 101, were drilled at the subject site by Soil-Mat on April 8, 2019, and March 12, 2020 to depths of 7.90, 4.65 and 13.85 m .
- Two [2] boreholes, BH 19-3 and BH 19-4, were drilled at the subject site by WSP on July 3, 2019, to depths of 4.40 m .
- Two [2] supplementary boreholes, BH 101 and BH 102, were drilled at the subject site by MCR on March 15 and 16, 2023, to depths of 5.05 and 5.35 m.
- All boreholes, except borehole 1 , were equipped with wells for long-term groundwater monitoring and sampling.
- The borehole locations are shown in Drawing No. 1 and the records are presented in Appendices C\&D.
- Groundwater levels were recorded from the available monitoring well over various dates and the data is presented in Table 1.
- Groundwater samples were collected from BH 102 in April 2023 for chemical analysis of the City of Mississauga Sewers By-Law criteria.

3.2 Monitoring Well Installation

All MCR monitoring wells were installed with a 50 mm diameter schedule 40 PVC pipe and a 3.05 m long slotted well screen. Well screens were surrounded by a silica sand pack to at least 0.6 m above the top of screen with a bentonite seal extending from above the sand pack to within 0.5 m of the ground surface. All monitoring wells were completed with a flush mounted cover at ground surface. Monitoring well installation was done in accordance with the Ontario Water Resources Act, Sections 35 to 50.

3.3 Elevation Surveying

Elevations referred to in this report are geodetic and metric and were interpolated from the topographic survey by R-PE Surveying Ltd. The borehole logs are

M.R ENGINEERS LTD.

presented in Appendices C\&D.

3.4 Groundwater Sampling

All groundwater sampling activities were conducted in accordance with Ontario Regulation (O.Reg.)153/04, as amended to O.Reg.511/09, July 2011. All monitoring wells were developed prior to sampling activities using a Waterra Hydrolift II (HL-1217) inertial lift pump by purging at least three well volumes or until the monitoring well was purged dry. Groundwater samples were obtained at least 24 hours' post-development under static conditions. No samples were field filtered prior to laboratory analysis, in accordance with the standard.

3.5 Groundwater Analysis

All groundwater samples were submitted to ALS Laboratory Group (ALS) of Richmond Hill, Ontario, certified by the Canadian Association for Laboratory Accreditation (CALA), for chemical analysis. The Certificates of Analysis received are included in Appendix E. The contact information for the laboratory used is included below.

ALS Laboratory Group

95 West Beaver Creek Road
Richmond Hill, ON L4B 1H2

All groundwater samples were submitted for bulk chemical analysis for the criteria provided in the Toronto Municipal Code, Chapter 681, Sewers By-law. The results of chemical analysis were compared to the criteria provided in Table 1 - Limits for Sanitary and Combined Sewers Discharge and Table 2 - Limits for Storm Sewer Discharge. These guidelines establish the maximum allowable concentrations of specific analytical parameters for water discharged into either the municipal sanitary and/or storm sewer system respectively.

N. \cdot E ENGINEERS LTD.

4.0 INVESTIGATION RESULTS

4.1 Geology

The ground surface elevation for the boreholes ranges from 118.26 masl (BH 19-4) to 115.51 masl (BH 19-3). Based on the investigation, the geologic formations beneath the Site are illustrated in the borehole logs (Appendices C\&D), Drawing No. 2\&3 and include the following (from surface to depth):

Pavement: A layer of asphalt, 100 to 200 mm in thickness, was present at the surface of BH 1, BH 2, and BH 101 (by Soil-Mat) and BH 101 (by MCR) and was followed by 150 to 250 mm of granular fill. A layer of concrete, 165 to 200 mm in thickness, was present at the surface of BH 19-3 (by WSP) and BH 102 (by MCR) and was followed by 150 to mm of granular fill in BH 102.

Possible topsoil with approximate 100 mm thickness was observed at the surface of BH 19-4 (by WSP).

For the purpose of offsite disposal, the type/quantity and extent of the existing fill layer should be explored by further test pit investigation, prior to contract award.

Sand/Silty Sand Till: Loose to very dense layer sand/silty sand till was detected below the pavement/possible topsoil in all boreholes and extended to depths of 1.75 to 3.65 m . The brown/light brown/dark brown sand/silty sand till deposit was in moist to wet condition and contained trace gravel and boulder, some silt and occasional organics in upper level.

Clayey Silt (Till): Very stiff to hard clayey stilt (till) was encountered below the sand/silty sand (till) in BH 1, BH 2 and BH 101 (by Soil-Mat), BH 19-3 and BH194 (by WSP) and BH 102 (by MCR) and extended to the underlying weathered shale at depths of 2.45 to 4.30 m . The grey clayey silt (till) deposit was in a moist to wet condition and contained trace of sand and gravel.

Silty Sand Till/Weathered Shale Complex: Very dense silty sand till/weathered shale complex was found below the silty sand till in BH 101 (by MCR) and
extended to the underlying weathered shale at a depth of 4.60 m . The brown silty sand till/weathered shale complex was in a wet condition and contained trace gravel.

It should be noted that the till/sand soil is unsorted sediment; therefore, boulders and cobbles are anticipated.

Shale Bedrock: Weathered shale bedrock was spotted below the clayey silt (till)/silty sand till/weathered shale complex in all boreholes at about depth of 2.45 to 4.60 m , i.e., at about Elevations of 114.00 to 111.25 m , and extended to the maximum depth of the borehole.

The surface of the shale bedrock will vary across the site; therefore, it should be confirmed by further borehole investigation and during shoring/foundation installations.

Groundwater: Upon competition of drilling, BH 101 (by Soil-Mat) remained dry. Groundwater level was not measured in BH 101 and BH 102 (by MCR) upon competition of drilling. The results are summarized on the Record of Borehole Sheets in Appendices C\&D and Table 1.

4.2 Groundwater Level Monitoring

All current and past groundwater monitoring data is presented in Table 1. It should be noted that groundwater levels are subject to seasonal fluctuations. All groundwater levels were measured manually using an electric water level meter and with respect to the geodetic borehole elevations within the property boundary. The monitoring wells must be decommissioned, prior to construction, in accordance with Regulation 903 by a qualified contractor.

The interpreted groundwater flow direction is based on the 2019, 2020 and 2023 round of water table elevation measurements, to include all the available data. Groundwater levels were measured in all available wells (BH 101 and 102), in April 2023. The interpreted local direction of hydraulic movement across the Site is inferred to be in a south-west direction, towards the Credit River.

N.R ENGINEERS LTD.

4.3 Groundwater Quality

The groundwater sample collected from BH 102 in April 2023 was analyzed for the City of Toronto Sewers By-Law criteria. The results of chemical analysis (Table 2) indicate that the sample exceeds the Table 1 Limits for Sanitary \& Combined Sewers Discharge for Biological Oxygen Demand ($686 \mathrm{mg} / \mathrm{L} v \mathrm{v} .300 \mathrm{mg} / \mathrm{L}$). The following exceedance was recorded for the Table 2 Limits for Storm Sewer Discharge: Biological Oxygen Demand ($686 \mathrm{mg} / \mathrm{L}$ vs. $15 \mathrm{mg} / \mathrm{L}$) and Total Manganese ($0.136 \mathrm{mg} / \mathrm{L}$ vs. $0.05 \mathrm{mg} / \mathrm{L}$).

4.4 Groundwater Discharge Assessment

Presently, the groundwater onsite can be discharged to the city sanitary or combined sewer system with filtration/treatment for Biological Oxygen Demand (BOD). A filtration/treatment system for BOD and manganese will be required prior to discharging to the storm sewer system. A dewatering contractor should be approached to explore the possibility of treatment if discharge to the storm sewer is required.

N 0 R ENGINEERS LTD.

5.0 REVIEW AND EVALUATION

5.1 TEMPORARy DEWATERING Assessment

The excavation for the proposed four level underground parking structure will extend into shale bedrock. In order to protect the sides/bottom of the excavation from being disturbed by excess groundwater pressure, i.e., to prevent quicksand/dilating silt conditions, the groundwater will need to be lowered below the top of shale bedrock.

Positive dewatering, such as localized sumps/well points might be required for the proposed excavation. Onsite soils might be subject to localized piping during dewatering. Creation of piping channels may result in a substantial increase in the volume of both temporary dewatering and permanent drainage.

In addition, the (weathered) sedimentary bedrock can be fractured, fissured, or contain water-bearing bedding planes. When these bedding planes are intercepted in rock excavation, a substantial amount of water, often under a significant hydrostatic head, may be encountered. The depths and condition of shale bedrock vary across the Site; therefore, its quality should be confirmed during shoring installation and general excavation through inspections in the field.

For the proposed four underground levels, groundwater is required to be drawn down 1 m below the underside of the footing. The foundation elevation is assumed to be at approximately 100.45 masl. However, for the purpose of temporary/construction dewatering, given the encountered subsurface conditions, groundwater cannot be lowered with well points below the average top elevation of shale bedrock at approximately 112.85 masl. Localized trenches and sumps can be used within bedrock to lower the water level below the underside of the footings, to an approximate elevation of 99.45 masl. This result is preliminary and should be confirmed during the construction phase and final stage of detailed design.

The average groundwater elevation was estimated at approximately 113.47 masl (Table 3), representing an approximate 14 m of hydrostatic head requiring dewatering. The size of the shoring plan layout was assumed to cover the

M.R ENGINEERS LTD.

equivalent of approximately 100 m by 130 m .

Theoretically, the discharge rate for a single pumping well in an unconfined aquifer can be described as:

$$
\begin{equation*}
Q=-2 \pi r K h \frac{d h}{d r} \tag{1}
\end{equation*}
$$

By integrating Equation (1) and separating variables h and r, we obtain

$$
\begin{equation*}
h^{2}=-\frac{Q}{\pi K} \ln \left(r / r_{w}\right)+h_{w}^{2} \tag{2}
\end{equation*}
$$

where
$h[\mathrm{~m}]$ is the height of the water table above an impervious base $Q\left[\mathrm{~m}^{3} /\right.$ day $]$ is the rate of pumping discharge K [$\mathrm{m} /$ day] is hydraulic conductivity $R[m]$ is the radius from the center of well location $r_{w}[m]$ is the radius of pumping well (see Schematic A below).

Schematic A: Radial flow to an unconfined aquifer (Todd, 1980)

M.R ENGINEERS LTD.

5.1.1 Numerical Analysis

The abovementioned Site parameters were used to calculate the estimated steady state discharge rate for temporary construction dewatering. Groundwater monitoring data is presented in Table 3. The calculations for temporary dewatering rates are shown in Table 4.

From the observed soil types and based on soil sample descriptions (Todd, 1980; Mays, 2001; and Craig, 2004), the average hydraulic conductivity (K) of the aquifer was conservatively estimated at $0.2 \mathrm{~m} /$ day.

The steady state discharge rate for temporary construction dewatering was calculated at approximately $306 \mathrm{~m}^{3} / \mathrm{day}$ ($56 \mathrm{USG} / \mathrm{min}$), with a safety factor of 1.50 . The steady state discharge is $204 \mathrm{~m}^{3} /$ day ($38 \mathrm{USG} / \mathrm{min}$), with a safety factor of 1.0.

It should be noted that the initial drawdown pumping rate and accumulation from rainfall will be higher, and this should be confirmed by the dewatering contractor.

5.2 Permanent Foundation Drain Flow Rates

For the proposed redevelopment, the ground finished floor elevation (FFE) ranges from 117.96 to 116.00 masl and P4 FFE will be at 100.95 masl.

A sub-floor Private Water Drainage System (PWDS) with perimeter/underfloor weeping tile is proposed below the P4 level slab. The invert of the PWDS is assumed to be approximately 0.5 m below the FFE of the P4 slab, i.e., at approximately 100.45 masl.

The proposed PWDS is shown in Drawing No. 4. The slotted pipes should slope to a minimum 1\% slope. Perimeter drainage pipes, with a positive gravity outlet, should be solid PVC with a minimum 0.5% slope. In addition, silt traps must be provided at convenient/accessible locations.

M.R ENGINEERS LTD.

5.2.1 Numerical Analysis

The abovementioned Site parameters were used to calculate the estimated steady state discharge rate for the PWDS. Groundwater monitoring data is presented in Table 3. The calculations for permanent drainage flow rates are shown in Table 5.

From the observed soil types and based on soil sample descriptions (Todd, 1980; Mays, 2001; and Craig, 2004), the average hydraulic conductivity (K) of the aquifer was conservatively estimated at $0.2 \mathrm{~m} /$ day.

The estimated steady state discharge rate for the PWDS was calculated at 282 m³/day (52 USG/min).

Please note that due to the presence of bedding planes/vertical fissures in the bedrock, the discharge volume might increase with time. Monitoring of permanent sumps is recommended for quality and quantity of discharge.

5.3 MECP Permit to Take Water Requirement

The Permit to Take Water (PTTW) requirements for construction site dewatering have been updated to the current O.Reg.63/16 amendment to Environmental Protection Act. In accordance with the updated regulation, construction site dewatering will require a complete PTTW application when water takings greater than 400,000 L/day are predicted. Groundwater taking between 50,000 L/day and 400,000 L/day will require a limited PTTW via an online application process through the Environmental Activity and Sector Registry (EASR). Groundwater taking from a proposed building structure by means of a PWDS will require a PTTW when water taking is greater than 50,000 L/day. The complete permit application process for PTTW takes approximately twelve weeks to review and is required prior to applying for the discharge permits.

The estimated steady state discharge rate for temporary construction dewatering was calculated at approximately $306 \mathrm{~m}^{3} /$ day ($56 \mathrm{USG} / \mathrm{min}$). Therefore, a limited PTTW application through the ESAR will be required to be applied for with the MECP.

M.R ENGINEERS LTD.

The estimated steady state discharge rate for PWDS was calculated at approximately $282 \mathrm{~m}^{3} /$ day ($52 \mathrm{USG} / \mathrm{min}$). Therefore, a complete PTTW application for the PWDS will be required for the proposed building.

In accordance with the current Ontario Regulation 387/04 for Water Taking, every person to whom a permit has been issued under Section 34 of the Act shall collect and record data on the volume of water taken daily. The data collected shall be measured by a flow meter or calculated using a method acceptable to a Director.

5.4 Municipal Water Discharge Permit Requirements

The Municipality requires that any private water to be discharged into the City sewer system must have a permit or agreement in place in order to discharge; this applies to all water not purchased from the City water supply. For temporary dewatering during the construction phase, this includes all groundwater and storm water that is collected or encountered during site excavation. For the PWDS, this includes all groundwater that is constantly pumped as a result of the PWDS elevation located below the groundwater table elevation or through storm water infiltration.

The groundwater quality sample collected in April 2023 indicates that groundwater onsite can be discharged to the city sanitary or combined sewer system with filtration/treatment for Biological Oxygen Demand (BOD). A filtration/treatment system for BOD and manganese will be required prior to discharging to the storm sewer system. A dewatering contractor should be approached to explore the possibility of treatment if discharge to the storm sewer is required.

A short-term temporary discharge permit must be applied for construction dewatering with the Municipality. A long-term permanent discharge permit must be applied for the proposed PWDS since the drainage system is located below the long-term groundwater elevation. The permanent discharge permit will involve coordination with the mechanical and site servicing consultant to provide calculations and drawing specifications for the ultimate discharge location and the sampling port required by the Municipality.

N. \cdot R ENGINEERS LTD.

5.5 Environmental Protection

The Site is located within the Credit River basin and the river is 3 km south-west of the Site. There are no surface water features and no areas of natural significance or provincially significant wetlands in the vicinity of the Site. The Site is located in the City of Mississauga urban environment which obtains its municipal water supply from Lake Ontario. Therefore, there are no potable groundwater users within the vicinity of the Site.

The proposed redevelopment plan will remove the overburden to a depth of approximately 16 mbgs, subject to final design. Temporary groundwater dewatering, where required, will lower the groundwater table to below the underground parking foundation levels. The extracted water can be discharged to the city sanitary or combined sewer system with filtration/treatment for Biological Oxygen Demand (BOD). A filtration/treatment system for BOD and manganese will be required prior to discharging to the storm sewer system. Updated groundwater monitoring will be conducted by the dewatering contractor prior to and during construction activities to ensure that no additional adverse groundwater impacts are identified throughout the project's construction.

M.R ENGINEERS LTD.

6.0 CONCLUSIONS AND RECOMMENDATIONS

MCR Engineers Ltd. (MCR). was retained to conduct a Geohydrology Assessment for the Site in relation to the proposed redevelopment. The Site is presently occupied by two [2] storey commercial building in the southwestern portion and a two [2] storey above grade parking structure on the eastern portion.

The Site is proposed for a residential and commercial development consisting of a forty [40] storey building with four [4] storey podium (Building 1), a forty-four [44] storey building with four [4] storey podium (Building 2), a twenty-eight [28] storey building with six [6] storey podium (Building 3) and a twenty-four [24] storey building with six [6] storey podium (Buidling 4) over four [4] levels of combined underground parking (Appendix B).

It is understood that the ground floor finished elevation (FFE) ranges from 117.96 to 116.00 masl and P4 FFE will be at 100.95 masl.

The average groundwater elevation was estimated at approximately 113.47 masl (Table 3), representing an approximate 14 m of hydrostatic head requiring dewatering. The size of the shoring plan layout was assumed to cover the equivalent of approximately 100 m by 130 m .

A sub-floor Private Water Drainage System (PWDS) with perimeter weeping tile will be required. A soldier pile and lagging shoring system is expected for temporary dewatering/excavation except where adjacent structures exist, or heritage structures are to remain, in which case a caisson shoring system would be necessary.

The excavation for the proposed four level underground parking structure will extend into shale bedrock. In order to protect the sides/bottom of the overburden excavation from being disturbed by excess groundwater pressure, i.e., to prevent quicksand/dilating silt conditions, the groundwater will need to be lowered below the top of shale bedrock.

Positive dewatering, such as localized sumps/well points might be required for the proposed excavation. Onsite soils might be subject to localized piping during dewatering. Creation of piping channels may result in a substantial increase in the

N.R ENGINEERS LTD.

volume of both temporary dewatering and permanent drainage.

In addition, the (weathered) sedimentary bedrock can be fractured, fissured, or contain water-bearing bedding planes. When these bedding planes are intercepted in rock excavation, a substantial amount of water, often under a significant hydrostatic head, may be encountered. The depths and condition of shale bedrock vary across the Site; therefore, its quality should be confirmed during shoring installation and general excavation through inspections in the field.

For the proposed four underground levels, groundwater is required to be drawn down 1 m below the underside of the footing. The foundation elevation is assumed to be at approximately 100.45 masl. However, for the purpose of temporary/construction dewatering, given the encountered subsurface conditions, groundwater cannot be lowered with well points below the average top elevation of shale bedrock at approximately 112.85 masl. Localized trenches and sumps can be used within bedrock to lower the water level below the underside of the footings, to an approximate elevation of 99.45 masl. This result is preliminary and should be confirmed during the construction phase and final stage of detailed design.

The average groundwater elevation was estimated at approximately 113.47 mas (Table 3), representing an approximate 14 m of hydrostatic head requiring dewatering. The size of the shoring plan layout was assumed to cover the equivalent of approximately 100 m by 130 m .

The estimated steady state discharge rate for temporary construction dewatering was calculated at approximately $306 \mathrm{~m}^{3} / \mathrm{day}$ ($56 \mathrm{USG} / \mathrm{min}$). Therefore, a limited PTTW application through the ESAR will be required to be applied for with the MECP, and a temporary discharge permit will be required from the Municipality. It should be noted that the initial drawdown pumping rate and accumulation from rainfall will be higher and this should be confirmed by the dewatering contractor.

The estimated steady state discharge rate for PWDS was calculated at approximately $282 \mathrm{~m}^{3} / \mathrm{day}(52 \mathrm{USG} / \mathrm{min}$). Therefore, a complete PTTW application for the PWDS will be required for the proposed building from the MECP. A long-term permanent discharge permit will be required from the Municipality since the drainage will be installed below the long-term groundwater elevation.

N \circ R ENGINEERS LTD.

Presently, the groundwater onsite can be discharged to the city sanitary or combined sewer system with filtration/treatment for Biological Oxygen Demand (BOD). A filtration/treatment system for BOD and manganese will be required prior to discharging to the storm sewer system. Updated groundwater monitoring will be conducted by the dewatering contractor prior to and during construction activities to ensure that no additional adverse groundwater impacts are identified throughout the project's construction.

The application process, where a PTTW is required, can take at least three months for a review by the MECP and is required to be approved prior to applying for discharge permits. It is recommended that applications to Toronto Water for discharge permits be applied for at least three months prior to the required start dates. Applications are to be supported by drawings and calculations provided by the mechanical and the site servicing consultant and coordination is required amongst all disciplines.

N. \cdot R ENGINEERS LTD.

7.0 REFERENCES

1. Ontario Ministry of the Environment. Soil, Ground Water and Sediment Standards for Use Under Part XV. 1 of the Environmental Protection Act. April15, 2011.
2. Ministry of Northern Development and Mines. Quaternary Geology of Toronto and Southern Ontario - Southern, Sheet Map 2504, 1980.
3. Ministry of Northern Development and Mines. Bedrock Geology of OntarioSouthern Sheet, 1991.
4. D.K. Todd, Groundwater Hydrology, $2^{\text {nd }}$ Edition, John Wiley \& Sons, New York, 1980.
5. L.W. Mays, Water Resources Engineering, $1^{\text {st }}$ Edition, John Wiley \& Sons, New York, 2001.
6. R.F. Craig, Soil Mechanics, $7^{\text {th }}$ Edition, Spon Press, London, 2004.
7. MCR report titled, Geotechnical Report, Proposed Development, 3085-3105 Hurontario Street, Mississauga, Ontario, prepared for Mattamy Homes Canada., dated August 2023.

M.R ENGINEERS LTD.

8.0 STATEMENT OF LIMITATIONS

MCR Engineers Ltd. (MCR) conducted the work associated with this report in accordance with the scope of services, time and budget limitations imposed for this work. The work has been conducted according to reasonable and generally accepted local standards for an environmental consultant at the time of the work. No other warranty or representation, expressed or implied, is included or intended in this report.

The work was designed to provide an overall assessment of the environmental conditions at the Site. The conclusions presented in this report are based on the information obtained during the investigation. The work is intended to reduce the client's risk with respect to environmental impairment. No work can completely eliminate the possibility of further environmental impairment on the Site.

It should be noted that subsurface conditions might vary at locations and depths other than those locations where borings, surveys or explorations were made by MCR. Other contaminants, not tested for in this work, may also potentially be present on the Site. Even with exhaustive investigation, it is not possible to warranty the Site will be free of contaminants. Should conditions, not observed during the work, become apparent, MCR should be immediately notified to assess the situation and conduct additional work, where required. The findings of this report are based on conditions as they were observed at the time of the work.

No assurance is made regarding changes in conditions subsequent to the time of the work. Remediation cost estimates is based on the available information. The estimated costs for remediation only represent the costs for the clean-up of known contaminants that have been identified during the work. Additional costs may be incurred as a result of other contaminants or areas of contamination identified by subsequent work.

Regulatory statutes are subject to interpretation. These statutes and their interpretation may change over time, thus these issues should be reviewed with appropriate legal counsel.

MCR relied on information provided by others in this report. MCR cannot guarantee the accuracy, completeness and reliability of the information provided by others, although MCR staff attempted to seek clarification on information provided and verifies authenticity, where practical.

The information provided in this report can be relied upon by the City of Toronto regarding the short and long term Sanitary Discharge Agreement applications for the Site.

N. \cdot E ENGINEERS LTD.

9.0 CLOSURE

In accordance with your request and authorization, MCR Engineers Ltd. completed this Geohydrology Assessment Report. This report presented the methodology, findings and conclusions of the investigation. The Statement of Limitations for all work performed as part of this investigation is included.

We trust that the information provided in this report is sufficient for your present requirements. Should you have any further questions, please do not hesitate to contact our office. Thank you for retaining MCR Engineers Ltd. for this project.

Respectfully, MCR Engineers Ltd.

Prepared By:

Salman Tavassoli, M.Sc., E.I.T

Reviewed By:
Lad Rak, P.Eng., M.Eng., QPesa

Date of Issue: August 21, 2023

FIGURES

TABLES

MCR ENGINEERS LTD.

GEO-ENVIRONMENTAL CONSULTANTS

TABLE 1
CONSTRUCTION DETAILS AND ELEVATION OF MONITORING WELLS

MONITORING WELL ID	GROUND SURFACE ELEVATION (masl)	WATER LEVEL (mbgs)	GROUNDWATER ELEVATION (masl)	DATE OF MEASUREMENT (mm/dd/yyyy)	DEPTH OF WELL (mbgs)	DEPTH OF BENTONITE (mbgs)	LENGTH OF SCREEN (m)	INSIDE DIAMETER OF PIPE (mm)	TOP OF MONITORING WELL
Boreholes by Soil-Mat									
BH 2	116.15	3.10	113.05	04/24/2019	4.40	2.80	1.52	50	FLUSH MOUNT
		3.00	113.15	05/07/2019					
		3.10	113.05	04/17/202					
BH 101	116.23	4.60	111.63	03/27/2020	13.63	4.30	9.20	50	FLUSH MOUNT
		4.50	111.73	04/17/2020					
Boreholes by WSP									
BH 19-3	115.51	2.51	113.00	8/9/2019	3.55	1.85	3.05	50	FLUSH MOUNT
BH 19-4	118.26	3.13	115.13	8/9/2019	3.55	1.85	3.05	50	FLUSH MOUNT
Boreholes by MCR									
BH 101	116.95	1.83	115.12	04/11/2023	4.57	0.91	3.05	50	FLUSH MOUNT
BH 102	116.47	3.71	112.76	04/11/2023	5.33	1.68	3.05	50	FLUSH MOUNT
Min	115.51	1.83	111.63	-	3.55	-	-	-	-
Max	118.26	4.60	115.13	-	13.63	-	-	-	-
Average	116.60	3.28	113.18	-	5.84	-	-	-	-

NOTE:
mbgs - meters below ground surface
masl - meters above sea level
N/A - Not Applicable
NF - Not Found

TABLE 2
GROUNDWATER ANALYTICAL RESULTS - PEEL REGION SEWERS BY-LAW DISCHARGE CRITERIA
MCR JOB\#:
G5822
SITE ADDRESS: 3085-3105 Hurontario Street, Mississauga, ON

PARAMETER	UNITS	LIMITS FOR STORM SEWER DISCHARGE	LIMITS FOR SANITARY \& COMBINED SEWERS DISCHARGE	BH 102
pH	pH Units	6.0-9.0	5.5-10.0	8.05
Total Suspended Solids	mg/L	15	350	7
Fluoride (F-)	mg/L	-	10	0.199
Total Kjeldahl Nitrogen (TKN)	mg/L	1	100	0.398
Total Phosphorus (P)	mg/L	0.4	10	0.093
Sulfate (SO4)	mg / L	-	1500	35.5
Total Cyanide (CN)	mg/L	0.02	2	<0.0020
Escherichia Coli	CFU/ 100 mL	200	-	<1
Total Aluminum (AI)	mg / L	-	50	0.357
Total Antimony (Sb)	mg/L	-	5	<0.00100
Total Arsenic (As)	mg / L	0.02	1	<0.00100
Total Cadmium (Cd)	mg / L	0.008	0.7	<0.0000500
Total Chromium (Cr)	mg/L	0.08	5	<0.00500
Total Cobalt (Co)	mg / L	-	5	0.00102
Total Copper (Cu)	mg / L	0.05	3	<0.00500
Total Lead (Pb)	mg / L	0.12	3	0.00119
Total Manganese (Mn)	mg / L	0.05	5	0.136
Total Mercury (Hg)	mg / L	0.0004	0.01	<0.0000050
Total Molybdenum (Mo)	mg/L	-	5	0.0278
Total Nickel (Ni)	mg / L	0.08	3	<0.00500
Total Selenium (Se)	mg / L	0.02	1	0.000566
Total Silver (Ag)	mg/L	0.12	5	<0.000100
Total Tin (Sn)	mg / L	-	5	<0.00100
Total Titanium (Ti)	mg/L	-	5	0.00844
Total Zinc (Zn)	mg / L	0.04	3	<0.0300
Biological Oxygen Demand	mg/L	15	300	686
Total Oil \& Grease (Animal/Vegetable)	mg/L	-	150	<5.0
Total Oil \& Grease Mineral/Synthetic	mg / L	-	15	<5.0
Phenols-4AAP	mg / L	0.008	1	0.0013
Benzene	$\mu \mathrm{g} / \mathrm{L}$	2	10	<0.50
Chloroform	$\mu \mathrm{g} / \mathrm{L}$	2	40	<0.50
1,2-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{L}$	5.6	50	<0.50
1,4-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{L}$	6.8	80	<0.50
cis-1,2-Dichloroethylene	$\mu \mathrm{g} / \mathrm{L}$	5.6	4000	<0.50
Dichloromethane (Methylene Chloride)	$\mu \mathrm{g} / \mathrm{L}$	5.2	2000	<1.0
trans-1,3-Dichloropropene	$\mu \mathrm{g} / \mathrm{L}$	5.6	140	<0.30
Ethylbenzene	$\mu \mathrm{g} / \mathrm{L}$	2	160	<0.50
Methyl Ethyl Ketone	$\mu \mathrm{g} / \mathrm{L}$	-	8000	<20
Styrene	$\mu \mathrm{g} / \mathrm{L}$	-	200	<0.50
1,1,2,2-Tetrachloroethane	$\mu \mathrm{g} / \mathrm{L}$	17	1400	<0.50
Tetrachloroethylene	$\mu \mathrm{g} / \mathrm{L}$	4.4	1000	<0.50
Toluene	$\mu \mathrm{g} / \mathrm{L}$	2	270	<0.50
Trichloroethylene	$\mu \mathrm{g} / \mathrm{L}$	8	400	<0.50
Xylene (Total)	$\mu \mathrm{g} / \mathrm{L}$	4.4	1400	<0.50
Bis(2-ethylhexyl)phthalate	$\mu \mathrm{g} / \mathrm{L}$	8.8	12	<2.0
Di-n-butylphthalate	$\mu \mathrm{g} / \mathrm{L}$	15	80	<1.0
Total PCBs	$\mu \mathrm{g} / \mathrm{L}$	0.4	1	<0.060
Nonylphenol	$\mu \mathrm{g} / \mathrm{L}$	-	20	<1.0
Total Nonylphenol Ethoxylates	$\mu \mathrm{g} / \mathrm{L}$	-	200	<2.0

Note:

BOLD	Exceeds Criteria - Peel Region Sanitary By-Law
BOLD	Non-Detect Exceeds Criteria - Peel Region Sanitary By-Law
BOLD	Exceeds Criteria - Peel Region Storm By-Law
BOLD	Non-Detect Exceeds Criteria - Peel Region Storm By-Law

MCR	MCR ENGINEERS LTD.	GROUNDWATER
	GEO-ENVIRONMENTAL CONSULTANTS	

Project: Proposed Residential Development
Location: 3085-3105 Hurontario Street, Mississauga, ON
Date: August-23
Project \#: G5822

TABLE 3
GROUNDWATER MONITORING DATA

Borehole Number	Surface Elevation	Water Level Depth	Monitoring Date		
(masl)	(mbgs)	(masl)	(mm/dd/yyy)		
	116.95	1.83	115.12	$4 / 1 / 2023$	
NO 101	116.47	3.71	112.76	$4 / 1 / 2023$	
BH 102	116.15	3.10	113.05	$4 / 17 / 2020$	by Soil-Mat
BH 2	116.23	4.50	111.73	$4 / 17 / 2020$	by Soil-Mat
BH 101	115.51	2.51	113.00	$8 / 9 / 2019$	by WSP
BH 19-3	118.26	3.13	115.13	$8 / 9 / 2019$	by WSP
BH 19-4					
		3.13	113.47		
Average	116.60		115.13		
Max					

MCR	MCR ENGINEERS LTD.	GROUNDWATER
	GEO-ENVIRONMENTAL CONSULTANTS	

Project: Proposed Residential Development
Location: 3085-3105 Hurontario Street, Mississauga, ON
Date: August-23
Project \#: G5822

TABLE 4
DISCHARGE ESTIMATION OF CONSTRUCTION DEWATERING

| Site Parameters | P4 | Units |
| :--- | ---: | ---: | ---: |
| Initial Water Level before Dewatering | 113.47 | $(\mathrm{~m})$ |
| Lowest Water Level during Construction Dewatering | 99.45 | $(\mathrm{~m})$ |
| Length of Site X | 100.00 | $(\mathrm{~m})$ |
| Width of Site W | 130.00 | $(\mathrm{~m})$ |
| Equivalent Radius r_{e} | 64.33 | $(\mathrm{~m})$ |
| Hydraulic Conductivity of Aquifer (k) | 0.20 | $(\mathrm{~m} / \mathrm{day})$ |
| Aquifer Bottom Elevation | 98.45 | $(\mathrm{~m})$ |
| Applied Radius of Influence (Ro) | 63.97 | $(\mathrm{~m})$ |
| Height btw Initial Water Level and Aquifer Bottom (H) | 15.02 | $(\mathrm{~m})$ |
| Height btw Lowest Water Level and Aquifer Bottom ($\mathrm{h}_{\mathrm{w})}$ | $\mathbf{1 . 0 0}$ | (m) |
| Radius of Influence (R) | $\mathbf{1 2 8 . 3 0}$ | (m) |
| Factor of Safety (FS) | 1.50 | |

$$
Q=\frac{\pi k\left(H^{2}-h_{w}^{2}\right)}{\operatorname{Ln}(R / r)}
$$

Estimated steady-state discharge of dewatering	$306\left(\mathrm{~m}^{3} / \mathrm{day}\right)$
	$56(\mathrm{USG} / \mathrm{min})$

MCR	MCR ENGINEERS LTD.	GROUNDWATER
	GEO-ENVIRONMENTAL CONSULTANTS	

Project: Proposed Residential Development
Location: 3085-3105 Hurontario Street, Mississauga, ON
Date: August-23
Project \#: G5822

TABLE 5
DISCHARGE ESTIMATION OF PERMANENT DRAINAGE SYSTEM

Site Parameters	P4	Units
Initial Water Level before Dewatering	113.47	$(\mathrm{~m})$
Lowest Water Level under PDS conditions	100.45	$(\mathrm{~m})$
Length of Site X	100.00	$(\mathrm{~m})$
Width of Site W	130.00	$(\mathrm{~m})$
Equivalent Radius r_{e}	64.33	$(\mathrm{~m})$
Hydraulic Conductivity of Aquifer (k)	0.20	$(\mathrm{~m} / \mathrm{day})$
Aquifer Bottom Elevation	99.45	$(\mathrm{~m})$
Applied Radius of Influence (Ro)	59.41	$(\mathrm{~m})$
Height btw Initial Water Level and Aquifer Bottom (H)	14.02	$(\mathrm{~m})$
Height btw Lowest Water Level and Aquifer Bottom $\left(\mathrm{h}_{\mathrm{w})}\right.$	1.00	$(\mathrm{~m})$
Radius of Influence (R)	$\mathbf{1 2 3 . 7 3}$	(m)
Factor of Safety (FS)	1.50	

$$
Q=\frac{\pi k\left(H^{2}-h_{w}^{2}\right)}{\operatorname{Ln}(R / r)}
$$

Estimated steady-state discharge of dewatering	$282\left(\mathrm{~m}^{3} / \mathrm{day}\right)$
	$52(\mathrm{USG} / \mathrm{min})$

APPENDIX A

APPENDIX C

(28) (27) (26) (25) (24) (23) (22) (21) (20) (19) (18) (17) (16) (15) (14) (1327) (17) (10) (9) (8) (7) (6) (5) (4) (3) (2) (1)

APPENDIX B

APPENDIX C

Log of Borehole No. 1

Project No: SM 190138-G
Project: Proposed Condominium Building
Location: 3085 Hurontario Street, Mississauga
Client: Oakhill Environmental Inc.

Project Manager: Kyle Richardson
Borehole Location: See Drawing No. 1
UTM Coordinates - N: 4826460

Drill Method: Hollow Stem Augers
Drill Date: April 8, 2019
Hole Size: 200 millimetres
Drilling Contractor: Geo-Environmental

Soil-Mat Engineers \& Consultants Ltd.
130 Lancing Drive, Hamilton, ON L8W 3A1
T: 905.318.7440 F: 905.318.7455
E: info@soil-mat.ca

Datum: Benchmark
Field Logged by: ZRV
Checked by: KR
Sheet: 1 of 1

Log of Borehole No. 2

Project No: SM 190138-G
Project: Proposed Condominium Building
Location: 3085 Hurontario Street, Mississauga
Client: Oakhill Environmental Inc.

Project Manager: Kyle Richardson
Borehole Location: See Drawing No. 1
UTM Coordinates - N: 4826436

Drill Method: Hollow Stem Augers
Drill Date: April 8, 2019
Hole Size: 200 millimetres

Soil-Mat Engineers \& Consultants Ltd.
130 Lancing Drive, Hamilton, ON L8W 3A1
T: 905.318.7440 F: 905.318.7455
E: info@soil-mat.ca

Datum: Temporary Benchmark
Field Logged by: ZRV
Checked by: KR
Sheet: 1 of 1

Log of Borehole No. 101

Project No: SM 190138-G
Project: Proposed Condominium Building
Location: 3085 Hurontario Street, Mississauga
Client: Oakhill Environmental Inc.

Drill Method: Hollow Stem Augers
Drill Date: March 12, 2020
Hole Size: 200 millimetres
Drilling Contractor: Davis Drilling

Soil-Mat Engineers \& Consultants Ltd.
130 Lancing Drive, Hamilton, ON L8W 3A1
T: 905.318.7440 F: 905.318.7455
E: info@soil-mat.ca

Datum: Temporary Benchmark
Field Logged by: SW
Checked by: KR
Sheet: 1 of 2

Log of Borehole No. 101

Project No: SM 190138-G
Project: Proposed Condominium Building
Location: 3085 Hurontario Street, Mississauga
Client: Oakhill Environmental Inc.

Drill Method: Hollow Stem Augers
Drill Date: March 12, 2020
Hole Size: 200 millimetres
Drilling Contractor: Davis Drilling

Soil-Mat Engineers \& Consultants Ltd.
130 Lancing Drive, Hamilton, ON L8W 3A1
T: 905.318.7440 F: 905.318.7455
E: info@soil-mat.ca

Field Logged by: SW
Checked by: KR
Sheet: 2 of 2

Prepared by: Sheema Everett

APPENDIX D

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2309350	Page	: 1 of 7
Client	McClymont \& Rak Engineers Inc.	Laboratory	Waterloo - Environmental
Contact	: Richard Sukhu	Account Manager	Emily Smith
Address	: 111 Zenway Blvd. Unit 4 Vaughan ON Canada L4H 3H9	Address	60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	4166750160	Telephone	+1519 8866910
Project	: 5822	Date Samples Received	: 13-Apr-2023 17:30
PO	----	Date Analysis Commenced	: 14-Apr-2023
C-O-C number	: 17-620765	Issue Date	: 25-Apr-2023 18:00
Sampler	: BR		
Site	----		
Quote number	: 2022 Price List		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.
This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Danielle Gravel	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Inorganics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Metals, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Metals, Waterloo, Ontario
Katrina Zwambag	Business Manager - Environmental	LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario

General Comments

 incorporate modifications to improve performance.
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.
Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

 Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit),

Unit	Description
$\mu \mathrm{g} / \mathrm{L}$	micrograms per litre
$\mathrm{CFU} / 100 \mathrm{~mL}$	colony forming units per hundred millilitres
mg / L	milligrams per litre
pH units	pH units

>: greater than.
<: less than.
Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable)
For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit

Qualifiers Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s). HTD
	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time. Parameter exceeded recommended holding time on receipt: Proceeded with analysis as requested.

Page	$:$	3 of 7
Work Order	$:$	WT2309350
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Analytical Results

Sub-Matrix: Water (Matrix: Water)		Client sample ID Sampling date/time		BH 10213-Apr-202309:00									
Analyte	Method			LOR	Unit	WT2309350-001		$\begin{aligned} & \text { MISSUB } \\ & \text { STM } \end{aligned}$	RMPSUB SAN	RMPSUB STM			
Physical Tests													
pH	E108	0.10	pH units	8.05		6-9 pH units	$\begin{gathered} 5.5-10 \mathrm{pH} \\ \text { units } \\ \hline \end{gathered}$	$6-9 \mathrm{pH}$ units	--	--	-		
Solids, total suspended [TSS]	E160	3.0	mg/L	7.0		$15 \mathrm{mg} / \mathrm{L}$	$350 \mathrm{mg} / \mathrm{L}$	$15 \mathrm{mg} / \mathrm{L}$	--	--	--		
Anions and Nutrients													
Fluoride	E235.F	0.020	mg/L	0.199	DLDS	--	$10 \mathrm{mg} / \mathrm{L}$	--	--	--	--		
Kjeldahl nitrogen, total [TKN]	E318	0.050	mg/L	0.398		$1 \mathrm{mg} / \mathrm{L}$	$100 \mathrm{mg} / \mathrm{L}$	$1 \mathrm{mg} / \mathrm{L}$	--	--	--		
Phosphorus, total	E372-U	0.0020	mg/L	0.0930		0.4 mg/L	$10 \mathrm{mg} / \mathrm{L}$	0.4 mg/L	--	--	--		
Sulfate (as SO4)	E235.SO4	0.30	mg/L	35.5	DLDS	--	$1500 \mathrm{mg} / \mathrm{L}$	--	--	--	--		
Cyanides													
Cyanide, strong acid dissociable (Total)	E333	0.0020	mg/L	<0.0020		$0.02 \mathrm{mg} / \mathrm{L}$	$2 \mathrm{mg} / \mathrm{L}$	$0.02 \mathrm{mg} / \mathrm{L}$	--	--	--		
Inorganics													
Chlorine, total	E326	0.050	mg/L	<0.050	PEHR	$1 \mathrm{mg} / \mathrm{L}$	--	--	--	--	--		
Microbiological Tests													
Coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/ 100 mL	Not Detected		200 CFU/100mL	--	200 CFU/100mL	--	--	--		
Total Metals													
Aluminum, total	E420	0.0030	mg/L	0.357	DLHC	$1 \mathrm{mg} / \mathrm{L}$	$50 \mathrm{mg} / \mathrm{L}$	--	--	--	--		
Antimony, total	E420	0.00010	mg/L	<0.00100	DLHC	--	$5 \mathrm{mg} / \mathrm{L}$	--	--	--	--		
Arsenic, total	E420	0.00010	mg/L	<0.00100	DLHC	$0.02 \mathrm{mg} / \mathrm{L}$	$1 \mathrm{mg} / \mathrm{L}$	$0.02 \mathrm{mg} / \mathrm{L}$	--	--	--		
Cadmium, total	E420	0.0000050	mg/L	<0.0000500	DLHC	$0.008 \mathrm{mg} / \mathrm{L}$	$0.7 \mathrm{mg} / \mathrm{L}$	$0.008 \mathrm{mg} / \mathrm{L}$	--	--	--		
Chromium, total	E420	0.00050	mg/L	<0.00500	DLHC	$0.08 \mathrm{mg} / \mathrm{L}$	$5 \mathrm{mg} / \mathrm{L}$	$0.08 \mathrm{mg} / \mathrm{L}$	--	--	--		
Cobalt, total	E420	0.00010	mg/L	0.00102	DLHC	--	$5 \mathrm{mg} / \mathrm{L}$	--	--	--	--		
Copper, total	E420	0.00050	mg/L	<0.00500	DLHC	$0.04 \mathrm{mg} / \mathrm{L}$	$3 \mathrm{mg} / \mathrm{L}$	$0.05 \mathrm{mg} / \mathrm{L}$	--	--	--		
Lead, total	E420	0.000050	mg/L	0.00119	DLHC	$0.12 \mathrm{mg} / \mathrm{L}$	$3 \mathrm{mg} / \mathrm{L}$	$0.12 \mathrm{mg} / \mathrm{L}$	--	--	--		
Manganese, total	E420	0.00010	mg/L	0.136	DLHC	$0.05 \mathrm{mg} / \mathrm{L}$	$5 \mathrm{mg} / \mathrm{L}$	$0.05 \mathrm{mg} / \mathrm{L}$	--	--	--		
Mercury, total	E508	0.0000050	mg/L	<0.0000050		$0.0004 \mathrm{mg} / \mathrm{L}$	$0.01 \mathrm{mg} / \mathrm{L}$	0.0004 mg/L	--	--	--		
Molybdenum, total	E420	0.000050	mg/L	0.0278	DLHC	--	$5 \mathrm{mg} / \mathrm{L}$	--	--	--	--		
Nickel, total	E420	0.00050	mg/L	<0.00500	DLHC	$0.08 \mathrm{mg} / \mathrm{L}$	$3 \mathrm{mg} / \mathrm{L}$	$0.08 \mathrm{mg} / \mathrm{L}$	--	--	--		
Selenium, total	E420	0.000050	mg/L	0.000566	DLHC	$0.02 \mathrm{mg} / \mathrm{L}$	$1 \mathrm{mg} / \mathrm{L}$	$0.02 \mathrm{mg} / \mathrm{L}$	--	--	--		
Silver, total	E420	0.000010	mg/L	<0.000100	DLHC	$0.12 \mathrm{mg} / \mathrm{L}$	$5 \mathrm{mg} / \mathrm{L}$	$0.12 \mathrm{mg} / \mathrm{L}$	--	--	--		
Tin, total	E420	0.00010	mg/L	<0.00100	DLHC	--	$5 \mathrm{mg} / \mathrm{L}$	--	--	--	--		

Analyte	Method	LOR	Unit	$\begin{gathered} \text { WT2309350-001 } \\ \text { (Continued) } \end{gathered}$		MISSUB STM	RMPSUB SAN	$\begin{gathered} \text { RMPSUB } \\ \text { STM } \\ \hline \end{gathered}$			
Total Metals - Continued											
Titanium, total	E420	0.00030	mg/L	0.00844	DLHC	--	$5 \mathrm{mg} / \mathrm{L}$	--	--	--	--
Zinc, total	E420	0.0030	mg/L	<0.0300	DLHC	$0.04 \mathrm{mg} / \mathrm{L}$	$3 \mathrm{mg} / \mathrm{L}$	$0.04 \mathrm{mg} / \mathrm{L}$	--	--	--
Speciated Metals											
Chromium, hexavalent [Cr VI], total	E532	0.00050	mg/L	<0.00050		--	--	--	--	--	--
Aggregate Organics											
Biochemical oxygen demand [BOD]	E550	2.0	mg/L	686	HTD	$15 \mathrm{mg} / \mathrm{L}$	$300 \mathrm{mg} / \mathrm{L}$	--	--	--	--
Carbonaceous biochemical oxygen demand [CBOD]	E555	2.0	mg/L	587	HTD	--	$300 \mathrm{mg} / \mathrm{L}$	$15 \mathrm{mg} / \mathrm{L}$	--	--	--
Oil \& grease (gravimetric)	E567	5.0	mg / L	<5.0		--	--	--	--	--	--
Oil \& grease, animal/vegetable (gravimetric)	EC567A.SG	5.0	mg/L	<5.0		--	$150 \mathrm{mg} / \mathrm{L}$	--	--	--	--
Oil \& grease, mineral (gravimetric)	E567SG	5.0	mg/L	<5.0		--	$15 \mathrm{mg} / \mathrm{L}$	--	--	--	--
Phenols, total (4AAP)	E562	0.0010	mg/L	0.0013		$0.008 \mathrm{mg} / \mathrm{L}$	$1 \mathrm{mg} / \mathrm{L}$	$0.008 \mathrm{mg} / \mathrm{L}$	--	--	--
Volatile Organic Compounds											
Benzene	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		$2 \mu \mathrm{~g} / \mathrm{L}$	$10 \mu \mathrm{~g} / \mathrm{L}$	$2 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Chloroform	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		--	$40 \mu \mathrm{~g} / \mathrm{L}$	$2 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Dichlorobenzene, 1,2-	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		--	$50 \mu \mathrm{~g} / \mathrm{L}$	$5.6 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Dichlorobenzene, 1,4-	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		--	$80 \mu \mathrm{~g} / \mathrm{L}$	6.8 g / L	--	--	--
Dichloroethylene, cis-1,2-	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		--	$4000 \mu \mathrm{~g} / \mathrm{L}$	$5.6 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Dichloromethane	E611D	1.0	$\mu \mathrm{g} / \mathrm{L}$	<1.0		--	$2000 \mu \mathrm{~g} / \mathrm{L}$	$5.2 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Dichloropropylene, trans-1,3-	E611D	0.30	$\mu \mathrm{g} / \mathrm{L}$	<0.30		--	$140 \mu \mathrm{~g} / \mathrm{L}$	$5.6 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Ethylbenzene	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		$2 \mu \mathrm{~g} / \mathrm{L}$	160 Mg/L	$2 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Methyl ethyl ketone [MEK]	E611D	20	$\mu \mathrm{g} / \mathrm{L}$	<20		--	$8000 \mu \mathrm{~g} / \mathrm{L}$	--	--	--	--
Styrene	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		--	$200 \mu \mathrm{~g} / \mathrm{L}$	--	--	--	--
Tetrachloroethane, 1,1,2,2-	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		--	$1400 \mu \mathrm{~g} / \mathrm{L}$	$17 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Tetrachloroethylene	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		--	$1000 \mu \mathrm{~g} / \mathrm{L}$	$4.4 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Toluene	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		$2 \mu \mathrm{~g} / \mathrm{L}$	270 Mg/L	$2 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Trichloroethylene	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		--	$400 \mu \mathrm{~g} / \mathrm{L}$	$8 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Xylene, m+p-	E611D	0.40	$\mu \mathrm{g} / \mathrm{L}$	<0.40		--	--	--	--	--	--
Xylene, o-	E611D	0.30	$\mu \mathrm{g} / \mathrm{L}$	<0.30		--	--	--	--	--	--
Xylenes, total	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50		$4.4 \mu \mathrm{~g} / \mathrm{L}$	$1400 \mu \mathrm{~g} / \mathrm{L}$	$4.4 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Volatile Organic Compounds Surrogates											
Bromofluorobenzene, 4-	E611D	1.0	\%	105		--	--	--	--	--	--
Difluorobenzene, 1,4-	E611D	1.0	\%	99.5		--	--	--	--	--	--

Page	$:$	5 of 7
Work Order	$:$	WT2309350
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Analyte	Method	LOR	Unit	$\begin{gathered} \text { WT2309350-001 } \\ \text { (Continued) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MISSUB } \\ \text { STM } \\ \hline \end{gathered}$	$\begin{gathered} \text { RMPSUB } \\ \text { SAN } \end{gathered}$	$\begin{gathered} \text { RMPSUB } \\ \text { STM } \\ \hline \end{gathered}$			
Polycyclic Aromatic Hydrocarbons										
Acenaphthene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Acenaphthylene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Anthracene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Benz(a)anthracene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Benzo(a)pyrene	E641A	0.0050	$\mu \mathrm{g} / \mathrm{L}$	<0.0050	--	--	--	--	--	--
Benzo(b+j)fluoranthene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Benzo(g,h,i)perylene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Benzo(k)fluoranthene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Chrysene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Dibenz(a,h)anthracene	E641A	0.0050	$\mu \mathrm{g} / \mathrm{L}$	<0.0050	--	--	--	--	--	--
Fluoranthene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Fluorene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Indeno(1,2,3-c,d)pyrene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Methylnaphthalene, 1-	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Methylnaphthalene, 2-	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
Naphthalene	E641A	0.050	$\mu \mathrm{g} / \mathrm{L}$	<0.050	--	--	--	--	--	--
Phenanthrene	E641A	0.020	$\mu \mathrm{g} / \mathrm{L}$	<0.020	--	--	--	--	--	--
Pyrene	E641A	0.010	$\mu \mathrm{g} / \mathrm{L}$	<0.010	--	--	--	--	--	--
PAHs, total (CCME sewer 18)	E641A	0.070	$\mu \mathrm{g} / \mathrm{L}$	<0.070	$2 \mu \mathrm{~g} / \mathrm{L}$	--	--	--	--	--
Chrysene-d12	E641A	0.1	\%	82.4	--	--	--	--	--	--
Naphthalene-d8	E641A	0.1	\%	97.4	--	--	--	--	--	--
Phenanthrene-d10	E641A	0.1	\%	99.7	--	--	--	--	--	--
Phthalate Esters										
bis(2-Ethylhexyl) phthalate [DEHP]	E655F	2.0	$\mu \mathrm{g} / \mathrm{L}$	<2.0	--	$12 \mu \mathrm{~g} / \mathrm{L}$	$8.8 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Di-n-butyl phthalate	E655F	1.0	$\mu \mathrm{g} / \mathrm{L}$	<1.0	--	$80 \mu \mathrm{~g} / \mathrm{L}$	$15 \mu \mathrm{~g} / \mathrm{L}$	--	--	--
Semi-Volatile Organics Surrogates										
Fluorobiphenyl, 2-	E655F	1.0	\%	85.1	--	--	--	--	--	--
Terphenyl-d14, p-	E655F	1.0	\%	92.8	--	--	--	--	--	--
Phenolics Surrogates										
Tribromophenol, 2,4,6-	E655F	0.20	\%	106	--	--	--	--	--	--
Nonylphenols										
Nonylphenol diethoxylates [NP2EO]	E749B	0.10	$\mu \mathrm{g} / \mathrm{L}$	<0.10	--	--	--	--	--	--
Nonylphenol ethoxylates, total	E749B	2.0	$\mu \mathrm{g} / \mathrm{L}$	<2.0	--	$200 \mu \mathrm{~g} / \mathrm{L}$	--	--	--	--

Please refer to the General Comments section for an explanation of any qualifiers detected.

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
BH 102	Water	Manganese, total		MISSUB	STM	$0.136 \mathrm{mg} / \mathrm{L}$	$0.05 \mathrm{mg} / \mathrm{L}$
	Water	Biochemical oxygen demand [BOD]		missub	STM	$686 \mathrm{mg} / \mathrm{L}$	$15 \mathrm{mg} / \mathrm{L}$
	Water	Biochemical oxygen demand [BOD]		RMPSUB	SAN	$686 \mathrm{mg} / \mathrm{L}$	$300 \mathrm{mg} / \mathrm{L}$
	Water	Carbonaceous biochemical oxygen demand [CBOD]		RMPSUB	SAN	$587 \mathrm{mg} / \mathrm{L}$	$300 \mathrm{mg} / \mathrm{L}$
	Water	Manganese, total		RMPSUB	STM	$0.136 \mathrm{mg} / \mathrm{L}$	$0.05 \mathrm{mg} / \mathrm{L}$
	Water	Carbonaceous biochemical oxygen demand [CBOD]		RMPSUB	STM	$587 \mathrm{mg} / \mathrm{L}$	$15 \mathrm{mg} / \mathrm{L}$

Key:
MISSUB
STM
RMPSUB
SAN
STM

Ontario Mississauga Storm Sewer Use By-Law (0046-2022) (March 2022)
Mississauga Storm Sewer (0046-2022)
Ontario Reg.Mun. of Peel Sewer Bylaw \#53-2010 (APR, 2019)
Peel Sanitary Sewer (53-2010)
Peel Storm Sewer (53-2010)

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WT2309350	Page	: 1 of 13
Client	McClymont \& Rak Engineers Inc.	Laboratory	: Waterloo - Environmental
Contact	:Richard Sukhu	Account Manager	Emily Smith
Address	111 Zenway Blvd. Unit 4 Vaughan ON Canada L4H 3H9	Address	60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	:416 6750160	Telephone	+1519 8866910
Project	:5822	Date Samples Received	: 13-Apr-2023 17:30
PO	: ----	Issue Date	25-Apr-2023 18:00
C-O-C number	:17-620765		
Sampler	:BR		
Site	:----		
Quote number	:2022 Price List		
No. of samples received	:1		
No. of samples analysed	:1		

 references and summaries.
Key
Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.
CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.
DQO: Data Quality Objective
LOR: Limit of Reporting (detection limit).
RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers
 Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur - please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

- No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

- Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

- No Quality Control Sample Frequency Outliers occur.

Page	$:$
Wof 13	
Work Order	$:$
Client	$:$
WT2309350	
Project	$:$

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water								
Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Laboratory Control Sample (LCS) Recoveries								
Volatile Organic Compounds	$\begin{aligned} & \text { QC-MRG2-9017180 } \\ & 02 \end{aligned}$	----	Methyl ethyl ketone [MEK]	78-93-3	E611D	148% LCS-H	70.0-130\%	Recovery greater than upper control limit

Result Qualifiers

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Page	$:$
Work Order	$:$
Client	\vdots

Analysis Holding Time Compliance

 are added (refer to COA).
 when interpreting results.
Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.
Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Page	$:$	5 of 13
Work Order	$:$	WT2309350
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Page	$:$	6 of 13
Work Order	$:$	WT2309350
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Legend \& Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

 should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: $\boldsymbol{x}=$ QC frequency outside specification; $\checkmark=$ QC frequency within specification						
Quality Control Sample Type			Count		Frequency (\%)		
Analytical Methods	Method	QC Lot \#	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Biochemical Oxygen Demand - 5 day	E550	897340	1	20	5.0	5.0	\checkmark
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	897569	1	14	7.1	5.0	\checkmark
E. coli (MF-mFC-BCIG)	E012A.EC	897728	1	3	33.3	5.0	\checkmark
Fluoride in Water by IC	E235.F	901447	1	11	9.0	5.0	\checkmark
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	897633	1	8	12.5	5.0	\checkmark
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	897632	1	8	12.5	5.0	\checkmark
pH by Meter	E108	901441	1	15	6.6	5.0	\checkmark
Phenols (4AAP) in Water by Colorimetry	E562	906864	1	20	5.0	5.0	\checkmark
Sulfate in Water by IC	E235.SO4	901448	1	11	9.0	5.0	\checkmark
Total Chlorine (Residual) by DPD Colourimetry	E326	901104	1	2	50.0	5.0	\checkmark
Total Cyanide	E333	903588	1	20	5.0	5.0	\checkmark
Total Hexavalent Chromium (Cr VI) by IC	E532	897519	1	11	9.0	5.0	\checkmark
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	901841	1	20	5.0	5.0	\checkmark
Total Mercury in Water by CVAAS	E508	897737	1	20	5.0	5.0	\checkmark
Total metals in Water by CRC ICPMS	E420	898147	1	20	5.0	5.0	\checkmark
Total Phosphorus by Colourimetry ($0.002 \mathrm{mg} / \mathrm{L}$)	E372-U	901840	1	20	5.0	5.0	\checkmark
TSS by Gravimetry	E160	901162	1	19	5.2	4.7	\checkmark
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	901718	1	20	5.0	5.0	\checkmark
Laboratory Control Samples (LCS)							
Biochemical Oxygen Demand - 5 day	E550	897340	1	20	5.0	5.0	\checkmark
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	897569	1	14	7.1	5.0	\checkmark
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	900969	1	2	50.0	5.0	\checkmark
Fluoride in Water by IC	E235.F	901447	1	11	9.0	5.0	\checkmark
Mineral Oil \& Grease by Gravimetry	E567SG	905683	1	16	6.2	5.0	\checkmark
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	897633	1	8	12.5	5.0	\checkmark
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	897632	1	8	12.5	5.0	\checkmark
Oil \& Grease by Gravimetry	E567	905682	1	20	5.0	5.0	\checkmark
PAHs by Hexane LVI GC-MS	E641A	900959	1	2	50.0	5.0	\checkmark
PCB Aroclors by GC-MS	E687	900975	1	19	5.2	4.7	\checkmark
pH by Meter	E108	901441	1	15	6.6	5.0	\checkmark
Phenols (4AAP) in Water by Colorimetry	E562	906864	1	20	5.0	5.0	\checkmark
Sulfate in Water by IC	E235.SO4	901448	1	11	9.0	5.0	\checkmark
Total Chlorine (Residual) by DPD Colourimetry	E326	901104	1	2	50.0	5.0	\checkmark
Total Cyanide	E333	903588	1	20	5.0	5.0	\checkmark
Total Hexavalent Chromium (Cr VI) by IC	E532	897519	1	11	9.0	5.0	\checkmark
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	901841	1	20	5.0	5.0	\checkmark

Matrix: Water Quality Control Sample Type							
			Count		Frequency (\%)		
Analytical Methods	Method	QC Lot \#	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Total Mercury in Water by CVAAS	E508	897737	1	20	5.0	5.0	\checkmark
Total metals in Water by CRC ICPMS	E420	898147	1	20	5.0	5.0	\checkmark
Total Phosphorus by Colourimetry ($0.002 \mathrm{mg} / \mathrm{L}$)	E372-U	901840	1	20	5.0	5.0	\checkmark
TSS by Gravimetry	E160	901162	1	19	5.2	4.7	\checkmark
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	901718	1	20	5.0	5.0	\checkmark
Method Blanks (MB)							
Biochemical Oxygen Demand - 5 day	E550	897340	1	20	5.0	5.0	\checkmark
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	897569	1	14	7.1	5.0	\checkmark
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	900969	1	2	50.0	5.0	\checkmark
E. coli (MF-mFC-BCIG)	E012A.EC	897728	1	3	33.3	5.0	\checkmark
Fluoride in Water by IC	E235.F	901447	1	11	9.0	5.0	\checkmark
Mineral Oil \& Grease by Gravimetry	E567SG	905683	1	16	6.2	5.0	\checkmark
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	897633	1	8	12.5	5.0	\checkmark
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	897632	1	8	12.5	5.0	\checkmark
Oil \& Grease by Gravimetry	E567	905682	1	20	5.0	5.0	\checkmark
PAHs by Hexane LVI GC-MS	E641A	900959	1	2	50.0	5.0	\checkmark
PCB Aroclors by GC-MS	E687	900975	1	19	5.2	4.7	\checkmark
Phenols (4AAP) in Water by Colorimetry	E562	906864	1	20	5.0	5.0	\checkmark
Sulfate in Water by IC	E235.SO4	901448	1	11	9.0	5.0	\checkmark
Total Chlorine (Residual) by DPD Colourimetry	E326	901104	1	2	50.0	5.0	\checkmark
Total Cyanide	E333	903588	1	20	5.0	5.0	\checkmark
Total Hexavalent Chromium (Cr VI) by IC	E532	897519	1	11	9.0	5.0	\checkmark
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	901841	1	20	5.0	5.0	\checkmark
Total Mercury in Water by CVAAS	E508	897737	1	20	5.0	5.0	\checkmark
Total metals in Water by CRC ICPMS	E420	898147	1	20	5.0	5.0	\checkmark
Total Phosphorus by Colourimetry ($0.002 \mathrm{mg} / \mathrm{L}$)	E372-U	901840	1	20	5.0	5.0	\checkmark
TSS by Gravimetry	E160	901162	1	19	5.2	4.7	\checkmark
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	901718	1	20	5.0	5.0	\checkmark
Matrix Spikes (MS)							
Fluoride in Water by IC	E235.F	901447	1	11	9.0	5.0	\checkmark
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	897633	1	8	12.5	5.0	\checkmark
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	897632	1	8	12.5	5.0	\checkmark
Phenols (4AAP) in Water by Colorimetry	E562	906864	1	20	5.0	5.0	\checkmark
Sulfate in Water by IC	E235.SO4	901448	1	11	9.0	5.0	\checkmark
Total Chlorine (Residual) by DPD Colourimetry	E326	901104	1	2	50.0	5.0	\checkmark
Total Cyanide	E333	903588	1	20	5.0	5.0	\checkmark
Total Hexavalent Chromium (Cr VI) by IC	E532	897519	1	11	9.0	5.0	\checkmark
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	901841	1	20	5.0	5.0	\checkmark
Total Mercury in Water by CVAAS	E508	897737	1	20	5.0	5.0	\checkmark

Matrix: Water	Evaluation: $x=$ QC frequency outside specification; $\checkmark=$ QC frequency within specification.						
Quality Control Sample Type			Count		Frequency (\%)		
Analytical Methods	Method	QC Lot \#	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Total metals in Water by CRC ICPMS	E420	898147	1	20	5.0	5.0	\checkmark
Total Phosphorus by Colourimetry ($0.002 \mathrm{mg} / \mathrm{L}$)	E372-U	901840	1	20	5.0	5.0	\checkmark
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	901718	1	20	5.0	5.0	\checkmark

Methodology References and Summaries

 Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC Waterloo Environmental	Water	ON E3433 (mod)	Following filtration $(0.45 \mu \mathrm{~m})$, and incubation at $44.5 \pm 0.2^{\circ} \mathrm{C}$ for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
pH by Meter	E108 Waterloo Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ} \mathrm{C}$). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160 Waterloo Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ} \mathrm{C}$, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Fluoride in Water by IC	E235.F Waterloo - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	E235.SO4 Waterloo Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Waterloo Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Chlorine (Residual) by DPD Colourimetry	E326 Waterloo Environmental	Water	APHA 4500-CI G (mod)	Chlorine (residual), as free or total, is analyzed using the DPD colourimetric method. The recommended hold time for this test is 15 minutes and field testing is recommended when determining Chlorine concentrations at the time of sampling. Chlorine if present in a sample container after sampling can be rapidly consumed by any inorganic or organic matter in the sample and dissipates rapidly into headspace. Laboratory results may be requested when chlorine concentrations that may be present at the time of laboratory analysis are required for the interpretation of other laboratory analysis where the presence of Chlorine may affect results. e.g. laboratory toxicity testing

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Cyanide	E333 Waterloo Environmental	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis. Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002 mg / L)	E372-U Waterloo Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total metals in Water by CRC ICPMS	E420 Waterloo Environmental	Water	$\begin{aligned} & \text { EPA 200.2/6020B } \\ & \text { (mod) } \end{aligned}$	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Waterloo Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Total Hexavalent Chromium (Cr VII) by IC	E532 Waterloo - Environmental	Water	APHA 3500-Cr C (Ion Chromatography)	Hexavalent Chromium is measured by lon chromatography-Post column reaction and UV detection. Results are based on an un-filtered, field-preserved sample.
Biochemical Oxygen Demand - 5 day	E550 Waterloo Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555 Waterloo Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry	E562 Waterloo Environmental	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide ($\mathrm{K} 3 \mathrm{Fe}(\mathrm{CN}) 6$) and 4 -amino-antipyrine (4-AAP) to form a red complex which is measured colorimetrically.
Oil \& Grease by Gravimetry	E567 Waterloo Environmental	Water	BC MOE Lab Manual (Oil \& Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Mineral Oil \& Grease by Gravimetry	E567SG Waterloo Environmental	Water	BC MOE Lab Manual (Oil \& Grease) (mod)	The entire water sample is extracted with hexane, followed by silica gel treatment after which the extract is evaporated to dryness. The residue is then weighed to determine Mineral Oil and Grease.
VOCs (Eastern Canada List) by Headspace GC-MS	E611D Waterloo Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PAHs by Hexane LVI GC-MS	E641A Waterloo - Environmental	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F Waterloo Environmental	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
PCB Aroclors by GC-MS	E687 Waterloo Environmental	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A Waterloo Environmental	Water	J. Chrom A849 (1999) p.467-482	An aliquot of $5.0 \pm 0.10 \mathrm{~mL}$ of filtered sample is spiked with Nonylphenol-D4, Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and analyzed by LC-MS/MS.
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B Waterloo Environmental	Water	J. Chrom A849 (1999) p.467-482	Water samples are filtered and analyzed on LCMS/MS by direct injection.
Animal \& Vegetable Oil \& Grease by Gravimetry	EC567A.SG Waterloo Environmental	Water	APHA 5520 (mod)	Animal \& vegetable oil and grease is calculated as follows: Oil \& Grease (gravimetric) minus Mineral Oil \& Grease (gravimetric)
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for TKN in water	EP318 Waterloo Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Digestion for Total Phosphorus in water	EP372 Waterloo Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.

Page	$:$	13 of 13
Work Order	$:$	WT2309350
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Oil \& Grease Extraction for Gravimetry	EP567 Waterloo Environmental	Water	BC MOE Lab Manual (Oil \& Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
VOCs Preparation for Headspace Analysis	EP581 Waterloo Environmental	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.
PHCs and PAHs Hexane Extraction	EP601 Waterloo Environmental	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
BNA Extraction	EP655 Waterloo Environmental	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
Pesticides, PCB, and Neutral Extractable Chlorinated Hydrocarbons Extraction	EP660 Waterloo Environmental	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid extraction.
Preparation of Nonylphenol and Nonylphenol Ethoxylates	EP749 Waterloo Environmental	Water	J. Chrom A849 (1999) p.467-482	An aliquot of $5.0 \pm 0.10 \mathrm{~mL}$ of filtered sample is spiked with Nonylphenol-D4, Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and analyzed by LC-MS/MS.

ALS Canada Ltd.

right solutions.
right partner.

QUALITY CONTROL REPORT

Work Order	$:$ WT2309350
Client	$:$ McClymont \& Rak Engineers Inc.
Contact	$:$ Richard Sukhu
Address	$: 111$ Zenway Blvd. Unit 4
	Vaughan ON Canada L4H 3H9
Telephone	$:$
Project	$: 5822$
PO	$:---$
C-O-C number	$: 17-620765$
Sampler	$:$ BR
Site	$:---$
Quote number	$: 2022$ Price List
No. of samples received	$: 1$
No. of samples analysed	$: 1$

Page
Laboratory
Account Manager
Address

Telephone
Date Samples Received : 13-Apr-2023 17:30
Date Analysis Commenced : 14-Apr-2023
Issue Date
25-Apr-2023 18:00

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.
This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Danielle Gravel	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Waterloo Metals, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Metals, Waterloo, Ontario
Katrina Zwambag	Business Manager - Environmental	Waterloo LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario

General Comments

 summaries.

Key :
Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot
CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.
DQO = Data Quality Objective.
LOR = Limit of Reporting (detection limit)
RPD = Relative Percent Difference
\# = Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page $:$	3 of 15	
Work Order :	WT2309350	
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Laboratory Duplicate (DUP) Report

 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(\%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC Lot: 901162)											
WT2309547-001	Anonymous	Solids, total suspended [TSS]	----	E160	30.0	mg/L	2330	2390	2.37\%	20\%	----
Physical Tests (QC Lot: 901441)											
WT2309388-001	Anonymous	pH	----	E108	0.10	pH units	7.64	7.75	1.43\%	4\%	----
Anions and Nutrients (QC Lot: 901447)											
WT2309367-001	Anonymous	Fluoride	16984-48-8	E235.F	0.200	mg/L	<0.200	<0.200	0	Diff <2x LOR	----
Anions and Nutrients (QC Lot: 901448)											
WT2309367-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	3.00	mg/L	70.7	70.2	0.644\%	20\%	----
Anions and Nutrients (QC Lot: 901840)											
WT2309288-014	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0067	0.0055	0.0012	Diff <2x LOR	----
Anions and Nutrients (QC Lot: 901841)											
HA2300138-002	Anonymous	Kjeldahl nitrogen, total [TKN]	----	E318	0.050	mg/L	0.137	0.144	0.007	Diff <2x LOR	----
Cyanides (QC Lot: 903588)											
EO2302909-001	Anonymous	Cyanide, strong acid dissociable (Total)	----	E333	0.0050	mg/L	0.0074	0.0074	0.00002	Diff $<2 \times$ LOR	----
Inorganics (QC Lot: 901104)											
WT2309350-001	BH 102	Chlorine, total	7782-50-5	E326	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	----
Microbiological Tests (QC Lot: 897728)											
WT2309350-001	BH 102	Coliforms, Escherichia coli [E. coli]	----	E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	----
Total Metals (QC Lot: 897737)											
BF2300013-008	Anonymous	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	----
Total Metals (QC Lot: 898147)											
WT2309350-001	BH 102	Aluminum, total Antimony, total Arsenic, total Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total Manganese, total	$\begin{aligned} & 7429-90-5 \\ & 7440-36-0 \\ & 7440-38-2 \\ & 7440-43-9 \\ & 7440-47-3 \\ & 7440-48-4 \\ & 7440-50-8 \\ & 7439-92-1 \\ & 7439-96-5 \end{aligned}$	E420	0.0300 0.00100 0.00100 0.0000500 0.00500 0.00100 0.00500 0.000500 0.00100	mg/L mg / L mg/L mg/L mg/L mg / L mg/L mg / L mg/L	0.357 <0.00100 <0.00100 <0.0000500 <0.00500 0.00102 <0.00500 0.00119 0.136	$\begin{gathered} 0.392 \\ <0.00100 \\ <0.00100 \\ <0.0000500 \\ <0.00500 \\ 0.00108 \\ <0.00500 \\ 0.00121 \\ 0.141 \end{gathered}$	9.20% 0 0 0 0 0.00006 0 0.000020 2.96%	$\quad 20 \%$ Diff $<2 \times$ LOR 20%	

Page $:$	4 of 15	
Work Order :	WT2309350	
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(\%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lot: 898147) - continued											
WT2309350-001	BH 102	Molybdenum, total	7439-98-7	E420	0.000500	mg/L	0.0278	0.0292	5.08\%	20\%	----
		Nickel, total	7440-02-0	E420	0.00500	mg/L	<0.00500	<0.00500	0	Diff <2x LOR	----
		Selenium, total	7782-49-2	E420	0.000500	mg/L	0.000566	0.000556	0.000011	Diff <2x LOR	----
		Silver, total	7440-22-4	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	----
		Tin, total	7440-31-5	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	----
		Titanium, total	7440-32-6	E420	0.00300	mg/L	0.00844	0.00832	0.00012	Diff $<2 \times$ LOR	----
		Zinc, total	7440-66-6	E420	0.0300	mg/L	<0.0300	<0.0300	0	Diff <2x LOR	----

Speciated Metals (QC Lot: 897519)											
WT2309024-001	Anonymous	Chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.00050	mg/L	<0.00050	<0.00050	0	Diff $<2 \times$ LOR	----

WT2309668-001	Anonymous	Benzene	71-43-2	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	0.75	0.76	0.01	Diff <2x LOR	----
		Chloroform	67-66-3	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	3.32	3.42	2.97\%	30\%	----
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50	<0.50	0	Diff <2x LOR	----
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50	<0.50	0	Diff <2x LOR	----
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50	<0.50	0	Diff <2x LOR	----
		Dichloromethane	75-09-2	E611D	1.0	$\mu \mathrm{g} / \mathrm{L}$	5.9	6.0	0.04	Diff $<2 \times$ LOR	----
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	$\mu \mathrm{g} / \mathrm{L}$	<0.30	<0.30	0	Diff <2x LOR	----
		Ethylbenzene	100-41-4	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	119	120	1.58\%	30\%	----
		Methyl ethyl ketone [MEK]	78-93-3	E611D	20	$\mu \mathrm{g} / \mathrm{L}$	103	113	10	Diff <2x LOR	----
		Styrene	100-42-5	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50	<0.50	0	Diff <2x LOR	----
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	0.51	0.58	0.07	Diff <2x LOR	----
		Tetrachloroethylene	127-18-4	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50	<0.50	0	Diff <2x LOR	----
		Toluene	108-88-3	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	1.22	1.27	0.05	Diff <2x LOR	----
		Trichloroethylene	79-01-6	E611D	0.50	$\mu \mathrm{g} / \mathrm{L}$	<0.50	<0.50	0	Diff <2x LOR	----
		Xylene, m+p-	179601-23-1	E611D	0.40	$\mu \mathrm{g} / \mathrm{L}$	231	236	2.06\%	30\%	----
		Xylene, o-	95-47-6	E611D	0.30	$\mu \mathrm{g} / \mathrm{L}$	4.31	4.37	1.38\%	30\%	----

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(\%) or Difference	Duplicate Limits	Qualifier
Nonylphenols (QC Lot: 897632) - continued											
WT2309182-001	Anonymous	Nonylphenols [NP]	84852-15-3	E749A	1.0	$\mu \mathrm{g} / \mathrm{L}$	<1.0	<1.0	0	Diff <2x LOR	----
Nonylphenols (QC Lot: 897633)											
WT2309182-001	Anonymous	Nonylphenol diethoxylates [NP2EO] Nonylphenol monoethoxylates [NP1EO]	n/a n/a	$\begin{aligned} & \text { E749B } \\ & \text { E749B } \end{aligned}$	$\begin{aligned} & 0.10 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{g} / \mathrm{L} \\ & \mu \mathrm{~g} / \mathrm{L} \end{aligned}$	$\begin{aligned} & <0.10 \\ & <10.0 \end{aligned}$	$\begin{aligned} & <0.10 \\ & <10.0 \end{aligned}$	0	Diff <2x LOR Diff $<2 \times$ LOR	----

Page $:$	6 of 15
Work Order :	WT2309350
Client	$:$
Project	$:$

Method Blank (MB) Report

 contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 901162)						
Solids, total suspended [TSS]	----	E160	3	mg/L	<3.0	----
Anions and Nutrients (QCLot: 901447)						
Fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	----
Anions and Nutrients (QCLot: 901448)						
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	----
Anions and Nutrients (QCLot: 901840)						
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	----
Anions and Nutrients (QCLot: 901841)						
Kjeldahl nitrogen, total [TKN]	----	E318	0.05	mg/L	<0.050	----
Cyanides (QCLot: 903588)						
Cyanide, strong acid dissociable (Total)	---	E333	0.002	mg/L	<0.0020	----
Inorganics (QCLot: 901104)						
Chlorine, total	7782-50-5	E326	0.05	mg/L	<0.050	----
Microbiological Tests (QCLot: 897728)						
Coliforms, Escherichia coli [E. coli]	----	E012A.EC	1	CFU/100mL	<1	----
Total Metals (QCLot: 897737)						
Mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	----
Total Metals (QCLot: 898147)						
Aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	----
Antimony, total	7440-36-0	E420	0.0001	mg / L	<0.00010	----
Arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	----
Cadmium, total	7440-43-9	E420	0.000005	mg / L	<0.0000050	----
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	----
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	----
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	----
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	----
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	----
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	----
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	----
Selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	----
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	----
Tin, total	7440-31-5	E420	0.0001	mg / L	<0.00010	----

Page $:$	8 of 15	
Work Order :	WT2309350	
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons (QCLot: 900959) - continued						
Benz(a)anthracene	56-55-3	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Benzo(a)pyrene	50-32-8	E641A	0.005	$\mu \mathrm{g} / \mathrm{L}$	<0.0050	----
Benzo(b+j)fluoranthene	n/a	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Benzo(g,h,i)perylene	191-24-2	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Benzo(k)fluoranthene	207-08-9	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Chrysene	218-01-9	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Dibenz(a,h)anthracene	53-70-3	E641A	0.005	$\mu \mathrm{g} / \mathrm{L}$	<0.0050	----
Fluoranthene	206-44-0	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Fluorene	86-73-7	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Methylnaphthalene, 1-	90-12-0	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Methylnaphthalene, 2-	91-57-6	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Naphthalene	91-20-3	E641A	0.05	$\mu \mathrm{g} / \mathrm{L}$	<0.050	----
Phenanthrene	85-01-8	E641A	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Pyrene	129-00-0	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	<0.010	----
Phthalate Esters (QCLot: 900969)						
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	$\mu \mathrm{g} / \mathrm{L}$	<2.0	----
Di-n-butyl phthalate	84-74-2	E655F	1	$\mu \mathrm{g} / \mathrm{L}$	<1.0	----
Nonylphenols (QCLot: 897632)						
Nonylphenols [NP]	84852-15-3	E749A	1	$\mu \mathrm{g} / \mathrm{L}$	<1.0	----
Nonylphenols (QCLot: 897633)						
Nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	$\mu \mathrm{g} / \mathrm{L}$	<0.10	----
Nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	$\mu \mathrm{g} / \mathrm{L}$	<2.0	----
Polychlorinated Biphenyls (QCLot: 900975)						
Aroclor 1016	12674-11-2	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Aroclor 1221	11104-28-2	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Aroclor 1232	11141-16-5	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Aroclor 1242	53469-21-9	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Aroclor 1248	12672-29-6	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Aroclor 1254	11097-69-1	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Aroclor 1260	11096-82-5	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Aroclor 1262	37324-23-5	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----
Aroclor 1268	11100-14-4	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	<0.020	----

Page $:$	10 of 15	
Work Order :	WT2309350	
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Laboratory Control Sample (LCS) Report

 results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (\%)	Reco	(\%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 901162)									
Solids, total suspended [TSS]	----	E160	3	mg/L	$150 \mathrm{mg} / \mathrm{L}$	96.0	85.0	115	----
Physical Tests (QCLot: 901441)									
pH	----	E108	----	pH units	7 pH units	100	98.0	102	----
Anions and Nutrients (QCLot: 901447)									
Fluoride	16984-48-8	E235.F	0.02	mg/L	$1 \mathrm{mg} / \mathrm{L}$	101	90.0	110	----
Anions and Nutrients (QCLot: 901448)									
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	$100 \mathrm{mg} / \mathrm{L}$	98.0	90.0	110	----
Anions and Nutrients (QCLot: 901840)									
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	$0.845 \mathrm{mg} / \mathrm{L}$	99.2	80.0	120	----
Anions and Nutrients (QCLot: 901841)									
Kjeldahl nitrogen, total [TKN]	----	E318	0.05	mg/L	$4 \mathrm{mg} / \mathrm{L}$	97.6	75.0	125	----
Cyanides (QCLot: 903588)									
Cyanide, strong acid dissociable (Total)	----	E333	0.002	mg/L	$0.25 \mathrm{mg} / \mathrm{L}$	95.6	80.0	120	----
Inorganics (QCLot: 901104)									
Chlorine, total	7782-50-5	E326	0.05	mg/L	0.28861 mg/L	100	75.0	125	----
Total Metals (QCLot: 897737)									
Mercury, total	7439-97-6	E508	0.000005	mg/L	$0.0001 \mathrm{mg} / \mathrm{L}$	97.1	80.0	120	----
Total Metals (QCLot: 898147)									
Aluminum, total	7429-90-5	E420	0.003	mg/L	0.1 mg/L	94.9	80.0	120	----
Antimony, total	7440-36-0	E420	0.0001	mg / L	$0.05 \mathrm{mg} / \mathrm{L}$	98.0	80.0	120	----
Arsenic, total	7440-38-2	E420	0.0001	mg / L	$0.05 \mathrm{mg} / \mathrm{L}$	102	80.0	120	----
Cadmium, total	7440-43-9	E420	0.000005	mg / L	$0.005 \mathrm{mg} / \mathrm{L}$	103	80.0	120	----
Chromium, total	7440-47-3	E420	0.0005	mg/L	$0.0125 \mathrm{mg} / \mathrm{L}$	98.4	80.0	120	----
Cobalt, total	7440-48-4	E420	0.0001	mg/L	$0.0125 \mathrm{mg} / \mathrm{L}$	101	80.0	120	----
Copper, total	7440-50-8	E420	0.0005	mg / L	$0.0125 \mathrm{mg} / \mathrm{L}$	100	80.0	120	----
Lead, total	7439-92-1	E420	0.00005	mg / L	$0.025 \mathrm{mg} / \mathrm{L}$	107	80.0	120	----
Manganese, total	7439-96-5	E420	0.0001	mg / L	$0.0125 \mathrm{mg} / \mathrm{L}$	101	80.0	120	----
Molybdenum, total	7439-98-7	E420	0.00005	mg / L	$0.0125 \mathrm{mg} / \mathrm{L}$	93.5	80.0	120	----
Nickel, total	7440-02-0	E420	0.0005	mg / L	$0.025 \mathrm{mg} / \mathrm{L}$	99.0	80.0	120	----

Page $:$	12 of 15	
Work Order :	WT2309350	
Client $:$	McClymont \& Rak Engineers Inc.	
Project	$:$	5822

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (\%)	Reco	(\%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot: 901718) - continued									
Xylene, o-	95-47-6	E611D	0.3	$\mu \mathrm{g} / \mathrm{L}$	$100 \mu \mathrm{~g} / \mathrm{L}$	96.4	70.0	130	----
Polycyclic Aromatic Hydrocarbons (QCLot: 900959)									
Acenaphthene	83-32-9	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	107	50.0	140	----
Acenaphthylene	208-96-8	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	96.3	50.0	140	----
Anthracene	120-12-7	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	95.5	50.0	140	----
Benz(a)anthracene	56-55-3	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	108	50.0	140	----
Benzo(a)pyrene	50-32-8	E641A	0.005	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	98.2	50.0	140	----
Benzo($\mathrm{b}+\mathrm{j}$)fluoranthene	n/a	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	100	50.0	140	----
Benzo(g, h, i) perylene	191-24-2	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	109	50.0	140	----
Benzo(k)fluoranthene	207-08-9	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	102	50.0	140	----
Chrysene	218-01-9	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	110	50.0	140	----
Dibenz(a,h)anthracene	53-70-3	E641A	0.005	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	104	50.0	140	----
Fluoranthene	206-44-0	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	111	50.0	140	----
Fluorene	86-73-7	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	0.5263 mg/L	86.3	50.0	140	----
Indeno(1,2,3-c, d) pyrene	193-39-5	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	114	50.0	140	----
Methylnaphthalene, 1-	90-12-0	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	91.8	50.0	140	----
Methylnaphthalene, 2-	91-57-6	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	94.5	50.0	140	----
Naphthalene	91-20-3	E641A	0.05	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	92.9	50.0	140	----
Phenanthrene	85-01-8	E641A	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	107	50.0	140	----
Pyrene	129-00-0	E641A	0.01	$\mu \mathrm{g} / \mathrm{L}$	$0.5263 \mu \mathrm{~g} / \mathrm{L}$	111	50.0	140	---
Phthalate Esters (QCLot: 900969)									
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	$\mu \mathrm{g} / \mathrm{L}$	$6.4 \mu \mathrm{~g} / \mathrm{L}$	110	50.0	140	----
Di-n-butyl phthalate	84-74-2	E655F	1	$\mu \mathrm{g} / \mathrm{L}$	$6.4 \mu \mathrm{~g} / \mathrm{L}$	102	50.0	140	----
Nonylphenols (QCLot: 897632)									
Nonylphenols [NP]	84852-15-3	E749A	1	$\mu \mathrm{g} / \mathrm{L}$	$10 \mu \mathrm{~g} / \mathrm{L}$	105	75.0	125	----
Nonylphenols (QCLot: 897633)									
Nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	$\mu \mathrm{g} / \mathrm{L}$	1 mg/L	95.4	75.0	125	----
Nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2			112	75.0	125	----
Polychlorinated Biphenyls (QCLot: 900975)									
Aroclor 1016	12674-11-2	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.2 \mu \mathrm{~g} / \mathrm{L}$	114	60.0	140	----
Aroclor 1221	11104-28-2	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.2 \mu \mathrm{~g} / \mathrm{L}$	114	60.0	140	----
Aroclor 1232	11141-16-5	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.2 \mu \mathrm{~g} / \mathrm{L}$	114	60.0	140	----

Page Work Order Client Project	13 of 15 WT2309350 McClymont \& Rak Engineers Inc. 5822									
Sub-Matrix: Water		Method		Unit	Laboratory Control Sample (LCS) Report					
			SpikeConcentration		$\begin{gathered} \text { Recovery (\%) } \\ \hline \text { LCS } \end{gathered}$	Recovery Limits (\%)				
Analyte	CAS Number					LOR	Low	High	Qualifier	
Polychlorinated Biphenyls (QCLot: 900975) - continued										
Aroclor 1242	53469-21-9		E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	0.2 mg/L	114	60.0	140	----
Aroclor 1248	12672-29-6	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.2 \mathrm{~g} / \mathrm{L}$	97.2	60.0	140	----	
Aroclor 1254	11097-69-1	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.2 \mathrm{~g} / \mathrm{L}$	102	60.0	140	----	
Aroclor 1260	11096-82-5	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.2 \mu \mathrm{~g} / \mathrm{L}$	121	60.0	140	---	
Aroclor 1262	37324-23-5	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.2 \mu \mathrm{~g} / \mathrm{L}$	121	60.0	140	---	
Aroclor 1268	11100-14-4	E687	0.02	$\mu \mathrm{g} / \mathrm{L}$	$0.2 \mu \mathrm{~g} / \mathrm{L}$	121	60.0	140	----	

Qualifiers

Qualifier

Page $:$	14 of 15	
Work Order :	WT2309350	
Client	$:$	McClymont \& Rak Engineers Inc.
Project	$:$	5822

Matrix Spike (MS) Report

 results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report					
					Spike		Recovery (\%)	Recovery Limits (\%)		Qualifier
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	
Anions and Nutrients (QCLot: 901447)										
WT2309367-001	Anonymous	Fluoride	16984-48-8	E235.F	$9.67 \mathrm{mg} / \mathrm{L}$	$10 \mathrm{mg} / \mathrm{L}$	96.7	75.0	125	----
Anions and Nutrients (QCLot: 901448)										
WT2309367-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	$912 \mathrm{mg} / \mathrm{L}$	$1000 \mathrm{mg} / \mathrm{L}$	91.2	75.0	125	----
Anions and Nutrients (QCLot: 901840)										
WT2309288-014	Anonymous	Phosphorus, total	7723-14-0	E372-U	$0.102 \mathrm{mg} / \mathrm{L}$	0.1 mg/L	102	70.0	130	----
Anions and Nutrients (QCLot: 901841)										
HA2300138-002	Anonymous	Kjeldahl nitrogen, total [TKN]	----	E318	$2.73 \mathrm{mg} / \mathrm{L}$	$2.5 \mathrm{mg} / \mathrm{L}$	109	70.0	130	----
Cyanides (QCLot: 903588)										
EO2302909-001	Anonymous	Cyanide, strong acid dissociable (Total)	----	E333	$0.229 \mathrm{mg} / \mathrm{L}$	$0.25 \mathrm{mg} / \mathrm{L}$	91.7	75.0	125	----
Inorganics (QCLot: 901104)										
WT2309350-001	BH 102	Chlorine, total	7782-50-5	E326	$0.250 \mathrm{mg} / \mathrm{L}$	0.28861 mg/L	86.6	70.0	130	----
Total Metals (QCLot: 897737)										
BF2300013-009	Anonymous	Mercury, total	7439-97-6	E508	$0.0000975 \mathrm{mg} / \mathrm{L}$	0.0001 mg/L	97.5	70.0	130	----
Total Metals (QCLot: 898147)										
WT2309355-001	Anonymous	Aluminum, total Antimony, total Arsenic, total Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total Manganese, total Molybdenum, total Nickel, total Selenium, total Silver, total Tin, total Titanium, total	$\begin{aligned} & 7429-90-5 \\ & 7440-36-0 \\ & 7440-38-2 \\ & 7440-43-9 \\ & 7440-47-3 \\ & 7440-48-4 \\ & 7440-50-8 \\ & 7439-92-1 \\ & 7439-96-5 \\ & 7439-98-7 \\ & 7440-02-0 \\ & 7782-49-2 \\ & 7440-22-4 \\ & 7440-31-5 \\ & 7440-32-6 \end{aligned}$	$\begin{array}{\|l} \text { E420 } \\ \text { E420 } \end{array}$	$0.0998 \mathrm{mg} / \mathrm{L}$ $0.0519 \mathrm{mg} / \mathrm{L}$ $0.0534 \mathrm{mg} / \mathrm{L}$ $0.00510 \mathrm{mg} / \mathrm{L}$ $0.0129 \mathrm{mg} / \mathrm{L}$ $0.0130 \mathrm{mg} / \mathrm{L}$ $0.0122 \mathrm{mg} / \mathrm{L}$ $0.0257 \mathrm{mg} / \mathrm{L}$ $0.0130 \mathrm{mg} / \mathrm{L}$ $0.0126 \mathrm{mg} / \mathrm{L}$ $0.0248 \mathrm{mg} / \mathrm{L}$ $0.0509 \mathrm{mg} / \mathrm{L}$ 0.00474 mg/L $0.0255 \mathrm{mg} / \mathrm{L}$ $0.0132 \mathrm{mg} / \mathrm{L}$	$\begin{gathered} 0.1 \mathrm{mg} / \mathrm{L} \\ 0.05 \mathrm{mg} / \mathrm{L} \\ 0.05 \mathrm{mg} / \mathrm{L} \\ 0.005 \mathrm{mg} / \mathrm{L} \\ 0.0125 \mathrm{mg} / \mathrm{L} \\ 0.0125 \mathrm{mg} / \mathrm{L} \\ 0.0125 \mathrm{mg} / \mathrm{L} \\ 0.025 \mathrm{mg} / \mathrm{L} \\ 0.0125 \mathrm{mg} / \mathrm{L} \\ 0.0125 \mathrm{mg} / \mathrm{L} \\ 0.025 \mathrm{mg} / \mathrm{L} \\ 0.05 \mathrm{mg} / \mathrm{L} \\ 0.005 \mathrm{mg} / \mathrm{L} \\ 0.025 \mathrm{mg} / \mathrm{L} \\ 0.0125 \mathrm{mg} / \mathrm{L} \end{gathered}$	99.8 104 107 102 104 104 97.9 103 104 101 99.3 102 94.8 102 106	$\begin{aligned} & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \\ & 70.0 \end{aligned}$	130 130 130 130 130 130 130 130 130 130 130 130 130 130 130	

