KPMB Architects Report Number: 221-05528-00

Westminster United Church (4094 Tomken Road)

Stormwater Management Report

August 10, 2023

Revision 3

Westminster United Church (4094 Tomken Road)

Stormwater Management Report

KPMB Architects Revision 3

Project No.: 221-05528-00 Date: August 10, 2023

WSP

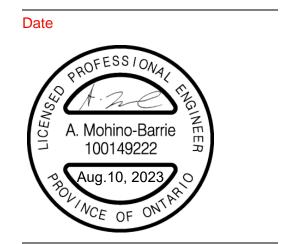
100 Commerce Valley Drive West Thornhill, ON Canada L3T 0A1

T: +1 905 882-1100 F: +1 905 882-0055 wsp.com

Revision History

FIRST ISSUE

October 28 2022	ZBA	
Prepared by	Reviewed by	Approved by
Fatima Elkhier,	Alyssa Mohino-	Alyssa Mohino-
P.Eng.	Barrie, P.Eng.	Barrie, P.Eng.
REVISION 1		
December 01, 2022	ZBA	
Prepared by	Reviewed by	Approved by
Fatima Elkhier,	Alyssa Mohino-	Alyssa Mohino-
P.Eng.	Barrie, P.Eng.	Barrie, P.Eng.
REVISION 2		
August 10, 2023	ZBA	
Prepared by	Reviewed by	Approved by
Fatima Elkhier,	Alyssa Mohino-	Alyssa Mohino-
P.Eng.	Barrie, P.Eng.	Barrie, P.Eng.
FINAL		
<date></date>	<remarks></remarks>	
Prepared by	Reviewed by	Approved by
<prepare, title=""></prepare,>	<reviewer, title=""></reviewer,>	<approver, title=""></approver,>


Signatures

Prepared by

Fatima Elkhier, P.Eng. Project Engineer, Land Development

Approved¹ by

August 10th, 2023

A.Z.C.

Alyssa Mohino-Barrie, P.Eng. Senior Project Manager, Water Resources

WSP Canada Inc. (WSP) prepared this report solely for the use of the intended recipient, KPMB Architects, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

Date

The original of this digital file will be conserved by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

¹ Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

Contributors

Client

KPMB Architects

WSP

Project Engineer Senior Project Manager Quality Control Assurance Fatima Elkhier, P.Eng. Alyssa Mohino-Barrie Melinda Nowak

TABLE OF CONTENTS

1	INTRODUCTION1
1.1	Scope1
1.2	Site Location1
1.3	Stormwater Management Plan Objectives1
1.4	Design Criteria3
2	PRE-DEVELOPMENT CONDITIONS4
2.1	General4
2.2	Rainfall Information4
2.3	Allowable Flow Rates6
3	POST-DEVELOPMENT CONDITIONS7
3.1	General7
3.2	Water Balance7
3.3	Water Quality Control9
3.4	Erosion Control9
3.5	Water Quantity Control10
3.6	Groundwater, Hydrogeology and Groundwater Characterization11
4	CONCLUSIONS12
BIBLI	OGRAPHY13

wsp

Tables

Table 2-1:	Rainfall Parameters	4
Table 2-2:	Pre-Development Peak Discharge Rates	6
Table 3-1:	Proposed Land-Use Area Breakdown	7
Table 3-2:	Water Balance	9
Table 3-3:	Summary of Modelling Results 10	

Figures

Figure 1	Site Location	2
Figure 2	Existing Conditions	5
Figure 3	Proposed Conditions	8

Appendices

- A SWM Calculations
- **B** Water Quality Unit
- C HydroCAD Output Files

1 INTRODUCTION

1.1 Scope

WSP has been retained by KPMB Architects to prepare a Stormwater Management (SWM) Report to support the rezoning application for the proposed development at Westminster United Church, located at municipal address 4094 Tomken Road, in the City of Mississauga. This SWM report examines the potential water quality, quantity, balance, and erosion impacts of the proposed development and summarizes how each will be addressed in accordance with the City of Mississauga's Development Requirements (2020), and the 2012 Toronto and Region Conservation Authority (TRCA) Stormwater Management Criteria

1.2 Site Location

The site occupies an area of approximately 1.43 ha. It is located on the south corner of the intersection of Tomken Road West and Rathburn Road East. The site is located in the Etobicoke Creek Watershed, under the jurisdiction of the Toronto and Region Conservation Authority (TRCA). The location of the proposed re-development is illustrated in **Figure 1**.

1.3 Stormwater Management Plan Objectives

The objectives of the stormwater management plan are as follows:

- Determine the site-specific stormwater management requirements to ensure that the development is in conformance with the City of Mississauga and TRCA SWM criteria.
- Evaluate various stormwater management practices that meet the requirements of the City and the conservation authority and recommend a preferred strategy; and
- Prepare a stormwater management report documenting the strategy along with the technical information necessary for the justification and preliminary sizing of the proposed stormwater management facilities.

WESTMINSTER UNITED CHURCH 4094 TOMKEN ROAD

SITE LOCATION

Checked	Drawn	NCL	
A.M.B.		M.S.L.	
Date	Proj. No.		
OCTOBER 2022	-	221-05528	-00
Scale	Figure No.	1	Gr.No.
N.T.S.	-	I	00

TITLE

1.4 Design Criteria

The City of Mississauga issued a Development Requirements Manual in 2020 to provide direction on the management of rainfall and runoff inside the City's jurisdiction.

A summary of the stormwater management criteria applicable to this project follows:

- Water Balance (Stormwater Runoff Volume Reduction): The City of Mississauga's Development Requirements Manual states that the first 5 mm runoff shall be retained on-site and managed by way of infiltration, evapotranspiration, re-use or filtration.
- Water Quality: The City of Mississauga Design Requirements specify that at site level, applicants are required to provide a minimum treatment of 80% total suspended solids removal (TSS removal).
- Erosion Control: The City of Mississauga has a minimum stormwater runoff volume reduction from developing sites to reduce erosive forces during frequent storms in streams and watercourses. It is required that the first 5 mm of runoff shall be retained on-site and managed by way of infiltration, evapotranspiration, or re-use.
- Water Quantity Control and Discharge to Municipal Infrastructure: The City
 of Mississauga's Development Requirements is to reduce the stormwater peak
 flow runoff from developing sites. The requirements vary depending on the
 watershed. This requirement echoes the Conservation Authority's flood control
 requirements.
 - City's storm sewer system is required to accommodate a 10-year storm (Development Requirements Manual, November 2020, City of Mississauga), all post-development flows up to the 100-year storm from the site to the municipal storm sewer shall not exceed the 10-year predevelopment flow at a runoff coefficient of C=0.50 <u>or</u> the receiving capacity of the storm sewer, whichever is less.
 - Little Etobicoke Creek Unit Flow Rates (UFR): The site is located in the Etobicoke Creek Watershed, under the jurisdiction of the Toronto and Region Conservation Authority (TRCA), thus the allowable flow rate for Little Etobicoke Creek is governed by UFR identified under Section 8 of the City of Mississauga Design Guidelines.

2 PRE-DEVELOPMENT CONDITIONS

2.1 General

The 1.43 ha site is currently occupied by the existing 0.1 ha church building, a 7-storey apartment building, a surface parking area, with the remainder of the site a mixture of soft and hard landscaping.

The area of the existing buildings and adjacent unchanged areas (approximately 0.48 ha) will be excluded from this stormwater management calculations as there will be no changes to their post development drainage conditions. Approximately 0.95 ha will contribute to the drainage area of the new development, which will be taken as the "Project Area" approach for analysis and providing SWM controls. The existing runoff coefficient for the Project Area is estimated at 0.58. The existing condition of the site is shown in **Figure 2**.

2.2 Rainfall Information

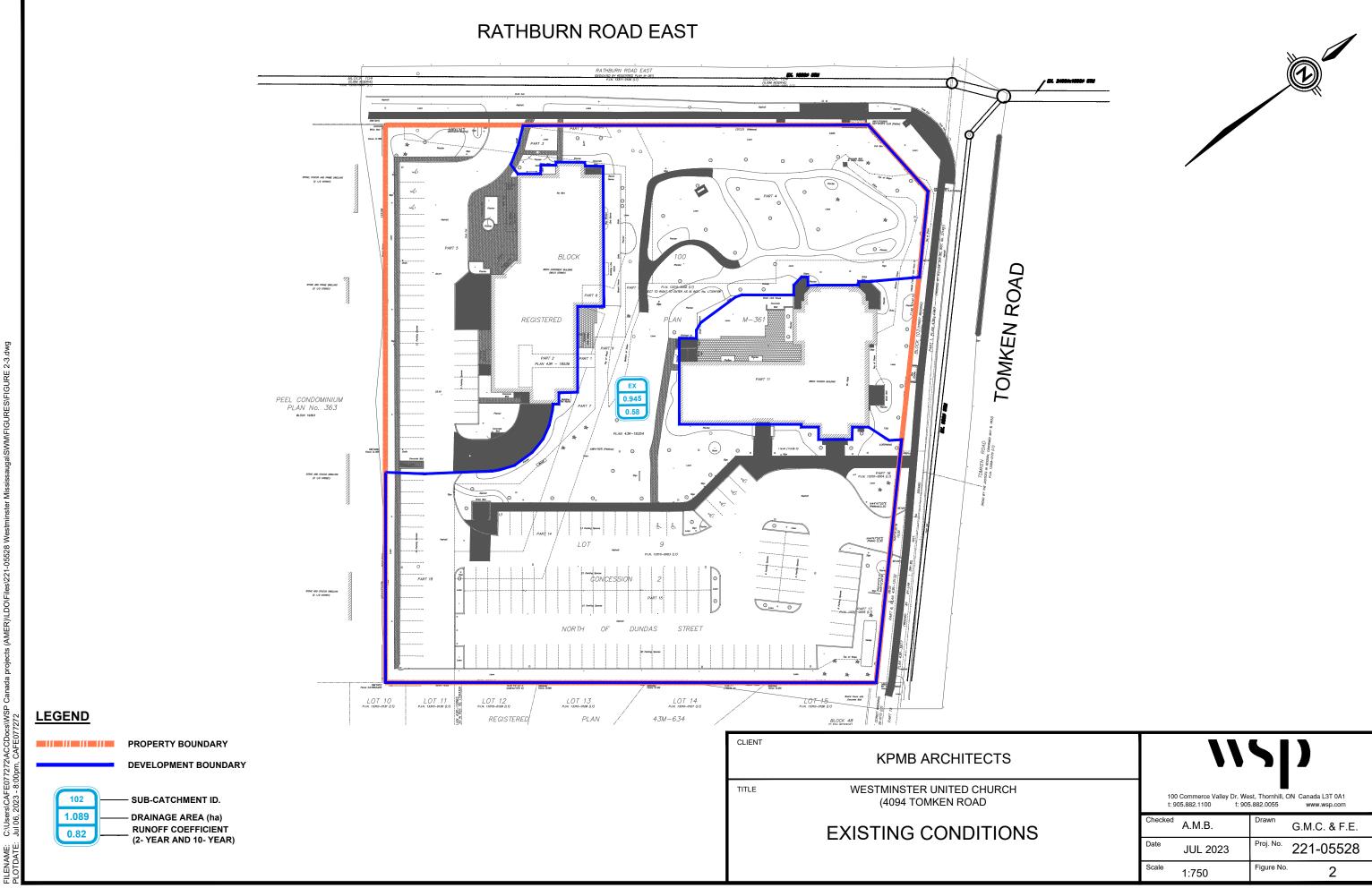
The rainfall intensity for the site was calculated using the following equation:

$$I = A/(B+T)^{C}$$

Where:

I = rainfall intensity in mm/hour

T = time of concentration in hours


A, B, and C = constant parameters (see below)

The parameters (A, B, C) for use in the City of Mississauga are summarized in **Table 2.1.**

 Table 2-1:
 Rainfall Parameters

Return Period (Years)	2	5	10	25	50	100
А	610	820	1010	1160	1300	1450
В	4.60	4.60	4.60	4.60	4.60	4.60
С	0.78	0.78	0.78	0.78	0.78	0.78

Source: City of Mississauga's Development Requirements (2020)

s/WSP ;; ;

		S)
		st, Thornhill, ON Canada L3T 0A1 5.882.0055 www.wsp.com Drawn G.M.C. & F.E.
5	Date JUL 2023	Proj. No. 221-05528
	Scale 1:750	Figure No. 2

2.3 Allowable Flow Rates

The site location is within the Little Etobicoke Creek watershed, a sub-watershed to Etobicoke Creek. In Accordance with the City of Mississauga Design Requirements the stormwater quantity control requirements are governed by watershed controls.

As the City's storm sewer system is required to accommodate a 10-year storm, all postdevelopment flows up to the 100-year storm discharged to the municipal storm sewer shall be the lesser of:

- The 10-year pre-development flow at a runoff coefficient of C=0.50;
- The receiving capacity of the storm sewer, or
- Little Etobicoke Creek UFR, whichever is less.

As no capacity constraints were identified for the storm sewer, the 10-year predevelopment flow was determined to be 129.9 L/s, however the UFR for Little Etobicoke Creek are lower and shall define the control rate allowed for discharge. The calculated peak flow rates for the site under pre-development conditions are summarized below in **Table 2.2.** Detailed calculations are contained within **Appendix A**.

Return Period (Years)	Runoff Coefficient, C	Rainfall Intensity (mm/hr)	Existing Uncontrolled Peak Flow Rate, Q (L/s)*	TRCA Etobicoke Creek UFR (L/s)	City Allowable Release Rate, Q _A , (L/s)
2	0.58	59.9	91.3	29.3	78.5
5	0.58	80.5	122.7	42.6	105.5
10	0.58	99.2	151.1	52.8	
25**	0.64	113.9	191.0	65.3	129.9
50**	0.69	127.1	232.5	77.4	129.9
100**	0.72	140.7	268.0	87.7	

Table 2-2: Pre-Development Peak Discharge Rates

*Area of 0.95 ha and time of concentration of 15 minutes

** Adjustment factors applied as per the City's Development Requirement Manual (2020) adjustment factors for 25-, 50-, and 100-year runoff coefficients.

3 POST-DEVELOPMENT CONDITIONS

3.1 General

The proposed development within the 0.95 ha project area consists of two new residential buildings and related at-grade landscaping. The new buildings provide below ground/basement parking, with the parking structure underlying the full footprint of the two new buildings and part of their surrounding areas. There will be two vehicular access to the site, one through Rathburn Road East and the other via Tomken Road. An area breakdown for the new site is provided below in **Table 3.1.** Please refer to **Figure 3** for details of the post-development conditions, land-uses, and stormwater catchment.

The areas of the existing buildings are not altered under proposed conditions; thus, they are excluded from the stormwater management calculations and analysis as there are not changes to drainage conditions related to these areas.

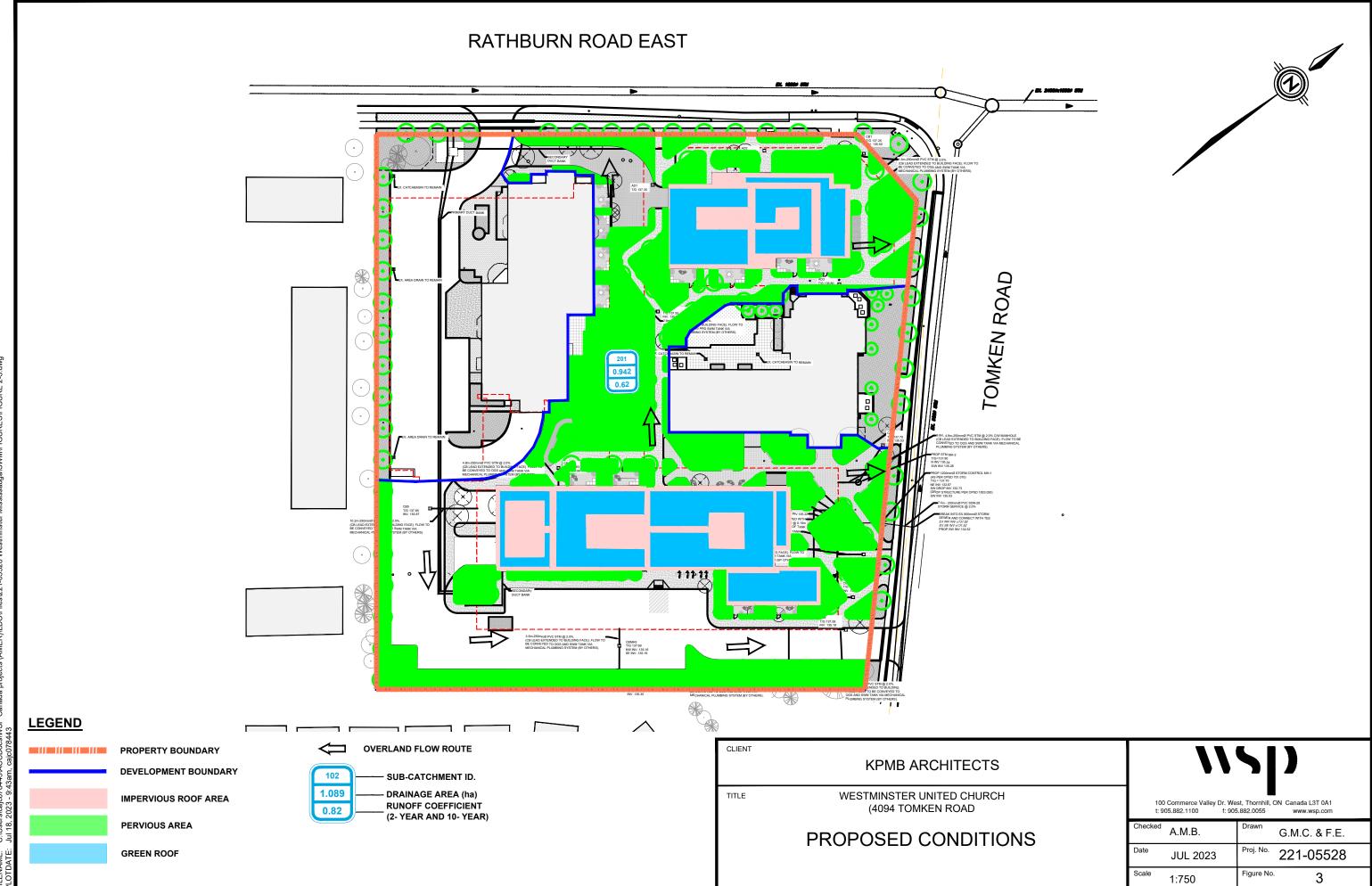

Proposed Land-use	Area (m²)	%-Coverage	Runoff Coefficient, C*
Impervious Roof Area	715	8%	0.90
Green Roof Area	1,272	13%	0.50
Soft Landscaping	3,296	35%	0.25
Asphalt Vehicular Surfaces	3,095	33%	0.90
At Grade Impervious	1,047	11%	0.90
Total Project Area	9,425	100%	0.62

Table 3-1: Proposed Land-Use Area Breakdown

*2-year through 10-year runoff coefficient

3.2 Water Balance

The 5 mm water balance (stormwater retention) will be implemented for this project area. The development proposes 3,296 m² of soft landscaping and 1,272 m² of green roof area. A summary of the calculated water balance required for retention is provided in **Table 3.2**, determined to be 24.29 m³. A reuse volume within the SWM cistern is used for retaining the required water balance within the project area of the site for reuse purposes.

	\\\\				
		st, Thornhill, ON Canada L3T 0A1 5.882.0055 www.wsp.com			
S	Checked A.M.B.	G.M.C. & F.E.			
5	Date JUL 2023	Proj. No. 221-05528			
	Scale 1:750	Figure No. 3			

Table 3-2: Water Balance

Proposed Land-use	Area (m²)	IA (m)	5 mm Retention Volume (m³)	Volume Abstracted (m³)	Required Water Balance Volume (m ³)
Impervious Roof Area	715	0	3.58	-	3.58
Green Roof Area	1,272	0.005	6.36	6.36	-
Soft Landscaping	3,296	0.005	16.48	16.48	-
At-Grade Vehicular Surfaces	3,095	0	15.48	-	15.48
At Grade Impervious	1,047	0	5.24	-	5.24
Total Project Area	9,425	-	47.13	22.84	24.29

Options for stormwater reuse proposed include volume for irrigation of soft landscaped area, flushing greywater toilets, and other non-potable reuses. The retention volume within the SWM cistern will provide a volume of 24.5 m³ for reuse. A pump system is to be designed for pumping water from the sump area of the cistern. Please refer to **Appendix A** for calculations.

3.3 Water Quality Control

The 0.95 ha area proposes approximately 4,142 m² of new impervious at-grade which represent 44% of the proposed land use. Soft landscaping areas and runoff originating from new roof areas are considered clean in terms of stormwater quality. City of Mississauga requires 80% TSS removal on an average annual basis from all imperviousness and sediment-generating surfaces. Stormwater runoff is collected from all vehicular and impervious surface areas and is treated by an Imbrium Jellyfish water quality unit to achieve 80% TSS removal. The unit is a JF6-3-1 and in proposed in an offline configuration. Details regarding sizing and treatment flow rate, treatment area for the quality control unit are included in **Appendix B**.

3.4 Erosion Control

The City of Mississauga Design Guidelines states that the first 5 mm of runoff shall be retained and managed on site as a minimum requirement for developing sites to assist in mitigating erosion and water balance. Erosion control during construction is outlined in the Erosion and Sediment Control Plan provided in the WSP Functional Service Report (FSR), issued under separate cover, and will conform to the City of Mississauga's Development Requirements.

3.5 Water Quantity Control

A HydroCAD model for the project was constructed and utilized to determine the required storage volume in the proposed stormwater cistern, and to provide outlet discharge control rates to the required flows under all storm events. The Modified Rational Method (an inherent subroutine of the HydroCAD software) has been used for the modelling exercise. The adjustment factors to runoff coefficient are applied to the 25-year through 100-year storms. The UFR for the Etobicoke Creek (zone 216) are considered in sizing the storage system and as a constraint in the design of the outlet flows.

The cistern is located within the proposed southernmost building. The outlet from the SWM cistern shall discharge to a connection to the Tomken Road municipal storm sewer; Please Refer to Civil Site Servicing Plan Drawing C 102. The cistern provides a storage volume of 337.5 m³ (150 m² x a 2.25 m H). A 24.5 m³ volume is provided for reuse, yielding a total a cistern volume of 358 m³. A 150 mm orifice plate, 0.10 m from the internal base of the cistern, controls outflow. The baffle, set at 2.1 m, allows overflow to spill to the main cistern portion should the reuse portion become full, or the reuse mechanism to draw volume fail. An emergency overflow is provided at the top of the cistern, discharging to street level and the adjacent right of way. This will prevent flow backing up into the building pipework if the primary outlet is blocked, or if a storm event in excess of the 100-year return period occurs.

A summary of the modelling results is provided below. Full HydroCAD modelling output is provided in **Appendix C**.

Return Period (Years)	Modelled Peak Cistern Outflow (L/s)	TRCA Etobicoke Creek UFR (L/s)	City Release Rate (L/s)	Utilized Cistern Storage (m³)	Peak Elevation in Cistern (m)
2	27.6	29.3	78.5	78.0	0.53
5	34.3	42.6	105.5	106.1	0.71
10	39.6	52.8		132.9	0.87
25	46.3	65.3	129.9	172.1	1.15
50	52.7	77.4	129.9	215.0	1.43
100	58.3	87.7		257.8	1.72

Table 3-3: Summary of Modelling Results

3.6 Groundwater, Hydrogeology and Groundwater Characterization

A Hydrogeological investigation was conducted in August 2022 by Grounded Engineering Inc. to assess groundwater conditions and quality for the proposed redevelopment of 4094 Tomken Road. According to the hydrogeological report, the finished floor elevation of the two new buildings will extend below the groundwater table level. As the foundation for the development will be designed as watertight (bathtub system), there will be no long-term groundwater discharge to the municipal system. Please refer to the 2023 WSP FSR under section 3.6 for full details.

4 CONCLUSIONS

A stormwater management plan has been prepared in support the rezoning and site plan application for the proposed development at Westminster United Church at municipal address 4094 Tomken Road in the City of Mississauga. The key points are summarized below.

Water Balance and Erosions Control: The 5 mm retention target requires 19.43 m3 of volume to be retained on site. A 24.29 m³ reuse volume within the SWM cistern will retain the 5 mm runoff from the site to be reused for irrigation and non-potable reuse volume.

Erosion control during construction is outlined in the Erosion and Sediment Control Plan (provided in the FSR under separate cover) and will conform to the City of Mississauga's Development Requirements.

Water Quality Control: An Imbrium Jellyfish filter, model JF6-3-1, installed in an offline configuration, is sized to provide the required 80% TSS removal for the development.

Water Quantity Control

Runoff from all developed areas within the 0.95 ha project area will be directed to a quantity control cistern, fitted with a 150 mm orifice plate at the base of the cistern. The cistern will provide 337.5 m³ of active control volume to control to the allowable release rate defined by the Little Etobicoke Creek Unit Flow Rates.

BIBLIOGRAPHY

- City of Mississauga, City of Mississauga Development Requirements, section 8 (2020).
- Toronto and Region Conservation Authority, *Stormwater Management Criteria* (2012). Retrieved December 10, 2022

APPENDIX

				Project:	Westmister M	Aississauga		No.:	221-05528-00	
				By:	Fatima Elkh	ier		Date:	2023-08-10	Р
				Checked:	AMB			Checked:		
:	Stormwater Management Ca	lculations -	Exisitng Co	nditions	•			•		
С	Calculation of existing runoff rate	is undertaker	n using the Rat	ional Method	l: •	Q = 2.78 CIA				
	Where:	O = Peak flo	ow rate (litres/	second)						
		C = Runoff	coefficient	·						
		I = Rainfall	intensity (mm/	hour)						
		A = Catchm	ent area (hecta	res)						
	Total Development Area	1.435	hectares							
Р	Project Area, A	0.95	hectares							
	The area measurements and land			development	are as follows:					
E	External drainage from softlandso	2	0 Deces (C.C.	т						
F	Land Use	Area (m ²)	Runoff C	Imperviou	S					
1	Impervious Roof Area Soft/Pervious Landscaping	0	0.90	100%	4					
	Soft/Pervious Landscaping	4620	0.25	0%						
	A and alt Wale and a South and	2050		1000/						
	Asphalt Vehicular Surfaces	3850	0.90	100%	-					
	At Grade Impervious	616	0.90	100%	-					
	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Rainfall intensity is calculated base	616 339 9425 0.58 ed on City of	0.90 0.80 0.58 Mississauga In	100% 75% 50% tensity-Durat		IDF) Equation	n:			
	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Rainfall intensity is calculated base	616 339 9425 0.58 ed on City of A, B and C = I = Rainfall	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/	100% 75% 50% tensity-Durat sed by City o hour)		IDF) Equation	1:			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Cainfall intensity is calculated base Where:	616 339 9425 0.58 ed on City of A, B and C = I = Rainfall T = Time of	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/	100% 75% 50% tensity-Durat sed by City o hour)		IDF) Equation	n:			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Rainfall intensity is calculated base Where: Rainfall intensity calculated in acc	616 339 9425 0.58 ed on City of A, B and C = I = Rainfall T = Time of ordance with	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/	100% 75% 50% tensity-Durat sed by City o hour)		IDF) Equation	1:			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Cainfall intensity is calculated base Where:	616 339 9425 0.58 ed on City of A, B and C = I = Rainfall T = Time of ordance with	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/	100% 75% 50% tensity-Durat sed by City o hour)		IDF) Equation	ı: 100			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Rainfall intensity is calculated base Where: Rainfall intensity calculated in acc Pre-Development Runoff Return Period (Years) A	616 339 9425 0.58 ed on City of A, B and C = I = Rainfall T = Time of ordance with Rates:	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/ Concentration Municiaplity.	100% 75% 50% tensity-Durat sed by City o hour) (hours)	f Mississauga					
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Rainfall intensity is calculated base Where: Rainfall intensity calculated in acc Pre-Development Runoff Return Period (Years) A B	$\begin{array}{c} 616 \\ 339 \\ \textbf{9425} \\ \hline \textbf{0.58} \\ \hline \textbf{0.58} \\ \hline \textbf{cd on City of} \\ \textbf{A, B and C} = \\ \textbf{I} = \textbf{Rainfall} \\ \textbf{T} = \textbf{Time of} \\ \hline \textbf{ordance with} \\ \textbf{Rates:} \\ \hline \textbf{2} \\ 610 \\ \textbf{4.6} \\ \hline \end{array}$	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/ concentration Municiaplity. 5 820 4.6	100% 75% 50% tensity-Durat sed by City o hour) (hours) 10 1010 4.6	f Mississauga 25 1160 4.6	50 1300 4.7	100 1450 4.9			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Rainfall intensity is calculated base Where: Rainfall intensity calculated in acc Pre-Development Runoff Return Period (Years) A B C	$\begin{array}{c} 616 \\ 339 \\ \textbf{9425} \\ \hline \textbf{0.58} \\ \hline \textbf{0.58} \\ \hline \textbf{cd on City of} \\ \textbf{A, B and C} = \\ \textbf{I} = \textbf{Rainfall} \\ \hline \textbf{T} = \textbf{Time of} \\ \hline \textbf{ordance with} \\ \hline \textbf{Rates:} \\ \hline \textbf{2} \\ 610 \\ \hline \textbf{4.6} \\ 0.78 \\ \hline \end{array}$	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/ concentration Municiaplity. 5 820 4.6 0.78	100% 75% 50% tensity-Durat sed by City o hour) (hours) 10 1010 4.6 0.78	f Mississauga 25 1160 4.6 0.78	50 1300 4.7 0.78	100 1450 4.9 0.78			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Rainfall intensity is calculated base Where: Rainfall intensity calculated in acc Pre-Development Runoff Return Period (Years) A B C Runoff Coefficent C*	$\begin{array}{c} 616 \\ 339 \\ \textbf{9425} \\ \hline \textbf{0.58} \\ \hline \textbf{0.58} \\ \hline \textbf{cd on City of} \\ \textbf{A, B and C} = \\ \textbf{I} = \text{Rainfall} = \\ \textbf{T} = \text{Time of} \\ \hline \textbf{ordance with} \\ \hline \textbf{Rates:} \\ \hline \textbf{2} \\ 610 \\ 4.6 \\ 0.78 \\ 0.58 \\ \hline \end{array}$	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/ concentration Municiaplity. 5 820 4.6 0.78 0.58	100% 75% 50% tensity-Durat sed by City o hour) (hours) 10 1010 4.6 0.78 0.58	f Mississauga 25 1160 4.6 0.78 0.64	50 1300 4.7 0.78 0.69	100 1450 4.9 0.78 0.72			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C Rainfall intensity is calculated base Where: Rainfall intensity calculated in acc Pre-Development Runoff Return Period (Years) A B C Runoff Coefficent C* T (mins) **	$\begin{array}{c} 616 \\ 339 \\ \textbf{9425} \\ \hline \textbf{0.58} \\ \hline \textbf{0.58} \\ \hline \textbf{cd on City of} \\ \textbf{A, B and C} = \\ \textbf{I} = Rainfall \\ \hline \textbf{T} = Time of \\ \hline \textbf{ordance with} \\ \hline \textbf{Rates:} \\ \hline \textbf{2} \\ 610 \\ 4.6 \\ 0.78 \\ 0.58 \\ 15 \\ \end{array}$	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/ Concentration Municiaplity. 5 820 4.6 0.78 0.58 15	100% 75% 50% tensity-Durat sed by City o hour) (hours) 1010 4.6 0.78 0.58 15	f Mississauga 25 1160 4.6 0.78 0.64 15	50 1300 4.7 0.78 0.69 15	100 1450 4.9 0.78 0.72 15			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C tainfall intensity is calculated base Where: At Grade Development Runoff Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs)	616 339 9425 0.58 cd on City of A, B and C = I = Rainfall : T = Time of ordance with Rates: 2 610 4.6 0.78 0.58 15 0.250	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/ concentration Municiaplity. 5 820 4.6 0.78 0.58 15 0.250	100% 75% 50% tensity-Durat sed by City o hour) (hours) 1010 4.6 0.78 0.58 15 0.250	f Mississauga 25 1160 4.6 0.78 0.64 15 0.250	50 1300 4.7 0.78 0.69 15 0.250	100 1450 4.9 0.78 0.72 15 0.250			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C tainfall intensity is calculated base Where: tainfall intensity calculated in acc Pre-Development Runoff Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr)	616 339 9425 0.58 ed on City of A, B and C = I = Rainfall = T = Time of ordance with Rates: 2 610 4.6 0.78 0.58 15 0.250 59.9	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/ Concentration Municiaplity. 5 820 4.6 0.78 0.58 15 0.250 80.5	100% 75% 50% tensity-Durat sed by City o hour) (hours) 10 1010 4.6 0.78 0.58 15 0.250 99.2	f Mississauga 25 1160 4.6 0.78 0.64 15 0.250 113.9	50 1300 4.7 0.78 0.69 15 0.250 127.1	100 1450 4.9 0.78 0.72 15 0.250 140.7			
R	At Grade Impervious At Grade Gravel Surface Total Site Area: Pre-Dev. Runoff Coefficient, C tainfall intensity is calculated base Where: At Grade Development Runoff Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs)	616 339 9425 0.58 cd on City of A, B and C = I = Rainfall : T = Time of ordance with Rates: 2 610 4.6 0.78 0.58 15 0.250	0.90 0.80 0.58 Mississauga In = Parameters u intensity (mm/ concentration Municiaplity. 5 820 4.6 0.78 0.58 15 0.250	100% 75% 50% tensity-Durat sed by City o hour) (hours) 1010 4.6 0.78 0.58 15 0.250	f Mississauga 25 1160 4.6 0.78 0.64 15 0.250	50 1300 4.7 0.78 0.69 15 0.250	100 1450 4.9 0.78 0.72 15 0.250			

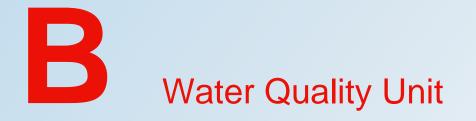
				Project:	Westmister 1	illississaugu		No.:	221-05528-00
				By:	Fatima Elkh	ier		Date:	2023-08-10
				Checked:	AMB			Checked:	
	Stormwater Management Cal	culations -	Allowable O	ffsite Discha	rge Rate				
,						0 0 00 000			
C	Calculation of existing runoff rate is	undertaken u	sing the Rationa	d Method:		Q = 2.78 CIA	L		
	Where:	-	ow rate (litres/s	econd)					
		C = Runoff	coefficient ntensity (mm/ł						
			ent area (hectar	/					
п	Fotal Development Area	1.435	hectares	(5)					
	Proposed Area, A	0.95	hectares						
п	The area measurements and land use	e types for the	site in pre-deve	elopment are:	as follows:				
	External drainage from softlandscap	* 1	0		_				
	Land Use	Area (m ²)	Runoff C*	Impervious	S				
Ι	mpervious Roof Area	0	0.90	100%	_				
	Soft/Pervious Landscaping	4620	0.25	0%	_				
	Asphalt Vehicular Surfaces	3850	0.90	100%	4				
	At Grade Impervious	616	0.90	100%					
ſ	At Grade Gravel Surface	339	0.80	75%					
L	Total Site Area:	9425	0.58	50%					
*	2-year through 10-year								
ſ	Allowable Runoff Coefficient, C		0.50]					
	Allowable 2-year Flow, Q _A , (L/s)		78.5	Ĩ					
1									
	, , ,			1					
P P	Allowable 5-year Flow, Q_A , (L/s) Allowable 10-year Flow, Q_A , (L/s) Rainfall intensity is calculated based		105.5 129.9 ssissauga Intens		1	⁷) Equation:			
P P	Allowable 5-year Flow, Q_A , (L/s) Allowable 10-year Flow, Q_A , (L/s) Rainfall intensity is calculated based	A, B and C = I = Rainfall i	105.5 129.9 ssissauga Intens = Parameters us ntensity (mm/h	ed by City of nour)	1) Equation:			
A A F	Allowable 5-year Flow, Q_A , (L/s) Allowable 10-year Flow, Q_A , (L/s) Rainfall intensity is calculated based Where:	A, B and C = I = Rainfall i T = Time of	105.5 129.9 ssissauga Intens = Parameters us ntensity (mm/l concentration	ed by City of nour)	1) Equation:			
A F F	Allowable 5-year Flow, Q_A , (L/s) Allowable 10-year Flow, Q_A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accord	A, B and C = I = Rainfall i T = Time of dance with Mu	105.5 129.9 ssissauga Intens e Parameters us ntensity (mm/H concentration iniciaplity.	ed by City of nour)	1	7) Equation:			
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Develop	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo	105.5 129.9 = Parameters us ntensity (mm/l concentration uniciaplity. ff Rates:	ed by City of nour) (hours)	Mississauga		100		
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accorr Uncontrolled Post-Developi Return Period (Years)	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2	105.5 129.9 ssissauga Intens = Parameters us ntensity (mm/l concentration miciaplity. ff Rates: 5	ed by City of nour) (hours) 10	Mississauga	50	100 1450		
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Develop	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo	105.5 129.9 = Parameters us ntensity (mm/l concentration uniciaplity. ff Rates:	ed by City of nour) (hours)	Mississauga		100 1450 4.9	-	
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accorr Uncontrolled Post-Develop Return Period (Years) A	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo $\frac{2}{610}$	105.5 129.9 ssissauga Intens = Parameters us nntensity (mm/l 'concentration uniciaplity. ff Rates: 5 820	ed by City of nour) (hours) 10 1010	Mississauga 25 1160	50 1300	1450		
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accord Uncontrolled Post-Developi Return Period (Years) A B	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6	105.5 129.9 sssissauga Intens Parameters us intensity (mm/l 'concentration uniciaplity. ff Rates: 5 820 4.6	ed by City of nour) (hours) 1010 4.6	25 1160 4.6	50 1300 4.7	1450 4.9		
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accorr Uncontrolled Post-Developi Return Period (Years) A B C	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78	105.5 129.9 sssissauga Intens Parameters us intensity (mm/l 'concentration iniciaplity. ff Rates: 5 820 4.6 0.78	ed by City of nour) (hours) 10 1010 4.6 0.78	25 1160 4.6 0.78	50 1300 4.7 0.78	1450 4.9 0.78		
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accord Uncontrolled Post-Developi Return Period (Years) A B C Runoff Coefficent C*	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62	105.5 129.9 sssissauga Intens Parameters us intensity (mm/l concentration iniciaplity. ff Rates: 5 820 4.6 0.78 0.62	ed by City of nour) (hours) 1010 4.6 0.78 0.62	25 1160 4.6 0.78 0.68	50 1300 4.7 0.78 0.74	1450 4.9 0.78 0.78		
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Developi Return Period (Years) A B C Runoff Coefficent C* T (mins) **	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo $\frac{2}{610}$ 4.6 0.78 0.62 15	105.5 129.9 ssissauga Intens Parameters us intensity (mm/l concentration iniciaplity. ff Rates: 5 820 4.6 0.78 0.62 15	ed by City of nour) (hours) 1010 4.6 0.78 0.62 15	25 1160 4.6 0.78 0.68 15	50 1300 4.7 0.78 0.74 15	1450 4.9 0.78 0.78 15		
A P F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Develope Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs)	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250	105.5 129.9 ssissauga Intens = Parameters us intensity (mm/l concentration of uniciaplity. ff Rates: 5 820 4.6 0.78 0.62 15 0.250	ed by City of nour) (hours) 1010 4.6 0.78 0.62 15 0.250	25 1160 4.6 0.78 0.68 15 0.250	50 1300 4.7 0.78 0.74 15 0.250	1450 4.9 0.78 0.78 15 0.250		
A P F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accorr Uncontrolled Post-Developi Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec)	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0	105.5 129.9 ssissauga Intensi = Parameters us ntensity (mm/l) :concentration miciaplity. ff Rates: 5 820 4.6 0.78 0.62 15 0.250 80.5 131.7	ed by City of nour) (hours) 10 1010 4.6 0.78 0.62 15 0.250 99.2 162.2	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5	1450 4.9 0.78 0.78 15 0.250 140.7 287.6		
A F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Developi Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr)	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9	105.5 129.9 ssissauga Intens = Parameters us ntensity (mm/l concentration of miciaplity. ff Rates: 5 820 4.6 0.78 0.62 15 0.250 80.5	ed by City of nour) (hours) 10 1010 4.6 0.78 0.62 15 0.250 99.2	25 1160 4.6 0.78 0.68 15 0.250 113.9	50 1300 4.7 0.78 0.74 15 0.250 127.1	1450 4.9 0.78 0.78 15 0.250 140.7		
P F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accorr Uncontrolled Post-Developi Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec)	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0 0.0980	105.5 129.9 sssissauga Intensi Parameters us intensity (mm/l concentration inciaplity. ff Rates: 5 820 4.6 0.78 0.62 15 0.62 15 0.62 15 0.62 15 0.62 15 0.62 15 0.1317	10 1010 4.6 0.62 15 0.250 99.2 162.2 0.1622	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9 0.2049	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5 0.2495	1450 4.9 0.78 0.78 15 0.250 140.7 287.6 0.2876		
P F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accord Uncontrolled Post-Developin Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (ms) I (mm/hr) Q (litres/sec) Q (m3/sec)	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0 0.0980 ppiled to the r	105.5 129.9 ssissauga Intensi Parameters us intensity (mm/liconcentration inciaplity. ff Rates: 5 820 4.6 0.62 15 0.62 15 0.62 15 0.62 15 0.131.7 unoff coefficient	10 1010 4.6 0.62 15 0.250 99.2 162.2 0.1622	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9 0.2049	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5 0.2495	1450 4.9 0.78 0.78 15 0.250 140.7 287.6 0.2876		
F F	Allowable 5-year Flow, Q_A , (L/s) Allowable 10-year Flow, Q_A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accord Uncontrolled Post-Developi Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m3/sec) * Note that adjustment factors are a	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0 0.0980 ppiled to the r	105.5 129.9 ssissauga Intensi Parameters us ntensity (mm/l concentration of concentration of concentration of the second se	10 1010 1010 4.6 0.78 0.62 15 0.250 99.2 162.2 0.1622 t for larger, let	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9 0.2049 ss frequent stor	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5 0.2495	1450 4.9 0.78 0.78 15 0.250 140.7 287.6 0.2876		
F F	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Developi Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/ht) Q (litres/sec) Q (m3/sec) * Note that adjustment factors are a as per City of Mississauga Develop	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0 0.0980 ppiled to the r	105.5 129.9 ssissauga Intensi Parameters us ntensity (mm/l concentration of concentration of concentration of the second se	10 1010 1010 4.6 0.78 0.62 15 0.250 99.2 162.2 0.1622 t for larger, let	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9 0.2049 ss frequent stor	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5 0.2495	1450 4.9 0.78 0.78 15 0.250 140.7 287.6 0.2876		
F F T **	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Develope Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m3/sec) * Note that adjustment factors are af as per City of Mississauga Develop ** Note recommended minimum va Unit Runoff Etobicoke Cree	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0 0.0980 ppiled to the r ment Require lue for time o	105.5 129.9 ssissauga Intens = Parameters us intensity (mm/l concentration of iniciaplity. ff Rates: 5 820 4.6 0.78 0.62 15 0.250 80.5 131.7 0.1317 unoff coefficen ments Manual f concentration	ed by City of nour) (hours) 1010 4.6 0.78 0.62 15 0.250 99.2 162.2 0.1622 t for larger, le is 15 minutes	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9 0.2049 ss frequent stor	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5 0.2495 ms for 10 to 10	1450 4.9 0.78 0.78 15 0.250 140.7 287.6 0.2876 0.2876	1	
	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Develop Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m3/sec) * Note that adjustment factors are a as per City of Mississauga Develop ** Note recommended minimum va Unit Runoff Etobicoke Creeto Land Use	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0 0.0980 ppiled to the r ment Require lue for time o	105.5 129.9 ssissauga Intensi Parameters us ntensity (mm/l concentration of concentration of concentration of the second se	10 1010 1010 4.6 0.78 0.62 15 0.250 99.2 162.2 0.1622 t for larger, let	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9 0.2049 ss frequent stor	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5 0.2495	1450 4.9 0.78 0.78 15 0.250 140.7 287.6 0.2876	100yrs	
	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Develop Return Period (Years) A B C Runoff Coefficent C* T (mis) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m3/sec) * Note that adjustment factors are a as per City of Mississauga Develop ** Note recommended minimum va Unit Runoff Etobicoke Creec Land Use Unit Runoff Rates	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0 0.0980 ppiled to the r ment Required lue for time o ek (216)	105.5 129.9 ssissauga Intensi Parameters us ntensity (mm/l concentration miciaplity. ff Rates: 5 820 4.6 0.78 0.62 15 0.317 0.1317 unoff coefficien ments Manual f concentration 2yrs	ed by City of nour) (hours) 1010 4.6 0.78 0.62 15 0.250 99.2 162.2 0.1622 t for larger, le is 15 minutes	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9 0.2049 ss frequent stor	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5 0.2495 ms for 10 to 10	1450 4.9 0.78 0.78 15 0.250 140.7 287.6 0.2876 0.2876	1	
	Allowable 5-year Flow, Q _A , (L/s) Allowable 10-year Flow, Q _A , (L/s) Rainfall intensity is calculated based Where: Rainfall intensity calculated in accore Uncontrolled Post-Develop Return Period (Years) A B C Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m3/sec) * Note that adjustment factors are a as per City of Mississauga Develop ** Note recommended minimum va Unit Runoff Etobicoke Creeto Land Use	A, B and C = I = Rainfall i T = Time of dance with Mu ment Runo 2 610 4.6 0.78 0.62 15 0.250 59.9 98.0 0.0980 ppiled to the r poment Required lue for time of ck (216) Area (m ²)	105.5 129.9 ssissauga Intensi Parameters us ntensity (mm/l concentration miciaplity. ff Rates: 5 820 4.6 0.78 0.62 15 0.317 0.1317 unoff coefficien ments Manual f concentration 2yrs	10 1010 4.6 0.62 15 0.250 99.2 162.2 0.1622 t for larger, le is 15 minutes 5 yrs	25 1160 4.6 0.78 0.68 15 0.250 113.9 204.9 0.2049 ss frequent stor 10 yr	50 1300 4.7 0.78 0.74 15 0.250 127.1 249.5 0.2495 ms for 10 to 10 25 yr	1450 4.9 0.78 0.78 15 0.250 140.7 287.6 0.2876 00 year events	100yrs	

// '	5	

Project:Westminister MississaugaNo.:221-05528-00By:Fatima ElkhierDate:2023-08-10Page:Checked:AMBCheck'd:3

Subject: Stormwater Management Calculations - Water Balance

The current area measurements and land use types for the site are as follows:


Land Use	Area (m^2)	Runoff C	Impervious	CN
Impervious Roof Area	-	0.90	100%	98
Soft/Pervious Landscaping	4,620	0.25	0%	81
Asphalt Vehicular Surfaces	3,850	0.90	0%	74
At Grade Impervious	616	0.90	100%	98
At Grade Gravel Surface	339	0.80	100%	89
Total Site Area:	9,425	0.58	10%	80

Surface Type	Area (m ²)	IA (m)	Volume Abstracted (m ³)	5 mm Volume (m ³)	Water Balance (m ³)
Impervious Roof Area	715	0.000	0.00	3.58	3.58
Green Roof Area	1,272	0.005	6.36	6.36	0.00
Soft/Pervious Landscaping	3,296	0.005	16.48	16.48	0.00
Asphalt Surfaces/At Grade Impv.	3,095	0.000	0.00	15.48	15.48
At Grade Impervious	1,047	0.000	0.0	5.24	5.24
Total Site Area:	9,425	-	22.84	47.13	24.29

It is assumed that the remaining hard surfaces on the site can abstract 1 mm of rainfall, and that all soft landscaped areas can absorb 5 mm

Therefore, volume of runoff during a 5 mm storm event: 24.29 m^3

APPENDIX

STANDARD OFFLINE Jellyfish Filter Sizing Report

Project Information

Date Project Name Project Number Location Monday, October 17, 2022 Westminster United Church

Mississauga

Jellyfish Filter Design Overview

This report provides information for the sizing and specification of the Jellyfish Filter. When designed properly in accordance to the guidelines detailed in the Jellyfish Filter Technical Manual, the Jellyfish Filter will exceed the performance and longevity of conventional horizontal bed and granular media filters.

Please see www.ImbriumSystems.com for more information.

Jellyfish Filter System Recommendation

The Jellyfish Filter model JF6-3-1 is recommended to meet the water quality objective by treating a flow of 17.7 L/s, which meets or exceeds 90% of the average annual rainfall runoff volume based on 18 years of TORONTO CENTRAL rainfall data for this site. This model has a sediment capacity of 199 kg, which meets or exceeds the estimated average annual sediment load.

Jellyfish Model	Number of High-Flo Cartridges	Number of Draindown Cartridges	Manhole Diameter (m)		Sediment Capacity (kg)
JF6-3-1	3	1	1.8	17.7	199

The Jellyfish Filter System

The patented Jellyfish Filter is an engineered stormwater quality treatment technology featuring unique membrane filtration in a compact stand-alone treatment system that removes a high level and wide variety of stormwater pollutants. Exceptional pollutant removal is achieved at high treatment flow rates with minimal head loss and low maintenance costs. Each lightweight Jellyfish Filter cartridge contains an extraordinarily large amount of membrane surface area, resulting in superior flow capacity and pollutant removal capacity.

Maintenance

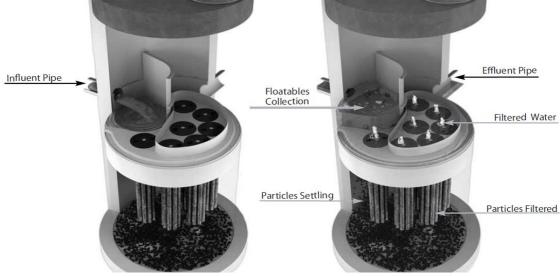
Regular scheduled inspections and maintenance is necessary to assure proper functioning of the Jellyfish Filter. The maintenance interval is designed to be a minimum of 12 months, but this will vary depending on site loading conditions and upstream pretreatment measures. Quarterly inspections and inspections after all storms beyond the 5-year event are recommended until enough historical performance data has been logged to comfortably initiate an alternative inspection interval.

Please see www.ImbriumSystems.com for more information.

Thank you for the opportunity to present this information to you and your client.

Performance

Jellyfish efficiently captures a high level of Stormwater pollutants, including:


- ☑ 89% of the total suspended solids (TSS) load, including particles less than 5 microns
- ☑ 77% TP removal & 51% TN removal
- Ø 90% Total Copper, 81% Total Lead, 70% Total Zinc
- Particulate-bound pollutants such as nutrients, toxic metals, hydrocarbons and bacteria
- ☑ Free oil, Floatable trash and debris

Field Proven Peformance

The Jellyfish filter has been field-tested on an urban site with 25 TARP qualifying rain events and field monitored according to the TARP field test protocol, demonstrating:

- A median TSS removal efficiency of 89%, and a median SSC removal of 99%;
- The ability to capture fine particles as indicated by an effluent d50 median of 3 microns for all monitotred storm events, and a median effluent turbidity of 5 NTUs;
- A median Total Phosphorus removal of 77%, and a median Total Nitrogen removal of 51%.

Jellyfish Filter Treatment Functions

Pre-treatment and Membrane Filtration

Jellyfish® Filter

Project Information

Date:	Monday, October 17, 2022		
Project Name:	Westminster United Church		
Project Number:			
Location:	Mississauga		
Designer Inform	ation		
Company:	WSP Canada Group Ltd.		
Contact:	Fatima Elkhier		
Phone #: (289) 982-4448			
Notes			

Rainfall				
Name:	TORONTO	D CENTRAL		
State:	ON			
ID:	100			
Record:	1982 to 19	99		
Co-ords:	45°30'N, 9	0°30'W		
Drainage	Area			
Total Area:		0.95 ha		
Impervious	Imperviousness: 55%			
Upstream Detention				
Peak Relea	se Rate: n/a			
Pretreatme	Pretreatment Credit: n/a			

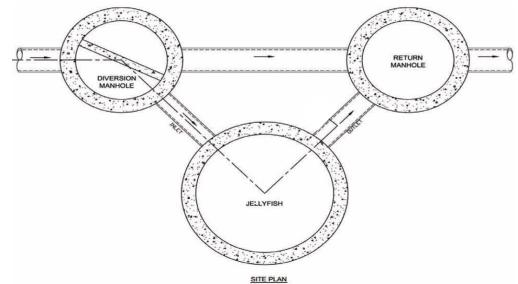
Design System Requirements

Flow	90% of the Average Annual Runoff based on 18 years	15.2 L/s
Loading	of TORONTO CENTRAL rainfall data:	13.2 L/S
Sediment Loading	Treating 90% of the average annual runoff volume, 3143 m ³ , with a suspended sediment concentration of 60 mg/L.	189 kg

Recommendation

The Jellyfish Filter model JF6-3-1 is recommended to meet the water quality objective by treating a flow of 17.7 L/s, which meets or exceeds 90% of the average annual rainfall runoff volume based on 18 years of TORONTO CENTRAL rainfall data for this site. This model has a sediment capacity of 199 kg, which meets or exceeds the estimated average annual sediment load.

Jellyfish Model	Number of High-Flo Cartridges	Number of Draindown Cartridges	Manhole Diameter (m)	Wet Vol Below Deck (L)	Sump Storage (m ³)	Oil Capacity (L)	Treatment Flow Rate (L/s)	Sediment Capacity (kg)
JF4-1-1	1	1	1.2	2313	0.34	379	7.6	85
JF4-2-1	2	1	1.2	2313	0.34	379	12.6	142
JF6-3-1	3	1	1.8	5205	0.79	848	17.7	199
JF6-4-1	4	1	1.8	5205	0.79	848	22.7	256
JF6-5-1	5	1	1.8	5205	0.79	848	27.8	313
JF6-6-1	6	1	1.8	5205	0.79	848	28.6	370
JF8-6-2	6	2	2.4	9252	1.42	1469	35.3	398
JF8-7-2	7	2	2.4	9252	1.42	1469	40.4	455
JF8-8-2	8	2	2.4	9252	1.42	1469	45.4	512
JF8-9-2	9	2	2.4	9252	1.42	1469	50.5	569
JF8-10-2	10	2	2.4	9252	1.42	1469	50.5	626
JF10-11-3	11	3	3.0	14456	2.21	2302	63.1	711
JF10-12-3	12	3	3.0	14456	2.21	2302	68.2	768
JF10-12-4	12	4	3.0	14456	2.21	2302	70.7	796
JF10-13-4	13	4	3.0	14456	2.21	2302	75.7	853
JF10-14-4	14	4	3.0	14456	2.21	2302	78.9	910
JF10-15-4	15	4	3.0	14456	2.21	2302	78.9	967
JF10-16-4	16	4	3.0	14456	2.21	2302	78.9	1024
JF10-17-4	17	4	3.0	14456	2.21	2302	78.9	1081
JF10-18-4	18	4	3.0	14456	2.21	2302	78.9	1138
JF10-19-4	19	4	3.0	14456	2.21	2302	78.9	1195
JF12-20-5	20	5	3.6	20820	3.2	2771	113.6	1280
JF12-21-5	21	5	3.6	20820	3.2	2771	113.7	1337
JF12-22-5	22	5	3.6	20820	3.2	2771	113.7	1394
JF12-23-5	23	5	3.6	20820	3.2	2771	113.7	1451
JF12-24-5	24	5	3.6	20820	3.2	2771	113.7	1508
JF12-25-5	25	5	3.6	20820	3.2	2771	113.7	1565
JF12-26-5	26	5	3.6	20820	3.2	2771	113.7	1622
JF12-27-5	27	5	3.6	20820	3.2	2771	113.7	1679


3

www.ImbriumSystems.com

Jellyfish[®] Filter

Jellyfish Filter Design Notes

Typically the Jellyfish Filter is designed in an offline configuration, as all stormwater filter systems
will perform for a longer duration between required maintenance services when designed and
applied in off-line configurations. Depending on the design parameters, an optional internal bypass
may be incorporated into the Jellyfish Filter, however note the inspection and maintenance
frequency should be expected to increase above that of an off-line system. Speak to your local
representative for more information.

Jellyfish Filter Typical Layout

- Typically, 18 inches (457 mm) of driving head is designed into the system, calculated as the difference in elevation between the top of the diversion structure weir and the invert of the Jellyfish Filter outlet pipe. Alternative driving head values can be designed as 12 to 24 inches (305 to 610mm) depending on specific site requirements, requiring additional sizing and design assistance.
- Typically, the Jellyfish Filter is designed with the inlet pipe configured 6 inches (150 mm) above the
 outlet invert elevation. However, depending on site parameters this can vary to an optional
 configuration of the inlet pipe entering the unit below the outlet invert elevation.
- The Jellyfish Filter can accommodate multiple inlet pipes within certain restrictions.
- While the optional inlet below deck configuration offers 0 to 360 degree flexibility between the inlet and outlet pipe, typical systems conform to the following:

Model Diameter (m)	Minimum Angle Inlet / Outlet Pipes	Minimum Inlet Pipe Diameter (mm)	Minimum Outlet Pipe Diameter (mm)
1.2	62°	150	200
1.8	59°	200	250
2.4	52°	250	300
3.0	48°	300	450
3.6	40°	300	450

- The Jellyfish Filter can be built at all depths of cover generally associated with conventional stormwater conveyance systems. For sites that require minimal depth of cover for the stormwater infrastructure, the Jellyfish Filter can be applied in a shallow application using a hatch cover. The general minimum depth of cover is 36 inches (915 mm) from top of the underslab to outlet invert.
- If driving head caclulations account for water elevation during submerged conditions the Jellyfish Filter will function effectively under submerged conditions.
- Jellyfish Filter systems may incorporate grated inlets depending on system configuration.
- For sites with water quality treatment flow rates or mass loadings that exceed the design flow rate of the largest standard Jellyfish Filter manhole models, systems can be designed that hydraulically connect multiple Jellyfish Filters in series or alternatively Jellyfish Vault units can be designed.

STANDARD SPECIFICATION STORMWATER QUALITY – MEMBRANE FILTRATION TREATMENT DEVICE

PART 1 - GENERAL

1.1 WORK INCLUDED

Specifies requirements for construction and performance of an underground stormwater quality membrane filtration treatment device that removes pollutants from stormwater runoff through the unit operations of sedimentation, floatation, and membrane filtration.

1.2 REFERENCE STANDARDS

ASTM C 891: Specification for Installation of Underground Precast Concrete Utility Structures

ASTM C 478: Specification for Precast Reinforced Concrete Manhole Sections

ASTM C 443: Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets ASTM D 4101: Specification for Copolymer steps construction

<u>CAN/CSA-A257.4-M92</u> Joints for Circular Concrete Sewer and Culvert Pipe, Manhole Sections and Fittings Using Rubber Gaskets

CAN/CSA-A257.4-M92 Precast Reinforced Circular Concrete Manhole Sections, Catch Basins and Fittings

Canadian Highway Bridge Design Code

1.3 SHOP DRAWINGS

Shop drawings for the structure and performance are to be submitted with each order to the contractor. Contractor shall forward shop drawing submittal to the consulting engineer for approval. Shop drawings are to detail the structure's precast concrete and call out or note the fiberglass (FRP) internals/components.

1.4 PRODUCT SUBSTITUTIONS

No product substitutions shall be accepted unless submitted 10 days prior to project bid date, or as directed by the engineer of record. Submissions for substitutions require review and approval by the Engineer of Record, for hydraulic performance, impact to project designs, equivalent treatment performance, and any required project plan and report (hydrology/hydraulic, water quality, stormwater pollution) modifications that would be required by the approving jurisdictions/agencies. Contractor to coordinate with the Engineer of Record any applicable modifications to the project estimates of cost, bonding amount determinations, plan check fees for changes to approved documents, and/or any other regulatory requirements resulting from the product substitution.

1.5 HANDLING AND STORAGE

Prevent damage to materials during storage and handling.

PART 2 - PRODUCTS

Imbrium Systems www.imbriumsystems.com Ph 888-279-8826 Ph 416-960-9900

Page 1 of 7

2.1 GENERAL

- 2.1.1 The device shall be a cylindrical or rectangular, all concrete structure (including risers), constructed from precast concrete riser and slab components or monolithic precast structure(s), installed to conform to ASTM C 891 and to any required state highway, municipal or local specifications; whichever is more stringent. The device shall be watertight.
- 2.1.2 <u>Cartridge Deck</u> The cylindrical concrete device shall include a fiberglass deck. The rectangular concrete device shall include a coated aluminum deck. In either instance, the insert shall be bolted and sealed watertight inside the precast concrete chamber. The deck shall serve as: (a) a horizontal divider between the lower treatment zone and the upper treated effluent zone; (b) a deck for attachment of filter cartridges such that the membrane filter elements of each cartridge extend into the lower treatment zone; (c) a platform for maintenance workers to service the filter cartridges (maximum manned weight = 450 pounds (204 kg)); (d) a conduit for conveyance of treated water to the effluent pipe.
- 2.1.3 <u>Membrane Filter Cartridges</u> Filter cartridges shall be comprised of reusable cylindrical membrane filter elements connected to a perforated head plate. The number of membrane filter elements per cartridge shall be a minimum of eleven 2.75-inch (70-mm) diameter elements. The length of each filter element shall be a minimum 15 inches (381 mm). Each cartridge shall be fitted into the cartridge deck by insertion into a cartridge receptacle that is permanently mounted into the cartridge deck. Each cartridge shall be secured by a cartridge lid that is threaded onto the receptacle, or similar mechanism to secure the cartridge into the deck. The maximum treatment flow rate of a filter cartridge shall be controlled by an orifice in the cartridge lid, or on the individual cartridge itself, and based on a design flux rate (surface loading rate) determined by the maximum treatment flow rate per unit of filtration membrane surface area. The maximum design flux rate shall be 0.21 gpm/ft² (0.142 lps/m²).

Each membrane filter cartridge shall allow for manual installation and removal. Each filter cartridge shall have filtration membrane surface area and dry installation weight as follows (if length of filter cartridge is between those listed below, the surface area and weight shall be proportionate to the next length shorter and next length longer as shown below):

Filter Cartridge Length (in / mm)	Minimum Filtration Membrane Surface Area (ft2 / m2)	Maximum Filter Cartridge Dry Weight (lbs / kg)	
15	106 / 9.8	10.5 / 4.8	
27	190 / 17.7	15.0/6.8	
40	282/26.2	20.5/9.3	
54	381/35.4	25.5 / 11.6	

2.1.4 <u>Backwashing Cartridges</u> The filter device shall have a weir extending above the cartridge deck, or other mechanism, that encloses the high flow rate filter cartridges when placed in their respective cartridge receptacles within the cartridge deck. The weir, or other mechanism, shall collect a pool of filtered water during inflow events that backwashes the high flow rate cartridges when the inflow

Imbrium Systems www.imbriumsystems.com Ph 888-279-8826 Ph 416-960-9900 event subsides. All filter cartridges and membranes shall be reusable and allow for the use of filtration membrane rinsing procedures to restore flow capacity and sediment capacity; extending cartridge service life.

- 2.1.5 <u>Maintenance Access to Captured Pollutants</u> The filter device shall contain an opening(s) that provides maintenance access for removal of accumulated floatable pollutants and sediment, removal of and replacement of filter cartridges, cleaning of the sump, and rinsing of the deck. Access shall have a minimum clear vertical clear space over all of the filter cartridges. Filter cartridges shall be able to be lifted straight vertically out of the receptacles and deck for the entire length of the cartridge.
- 2.1.6 <u>Bend Structure</u> The device shall be able to be used as a bend structure with minimum angles between inlet and outlet pipes of 90-degrees or less in the stormwater conveyance system.
- 2.1.7 <u>Double-Wall Containment of Hydrocarbons</u> The cylindrical precast concrete device shall provide double-wall containment for hydrocarbon spill capture by a combined means of an inner wall of fiberglass, to a minimum depth of 12 inches (305 mm) below the cartridge deck, and the precast vessel wall.
- 2.1.8 <u>Baffle</u> The filter device shall provide a baffle that extends from the underside of the cartridge deck to a minimum length equal to the length of the membrane filter elements. The baffle shall serve to protect the membrane filter elements from contamination by floatables and coarse sediment. The baffle shall be flexible and continuous in cylindrical configurations, and shall be a straight concrete or aluminum wall in rectangular configurations.
- 2.1.9 <u>Sump</u> The device shall include a minimum 24 inches (610 mm) of sump below the bottom of the cartridges for sediment accumulation, unless otherwise specified by the design engineer. Depths less than 24 inches may have an impact on the total performance and/or longevity between cartridge maintenance/replacement of the device.

2.2 PRECAST CONCRETE SECTIONS

All precast concrete components shall be manufactured to a minimum live load of HS-20 truck loading or greater based on local regulatory specifications, unless otherwise modified or specified by the design engineer, and shall be watertight.

2.3 <u>JOINTS</u> All precast concrete manhole configuration joints shall use nitrile rubber gaskets and shall meet the requirements of ASTM C443, Specification C1619, Class D or engineer approved equal to ensure oil resistance. Mastic sealants or butyl tape are not an acceptable alternative.

- 2.4 <u>GASKETS</u> Only profile neoprene or nitrile rubber gaskets in accordance to CSA A257.3-M92 will be accepted. Mastic sealants, butyl tape or Conseal CS-101 are not acceptable gasket materials.
- 2.5 <u>FRAME AND COVER</u> Frame and covers must be manufactured from cast-iron or other composite material tested to withstand H-20 or greater design loads, and as approved by the

Imbrium Systems www.imbriumsystems.com Ph 888-279-8826 Ph 416-960-9900

Page 3 of 7

local regulatory body. Frames and covers must be embossed with the name of the device manufacturer or the device brand name.

- 2.6 <u>DOORS AND HATCHES</u> If provided shall meet designated loading requirements or at a minimum for incidental vehicular traffic.
- 2.7 <u>CONCRETE</u> All concrete components shall be manufactured according to local specifications and shall meet the requirements of ASTM C 478.
- 2.8 <u>FIBERGLASS</u> The fiberglass portion of the filter device shall be constructed in accordance with the following standard: ASTM D-4097: Contact Molded Glass Fiber Reinforced Chemical Resistant Tanks.
- 2.9 <u>STEPS</u> Steps shall be constructed according to ASTM D4101 of copolymer polypropylene, and be driven into preformed or pre-drilled holes after the concrete has cured, installed to conform to applicable sections of state, provincial and municipal building codes, highway, municipal or local specifications for the construction of such devices.
- 2.10 <u>INSPECTION</u> All precast concrete sections shall be inspected to ensure that dimensions, appearance and quality of the product meet local municipal specifications and ASTM C 478.

PART 3 – PERFORMANCE

3.1 GENERAL

- 3.1.1 <u>Verification</u> The stormwater quality filter must be verified in accordance with ISO 14034:2016 Environmental management Environmental technology verification (ETV).
- 3.1.2 <u>Function</u> The stormwater quality filter treatment device shall function to remove pollutants by the following unit treatment processes; sedimentation, floatation, and membrane filtration.
- 3.1.3 <u>Pollutants</u> The stormwater quality filter treatment device shall remove oil, debris, trash, coarse and fine particulates, particulate-bound pollutants, metals and nutrients from stormwater during runoff events.
- 3.1.4 <u>Bypass</u> The stormwater quality filter treatment device shall typically utilize an external bypass to divert excessive flows. Internal bypass systems shall be equipped with a floatables baffle, and must avoid passage through the sump and/or cartridge filtration zone.
- 3.1.5 <u>Treatment Flux Rate (Surface Loading Rate)</u> The stormwater quality filter treatment device shall treat 100% of the required water quality treatment flow based on a maximum design treatment flux rate (surface loading rate) across the membrane filter cartridges of 0.21 gpm/ft² (0.142 lps/m²).

Imbrium Systems www.imbriumsystems.com Ph 888-279-8826 Ph 416-960-9900

3.2 FIELD TEST PERFORMANCE

At a minimum, the stormwater quality filter device shall have been field tested and verified with a minimum 25 TARP qualifying storm events and field monitoring shall have been conducted according to the TARP 2009 NJDEP TARP field test protocol, and have received NJCAT verification.

- 3.2.1 <u>Suspended Solids Removal</u> The stormwater quality filter treatment device shall have demonstrated a minimum median TSS removal efficiency of 85% and a minimum median SSC removal efficiency of 95%.
- 3.2.2 <u>Runoff Volume</u> The stormwater quality filter treatment device shall be engineered, designed, and sized to treat a minimum of 90 percent of the annual runoff volume determined from use of a minimum 15-year rainfall data set.
- 3.2.3 <u>Fine Particle Removal</u> The stormwater quality filter treatment device shall have demonstrated the ability to capture fine particles as indicated by a minimum median removal efficiency of 75% for the particle fraction less than 25 microns, an effluent dso of 15 microns or lower for all monitored storm events.
- 3.2.4 <u>Turbidity Reduction</u> The stormwater quality filter treatment device shall have demonstrated the ability to reduce the turbidity from influent from a range of 5 to 171 NTU to an effluent turbidity of 15 NTU or lower.
- 3.2.5 <u>Nutrient (Total Phosphorus & Total Nitrogen) Removal</u> The stormwater quality filter treatment device shall have demonstrated a minimum median Total Phosphorus removal of 55%, and a minimum median Total Nitrogen removal of 50%.
- 3.2.6 <u>Metals (Total Zinc & Total Copper) Removal</u> The stormwater quality filter treatment device shall have demonstrated a minimum median Total Zinc removal of 55%, and a minimum median Total Copper removal of 85%.

3.3 INSPECTION and MAINTENANCE

The stormwater quality filter device shall have the following features:

- 3.3.1 Durability of membranes are subject to good handling practices during inspection and maintenance (removal, rinsing, and reinsertion) events, and site specific conditions that may have heavier or lighter loading onto the cartridges, and pollutant variability that may impact the membrane structural integrity. Membrane maintenance and replacement shall be in accordance with manufacturer's recommendations.
- 3.3.2 Inspection which includes trash and floatables collection, sediment depth determination, and visible determination of backwash pool depth shall be easily conducted from grade (outside the structure).
- 3.3.3 Manual rinsing of the reusable filter cartridges shall promote restoration of the flow capacity and sediment capacity of the filter cartridges, extending cartridge service life.

Imbrium Systems www.imbriumsystems.com Ph 888-279-8826 Ph 416-960-9900

- 3.3.4 The filter device shall have a minimum 12 inches (305 mm) of sediment storage depth, and a minimum of 12 inches between the top of the sediment storage and bottom of the filter cartridge tentacles, unless otherwise specified by the design engineer. Variances may have an impact on the total performance and/or longevity between cartridge maintenance/replacement of the device.
- 3.3.5 Sediment removal from the filter treatment device shall be able to be conducted using a standard maintenance truck and vacuum apparatus, and a minimum one point of entry to the sump that is unobstructed by filter cartridges.
- 3.3.6 Maintenance access shall have a minimum clear height that provides suitable vertical clear space over all of the filter cartridges. Filter cartridges shall be able to be lifted straight vertically out of the receptacles and deck for the entire length of the cartridge.
- 3.3.7 Filter cartridges shall be able to be maintained without the requirement of additional lifting equipment.

PART 4 - EXECUTION

4.1 INSTALLATION

4.1.1 PRECAST DEVICE CONSTRUCTION SEQUENCE

The installation of a watertight precast concrete device should conform to ASTM C 891 and to any state highway, municipal or local specifications for the construction of manholes, whichever is more stringent. Selected sections of a general specification that are applicable are summarized below.

- 4.1.1.1 The watertight precast concrete device is installed in sections in the following sequence:
 - aggregate base
 - base slab
 - treatment chamber and cartridge deck riser section(s)
 - bypass section
 - connect inlet and outlet pipes
 - concrete riser section(s) and/or transition slab (if required)
 - maintenance riser section(s) (if required)
 - frame and access cover
- 4.1.2 The precast base should be placed level at the specified grade. The entire base should be in contact with the underlying compacted granular material. Subsequent sections, complete with joint seals, should be installed in accordance with the precast concrete manufacturer's recommendations.
- 4.1.3 Adjustment of the stormwater quality treatment device can be performed by lifting the upper sections free of the excavated area, re-leveling the base, and reinstalling the sections. Damaged sections and gaskets should be repaired or replaced as necessary to restore original condition and watertight seals. Once the stormwater quality treatment device has been constructed, any/all lift holes must be plugged watertight with mortar or non-shrink grout.

Imbrium Systems www.imbriumsystems.com Ph 888-279-8826 Ph 416-960-9900

Page 6 of 7

- 4.1.4 <u>Inlet and Outlet Pipes</u> Inlet and outlet pipes should be securely set into the device using approved pipe seals (flexible boot connections, where applicable) so that the structure is watertight, and such that any pipe intrusion into the device does not impact the device functionality.
- 4.1.5 <u>Frame and Cover Installation</u> Adjustment units (e.g. grade rings) should be installed to set the frame and cover at the required elevation. The adjustment units should be laid in a full bed of mortar with successive units being joined using sealant recommended by the manufacturer. Frames for the cover should be set in a full bed of mortar at the elevation specified.

4.2 MAINTENANCE ACCESS WALL

In some instances the Maintenance Access Wall, if provided, shall require an extension attachment and sealing to the precast wall and cartridge deck at the job site, rather than at the precast facility. In this instance, installation of these components shall be performed according to instructions provided by the manufacturer.

4.3 <u>FILTER CARTRIDGE INSTALLATION</u> Filter cartridges shall be installed in the cartridge deck only after the construction site is fully stabilized and in accordance with the manufacturer's guidelines and recommendations. Contractor to contact the manufacturer to schedule cartridge delivery and review procedures/requirements to be completed to the device prior to installation of the cartridges and activation of the system.

PART 5 - QUALITY ASSURANCE

5.1 FILTER CARTRIDGE INSTALLATION Manufacturer shall coordinate delivery of filter cartridges and other internal components with contractor. Filter cartridges shall be delivered and installed complete after site is stabilized and unit is ready to accept cartridges. Unit is ready to accept cartridges after is has been cleaned out and any standing water, debris, and other materials have been removed. Contractor shall take appropriate action to protect the filter cartridge receptacles and filter cartridges from damage during construction, and in accordance with the manufacturer's recommendations and guidance. For systems with cartridges installed prior to full site stabilization and prior to system activation, the contractor can plug inlet and outlet pipes to prevent stormwater and other influent from entering the device. Plugs must be removed during the activation process.

5.2 INSPECTION AND MAINTENANCE

- 5.2.1 The manufacturer shall provide an Owner's Manual upon request.
- 5.2.2 After construction and installation, and during operation, the device shall be inspected and cleaned as necessary based on the manufacturer's recommended inspection and maintenance guidelines and the local regulatory agency/body.

5.3<u>REPLACEMENT FILTER CARTRIDGES</u> When replacement membrane filter elements and/or other parts are required, only membrane filter elements and parts approved by the manufacturer for use with the stormwater quality filter device shall be installed.

END OF SECTION

Imbrium Systems www.imbriumsvstems.com Ph 888-279-8826 Ph 416-960-9900

Page 7 of 7

STANDARD PERFORMANCE SPECIFICATION STORMWATER QUALITY – MEMBRANE FILTRATION TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground stormwater quality membrane filtration treatment device that removes pollutants from stormwater runoff through the unit operations of sedimentation, floatation, and membrane filtration.

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental Management – Environmental Technology Verification (ETV)

1.3 SUBMITTALS

- 1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.
- 1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: filtration surface area, treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.
- 1.3.3 Unless directed otherwise by the Engineer of Record, filtration treatment device product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 <u>GENERAL</u>

- 2.1.1 <u>Maintenance Access to Captured Pollutants</u> The filter device shall contain an opening(s) that provides maintenance access for removal of accumulated floatable pollutants and sediment, removal of and replacement of filter cartridges, cleaning of the sump, and rinsing of the internal components. Access shall have a minimum clear vertical clear space over all of the filter cartridges. Filter cartridges shall be able to be lifted straight vertically out of their installed placement for the entire length of the cartridge.
- 2.1.2 Pollutant Storage: The Filter device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants.

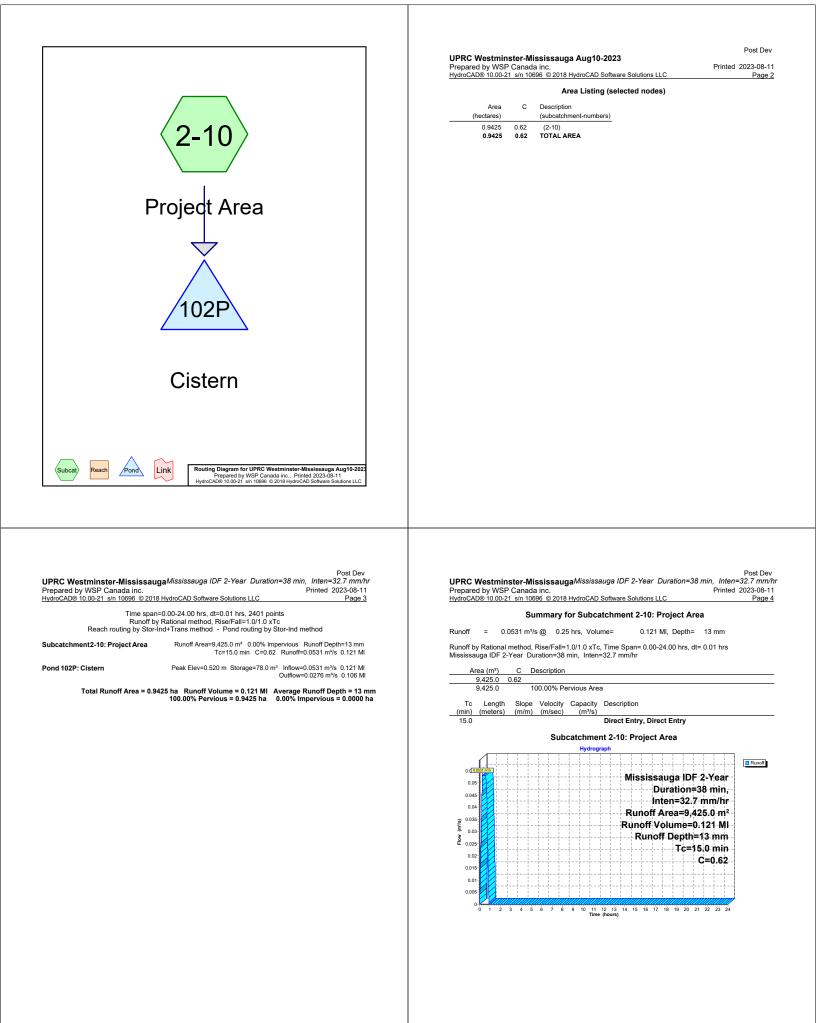
PART 3 – PERFORMANCE

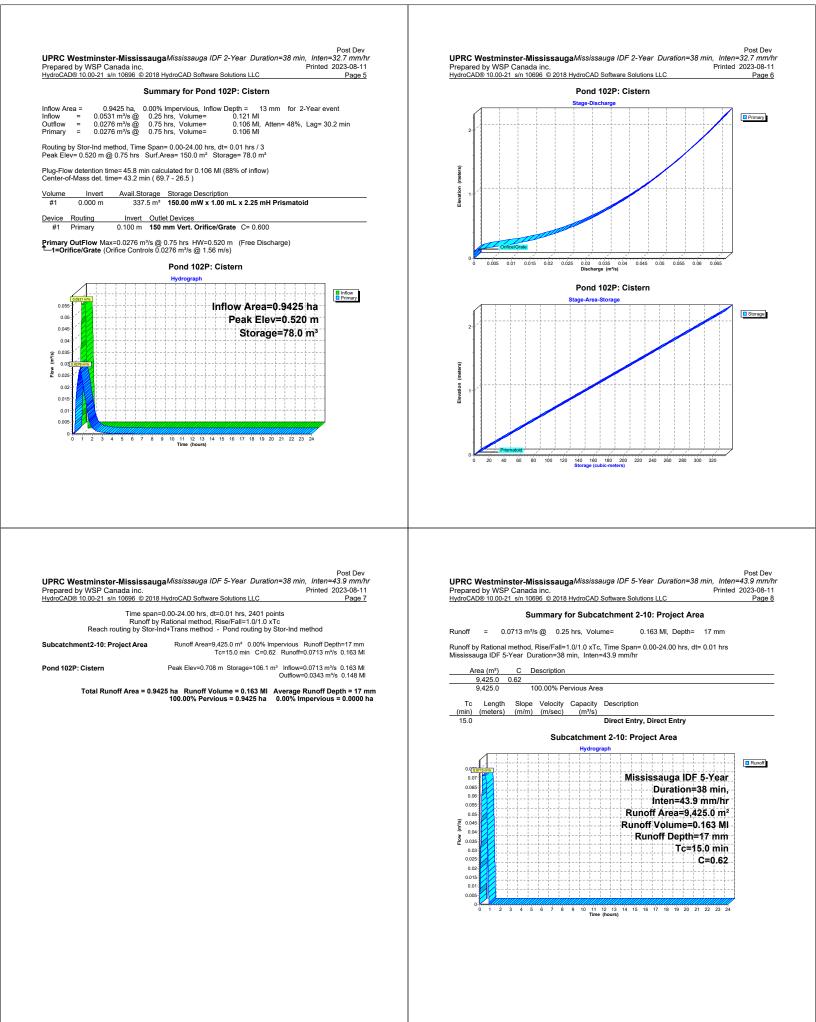
Imbrium Systems www.imbriumsystems.com

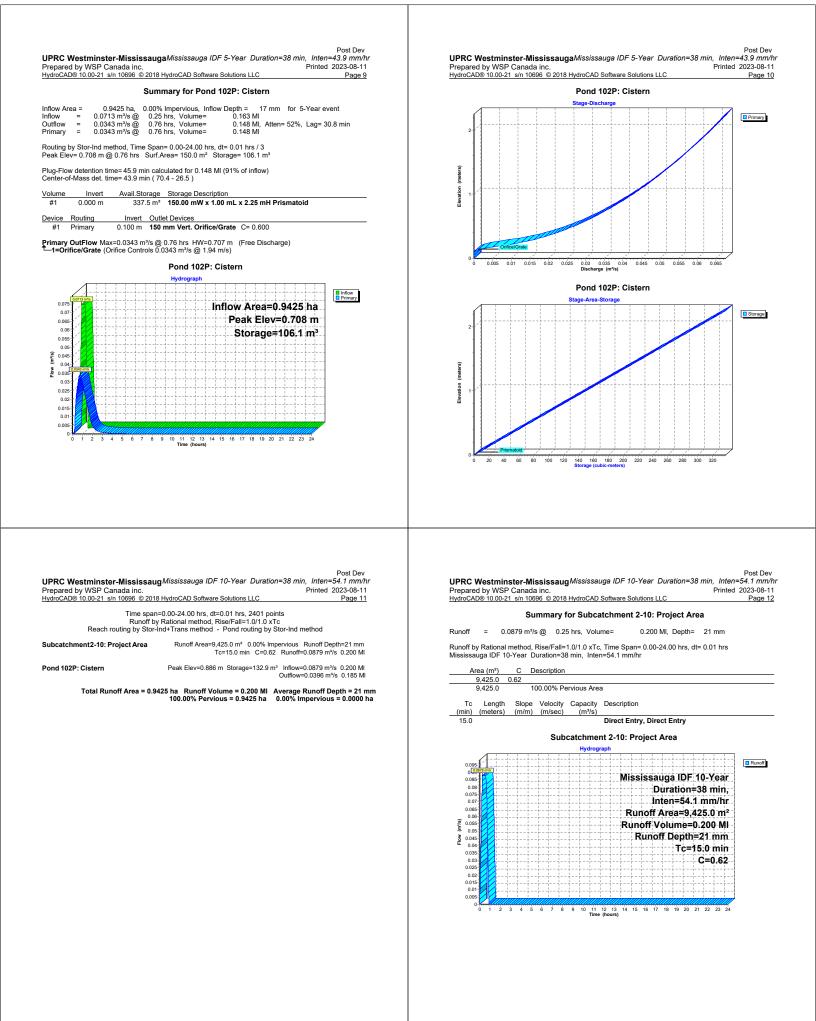
3.1 GENERAL

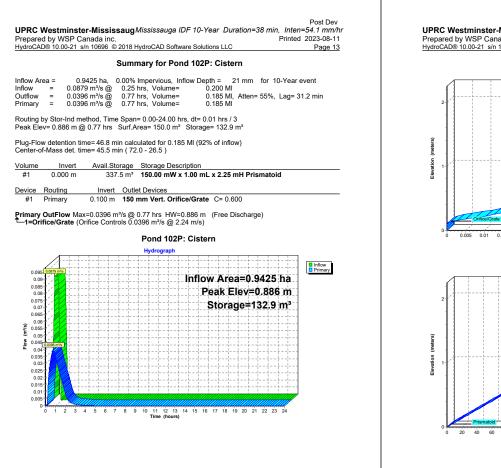
3.1.1 <u>Verification</u> – The stormwater quality filter treatment device shall have been field tested in accordance with either TARP Tier II Protocol (TARP, 2003) and New Jersey Tier II Stormwater Test Requirements – Amendments to TARP Tier II Protocol (NJDEP, 2009) or Washington State Technology Assessment Protocol – Ecology (TAPE), 2011 or later version. The field test shall have been verified in accordance with ISO 14034:2016 Environmental Management – Environmental Technology Verification (ETV). See Section 3.2 of this specification for field test performance requirements.

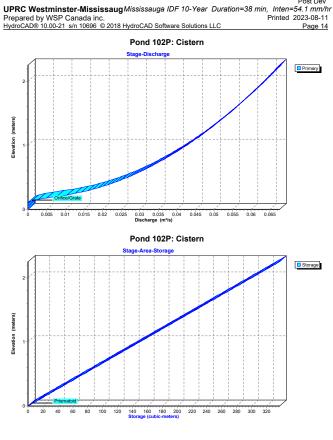
3.2 FIELD TEST PERFORMANCE

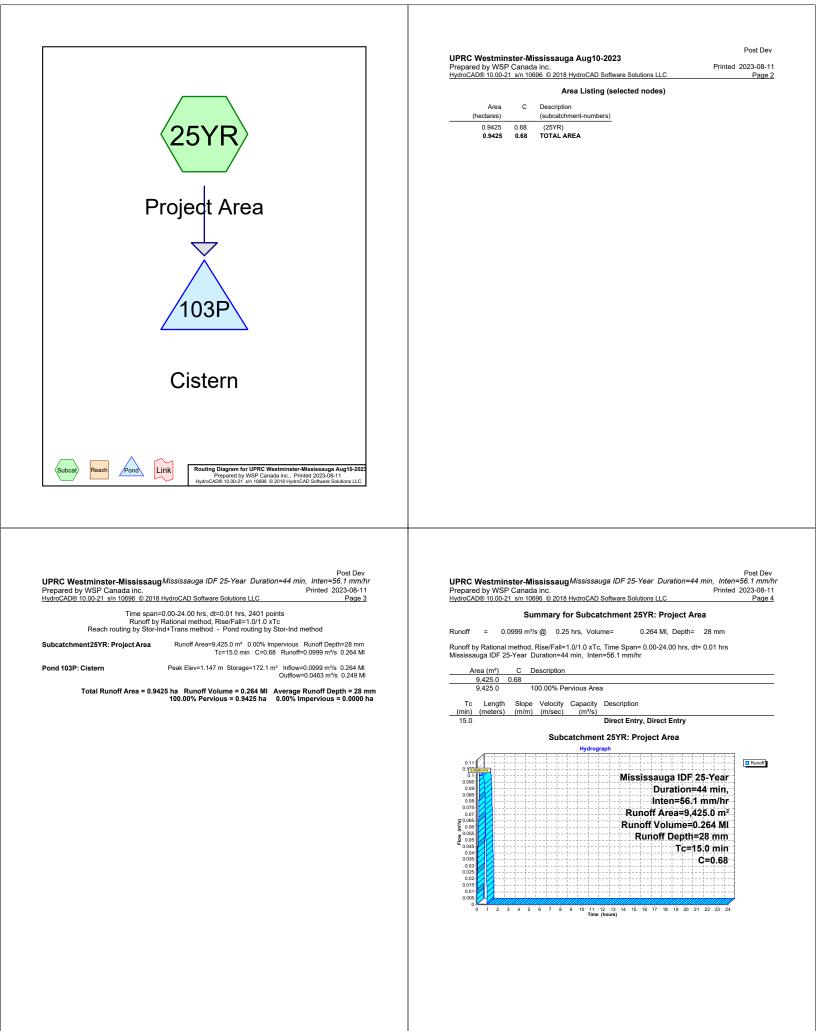

The field test (as specified in section 3.1.1)shall have monitored a minimum of twenty (20) TARP or TAPE qualifying storm events, and report at **minimum** the following results:

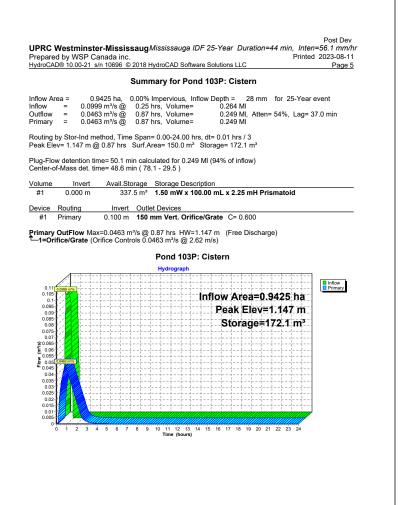

- 3.2.1 <u>Suspended Solids Removal</u> The stormwater quality filter treatment device shall have ISO 14034 ETV verified load based median TSS removal efficiency of at least 85% and load based median SSC removal efficiency of at least 98%.
- 3.2.2 <u>Runoff Volume</u> The stormwater quality filter treatment device shall be engineered, designed, and sized to treat a minimum of 90 percent of the annual runoff volume determined from use of a minimum 15-year rainfall data set.
- 3.2.3 <u>Fine Particle Removal</u> The stormwater quality filter treatment device shall have demonstrated the ability to capture fine particles as indicated by a minimum median removal efficiency of 75% for the particle fraction less than 25 microns, and an effluent d_{50} of 15 microns or lower for all monitored storm events.
- 3.2.4 <u>Turbidity Reduction</u> The stormwater quality filter treatment device shall have demonstrated the ability to reduce turbidity such that effluent turbidity is 15 NTU or lower.
- 3.2.5 <u>Nutrients & Metals</u> The stormwater quality filter treatment device shall have ISO 14034 ETV Verified minimum load based removal efficiencies for the following:
 - 3.2.5.1 Total Phosphorus (TP) Removal Median TP removal efficiency of at least 49%.
 - 3.2.5.2 <u>Total Nitrogen (TN) Removal</u> Median TN removal efficiency of at least 39%.
 - 3.2.5.3 Total Zinc (Zn) Removal Median Zn removal efficiency of at least 69%.
 - 3.2.5.4 Total Copper (Cu) Removal Median Cu removal efficiency of at least 91%.

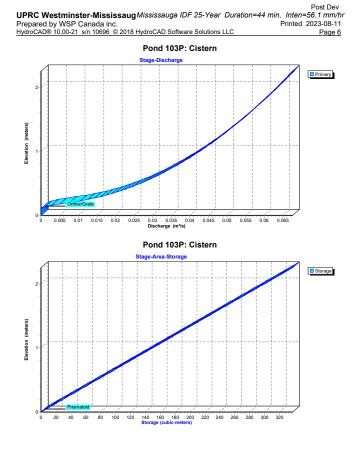

END OF SECTION

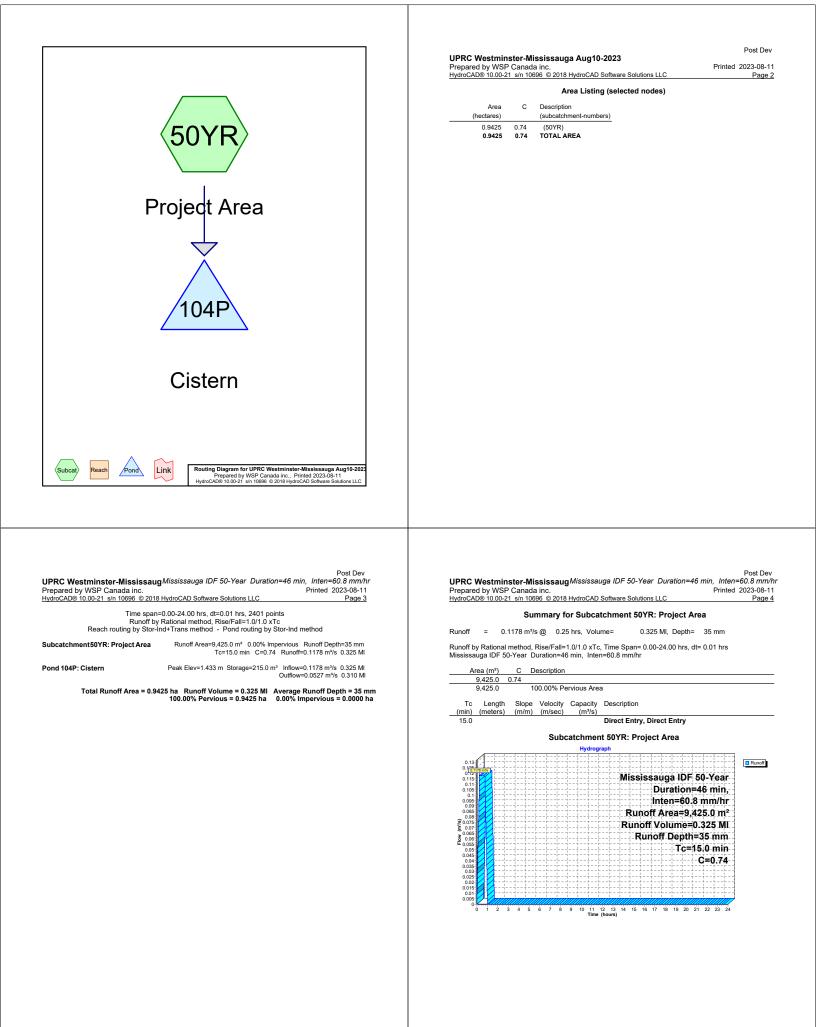

APPENDIX

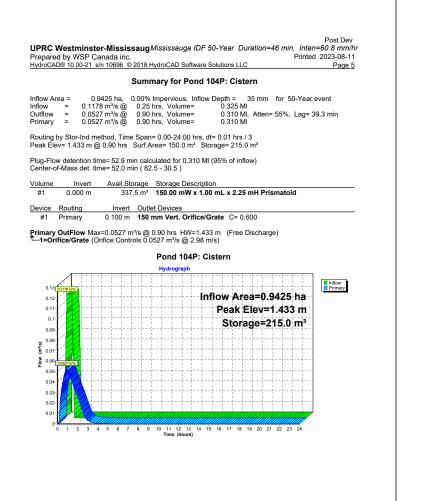











Post Dev

