

1271 DENISON ST., UNIT 45, MARKHAM, ONTARIO, L3R 4B5 TEL: 905.470.0160 FAX: 905.475.6371 denison@mccrak.com

WWW.MCCRAK.COM

MCR ENGINEERS LTD. GEO-ENVIRONMENTAL CONSULTANTS

G5822

AUGUST 2023

GEOTECHNICAL REPORT PROPOSED DEVELOPMENT 3085 – 3105 HURONTARIO STREET MISSISSAUGA, ONTARIO

DISTRIBUTION:

1 COPY (electronic) MATTAMY HOMES CANADA

1 COPY MCR ENGINEERS LTD.

PREPARED FOR:

MATTAMY HOMES CANDA 3300 BLOOR ST. WEST, SUITE 1800, TORONTO, ONTARIO M8X 2X2

TABLE OF CONTENTS

ltem		Page
1.0		1
2.0	SITE CONDITIONS	1
3.0	PROPOSED DEVELOPMENT	1
4.0	SITE INVESTIGATION	2
5.0	SOIL AND GROUNDWATER CONDITIONS	3
6.0	FOUNDATION	5
6.1 6.2	Spread/Strip Footings General Foundation Notes	6 6
7.0	EARTHQUAKE CONSIDERATION	7
8.0	BASEMENT WALLS	8
9.0	DEWATERING	9
10.0	EXCAVATION AND BACKFILL	10
11.0	SHORING	11
12.0	SLAB ON GRADE AND PERMANENT DRAINAGE	13
13.0	PAVEMENT	14
14.0	CHEMICAL PROPERTIES OF THE SOIL	16
14.1 14.2	Corrosivity Sulphate Attack	
15.0	GENERAL COMMENTS	18

DRAWINGS

Drawing No. 1	Borehole Location Plan
Drawing No. 2 & 3	Subsurface Profiles
Drawing No. 4	Suggested Exterior Drainage Against Shoring
Drawing No. 5	Permanent Water Drainage System (PWDS)
Drawing No. 6	Typical Elevator Pit Waterproofing
Drawing No. 7	Suggested Approach Slab Detail
Drawing No. 8 & 9	Pavement above Garage Roof

TABLES

Table 1	Groundwater Level Monitoring Results
Table 2	Pavement Structural Design Matrix as Per City of Mississauga
Table 3	Results of Soil Corrosivity Potential

APPENDICES

Appendix A	Proposed Redevelopment Drawings
Appendix B	Borehole Data Sheets (by MCR)
Appendix C	Borehole Data Sheets (by Others)
Appendix D	Soil Chemical Analyses Results
Appondix E	City of Mississauga Standards for Pavement and
	Road Base Design Requirements

1.0 INTRODUCTION

MCR was retained by Mattamy Homes Canada (the Client), to carry out a geotechnical investigation for the proposed residential and commercial development located at the 3081 – 3095 Hurontario Street, in the City of Mississauga, Ontario (hereafter referred to as 'the Site').

The objective of the report was to determine design data required for foundations, dewatering, shoring/excavation, backfill, slab on grade and pavement. The above design and construction issues are addressed in the following report.

2.0 SITE CONDITIONS

The site is located on the east side of Hurontario Street, between Kirwin Avenue and Dundas Street East, in the City of Mississauga.

The Site is presently occupied by two [2] storey commercial building, in the southwestern portion and a two [2] storey above grade parking structure on the eastern portion of the Site. The Site is bounded by Kirwin Avenue to the north, residential building to the east, commercial buildings to the south and Hurontario Street to the west.

3.0 PROPOSED DEVELOPMENT

The Site is proposed for a residential and commercial development consisting of a forty [40] storey building with four [4] storey podium (Building 1), a forty-four [44] storey building with four [4] storey podium (Building 2), a twenty-eight [28] storey building with six [6] storey podium (Building 3) and a twenty-four [24] storey building with six [6] storey podium (Building 4) over four [4] levels of combined underground parking (Appendix B).

It is understood that the ground floor finished elevation (FFE) ranges from 117.96 to 116.00 m and P4 FFE will be at 100.95 m.

4.0 SITE INVESTIGATION

Three [3] boreholes, BH 1, BH 2 and BH 101, were drilled at the subject site by Soil-Mat on April 8, 2019, and March 12, 2020 to depths of 7.90, 4.65 and 13.85 m.

Two [2] boreholes, BH 19-3 and BH 19-4, were drilled at the subject site by WSP on July 3, 2019, to depths of 4.40 m.

Two [2] supplementary boreholes, BH 101 and BH 102, were drilled at the subject site by MCR on March 15 and 16, 2023, to depths of 5.05 and 5.35 m.

Monitoring wells were installed in all the boreholes, except BH 1, for long term groundwater monitoring and sampling.

The borehole locations are shown on Drawing No. 1 and borehole logs by MCR and others are enclosed in Appendices B and C.

Soil samples were taken using the Standard Penetration Test (SPT) method and were placed in clean, sealed plastic bags in the field and transported back to our laboratory where they were further examined for soil characterization.

Selected samples were transported to Bureau Veritas to be tested for common corrosion parameters, including pH, resistivity, oxygen reduction potential (redox), chlorides and sulphate content. The laboratory test results are presented in Appendix D.

The elevation of the borehole by Soil-Mat was determined relative to a geodetic benchmark, described as the door sill located on the north face of the existing building located at 3085 Hurontario Street West, with the reported geodetic elevation of 116.40 metres, all as per the Site Servicing and Grading Plan drawing by McConnell Maughan Limited Plan 313E-2., dated July 1986.

MCR borehole elevations referred to in this report are geodetic and metric and are interpolated from the survey plans by R-PE Surveying Ltd., dated February 24, 2021.

5.0 SOIL AND GROUNDWATER CONDITIONS

Subsurface conditions encountered at the borehole locations are shown on Borehole Log Sheets, attached in Appendices Band C, and summarized on a Soil Profile/Drawing No. 2&3, as follows:

Pavement: A layer of asphalt, 100 to 200 mm in thickness, was present at the surface of BH 1, BH 2, and BH 101 (by Soil-Mat) and BH 101 (by MCR) and was followed by 150 to 250 mm of granular fill. A layer of concrete, 165 to 200 mm in thickness, was present at the surface of BH 19-3 (by WSP) and BH 102 (by MCR) and was followed by 150 to mm of granular fill in BH 102.

Possible topsoil with approximate 100 mm thickness was observed at the surface of BH 19-4 (by WSP).

For the purpose of offsite disposal, the type/quality and extent of the existing fill should be explored by further test pit/borehole investigation prior to contract award.

Sand/Silty Sand Till: Loose to very dense layer sand/silty sand till was detected below the pavement/possible topsoil in all boreholes and extended to depths of 1.75 to 3.65 m. The brown/light brown/dark brown sand/silty sand till deposit was in moist to wet condition and contained trace gravel and boulder, some silt and occasional organics in upper level.

Clayey Silt (Till): Very stiff to hard clayey stilt (till) was encountered below the sand/silty sand (till) in BH 1, BH 2 and BH 101 (by Soil-Mat), BH 19-3 and BH19-4 (by WSP) and BH 102 (by MCR) and extended to the underlying weathered shale at depths of 2.45 to 4.30 m. The grey clayey silt (till) deposit was in a moist to wet condition and contained trace of sand and gravel.

Silty Sand Till/Weathered Shale Complex: Very dense silty sand till/weathered shale complex was found below the silty sand till in BH 101 (by MCR) and extended to the underlying weathered shale at a depth of 4.60 m. The brown silty sand till/weathered shale complex was in a wet condition and contained trace gravel.

It should be noted that the till/sand soil is an unsorted sediment; therefore, boulders and cobbles are anticipated.

Shale Bedrock: Weathered shale bedrock was spotted below the clayey silt (till)/silty sand till/weathered shale complex in all boreholes at about depth of 2.45 to 4.60 m, i.e., at about Elevations of 114.00 to 111.25 m, and extended to the maximum depth of the borehole.

The surface of the shale bedrock will vary across the site; therefore, it should be confirmed by further borehole investigation and during foundation installations.

Groundwater: Upon competition of drilling, BH 101 (by Soil-Mat) remained dry. Groundwater level was not measured in BH 101 and BH 102 (by MCR) upon competition of drilling. The results of groundwater level monitoring are summarized in Table 1.

Monitoring Well Id	Ground Surface Elevation	Water Level	Groundwater Elevation	Date of Measurement	Depth of Well	Depth of Bentonite	Length of Screen	Inside Diameter of Pipe	Top of Monitoring Well	
	(masl)	(mbgs)	(masl)	(mm/dd/yyyy)	(mbgs)	(mbgs)	(m)	(mm)	W CII	
Boreholes by Soil-Mat										
		3.10	113.05	04/24/2019					Fluch	
BH 2	116.15	3.00	113.15	05/07/2019	4.40	2.80	1.52	50	Flush	
		3.10	113.05	04/17/202					Would	
	116 22	4.60	111.63	03/27/2020	12.62	4 20	30 9.20	20 0.20	50	Flush
	110.25	4.50	111.73	04/17/2020	15.05	4.30		50	Mount	
Boreholes by	/ WSP									
BH 10-3	115 51	2 51	112.00	8/0/2010	2 5 5	1 95	2.05	50	Flush	
BIT 19-5	115.51	2.51	113.00	8/9/2019	5.55	1.85	1.85 5.05	50	Mount	
ВН 10- /	112 26	2 1 2	115 12	8/0/2010	2 5 5	1 95	1.85 3.05	50	Flush	
BIT 13-4	110.20	5.15	115.15	0/ 5/ 2015	5.55	1.05		50	Mount	
Boreholes by	/ MCR	r	1	1	n	1		r		
BH 101	116 95	1 83	115 12	04/11/2023	4 57	0.91	3 05	50	Flush	
	110.55	1.00	110/12	0 1/ 11/ 2020		0.51	5.05		Mount	
BH 102	116.47	3.71	112.76	04/11/2023	5.33	1.68	3.05	50	Flush	
		0		0., ==, =0=0					Mount	
Min	115.51	1.83	111.63	-	3.55	-	-	-	-	
Max	118.26	4.60	115.13	-	13.63	-	-	-	-	
Average	116.60	3.28	113.18	-	5.84	-	-	-	-	

Table 1 – Groundwater Level Monitoring Results

Geotechnical Report Proposed Residential and Commercial Development 3085 – 3105 Hurontario Street, Mississauga, Ontario

Please note that the groundwater levels are subject to seasonal fluctuations. Consequently, definitive information on the long-term groundwater levels could not be obtained at the present time.

The sedimentary bedrock may contain waterbearing bedding planes. When these bedding planes are intercepted in rock excavation, caissons or elevator pistons etc., a substantial amount of water, often under a hydrostatic head may be encountered.

A Geohydrology assessment study is completed by MCR and the results are presented in a separate report.

6.0 FOUNDATION

The Site is proposed for a residential and commercial development consisting of a forty [40] storey building with four [4] storey podium (Building 1), a forty-four [44] storey building with four [4] storey podium (Building 2), a twenty-eight [28] storey building with six [6] storey podium (Building 3) and a twenty-four [24] storey building with six [6] storey podium (Building 4) over four [4] levels of combined underground parking (Appendix B).

It is understood that the ground floor finished elevation (FFE) ranges from 117.96 to 116.00 m and P4 FFE will be at 100.95 m.

Based on the encountered soil/rock foundation conditions, the proposed development, with four U/G parking levels, can be supported on a spread/strip footings founded in sound shale bedrock.

The recommendations are based on the current information and design. Should changes are made during the design phase or construction, this office must be informed and retained to modify recommendations accordingly or propose additional field work.

6.1 SPREAD/STRIP FOOTINGS

The proposed footings could be proportioned using the following bearing resistance:

Factored Bearing Resistance at ULS = 7000 kPa Bearing Resistance at SLS = 5000 kPa

When founded in sound shale bedrock at or below Elevations of 100.45 m, and at least 1.50 m below the surface of the shale bedrock, subject to design grades and the depth of shale bedrock across the site.

Coefficient of Subgrade Reaction k (for sound shale) = 100 MN/m³ is considered applicable.

6.2 GENERAL FOUNDATION NOTES

It is recommended that your excavation and construction contract provisions include unit prices for excavation into wet soils which may contain cobbles, boulders and erratic rock to minimize potential unexpected extra costs during excavation and foundation installations.

Adjacent footings, founded at different elevations, preferably are to be stepped at 10 horizontal to 7 vertical, subject to rock condition during excavations.

For frost protection requirements, the exterior footings and footings in unheated areas in unheated P4 areas must have a minimum shale bedrock cover of 0.5 m.

Any water or loose materials must be removed from the footing bases prior to placing concrete.

The recommended resistance at SLS allows for up to 25 mm of total settlement. Potential differential settlements are to be evaluated after completion of the foundation drawings.

Furthermore, the recommended bearing resistance and foundation elevations

have been calculated from the limited borehole information and are intended for design purposes only.

More specific information with respect to rock/foundation conditions will be available when the proposed shoring/foundation construction is underway. Therefore, the encountered rock/foundation conditions must be verified in the field, and footings must be inspected and approved by our office prior to placement of concrete.

7.0 EARTHQUAKE CONSIDERATION

The building must be designed to resist a minimum earthquake force. The National Building Code specifies that the building be designed to withstand a minimum lateral seismic force, V, which is assumed to act non-currently in any direction on the building as per the following expression:

$$V = S(T_a) M_v I_E W / R_d R_o$$

It should be noted that V shall not be less than:

$$S(2.0) M_v I_E W / R_d R_o$$

In addition, the SFRS (Seismic Force Resisting System (s)) with R_d equal to or greater than 1.5, V should not be greater than:

$$2/3 S(0.2) I_E W/R_d R_o$$

Where $S(T_a)$ shall be calculated by $S_a(T_a)F_a$ or $S_a(T_a)F_v$, depending on fundamental lateral period T_a . The terms, which are relevant to the geotechnical conditions at the site, are acceleration-based site coefficient F_a and velocity-based site coefficient F_v .

For the subject site, classified as Class B based on the borehole information, the applicable values of Fa and Fv are 0.8. and 0.6, respectively. A structural consultant should review all factors.

8.0 BASEMENT WALLS

Underground parking walls should be designed to resist a pressure "p", at any depth, "h" below the surface, as given by the expression:

$$p = K[\gamma h + q]$$

Where: K = 0.40 is the earth pressure coefficient considered applicable K = 0.25 is the shale pressure coefficient considered applicable $\gamma = 21.7$ kN/m³ is the unit weight of backfill q = an allowance for surcharge.

The above equation assumes that perimeter drains will be provided and that the backfill against subsurface walls, where applicable, would be a free draining granular material.

However, subject to further groundwater monitoring results, we suggest that perimeter walls below the groundwater level be designed for hydrostatic pressure to resist a pressure "p", at any depth "h" below the surface, as given by the expression:

$$p = \begin{cases} Kq + K\gamma_m h & h \le D_w \\ Kq + K\gamma_w D_w + K(\gamma_s - \gamma_w)(h - D_w) + \gamma_w(h - D_w) & h > D_w \end{cases}$$

Where: K = 0.50 is the earth pressure coefficient considered applicable K = 0.25 is the shale pressure coefficient considered applicable $\gamma_m = 20 \text{ kN/m}^3$ is moist or wet soil unit weight $\gamma_s = 21.7 \text{ kN/m}^3$ is saturated soil unit weight $\gamma_w = 9.80 \text{ kN/m}^3$ is the unit weight of water q = an allowance for surcharge

9.0 DEWATERING

The excavation for the proposed underground parking will extend below the groundwater table.

For soldier pile/lagging, to protect the sides of the excavation from being disturbed by excess groundwater pressure, i.e. to prevent quick sand/dilating silt conditions, the water table must initially be lowered to at least 1.0 m below the top of bedrock.

The selected dewatering system, eductors/well points/deep inclined rock embedded wells, designed by a speciality contractor, will be most effective if it is installed and activated at the earliest opportunity during general excavation.

To control potential localized groundwater influx, bedrock could be trenched, and temporary sump pumps installed.

The dewatering contract must be performance driven and the contractor must provide a performance bond. In addition, upon completion of system's installation, contractor must produce a written statement that "The system installed is robust enough to lower and maintain groundwater at least 1.0 m below the lowest footing/shaft elevation, without impacting the integrity of shoring or foundation soils.

Where caisson wall shoring is required, any breaches in caisson wall shoring might result in localized piping. Creation of piping channels might increase the volume of both temporary dewatering and permanent drainage. It is critical that during general excavation **potential formation of localized piping be carefully evaluated and appropriate corrective measures implemented.**

In addition, a pre-construction survey of adjacent structures/roads should be carried out prior to the dewatering/shoring construction stage. Potential adverse effects on adjacent structures, due to the dewatering must be assessed/quantified and suitable preventive/remedial measures implemented.

10.0 EXCAVATION AND BACKFILL

Excess soils shall be managed in accordance to O. Reg. 406/19. As of January 1, 2022, the Project Leader may be required to file a notice in the registry as prescribed under Section 8 of the regulation. The notice shall contain the information set out in Schedule 1 of the regulation. Before the notice is filed the Project Leader shall ensure that a Qualified Person (Qualified Person within the meaning of Section 5 or 6 of O. Reg. 153/04) prepares the documents, as required, under Sections 11, 12, 13 of the regulation.

The Project Leader shall, if required to file a notice and before removing excess soil from the project area, develop and apply a tracking system in accordance with the Soil Rules, to track each load of excess soil during its transportation and deposit.

No major problems will be encountered for the anticipated depth of general excavations, carried out within a shoring wall enclosure.

The excavation in weathered shale bedrock can be carried out with a heavy-duty backhoe. However, the shoring/foundation contractor must be aware that the harder and thick limestone/dolostone slabs are interbedded with the shale bedrock.

For excavation above the water table, the anticipated water seepage, if any, into the excavations from the more permeable seams/lenses or surface run-off can be handled by conventional pumping methods.

A dewatering system such as eductors/well points/deep inclined wells embedded in bedrock will be required for excavation at/below the groundwater level, above bedrock, subject to long term groundwater monitoring results.

In service trenches (outside the building), the fill should be suitable for compaction, i.e. free of limestone fragments of a size greater than 150 mm, and with natural moisture content, which is within 2 percent of the optimum moisture content.

The backfill material should be compacted to at least 98 percent of the Standard Proctor Maximum Dry Density (SPMDD).

The backfill under floor slab against subsurface walls, where applicable, should be free draining granular fill, preferably conforming to the Ontario Provincial Standard Specification for granular base course, Granular B.

11.0 SHORING

A shoring system should be designed to protect adjacent structures and services. The fourth edition of the Foundation Manual should be referred to for the design of the shoring system.

It should be noted that groundwater and cobbles/boulders might be encountered during soldier pile/caisson construction, and the contractor must be prepared to deal with boulders and water seepage into the caisson shafts without undue delays.

Specifically, the shoring contractor may experience difficulties during the drilling the much harder/thick limestone slabs.

Subject to groundwater conditions/monitoring results; it might be difficult to prevent groundwater from penetrating into the excavation through gaps in timber lagging.

The geotechnical parameters, which are considered to be applicable for the design, are as follows:

Active earth pressure coefficient Ka = 0.45 for walls in areas where structures or sensitive services are being supported.

Active earth pressure coefficient Ka = 0.28 for remaining areas.

Natural unit weight of soil = 21.7 kN/m^3

Passive pressure coefficient in shale bedrock Kp = 5

Any surcharge loads must be included in the lateral pressure calculations.

Lateral movements of the shoring wall, designed using Ka = 0.28, are expected to be in order of 15 mm. They are expected to be less if Ka value of 0.45 is used. The expected movements are based on a properly constructed system.

The horizontal and vertical movements should be monitored during construction to ensure satisfactory performance of the shoring system.

The soil and rock anchors should be designed for 20 and 600 kPa respectively subject to confirmation by on-site load tests. It is re-iterated that subsurface conditions **may vary beyond the site's confines**. As a result, the design values must be confirmed by at least two load tests, carried out to twice the design load.

It is imperative that a stability analysis of the entire support system is undertaken prior to commencement of construction. The final shoring design should be reviewed by our office.

Space and groundwater influx permitting, lowest parking level could be excavated "neat" into the rock face. A sufficient rock bench/rock bolts will be required to secure the integrity of the shoring system.

The exposed rock face could be shotcreted (if required) and covered as shown on Drawing No. 4, subject to site condition/field inspection during excavation.

The shoring system and surrounding structures must be monitored for horizontal and vertical movements, prior to, during and after the excavation.

In addition, a pre-construction survey of adjacent structures/roads should be carried out prior to the shoring/design/construction stage. Any potential adverse effect on adjacent structures should be assessed and suitable preventive/remedial measures implemented.

12.0 SLAB ON GRADE AND PERMANENT DRAINAGE

The lowest garage floor slabs can be constructed as slab on grade (SOG), supported by shale bedrock.

Upon completion of foundation work, the SOG should rest on a well compacted bed of size 19 mm clear stone at least 200 mm thick. The stone bed would act as a barrier and prevent capillary rise of moisture from the subgrade to the floor slab.

A permanent Private Water Drainage System (PWDS), as shown on Drawings No. 4 and 5, where shoring is constructed, should be considered. Please note that MCR does not prepare working/shop drawings for the PWDS.

To minimize siltation, all drainage pipe connections must be solid slotted PVC, with elbows and Ts, no "butt" end connections should be permitted. The pipes should slope to a sump at a minimum 1% slope.

Perimeter drainage pipes, with a positive gravity outlet, should be solid and slotted PVC with a minimum of 0.5% slope. In addition, silt traps must be provided at convenient/accessible locations.

We request that PWDS drawings indicate design elevations for both perimeter and underfloor installation. MCR will provide calculations for sizing of permanent pumps, when required.

Upon completion of general excavation, scope and adequacy of the PWDS is to be reevaluated. The installation of PWDS must be inspected by our office, prior to placement of filter stone.

Any design changes must be approved by the architect and reflected on mandatory

as built drawings*.

* A copy of this section "Slab on grade and Permanent Water Drainage System" page should be posted at a site office as a permanent display.

In addition, the elevator pit should be fully waterproofed as shown on Drawing No. 6.

13.0 PAVEMENT

The critical section of pavement will be at the transition from the infinitely rigid substructure onto soil/backfill subgrade.

As a result, we suggest that an approach type slab be considered to protect underground utilities (on the City's property) at the entrance/exit points, as shown on Drawing No. 7.

The approach slab will alleviate detrimental effects of dynamic loading/settlement/pavement depression in the backfill to the rigid substructure.

Subject to the anticipated road traffic volumes/AADT/axle loads, the pavement structural design matrix as per City of Mississauga Standards presented in Table 2 and attached in Appendix E, must be followed.

In pavement areas, any organic soil/topsoil/loose fill should be removed (subject to field inspection) and the base should be thoroughly proof-rolled. Any soft spots revealed during proof rolling should be sub-excavated and backfilled with suitable materials, compacted to 98 % SPMDD.

The natural soil is of a low permeability and frost susceptible. The design of pavement is therefore mainly influenced by the need to minimize the effects of freezing and thawing. Consequently, the ground must not be unnecessarily disturbed and drainage must be provided.

The subgrade should be sloped at least 2% to facilitate drainage towards catch basins and the final subgrade should be compacted before the pavement is constructed.

Class of Road	Structural Road Component Minimum Structural Road Depth (mm)				
Artorial /	Top Course Asphalt	40	40	40	40
Industrial &	Base Course Asphalt	60	85	100	100
Residential /	Granular Base	200	200	200	200
Collector Local	Granular Sub-Base	65	325	400	400
Industrial	Total Depth	365	650	740	740
	Top Course Asphalt	40	40	40	40
Minor Local	Base Course Asphalt	50	85	100	100
Industrial / Minor Residential /	Granular Base	200	200	200	200
Collector	Granular Sub-Base	0	225	325	360
	Total Depth	290	580	665	700
	Top Course Asphalt	40	40	40	40
	Base Course Asphalt	50	85	85	100
Residential	Granular Base	200	200	200	200
	Granular Sub-Base	0	175	235	250
	Total Depth	290	500	560	590
Frost Susceptibility Factor		1 (80% Sand)	3 5 7 (30% MAX. Silt; 30% MIN. Sand)	11 (55% MAX. Silt)	15 (+55% Silt)

Table 2 – Pavement Structural Design Matrix as Per City of Mississauga

A typical pavement structure above garage roof slab, please see Drawings No. 8 and 9.

It should be noted that the subgrade should be dry, not spongy, during the compaction and construction of the [sub] base.

Soft or spongy subgrade areas should also be sub-excavated and properly replaced with suitable approved backfill, compacted to 98 % SPMDD.

The subgrade will suffer strength regression if water is allowed to infiltrate into the mantle. Therefore, sub-drains should be installed (subject to field inspection) to prevent surface water from infiltrating into the road subgrade.

For construction of concrete curbs, it is recommended that the concrete curbs be constructed on a granular base of at least 300 mm thick of granular A material, subject to pavement design.

In addition, in soft and/or wet areas Geotextile filter fabric/Geogrid may have to be used.

All granular materials used in the pavement construction should be compacted to 100 % of the Standard Proctor Maximum Dry Density.

Should the proposed roads be constructed during wet seasons, the moisture content in the subgrade will probably be above the optimum, and this will render its shear strength inadequate to support paving equipment traffic. In the above case, the granular sub/base should be replaced by an equal thickness of compacted size 50 mm Crusher-Run Limestone.

14.0 CHEMICAL PROPERTIES OF THE SOIL

One (1) sample from BH 101 (by MCR) was submitted to Bureau Veritas to be tested for common corrosion parameters, including pH, resistivity, oxygen reduction potential (redox), chlorides, sulfides and sulphate content. The laboratory test results are presented in Appendix D.

14.1 CORROSIVITY

The results regarding corrosivity of the subsurface soil and the corresponding points based on American Water Works Association (AWWA) document, "Polyethylene Encasement for Ductile-Iron Pipe Systems" ANSI/AWWA C105/A21.5-18, dated December 1, 2018, are presented in Table 3.

Table 3 – Results of Soil Corrosivity Potential

Sample ID	Depth (m)	Parameter	Measured Value	ANSI/AWWA Point Rating	Total ANSI/AWWA Points
		Sulphide (%)	0.00015	2	
D 11404	2.44	рН	7.83	0	
BH101 555		Resistivity (ohm.cm)	1100	10	13
333		Redox Potential (mV)	260	0	
		Moisture (%)	14	1	

According to AWWA ten points indicates that soil is corrosive to ductile-iron pipe; protection is needed. It should be noted that the analytical results only provide an indication of the potential for corrosion.

14.2 SULPHATE ATTACK

The concentration of water-soluble sulphate content of the tested sample was 0.004% which is below the CSA Standard of 0.1% water-soluble sulphate (Table 3 - Additional Requirements for Concrete Subjected to Sulphate Attack from Canadian Standard CSA A23.1). Therefore, no particular protection measure, such as special concrete mix, against sulphate attack needs to be implemented.

15.0 GENERAL COMMENTS

The comments given in this report are intended only as guidance for design engineers and are subject to field verification during construction. As more specific subsurface information, with respect to conditions between boreholes becomes available during excavations on the subject site, this report should be updated.

Contractors bidding on or undertaking the work should decide on their own investigations, as well as their own interpretations of the factual borehole results. This concern specifically applies to the classification of the subsurface soil and the potential reuse of these soils on/off site.

The contractors must draw their own conclusions as to how the near surface and subsurface conditions may affect them.

We trust this report contains information requested at this time. However, if any clarification is required or if we can be of further assistance, please call us.

Respectfully, MCR ENGINEERS LTD.

RTavassoli

S. Tavassoli, M.Sc., E.I.T.

L.J. Rak, M.Eng., P.Eng.

FIGURES

e:	Drawing No.	
NTS		3

TABLES

TABLE 1

CONSTRUCTION DETAILS AND ELEVATION OF MONITORING WELLS

MONITORING WELL ID	GROUND SURFACE ELEVATION	WATER LEVEL	GROUNDWATER ELEVATION	DATE OF MEASUREMENT	DEPTH OF WELL	DEPTH OF BENTONITE	LENGTH OF SCREEN	INSIDE DIAMETER OF PIPE	TOP OF MONITORING
	(masl)	(mbgs)	(masl)	(mm/dd/yyyy)	(mbgs)	(mbgs)	(m)	(mm)	VVELL
Boreholes by So	oil-Mat								
		3.10	113.05	04/24/2019					
BH 2	116.15	3.00	113.15	05/07/2019	4.40	2.80	1.52	50	FLUSH MOUNT
		3.10	113.05	04/17/202					
BH 101	116 23	4.60	111.63	03/27/2020	13.63	4 30	0.20	50	FLUSH MOUNT
BITIOT	110.25	4.50	111.73	04/17/2020	15.05	4.00	9.20		
Boreholes by W	SP								
BH 19-3	115.51	2.51	113.00	8/9/2019	3.55	1.85	3.05	50	FLUSH MOUNT
BH 19-4	118.26	3.13	115.13	8/9/2019	3.55	1.85	3.05	50	FLUSH MOUNT
Boreholes by M	CR			•			•		
BH 101	116.95	1.83	115.12	04/11/2023	4.57	0.91	3.05	50	FLUSH MOUNT
BH 102	116.47	3.71	112.76	04/11/2023	5.33	1.68	3.05	50	FLUSH MOUNT
Min	115.51	1.83	111.63	-	3.55	-	-	-	-
Мах	118.26	4.60	115.13	-	13.63	-	-	-	-
Average	116.60	3.28	113.18	-	5.84	-	-	-	-

NOTE:

mbgs - meters below ground surface

masl - meters above sea level

N/A - Not Applicable

NF - Not Found

McCLYMONT AND RAK ENGINEERS INC. <u>GEO-ENVIRONMENTAL CONSULTANTS</u>

TABLE 2 GROUNDWATER ANALYTICAL RESULTS - PEEL REGION SEWERS BY-LAW DISCHARGE CRITERIA MCR JOB#: G5822

SITE ADDRESS: 3085 - 3105 Hurontario Street, Mississauga, ON

PARAMETER	UNITS SEWER DISCHARGE		LIMITS FOR SANITARY & COMBINED SEWERS	BH 102	
		SEWER DISCHARGE	DISCHARGE	13-Apr-23	
рН	pH Units	6.0 - 9.0	5.5 - 10.0	8.05	
Total Suspended Solids	mg/L	15	350	7	
Fluoride (F-)	mg/L	-	10	0.199	
Total Kjeldahl Nitrogen (TKN)	mg/L	1	100	0.398	
Total Phosphorus (P)	mg/L	0.4	10	0.093	
Sulfate (SO4)	mg/L	-	1500	35.5	
Total Cyanide (CN)	mg/L	0.02	2	<0.0020	
Escherichia Coli	CFU/100mL	200	-	<1	
Total Aluminum (Al)	mg/L	-	50	0.357	
Total Antimony (Sb)	mg/L	-	5	<0.00100	
Total Arsenic (As)	mg/L	0.02	1	<0.00100	
Total Cadmium (Cd)	mg/L	0.008	0.7	<0.0000500	
Total Chromium (Cr)	mg/L	0.08	5	<0.00500	
Total Cobalt (Co)	mg/L	-	5	0.00102	
Total Copper (Cu)	mg/L	0.05	3	<0.00500	
Total Lead (Pb)	mg/L	0.12	3	0.00119	
Total Manganese (Mn)	mg/L	0.05	5	0.136	
Total Mercury (Hg)	mg/L	0.0004	0.01	<0.000050	
Total Molybdenum (Mo)	mg/L	-	5	0.0278	
Total Nickel (Ni)	mg/L	0.08	3	<0.00500	
Total Selenium (Se)	mg/L	0.02	1	0.000566	
Total Silver (Ag)	mg/L	0.12	5	<0.000100	
Total Tin (Sn)	mg/L	-	5	<0.00100	
Total Titanium (Ti)	mg/L	-	5	0.00844	
Total Zinc (Zn)	mg/L	0.04	3	<0.0300	
Biological Oxygen Demand	mg/L	15	300	686	
Total Oil & Grease (Animal/Vegetable)	mg/L	-	150	<5.0	
Total Oil & Grease Mineral/Synthetic	mg/L	-	15	<5.0	
Phenols-4AAP	mg/L	0.008	1	0.0013	
Benzene	µg/L	2	10	<0.50	
Chloroform	µg/L	2	40	<0.50	
1,2-Dichlorobenzene	µg/L	5.6	50	<0.50	
1,4-Dichlorobenzene	µg/L	6.8	80	<0.50	
cis-1,2-Dichloroethylene	µg/L	5.6	4000	<0.50	
Dichloromethane (Methylene Chloride)	µg/L	5.2	2000	<1.0	
trans-1,3-Dichloropropene	µg/L	5.6	140	<0.30	
Ethylbenzene	µg/L	2	160	<0.50	
Methyl Ethyl Ketone	µg/L	-	8000	<20	
Styrene	µg/L	-	200	<0.50	
1,1,2,2-Tetrachloroethane	µg/L	17	1400	<0.50	
Tetrachloroethylene	µg/L	4.4	1000	<0.50	
Toluene	µg/L	2	270	<0.50	
Trichloroethylene	µa/L	8	400	<0.50	
Xylene (Total)	μα/L	4.4	1400	<0.50	
Bis(2-ethylhexyl)phthalate	µa/L	8.8	12	<2.0	
Di-n-butylphthalate	μα/L	15	80	<1.0	
Total PCBs	μα/L	0.4	1	<0.060	
Nonylphenol	ua/L	-	20	<1.0	
Total Nonylphenol Ethoxylates	μg/L	-	200	<2.0	

Note:

BOLD

Exceeds Criteria - Peel Region Sanitary By-Law

BOLD Non-Detect Exceeds Criteria - Peel Region Sanitary By-Law

BOLD Exceeds Criteria - Peel Region Storm By-Law

BOLD Non-Detect Exceeds Criteria - Peel Region Storm By-Law

GEO-ENVIRONMENTAL CONSULTANTS

Proposed Residential Development Project: 3085 - 3105 Hurontario Street, Mississauga, ON Location:

Date: August-23 G5822

Project #:

TABLE 3 **GROUNDWATER MONITORING DATA**

Borehole Number	Surface Elevation	Water Level Depth Elevation		Monitoring Date	NOTES
	(masl)	(mbgs)	(masl)	(mm/dd/yyy)	- NOTES
BH 101	116.95	1.83	115.12	4/1/2023	
BH 102	116.47	3.71	112.76	4/1/2023	
BH 2	116.15	3.10	113.05	4/17/2020	by Soil-Mat
BH 101	116.23	4.50	111.73	4/17/2020	by Soil-Mat
BH 19-3	115.51	2.51	113.00	8/9/2019	by WSP
BH 19-4	118.26	3.13	115.13	8/9/2019	by WSP
Average	116.60	3.13	113.47		
Max			115.13		

GEO-ENVIRONMENTAL CONSULTANTS

 Project:
 Proposed Residential Development

 Location:
 3085 - 3105 Hurontario Street, Mississauga, ON

 Date:
 August-23

 Project #:
 G5822

TABLE 4

DISCHARGE ESTIMATION OF CONSTRUCTION DEWATERING

Site Parameters	P4	Units
Initial Water Level before Dewatering	113.47	(m)
Lowest Water Level during Construction Dewatering	99.45	(m)
Length of Site X	100.00	(m)
Width of Site W	130.00	(m)
Equivalent Radius r _e	64.33	(m)
Hydraulic Conductivity of Aquifer (k)	0.20	(m/day)
Aquifer Bottom Elevation	98.45	(m)
Applied Radius of Influence (Ro)	63.97	(m)
Height btw Initial Water Level and Aquifer Bottom (H)	15.02	(m)
Height btw Lowest Water Level and Aquifer Bottom (h _{w)}	1.00	(m)
Radius of Influence (R)	128.30	(m)
Factor of Safety (FS)	1.50	

$$Q = \frac{\pi k (H^2 - h_w^2)}{Ln(R/r)}$$

Estimated steady-state discharge of dewatering	306 (m³/day)
	56 (USG/min)

GEO-ENVIRONMENTAL CONSULTANTS

 Project:
 Proposed Residential Development

 Location:
 3085 - 3105 Hurontario Street, Mississauga, ON

 Date:
 August-23

Project #: G5822

TABLE 5

DISCHARGE ESTIMATION OF PERMANENT DRAINAGE SYSTEM

Site Parameters	P4	Units
Initial Water Level before Dewatering	113.47	(m)
Lowest Water Level under PDS conditions	100.45	(m)
Length of Site X	100.00	(m)
Width of Site W	130.00	(m)
Equivalent Radius r _e	64.33	(m)
Hydraulic Conductivity of Aquifer (k)	0.20	(m/day)
Aquifer Bottom Elevation	99.45	(m)
Applied Radius of Influence (Ro)	59.41	(m)
Height btw Initial Water Level and Aquifer Bottom (H)	14.02	(m)
Height btw Lowest Water Level and Aquifer Bottom (h _{w)}	1.00	(m)
Radius of Influence (R)	123.73	(m)
Factor of Safety (FS)	1.50	

$$Q = \frac{\pi k (H^2 - h_w^2)}{Ln(R/r)}$$

Estimated steady-state discharge of dewatering	282 (m³/day)
	52 (USG/min)

APPENDIX A

APPENDIX C

diamond schmitt

L

Preliminary - Context Plan P110A 3085 Hurontario St 05/29/23

1:750

1:600

٦

 \bigcirc

Level 45 T2 Roof 132000 Level 44 T2 Mech PH 129000 Level 43 126000 Level 42 123000 Level 41 T1 Roof 120000 Level 40 T1 Mech PH 117000 Level 39 114000 Level 38 111000 Level 37 108000 Level 36 105000 Level 35 102000 Level 34 99000 Level 33 96000 Level 32 93000 Level 31 90000 Level 30 87000 Level 29 84000 Level 28 81000 Commercial Level 27 78000 Level 26 T3 Roof 75000 Level 25 T3 Mech PH 72000 Parking Level 24 69000 Level 23 66000 Level 22 T4 Roof 63000 Level 21 T4 Mech PH 60000 Level 20 57000 Level 19 54000 Level 18 51000 Level 17 48000 Level 16 45000 Level 15 42000 Level 14 39000 Level 13 36000 Level 12 33000 Level 11 30000 Level 10 27000 vel 9 Typical Tower Plan 24000 21000 Level 7 - B3&B4 Podium Roof 18000 Level 6 15000 vel 5 - B1&B2 Podium Roof 12000 Level 4 9000 Level 3 6000 Level 2 3000 Ы Level 1 0 6500 Level P1 -6500 Level P2 -9500 3000

 $(A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N)$

Γ

L

diamond schmitt

APPENDIX B

PR	OJE	ECT	R r : GE5822	EC	OR	D	O	FI	BOREHO)LE	E 10 ⁻	1				M	IC CL	YMONT & RAK
LO ST		TIO TEC	N : 3085-3105 Hurontario Street, M March 16, 2023	issis	sauga,	On	taric)								S	ENG:	INEERS, INC.
co	MP	LE	TED : March 16, 2023													D	ATUM	Geodetic
щ	DD	1	SOIL PROFILE			SA	MPL	ES	ORGANIC VAP	JUR R	EADINGS ⊗	SHEA	R STRE nat V	NGTH:	Cu, KP	Pa 2 - 🗙	, U	
DEPTH SCAL (metres)	BORING METH		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	100 200 % LEL - (hexar 20 40	300 ie) 60	400 	2 WAT wp 1	rem V 20 4 FER CC FER CC	-• 10 6 WNTENT 	0 8 , PERC 30 4	J - ▲ 30 IENT I wl 40	ADDITIONAL LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE		116.95													Flush Mount
			250mm GRANULAR FILL SAND: fine, brown, moist, compact.		_ 116.80. 0.15 _ 116.55. 0.40	1	ss	19										Bentonite
-						2	SS	18										116.04
-2	U	IGER				3	ss	24										1.52 m Long
	POWER BORIN	OLLOW STEM AU	SILTY SAND TILL: trace of shale fragments and gravel, brown, wet, very dense.		_ 114.66. 2.29	4	ss	93										
-		¥		\mathbb{N}	_ 113.90													Silica Sand
- - -4 -			COMPLEX: trace of gravel, brown, wet, very dense.		_ 112.38													3.05 m Long 50 mm ID Well Screen 112.38
			WEATHERED SHALE: grey, moist.		4.57	6	SS	<u>></u> 100										
-			End of Borehole Note: 1) Water level was not measured on completion of drilling. 2) Water level was measured at 1.83 mbgs on Apr. 11, 2023.		_ 111.92 5.03													
-6																		
	1		GROUNDWATER ELEVATIO	NS		I						L	1	I	I	I		
			✓ SHALLOW/SINGLE INSTALLATIO WATER LEVEL: 1.83 m bgs	N	▼ V	- DE VATI	EEP ER L	P/DU LEVE	JAL INSTALLA	NOIT/	N		LOGGE CHECH	ED : KED :	RS CM			

MCR LOG ENVIRONMENTAL 5822.GPJ 4-13-23

			R	EC	OR	D	0	FI	BO	RE	10	LE	10	2				N		VMONT & RAK
PF LC	roj DCA	EC TIC	GE5822 Sector 3085-3105 Hurontario Street, M	lissis	sauqa,	On	taric	5										1	ENG	INEERS, INC.
ST	AR	TE	2 : March 15, 2023		0,													S	HEET	1 OF 1
CC	DMF	PLE	TED : March 16, 2023			1			1 0.00		(4.5.0)				D OTO	NOTU	0.1/		ATUM	Geodetic
Ш	0	ПОН	SOIL PROFILE			SA	MPL	ES	(ppi	m)	/APOU	R REA	ADINGS ⊗	SHEA	nat V rem V	- 🖷 - 🔮	: Cu, KF C L	ן 2-X ג-▲	RG≜	
H SCA etres)		ME		PLOT		ER		0.3m	1	00 2	00 3	00	400	2	20 4	10 (60 8	80	TION/	
EPTH (me		RING	DESCRIPTION	ATA	DEPTH	UMB	TΥΡΕ	/SWC	% l	_EL - (h	exane)			WA			r, PERC	ENT wi	ADDI AB. T	INSTALLATION
		р р		STR	(m)	z		BLO	2	20 4	10 6	50	80	1	0 2	20 :	30 4	40		
			GROUND SURFACE	v _ v	116.47								_							Flush Mount
ŀ			150mm GRANULAR FILL		_ 116.27 0.20															Cover
ŀ			SAND:		_ 116.12 0.35	1	55	12												-
			dense. - trace of gravel until 0.61 m.					-												-
·																				Bentonite
ŀ						2	55	18												-
ŀ								-												-
ŀ																				-
·						3	55	9												114.79
ŀ								-												2.29 m Long 50 mm ID
-2		ER						20												PVC Riser
ŀ	SING	AUG				4	33	20												
ŀ	ROF	TEM	CLAYEY SILT TILL:	ии	_ 114.03. 2.44			-												
ŀ	WEF	OW S	trace of sand and gravel, brown to grey, moist, very stiff.			5		22												
ŀ	Я	HOLL				5	33	22												
ŀ								-												Silica Sand
ŀ						6	ss	26												
-																				
ŀ								-												v ∎
ŀ .						7	ss	19												
-4																				3.05 m Long
ľ			WEATHERED SHALE	ИИ	_ 112.20 4.27	8	SS	>100												Well Screen
-																				
ſ																				
[9	SS													
[
			End of Borehole		_ 111.14 5.33															111.14
			Note:																	
			1) Water level was not measured on completion of drilling.																	
-6			11, 2023.																	_
ļ																				-
ŀ																				
╞																				-
ŀ																				
ŀ																				
ŀ																				-
ŀ																				
┣—						<u> </u>														
				ONINO NA	▼			ים/כ	1.01											
			SHALLOW/SINGLE INSTALLATIC WATER LEVEL: 3.71 m bgs	VIN	V	VAT	ERL	EVE	JAL II EL:	AIGN	LLAI				LOGGE	ED :	RS CM			

MCR LOG ENVIRONMENTAL 5822.GPJ 4-13-23

APPENDIX C

Project No: SM 190138-GProject: Proposed Condominium BuildingLocation: 3085 Hurontario Street, MississaugaClient: Oakhill Environmental Inc.

Project Manager: Kyle Richardson Borehole Location: See Drawing No. 1 UTM Coordinates - N: 4826460

E: 611511

								SAMF	PLE				Moisture Content
hth		(m) n		Description	<u>a</u>			unts	00mm	y	cm2)	V/m3)	10 20 30 40
	ĥ	Elevatio	Symbol		Well Da	Type	Number	Blow Co	Blows/3	Recover	PP (kgf/	U.Wt.(kl	Standard Penetration Test blows/300mm 20 40 60 80
ft	m	116.39		Ground Surface									
1	Ŭ	116.09	•••	Pavement Structure Approximately 100 millimetres of asphaltic concrete over 200 millimetres		ss	1	9,10,11,7	21				\mathbf{X}
3 4	- 1			of compact granular base.		SS	2	3,4,4,9	8				
5 6 7	- 2	114.20		Brown, medium in gradation, trace gravel, occasional organics in upper level, loose.		SS	3	5,5,4,6	9				
8 9	- 3		X	Clayey Silt Grey, trace gravel, very stiff.		ss	4	4,7,9,12	16		>4.5		
11	Ū	113.10		Dundas Shale		SS	5	14,50/5"	100				
12 13	- 4			Grey with occasional harder limestone									
14	-			becoming more sound with depth, hard.									
15 16	F						6	50/4"	100				
17	- 5												
19						NQ	7	RQD 29.4%					
20 21	- 0												
22	_												
23 24	- /					NQ	8	RQD 35.7%					
25		108.50											
27	- 8			End of Borehole									
28 29				NOTES:									
30	- 9			1. Borehole was advanced using hollow stem auger equipment on April 8, 2019 to									
31 32				auger refusal at a depth of 5.2 metres, then the bedrock cored to a depth of									
33	- 10			approximately 7.9 metres using Nq diamond barrel equipment.									
34 35 36	- 11			2. Borehole was backfilled as per Ontario Regulation 903.									
37 38 39				3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									

Drill Method: Hollow Stem Augers Drill Date: April 8, 2019 Hole Size: 200 millimetres Drilling Contractor: Geo-Environmental

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: <u>info@soil-mat.ca</u> Datum: Benchmark Field Logged by: ZRV Checked by: KR Sheet: 1 of 1

Project No: SM 190138-G Project: Proposed Condominium Building Location: 3085 Hurontario Street, Mississauga Client: Oakhill Environmental Inc.

Project Manager: Kyle Richardson Borehole Location: See Drawing No. 1 UTM Coordinates - N: 4826436

E: 611503

								SAM	PLE				Moisture Content
	Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	w% A 10 20 30 40 Standard Penetration Test • blows/300mm • 20 40 60 80
ft	m	116.15		Ground Surface									
1		115.85	•••	Pavement Structure Approximately 150 millimetres of asphaltic concrete over 150 millimetres of compact granular base		SS	1	12,12,11,9	23				
4				Sand		SS	2	3,5,12,19	17				
5 6 7	2	114.40		Brown, medium in gradation, trace gravel, occasional organics in upper level, compact.		SS	3	12,22,11,13	33				
8 9		113.70		Clayey Silt Grey, trace gravel, hard.		SS	4	11,50/4"	100				
10 11 12 13 14	4	111 50		Dundas Shale Grey with occasional harder limestone layers, highly weathered in upper levels, becoming more sound with depth, hard.		SS	5	50/5"	100				
15- 16-	E	111.50		End of Borehole			6	50/3"	100				▲
17-	E ⁵			NOTES:									
18 19 20 21	6			1. Borehole was advanced using hollow stem auger equipment on April 8, 2019 to auger refusal on assumed bedrock at a depth of approximately 4.6 metres.									
22 23 24	7			2. Borehole was backfilled as per Ontario Regulation 903.									
25 26 27	8			3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									
28- 29- 30-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4. A monitoring well was installed. The following free groundwater level readings have been measured:									
31- 32-	E			April 24, 2019 - 3.1 metres									
33	E 10			May 7, 2019 - 3.0 metres									
34 35				April 17, 2020 - 3.1 metres									
36 37 38 39	- 1'												

Drill Method: Hollow Stem Augers Drill Date: April 8, 2019 Hole Size: 200 millimetres Drilling Contractor: Geo-Environmental

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Datum: Temporary Benchmark Field Logged by: ZRV Checked by: KR Sheet: 1 of 1

Project No: SM 190138-G

Project: Proposed Condominium Building Location: 3085 Hurontario Street, Mississauga Client: Oakhill Environmental Inc.

Project Manager: Kyle Richardson Borehole Location: See Drawing No. 1 UTM Coordinates - N: 4826448

E: 611500

								SAMF	PLE				Moisture Content
:	Jeptn	ion (m)	Ю	Description	lata		er	Counts	/300mm	ery	jf/cm2)	kN/m3)	10 20 30 40 Standard Penetration Test
		Elevat	Symbo		Well D	Type	Numb	Blow (Blows,	Recov	PP (kç	U.Wt.(• blows/300mm • 20 40 60 80
ft	m	116.23		Ground Surface									
1		115.93	<u></u>	Pavement Structure Approximately 100 millimetres of asphaltic concrete over 200 millimetres		ss	1	12,11,10,9	21				\mathbf{X}
3	- 1			of compact granular base.		ss	2	5,4,2,2	6				\uparrow
5- 6- 7-	2	114.10		Brown, medium in gradation, trace gravel, loose to compact.		ss	3	4,5,7,9	12				
8 9		113.40	X	Clayey Silt Grey, trace gravel, very stiff.		SS	4	6,10,22,50/3"	32		>4.5		
10-	= 3			Dundas Shale		SS	5	50/3"	100				
11	Ξ			Grey with occasional harder limestone									
12-	Ξ,			becoming more sound with depth, hard.									
13 14 -	= 4 E					NQ	7	RQD 0%					
15-	=				Е:Ц::								
16-	Ēŗ												
17-	Ē				::=::								
18-	Ξ					NQ	8	RQD 64.2%					
19-	Ē												
20 =	Ē												
21 22	Ξ												
23-	= - 7						0						
24	Ξ						9	10.070					
25-	=												
26-	- 8												
27	Ξ												12.9 MDa
28	Ē					NQ	10	RQD 62.9%					
30-	- 9												13.5 MPa
31-	Ξ												14.0 MD-
32-	Ē												
33-	<u> </u>					NQ	11	RQD 44.2%					14.2 MPa
34	Ē												
35	Ë,					<u> </u>							
37	- 11 E												69.3 MPa
38	Ē					NQ	12	RQD 23.6%					
39-	Ξ												
		I			· · · · · · ·	1	I.		l I				

Drill Method: Hollow Stem Augers Drill Date: March 12, 2020 Hole Size: 200 millimetres Drilling Contractor: Davis Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Datum: Temporary Benchmark Field Logged by: SW Checked by: KR Sheet: 1 of 2

Project No: SM 190138-G Project: Proposed Condominium Building Location: 3085 Hurontario Street, Mississauga Client: Oakhill Environmental Inc.

Project Manager: Kyle Richardson Borehole Location: See Drawing No. 1 UTM Coordinates - N: 4826448

Т

E: 611500

								SAM	PLE				Moisture Content
Depth		vation (m)	nbol	Description	II Data	e	mber	w Counts	ws/300mm	covery	(kgf/cm2)	Vt.(kN/m3)	▲ w% ▲ 10 20 30 40 Standard Penetration Test ● blows/300mm ●
		Шe	Sy		Ň	<u>ک</u>	NU	Blo	Blc	Re	Ч	Ľ.	20 40 60 80
40 41 42 43 44 45	- 13	102.40				NQ	13	RQD 56.7%					56.3 MPa 12.4 MPa
46 1	- 14			End of Borehole									
47 48				NOTES:									
	- 15 - 16			 Borehole was advanced using hollow stem auger equipment on March 12, 2020 to auger refusal at a depth of 3.0 metres, then the bedrock cored to a depth of approximately 13.8 metres using Nq diamond barrel equipment. 									
55 56	- 17			2. Borehole was backfilled as per Ontario Regulation 903.									
57 58 59	- 18			 Soil samples will be discarded after 3 months unless otherwise directed by our client. 									
60 61 62 63	- 19			4. A monitoring well was installed. The following free ground water level readings have been measured: March 27, 2020 - 4.6 metres below the									
65 66	- 20			existing ground surface April 17, 2020 - 4.5 metres below the existing ground surface									
68 69	- 21												
71													
72	- 22												
74 75	- 22												
76 77 78 79	- 23												

Drill Method: Hollow Stem Augers Drill Date: March 12, 2020 Hole Size: 200 millimetres Drilling Contractor: Davis Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Datum: Temporary Benchmark Field Logged by: SW Checked by: KR Sheet: 2 of 2

MONITORING WELL DRILLING RECORD : BH19-3

Project Number: 191-02120-01

3085 Hurontario Street, Mississuaga, Ontario Phase Two Environmental Site Assessment

															E	quity Builders
DRILLI Date (Si Date (En Drilling C Drilling M Borehold Drilling F	NG DETA tart): nd): Company: Equipment: Method: e Diameter: Fluid:	ILS 7/3/2019 7/3/2019 Strata Dr CME 420 Solid Ste 38.1 mm N/A	illing Group M m Auger	SURVEY DETAILS Easting: m Northing: m Surface Elevation: 115.51 masl Top of Well Elevation: 115.44 masl		ODOUR L - Light M - Medium S - Strong VISUAL D - Disperse Product S - Saturate Product	ed with	1	SAMPL DC - Diar SS - Split MA - Mar TR - Trov ST - She DT - Dua MC - Ma NR - No I	E TYPE mond Cont t Spoon nual Auge wel lby Tube l Tube cro Core Recovery	er	CHEMICAL AN Metals S Inorg. I PHC F BTEX E VOC V PAH F PCB F PCB F D/F E Phenol F GSA C	ALYSIS Sb As Ba Be I norganic Com Petroleum Hyc Benzene, Tolu Volatile Organ Polycyclic Aro Polychlorinate Dioxins & Fura Phenolic Comp Grain-size Ana	3 Cd Cr Co C pounds frocarbons (F ene, Ethylber ic Compound c Compound matic Hydroc d Biphenyl ins sounds ilysis	Cu Pb Mo Ni Se Ag Ti U 51-F4) Inzene, Xylene Is aarbons	V Zn
			LITHO	LOGY / GEOLOGY		OBSER\	ATIC	NS		S	AMPL	ES	1	MON	IITORING WELL	
(DE <i>ELEV</i> (m	m) (PTH / ATION nasl)	STRATIGRAPHY	C	ESCRIPTION		PID CGD (ppm)			SAMPLE TYPE & No.	% RECOVERY	N (Blow/15cm)	CHEMICAL ANALYSIS	DUPLICATE	DIAGRAM	DESCRIPTION	REMARKS
-	<u>195.51</u> 115.46			: approximately 165.1 mm	_/†									\mathbb{N}	- CONCRETE	
- - 0.5 -	110.40		SAND : trace	gravel, light brown, moist		_0			DT1A	50%			-			0.5
- - 1.0						_0_			DT2A	67%		рН				1.0 -
- - 1.5 - -						_0_			DT2B	67%						1.5
2.0 —					-	0.1			DT3A	58%						2.0 -
- 2.5 —			━ light brown, v	vet	-	_0_			DT3B	58%						2.5
3.0 -			← some silt, tra	ce boulder, light brown, wet (@					100%						3.0 -
			3.00111			_0			DT4B	100%					Length: 1.52 m Diam.: 38.1 mm Slot: #10	3.5
4.0	<u>3.66</u> 111.85		CLAYEY SIL	T : grey, very moist, dense					DT5A	100%		GSA Gr % Sa % Si % Cl % Hydrometer				4.0 -
4.5 -	<u>4.21</u> 111.24 4.42		SHALE : moi END OF BC 4.48m; MW	st, grey I REHOLE Bedrock refusal @ Installed at 3.57 m.		_0			DT5B	83%		-		WATER M Depth : 2.5 Elev. : 113 Date : 8/9/	ARKER 51 m 2019	4.5 ·
-																

Prepared by: Sheema Everett Reviewed by: Lindsy Levesque

MONITORING WELL DRILLING RECORD : BH19-4

Project Number: 191-02120-01

3085 Hurontario Street, Mississuaga, Ontario Phase Two Environmental Site Assessment Equity Builders

													E	
DRILI Date (1 Date (1 Drilling Drilling Boreho Drilling	LING DETA Start): End): Company: Equipment: Method: ole Diameter: Fluid:	AILS 7/3/2019 7/3/2019 Strata Dr CME 420 Solid Ste 38.1 mm N/A	SURVEY DETAILS Easting: 611464.98 m Northing: 4826526.176 m Surface Elevation: 118.26 masl Top of Well Elevation: 118.18 masl m Auger	ODOUR L - Light M - Medium S - Strong VISUAL D - Dispersi Product S - Saturate Product	ed with	1	SAMPL DC - Dia SS - Spl MA - Ma TR - Tro ST - She DT - Dua MC - Ma NR - No	E TYPE mond Co it Spoon inual Auge wel elby Tube al Tube acro Core Recovery	er er	CHEMICAL A Metals Inorg. PHC BTEX VOC PAH PCB D/F Phenol GSA	NALYSIS Sb As Ba Be E Inorganic Com Petroleum Hyc Benzene, Tolu Volatile Organ Polycyclic Aror Polycyclic Aror Polychlorinatee Dioxins & Fura Phenolic Comp Grain-size Ana	3 Cd Cr Co C pounds Irocarbons (F ene, Ethylber ic Compound matic Hydroc: d Biphenyl ns pounds alysis	u Pb Mo Ni Se Ag Ti U 1-F4) izene, Xylene s arbons	IV Zn
			LITHOLOGY / GEOLOGY	OBSER	/ATIC	ONS		5	Sampl	.ES		MON	ITORING WELL	
_D ELE (I	(m) EPTH EVA <i>TION</i> masl)	STRATIGRAPHY	DESCRIPTION	 CGD (ppm)	ODOUR	VISUAL	SAMPLE TYPE & No.	% RECOVERY	N (Blow/15cm)	CHEMICAL ANALYSIS	DUPLICATE	DIAGRAM	DESCRIPTION	REMARKS
	118,26	<u><u>x</u>, 1^k<u>x, 1</u>^k.</u>					,						- CONCRETE	
0.5 -	118.16 		SAND : light brown, moist, loose	125.4			DT1A	83%					 (FLUSH MOUNT) 	- - - 0.5 -
1.0 -	-		←some silt light brown moist				DT2A	75%					➡ BENTONITE	- - - 1.0 –
1.5 -	-			0.3			DT2B	75%						- - - - -
2.0 -	- <u>2.13</u> _ <u>116.13</u> _		CLAYEY SILT : grey, very moist to wet,				DT3A	63%		pH GSA Gr % Sa % Si % Cl %				2.0 -
2.5 - 9.13/2016 - 0.6	-			0.1			DT3B	42%						2.5 - - - - - - - - - -
AENT/	-		 trace boulders, coarse sand seam @ 3.05m, wet 	15.7			DT4A	100%		PHC VOC			S€NEEN	-
SP_EN_WELL-ENVIRONI 2.5 -	-						DT4B	100%					Lengtri: 1.52 m Diam.: 38,1 mm Slot: #10	3.5 -
ER.GPJ Report: W6 - 0.7	- - - <u>4.27</u>						DT5A	44%					•	- 4.0 -
tct : DATABASE_MASTI 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	 		SHALE : moist, grey ♣ Bedrock refusal at 4.48 m. MW Install at 3.57m.									WATER M/ Depth : 3.1 Elev. : 115. Date : 8/9/2	ARKER 3 m 13 m 2019	4.5 -
Proje	1													-

APPENDIX D

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2309350	Page	: 1 of 7
Client	: McClymont & Rak Engineers Inc.	Laboratory	: Waterloo - Environmental
Contact	: Richard Sukhu	Account Manager	Emily Smith
Address	: 111 Zenway Blvd. Unit 4 Vaughan ON Canada L4H 3H9	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	: 416 675 0160	Telephone	+1 519 886 6910
Project	: 5822	Date Samples Received	: 13-Apr-2023 17:30
PO		Date Analysis Commenced	: 14-Apr-2023
C-O-C number	: 17-620765	Issue Date	: 25-Apr-2023 18:00
Sampler	: BR		
Site			
Quote number	: 2022 Price List		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Danielle Gravel	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Inorganics, Waterloo, Ontario
Greg Pokocky	Manager - Inorganics	Metals, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Metals, Waterloo, Ontario
Katrina Zwambag	Business Manager - Environmental	LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non -infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre
CFU/100mL	colony forming units per hundred millilitres
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable). For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within
	hold time.
PEHR	Parameter exceeded recommended holding time on receipt: Proceeded with analysis
	as requested.

Analytical Results

			Client sample ID	BH 102						
Sub-Matrix: Water		S	ampling date/time	13-Apr-2023						
(Matrix: Water)				09:00						
Analyte	Method	LOR	Unit	WT2309350-001		MISSUB	RMPSUB	RMPSUB		
						STM	SAN	STM		
Physical Tests										
рН	E108	0.10	pH units	8.05		6 - 9 pH units	5.5 - 10 pH units	6 - 9 pH units	 	
Solids, total suspended [TSS]	E160	3.0	mg/L	7.0		15 mg/L	350 mg/L	15 mg/L	 	
Anions and Nutrients										
Fluoride	E235.F	0.020	mg/L	0.199	DLDS		10 mg/L		 	
Kjeldahl nitrogen, total [TKN]	E318	0.050	mg/L	0.398		1 mg/L	100 mg/L	1 mg/L	 	
Phosphorus, total	E372-U	0.0020	mg/L	0.0930		0.4 mg/L	10 mg/L	0.4 mg/L	 	
Sulfate (as SO4)	E235.SO4	0.30	mg/L	35.5	DLDS		1500 mg/L		 	
Cyanides										
Cyanide, strong acid	E333	0.0020	mg/L	<0.0020		0.02 mg/L	2 mg/L	0.02 mg/L	 	
dissociable (Total)			_							
Inorganics										
Chlorine, total	E326	0.050	mg/L	<0.050	PEHR	1 mg/L			 	
Microbiological Tests										
Coliforms, Escherichia coli [E.	E012A.EC	1	CFU/100mL	Not Detected		200		200	 	
coli]						CFU/100mL		CFU/100mL		
Total Metals										
Aluminum, total	E420	0.0030	mg/L	0.357	DLHC	1 mg/L	50 mg/L		 	
Antimony, total	E420	0.00010	mg/L	<0.00100	DLHC		5 mg/L		 	
Arsenic, total	E420	0.00010	mg/L	<0.00100	DLHC	0.02 mg/L	1 mg/L	0.02 mg/L	 	
Cadmium, total	E420	0.0000050	mg/L	<0.0000500	DLHC	0.008 mg/L	0.7 mg/L	0.008 mg/L	 	
Chromium, total	E420	0.00050	mg/L	<0.00500	DLHC	0.08 mg/L	5 mg/L	0.08 mg/L	 	
Cobalt, total	E420	0.00010	mg/L	0.00102	DLHC		5 mg/L		 	
Copper, total	E420	0.00050	mg/L	<0.00500	DLHC	0.04 mg/L	3 mg/L	0.05 mg/L	 	
Lead, total	E420	0.000050	mg/L	0.00119	DLHC	0.12 mg/L	3 mg/L	0.12 mg/L	 	
Manganese, total	E420	0.00010	mg/L	0.136	DLHC	0.05 mg/L	5 mg/L	0.05 mg/L	 	
Mercury, total	E508	0.0000050	mg/L	<0.0000050		0.0004 mg/L	0.01 mg/L	0.0004 mg/L	 	
Molybdenum, total	E420	0.000050	mg/L	0.0278	DLHC		5 mg/L		 	
Nickel, total	E420	0.00050	mg/L	<0.00500	DLHC	0.08 mg/L	3 mg/L	0.08 mg/L	 	
Selenium, total	E420	0.000050	mg/L	0.000566	DLHC	0.02 mg/L	1 mg/L	0.02 mg/L	 	
Silver, total	E420	0.000010	mg/L	<0.000100	DLHC	0.12 mg/L	5 mg/L	0.12 mg/L	 	
Tin, total	E420	0.00010	mg/L	<0.00100	DLHC		5 mg/L		 	

Page	:	4 of 7
Work Order	:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project	:	5822

Project

Analyte	Method	LOR	Unit	WT2309350-001 (Continued)		MISSUB STM	RMPSUB SAN	RMPSUB STM		
Total Metals - Continued										
Titanium, total	E420	0.00030	mg/L	0.00844	DLHC		5 mg/L		 	
Zinc, total	E420	0.0030	mg/L	<0.0300	DLHC	0.04 mg/L	3 mg/L	0.04 mg/L	 	
Speciated Metals										
Chromium, hexavalent [Cr VI], total	E532	0.00050	mg/L	<0.00050					 	
Aggregate Organics										
Biochemical oxygen demand [BOD]	E550	2.0	mg/L	686	HTD	15 mg/L	300 mg/L		 	
Carbonaceous biochemical oxygen demand [CBOD]	E555	2.0	mg/L	587	HTD		300 mg/L	15 mg/L	 	
Oil & grease (gravimetric)	E567	5.0	mg/L	<5.0					 	
Oil & grease, animal/vegetable (gravimetric)	EC567A.SG	5.0	mg/L	<5.0			150 mg/L		 	
Oil & grease, mineral (gravimetric)	E567SG	5.0	mg/L	<5.0			15 mg/L		 	
Phenols, total (4AAP)	E562	0.0010	mg/L	0.0013		0.008 mg/L	1 mg/L	0.008 mg/L	 	
Volatile Organic Compounds										
Benzene	E611D	0.50	µg/L	<0.50		2 µg/L	10 µg/L	2 µg/L	 	
Chloroform	E611D	0.50	µg/L	<0.50			40 µg/L	2 µg/L	 	
Dichlorobenzene, 1,2-	E611D	0.50	µg/L	<0.50			50 µg/L	5.6 µg/L	 	
Dichlorobenzene, 1,4-	E611D	0.50	µg/L	<0.50			80 µg/L	6.8 µg/L	 	
Dichloroethylene, cis-1,2-	E611D	0.50	µg/L	<0.50			4000 µg/L	5.6 µg/L	 	
Dichloromethane	E611D	1.0	µg/L	<1.0			2000 µg/L	5.2 μg/L	 	
Dichloropropylene, trans-1,3-	E611D	0.30	µg/L	<0.30			140 µg/L	5.6 μg/L	 	
Ethylbenzene	E611D	0.50	µg/L	<0.50		2 µg/L	160 µg/L	2 µg/L	 	
Methyl ethyl ketone [MEK]	E611D	20	µg/L	<20			8000 µg/L		 	
Styrene	E611D	0.50	µg/L	<0.50			200 µg/L		 	
Tetrachloroethane, 1,1,2,2-	E611D	0.50	µg/L	<0.50			1400 µg/L	17 µg/L	 	
Tetrachloroethylene	E611D	0.50	µg/L	<0.50			1000 µg/L	4.4 μg/L	 	
Toluene	E611D	0.50	µg/L	<0.50		2 µg/L	270 µg/L	2 µg/L	 	
Trichloroethylene	E611D	0.50	µg/L	<0.50			400 µg/L	8 µg/L	 	
Xylene, m+p-	E611D	0.40	µg/L	<0.40					 	
Xylene, o-	E611D	0.30	µg/L	<0.30					 	
Xylenes, total	E611D	0.50	µg/L	<0.50		4.4 µg/L	1400 µg/L	4.4 µg/L	 	
Volatile Organic Compounds	Surrogates									
Bromofluorobenzene, 4-	E611D	1.0	%	105					 	
Difluorobenzene, 1,4-	E611D	1.0	%	99.5					 	

Page	1	5 of 7
Work Order	:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project		5822

Analyte	Method	LOR	Unit	WT2309350-001	MISSUB	RMPSUB	RMPSUB		
				(Continued)	STM	SAN	STM		
Polycyclic Aromatic Hydroca	rbons								
Acenaphthene	E641A	0.010	μg/L	<0.010				 	
Acenaphthylene	E641A	0.010	μg/L	<0.010				 	
Anthracene	E641A	0.010	μg/L	<0.010				 	
Benz(a)anthracene	E641A	0.010	μg/L	<0.010				 	
Benzo(a)pyrene	E641A	0.0050	μg/L	<0.0050				 	
Benzo(b+j)fluoranthene	E641A	0.010	μg/L	<0.010				 	
Benzo(g,h,i)perylene	E641A	0.010	μg/L	<0.010				 	
Benzo(k)fluoranthene	E641A	0.010	µg/L	<0.010				 	
Chrysene	E641A	0.010	µg/L	<0.010				 	
Dibenz(a,h)anthracene	E641A	0.0050	µg/L	<0.0050				 	
luoranthene	E641A	0.010	µg/L	<0.010				 	
luorene	E641A	0.010	µg/L	<0.010				 	
ndeno(1,2,3-c,d)pyrene	E641A	0.010	µg/L	<0.010				 	
/lethylnaphthalene, 1-	E641A	0.010	µg/L	<0.010				 	
/lethylnaphthalene, 2-	E641A	0.010	µg/L	<0.010				 	
Vaphthalene	E641A	0.050	µg/L	<0.050				 	
Phenanthrene	E641A	0.020	µg/L	<0.020				 	
Pyrene	E641A	0.010	µg/L	<0.010				 	
PAHs, total (CCME sewer 18)	E641A	0.070	µg/L	<0.070	2 µg/L			 	
Chrysene-d12	E641A	0.1	%	82.4				 	
Vaphthalene-d8	E641A	0.1	%	97.4				 	
Phenanthrene-d10	E641A	0.1	%	99.7				 	
Phthalate Esters									
ois(2-Ethylhexyl) phthalate DEHPl	E655F	2.0	µg/L	<2.0		12 µg/L	8.8 µg/L	 	
Di-n-butyl phthalate	E655F	1.0	ua/L	<1.0		80 µg/L	15 µa/L	 	
Semi-Volatile Organics Surro	gates		P.5, -				15		
luorobiphenyl, 2-	E655F	1.0	%	85.1				 	
erphenvl-d14, p-	E655F	1.0	%	92.8				 	
Phenolics Surrogates								1	1
ribromophenol, 2 4 6-	E655F	0.20	%	106				 	
	20001	0.20	70						
	E740R	0.10	ug/l	<0.10			-		
NP2EO]		0.10	µy/∟	~ ∪. IU				 	
onvlphenol ethoxylates, total	E749B	20	ua/l	<2.0		200 µg/l		 	

Page	:	6 of 7
Work Order	:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project		5822

Analyte	Method	LOR	Unit	WT2309350-001 (Continued)	MISSUB STM	RMPSUB SAN	RMPSUB STM			
onylphenols - Continued										
Nonylphenol monoethoxylates [NP1EO]	E749B	2.0	µg/L	<2.0						
Nonylphenols [NP]	E749A	1.0	µg/L	<1.0		20 µg/L				
Polychlorinated Biphenyls										
Aroclor 1016	E687	0.020	µg/L	<0.020						
Aroclor 1221	E687	0.020	µg/L	<0.020						
Aroclor 1232	E687	0.020	µg/L	<0.020						
Aroclor 1242	E687	0.020	µg/L	<0.020						
Aroclor 1248	E687	0.020	µg/L	<0.020						
Aroclor 1254	E687	0.020	µg/L	<0.020						
Aroclor 1260	E687	0.020	µg/L	<0.020						
Aroclor 1262	E687	0.020	µg/L	<0.020						
Aroclor 1268	E687	0.020	µg/L	<0.020						
Polychlorinated biphenyls [PCBs], total	E687	0.060	µg/L	<0.060		1 µg/L	0.4 µg/L			
Decachlorobiphenyl	E687	0.1	%	116						
Tetrachloro-m-xylene	E687	0.1	%	98.2						

Please refer to the General Comments section for an explanation of any qualifiers detected.

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
BH 102	Water	Manganese, total		MISSUB	STM	0.136 mg/L	0.05 mg/L
	Water	Biochemical oxygen demand [BOD]		MISSUB	STM	686 mg/L	15 mg/L
	Water	Biochemical oxygen demand [BOD]		RMPSUB	SAN	686 mg/L	300 mg/L
	Water	Carbonaceous biochemical oxygen demand [CBOD]		RMPSUB	SAN	587 mg/L	300 mg/L
	Water	Manganese, total		RMPSUB	STM	0.136 mg/L	0.05 mg/L
	Water	Carbonaceous biochemical oxygen demand [CBOD]		RMPSUB	STM	587 mg/L	15 mg/L

Page	:	7 of 7
Work Order	1:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project		5822

Key:

MISSUB	Ontario Mississauga Storm Sewer Use By-Law (0046-2022) (March 2022)
STM	Mississauga Storm Sewer (0046-2022)
RMPSUB	Ontario Reg.Mun. of Peel Sewer Bylaw #53-2010 (APR, 2019)
SAN	Peel Sanitary Sewer (53-2010)
STM	Peel Storm Sewer (53-2010)

	QUALITY CONTROL INTERPRETIVE REPORT							
Work Order	:WT2309350	Page	: 1 of 13					
Client	∺McClymont & Rak Engineers Inc.	Laboratory	: Waterloo - Environmental					
Contact	: Richard Sukhu	Account Manager	: Emily Smith					
Address	:111 Zenway Blvd. Unit 4	Address	≑60 Northland Road, Unit 1					
	Vaughan ON Canada L4H 3H9		Waterloo, Ontario Canada N2V 2B8					
Telephone	: 416 675 0160	Telephone	: +1 519 886 6910					
Project	: 5822	Date Samples Received	: 13-Apr-2023 17:30					
PO	:	Issue Date	: 25-Apr-2023 18:00					
C-O-C number	: 17-620765							
Sampler	BR							
Site	:							
Quote number	: 2022 Price List							
No. of samples received	:1							
No. of samples analysed	:1							

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

• No Method Blank value outliers occur.

- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment		
Laboratory Control Sample (LCS) Recoveries										
Volatile Organic Compounds	QC-MRG2-9017180		Methyl ethyl ketone [MEK]	78-93-3	E611D	148 % ^{LCS-H}	70.0-130%	Recovery greater than		
	02							upper control limit		
Result Qualifiers										
Qualifier Desc	ription									
LCS-H Lab relia	Control Sample recovery v ble. Other results, if report	vas above ALS DQO. Nor ed, have been qualified.	n-detected sample results are co	nsidered						

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	aluation: 🗴 = l	Holding time excee	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date Holding		, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT-4d] BH 102	E550	13-Apr-2023					20-Apr-2023	4 days	7 days	×
										EHT
Aggregate Organics : Biochemical Oxygen Demand (Carbonaceous) - 5 day										
HDPE [BOD HT-4d]										
BH 102	E555	13-Apr-2023					20-Apr-2023	4 days	7 days	×
										EHT
Aggregate Organics : Mineral Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)	E5678C	13_Apr-2023	21 Apr 2023	20	8 days	1	21 Apr 2023	40 days	0 days	4
	200700	10-Api-2020	21-Api-2023	28 davs	ouays	•	21-Api-2025	40 uays	0 uays	·
Aggregate Organice : Oil & Grease by Gravimetry				dayo						
Amber glass (hydrochloric acid)										
BH 102	E567	13-Apr-2023	21-Apr-2023	28	8 days	✓	21-Apr-2023	40 days	0 days	✓
				days						
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid) [ON MECP]										
BH 102	E562	13-Apr-2023	22-Apr-2023				22-Apr-2023	28 days	9 days	~
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP] BH 102	E235 E	13-Apr-2023	18-Apr-2023				18-Apr-2023	28 days	5 days	4
Dir 102	2200.1	10-7 (p1-2020	1071012020				10-7101-2020	20 days	0 days	·
Anions and Nutrients ' Sulfate in Water by IC										
HDPE [ON MECP]										
BH 102	E235.SO4	13-Apr-2023	18-Apr-2023				18-Apr-2023	28 days	5 days	1

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; •	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) [ON MECP] BH 102	E318	13-Apr-2023	19-Apr-2023				19-Apr-2023	28 days	6 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) [ON MECP] BH 102	E372-U	13-Apr-2023	19-Apr-2023				20-Apr-2023	28 days	7 days	¥
Cyanides : Total Cyanide										
HDPE - total (sodium hydroxide) BH 102	E333	13-Apr-2023	19-Apr-2023				19-Apr-2023	14 days	6 days	~
Inorganics : Total Chlorine (Residual) by DPD Colourimetry										
HDPE [ON MECP] BH 102	E326	13-Apr-2023					18-Apr-2023	0.25 hrs	120 hrs	¥ EHTR-FM
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] BH 102	E012A.EC	13-Apr-2023					14-Apr-2023	48 hrs	28 hrs	¥
Nonylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode										
Amber glass/Teflon lined cap - LCMS BH 102	E749B	13-Apr-2023	14-Apr-2023	7 days	1 days	4	14-Apr-2023	7 days	0 days	4
Nonylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negativ	/e Mode									
Amber glass/Teflon lined cap - LCMS BH 102	E749A	13-Apr-2023	14-Apr-2023	7 days	1 days	~	14-Apr-2023	7 days	0 days	~
Phthalate Esters : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP] BH 102	E655F	13-Apr-2023	18-Apr-2023	14 days	5 days	4	19-Apr-2023	40 days	1 days	4
Physical Tests : pH by Meter										
HDPE [ON MECP] BH 102	E108	13-Apr-2023	18-Apr-2023				19-Apr-2023	14 days	6 days	4

Matrix: Water					Ev	aluation: × = l	Holding time excee	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP]										
BH 102	E160	13-Apr-2023					18-Apr-2023	7 days	5 days	 ✓
Polychlorinated Biphenyls : PCB Aroclors by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
BH 102	E687	13-Apr-2023	18-Apr-2023	14	5 days	✓	19-Apr-2023	40 days	1 days	✓
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP]										
BH 102	E641A	13-Apr-2023	18-Apr-2023	7 days	5 days	✓	18-Apr-2023	40 days	1 days	✓
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE - total (sodium hydroxide)										
BH 102	E532	13-Apr-2023					14-Apr-2023	28 days	1 days	✓
Total Metals : Total Mercury in Water by CVAAS								1		
Glass vial total (hydrochloric acid) [ON MECP]										
BH 102	E508	13-Apr-2023	14-Apr-2023				14-Apr-2023	28 days	1 days	 ✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
BH 102	E420	13-Apr-2023	14-Apr-2023				14-Apr-2023	180	2 days	 ✓
								days		
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS									1	
Glass vial (sodium bisulfate)										
BH 102	E611D	13-Apr-2023	18-Apr-2023				18-Apr-2023	14 days	5 days	 ✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within specification							
Quality Control Sample Type		Frequency (%)						
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Biochemical Oxygen Demand - 5 day	E550	897340	1	20	5.0	5.0	✓	
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	897569	1	14	7.1	5.0	✓	
E. coli (MF-mFC-BCIG)	E012A.EC	897728	1	3	33.3	5.0	✓	
Fluoride in Water by IC	E235.F	901447	1	11	9.0	5.0	✓	
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	897633	1	8	12.5	5.0	✓	
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	897632	1	8	12.5	5.0	✓	
pH by Meter	E108	901441	1	15	6.6	5.0	✓	
Phenols (4AAP) in Water by Colorimetry	E562	906864	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	901448	1	11	9.0	5.0	✓	
Total Chlorine (Residual) by DPD Colourimetry	E326	901104	1	2	50.0	5.0	✓	
Total Cyanide	E333	903588	1	20	5.0	5.0	✓	
Total Hexavalent Chromium (Cr VI) by IC	E532	897519	1	11	9.0	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	901841	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	897737	1	20	5.0	5.0	✓	
Total metals in Water by CRC ICPMS	E420	898147	1	20	5.0	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	901840	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	901162	1	19	5.2	4.7	✓	
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	901718	1	20	5.0	5.0	✓	
Laboratory Control Samples (LCS)								
Biochemical Oxygen Demand - 5 day	E550	897340	1	20	5.0	5.0	1	
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	897569	1	14	7.1	5.0	✓	
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	900969	1	2	50.0	5.0	✓	
Fluoride in Water by IC	E235.F	901447	1	11	9.0	5.0	✓	
Mineral Oil & Grease by Gravimetry	E567SG	905683	1	16	6.2	5.0	✓	
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	897633	1	8	12.5	5.0	✓	
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	897632	1	8	12.5	5.0	✓	
Oil & Grease by Gravimetry	E567	905682	1	20	5.0	5.0	✓	
PAHs by Hexane LVI GC-MS	E641A	900959	1	2	50.0	5.0	✓	
PCB Aroclors by GC-MS	E687	900975	1	19	5.2	4.7	✓	
pH by Meter	E108	901441	1	15	6.6	5.0	✓	
Phenols (4AAP) in Water by Colorimetry	E562	906864	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	901448	1	11	9.0	5.0	✓	
Total Chlorine (Residual) by DPD Colourimetry	E326	901104	1	2	50.0	5.0	✓	
Total Cyanide	E333	903588	1	20	5.0	5.0	✓	
Total Hexavalent Chromium (Cr VI) by IC	E532	897519	1	11	9.0	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	901841	1	20	5.0	5.0	✓	

Matrix: Water	Water Evaluation: ★ = QC frequency outside specification; ✓ = QC frequency within specif										
Quality Control Sample Type			Со	unt	Frequency (%)						
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation				
Laboratory Control Samples (LCS) - Continued	Laboratory Control Samples (LCS) - Continued										
Total Mercury in Water by CVAAS	E508	897737	1	20	5.0	5.0	✓				
Total metals in Water by CRC ICPMS	E420	898147	1	20	5.0	5.0	✓				
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	901840	1	20	5.0	5.0	✓				
TSS by Gravimetry	E160	901162	1	19	5.2	4.7	✓				
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	901718	1	20	5.0	5.0	✓				
Method Blanks (MB)											
Biochemical Oxygen Demand - 5 day	E550	897340	1	20	5.0	5.0	1				
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	897569	1	14	7.1	5.0	<u> </u>				
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	900969	1	2	50.0	5.0	✓				
E. coli (MF-mFC-BCIG)	E012A.EC	897728	1	3	33.3	5.0	✓				
Fluoride in Water by IC	E235.F	901447	1	11	9.0	5.0	1				
Mineral Oil & Grease by Gravimetry	E567SG	905683	1	16	6.2	5.0	1				
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	897633	1	8	12.5	5.0	✓				
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	897632	1	8	12.5	5.0	1				
Oil & Grease by Gravimetry	E567	905682	1	20	5.0	5.0	✓				
PAHs by Hexane LVI GC-MS	E641A	900959	1	2	50.0	5.0	✓				
PCB Aroclors by GC-MS	E687	900975	1	19	5.2	4.7	✓				
Phenols (4AAP) in Water by Colorimetry	E562	906864	1	20	5.0	5.0	✓				
Sulfate in Water by IC	E235.SO4	901448	1	11	9.0	5.0	✓				
Total Chlorine (Residual) by DPD Colourimetry	E326	901104	1	2	50.0	5.0	✓				
Total Cyanide	E333	903588	1	20	5.0	5.0	✓				
Total Hexavalent Chromium (Cr VI) by IC	E532	897519	1	11	9.0	5.0	✓				
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	901841	1	20	5.0	5.0	✓				
Total Mercury in Water by CVAAS	E508	897737	1	20	5.0	5.0	✓				
Total metals in Water by CRC ICPMS	E420	898147	1	20	5.0	5.0	✓				
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	901840	1	20	5.0	5.0	✓				
TSS by Gravimetry	E160	901162	1	19	5.2	4.7	✓				
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	901718	1	20	5.0	5.0	✓				
Matrix Spikes (MS)											
Fluoride in Water by IC	E235.F	901447	1	11	9.0	5.0	✓				
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	897633	1	8	12.5	5.0	✓				
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	897632	1	8	12.5	5.0	✓				
Phenols (4AAP) in Water by Colorimetry	E562	906864	1	20	5.0	5.0	✓				
Sulfate in Water by IC	E235.SO4	901448	1	11	9.0	5.0	✓				
Total Chlorine (Residual) by DPD Colourimetry	E326	901104	1	2	50.0	5.0	✓				
Total Cyanide	E333	903588	1	20	5.0	5.0	✓				
Total Hexavalent Chromium (Cr VI) by IC	E532	897519	1	11	9.0	5.0	1				
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	901841	1	20	5.0	5.0	1				
Total Mercury in Water by CVAAS	E508	897737	1	20	5.0	5.0	 ✓ 				

Page	:	9 of 13
Work Order	:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project	1	5822

Matrix: Water	n: × = QC freque	ency outside spe	side specification; \checkmark = QC frequency within specification.				
Quality Control Sample Type			Co	QC requency outside specification; ✓ = QC frequency withi Count Frequency (%) QC Regular Actual Expected 1 20 5.0 5.0 1 20 5.0 5.0 1 20 5.0 5.0 1 20 5.0 5.0)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Total metals in Water by CRC ICPMS	E420	898147	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	901840	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	901718	1	20	5.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 μ m), and incubation at 44.5 \pm 0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
	Waterloo -			5 1 55 5 5
	Environmental			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results.
	Waterloo -			pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Waterloo -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis
	2			methods are available for these types of samples
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection
	Waterloo -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Total Kjeldahl Nitrogen by Fluorescence (Low	E318	Water	Method Fialab 100,	TKN in water is determined by automated continuous flow analysis with membrane
Level)			2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Environmental			
Total Chlorine (Residual) by DPD Colourimetry	E326	Water	APHA 4500-CI G	Chlorine (residual), as free or total, is analyzed using the DPD colourimetric method. The
			(mod)	recommended hold time for this test is 15 minutes and field testing is recommended
	Waterloo -			when determining Chlorine concentrations at the time of sampling.
	Environmental			
				Chlorine if present in a sample container after sampling can be rapidly consumed by any
				inorganic or organic matter in the sample and dissipates rapidly into headspace.
				Laboratory results may be requested when chlorine concentrations that may be present
				at the time of laboratory analysis are required for the interpretation of other laboratory
				analysis where the presence of Chlorine may affect results. e.g. laboratory toxicity
				testing

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Cyanide	E333 Waterloo -	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.
	Environmental			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Waterloo - Environmental			
Total metals in Water by CRC ICPMS	E420 Waterloo -	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Waterloo - Environmental			
Total Hexavalent Chromium (Cr VI) by IC	E532	Water	APHA 3500-Cr C (Ion Chromatography)	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV detection.
	Waterloo - Environmental			Results are based on an un-filtered, field-preserved sample
Biochemical Oxygen Demand - 5 day	E550	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter.
	Waterloo - Environmental			Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555 Waterloo - Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.
				Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry	E562	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to
	Waterloo - Environmental			form a red complex which is measured colorimetrically.
Oil & Grease by Gravimetry	E567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
	Environmental			

Page	:	12 of 13
Work Order	:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project	:	5822

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Mineral Oil & Grease by Gravimetry	E567SG Waterloo -	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane, followed by silica gel treatment after which the extract is evaporated to dryness. The residue is then weighed to determine Mineral Oil and Grease.
	Environmental			
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the
	Waterloo - Environmental			headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PAHs by Hexane LVI GC-MS	E641A	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
	Waterloo -			
	Environmental			
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
	Waterloo -			
	Environmental			
PCB Aroclors by GC-MS	E687	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
	Waterloo -			
	Environmental			
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	Water	J. Chrom A849 (1999) p.467-482	An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol-D4, Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	Waterloo -			analyzed by LC-MS/MS.
	Environmental			
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	Water	J. Chrom A849 (1999) p.467-482	Water samples are filtered and analyzed on LCMS/MS by direct injection.
	Waterloo -			
	Environmental			
Animal & Vegetable Oil & Grease by Gravimetry	EC567A.SG	Water	APHA 5520 (mod)	Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric) minus Mineral Oil & Grease (gravimetric)
	Waterloo -			
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
			(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Waterloo -			analytical method as TKN. This method is unsuitable for samples containing high levels
	Environmental			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Waterloo - Environmental			

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
			(Oil & Grease) (mod)	
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
				extracted using a hexane liquid-liquid extraction.
	Waterloo -			
	Environmental			
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	\\(otorioo			
	vvalenoo -			
	Environmentai	\\/otor	EDA 2511 (mod)	
Pesticides, PCB, and Neutral Extractable	EP660	vvaler	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid
Chlorinated Hydrocarbons Extraction				extraction.
	Waterloo -			
	Environmental			
Preparation of Nonylphenol and Nonylphenol	EP749	Water	J. Chrom A849 (1999)	An aliquot of $5.0 \pm 0.10 \text{ mL}$ of filtered sample is spiked with Nonylphenol-D4,
Ethoxylates			p.467-482	Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	Waterloo -			analyzed by LC-MS/MS.
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 15 WT2309350 Client : McClymont & Rak Engineers Inc. Laboratory : Waterloo - Environmental : Richard Sukhu Account Manager : Emily Smith Contact Address Address : 111 Zenway Blvd. Unit 4 :60 Northland Road, Unit 1 Vaughan ON Canada L4H 3H9 Waterloo, Ontario Canada N2V 2B8 Telephone Telephone :+1 519 886 6910 Project :5822 Date Samples Received : 13-Apr-2023 17:30 PO **Date Analysis Commenced** : 14-Apr-2023 :----C-O-C number Issue Date : 17-620765 : 25-Apr-2023 18:00 Sampler :BR 416 675 0160 Site · ____ Quote number 2022 Price List No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department				
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario				
Danielle Gravel	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario				
Greg Pokocky	Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario				
Greg Pokocky	Manager - Inorganics	Waterloo Metals, Waterloo, Ontario				
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario				
Jon Fisher	Production Manager, Environmental	Waterloo Inorganics, Waterloo, Ontario				
Jon Fisher	Production Manager, Environmental	Waterloo Metals, Waterloo, Ontario				
Katrina Zwambag	Business Manager - Environmental	Waterloo LCMS, Waterloo, Ontario				
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario				

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC Lot: 901162)												
WT2309547-001	Anonymous	Solids, total suspended [TSS]		E160	30.0	mg/L	2330	2390	2.37%	20%		
Physical Tests (QC	Lot: 901441)											
WT2309388-001	Anonymous	рН		E108	0.10	pH units	7.64	7.75	1.43%	4%		
Anions and Nutrients (QC Lot: 901447)												
WT2309367-001	Anonymous	Fluoride	16984-48-8	E235.F	0.200	mg/L	<0.200	<0.200	0	Diff <2x LOR		
Anions and Nutrients (QC Lot: 901448)												
WT2309367-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	3.00	mg/L	70.7	70.2	0.644%	20%		
Anions and Nutrien	ts (QC Lot: 901840)											
WT2309288-014	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0067	0.0055	0.0012	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 901841)											
HA2300138-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.137	0.144	0.007	Diff <2x LOR		
Cyanides (QC Lot:	903588)											
EO2302909-001	Anonymous	Cyanide, strong acid dissociable (Total)		E333	0.0050	mg/L	0.0074	0.0074	0.00002	Diff <2x LOR		
Inorganics (QC Lot	:: 901104)											
WT2309350-001	BH 102	Chlorine, total	7782-50-5	E326	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
Microbiological Tes	ots (QC Lot: 897728)											
WT2309350-001	BH 102	Coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR		
Total Metals (QC L	ot: 897737)											
BF2300013-008	Anonymous	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Total Metals (QC L	ot: 898147)											
WT2309350-001	BH 102	Aluminum, total	7429-90-5	E420	0.0300	mg/L	0.357	0.392	9.20%	20%		
		Antimony, total	7440-36-0	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR		
		Arsenic, total	7440-38-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR		
		Cadmium, total	7440-43-9	E420	0.0000500	mg/L	<0.0000500	<0.0000500	0	Diff <2x LOR		
		Chromium, total	7440-47-3	E420	0.00500	mg/L	<0.00500	<0.00500	0	Diff <2x LOR		
		Cobalt, total	7440-48-4	E420	0.00100	mg/L	0.00102	0.00108	0.00006	Diff <2x LOR		
		Copper, total	7440-50-8	E420	0.00500	mg/L	<0.00500	<0.00500	0	Diff <2x LOR		
		Lead, total	7439-92-1	E420	0.000500	mg/L	0.00119	0.00121	0.000020	Diff <2x LOR		
		Manganese, total	7439-96-5	E420	0.00100	mg/L	0.136	0.141	2.96%	20%		
Page	:	4 of 15										
------------	---	--------------------------------										
Work Order	:	WT2309350										
Client	:	McClymont & Rak Engineers Inc.										
Project	:	5822										

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	t: 898147) - continued										
WT2309350-001	BH 102	Molybdenum, total	7439-98-7	E420	0.000500	mg/L	0.0278	0.0292	5.08%	20%	
		Nickel, total	7440-02-0	E420	0.00500	mg/L	<0.00500	<0.00500	0	Diff <2x LOR	
		Selenium, total	7782-49-2	E420	0.000500	mg/L	0.000566	0.000556	0.000011	Diff <2x LOR	
		Silver, total	7440-22-4	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Tin, total	7440-31-5	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		Titanium, total	7440-32-6	E420	0.00300	mg/L	0.00844	0.00832	0.00012	Diff <2x LOR	
		Zinc, total	7440-66-6	E420	0.0300	mg/L	<0.0300	<0.0300	0	Diff <2x LOR	
Speciated Metals (QC Lot: 897519)											
WT2309024-001	Anonymous	Chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
Aggregate Organics	(QC Lot: 897340)										
WT2309319-001	Anonymous	Biochemical oxygen demand [BOD]		E550	2.0	mg/L	<2.0	<2.0	0.0%	30%	
Aggregate Organics	(QC Lot: 897569)										
WT2309340-002	Anonymous	Carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	<2.0	<2.0	0.0%	30%	
Aggregate Organics (QC Lot: 906864)											
WP2304935-001	Anonymous	Phenols, total (4AAP)		E562	0.0010	mg/L	0.0026	0.0024	0.0002	Diff <2x LOR	
Volatile Organic Con	npounds (QC Lot: 9017	18)									
WT2309668-001	Anonymous	Benzene	71-43-2	E611D	0.50	μg/L	0.75	0.76	0.01	Diff <2x LOR	
		Chloroform	67-66-3	E611D	0.50	µg/L	3.32	3.42	2.97%	30%	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	1.0	μg/L	5.9	6.0	0.04	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.50	µg/L	119	120	1.58%	30%	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	103	113	10	Diff <2x LOR	
		Styrene	100-42-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	μg/L	0.51	0.58	0.07	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.50	µg/L	1.22	1.27	0.05	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.40	μg/L	231	236	2.06%	30%	
		Xylene, o-	95-47-6	E611D	0.30	µg/L	4.31	4.37	1.38%	30%	
Nonylphenols (QC L	.ot: 897632)										

Page	:	5 of 15
Work Order	:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project	:	5822

Sub-Matrix: Water	Sub-Matrix: Water					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Nonylphenols (QC Lot: 897632) - continued											
WT2309182-001	Anonymous	Nonylphenols [NP]	84852-15-3	E749A	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
Nonylphenols (QC Lot: 897633)											
WT2309182-001	Anonymous	Nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.10	µg/L	<0.10	<0.10	0	Diff <2x LOR	
		Nonylphenol monoethoxylates [NP1EO]	n/a	E749B	10.0	µg/L	<10.0	<10.0	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 901162)						
Solids, total suspended [TSS]	/	E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 901447)						
Fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 901448)						
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 901840)						
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
nions and Nutrients (QCLot: 901841)						
Kjeldahl nitrogen, total [TKN]	/	E318	0.05	mg/L	<0.050	
yanides (QCLot: 903588)						
Cyanide, strong acid dissociable (Total)	/	E333	0.002	mg/L	<0.0020	
norganics (QCLot: 901104)						
Chlorine, total	7782-50-5	E326	0.05	mg/L	<0.050	
licrobiological Tests (QCLot: 897728)						
Coliforms, Escherichia coli [E. coli]	/	E012A.EC	1	CFU/100mL	<1	
otal Metals (QCLot: 897737)						
Mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
otal Metals (QCLot: 898147)						
Aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
Antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
Arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
Cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
Selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
Tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
			1			(

Sub-Matrix: Water

Analyte	CAS Number	r Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 898147) - contin	ued					
Titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
Zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Speciated Metals (QCLot: 897519)						
Chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0005	mg/L	<0.00050	
Aggregate Organics (QCLot: 897340)						
Biochemical oxygen demand [BOD]		E550	2	mg/L	<2.0	
Aggregate Organics (QCLot: 897569)						
Carbonaceous biochemical oxygen demand [CE	30D]	E555	2	mg/L	<2.0	
Aggregate Organics (QCLot: 905682)						
Oil & grease (gravimetric)		E567	5	mg/L	<5.0	
Aggregate Organics (QCLot: 905683)						
Oil & grease, mineral (gravimetric)		E567SG	5	mg/L	<5.0	
Aggregate Organics (QCLot: 906864)						
Phenols, total (4AAP)		E562	0.001	mg/L	<0.0010	
Volatile Organic Compounds (QCLot:	901718)					
Benzene	71-43-2	E611D	0.5	µg/L	<0.50	
Chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	<0.50	
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	<0.50	
Dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	<0.30	
Ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	
Styrene	100-42-5	E611D	0.5	µg/L	<0.50	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	<0.50	
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
Toluene	108-88-3	E611D	0.5	µg/L	<0.50	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	<0.40	
Xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	
Polycyclic Aromatic Hydrocarbons (Q	CLot: 900959)					1
Acenaphthene	83-32-9	E641A	0.01	µg/L	<0.010	
Acenaphthylene	208-96-8	E641A	0.01	µg/L	<0.010	
Anthracene	120-12-7	E641A	0.01	µg/L	<0.010	
1 Contraction of the second		1	1	1	L. C.	1

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons	(QCLot: 900959) - contin	ued				
Benz(a)anthracene	56-55-3	E641A	0.01	µg/L	<0.010	
Benzo(a)pyrene	50-32-8	E641A	0.005	µg/L	<0.0050	
Benzo(b+j)fluoranthene	n/a	E641A	0.01	µg/L	<0.010	
Benzo(g,h,i)perylene	191-24-2	E641A	0.01	µg/L	<0.010	
Benzo(k)fluoranthene	207-08-9	E641A	0.01	µg/L	<0.010	
Chrysene	218-01-9	E641A	0.01	µg/L	<0.010	
Dibenz(a,h)anthracene	53-70-3	E641A	0.005	µg/L	<0.0050	
Fluoranthene	206-44-0	E641A	0.01	µg/L	<0.010	
Fluorene	86-73-7	E641A	0.01	µg/L	<0.010	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	µg/L	<0.010	
Methylnaphthalene, 1-	90-12-0	E641A	0.01	µg/L	<0.010	
Methylnaphthalene, 2-	91-57-6	E641A	0.01	µg/L	<0.010	
Naphthalene	91-20-3	E641A	0.05	µg/L	<0.050	
Phenanthrene	85-01-8	E641A	0.02	µg/L	<0.020	
Pyrene	129-00-0	E641A	0.01	µg/L	<0.010	
Phthalate Esters (QCLot: 900969)						
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	µg/L	<2.0	
Di-n-butyl phthalate	84-74-2	E655F	1	µg/L	<1.0	
Nonylphenols (QCLot: 897632)						
Nonylphenols [NP]	84852-15-3	E749A	1	µg/L	<1.0	
Nonylphenols (QCLot: 897633)						
Nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	µg/L	<0.10	
Nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	µg/L	<2.0	
Polychlorinated Biphenyls (QCLot:	900975)					
Aroclor 1016	12674-11-2	E687	0.02	µg/L	<0.020	
Aroclor 1221	11104-28-2	E687	0.02	µg/L	<0.020	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	<0.020	
Aroclor 1242	53469-21-9	E687	0.02	µg/L	<0.020	
Aroclor 1248	12672-29-6	E687	0.02	µg/L	<0.020	
Aroclor 1254	11097-69-1	E687	0.02	µg/L	<0.020	
Aroclor 1260	11096-82-5	E687	0.02	µg/L	<0.020	
Aroclor 1262	37324-23-5	E687	0.02	µg/L	<0.020	
Aroclor 1268	11100-14-4	E687	0.02	µg/L	<0.020	

Page	:	9 of 15
Work Orde	r:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project	:	5822

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

AsyloGRawweyMethodLO8LO8SeleRecovery (NRecovery (N)Recovery (N) <th colspan="4">ub-Matrix: Water</th> <th colspan="6">Laboratory Control Sample (LCS) Report</th>	ub-Matrix: Water				Laboratory Control Sample (LCS) Report					
AnalysicCAS Mane?MethodLORUnitCancentrationLCSLowLowHophQualitariePhysical Tasts (CCLots 901431)F1005007009000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>Spike</td><td>Recovery (%)</td><td>Recovery</td><td>Limits (%)</td><td></td></td<>						Spike	Recovery (%)	Recovery	Limits (%)	
Physical Tosts (OCL 0: 901462) Eff00 3 mg/u 1500 mg/u 98.00 150 1 pl amount of the second of the seco	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Side, Rade, Rade, PictryFind3mgLfindfind96.0008.0001.000.0000.000Physical Tests (CCL 0: 901441)	Physical Tests (QCLot: 901162)									
Physical Torists (QCL 01: 901441) E108 Image: Private Privitate Private Private Private Private Private Privi	Solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	96.0	85.0	115	
pH mmm pH wills 7 pH wills 100 90.0	Physical Tests (QCLot: 901441)									
Anions and Nutrients (ACL of: 901447)NameResource of the second se	рН		E108		pH units	7 pH units	100	98.0	102	
Anions and Nutrients (QCL 01: 901447) Field (1980-478-8) E23 F 0.00 mmgL 1 mgL 1										
Pixonda 108044.88 E235 F/w 0.02 mg/L 1 mg/L 1 011 09.00 1 00	Anions and Nutrients (QCLot: 901447)									
Antone and Nutrients (OCL 01: 901443) 14908-78-18 E235.50 0.0 mg/L 100 mg/L 98.0 90.0 100 91.0 Saling (as GA) Mathone and Nutrients (OCL 01: 901840) 7723-14.0 E372-U 0.002 mg/L 0.484 mg/L 99.2 80.00 1200 me Anions and Nutrients (OCL 01: 901841) The Sale of the Sale o	Fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Suffix (a) 1488/78 E235.504 0.3 mg/L 100 mg/L 88.0 90.0 100 Anions and Nutrionts (QCL of: 901840) 7723-14-0 E372-14-0 0.002 mg/L 0.845 mg/L 99.2 80.0 1200 Anions and Nutrionts (QCL of: 901841) <t< td=""><td>Anions and Nutrients (QCLot: 901448)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Anions and Nutrients (QCLot: 901448)									
Anions and Nutrients (QCLot: 901840) 7723-140 EXP 0.002 mg/L 0.845 mg/L 99.2 80.0 120 Anions and Nutrients (QCLot: 901841) EXP EXP	Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	98.0	90.0	110	
Phosphorus, total 7723-14-0 E372-U 0.002 mg/L 0.845 mg/L 99.2 0.00 120 Anioar and Nutrients (QCLot: 901841) E318 0.05 mg/L 4 mg/L 99.2 80.0 120 Cyanides (ACLot: 903588) E333 0.002 mg/L 0.25 mg/L 80.0 80.0 120 Inorganics (ACLot: 903588) E333 0.002 mg/L 0.25 mg/L 80.0 1200 120 Inorganics (ACLot: 901104) E333 0.005 mg/L 0.28861 mg/L 1000 75.0 125 Intractis (ACLot: 907107) E326 0.000 mg/L 0.001 100 76.0 120 Total Metals (ACLot: 89747) Hordal 440-440 429.0 0.000 mg/L 0.000 94.9 80.0 120 Animum, total 740-38-0 E420 0.0001 mg/L 0.05 m	Anions and Nutrients (QCLot: 901840)									
Aniors and Nutrients (QCL of: 901841) Easily and associated (TKN) All and a stress of the stress of	Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.845 mg/L	99.2	80.0	120	
Kjeldshi hirtogen, total [TKN] mail 0.05 mg/L 4 mg/L 97.6 75.0 125 Cyanides (QCL ot: 903588) E333 0.002 mg/L 0.25 mg/L 95.6 80.0 120 Inorganics (QCL ot: 901104) E333 0.002 mg/L 0.28861 mg/L 95.6 80.0 120 Chorine, total 7782-60-5 E326 0.05 mg/L 0.28861 mg/L 95.6 80.0 120 Total Metals (QCL ot: 897737) E326 0.0000 mg/L 0.0001 mg/L 97.1 80.0 120 Total Metals (QCL ot: 898147)	Anions and Nutrients (QCLot: 901841)									
Cyanides (QCL of: 903588) E333 0.002 mg/L 0.25 mg/L 95.6 80.0 120 Inorganics (QCL of: 901104)	Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	97.6	75.0	125	
Cyanides (QCL ct: 903588) Cyanides (QCL ct: 901104) E333 0.002 mg/L 0.25 mg/L 95.6 80.0 120 Inorganics (QCL ct: 901104)										
Cyanide, strong acid dissociable (Total) E333 0.022 mg/L 0.25 mg/L 95.6 80.0 120 Inorganics (QCLot: 901104)	Cyanides (QCLot: 903588)									
Inorganics (QCLot: 901104) Image: Constraint of the second s	Cyanide, strong acid dissociable (Total)		E333	0.002	mg/L	0.25 mg/L	95.6	80.0	120	
Inorganics (QCLot: 901104) Chlorine, total 7782-50-5 S26 0.05 mg/L 0.28861 mg/L 100 75.0 125 Colorine, total 7439-97-8 5508 0.00005 mg/L 0.0001 mg/L 97.1 80.0 120 Total Metals (QCLot: 897737) Mercury, total 7439-97-8 5508 0.00005 mg/L 0.0001 mg/L 97.1 80.0 120 Total Metals (QCLot: 893147) Attiminum, total 7429-90.5 E420 0.003 mg/L 0.1 mg/L 94.9 80.0 120 Attiminum, total 7440-38-0 E420 0.0001 mg/L 0.055 mg/L 98.0 80.0 120 Arsenic, total 7440-38-2 E420 0.0005 mg/L 0.005 mg/L 101 80.0 120 Cobrait, total 7440-47-3 E420 0.0005 mg/L 0.0125 mg/L 101 80.0										
Chlorine, total 7162-905 E226 0.05 mg/L 0.28891 mg/L 100 75.0 129 Total Mercury, total 7439-97-6 E508 0.000005 mg/L 0.0001 mg/L 97.1 80.0 120 Mercury, total 7439-97-6 E508 0.00005 mg/L 0.1mg/L 94.9 80.0 120 Atlimitum, total 7429-90-5 E420 0.001 mg/L 0.05 mg/L 98.0 80.0 120 Antimony, total 740-03e-0 E420 0.0001 mg/L 0.05 mg/L 98.0 80.0 120 Actimitum, total 7440-3a-2 E420 0.0001 mg/L 0.05 mg/L 103 80.0 120 Cobart, total 7440-43-8 E420 0.0005 mg/L 0.0125 mg/L 98.4 80.0 120 Cobart, total 7440-43-8 E420 0.0005 mg/L 0.0125 mg/L 98.4 80.0 120 Cobart, total 7440-43-8 E420	Inorganics (QCLot: 901104)	7700 50 5	5200	0.05			100	75.0	405	
Image: Constraint of the series of	Chlorine, total	7782-50-5	E320	0.05	mg/L	0.28861 mg/L	100	75.0	125	
Total Metals (QCL ot: 897737) Mercury, total 7439-97-6 E508 0.000005 mg/L 0.0001 mg/L 97.1 80.0 120 Total Metals (QCL ot: 898147) Autimum, total 7429-90-5 E420 0.003 mg/L 0.1 mg/L 94.9 80.0 120 Antimony, total 7440-36 E420 0.0001 mg/L 0.05 mg/L 98.0 80.0 120 Arsenic, total 7440-38 E420 0.0001 mg/L 0.05 mg/L 102 80.0 120 Cadmium, total 7440-38 E420 0.0005 mg/L 0.005 mg/L 102 80.0 120 Cadmium, total 7440-43 E420 0.0005 mg/L 0.0125 mg/L 103 80.0 120 Cobalt, total 7440-43 E420 0.0005 mg/L 0.0125 mg/L 101 80.0 120 Cobalt, total 740-444 <td></td>										
Marcal Metal Marcal Metal	Total Metals (QCLot: 897737)	7430 07 6	E508	0.000005	mg/l	0.0001 mg/l	07.1	80.0	120	
Total Metals (QCLct: 898147)Aluminum, total7429-00-5E4200.003mg/L0.1 mg/L94.980.0120Antimony, total7440-36-0E4200.0001mg/L0.05 mg/L98.080.0120Arsenic, total7440-38-2E4200.0001mg/L0.05 mg/L10280.0120Cadmium, total7440-43-9E4200.00005mg/L0.005 mg/L10380.0120Chromium, total7440-43-9E4200.0005mg/L0.0125 mg/L98.480.0120Cobalt, total7440-43-9E4200.0005mg/L0.0125 mg/L98.480.0120Cobalt, total7440-43-9E4200.0005mg/L0.0125 mg/L10180.0120Cobalt, total7440-48-4E4200.0005mg/L0.0125 mg/L10180.0120Copper, total7440-48-4E4200.0005mg/L0.0125 mg/L10180.0120Lead, total7439-92-1E4200.0005mg/L0.025 mg/L10180.0120Maganese, total7439-96-5E4200.0005mg/L0.0125 mg/L10180.0120Molybdenum, total7439-98-7E4200.0005mg/L0.0125 mg/L93.580.0120Nickel, total7440-20E420 </td <td></td> <td>7439-97-0</td> <td>2000</td> <td>0.000003</td> <td>ing/L</td> <td>0.0001 mg/L</td> <td>97.1</td> <td>80.0</td> <td>120</td> <td></td>		7439-97-0	2000	0.000003	ing/L	0.0001 mg/L	97.1	80.0	120	
Andimination Page 300	Total Metals (QCLot: 898147)	7429 90 5	E420	0.003	mg/l	0.1 mg/l	04.0	80.0	120	
Animolary data Factor of algo Facto		7429-90-9	E420	0.000	mg/L	0.1 mg/L	94.9	80.0	120	
Cadmium, total 740-03 2 Fabor 6.000 mg/L 6.000 mg/L 102 6.000 1100 1100 Cadmium, total 740-43-9 E420 0.00005 mg/L 0.0015 mg/L 98.4 80.0 120 Chomium, total 740-47-3 E420 0.0005 mg/L 0.0125 mg/L 98.4 80.0 120 Cobalt, total 740-48-4 E420 0.0005 mg/L 0.0125 mg/L 101 80.0 120 Copper, total 740-68-8 E420 0.0005 mg/L 0.0125 mg/L 100 80.0 120 Lead, total 7439-92-1 E420 0.0005 mg/L 0.0125 mg/L 100 80.0 120 Maganese, total 7439-92-1 E420 0.0005 mg/L 0.0125 mg/L 101 80.0 120 Molybdenum, total 7439-92-1 E420 0.0005 mg/L 0.0125 mg/L 101 80.0 120 Nickel, total 740-020 E420 0.0005 mg/L	Arsenic total	7440-38-2	E420	0.0001	mg/L	0.05 mg/L	102	80.0	120	
Chromium, total Total Factor Factor <th< td=""><td>Cadmium total</td><td>7440-43-9</td><td>E420</td><td>0.000005</td><td>mg/L</td><td>0.005 mg/L</td><td>102</td><td>80.0</td><td>120</td><td></td></th<>	Cadmium total	7440-43-9	E420	0.000005	mg/L	0.005 mg/L	102	80.0	120	
Cobalt, total 740-48 Factor	Chromium total	7440-47-3	E420	0.0005	mg/L	0.0125 mg/l	98.4	80.0	120	
Copper, total 7440-50-8 E420 0.0005 mg/L 0.0125 mg/L 100 80.0 120 Lead, total 7439-92 E420 0.0005 mg/L 0.0255 mg/L 107 80.0 120 Manganese, total 7439-965 E420 0.0005 mg/L 0.0125 mg/L 101 80.0 120 Molybdenum, total 7439-98-7 E420 0.0005 mg/L 0.0125 mg/L 101 80.0 120 Nickel, total 740-020 E420 0.0005 mg/L 0.0125 mg/L 93.5 80.0 120	Cobalt. total	7440-48-4	E420	0.0001	ma/L	0.0125 mg/l	101	80.0	120	
Lead, total 7439-92-1 E420 0.00005 mg/L 0.025 mg/L 107 80.0 120 Manganese, total 7439-86-5 E420 0.0001 mg/L 0.0125 mg/L 101 80.0 120 Molybdenum, total 7439-86-7 E420 0.0005 mg/L 0.0125 mg/L 93.5 80.0 120 Nickel, total 7440-02-0 E420 0.0005 mg/L 0.025 mg/L 99.0 80.0 120	Copper, total	7440-50-8	E420	0.0005	mg/L	0.0125 ma/L	100	80.0	120	
Manganese, total 7439-96-5 E420 0.0001 mg/L 0.0125 mg/L 101 80.0 120 Molybdenum, total 7439-98-7 E420 0.0005 mg/L 0.0125 mg/L 93.5 80.0 120 Nickel, total 7440-02-0 E420 0.0005 mg/L 0.025 mg/L 99.0 80.0 120	Lead, total	7439-92-1	E420	0.00005	mg/L	0.025 ma/L	107	80.0	120	
Molybdenum, total 7439-98-7 E420 0.00005 mg/L 0.0125 mg/L 93.5 80.0 120 Nickel, total 7440-02-0 E420 0.0005 mg/L 0.025 mg/L 99.0 80.0 120	Manganese, total	7439-96-5	E420	0.0001	mg/L	0.0125 mg/L	101	80.0	120	
Nickel, total 7440-02-0 E420 0.0005 mg/L 0.025 mg/L 99.0 80.0 120	Molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.0125 mg/L	93.5	80.0	120	
	Nickel, total	7440-02-0	E420	0.0005	mg/L	0.025 mg/L	99.0	80.0	120	

Page	:	11 of 15
Work Order	:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project	:	5822

ub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 898147) - continued									
Selenium, total	7782-49-2	E420	0.00005	mg/L	0.05 mg/L	101	80.0	120	
Silver, total	7440-22-4	E420	0.00001	mg/L	0.005 mg/L	98.4	80.0	120	
Tin, total	7440-31-5	E420	0.0001	mg/L	0.025 mg/L	98.4	80.0	120	
Titanium, total	7440-32-6	E420	0.0003	mg/L	0.0125 mg/L	95.1	80.0	120	
Zinc, total	7440-66-6	E420	0.003	mg/L	0.025 mg/L	98.8	80.0	120	
Speciated Metals (QCLot: 897519)									
Chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0005	mg/L	0.025 mg/L	98.8	80.0	120	
Aggregate Organics (QCLot: 897340)									
Biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	99.2	85.0	115	
Aggregate Organics (QCLot: 897569)									
Carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	198 mg/L	104	85.0	115	
Aggregate Organics (QCLot: 905682)									
Oil & grease (gravimetric)		E567	5	mg/L	200 mg/L	98.4	70.0	130	
Aggregate Organics (QCLot: 905683)									
Oil & grease, mineral (gravimetric)		E567SG	5	mg/L	100 mg/L	94.8	70.0	130	
Aggregate Organics (QCLot: 906864)									
Phenols, total (4AAP)		E562	0.001	mg/L	0.02 mg/L	95.7	85.0	115	
Volatile Organic Compounds (QCLot: 90171	8)								
Benzene	71-43-2	E611D	0.5	µg/L	100 µg/L	98.4	70.0	130	
Chloroform	67-66-3	E611D	0.5	µg/L	100 µg/L	99.8	70.0	130	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	100 µg/L	94.4	70.0	130	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	100 µg/L	81.0	70.0	130	
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	100 µg/L	100	70.0	130	
Dichloromethane	75-09-2	E611D	1	µg/L	100 µg/L	108	70.0	130	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	100 µg/L	102	70.0	130	
Ethylbenzene	100-41-4	E611D	0.5	µg/L	100 µg/L	93.7	70.0	130	
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	100 µg/L	# 148	70.0	130	LCS-H
Styrene	100-42-5	E611D	0.5	µg/L	100 µg/L	102	70.0	130	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	100 µg/L	115	70.0	130	
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	100 µg/L	89.4	70.0	130	
Toluene	108-88-3	E611D	0.5	µg/L	100 µg/L	88.5	70.0	130	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	98.2	70.0	130	
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	200 µg/L	89.0	70.0	130	

Page : 12 of 15 Work Order : WT2309350 Client : McClymont & Rak Engineers Inc. Project : 5822

Analyte CAS Numbe Method LOR Unit Recovery (r); Recovery (r); Recovery (r); Recovery (r); Method Multi Analyte Constitution LCS Low High Qualifior (Valita Organic Compounds (QCLot: 901718) - continued 98-478 E1112 0.3 μ gl. 100 µgl. 98.4 70.0 11.0 - Constrained 88-478 E1112 0.3 μ gl. 0.2823 µgl. 1017 50.0 1400 - Constrained 88-478 E911A 0.01 µgl. 0.3283 µgl. 1017 50.0 1400 - Constrained 120-12 E911A 0.01 µgl. 0.3283 µgl. 106 50.0 1400 - Constrained 120-12 E911A 0.01 µgl. 0.3283 µgl. 100 50.0 1400 - Record/Phymes 50.32 E911A 0.01 µgl. 0.3283 µgl. 100 50.0 1400 -	Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
AradyeCASA watMethodUnitOutrieCancentrationLCSLowHighOutlinecollectic 2007pair Corpanic Continued84-7451109.19100 ppl.100 ppl.70.0010070.	_				Spike	Recovery (%)	Recovery	/ Limits (%)		
Volume Compounds (CCL ct. 901718) - continued cyber, c ⁻ 05-6/7 Ex110 0.3 pip1 100 pg1. 96.4 70.0 71.0 71.0 Chyber, c ⁻ 05-6/7 Ex110 0.1 pip1. 0.528 jp1. 70.0 140 Chyber, c ⁻ 0.038 jb1. 0.01 pip1. 0.528 jp1. 96.3 90.0 140 Stempshtham 120-172 Ex14. 0.01 pip1. 0.528 jp1. 98.3 90.0 140 Stempshtham 120-172 Ex14. 0.01 pip1. 0.528 jp1. 198.3 90.0 140 Stempshthamen 120-42 Ex14. 0.01 pip1. 0.528 jp1. 100 90.0 140 Stempshthamen 216-42 Ex14. 0.01 pip1. 0.528 jp1. 100 50.0 140 Stempshthamen 216-41 Ex14. 0.01 pip1. 0.528 jp1.10 150.0 140	Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
System SS-3 JPJL 100 µgL 96.4 70.0 130 Polycyclic Aromatic Hydrocarbons (CCL.ot; 900959)	Volatile Organic Compounds (QCLot: 90	1718) - continued								
Operation Operation <t< td=""><td>Xylene, o-</td><td>95-47-6 E611D</td><td>0.3</td><td>µg/L</td><td>100 µg/L</td><td>96.4</td><td>70.0</td><td>130</td><td></td></t<>	Xylene, o-	95-47-6 E611D	0.3	µg/L	100 µg/L	96.4	70.0	130		
Day Specific Aromatic Hydrocarbons (QCL ot: 900959) Unit of the second three in the se										
Normaphilyene 93-32 EditA 0.01 ypL 0.5283.ypL 107 60.0 1400 Normaphilyene 286-84 ExitA 0.01 ypL 0.5283.ypL 96.3 60.0 1400 Narrijamitonene 280-127 ExitA 0.01 ypL 0.5283.ypL 60.6 60.0 1400 Sarrijamitonene 505-3 ExitA 0.01 ypL 0.5283.ypL 60.6 60.0 1400 Sarrijamitonene 503-28 ExitA 0.01 ypL 0.5283.ypL 60.0 60.0 1400 Sarrijamitonene 5041A 0.01 ypL 0.5283.ypL 60.0 60.0 1400 Sarrijamitonene 2840-4 ExitA 0.01 ypL 0.5283.ypL 100 60.0 1400 Sarrijamitonene 2840-4 0.01 ypL 0.5283.ypL 104 60.0 1400 Sarrijamitonen	Polycyclic Aromatic Hydrocarbons (QCL	ot: 900959)								
beam philopen 2008-98 FeHA 0.01 uppl 0.5203 upl 96.5 50.00 140 hummacene 120-127 FeHA 0.01 upgl 0.5263 upl 108 50.00 1400 serz(a)phyrene 50-328 FeHA 0.001 upgl 0.5263 upl 108 50.00 1400 serz(a)phyrene 50-328 FeHA 0.001 upgl 0.5263 upl 109 50.00 1400 serz(a)hyrene 161-422 FeHA 0.01 upgl 0.5263 upl 109 50.00 1400 serz(a)hyrene 216-01 FeHA 0.01 upgl 0.5263 upl 1012 50.00 1400 horeq(b)ranchene 26-074 FeHA 0.01 upgl 0.5263 upl 1014 50.00 1400 funcerha 68-17 FeHA 0.01 upgl 0.5263 upl 114 50.00 1400	Acenaphthene	83-32-9 E641A	0.01	µg/L	0.5263 µg/L	107	50.0	140		
Nathracene 120-12 E614 0.01 µpl 0.528 kpl. 95.5 60.0 14.00 Berz(a)purbe 568-53 E641A 0.01 µpl. 0.528 kpl. 108 50.0 140 Berz(a)purbe 50.0328 E641A 0.01 µpl. 0.528 kpl. 100 50.0 140 Berz(a)pirpurbe E614A 0.01 µpl. 0.528 kpl. 102 50.0 140 Error(b)urbarnthene E614A 0.01 µpl. 0.528 kpl. 102 50.0 140 Error(b)urbarnthene E614A 0.01 µpl. 0.528 kpl. 101 50.0 140 Error(b)urbarnthene E614A 0.01 µpl. 0.528 kpl. 101 50.0 140 Error(b)urbarnthene E614A 0.01 µpl. 0.528 kpl. 111 50.0 140 Berz(a)kyprene E614A 0.01 µpl	Acenaphthylene	208-96-8 E641A	0.01	µg/L	0.5263 µg/L	96.3	50.0	140		
amplifying and series an	Anthracene	120-12-7 E641A	0.01	µg/L	0.5263 µg/L	95.5	50.0	140		
Banzo(a)gyane 50-32.8 E41A 0.005 µgL 0.5283 µgL 98.2 50.0 140 Berzo(b)Liporytene 191-X-2 E41A 0.01 µgL 0.5283 µgL 100 50.0 140 Banzo(g)Liporytene 191-X-2 E41A 0.01 µgL 0.5283 µgL 102 50.0 140 Diporytene 218-059 E41A 0.01 µgL 0.5283 µgL 110 50.0 140 Diporytene 218-059 E41A 0.01 µgL 0.5283 µgL 111 50.0 140 Diporytene 218-059 E41A 0.01 µgL 0.5283 µgL 111 50.0 140 Diporytene 28-73 E41A 0.01 µgL 0.5283 µgL 111 50.0 140 Diporytene 88-73 E41A 0.01 µgL 0.5283 µgL 111 50.0 140 Helphynaphthalene, 1- 641A 0.01 µgL 0.5283 µgL 161 0.0	Benz(a)anthracene	56-55-3 E641A	0.01	µg/L	0.5263 µg/L	108	50.0	140		
Barazo(b-t)fluoranthene mail E41A 0.01 µg/L 0.5263 µg/L 100 50.0 140 Barazo(h)fluoranthene 191-24-2 E41A 0.01 µg/L 0.5263 µg/L 109 50.0 140 Barazo(h)fluoranthene 207-04-8 E41A 0.01 µg/L 0.5263 µg/L 101 50.0 140 Nbmra(a) hjinthracene 53-70.5 E41A 0.01 µg/L 0.5263 µg/L 104 50.0 140 Nbmra(a) hjinthracene 266-440 E61A 0.01 µg/L 0.5263 µg/L 104 50.0 140 Nucreene 867-37 E61A 0.01 µg/L 0.5263 µg/L 111 50.0 140 Nucreene 867-37 E61A 0.01 µg/L 0.5263 µg/L 91.8 50.0 140 Acthynaphthalene, 1- 91-70 E61A 0.01 µg/L 0.5263 µg/L 91.8 50.0 140 Septhhalene S-2- E61A 0.01 µg/L <td< td=""><td>Benzo(a)pyrene</td><td>50-32-8 E641A</td><td>0.005</td><td>µg/L</td><td>0.5263 µg/L</td><td>98.2</td><td>50.0</td><td>140</td><td></td></td<>	Benzo(a)pyrene	50-32-8 E641A	0.005	µg/L	0.5263 µg/L	98.2	50.0	140		
Benzo(g), i)perylene 191-242 E41A 0.01 µg/L 0.5283 µg/L 109 50.0 140 Benzo(k), i)perylene 2070-89 E41A 0.01 µg/L 0.5283 µg/L 102 50.0 140 Sharq A.1, binthracene 216-19 E41A 0.01 µg/L 0.5283 µg/L 1010 50.0 1400 Binca (A), binthracene 266-440 E41A 0.010 µg/L 0.5283 µg/L 1010 50.0 1400 Binca (A), binthracene 266-440 E41A 0.01 µg/L 0.5283 µg/L 1011 50.0 1400 Binca (A), 20, prese E641A 0.01 µg/L 0.5283 µg/L 111 50.0 1400 Binthracene 193-95 E41A 0.01 µg/L 0.5283 µg/L 91.8 50.0 1400 Althy Inpark (A) 0.01 µg/L 0.5283 µg/L 91.8 50.0 1400 Iaphthalene, 1- 91.55 E41A 0.01 µg/L 0.5283 µg/L	Benzo(b+j)fluoranthene	n/a E641A	0.01	µg/L	0.5263 µg/L	100	50.0	140		
Benzok (klluoranthene 207-08-9 E641A 0.01 µg/L 0.5283 µg/L 1102 50.0 140 Dhysen 2180-19 E641A 0.01 µg/L 0.5283 µg/L 110 60.0 140 Dibenz(a,h)anthrace 3370-3 E641A 0.01 µg/L 0.5283 µg/L 110 60.0 140 Vicoranthene 206440 E641A 0.01 µg/L 0.5283 µg/L 111 60.0 140 Vicoranthene 206440 E641A 0.01 µg/L 0.5283 µg/L 86.3 50.0 140 Adethyinaphthainen, 1- 641A 0.01 µg/L 0.5283 µg/L 91.8 50.0 140 Adethyinaphthainen, 2- E641A 0.01 µg/L 0.5283 µg/L 91.8 50.0 140 Adethyinaphthainen, 2- E641A 0.01 µg/L 0.5283 µg/L 101 50.0 140 Yrene <td>Benzo(g,h,i)perylene</td> <td>191-24-2 E641A</td> <td>0.01</td> <td>µg/L</td> <td>0.5263 µg/L</td> <td>109</td> <td>50.0</td> <td>140</td> <td></td>	Benzo(g,h,i)perylene	191-24-2 E641A	0.01	µg/L	0.5263 µg/L	109	50.0	140		
218.01.9 E641A 0.01 µg/L 0.5263 µg/L 110 50.0 140 Diber(a,h)anthracene 53-70.5 E641A 0.005 µg/L 0.5263 µg/L 104 50.0 140 iluaranthene 2664A 661A 0.01 µg/L 0.5263 µg/L 111 60.0 140 iluarene 87-75 E641A 0.01 µg/L 0.5263 µg/L 86.3 50.0 140 Alehyinaphtalene, 1- 90-120 E641A 0.01 µg/L 0.5263 µg/L 91.8 50.0 140 Alehyinaphtalene, 2- 915.75 E641A 0.01 µg/L 0.5263 µg/L 91.8 50.0 140 Alehyinaphtalene, 2- 915.75 E641A 0.01 µg/L 0.5263 µg/L 91.8 50.0 140 Henanthrene 92.90 50.0 140 <	Benzo(k)fluoranthene	207-08-9 E641A	0.01	µg/L	0.5263 µg/L	102	50.0	140		
Dibenz(ah)anthracene 53-70-3 E641A 0.005 µg/L 0.5263 µg/L 104 50.0 140 Fluoranthene 206-44-0 E641A 0.01 µg/L 0.5263 µg/L 111 50.0 140 'luorene 867.77 E641A 0.01 µg/L 0.5263 µg/L 88.3 50.0 140 ndeno(1,2,3-c,d)pyrene 193.395 E641A 0.01 µg/L 0.5263 µg/L 88.3 50.0 140 Aethylnaphthalene, 1- 0.901-20 E641A 0.01 µg/L 0.5263 µg/L 94.5 50.0 140 Aethylnaphthalene, 2- 91.67.6 E641A 0.01 µg/L 0.5263 µg/L 92.9 50.0 140 Ataphthalene, 2- E641A 0.02 µg/L 0.5263 µg/L 10.7 50.0 140 'yrene 129-00-0 E641A 0.02 µg/L 0.5263 µg/L 1017 50.0 140	Chrysene	218-01-9 E641A	0.01	µg/L	0.5263 µg/L	110	50.0	140		
Fluorantheme 2004-40 E41A 0.01 µg/L 0.5283 µg/L 111 50.0 140 Fluorane 86-73-7 E641A 0.01 µg/L 0.5283 µg/L 111 50.0 140 Adethylnaphtalene, 1- 0.93-85 E641A 0.01 µg/L 0.5283 µg/L 114 50.0 140 Adethylnaphtalene, 1- 0.901-20 E641A 0.01 µg/L 0.5283 µg/L 91.8 50.0 140 Adethylnaphtalene, 2- 491.55 E641A 0.01 µg/L 0.5283 µg/L 91.8 50.0 140 Adethylnaphtalene, 2- 641A 0.01 µg/L 0.5283 µg/L 92.9 50.0 140 Adethylnaphtalene, 2- 641A 0.02 µg/L 0.5283 µg/L 101 50.0 140 Yarene 129-00 E641A 0.01 µg/L 0.5263 µg/L 111 50.0 140 Yarene 129-000 E641A 0.1 µg/L 6.4 µg/L 110	Dibenz(a,h)anthracene	53-70-3 E641A	0.005	μg/L	0.5263 µg/L	104	50.0	140		
Luorene 86-73-7 E641A 0.01 µg/L 0.526 μg/L 86.3 50.0 140 ndeno(1,2,3-c,d)pyrene 193-395 E641A 0.01 µg/L 0.5263 µg/L 114 50.0 140 Aethylnaphthalene, 1- 90-12-0 E641A 0.01 µg/L 0.5263 µg/L 91.8 50.0 140 Aethylnaphthalene, 2- 91-57-6 E641A 0.01 µg/L 0.5263 µg/L 94.5 50.0 140 Alaphthalene 91-20-3 E641A 0.01 µg/L 0.5263 µg/L 94.5 50.0 140 Aphthalene 91-20-3 E641A 0.02 µg/L 0.5263 µg/L 101 50.0 140 Aphthalene 85-01-5 E641A 0.02 µg/L 0.5263 µg/L 111 50.0 140 Aphthalene 0.200-0 µg/L 0.5263 µg/L 111 50.0 140 Aphthalene 100-90-0 140 140	Fluoranthene	206-44-0 E641A	0.01	µg/L	0.5263 µg/L	111	50.0	140		
Addrew (1,2,3-c,d)pyrene 193-395 E41A 0.01 µg/L 0.5263 µg/L 114 50.0 140 Methylnaphthalene, 1- 90-12-0 E641A 0.01 µg/L 0.5263 µg/L 91.8 50.0 140 Aethylnaphthalene, 2- 91-57-6 E641A 0.01 µg/L 0.5263 µg/L 94.5 50.0 140 Alaphthalene 91-20-3 E641A 0.05 µg/L 0.5263 µg/L 92.9 50.0 140 Aphthalene 91-20-3 E641A 0.02 µg/L 0.5263 µg/L 107 50.0 140 Aphthalene 129-00-0 E641A 0.02 µg/L 0.5263 µg/L 107 50.0 140 Pyrene 129-00-0 E641A 0.01 µg/L 0.5263 µg/L 111 50.0 140 Pichets (QCLot: 900969) 117-81-7 E65F 2 µg/L 6.4 µg/L 102 50.0 140 Nortylphenols (QCLot: 897632) E65F 1 µg/L	Fluorene	86-73-7 E641A	0.01	µg/L	0.5263 µg/L	86.3	50.0	140		
Activity in pht hale D <thd< th=""></thd<>	Indeno(1.2.3-c.d)pyrene	193-39-5 E641A	0.01	μg/L	0.5263 µg/L	114	50.0	140		
And parameters And one of the standing of the st	Methylnaphthalene, 1-	90-12-0 E641A	0.01	ua/L	0.5263 µg/l	91.8	50.0	140		
Name Land Land <thland< th=""> Land Land <thl< td=""><td>Methylnaphthalene 2-</td><td>91-57-6 E641A</td><td>0.01</td><td>ug/L</td><td>0.5263 µg/L</td><td>94.5</td><td>50.0</td><td>140</td><td></td></thl<></thland<>	Methylnaphthalene 2-	91-57-6 E641A	0.01	ug/L	0.5263 µg/L	94.5	50.0	140		
And the state of the stat	Nanhthalene	91-20-3 F641A	0.05	µg/l	0.5263 µg/L	02.0	50.0	140		
Intrinsition 0.000 (0.000	Phenanthrene	85-01-8 F641A	0.02	µg/L	0.5263 µg/L	107	50.0	140		
yrine 125000 LMA 0.511 pgL 0.5205 pg/L 111 0.503 AM		129-00-0 E641A	0.01	µg/L	0.5263 µg/L	111	50.0	140		
Phthalate Esters (QCLot: 900969) Phthalate [DEHP] 117-81-7 E655F 2 µg/L 6.4 µg/L 110 50.0 140 Di-n-butyl phthalate 84-74-2 E655F 1 µg/L 6.4 µg/L 102 50.0 140 Nonylphenols (QCLot: 897632) Image: Color of the state of the	Fylene	123-00-0 2041A	0.01	µg/L	0.5263 µg/∟	111	50.0	140		
bis(2-Ethylhexyl) phthalate [DEHP] 117-81-7 E655F 2 µg/L 6.4 µg/L 110 50.0 140 Din-butyl phthalate 84-74-2 E655F 1 µg/L 6.4 µg/L 102 50.0 140 Nonylphenols (QCLot: 897632) E655F 1 µg/L 10 µg/L 105 75.0 125 Ionylphenols [NP] 84852-15-3 E749A 1 µg/L 10 µg/L 105 75.0 125 Ionylphenols [NP] 8476-2 E749B 0.1 µg/L 1 µg/L 95.4 75.0 125	Phthalate Esters (QCLot: 900969)									
Din-butyl phthalate84-74-2655F1μg/L6.4 μg/L10250.0140Nonylphenols (QCLot: 897632)Nonylphenols [NP]84852-15-3F749A1μg/L10 μg/L10575.0125Ionylphenols (QCLot: 897633)Ionylphenol diethoxylates [NP2E0]n/aF749B0.1μg/L1 μg/L95.475.0125	bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7 E655F	2	µg/L	6.4 µg/L	110	50.0	140		
Nonylphenols (QCLot: 897632) Image: Add State Sta	Di-n-butyl phthalate	84-74-2 E655F	1	μg/L	6.4 µg/L	102	50.0	140		
Nonylphenols (QCLot: 897632) \lambda onylphenols [NP] 84852-15-3 E749A 1 μg/L 10 μg/L 105 75.0 125 Ionylphenols (QCLot: 897633) Image: Complex of the system of the s										
Nonylphenols [NP] 84852-15-3 E749A 1 μg/L 10 μg/L 105 75.0 125 Nonylphenols (QCLot: 897633) Image: Complex states (NP2EO] n/a E749B 0.1 μg/L 1 μg/L 95.4 75.0 125	Nonylphenols (QCLot: 897632)									
Nonylphenols (QCLot: 897633) Jonylphenol diethoxylates [NP2EO] n/a E749B 0.1 µg/L 1 µg/L 95.4 75.0 125	Nonylphenols [NP]	84852-15-3 E749A	1	μg/L	10 µg/L	105	75.0	125		
Jonylphenol diethoxylates [NP2EO] n/a E749B 0.1 μg/L 1 μg/L 95.4 75.0 125	Nonylphenols (QCLot: 897633)									
	Nonylphenol diethoxylates [NP2EO]	n/a E749B	0.1	µg/L	1 µg/L	95.4	75.0	125		
lonylphenol monoethoxylates [NP1EO] n/a E749B 2 μg/L 20 μg/L 112 75.0 125	Nonylphenol monoethoxylates [NP1EO]	n/a E749B	2	μg/L	20 µg/L	112	75.0	125		
Polychlorinated Binhenyls (OCL of: 900975)	Polychlorinated Biphenyls (OCL of: 9009)	75)								
Aroclor 1016 12674-11-2 E687 0.02 µg/L 0.2 µg/L 114 60.0 140	Aroclor 1016	12674-11-2 E687	0.02	μg/L	0.2 μg/L	114	60.0	140		
Aroclor 1221 1104-28-2 E687 0.02 µg/L 0.2 µg/L 114 60.0 140	Aroclor 1221	11104-28-2 E687	0.02	μg/L	0.2 µg/L	114	60.0	140		
Aroclor 1232 11141-16-5 E687 0.02 µg/L 0.2 µg/L 114 60.0 140	Aroclor 1232	11141-16-5 E687	0.02	µg/L	0.2 μg/L	114	60.0	140		

Page	:	13 of 15
Work Order	:	WT2309350
Client	:	McClymont & Rak Engineers Inc.
Project	:	5822

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report												
		Spike	Recovery (%)	Recovery	Limits (%)									
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier					
Polychlorinated Biphenyls (QC	Lot: 900975) - continued													
Aroclor 1242	53469-21-9	E687	0.02	µg/L	0.2 µg/L	114	60.0	140						
Aroclor 1248	12672-29-6	E687	0.02	µg/L	0.2 µg/L	97.2	60.0	140						
Aroclor 1254	11097-69-1	E687	0.02	µg/L	0.2 µg/L	102	60.0	140						
Aroclor 1260	11096-82-5	E687	0.02	µg/L	0.2 µg/L	121	60.0	140						
Aroclor 1262	37324-23-5	E687	0.02	µg/L	0.2 µg/L	121	60.0	140						
Aroclor 1268	11100-14-4	E687	0.02	µg/L	0.2 µg/L	121	60.0	140						
Qualifiers														
Qualifier	Description													
LCS-H	Lab Control Sample recove	ery was above ALS DQO.	Non-detected	sample results ar	e considered reliable. C	other results, if repor	ted, have been q	ualified.						

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report												
					Spi	ke	Recovery (%)	Recovery	Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
Anions and Nutr	ients (QCLot: 901447)									1					
WT2309367-001	Anonymous	Fluoride	16984-48-8	E235.F	9.67 mg/L	10 mg/L	96.7	75.0	125						
Anions and Nutr	ients (QCLot: 901448)														
WT2309367-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	912 mg/L	1000 mg/L	91.2	75.0	125						
Anions and Nutr	ients (QCLot: 901840)														
WT2309288-014	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.102 mg/L	0.1 mg/L	102	70.0	130						
Anions and Nutr	ients (QCLot: 901841)														
HA2300138-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.73 mg/L	2.5 mg/L	109	70.0	130						
Cyanides (QCLo	ot: 903588)														
EO2302909-001	Anonymous	Cyanide, strong acid dissociable (Total)		E333	0.229 mg/L	0.25 mg/L	91.7	75.0	125						
Inorganics (QCL	_ot: 901104)														
WT2309350-001	BH 102	Chlorine, total	7782-50-5	E326	0.250 mg/L	0.28861 mg/L	86.6	70.0	130						
Total Metals (QC	CLot: 897737)														
BF2300013-009	Anonymous	Mercury, total	7439-97-6	E508	0.0000975 mg/L	0.0001 mg/L	97.5	70.0	130						
Total Metals (QC	CLot: 898147)														
WT2309355-001	Anonymous	Aluminum, total	7429-90-5	E420	0.0998 mg/L	0.1 mg/L	99.8	70.0	130						
		Antimony, total	7440-36-0	E420	0.0519 mg/L	0.05 mg/L	104	70.0	130						
		Arsenic, total	7440-38-2	E420	0.0534 mg/L	0.05 mg/L	107	70.0	130						
		Cadmium, total	7440-43-9	E420	0.00510 mg/L	0.005 mg/L	102	70.0	130						
		Chromium, total	7440-47-3	E420	0.0129 mg/L	0.0125 mg/L	104	70.0	130						
		Cobalt, total	7440-48-4	E420	0.0130 mg/L	0.0125 mg/L	104	70.0	130						
		Copper, total	7440-50-8	E420	0.0122 mg/L	0.0125 mg/L	97.9	70.0	130						
		Lead, total	7439-92-1	E420	0.0257 mg/L	0.025 mg/L	103	70.0	130						
		Manganese, total	7439-96-5	E420	0.0130 mg/L	0.0125 mg/L	104	70.0	130						
		Molybdenum, total	7439-98-7	E420	0.0126 mg/L	0.0125 mg/L	101	70.0	130						
		Nickel, total	7440-02-0	E420	0.0248 mg/L	0.025 mg/L	99.3	70.0	130						
		Selenium, total	7782-49-2	E420	0.0509 mg/L	0.05 mg/L	102	70.0	130						
		Silver, total	7440-22-4	E420	0.00474 mg/L	0.005 mg/L	94.8	70.0	130						
		Tin, total	7440-31-5	E420	0.0255 mg/L	0.025 mg/L	102	70.0	130						
	1	Titanium, total	7440-32-6	E420	0.0132 mg/L	0.0125 mg/L	106	70.0	130						

Page 15 of 15 WT2309350 Work Order : McClymont & Rak Engineers Inc. Client Project 5822

Sub-Matrix: Water			Matrix Spike (MS) Report												
				Spi	ike	Recovery (%)	Recovery	Limits (%)							
Laboratory sample ID	Client sample ID	Analyte	CAS Number Method		Concentration	Target	MS	Low	High	Qualifier					
Total Metals (QCI	Lot: 898147) - continue	d													
WT2309355-001	Anonymous	Zinc, total	7440-66-6	E420	0.0237 mg/L	0.025 mg/L	94.8	70.0	130						
Speciated Metals	(QCLot: 897519)														
WT2309024-001	Anonymous	Chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0395 mg/L	0.04 mg/L	98.8	70.0	130						
Aggregate Organi	cs (QCLot: 906864)														
WP2304935-001	Anonymous	Phenols, total (4AAP)		E562	0.0199 mg/L	0.02 mg/L	99.5	75.0	125						
Volatile Organic C	Compounds (QCLot: 90	1718)													
WT2309668-001	Anonymous	Benzene	71-43-2	E611D	99.9 µg/L	100 µg/L	99.9	60.0	140						
		Chloroform	67-66-3	E611D	101 µg/L	100 µg/L	101	60.0	140						
		Dichlorobenzene, 1,2-	95-50-1	E611D	96.0 µg/L	100 µg/L	96.0	60.0	140						
		Dichlorobenzene, 1,4-	106-46-7	E611D	83.9 µg/L	100 µg/L	83.9	60.0	140						
		Dichloroethylene, cis-1,2-	156-59-2	E611D	101 µg/L	100 µg/L	101	60.0	140						
		Dichloromethane	75-09-2	E611D	106 µg/L	100 µg/L	106	60.0	140						
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	104 µg/L	100 µg/L	104	60.0	140						
		Ethylbenzene	100-41-4	E611D	ND µg/L	100 µg/L	ND	60.0	140						
		Methyl ethyl ketone [MEK]	78-93-3	E611D	ND µg/L	100 µg/L	ND	60.0	140						
		Styrene	100-42-5	E611D	98.2 µg/L	100 µg/L	98.2	60.0	140						
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	116 µg/L	100 µg/L	116	60.0	140						
		Tetrachloroethylene	127-18-4	E611D	91.9 µg/L	100 µg/L	91.9	60.0	140						
		Toluene	108-88-3	E611D	92.8 µg/L	100 µg/L	92.8	60.0	140						
		Trichloroethylene	79-01-6	E611D	99.2 µg/L	100 µg/L	99.2	60.0	140						
		Xylene, m+p-	179601-23-1	E611D	ND µg/L	200 µg/L	ND	60.0	140						
		Xylene, o-	95-47-6	E611D	101 µg/L	100 µg/L	101	60.0	140						
Nonylphenols (Q	CLot: 897632)														
WT2309182-001	Anonymous	Nonylphenols [NP]	84852-15-3	E749A	12.6 µg/L	10 µg/L	126	60.0	140						
Nonylphenols (Q	CLot: 897633)														
WT2309182-001	Anonymous	Nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.92 µg/L	1 µg/L	91.5	60.0	140						
		Nonylphenol monoethoxylates [NP1EO]	n/a	E749B	15.2 µg/L	20 µg/L	76.0	60.0	140						

T

Drinking Water (DW) Samples' (clie samples taken from a Regulated DW System	Drinking Water (DW) Samples' (clie samples taken from a Regulated DW System YES X NO samples for human consumption/ use? YES LANO	Drinking Water (DW) Samples' (clie samples taken from a Regulated DW System	Drinking Water (DW) Samples ¹ (clie samples taken from a Regulated DW System	Drinking Water (DW) Samples ¹ (clie		and the second s	The second se		and a rest that they are	weiches to fibrish and a print for		ALL AND A			154 102	ALS Sample # Samp lab use only) (This	ALS Lab Work Order # (lab use only):	SD:	D/AFE:	b# 5822	_S Account # / Quote #:	Project Info	ompany:	Copy of Invoice with Report	voice To Same as Report To	ostal Code:	ty/Province:	reet: 111 7 January	Company address below will	ontact: Kickard Sy	ompany: MCR	eport To Contact and company	ALS Environmer		
SE (client use)	CE /client upo/	plaint is build by board of	The second secon		Int use) Special Instructions	and the second s	the set which is not the offention	and a second second second second	Annual Can water	a state of the state and a state of the	and the second of the second se	subject application of the second sec	and a start of the second			le Identification and/or Coordinates description will appear on the report)	NT3309350	- Renter	D. C. State of the second second			mation		YES X NO	X YES NO	or he contraction	HAN SI	1-10	appear on the final report	End		name below will appear on the final report	Ital Canada T	Chain of Cus R	Phain of Pin
Received by:					/ Specify Criteria to a (elect		Part - Dea	of the state of the	ARE STORED	A CONTRACTOR	A State of State of State	Harris Contraction			- Mai		ALS Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center.	Email Z	Email 1 or Fax	Select Invoice Dis		Email 3	Email 2	Empil 1 or Eav	Select Distribution	Quality Control (C	Select Report For		oll Free: 1 800 668	equest Form	
INITIAL SHIPMENT	INITIAL CLIPSOPALT		10 10 1 Con 10	A second second second	dd on report by clicki Ironic COC only)		STALL STATES	all and and and and	Contraction of the	A Straight when			and the second		4/13/23	Date (dd-mmm-yy)		STREET, STREET	and the local sector			and Gas Required		tribution: 🛛 EM	Invoice Dis	mit with solution	and the	NC. ILI 6		C) Report with Repo	mat: X PDF [Report Format	3 9878	Analytical	Analistant
Date:	DECENTION N.L.			Contraction of the second	ing on the drop-dowr	the last the losses	to a minute of an	and a lot	Section 2 and	1 11 10 10 10 10 10 10 10 10 10 10 10 10	and the second se	Not off man			q:00Am	Time (hh:mm)	Sampler: BØ	No County via 20	intro used on a	Routing Code:	PO#	Fields (client use)		IAIL MAIL	tribution	I nerted to star	macian		I MAIL FA	int 📉 Yes	EXCEL EDD	Distribution		Affiv	
ISE ONLY)		all tand the	Cac	loe	h list below		the case of the	at the sale of the	the charter of the second	A State of the second s		an and a set of a set			32	Sample Type	Pool	0	The property of					FAX		a station of months in	Fart		PRIO	NO	(DIGITAL)	ha the or he one	(lab use o	AI S harrow	
e: Received by:		INIITIAL COOLER TEMPERATU	ling Initiated	Packs I Ice Cubes I	SAMPLE	Sanitory Sever Bylan											States and sealing	Indicate Filtered (F), Pres	an a malance in a	ests that can not be performed according to t	Date and Time Required for all F&P	2 day [P2-50%]	4 day [P4-20%]	Regular [R] X Standard	Select Service Level Below -	nly)	to lahal hara								
Date: Anr 17, 77	FINAL SUIDMENT DECEDTION (lak use only)	URES *C FINAL COOLER TEMPERATU	And the second sec	Custody seal intact Yes No	E CONDITION AS RECEIVED (lab use only)				trunderso man francisco banta de vizito a vizito el el a										and a state of the state of the state of the			Telephone : +1 519 886 6910			served (P) or Filte		the service level	WT230930	Mark Order Reference		d TAT if receive	- Contact your AM to confirm all E&P TATs /surchast	Page of	COC Number: 17 - 620/65	
Time:5:30		URES "C		R		The same of the			1000		149			1		SAMPI Sampi	LES ON e is haza ER OF C	HOL	D IS (p AINE	lease	e pre							-				(V)	ar longh a		

COC Number: 17 - 620765