TRAFFIC IMPACT STUDY

Proposed Residential Development 2935 \& 2955 Mississauga Road City of Mississauga, ON

November 2023

Prepared for
590816 Ontario Inc.
c/o Harper Dell \& Associates Inc.

November 3, 2023
590816 Ontario Inc.
c/o Mr. Nicholas Dell, BA.H
Harper Dell \& Associates Inc.
1370 Hurontario Street
Mississauga, ON L5G 3H4

Re: 2935 \& 2955 Mississauga Road, Mississauga, Ontario, Proposed Residential Development, Traffic Impact Study

TRANS-PLAN is pleased to submit this revised Traffic Impact Study, which includes a review of existing and future traffic in the study area, and a Transportation Demand Management strategy for the proposed development. This report has been prepared in support of the proposed residential development located at 2935 and 2955 Mississauga Road in the City of Mississauga.

Our traffic impact study findings indicate that the proposed full-moves access can support the proposed development and no other roadway improvements are required to support the subject site within the study area.

The site access is expected to operate well and will have sufficient sight distance for safe turning manoeuvres. The access properly allows the circulation of design vehicles without conflict.

The Transportation Demand Strategy discusses existing and future alternative modes of travel within the study area and recommendations to inform residents of the alternative options available to them.

Sincerely,

Darshan Soni, P.Eng. Intermediate Engineer

Charles Chung, EIT Traffic Analyst

Trans-Plan Transportation Inc.
Transportation Consultants

Table of Contents

Transmittal Letter
Table of Contents

1. INTRODUCTION 1
2. COMMENT RESPONSE 1
3. SITE LOCATION 2
4. PROPOSED DEVELOPMENT 2
5. EXISTING CONDITIONS 2
5.1 Road Network 2
5.2 Traffic Counts 3
5.3 Transit Service 3
6. FUTURE BACKGROUND CONDITIONS. 4
6.1 Background Growth Rate 4
6.2 Planned Roadway and Transit Improvements 4
7. SITE TRAFFIC 5
7.1 Trip Generation 5
7.2 Trip Distribution and Assignment 5
8. FUTURE TOTAL TRAFFIC CONDITIONS 6
9. CAPACITY ANALYSIS 6
10. SITE PLAN REVIEW 10
10.1 Site Access Review 10
10.2 Sight Distance Review 10
10.3 Site Circulation Review 11
11. COLLISION HISTORY REVIEW 12
12. TRANSPORTATION DEMAND MANAGEMENT PLAN 12
13. COMMUNITY IMPACTS 14
14. CONCLUSIONS AND RECOMMENDATIONS 14
Appendix A - City Correspondence 30
Appendix B - Turning Movement Counts and Signal Timing Plans 30
Appendix C - Transportation Tomorrow Survey Data 30
Appendix D - Capacity Analysis Sheets 30
Appendix E - Level of Service Definitions 30
Appendix F - Mississauga Road Elevation 30
Appendix G - Sight Line Review 30
List of Tables
Table 1 - Intersection Turning Movement Count Details 3
Table 2 - Transit Service in the Study Area 4
Table 3 - Compounded Annual Roadway Growth Rates 4
Table 4 - Site Trip Generation 5
Table 5 - Site Trip Distribution 5
Table 6 - Capacity Analysis Results 8
Table 7-Queue Analysis Results. 9
Table 8 - Site Access Geometrics 10
Table 9 - Sight Distance Review Summary 11
List of Figures
Figure 1 - Site Location 17
Figure 2 - Site Plan 18
Figure 3 - Existing Study Area Roadway Characteristics 19
Figure 4 - Existing Traffic Volumes, Weekday AM and PM Peak Hours. 20
Figure 5 - Study Area Transit Service 21
Figure 6 - Future Background Traffic Volumes, Weekday AM and PM Peak Hours 22
Figure 7 - Site Traffic Assignment, Weekday AM and PM Peak Hours 23
Figure 8 - Future Total Traffic Volumes, Weekday AM and PM Peak Hours 24
Figure 9 - Waste Collection Vehicle Site Circulation 25
Figure 10 - Loading Vehicle Site Circulation (MSU) 26
Figure 11 - Passenger Vehicle Site Circulation 27
Figure 12 - Loading Vehicle Site Circulation (HSU) 28
Figure 13 - Northbound Driver View on Mississauga Road 29

1. INTRODUCTION

Trans-Plan has been retained by 590816 Ontario Inc. to provide traffic consulting services for a proposed residential development located at 2935 \& 2955 Mississauga Road, in the City of Mississauga. This report includes the following study components:

Traffic Impact Study

- a review and assessment of the existing road network
- an assessment of future background conditions based on anticipated traffic growth, area developments and planned transportation improvements in the study area
- an assessment of the impact of site-generated traffic on the study area intersections and proposed boundary roadway connections under future traffic conditions
- recommendations of roadway and intersection improvements, as required, to accommodate the proposed development and mitigate any identified traffic impacts on the boundary roadways

Site Plan Review

- a site access review was completed to discuss the access design, location and grading for the proposed development
- a sight distance review was conducted at the proposed site access, based on TAC 2017 guidelines, for vehicles exiting the access onto Mississauga Road
- a review of the internal layout and the circulation for passenger vehicles, loading and waste collection vehicles on the site plan

Transportation Demand Management Strategy

- A review of existing and future TDM opportunities near the study area
- Recommendations of various TDM measures for the site to encourage a reduction in singleoccupant auto vehicle trips and auto parking demands
Prior to commencing this study, Transportation staff at the City of Mississauga were provided a study Terms of Reference and contacted to further discuss our scope and methodology (see Appendix A).

2. COMMENT RESPONSE

Trans-Plan prepared a $1^{\text {st }}$ submission of the TIS, dated February 2021, and this Transportation Study consolidates the two studies to incorporate the two developments as one development, and addresses the comments received from City staff for the previous OPA / ZBA submission for each development.

The following includes a summary of the traffic impact study comments received and our responses:
City of Mississauga Comments, dated June 2022
A. Revisions and Additional Information Required for Plans, Studies and Drawings

Comment 1.1: Satisfy all outstanding requirements with respect to Transportation Impact, Parking and Loading Study report, dated December, 2018, prepared by Trans-Plan Transportation Engineering in support of the proposed development, as further discussed in the memorandum.

Response: As requested within the memorandum, further justification of the proposed loading spaces have been provided. Loading utilization surveys have been completed and discussed in Section 10.

City of Toronto Comments on 328 Dupont Street, dated May 1, 2019

A. Revisions and Additional Information Required for Plans, Studies and Drawings

Comment 1.2: Provide a minimum of one Type G loading space and one Type B loading space for the project, or alternatively conducted reviews of the loading demands of other existing development with similar characteristics as it relates to the non-residential component of the project, by undertaking a series of loading demand surveys at the proxy sites, as further discussed in this memorandum.

Response: In support of the proposed development, loading demand surveys have been completed, as further discussed in Section 10.

In addition to the above updates to the loading study, the traffic impact and parking study have been revised based on the latest site plan changes. Site traffic has been updated to be generated for the land uses of both sites (rather than one site being considered a background development). Vehicle manoeuvring diagrams have been revised to reflect the latest ground floor and underground parking layouts

3. SITE LOCATION

The site location, shown in Figure 1, is municipally known as 2935 \& 2955 Mississauga Road, in the City of Mississauga. The site is located on the southeast quadrant of the Dundas Street West and Mississauga Road intersection. The subject land is currently vacant and consists of green space.

Surrounding land uses in the study area are mainly residential areas consisting of single-detached homes. North of the subject site is the University of Toronto Mississauga (UTM) campus.

4. PROPOSED DEVELOPMENT

A site plan of the proposed residential development, prepared by Caricari Lee Architects, is provided in Figure 2. The proposed development includes a 12 -storey condominium building, with 187 residential units, and a 3-storey stacked townhouse dwelling, with 20 units, for a total of 207 residential units for the development.

Parking is provided on site, via three levels of underground parking (P1, P2, and P3) for a total of 312 parking spaces for the development.

Access to the site is proposed through a full-moves access on Mississauga Road, with an internal cul-desac leading to the underground parking garage entrance, drop-off / pick-up area, and loading area.

5. EXISTING CONDITIONS

5.1 Road Network

The boundary roadways located in the study area are described as follows:
Dundas Street West is a major arterial road under the jurisdiction of the City of Mississauga. The roadway generally runs in an east-west direction, with five travel lanes: two per direction and a centre turn lane. The posted speed limit is $60 \mathrm{~km} / \mathrm{h}$ within the vicinity of the site.

Mississauga Road is a major collector road under the jurisdiction of the City of Mississauga. The roadway generally runs in a north-south direction, with two travel lanes: one per each direction. The speed limit is $50 \mathrm{~km} / \mathrm{h}$ within the vicinity of the site.

Dundas Street West forms a signalized intersection with Mississauga Road, with auxiliary turn lanes provided on all approaches and a channelized westbound right turn lane.

The existing roadway configuration, used for the traffic analysis, is shown in Figure 3.

$5.2 \quad$ Traffic Counts

To determine existing operating conditions in the study area, Trans-Plan conducted a site visit and obtained Turning Movement Counts (TMCs) where counts were not readily available or current from the City of Mississauga.

A summary of the count date, count hours and peak hours obtained for each intersection counted is shown in Table 1. Detailed TMC data, obtained from Spectrum Traffic Data, and current signal timing plans, provided by the City, are provided in Appendix B. Peak hour factors (PHF) for the local road network were obtained by calculating from the hourly traffic count data. The PHF is calculated by dividing the peak hour volume with the maximum 15-minute volume (within the peak hour) multiplied by 4.

Table 1 - Intersection Turning Movement Count Details

Intersection	Count Date	Count Hours	Peak Hours
Mississauga Road \& Dundas	Wednesday February	$7: 00 \mathrm{am}-10: 00 \mathrm{am}$	$8: 00 \mathrm{am}-9: 00 \mathrm{am}$
Street West	5,2020	$4: 00 \mathrm{pm}-7: 00 \mathrm{pm}$	$4: 45 \mathrm{pm}-5: 45 \mathrm{pm}$

The existing traffic volumes for the weekday AM and PM peak hour are shown in Figure 4.

$5.3 \quad$ Transit Service

The site is served by MiWay Transit, connecting transit riders to major locations and transit connections within the City and to the Toronto Transit Committee (TTC). MiWay Transit operates the following bus routes within the study area:

MiWay Route 1/1C, Dundas is mainly an east-west transit route operating along Dundas Street, between the Islington TTC Subway Station and Winston Churchill Boulevard. Route 1C connects riders to the UTM campus. The route operates continuously, with peak frequencies of 20 minutes during peak weekday periods. The nearest eastbound stop is located along Dundas Street West, approximately 100 m west of Mississauga Road.

MiWay Express Route 101/101A, Dundas operates similarly to Route $1 / 1 \mathrm{C}$, travelling east-west along Dundas Street, between the Islington TTC Subway Station and Winston Churchill Boulevard. Route 101 connects riders to the UTM campus while Route 101A continues along Dundas Street to Winston Churchill Boulevard. The route operates with peak frequencies of approximately 10 minutes during peak weekday periods. However, the nearest bus stop for this route is located at UTM or at the Erin Mills Parkway intersection to the west of the subject site, both of which are an approximate 1 km walk from the subject site. If residents are willing to travel further to these locations, additional transit connections are provided to connect throughout the City.

Traffic Impact Study
Proposed Residential Development 2935 \& 2955 Mississauga Road, City of Mississauga, Ontario

Details for the transit routes and nearest bus stops to the site are shown in Table 2. Figure 5 shows the transit provided within the study area.

Table 2 - Transit Service in the Study Area

Route	No.	Nearest Bus Stop to the Site	Approximate Service Times	Approximate Peak Service Frequency (min)	
		Weekdays	AM	PM	
Dundas	$1 / 1 \mathrm{C}$	 Mississauga Road	$4: 00 \mathrm{am}-3: 23 \mathrm{am}$	20	20
Dundas Express	$101 /$ 101 A	University of Toronto Mississauga Campus	$4: 42 \mathrm{am}-9: 48 \mathrm{pm}$	10	10

Source: MiWay Transit Schedules and Maps

6. FUTURE BACKGROUND CONDITIONS

Future background traffic volumes were determined based on a review of planned developments, road improvements and future traffic volume growth in the study area. The details of these are described in this section.

6.1 Background Growth Rate

Through correspondence with the City of Mississauga, the following growth rates were provided for the use in this study. The provided rates incorporate relevant background developments and is projected for a five-year horizon (TMC year 2020 to 2025).

Table 3 - Compounded Annual Roadway Growth Rates

Study Roadway	Travel Direction	AM Peak Hour	PM Peak Hour
Mississauga Road	Northbound	0.0%	1.0%
	Southbound	0.5%	0.5%
Dundas Street West	Eastbound	0.0%	1.0%
	Westbound	0.5%	1.0%

It is noted that reports from the surrounding developments listed below were considered in this study and their generated volumes are assumed to be included in the growth rates for each road:

- 3855 Dundas Street West
- 1720 Sherwood Forrest Circle
- 1745, 1765 and 1775 Thorny Brae Place

The future five-year horizon background traffic volumes, for the weekday AM and PM peak hours are provided in Figure 6.

6.2 Planned Roadway and Transit Improvements

Based on the City of Mississauga roadway / sidewalk works, Dundas Street West, east of Mississauga Road, is to undergo road rehabilitation for the cycling program in 2024. This is in part of the City's Cycling Master Plan which has proposed a cycling connection along Dundas Street West.

The Dundas Connects Master Plan is a long-term project along the entirety of Dundas Street throughout the City of Mississauga. Dundas Street is identified as a major arterial and an intensification corridor. The Dundas Connects project is envisioned to provide higher order transit through a bus rapid transit (BRT) corridor and improved pedestrian and cyclist connections. The right-of-way along Dundas Street has been widened to protect for the future roadway improvements while redevelopment of properties occurs. Dundas Street is envisioned to remain as a four-lane roadway for vehicles.

7. SITE TRAFFIC

7.1 Trip Generation

Site trips for the proposed residential development was generated using the Institute of Transportation Engineers (ITE) Trip Generation Manual, $11^{\text {th }}$ Edition. The ITE Land Use Code (LUC) 222 for Multifamily Housing (High-Rise) was utilized for trip rates. The site trip generation for the subject site is shown in Table 4.

Table 4 - Site Trip Generation

The subject site is expected to generate 65 and 78 new two-way trips in the weekday AM and PM peak hour, respectively.

7.2 Trip Distribution and Assignment

Site trips for the proposed development (residential uses) were distributed to / from the site and the boundary roadways using 2016 TTS data and existing travel patterns. Details are provided in Appendix C.

The resulting trip distribution for auto driver trips travelling from the City of Mississauga, 2006 GTA Zone 3650, to surrounding municipalities in the morning and returning in the evening peak periods is shown below in Table 5.

Table 5 - Site Trip Distribution

		North	
West	18%	31%	
		37%	East
		14%	
South			

Based on the TTS data, the majority of trips within the ward travel north or east, going to other locations within Mississauga or the City of Toronto. Major travel routes such as the Queen Elizabeth Way ramps
were considered, with the closest ramp connections to the subject site are south along Mississauga Road. Although most trips expected to travel further from Mississauga are expected to use these ramps, the majority of site trips were assigned to travel along Dundas Street West as the major arterial road within this study.

The site traffic assignment for the weekday AM and PM peak hours are shown in Figure 7.

8. FUTURE TOTAL TRAFFIC CONDITIONS

Site traffic volumes were added to the future background traffic volumes to obtain future total traffic volumes for the weekday AM and PM peak hours, which are shown in Figure 8.

9. CAPACITY ANALYSIS

A capacity analysis was performed for the study area roadways using Synchro analysis software. The capacity analysis results of the weekday AM and PM peak hours are shown in Table 6. Capacity Analysis Sheets and Level of Service (LOS) Definitions are provided in Appendix D and Appendix E, respectively.

According to the City of Mississauga Traffic Impact Study guidelines, a volume-to-capacity (v/c) ratio of 0.85 or less is considered acceptable for signalized intersections, and a v/c of 0.90 or less is acceptable for exclusive turning movements.

Dundas Street West \& Mississauga Road

Under existing conditions, during the weekday AM peak hour, the intersection operates at an overall acceptable LOS of D and a v/c ratio of 0.81 with average delays of 55 seconds. The southbound left movement operates overcapacity with a v/c of 1.52 and an LOS of F. All other movements operate with reserve capacity, with a v/c of 0.91 or less. During the weekday PM peak hour, the intersection operates at an overall acceptable LOS of D and a v/c ratio of 0.69 with average delays of 38 seconds. Similar to the AM peak hour, the southbound left movement operates overcapacity with av/c of 1.03 and an LOS of F . All other movements operate with reserve capacity. Traffic observations at the intersection noted that it took more than one signal cycle for vehicles to make southbound left turning manoueuvres.

Under future conditions, during the weekday AM peak hour, the intersection is expected to continue to operate at an overall acceptable LOS of D and a v / c ratio of 0.97 with average delays of 57 seconds. The southbound left movement is expected to continue to operate overcapacity with a v / c of 1.57 and an LOS of F. All other movements operate with reserve capacity, with a v/c of 0.92 or less. During the weekday PM peak hour, the intersection is expected to continue to operate at an overall acceptable LOS of D and a v / c ratio of 0.77 with average delays of 43 seconds. The southbound left movement is expected to continue to operate overcapacity with a v/c of 1.10 and an LOS of F . All other movements operate with reserve capacity, with a v / c of 0.79 or less.

Due to the similar operating capacities between the existing and future conditions, the subject site is not expected to create any significant traffic impacts on the study area roadways. Additionally, site traffic would not directly add any additional vehicular traffic to the critical southbound left movement.

In the short to medium term, shortening the cycle length at the signal from 140s to 110 s would reduce the v / c ratio for the critical southbound left turn movement. However, the capacity constraints at this intersection are brought about by high traffic volumes regardless of any one particular development,

Traffic Impact Study
Proposed Residential Development
2935 \& 2955 Mississauga Road, City of Mississauga, Ontario
and signal optimizations in isolation are not likely to impact congestion throughout the surrounding road network. A more sustainable mitigation strategy is through modal shift to transit and active modes.

Through the City's Dundas Connects project, higher level studies could be completed to consider options to improve traffic operations at this intersection, along with increasing alternative modes of travel usage. With improved transit infrastructure along Dundas Street, transit ridership would increase and assist in alleviating vehicular traffic within the study area. While the number of vehicle lanes is expected to remain the same, signal timing optimizations can be considered to provide further green time for southbound left turning vehicles. Due to the high v/c ratio for the southbound turning movement during the weekday AM peak hour, it may be expected for vehicles to continue to wait additional signal cycles prior to making the turning movement.

Mississauga Road \& Proposed Site Access

Under future conditions, the exiting traffic at the proposed site access is expected to operate well, with an acceptable LOS of C and delays of 20 seconds. Trans-Plan has no concerns with the traffic operations of the proposed site access location on Mississauga Road.

Table 6 - Capacity Analysis Results
TR 1 NS-PL $1 N$

Intersection		Existin	g Traf	c Con	ditions		Futu	Back	ound	Future	Backg	ound	Futur	Total	raffic	Futur	Total	raffic
Movement	Week	day AM	Peak	Wee	day PM	Peak	Week	day AM	Peak	Week	day PM	Peak	Week	day AM	Peak	Wee	day PM	Peak
	V/C	Delay	LOS															
Mississauga Road \& Dundas Street West	1.10	55	D	0.81	38	D	1.10	55	D	0.88	43	D	1.11	57	E	0.88	43	D
Eastbound Left	0.80	27	C	0.75	31	C	0.81	29	C	0.79	49	D	0.81	29	C	0.81	51	D
Eastbound Through	0.91	38	D	0.69	26	C	0.91	38	D	0.74	28	C	0.92	40	D	0.75	29	C
Eastbound Right	0.04	16	B	0.04	17	B	0.05	17	B									
Westbound Left	0.51	30	C	0.40	19	B	0.52	31	C	0.47	23	C	0.53	31	C	0.59	26	C
Westbound Through	0.49	26	C	0.70	29	C	0.51	26	C	0.79	35	D	0.51	26	C	0.79	35	D
Westbound Right	0.28	23	C	0.45	25	C	0.28	23	C	0.51	29	C	0.28	23	C	0.51	28	C
Northbound Left	0.27	38	D	0.30	40	D	0.29	38	D	0.31	39	D	0.33	38	D	0.33	38	D
Northbound Through	0.82	62	E	0.63	53	D	0.81	62	E	0.64	53	D	0.83	65	E	0.65	53	D
Northbound Right	0.08	42	D	0.06	44	D	0.08	42	D	0.07	43	D	0.14	43	D	0.10	43	D
Southbound Left	1.52	307	F	1.03	114	F	1.51	304	F	1.10	137	F	1.57	329	F	1.10	138	F
Southbound Through	0.70	55	E	0.77	61	E	0.72	56	E	0.77	61	E	0.78	62	E	0.82	66	E
Southbound Right	0.13	44	D	0.46	49	D	0.14	44	D	0.54	50	D	0.14	45	D	0.57	52	D
Mississauga Road \& Site Access																		
Westbound Left														19	C		20	C
Westbound Right														12	B		11	B
Northbound Through / Right														0	A		0	A
Southbound Through / Left														0	A		1	A

Traffic Impact Study
Proposed Residential Development
2935 \& 2955 Mississauga Road, City of Mississauga, Ontario
Table 7-Queue Analysis Results

Intersection Movement	Available Storage Length (m)	95 Percentile Vehicle Queues (m)			
	Background AM Peak Hour	Background PM Peak Hour	Total AM Peak Hour	Total PM Peak Hour	
Eastbound Left	110.0	163.6	76.5	149.5	122.7
Eastbound Through	-	243.0	125.3	221.7	134.9
Eastbound Right	28.0	74.7	42.5	52.3	55.3
Westbound Left	50.0	42.0	68.9	42.4	77.8
Westbound Through	-	89.5	156.6	59.2	154.4
Westbound Right	20.0	43.1	95.5	48.3	96.4
Northbound Left	120.0	61.7	24.4	105.7	27.2
Northbound Through	-	167.1	104.3	224.5	98.4
Northbound Right	16.0	57.1	52.1	55.3	55.3
Southbound Left	40.0	118.0	117.9	123.0	128.1
Southbound Through/Right	-	190.6	197.8	179.2	195.1

10. SITE PLAN REVIEW

10.1 Site Access Review

The proposed site access is located approximately 210 m south from the Dundas Street West and Mississauga Road intersection. Mississauga Road currently provides a continuous guard rail fronting the subject site. The proposed access provides one inbound lane and two outbound lanes which are separated by a median, with the lanes connecting to the internal cul-de-sac. Table 8 provides the access dimensions.

Table 8 - Site Access Geometrics

Inbound Width	Outbound Width	Median Width	Curb Radii	Sidewalk Width	Access Width at Property Line	Access Width at Road Connection
6 m	7 m (Two 3.5 m lanes)	2.5 m	9 m	2 m	20 m	38 m (guard rail adjustment)

Although the inbound access width is larger than a typical driveway access, the proposed width allows for a good connection to the proposed internal one-way cul-de-sac. The cul-de-sac is necessary to provide for safe vehicular circulation and safe pedestrian connectivity to the stacked townhouses on the south side of the property.

The 9 m curb radii allows for a wider width at the road connection to allow for safe turning movements of large vehicles and allows a longer sight distance as there would be less obstructions between vehicles travelling along Mississauga Road and at the site access.

The existing guard rail would be required to be readjusted to provide for the proposed site access. Approximately 38 m of the guard rail would be required to be removed along the site access.

Based off the City of Mississauga Engineering and Works Department, drawing C-21165 from 1985 was referred to review the elevations along Mississauga Road (see Appendix F). The subject site access is approximately between Stations $0+200$ to $0+220$, resulting in a grade of 2.5%, which meets the City guidelines for a stop intersection for a local residential road.

The following sections discuss in further detail the available sight distances at the access location and the site circulation of vehicles along the driveway and internal cul-de-sac.

10.2 Sight Distance Review

A driver sight distance review was conducted to measure the available sight distance for the proposed driveway at Mississauga Road. A field visit and driver sight distance measurements were conducted by Trans-Plan staff.

Minimum stopping and intersection sight distance requirements were obtained from the Table 9.9.4 \& Table 9.9.6, Transportation Association of Canada (TAC) Manual, based on a design speed of $60 \mathrm{~km} / \mathrm{h}$ for Mississauga Road (based off the speed limit of $50 \mathrm{~km} / \mathrm{h}$). Details of the review are summarized in Table 9. Photographs taken from the proposed driveway location are provided in Appendix G, with measurements obtained from 1 m behind from the Mississauga Road roadway.

Traffic Impact Study
Proposed Residential Development 2935 \& 2955 Mississauga Road, City of Mississauga, Ontario

Table 9 - Sight Distance Review Summary

Location	Direction	Available Sight Distance (m)	Criteria	Required Sight Distance (m)	Minimum Requirement Met?
Proposed Mississauga Road Driveway (1m behind roadway)	North	~ 120	South	~ 135	SSD
	Design	130	No		
		SSD	85	Yes	

Source: TAC 2017 Table 9.9.4 \& Table 9.9.6

The available sight distance looking north and south along Mississauga Road is approximately 120 m and 135 m , respectively, with no obstructions blocking the view until the adjacent intersections.

Although the available sight distance of 120 m looking north is slightly below the required 130 m , this is mainly due to the road curvature and existing vegetation at the subject site. As the property develops and vegetation is removed, vehicles exiting the site and southbound vehicles are expected to have clear sight of each other to meet safe sight distance requirements, especially as vehicles at the access inch closer towards the roadway. As discussed, the wider access would also allow for less obstructions for improved vehicle sight lines.

North of the proposed site access, the required stopping sight distance of 85 m is met, while the actual measured sight distance falls 10 m short of the recommended design distance. The sight distance is expected to further improve with the construction of the proposed access, which forms the basis of a recommendation for a full-movement site access.

A right-in, right-out access was explored but was ultimately found to be unfeasible for the proposed size of the development.

10.3 Site Circulation Review

A site circulation review was completed using AutoTurn vehicle turning template software to demonstrate design vehicles properly entering and exiting the site, and utilizing the proposed loading area.

Figure 9 demonstrates a 10.2 m waste collection vehicle entering the site, circulating the cul-de-sac, reversing into the loading area, and exiting the site. During waste collection pick-up, it is expected that management staff would ensure the safe reversing manoeuvre of the waste collection vehicle for passenger vehicles and pedestrians utilizing the cul-de-sac.

Figure 10 demonstrates a loading vehicle, represented by a TAC medium single-unit (MSU) vehicle, performing similar manoeuvres as the waste collection vehicle. The loading vehicle circulates the cul-desac and reverses into the loading area without conflict. A management staff member / flag person is recommended to ensure the safe reversing manoeuvre when entering the loading area.

Figure 11 demonstrates 5.2 m passenger vehicles utilizing the access to the underground parking garages. The figure demonstrates that two-way traffic for vehicles entering and exiting the ramp can operate without conflict.

Figure 12 demonstrates a loading vehicle, represented by a TAC heavy single-unit (HSU) vehicle, performing similar manoeuvres as the waste collection vehicle. The loading vehicle circulates the cul-desac and enters into the loading area without conflict. A management staff member / flag person is recommended to ensure the safe reversing manoeuvre when entering the loading area.

In addition to the recommended flag person for safe vehicle circulation on-site, it is recommended that loading and waste collection activities are scheduled during off-peak hours and on separate days to reduce conflict at the loading area and within the site.

Based on our review of the site access design and traffic impacts, Trans-Plan is of the opinion that the proposed site access location and dimensions are appropriate to provide for the 207-unit residential development.

11. COLLISION HISTORY REVIEW

TRANS-PLAN received a collision details report from the City for the time period between January $1^{\text {st }}$ 2018 to November $1^{\text {st }} 2023$. Based on communications with the City, a collision report was only available for the intersection of Dundas Street West \& Mississauga Road. For the purpose of this study, collisions occurring south of the intersection (northbound) were analyzed.

Seven (7) collisions occurred on the south approach of the intersection, out of a total of 73 collisions reported at the intersection during the approximate 6 -year period. This represents 9.6% of collisions reported. Of these collisions, 43% were rear-end collisions and 57% were side-swipe collisions.

Rear-end collisions have an increased chance of occurring where following drivers are caught unaware by a sudden change in speed due to a downstream traffic signal change or hazard on the road. As shown in Figure 13, the proposed development would have an access onto Mississauga Road that would clear dense vegetation abutting the eastern curb of Mississauga Road. This would improve sightlines to the downstream intersection of Dundas Street and Mississauga Road. Being able to see the downstream traffic signal head and queueing traffic on the southbound approach from further south should decrease the likelihood of rear-end collisions.

Side swipe collisions when approaching an intersection are often the result of poor driver judgement during good weather / high visibility. Speed is a factor in this as drivers are less able to make corrective manoeuvres to prevent collisions. It is recommended that the proposed access onto Mississauga Road be angled in a way that makes exiting vehicles conspicuous before they enter the public roadway.

12. TRANSPORTATION DEMAND MANAGEMENT PLAN

A Transportation Demand Management (TDM) Plan is provided as part of this report in an effort to minimize parking demands, traffic congestion, improve air quality, reduce greenhouse gas emissions, and improve public health in the long-term within the City of Mississauga. The plan will help provide the public greater choice, incentives and opportunities to choose travel modes other than single-occupant vehicles. Our proposed TDM plan for the site is outlined as follows:

Transit Services

As discussed in Section 4.3, the subject site is well served by Miway Route 1/1C, with all day service along Dundas Street with peak headways of 20 minutes. The bus stop is located at the adjacent Dundas Street West and Mississauga Road intersection, connected with existing pedestrian sidewalks. The longterm Dundas Connects project would further improve transit infrastructure along Dundas Street through bus rapid transit.

Increasing public transit use has many benefits such as protecting the environment, reducing traffic congestion on Regional roads, providing convenience, saving energy, strengthening communities, and improving liveability. To encourage travel by transit, transit information packages containing route maps, schedules and other useful information should be readily available for tenants within an accessible location, such as the entrance lobby. Additionally, pre-loaded PRESTO cards may be considered to be provided so tenants may grow accustomed to travel by transit to and from the subject site.

Cycling / Walking

Existing pedestrian sidewalks are provided on both sides of Dundas Street West and the west side of Mississauga Road. Dedicated cycle lanes are currently provided on both sides of Mississauga Road. The City's 2018 Mississauga Cycling Master Plan proposes bicycle lanes along Dundas Street West, and facility upgrades along Mississauga Road. The City's roadway works indicates that construction for the bicycle lanes on the north side of Dundas Street West is to commence in 2024.

Encouraging more people to cycle, especially for utilitarian purposes, would result in taking more cars off the road during peak hours, helping to reduce traffic congestion, and is more environmentally friendly. While the City of Mississauga currently does not enforce bicycle parking requirements within its zoning by-law, the subject site is proposing 76 long-term bicycle parking spaces on the ground floor of the 187 -unit condominium.

A pedestrian connection is provided within the site, circulating the cul-de-sac and providing access to the condominium and townhouses. The subject site provides a pedestrian connection to Mississauga Road.

Communication Strategy

To inform residents and visitors of the subject site of the alternative modes of travel available within the area, information packages should be provided and available at the lobby area. The information packages can include the following:

- City of Mississauga Cycling Map

- Miway Transit Map and Route Schedules

This information package will inform residents of the alternative modes of travel available in the study area.

13. COMMUNITY IMPACTS

Any residential development outside of a very narrow selection of transit-oriented developments (TODs) in a downtown core, is naturally going to generate vehicle trips. In this study, it is noted that the proposed residential development creates 221 residential dwelling units in the area, with minimal impacts to the surrounding road network. It is anticipated that the presence of this development would generate additional demand for Miway Route $1 / 1 \mathrm{C}$, which in turn would generate additional farebox revenues to support the transit improvements detailed in the Dundas Connects project. The improved transit level of service would subsequently generate further demand due to modal shift in a virtuous cycle.

The proposed development includes facilities for secure bicycle parking, despite them not being a requirement by the City. Secure bicycle parking facilities at the start or end of journeys encourages the use of bicycles as a viable transportation mode for commute and leisure purposes.

The proposed development also features a sidewalk connection to Mississauga Road, encouraging residents to make walking trips to points of interest such UTM Campus, Erindale Park or other sites around Sherwood Forrest and Erindale areas. Increased cycling and walking in the area would animate the streets and be a potential driver for more development within the locality.

14. CONCLUSIONS AND RECOMMENDATIONS

This Traffic Impact Study for the proposed residential development located at 2935 \& 2955 Mississauga Road in the City of Mississauga is summarized as follows:

Traffic Impact Study

- The proposed development includes a 12 -storey condominium building, with 187 residential units, and a 3 -storey stacked townhouse dwelling, with 20 units, for a total of 207 residential units for the development. 312 parking spaces are provided through three levels of underground parking. Access to the site is proposed through a full-moves access along Mississauga Road.
- Although there are no roadway improvements proposed, Dundas Connects is a long-term project that envisions to improve transit infrastructure with bus rapid transit and improve pedestrian and cycling connectivity along Dundas Street.
- Based on the ITE Trip Generation Manual, $10^{\text {th }}$ Edition, the 207 -unit residential development is expected to generate 70 and 89 new two-way trips during the weekday AM and PM peak hour.
- The traffic analysis demonstrates that the Dundas Street West and Mississauga Road intersection is expected to continue to operate with reserve capacity and an acceptable LOS of D under future conditions. The southbound left movement is expected to operate overcapacity during the weekday AM and PM peak hour, which is an existing condition as well.
- A short-term mitigation strategy would be to shorten the signal cycle length from 140 s to 110 s. This would reduce the v / c ratio for the critical southbound left turn movement. However, the capacity issue is one driven by high volumes not attributable to any single development. Furthermore, signal optimization for an isolated intersection would have limited positive impacts on the surrounding road network.
- A long-term, sustainable mitigation strategy for capacity issues at this intersection would be a modal shift to transit and active modes, particularly with the City's Dundas Connects project.
- $95^{\text {th }}$ percentile queue analysis results
- Trans-Plan's opinion is that the proposed development and site access location is appropriate due to the minimal site traffic generated and does not directly impact the critical southbound turning movement. The subject site is not expected to significantly impact the roadway traffic volumes.
- A review of collision history at the intersection of Dundas Street and Mississauga Road shows that 9.6% of collisions occur at the south approach, nearest to the proposed development. Of these, rear-ends and side-swipes are the most common types of collisions.
- It is anticipated that the proposed site access onto Mississauga Road would clear vegetation abutting the eastern curb, improving sighlines for northbound drivers. Being able to see downstream traffic control devices and resulting traffic queues should decrease the likelihood of rear-end collisions.
- It is recommended that the proposed access be angled and illuminated in such a way as to make exiting vehicles conspicuous to northbound traffic before they merge, reducing the likelihood of side-swipe and angled collisions.

Site Plan Review

- A review of the site access dimensions was completed, with the review indicating that the proposed access widths and location are appropriate to support the 207 -unit residential development. The lane widths connect to the internal cul-de-sac to allow for safe turning manoeuvres within the development. Approximately 38 m of the continuous guard rail along Mississauga Road must be adjusted to allow for the site access.
- A sight distance review was conducted at the proposed access location along Mississauga Road. While there is sufficient sight distance looking south from the site access, the road curvature and existing vegetation hinder the sight looking north. Once the site is developed and the vegetation at the site access location is removed, sufficient sight is expected to be provided between the southbound vehicles and exiting vehicles.
- A site circulation review was completed, demonstrating the proper circulation and use of the loading area for a waste collection vehicle and loading vehicle. It is recommended that a trained staff member / flag person is on-site to ensure safe reversing manoeuvres and loading and waste collection should be scheduled during the off-peak and separate times to ensure minimal conflict.
- Passenger vehicles have also been shown utilizing the underground ramp, demonstrating that twoway traffic at the underground access operates without conflict.

Transportation Demand Management Plan

- The subject site is well served by transit, and the Dundas Connects project is to further improve transit infrastructure and pedestrian / cycling connections along Dundas Street.
- Sidewalks are provided throughout the study area, with existing cycle lanes along Mississauga Road. Pedestrian connections are to be provided within the site to connect with Mississauga Road and the building entrances.

Traffic Impact Study
Proposed Residential Development

- To encourage cycling, 76 long-term bicycle parking spaces are proposed on the ground floor of the condominium.
- To introduce residents at the site to travel by alternative modes of travel, information packages containing transit and cycling maps should be provided at the entrance lobby.

In conclusion, the subject site is expected to cause minimal impact to the traffic operations of the surrounding study area intersections due to the minimal traffic expected. The proposed site access is expected to operate well, with safe sight distance once existing vegetation is removed as development occurs. The proposed cul-de-sac is designed to properly accommodate turning movements of larger vehicles and the loading area can be properly utilized.

Trans-Plan Transportation Inc.
Transportation Consultants

Traffic Impact Study
Proposed Residential Development
Transportation Engineering

Figure 1 - Site Location

Source: Google Earth

TRAFFIC IMPACT STUDY

Proposed Residential Development 2935 \& 2955 Mississauga Road, Mississauga

Figure 3: Existing Study Area Roadway Characteristics

TRAFFIC IMPACT STUDY
Proposed Residential Development 2935 \& 2955 Mississauga Road, Mississauga

Figure 4: Existing Traffic Volumes, Weekday AM and PM Peak Hours

Figure 5 - Study Area Transit Service

TRAFFIC IMPACT STUDY
Proposed Residential Development 2935 \& 2955 Mississauga Road, Mississauga

Figure 6: Future Background Traffic Volumes, Weekday AM and PM Peak Hours

TRAFFIC IMPACT STUDY
Proposed Residential Development

Figure 7: Site Traffic Assignment, Weekday AM and PM Peak Hours

TRAFFIC IMPACT STUDY
Proposed Residential Development 2935 \& 2955 Mississauga Road, Mississauga

Figure 8: Future Total Traffic Volumes, Weekday AM and PM Peak Hours

Figure 13 - Northbound Driver View on Mississauga Road

Reference: Google Street View, November 2023

Traffic Impact Study
Proposed Residential Development

APPENDICES

Appendix A - City Correspondence
Appendix B - Turning Movement Counts and Signal Timing Plans
Appendix C - Transportation Tomorrow Survey Data
Appendix D - Capacity Analysis Sheets
Appendix E - Level of Service Definitions
Appendix F - Mississauga Road Elevation
Appendix G - Sight Line Review

APPENDIX A

City Correspondence

TOR 2935 Mississauga Road - Traffic Study

Kate Vassilyev Kate.Vassilyev@mississauga.ca

Mon 2020-09-21 4:21 PM
To: Charles Chung charleschung@trans-plan.com
Cc: Ryan Au Ryan.Au@mississauga.ca
[EXTERNAL]
Good afternoon Charles,
Please find below comments and references in green. If you have any questions please feel free to contact me.
Re: $\begin{gathered}\text { Transportation Study Terms of Reference, Proposed Residential Development, } 2935 \text { \& } 2955 \\ \text { Mississauga Road, Mississauga, ON }\end{gathered}$
TRANS-PLAN has been retained to complete a transportation study for a proposed residential development located at 2935 \& 2955 Mississauga Road, Mississauga. Could you please provide the following data to assist in the study? I have provided a brief outline / terms of reference for our work for your review, enclosed herein.

Data Request

- Are there any other planned roadway and/or transit improvements for the study area intersections and roadways (Mississauga Road and / or Dundas Street W) Please follow the link to see the planned roadway/sidewalk works
https://drive.google.com/open?id=1v9_x7WAi5KK12mrbiiyjZT ZhCt8pXoX\&usp=sharing
- The Owner is advised that Dundas Street is a major east-west arterial road in Mississauga and is identified in the City's Official Plan as an intensification corridor. The City of Mississauga has completed a master plan study of Dundas Street through the Dundas Connects project. This study explores ways to incorporate higher order transit on Dundas Street and investigate opportunities for associated transitorientated development. The Owner is also advised to review project details as there will may be impacts to this site, such as future right-of-way widening and restricted access. Project details can be found at: https://www.dundasconnects.ca/
- Any other planned background developments in the study area (planned, approved or under construction) to include in our analysis? Please follow the link http://www.mississauga.ca/portal/residents/development-applications
- Any insight into growth rates for traffic for the study area roadways? Please see below.
- Intersection turning movement counts (TMCs) for the study area. The historical AADT data , Growth rate and Turning Movement Count can be obtained from Tyler Xuereb, Transportation Planning Analyst (tyler.xuereb@mississauga.ca, Ext. 4783). If the data is older than 2 years, than consultant is responsible to conduct the latest counts.

Transportation Study
The proposed development includes a 12-storey condominium building, with 187 residential units, and a 3-storey stacked townhouse dwelling, with 20 units, for a total of 207 residential units for the development. Parking is provided on site, via three levels of underground parking (P1, P2, and P3) for a total of 312 parking spaces for the development. Access to the site is proposed off of Mississauga Road, with an internal roundabout leading to the underground parking garage entrance.

Analysis Time Periods / Roadway Traffic Count Times:

- Contact Region staff to request recent and historical traffic counts within the study area
- Conduct TMCs during weekday AM (7:00am to 9:30pm) and PM (4:00pm - 6:30pm) for traffic data not obtained from the Region. The historical AADT data and Turning Movement Count can be obtained from Tyler Xuereb, Transportation Planning Analyst (tyler.xuereb@mississauga.ca, Ext. 4783). If the data is older than 2 years, than consultant is responsible to conduct the latest counts.
- Establish Weekday AM and PM peak hours from TMCs

Study Area Intersections:

- Dundas Street West \& Mississauga Road
- Mississauga Road \& Proposed Site Access

Trip Generation, Distribution and Assignment:

- Generate trips for the proposed land use using provided rates from the Institute of Transportation Engineering manuals, $10^{\text {th }}$ Edition
- Distribute and assign site trips based on traffic patterns from intersection counts, land use characteristics, and / or Transportation Tomorrow Survey traffic data

Future total traffic volumes are obtained from adding the future background volumes and the site trips generated.

Technical Analysis:

- Analvze existing and future total conditions for vehicular traffic using Svnchro software. Analysis will include a review of traffic operations, including capacity, level of service and vehicle delay

The report will provide recommendations for roadway infrastructure improvements, as necessary. As well as confirming that the proposed site access location is acceptable.

Sight Line Review

Conduct a sight line review, measuring the available sight distance looking upstream and downstream along Mississauga Drive at the site access locations. Note physical obstructions (natural features / foliage) and limiting factors, such as horizontal and vertical bends along the roadway.

Based on our sight line measurements, confirm the feasibility of the site accesses as per the TAC requirements. If sightlines are not sufficient, determine alternative access locations / arrangements and / or mitigation measures for the study area roadway to accommodate the access points.

Transportation Demand Management (TDM) Strategy
Our TDM Strategy will include a review of existing and future transit and alternative modes of travel services in and around the site, and an evaluation of TDM measures for implementation, proposed measures, costs, and Owner responsibilities. The objective is to make residents and visitors more aware of various travel options and to promote alternative modes of travel.

- Review existing TDM opportunities near the development and planned infrastructure improvements in the study area for transit, walking and cycling. Review connectivity of the site to adjacent developments and to the study area.
- Review how TDM measures could be applied to the site. For each measure that could be reasonably implemented on the site, provide relevant materials such as maps, schedule, program information, and so forth, as part of our report documentation. Measures could include:
- Pedestrian walkways / connectivity to sidewalks and to nearby transit stops
- Cycle routes and bicycle parking supply
- Transit routes / bus stop enhancements
- Presto pass / transit pass discounts
- Wayfinding and trip planning

Best regards,

Kate (Jekaterina) Vassilyev

Traffic Planning Technologist
T 905-615-3200 ext. 8171
kate.vassilyev@mississauga.ca

City of Mississauga | Corporate Services Department,
Business Services Division

Please consider the environment before printing.

From: Charles Chung charleschung@trans-plan.com
Sent: September 17, 2020 2:37 PM
To: Greg Borys Gregory.Borys@mississauga.ca
Subject: 2935 Mississauga Road - Traffic Study TOR
Hi Gregory,
Trans-Plan has been retained to provide traffic consulting services for the proposed residential development at 2935 \& 2955 Mississauga Road, Mississauga, site plan attached for your reference.

I have attached our Terms of Reference for a Traffic Impact Study and TDM Strategy, and I was hoping you would be able to review and provide any comments on it. I have also reached out to the Region for their comments as well.

Thank you,

Charles Chung

Traffic Analyst | TRANS-PLAN
Transportation Engineering
Toll Free: +1 (877) 668-8784 (TPTI)
Office/Fax: +1 (647) 931-7383 Ext:115
Cell: (647) 302-8923
Email: charleschung@trans-plan.com
W: www.trans-plan.com
Head Office: 785 Dundas Street West, Toronto, Ontario, M6J 1V2
\qquad

PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING THIS EMAIL.
This communication is intended for the sole use of the person(s) to whom it is addressed and may contain information that is privileged, confidential, or subject to copyright. Any unauthorized use, disclosure, or copying of this communication is strictly prohibited. If you have received this communication in error, please contact the sender immediately. Any communication received in error should be deleted and all copies destroyed.

\bigcirc	52	OPA-Rezoning	TRANSIT REVIEWER	OZ/OPA	Department Review	centre median BRT as well as a station at the intersections. The project currently under EA stage. Local transit service and infrastructure (stops \& shelters) will continue to be maintained along the Corridor. Plans may be subject to change.		Note	Graham Procter	04/21/2022 11:14 AM	True	$\underset{\text { AM }}{\text { 04/21/2022 } 11: 14}$
	53	OPA-Rezoning	PARKING	Other - Additional Text	Department Review	Staff note the Applicant did not provide justification for the proposed number of parking spaces. A total of 337 parking per the existing Zoning By-Law 0225-2007, as amended. The applicant is proposing a total of 331 parking spaces (288 residential and 43 visitor), which is a 6 parking is a 6 parking space or 2% Pending clarification from the Applicant, Staff note the following assumptions were made:Proposed tenure of the stacked townhouses is condominium; andProposed stacked townhouses are all two bedroom units.	Harper Dell to coordinate w/ Traffic Engineer	Not Met	Mark Mueller	04/22/2022 9:40 AM	False	$\underset{\text { AM }}{\text { 04/22/2022 9:40 }}$
						Staff identified the following discrepancies in the materials reviewed and request the Applicant provide clarification:i.The Project Statistics note that Parking Required for Stacked Townhouses is 1.25 resident spaces per 2 bedroom unit, and that Visitor Parking is 0.20 spaces per unit. Staff advise that the required parking for Condominium Stacked Townhouses is 1.5 resident spaces per 2 bedroom unit, and that Visitor Parking is 0.25 spaces per unit. Staff note that						

© mississauga

Checklist Comments Report

-	54	OPA-Rezoning	PARKING	Other - Additional Text	Department Review	a rate of 1.25 resident spaces per 2 bedroom unit is applicable to Rental Stacked Townhouses. Staff request clarification if the noted parking rates in the Project Statistics are intended to be Proposed Parking rates. Staff request confirmation that the proposed Stacked Townhouses are Condominium tenure.ii. The Project Statistics note that 202 bedroom Stacked Townhouses are proposed, whereas the Planning Justification Report notes that 101 bedroom Condominium Stacked Townhouses and 102 bedroom Condominium Stacked Townhouses are proposed. Staff request clarification on the number of 1 bedroom and 2 bedroom Condominium Stacked Townhouses proposed.Staff advise that due to the discrepancies noted above, the Project Statistics, Planning Justification Report, and Traffic Impact Study will need to be updated to ensure they are consistent with one another regarding the proposed parking rates, tenure, and unit mix of the Stacked Townhouses.	Harper Dell to coordinate w/in table 23 of PJR w/ Architect	Not Met	Mark Mueller	04/22/2022 9:40 AM	False	$\underset{\text { AM }}{\substack{04 / 22 / 2022 \\ 9: 40}}$
	55	OPA-Rezoning	PARKING	Other - Additional Text	Department Review	Staff reviewed the materials provided and note that satisfactory justification for a parking reduction has not been provided in order to make a recommendation. Staff advise the Applicant refer to the Citys Parking Terms of Reference for parking justification requirements to be included with a formal submission. As the proposed parking reduction	Harper Dell to coordinate w/ Traffic Engineer	Not Met	Mark Mueller	04/22/2022 9:40 AM	False	$\underset{\text { AM }}{\substack{04 / 22 / 2022 \\ 9: 40}}$

Checklist Comments Report

- Planner Task (Harper Dell)

Ecological Task (Palmer) | is less than 10%, Staff require |
| :--- |
| the submission of a satisfactory | [Letter of Justification. [Land Dedication] - Please be

advised that as lands will be dedicated to the City, they will be in a condition acceptable to he City in its sole and
unfettered discretion that unfetereded discretion that such
land is environmentally suitable
for the proposed or the proposed use, as
determined by the City, and
shall be certified as such by Shall be certitied as such by a Ontario Regulation 153/04 (as amended). All environmental eports submitted to the Clity
must: a) include a specific eference of all lands to be dedicated to the City (provide a written legal description in
etter and as a separate eatter and ast, include an overlay on a plan of survey drawn to scale and signed by a licens
Ontario Land Surveyor that clearly outlines the legal boundaries of the conveyance ands); be completed in
accordance with O. Reg. 153/04; b) be signed and dated
REC NOT METby a Qualified REC NOT METby a Qualified Person (as defined by section 5
and 6 under O . Reg. 153/04, as pplicable); c) include a clea statement that these lands meet he applicable full depth generic accordance with O. Reg. 153/04 and are suitable for the intended and use; d) include
contirmation that there are no well(s) (monitoring
include proof of decommissioning of all well(s)

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

© mississauca
Checklist Comments Report

- Ecological Task (Palmer)
to the site. Endangered bat species still require a snag or
acoustic survey to be completed aif bustic survey to be completed
if backround research indicates their presence.
[TRAFFIC IMPACT STUDY
REVIEW] A Traffic Impact Study REVIEW] A Trafic Impact
prepared by Trans Pla prepared by TransPlan
Transportation Inc. dated Feb 8 , 2021 was submitted in support of the proposed developmen Based on the information
provided to date, staff provid provided to date, staff provide
the following comments (A)
Section 3. This section is not in Section 3. This section is not in
support of the proposed fullsupport of the proposed full-
moves access to Mississauga moves access to Mississauga Moad. The Consulic Study to
update the Tratic
include alternative actess
nclude alternative access
arrangements for review and
consideration. (B) Section 5 .
consideration. (B) Section 5 .
Future Background Conditions.
Please specify which
background developments were
included in the analysis. (C) 6.1
included in the analysis. (C) 6.1
Trip Generation. The ITE Land
sse Code for High-Rise should
be used. (D) Section 8. (i)
Capacity Analysis. Provide the
SBLT movement operation. (ii)
Pease provide 95th Percentil
Queues. (iii) Please provide
collision analysis. (E) 9.3 Site
coliision analysis. (E) 9.3 Site
review for HSU vehicles. (F)
Synchro reports. Please provide

he justification for using Lost
Time dijustment as -3 sec. (G)
nclude a section for Community
mpacts. Any traffic related
mpacts on the existing
community and comments from
community and comments from
the public through the planning

© mississauga
Checklist Comments Report

- Planner Task (Harper Dell) \quad Legal Task (TBA)
- Traffic Task (TransPlan) Surveyor Task (TMK)

approvals process shall be addressed in this section.	
[SITE ACCESS] (i) It appears that the property does not have legal access to a municipal road. The Owner shall make satisfactory arrangements with the City to provide a safe future access to the site. (ii) Staff are not in support of a full moves access to Mississauga Road. A identified in the traffic study, there are sight line concerns at the proposed access. The Owner shall consider alternative access arrangements for review. (iii) The proposed internal median should stay within private property. (iv) The removal of guardrail may be required for the proposed access point.	Harper Dell to address /w/ Legal and Traffic. Historical access has been removed without due proce Reinstatement applicable via proposed Development.
[OZ PLAN REVISIONS] (i) The plans are to be revised to illustrate the required Land Dedications \& Conveyances including the Lot/Block or Part numbers. (ii) Please note no encroachment will be permitted within municipal ROW. (iii) In addition to the proposed sidewalk connection to Mississauga Rd the owner/applicant will be required to add another path through their property to connect with the existing sidewalk on Dundas St.	Harper Dell to address w/ Commenter re ROW dedications via Surveyor. Also, to include pedestrian connectivity to Dundas Connects w/out being incl. within the Dundas Corridor - to be questioned and clarified.
[ENGINEERING SUBMISSION] The Owner may be required to enter into a Development Agreement with the City to construct the required municipal works. The schedule shall	Harper Dell to coordinate w/ legal prior to Final Execution.

S.

© mississauga

Checklist Comments Report

		143	OPA-Rezoning	REVIEW	Text	Department Review	include but not be limited to land dedications, traffic control measures / pavement markings, design and existing road and boulevard improvements / reinstatements, and other municipal works as required.		Not Met	Kate Vassilyev	05/17/2022 2:15 PM	False	PM
- -		144	OPA-Rezoning	TRAFFIC REVIEW	Other - Additional Text	Department Review	[LAND DEDICATIONS] The Owner will be required to gratuitously dedicate the following to the City of Mississauga: RIGHT OF WAY WIDENINGS (i) A right of way widening towards the ultimate 26 metre right-of-way of Mississauga Rd as identified in the Official Plan.The dimensions related to right-of-way widths and required widenings are to be verified by the City's O.L.S., AI Jeraj at 905-615-3200 ext. 5789.The Owner is to contact Environmental Technologist to ensure the required land dedication has no environmental conflicts. This condition will be cleared upon receipt of confirmation from Legal Services identifying that the transfer has taken place and associated fees have been paid.	Harper Dell to coordinate land dedication via R Plan w/ Surveyor and Legal.	Not Met	Kate Vassilyev	05/17/2022 2:15 PM	False	$\begin{gathered} 05 / 17 / 2022 \\ \text { PM } \end{gathered}$
		145	OPA-Rezoning	TRAFFIC REVIEW	Other - Additional Text	Department Review	[DRAFT REFERENCE PLAN] Prior to any Land Dedications \& Conveyances, the Owner shall prepare and submit draft reference plans detailing the required land dedications to this section for review and approval (See Traffic Comment(s) \#144). Following this approval, the Owner's surveyor should deposit the accepted draft reference plan and forward a copy of the registered plan to the City's Legal Services	Harper Dell to coordinate land dedication via R Plan w/ Surveyor and Legal.	Not Met	Kate Vassilyev	05/17/2022 2:15 PM	False	$\underset{\text { PM }}{\text { 05/17/2022 } 2: 15}$

					Section to finalize the required land dedication \& conveyances This condition will be cleared approved in principle by this section.					
147	OPA-Rezoning	TRAFFIC REVIEW	Other - Additional Text	Department Review	[TRAFFIC NOTES] - (i) All within the municipal right-of-way are to be reinstated at the Owner's expense. - (ii) All landscaping and grading within close proximity to the proposed to ensure that adequate sight distances are available for a approaching and exiting The portion of the driveway within the municipal boulevard is to be paved by the Owner. (iv) Driveway accesses shall aboveground features such as utilities and trees. (v) Any above 1.5 m of a proposed access are to be relocated at the Owner's expense. (vi) The cost for any/all road improvements development application will be borne by the Owner. (vii) The Owner shall make satisfactory Owner shall make satis arrangements with the Transportation and Works Department for the design, costs associated with works necessary to support access to his site. (viii) Any access to provided internally through th site. (ix) Details of the site specific access configurations	Note	Kate Vassilyev	05/17/2022 2:56 PM	True	$\underset{\text { PM }}{\text { 05/17/2022 } 2: 56}$

- Legal Task (TBA)

- -							will be finalized in conjunction with the Site Plan review/approval process.						
		150	OPA-Rezoning	TRAFFIC REVIEW	Other - Additional Text	Department Review	[SCHEDULE 'C' REQUIREMENTS FOR SITE PLAN APPROVALJThe following shall be included within Schedule ' C ' of the Development Agreement:Prior to Site Plan approval, the Owner shall make satisfactory arrangements with the Transportation and Works Departmentfor the design, construction and payment of all costs required to support development of these lands, including access to thissite.	Harper Dell to coordinate w/ legal prior to Final Execution.	Not Met	Kate Vassilyev	05/17/2022 11:16 PM	False	$\begin{gathered} \text { 05/17/2022 } \\ \text { PM } \end{gathered} 11: 16$
		151	OPA-Rezoning	TRAFFIC REVIEW	Other - Additional Text	Department Review	[SCHEDULE 'C' - ADDITIONAL TERMS, PROVISIONS, CONDITIONS AND NOTESJThe Transportation Impact Study prepared TransPlan Transportation Inc. dated Feb 8 , 2021 identifies several TDM measures to be implemented aspart of the proposed development to reduce single occupancy vehicle (SOV) trips to the site. The following shall be included under Schedule 'C' of the Development Agreement:"The owner agrees to incorporate the following TDM measures as part of their proposed development: (i) Provide 76 long-term bicycle parking spaces, (ii) Provide pedestrian connection to Mississauga Rd, (iii) Provide information packages for alternative modes of travel at the lobby area.	Ibid	Not Met	Kate Vassilyev	05/17/2022 11:16 PM	False	$\begin{gathered} \text { 05/17/2022 } 11: 16 \\ \text { PM } \end{gathered}$
							[DUNDAS CONNECTS] The						

© mississauga

Checklist Comments Report
-

- Planner Task (Harper Dell)

- Civil Task (Greck) dimenions to demonstrate s
cover between the top of cover between the top of
parking slab and proposed
finished grade. 4). As the imished grade. 4. As the
limotaions are not yet accurately
shown including TOB and shown including TOB and LySLL, developable area is yet contirmed, therefore
additional comments are forthcoming.
MISSISSAUGA ROAD SCENIC
ROUTE: The property is
located with frontage ROUTE: The property is
located with frontage along a
portion of the Mississsauga Road portion of the Mississa
Scenic Route which
encompasses significant
environmental attributes and is environmental attributes and
considered to be among the constideren to be among the
most scenic cultral landscapes
in Mississauga. The proposal in Mississauga. The proposal Harper Dell to address
shall demonstrate how the shall demonstrate how the via Dundas Connects and
Mississauga Road Scenic Mississaulla Road Scenic
Route will be preserved, enhanced and how it meets the Official Plan Policies. Refer to
the Urban Design Guidelines \& Reference Notes for guidance. hitps://www.mississauga.calwp-
contentuploads/2020/O2/26141 content/uploads//20202/02/26141
650/Mississauga-Road-Scenic-Route-Urban-DesignGuidelines.pdf
Trillium Health Partners Trillium Health Partners (THP)
has no comment on this = CYCLING FACILITIES] The Owner will be required to provide accessible and secure
short term (outdoor) and long short term (outdoor) and long
erm (indoor) bicycle storage ierm (indoor) bicycle storage
acilities on site. The Site Plan shall be revised to identify the cycling facility locations and
specify the facility detail(s),
- Architect Task (Caricari Lee)

Greck to address and revise GP1					

					including quantity of spaces proposed for each. The (a) Apartates are to be used: minimum of 0.60 long term spaces and 0.05 (6 spaces min.) short term spaces per residential unit.						
177	OPA-Rezoning	LANDSCAPE ARCH-D	Other - Additional Text	Department Review	RESTORATION PLAN: The Preliminary Restoration Plan by Palmer Dated Dec 72021 was received supplementary to the original submission. Once the developable area is accurately imitations and natural buffer limits are determined, a coordinated review will be completed subject to comments Services Department.	Palmer to note.	Not Met	Dave Craig	06/02/2022 4:12 PM	False	$\underset{\mathrm{PM}}{\text { 06/02/2022 4:12 }}$
					EIS 3 OF 5: Section 5: Assessm Significant Valleylands 11.5.2. S. Please provide clarity yo how Pease provide clarity on how the top of bank was staked in 2019. When looking at the land exists both North and South of Mississauga Road, making the subiect site exist within both a flood plain and tableland (indicated on NAS). This limiting what caterch of development, as site in terms it is adjacent to these significant features, with policy 6.3 .26 indicting uses may be conservation, floodand or infrastructure and passive recreation.12.5.4 Significant Wildlife Habitat It is indicated that there is no SWH present on the site, but a raptor nest finding	Palmer to address and advise.					

© mississauga

Checklist Comments Report

and must not be reversing to enter the collection point.
Please revise accordingly.---
Collection Point Requirement Collection Point Requiremen
$(6-7): 6$. Please refer to 6-7): : 6 . Please refer to
WCDSM Appendix 4 for the WCDSM Appendix 4 for the
illustration of the following illustration of the
collection point
requirements: 6 a. Overhead
clearance at the Collection clearance at the Collection Poin
A minimum of 7.5 metres from A minimum on . 5 metreste pad is required at he concrete pad is required
he Collection Point. The clea height of 7.5 metres is free of
obstructions such as sprinkler obstructions such as sprinkler
systems, ducts, wires, trees, or balconies. This must be show and labelled on subsequent revised submissions. 6b.A
minimum 18 meters straight head-on approach to Collection
Point is required This is Point-on approach to couris is
measured from the front of the measured from the front of the
first bin staged for collection and must be labelled. 6c.The Collection Vehicle must wholly it in the Collection Point during
collection to avoid impacting the flow of traffic in the roadway. The collection point must also ave a min. width of 6 m .6 d . The collection Point must show
sufficient space for the staging of all bins of a single streag, whichever is larger Garbage or eecyclable materials) and
setting-out of Bulky ltems Sminimum 10 square meters).
The number size and The number, size, and type o receptacles must be clearly
labelled. $6 e$. The Collection Point
should should not require the jockeying of front-end bins (i.e., manually positioning one front-end bin at
a time for the waste collection

Architect to consult with Harper Dell re Radii for Waste Removal.	Not Met	Diana Guida	06/08/2022 10:32 AM	False	06/08/2022 10:32 AM

APPENDIX B

Turning Movement Counts \& Signal Timing Plans
$0-\infty$

の吽

Signal Timing Report

Device: 1703

Region: Mississauga		Signal ID:	1703	Location: DUNDAS STREET E at Mississauga Road					
Phase	Units	1	2	3	4	5	6	7	8
Walk	Sec	0	12	0	0	0	12	0	14
Ped Clear	Sec	0	23	0	0	0	23	0	23
Min Green	Sec	5	8	5	12	5	8	5	12
Passage	Sec	2.0	3.0	2.0	3.0	2.0	3.0	3.0	3.0
Maximum 1	Sec	10	27	10	39	14	27	14	39
Maximum 2	Sec	10	27	10	39	14	27	14	39
Yellow Change	Sec	3.0	5.0	3.0	4.0	3.0	5.0	3.0	4.0
Red Clearance	Sec	0.0	3.0	0.0	4.0	0.0	3.0	0.0	4.0
Red Revert	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before	Veh	0	0	0	0	0	0	0	0
Time To Reduce	Sec	0	0	0	0	0	0	0	0
Reduce By	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[P2] Start Up	Enum	phaseNotOn	redClear	phaseNotOn	phaseNotOn	phaseNotOn	redClear	phaseNotOn	phaseNotOn
[P2] Options	Bit	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	Enabled Non Lock Det	Enabled Non Lock Det Dual Entry	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	Enabled Non Lock Det	Enabled Non Lock Det Dual Entry
[P2] Ring	Ring	1	1	1	1	2	2	2	2
[P2] Concurrency	Phase (,)	$(5,6)$	$(5,6)$	$(7,8)$	$(7,8)$	$(1,2)$	$(1,2)$	$(3,4)$	$(3,4)$
Coord Pattern	Units	1	2	3	4	5	6	7	8
Cycle Time	Sec	140	140	140	140	0	0	0	0
Offset	Sec	49	92	116	106	0	0	0	0
Split	Split	1	2	3	4	0	0	0	0
Sequence	Sequence	1	1	1	1	0	0	0	0
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode	Enum	none							
Split 1 - Time	Sec	10	71	21	38	23	58	10	49
Split 1 - Coord	Enum	false	true	false	false	false	true	false	false
Split 2 - Mode	Enum	none							
Split 2 - Time	Sec	10	75	12	43	13	72	10	45
Split 2 - Coord	Enum	false	true	false	false	false	true	false	false
Split 3 - Mode	Enum	none							
Split 3-Time	Sec	10	75	17	38	13	72	10	45
Split 3-Coord	Enum	false	true	false	false	false	true	false	false
Split 4 - Mode	Enum	none							
Split 4-Time	Sec	0	75	13	52	10	65	10	55
Split 4 - Coord	Enum	false	true	false	false	false	true	false	false
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	3	6	9	15	19	0	0
Plan 1 Minute	Min	0	0	0	30	0	30	0	0
Plan 1 Action	Number	8	7	1	2	3	2	0	0
Plan 2 Hour	Hour	0	3	7	0	0	0	0	0
Plan 2 Minute	Min	0	0	0	0	0	0	0	0
Plan 2 Action	Number	8	7	4	0	0	0	0	0
Plan 3 Hour	Hour	0	3	8	23	0	0	0	0
Plan 3 Minute	Min	0	0	0	0	0	0	0	0
Plan 3 Action	Number	8	7	4	8	0	0	0	0
TB Action	Units	1	2	3	4	5	6	7	8
Pattern	Enum	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Free	Free
Aux. Functions	Bit	0	0	0	0	0	0	0	0
Spec. Functions	Bit	0	0	0	0	0	0	0	0

APPENDIX C

Transportation Tomorrow Survey Data

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: Planning district of destination - pd_dest Column: 2006 GTA zone of origin - gta06_orig
Table: Primary travel mode of trip - mode_prime
Filters:
(2006 GTA zone of origin - gta06_orig In 3650

West	North			
		19%	37%	East
		14%		
South				

Primary travel mode of trip - mode_prime In D
Start time of trip - start_time In 600-900)

Destination Zone	No. Of Trips from City of Mississauga 2006 GTA Zone 3650	Percent of Trips from City of Mississauga 2006 GTA Zone 3650	Location respect to site
PD 1 of Toronto	121	5\%	E
PD 2 of Toronto	10	0\%	E
PD 3 of Toronto	10	0\%	E
PD 4 of Toronto	20	1\%	E
PD 6 of Toronto	15	1\%	E
PD 8 of Toronto	217	9\%	E
PD 9 of Toronto	85	4\%	E
PD 10 of Toronto	30	1\%	E
PD 13 of Toronto	5	0\%	E
PD 16 of Toronto	45	2\%	E
Vaughan	58	2\%	E
Caledon	7	0\%	N
Brampton	56	2\%	N
Mississauga			
136	141	6\%	E
137	341	14\%	S
138	33	1\%	E
139	94	4\%	E
140	384	16\%	N
141	61	3\%	N
142	44	2\%	N
143	491	-	Internal
144	165	7\%	N
146	15	1\%	N
Halton Hills	7	0\%	N
Oakville	283	12\%	W
Burlington	60	2\%	W
Hamilton	94	4\%	W
Cambridge	16	1\%	W
Total	2417	100\%	

APPENDIX D
 Capacity Analysis Sheets

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	性	「	\％	个4	「	\％	\uparrow	「	\％	\uparrow	$\overline{7}$
Traffic Volume（vph）	322	1661	62	79	839	263	78	350	122	295	298	210
Future Volume（vph）	322	1661	62	79	839	263	78	350	122	295	298	210
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（m）	110.0		28.0	50.0		20.0	120.0		16.0	40.0		0.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length（m）	100.0			20.0			35.0			70.0		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.98			0.97			0.98	1.00		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.238			0.060			0.255			0.233		
Satd．Flow（perm）	443	3539	1549	112	3539	1542	475	1863	1559	433	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			117			117			94			214
Link Speed（k／h）		60			60			50			50	
Link Distance（m）		347.4			350.5			234.4			158.9	
Travel Time（s）		20.8			21.0			16.9			11.4	
Confl．Peds．（\＃／hr）	3		1	1		3			3	3		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	329	1695	63	81	856	268	80	357	124	301	304	214

Shared Lane Traffic（\％）

Lane Group Flow（vph）	329	1695	63	81	856	268	80	357	124	301	304	214
Turn Type	pm＋pt	NA	Perm									
Protected Phases	5	，		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	4.0	8.0	8.0	5.0	12.0	12.0	5.0	12.0	12.0
Minimum Split（s）	9.0	43.0	43.0	8.0	43.0	43.0	9.0	45.0	45.0	9.0	38.0	38.0
Total Split（s）	13.0	75.0	75.0	10.0	72.0	72.0	17.0	45.0	45.0	10.0	38.0	38.0
Total Split（\％）	9．3\％	53．6\％	53．6\％	7．1\％	51．4\％	51．4\％	12．1\％	32．1\％	32．1\％	7．1\％	27．1\％	27．1\％
Yellow Time（s）	3.0	5.0	5.0	3.5	5.0	5.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	3.0	3.0	0.5	3.0	3.0	0.0	4.0	4.0	0.0	4.0	4.0
Lost Time Adjust（s）	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0
Total Lost Time（s）	2.0	7.0	7.0	3.0	7.0	7.0	2.0	7.0	7.0	2.0	7.0	7.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	88.8	72.9	72.9	79.0	67.1	67.1	46.6	32.2	32.2	42.3	29.3	29.3
Actuated g／C Ratio	0.63	0.52	0.52	0.56	0.48	0.48	0.33	0.23	0.23	0.30	0.21	0.21
v／c Ratio	0.78	0.92	0.07	0.52	0.51	0.34	0.31	0.83	0.29	1.45	0.78	0.43
Control Delay	29.1	40.9	0.2	29.5	26.8	14.0	34.0	68.2	14.1	261.6	66.5	8.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	29.1	40.9	0.2	29.5	26.8	14.0	34.0	68.2	14.1	261.6	66.5	8.2
LOS	C	D	A	C	C	B	C	E	B	F	E	A
Approach Delay		37.8			24.1			51.4			123.0	
Approach LOS		D			C			D			F	

	$\stackrel{ }{*}$			7	4	4	4	\uparrow	$>$	*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (m)	36.2	209.7	0.0	7.8	79.7	22.9	14.0	86.7	6.0	~ 88.6	73.4	0.0
Queue Length 95th (m)	\#77.7	\#271.3	0.0	21.2	97.1	41.9	23.9	115.4	20.3	\#142.3	102.2	18.5
Internal Link Dist (m)		323.4			326.5			210.4			134.9	
Turn Bay Length (m)	110.0		28.0	50.0		20.0	120.0		16.0	40.0		
Base Capacity (vph)	421	1842	862	157	1695	799	298	505	491	207	419	522
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.92	0.07	0.52	0.51	0.34	0.27	0.71	0.25	1.45	0.73	0.41

Intersection Summary

Area Type: Other

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 116 (83\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 140
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.45
$\begin{array}{ll}\text { Intersection Signal Delay: } 50.8 & \text { Intersection LOS: D } \\ \text { Intersection Capacity Utilization 104.6\% } & \text { ICU Level of Service G }\end{array}$
mection Capaciy Uilzaion 104.0\% ICU Level of Service G
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: Mississauga Road \& Dundas Street West

	1	4	\dagger		*	$\frac{1}{7}$
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	「	$\hat{\dagger}$			\uparrow
Traffic Volume (vph)	7	41	509	3	14	425
Future Volume (vph)	7	41	509	3	14	425
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850	0.999			
Flt Protected	0.950					0.998
Satd. Flow (prot)	1770	1583	1861	0	0	1859
Flt Permitted	0.950					0.998
Satd. Flow (perm)	1770	1583	1861	0	0	1859
Link Speed (k/h)	50		50			50
Link Distance (m)	54.1		57.2			234.4
Travel Time (s)	3.9		4.1			16.9
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	7	42	519	3	14	434
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	7	42	522	0	0	448
Sign Control	Stop		Free			Free

Intersection Summary

```
Area Type:
Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 43.7\%
ICU Level of Service A

Analysis Period (min) 15

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	「	${ }^{7}$	44	「	${ }^{*}$	4	「	${ }^{1}$	4	「
Traffic Volume（vph）	218	1328	69	111	1263	415	72	262	106	268	307	317
Future Volume（vph）	218	1328	69	111	1263	415	72	262	106	268	307	317
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（m）	110.0		28.0	50.0		20.0	120.0		16.0	40.0		0.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length（m）	100.0			20.0			35.0			70.0		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						0.97						0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.082			0.101			0.222			0.392		
Satd．Flow（perm）	153	3539	1583	188	3539	1530	414	1863	1583	730	1863	1554
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			117			117			94			183
Link Speed（k／h）		60			60			50			50	
Link Distance（m）		347.4			350.5			229.4			158.9	
Travel Time（s）		20.8			21.0			16.5			11.4	
Confl．Peds．（\＃／hr）	7					7	5					5
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	227	1383	72	116	1316	432	75	273	110	279	320	330
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	227	1383	72	116	1316	432	75	273	110	279	320	330
Turn Type	pm＋pt	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	4.0	8.0	8.0	5.0	12.0	12.0	5.0	12.0	12.0
Minimum Split（s）	9.0	43.0	43.0	8.0	43.0	43.0	9.0	45.0	45.0	9.0	38.0	38.0
Total Split（s）	13.0	75.0	75.0	10.0	72.0	72.0	17.0	45.0	45.0	10.0	38.0	38.0
Total Split（\％）	9．3\％	53．6\％	53．6\％	7．1\％	51．4\％	51．4\％	12．1\％	32．1\％	32．1\％	7．1\％	27．1\％	27．1\％
Yellow Time（s）	3.0	5.0	5.0	3.5	5.0	5.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	3.0	3.0	0.5	3.0	3.0	0.0	4.0	4.0	0.0	4.0	4.0
Lost Time Adjust（s）	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0
Total Lost Time（s）	2.0	7.0	7.0	3.0	7.0	7.0	2.0	7.0	7.0	2.0	7.0	7.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	89.3	72.9	72.9	78.5	66.1	66.1	46.1	31.7	31.7	42.2	29.2	29.2
Actuated g／C Ratio	0.64	0.52	0.52	0.56	0.47	0.47	0.33	0.23	0.23	0.30	0.21	0.21
v / c Ratio	0.80	0.75	0.08	0.58	0.79	0.55	0.32	0.65	0.26	1.00	0.82	0.71
Control Delay	48.7	30.7	0.7	25.3	35.6	22.0	34.2	55.8	11.7	96.9	70.5	30.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.7	30.7	0.7	25.3	35.6	22.0	34.2	55.8	11.7	96.9	70.5	30.4
LOS	D	C	A	C	D	C	C	E	B	F	E	C
Approach Delay		31.8			31.8			41.7			64.2	
Approach LOS		C			C			D			E	

	\rangle	\rightarrow	7	7	\checkmark	4	4	\dagger	$>$	\downarrow	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (m)	35.2	150.3	0.0	11.4	147.9	57.0	13.1	62.8	3.2	55.4	77.8	34.9
Queue Length 95th (m)	\#90.0	180.8	1.6	\#22.0	175.0	87.1	22.5	86.2	16.4	\#100.6	107.6	65.7
Internal Link Dist (m)		323.4			326.5			205.4			134.9	
Turn Bay Length (m)	110.0		28.0	50.0		20.0	120.0		16.0	40.0		
Base Capacity (vph)	285	1842	880	201	1670	784	283	505	498	279	426	496
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.80	0.75	0.08	0.58	0.79	0.55	0.27	0.54	0.22	1.00	0.75	0.67

Intersection Summary

Area Type: Other

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 116 (83\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 110
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00

Intersection Signal Delay: 38.8	Intersection LOS: D
Intersection Capacity Utilization 94.0\%	ICU Level of Service F

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: Mississauga Road \& Dundas Street West

	1	4	\dagger		\pm	$\frac{1}{7}$
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	「	\uparrow			\uparrow
Traffic Volume (vph)	5	25	415	7	41	446
Future Volume (vph)	5	25	415	7	41	446
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850	0.998			
Flt Protected	0.950					0.996
Satd. Flow (prot)	1770	1583	1859	0	0	1855
Flt Permitted	0.950					0.996
Satd. Flow (perm)	1770	1583	1859	0	0	1855
Link Speed (k/h)	50		50			50
Link Distance (m)	53.9		62.2			229.4
Travel Time (s)	3.9		4.5			16.5
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	5	26	432	7	43	465
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	5	26	439	0	0	508
Sign Control	Stop		Free			Free

Intersection Summary

```
Area Type:
Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 61.3\%
ICU Level of Service B
Analysis Period (min) 15

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	中4	「	${ }^{*}$	中4	「	${ }^{7}$	4	「	\％	4	F
Traffic Volume（vph）	322	1661	59	71	839	263	68	343	98	295	295	210
Future Volume（vph）	322	1661	59	71	839	263	68	343	98	295	295	210
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（m）	110.0		28.0	50.0		20.0	120.0		16.0	40.0		0.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length（m）	100.0			20.0			35.0			70.0		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.98			0.97			0.98	1.00		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.237			0.060			0.297			0.235		
Satd．Flow（perm）	441	3539	1549	112	3539	1542	553	1863	1559	437	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			117			117			94			214
Link Speed（k／h）		60			60			50			50	
Link Distance（m）		347.4			350.5			291.6			158.9	
Travel Time（s）		20.8			21.0			21.0			11.4	
Confl．Peds．（\＃／hr）	3		1	1		3			3	3		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	329	1695	60	72	856	268	69	350	100	301	301	214
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	329	1695	60	72	856	268	69	350	100	301	301	214
Turn Type	pm＋pt	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	4.0	8.0	8.0	5.0	12.0	12.0	5.0	12.0	12.0
Minimum Split（s）	9.0	43.0	43.0	8.0	43.0	43.0	9.0	45.0	45.0	9.0	38.0	38.0
Total Split（s）	13.0	75.0	75.0	10.0	72.0	72.0	17.0	45.0	45.0	10.0	38.0	38.0
Total Split（\％）	9．3\％	53．6\％	53．6\％	7．1\％	51．4\％	51．4\％	12．1\％	32．1\％	32．1\％	7．1\％	27．1\％	27．1\％
Yellow Time（s）	3.0	5.0	5.0	3.5	5.0	5.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	3.0	3.0	0.5	3.0	3.0	0.0	4.0	4.0	0.0	4.0	4.0
Lost Time Adjust（s）	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0
Total Lost Time（s）	2.0	7.0	7.0	3.0	7.0	7.0	2.0	7.0	7.0	2.0	7.0	7.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	89.2	75.3	75.3	79.2	67.3	67.3	46.1	31.8	31.8	42.9	31.5	31.5
Actuated g／C Ratio	0.64	0.54	0.54	0.57	0.48	0.48	0.33	0.23	0.23	0.31	0.22	0.22
v／c Ratio	0.78	0.89	0.07	0.46	0.50	0.33	0.26	0.83	0.23	1.43	0.72	0.41
Control Delay	28.6	37.2	0.2	25.4	26.7	13.9	33.1	67.9	9.9	253.5	61.0	7.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.6	37.2	0.2	25.4	26.7	13.9	33.1	67.9	9.9	253.5	61.0	7.8
LOS	C	D	A	C	C	B	C	E	A	F	E	A
Approach Delay		34.8			23.7			52.1			118.1	
Approach LOS		C			C			D			F	

	$\stackrel{ }{*}$			7	4	4	4	\dagger	$>$		$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (m)	35.7	207.0	0.0	6.8	79.7	22.9	12.1	85.0	1.2	~ 88.6	72.4	0.0
Queue Length 95th (m)	\#78.0	\#271.3	0.0	18.1	97.1	41.9	21.0	112.4	13.9	\#141.0	100.3	18.3
Internal Link Dist (m)		323.4			326.5			267.6			134.9	
Turn Bay Length (m)	110.0		28.0	50.0		20.0	120.0		16.0	40.0		
Base Capacity (vph)	422	1903	887	156	1701	801	315	505	491	210	429	529
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.89	0.07	0.46	0.50	0.33	0.22	0.69	0.20	1.43	0.70	0.40

Intersection Summary

Area Type: Other

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 116 (83\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 130
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.43

Intersection Signal Delay: 48.6	Intersection LOS: D
Intersection Capacity Utilization 103.8\%	ICU Level of Service G

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: Mississauga Road \& Dundas Street West

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	中4	「	\％	中4	F	\％	4	「	\％	4	F
Traffic Volume（vph）	218	1328	59	87	1263	415	66	257	92	268	300	317
Future Volume（vph）	218	1328	59	87	1263	415	66	257	92	268	300	317
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（m）	110.0		28.0	50.0		20.0	120.0		16.0	40.0		0.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length（m）	100.0			20.0			35.0			70.0		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						0.97						0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.082			0.106			0.261			0.377		
Satd．Flow（perm）	153	3539	1583	197	3539	1530	486	1863	1583	702	1863	1554
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			117			117			94			190
Link Speed（k／h）		60			60			50			50	
Link Distance（m）		347.4			350.5			291.6			158.9	
Travel Time（s）		20.8			21.0			21.0			11.4	
Confl．Peds．（\＃／hr）	7					7	5					5
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	227	1383	61	91	1316	432	69	268	96	279	313	330
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	227	1383	61	91	1316	432	69	268	96	279	313	330
Turn Type	pm＋pt	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	4.0	8.0	8.0	5.0	12.0	12.0	5.0	12.0	12.0
Minimum Split（s）	9.0	43.0	43.0	8.0	43.0	43.0	9.0	45.0	45.0	9.0	38.0	38.0
Total Split（s）	13.0	75.0	75.0	10.0	72.0	72.0	17.0	45.0	45.0	10.0	38.0	38.0
Total Split（\％）	9．3\％	53．6\％	53．6\％	7．1\％	51．4\％	51．4\％	12．1\％	32．1\％	32．1\％	7．1\％	27．1\％	27．1\％
Yellow Time（s）	3.0	5.0	5.0	3.5	5.0	5.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	3.0	3.0	0.5	3.0	3.0	0.0	4.0	4.0	0.0	4.0	4.0
Lost Time Adjust（s）	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0
Total Lost Time（s）	2.0	7.0	7.0	3.0	7.0	7.0	2.0	7.0	7.0	2.0	7.0	7.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	90.4	74.4	74.4	78.5	66.6	66.6	44.9	30.6	30.6	41.8	30.4	30.4
Actuated g／C Ratio	0.65	0.53	0.53	0.56	0.48	0.48	0.32	0.22	0.22	0.30	0.22	0.22
v／c Ratio	0.78	0.74	0.07	0.46	0.78	0.55	0.28	0.66	0.23	1.03	0.77	0.68
Control Delay	46.4	29.5	0.2	19.2	35.2	21.8	33.7	56.9	9.0	106.0	65.3	28.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	46.4	29.5	0.2	19.2	35.2	21.8	33.7	56.9	9.0	106.0	65.3	28.1
LOS	D	C	A	B	D	C	C	E	A	F	E	C
Approach Delay		30.7			31.2			42.6			64.3	
Approach LOS		C			C			D			E	

	4	\rightarrow	7	7	4	4	4	\uparrow	$>$	*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (m)	34.7	144.8	0.0	8.6	147.9	57.0	12.2	62.1	0.4	~ 57.1	76.2	33.2
Queue Length 95th (m)	\#90.0	180.8	0.0	17.1	175.0	87.1	21.0	84.8	12.9	\#102.2	104.8	63.3
Internal Link Dist (m)		323.4			326.5			267.6			134.9	
Turn Bay Length (m)	110.0		28.0	50.0		20.0	120.0		16.0	40.0		
Base Capacity (vph)	292	1881	896	199	1683	789	295	505	498	270	425	502
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.74	0.07	0.46	0.78	0.55	0.23	0.53	0.19	1.03	0.74	0.66

Intersection Summary

Area Type: Other

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 116 (83\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 110
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.03

```
Intersection Signal Delay: 38.3 Intersection LOS: D
```

Intersection Capacity Utilization 93.7\% ICU Level of Service F

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: Mississauga Road \& Dundas Street West

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	性	「	\％	个4	「	\％	\uparrow	「	\％	\uparrow	$\overline{7}$
Traffic Volume（vph）	322	1661	62	79	839	263	78	350	122	295	298	210
Future Volume（vph）	322	1661	62	79	839	263	78	350	122	295	298	210
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（m）	110.0		28.0	50.0		20.0	120.0		16.0	40.0		0.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length（m）	100.0			20.0			35.0			70.0		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.98			0.97			0.98	1.00		
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.238			0.060			0.255			0.233		
Satd．Flow（perm）	443	3539	1549	112	3539	1542	475	1863	1559	433	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			117			117			94			214
Link Speed（k／h）		60			60			50			50	
Link Distance（m）		347.4			350.5			234.4			158.9	
Travel Time（s）		20.8			21.0			16.9			11.4	
Confl．Peds．（\＃／hr）	3		1	1		3			3	3		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	329	1695	63	81	856	268	80	357	124	301	304	214

Shared Lane Traffic（\％）

Lane Group Flow（vph）	329	1695	63	81	856	268	80	357	124	301	304	214
Turn Type	pm＋pt	NA	Perm									
Protected Phases	5	，		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	4.0	8.0	8.0	5.0	12.0	12.0	5.0	12.0	12.0
Minimum Split（s）	9.0	43.0	43.0	8.0	43.0	43.0	9.0	45.0	45.0	9.0	38.0	38.0
Total Split（s）	13.0	75.0	75.0	10.0	72.0	72.0	17.0	45.0	45.0	10.0	38.0	38.0
Total Split（\％）	9．3\％	53．6\％	53．6\％	7．1\％	51．4\％	51．4\％	12．1\％	32．1\％	32．1\％	7．1\％	27．1\％	27．1\％
Yellow Time（s）	3.0	5.0	5.0	3.5	5.0	5.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	3.0	3.0	0.5	3.0	3.0	0.0	4.0	4.0	0.0	4.0	4.0
Lost Time Adjust（s）	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0
Total Lost Time（s）	2.0	7.0	7.0	3.0	7.0	7.0	2.0	7.0	7.0	2.0	7.0	7.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	88.8	72.9	72.9	79.0	67.1	67.1	46.6	32.2	32.2	42.3	29.3	29.3
Actuated g／C Ratio	0.63	0.52	0.52	0.56	0.48	0.48	0.33	0.23	0.23	0.30	0.21	0.21
v／c Ratio	0.78	0.92	0.07	0.52	0.51	0.34	0.31	0.83	0.29	1.45	0.78	0.43
Control Delay	29.1	40.9	0.2	29.5	26.8	14.0	34.0	68.2	14.1	261.6	66.5	8.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	29.1	40.9	0.2	29.5	26.8	14.0	34.0	68.2	14.1	261.6	66.5	8.2
LOS	C	D	A	C	C	B	C	E	B	F	E	A
Approach Delay		37.8			24.1			51.4			123.0	
Approach LOS		D			C			D			F	

	$\stackrel{ }{*}$			7	4	4	4	\uparrow	$>$	*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (m)	36.2	209.7	0.0	7.8	79.7	22.9	14.0	86.7	6.0	~ 88.6	73.4	0.0
Queue Length 95th (m)	\#77.7	\#271.3	0.0	21.2	97.1	41.9	23.9	115.4	20.3	\#142.3	102.2	18.5
Internal Link Dist (m)		323.4			326.5			210.4			134.9	
Turn Bay Length (m)	110.0		28.0	50.0		20.0	120.0		16.0	40.0		
Base Capacity (vph)	421	1842	862	157	1695	799	298	505	491	207	419	522
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.92	0.07	0.52	0.51	0.34	0.27	0.71	0.25	1.45	0.73	0.41

Intersection Summary

Area Type: Other

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 116 (83\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 140
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.45
$\begin{array}{ll}\text { Intersection Signal Delay: } 50.8 & \text { Intersection LOS: D } \\ \text { Intersection Capacity Utilization 104.6\% } & \text { ICU Level of Service G }\end{array}$
mection Capaciy Uilzaion 104.0\% ICU Level of Service G
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: Mississauga Road \& Dundas Street West

	1	4	\dagger		*	$\frac{1}{7}$
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	「	$\hat{\dagger}$			\uparrow
Traffic Volume (vph)	7	41	509	3	14	425
Future Volume (vph)	7	41	509	3	14	425
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850	0.999			
Flt Protected	0.950					0.998
Satd. Flow (prot)	1770	1583	1861	0	0	1859
Flt Permitted	0.950					0.998
Satd. Flow (perm)	1770	1583	1861	0	0	1859
Link Speed (k/h)	50		50			50
Link Distance (m)	54.1		57.2			234.4
Travel Time (s)	3.9		4.1			16.9
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	7	42	519	3	14	434
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	7	42	522	0	0	448
Sign Control	Stop		Free			Free

Intersection Summary

```
Area Type:
Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 43.7\%
ICU Level of Service A

Analysis Period (min) 15

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	「	${ }^{7}$	44	「	${ }^{*}$	4	「	${ }^{1}$	4	「
Traffic Volume（vph）	218	1328	69	111	1263	415	72	262	106	268	307	317
Future Volume（vph）	218	1328	69	111	1263	415	72	262	106	268	307	317
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（m）	110.0		28.0	50.0		20.0	120.0		16.0	40.0		0.0
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length（m）	100.0			20.0			35.0			70.0		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						0.97						0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.082			0.101			0.222			0.392		
Satd．Flow（perm）	153	3539	1583	188	3539	1530	414	1863	1583	730	1863	1554
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			117			117			94			183
Link Speed（k／h）		60			60			50			50	
Link Distance（m）		347.4			350.5			229.4			158.9	
Travel Time（s）		20.8			21.0			16.5			11.4	
Confl．Peds．（\＃／hr）	7					7	5					5
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	227	1383	72	116	1316	432	75	273	110	279	320	330
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	227	1383	72	116	1316	432	75	273	110	279	320	330
Turn Type	pm＋pt	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	4.0	8.0	8.0	5.0	12.0	12.0	5.0	12.0	12.0
Minimum Split（s）	9.0	43.0	43.0	8.0	43.0	43.0	9.0	45.0	45.0	9.0	38.0	38.0
Total Split（s）	13.0	75.0	75.0	10.0	72.0	72.0	17.0	45.0	45.0	10.0	38.0	38.0
Total Split（\％）	9．3\％	53．6\％	53．6\％	7．1\％	51．4\％	51．4\％	12．1\％	32．1\％	32．1\％	7．1\％	27．1\％	27．1\％
Yellow Time（s）	3.0	5.0	5.0	3.5	5.0	5.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	3.0	3.0	0.5	3.0	3.0	0.0	4.0	4.0	0.0	4.0	4.0
Lost Time Adjust（s）	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0
Total Lost Time（s）	2.0	7.0	7.0	3.0	7.0	7.0	2.0	7.0	7.0	2.0	7.0	7.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	89.3	72.9	72.9	78.5	66.1	66.1	46.1	31.7	31.7	42.2	29.2	29.2
Actuated g／C Ratio	0.64	0.52	0.52	0.56	0.47	0.47	0.33	0.23	0.23	0.30	0.21	0.21
v / c Ratio	0.80	0.75	0.08	0.58	0.79	0.55	0.32	0.65	0.26	1.00	0.82	0.71
Control Delay	48.7	30.7	0.7	25.3	35.6	22.0	34.2	55.8	11.7	96.9	70.5	30.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.7	30.7	0.7	25.3	35.6	22.0	34.2	55.8	11.7	96.9	70.5	30.4
LOS	D	C	A	C	D	C	C	E	B	F	E	C
Approach Delay		31.8			31.8			41.7			64.2	
Approach LOS		C			C			D			E	

	\rangle	\rightarrow	7	7	\checkmark	4	4	\dagger	$>$	\downarrow	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (m)	35.2	150.3	0.0	11.4	147.9	57.0	13.1	62.8	3.2	55.4	77.8	34.9
Queue Length 95th (m)	\#90.0	180.8	1.6	\#22.0	175.0	87.1	22.5	86.2	16.4	\#100.6	107.6	65.7
Internal Link Dist (m)		323.4			326.5			205.4			134.9	
Turn Bay Length (m)	110.0		28.0	50.0		20.0	120.0		16.0	40.0		
Base Capacity (vph)	285	1842	880	201	1670	784	283	505	498	279	426	496
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.80	0.75	0.08	0.58	0.79	0.55	0.27	0.54	0.22	1.00	0.75	0.67

Intersection Summary

Area Type: Other

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 116 (83\%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 110
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00

Intersection Signal Delay: 38.8	Intersection LOS: D
Intersection Capacity Utilization 94.0\%	ICU Level of Service F

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: Mississauga Road \& Dundas Street West

Intersection: 1: Mississauga Road \& Dundas Street West

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	T	R	L	T	R	L
Maximum Queue (m)	180.1	274.0	253.3	78.0	61.7	101.6	93.1	69.0	64.4	173.6	46.0	110.0
Average Queue (m)	86.6	155.7	150.8	21.3	14.9	61.1	51.5	10.1	17.3	101.0	27.0	109.0
95th Queue (m)	163.6	243.0	230.1	74.7	42.0	89.5	79.2	43.1	61.7	167.1	57.1	118.0
Link Distance (m)		335.3	335.3			327.4	327.4			269.0		
Upstream Blk Time (\%)		0	0									
Queuing Penalty (veh)		0	0									
Storage Bay Dist (m)	110.0			28.0	50.0			20.0	120.0		16.0	40.0
Storage Blk Time (\%)	4	22	41		0	13	23	1		66	14	98
Queuing Penalty (veh)	35	72	24		0	9	62	6		110	59	290

Intersection: 1: Mississauga Road \& Dundas Street West

Movement	SB	SB
Directions Served	T	R
Maximum Queue (m)	159.9	151.8
Average Queue (m)	147.8	79.8
95th Queue (m)	170.1	190.6
Link Distance (m)	144.9	144.9
Upstream Blk Time (\%)	87	13
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (\%)	15	
Queuing Penalty (veh)	43	
Network Summary		

Network wide Queuing Penalty: 710

Intersection: 1: Mississauga Road \& Dundas Street West

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	T	R	L	T	R	L
Maximum Queue (m)	91.2	137.8	132.0	65.6	69.9	172.2	179.8	70.0	29.2	117.5	46.0	110.0
Average Queue (m)	44.2	87.0	81.2	8.7	25.2	105.5	101.0	48.2	11.4	62.0	24.1	108.9
95th Queue (m)	76.5	125.3	123.9	42.5	68.9	153.2	156.6	95.5	24.4	104.3	52.1	117.9
Link Distance (m)		335.3	335.3			327.4	327.4			269.0		
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	110.0			28.0	50.0			20.0	120.0		16.0	40.0
Storage Blk Time (\%)	0	2	28			29	35	5		54	12	97
Queuing Penalty (veh)	0	4	17			25	143	33		85	39	291

Intersection: 1: Mississauga Road \& Dundas Street West

Movement	SB	SB
Directions Served	T	R
Maximum Queue (m)	155.9	149.7
Average Queue (m)	146.8	105.4
95th Queue (m)	169.4	197.8
Link Distance (m)	144.9	144.9
Upstream Blk Time (\%)	77	16
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (\%)	22	
Queuing Penalty (veh)	59	
Network Summary		

Intersection: 1: Mississauga Road \& Dundas Street West

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	T	R	L	T	R	L
Maximum Queue (m)	141.9	199.4	193.9	49.7	38.6	84.1	68.6	33.0	70.4	163.5	42.6	109.9
Average Queue (m)	71.2	146.8	146.3	11.5	13.1	63.2	54.2	11.1	27.3	132.2	31.3	105.8
95th Queue (m)	149.5	221.7	220.6	52.3	42.4	89.2	79.1	48.3	105.7	224.5	55.3	123.0
Link Distance (m)		335.3	335.3			327.4	327.4			201.3		
Upstream Blk Time (\%)										6		
Queuing Penalty (veh)										31		
Storage Bay Dist (m)	110.0			28.0	50.0			20.0	120.0		16.0	40.0
Storage BIk Time (\%)		23	41			16	27	0		64	33	97
Queuing Penalty (veh)		76	25			13	72	2		128	142	289

Intersection: 1: Mississauga Road \& Dundas Street West

Movement	SB	SB
Directions Served	T	R
Maximum Queue (m)	151.0	147.3
Average Queue (m)	140.2	71.6
95th Queue (m)	178.8	179.2
Link Distance (m)	144.9	144.9
Upstream Blk Time (\%)	65	8
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (\%)	12	
Queuing Penalty (veh)	35	

Intersection: 2: Mississauga Road \& Site Access

Intersection: 1: Mississauga Road \& Dundas Street West

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	T	T	R	L	T	T	R	L	T	R	L
Maximum Queue (m)	123.2	142.1	137.5	77.9	69.9	170.9	164.3	70.0	34.8	108.2	46.0	110.0
Average Queue (m)	64.6	93.2	85.8	13.4	33.8	106.2	99.2	46.8	12.3	59.8	27.5	105.9
95th Queue (m)	122.7	134.9	126.2	55.3	77.8	154.4	151.1	96.4	27.2	98.4	55.3	128.1
Link Distance (m)		335.3	335.3			327.4	327.4			195.8		
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	110.0			28.0	50.0			20.0	120.0		16.0	40.0
Storage Blk Time (\%)	9	3	30			31	35	5		52	14	94
Queuing Penalty (veh)	59	7	21			34	146	29		93	47	289

Intersection: 1: Mississauga Road \& Dundas Street West

Movement	SB	SB
Directions Served	T	R
Maximum Queue (m)	158.0	152.6
Average Queue (m)	140.8	99.3
95th Queue (m)	183.3	195.1
Link Distance (m)	144.9	144.9
Upstream Blk Time (\%)	70	17
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (\%)	28	
Queuing Penalty (veh)	75	

Intersection: 2: Mississauga Road \& Site Access

Movement	WB	WB	NB	SB
Directions Served	L	R	TR	LT
Maximum Queue (m)	8.5	15.8	1.3	33.0
Average Queue (m)	1.1	5.6	0.0	4.4
95th Queue (m)	5.6	13.6	0.9	18.9
Link Distance (m)	42.8	42.8	52.5	195.8
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				
Network Summary				

	1	4	\dagger		\pm	$\frac{1}{7}$
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	「	\uparrow			\uparrow
Traffic Volume (vph)	5	25	415	7	41	446
Future Volume (vph)	5	25	415	7	41	446
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850	0.998			
Flt Protected	0.950					0.996
Satd. Flow (prot)	1770	1583	1859	0	0	1855
Flt Permitted	0.950					0.996
Satd. Flow (perm)	1770	1583	1859	0	0	1855
Link Speed (k/h)	50		50			50
Link Distance (m)	53.9		62.2			229.4
Travel Time (s)	3.9		4.5			16.5
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	5	26	432	7	43	465
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	5	26	439	0	0	508
Sign Control	Stop		Free			Free

Intersection Summary

```
Area Type:
Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 61.3\%
ICU Level of Service B
Analysis Period (min) 15

APPENDIX E

Level of Service Definitions

LEVEL OF SERVICE ANALYSIS AT SIGNALIZED INTERSECTIONS

To assist in clarifying the arithmetic analysis associated with traffic engineering, it is often useful to refer to "Level of Service". The term Level of Service implies a qualitative measure of traffic flow at an intersection. It is dependent upon vehicle delay and vehicle queue lengths at the approaches. Specifically, Level of Service criteria are stated in terms of the average stopped delay per vehicle for a 15 -minute analysis period. The following table describes the characteristics of each level:

Level of	Features	Stopped Delay
Service		per Vehicle (sec)
A	At this level of service, almost no signal phase is fully utilized by traffic. Very seldom does a vehicle wait longer than one red indication. The approach appears open, turning movements are easily made and drivers have freedom of operation.	≤ 5.0
B	At this level, an occasional signal phase is fully utilized and many phases approach full use. Many drivers begin to feel somewhat restricted within platoons of vehicles approaching the intersection.	>5.0 and ≤ 15.0
C	At this level, the operation is stable though with more frequent fully utilized signal phases. Drivers feel more restricted and occasionally may have to wait more than one red signal indication, and queues may develop behind turning vehicles. This level is normally employed in urban intersection design.	$\begin{gathered} >15.0 \text { and } \leq \\ 25.0 \end{gathered}$
D	At this level, the motorist experiences increasing restriction and instability of flow. There are substantial delays to approaching vehicles during short peaks within the peak period, but there are enough cycles with lower demand to permit occasional clearance of developing queues and prevent excessive backups.	$\begin{gathered} >25.0 \text { and } \leq \\ 40.0 \end{gathered}$
E	At this level, capacity is reached. There are long queues of vehicles waiting upstream of the intersection and delays to vehicles may extend to several signal cycles.	$\begin{gathered} >40.0 \text { and } \leq \\ 60.0 \end{gathered}$
F	At this level, saturation occurs, with vehicle demand exceeding the available capacity.	> 60.0

LEVEL OF SERVICE ANALYSIS AT UNSIGNALIZED INTERSECTIONS ${ }^{(1)}$

The term "level of service" implies a qualitative measure of traffic flow at an intersection. It is dependent upon the vehicle delay and vehicle queue lengths at approaches. The level of service at unsignalized intersections is often related to the delay accumulated by flows on the minor streets, caused by all other conflicting movements. The following table describes the characteristics of each level.

Level of Service

A

B

C

D

E

F

Features

Little or no traffic delay occurs. Approaches appear open, turning movements are easily made, and drivers have freedom of operation.

Short traffic delays occur. Many drivers begin to feel somewhat restricted in terms of freedom of operation.

Average traffic delays occur. Operations are generally stable, but drivers emerging from the minor street may experience difficulty in completing their movement. This may occasionally impact on the stability of flow on the major street.

Long traffic delays occur. Motorists emerging from the minor street experience significant restriction and frustration. Drivers on the major street will experience congestion and delay as drivers emerging from the minor street interfere with the major through movements.

Very long traffic delays occur. Operations approach the capacity of the intersection.

Saturation occurs, with vehicle demand exceeding the available capacity. Very long traffic delays occur.

APPENDIX F

Mississauga Road Elevation

TAC: TRANSPORTATION ASSOCIATION OF CANADA
THE GEOMETRIC DESIGN GUIDE FOR CANADIAN ROADS
SEPTEMBER 1999

METRIC

ALL DIMENSIONS IN METRES

	MINOR				
	LOCAL	LOCAL	RESIDENTIAL		
	RESIDENTIAL	INDUSTRIAL	COLLECTOR	COLLECTOR	ARTERIAL
	ROADS	ROADS	ROADS	ROADS	ROADS
DESIGN SPEED	$50 \mathrm{~km} / \mathrm{h}$	$50 \mathrm{~km} / \mathrm{h}$	$50 / 60 \mathrm{~km} / \mathrm{h}$	$70 \mathrm{~km} / \mathrm{h}$	$90 \mathrm{~km} / \mathrm{h}$

| STOPPING SIGHT | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DISTANCE (TAC TABLE 2.1.3.2) | 65 m | 65 m | 85 m | 110 m | SEE NOTE 7 | | |

STOPPING SIGHT
DISTANCE (FOR CREST
(VERTICAL CURVES)

65 m
65 m
90 m
SEE NOTE 7 I20m
180 m
MINIMUM RADIUS

(CLOF ROAD)	N/A	N/A	$150 \mathrm{~m}$ SEE NOTE 7	325 m	580 m
GRADE (MINIMUM) SEE NOTE 4	0.5\%	0.5\%	0.5\%	0.5\%	0.5\%
GRADE (MAXIMUM)	7.0\%	6.0\%	6.0\%	6.0\%	6.0\%
GRADE (MAXIMUM) THROUCH ROADS AT INTERSECTIONS	3.5\%	3.0\%	3.0\%	3.0\%	2.0\%
GRADE (MAXIMUM) STOP ROADS AT INTERSECTIONS	2.5\%	2.0\%	2.0\%	2.0\%	1.0\%
INTERSECTION ANGLE	$70-90^{\circ}$	$70-90^{\circ}$	$70-90^{\circ}$	$70-90^{\circ}$	$80-90^{\circ}$

MINIMUM TANGENT LENGTH
FOR INTERSECTION
APPROACHES (FROM C L) $40 \mathrm{~m} \quad 45 \mathrm{~m} \quad 45 \mathrm{~m} \quad 45 \mathrm{~m} \quad 75 \mathrm{~m}$

NOTES:

I. THIS STANDARD TO BE USED IN CONJUNCTION WITH CITY OF MISSISSAUGA STANDARDS (SECTION 22IIROADWAYS)
2. CHANGES IN VERTICAL ALIGNMENT SHALL BE AS PER CITY OF MISSISSAUGA STANDARDS 22I.020 AND 22II. 030
3. CHANNELIZATION WILL NORMALLY BE USED AT ARTERIAL TO ARTERIAL INTERSECTIONS.

SEE CITY OF MISSISSAUGA STANDARD 2211.210
4. ON CUL-DE-SACS, THE CURB LINES OR EDGE OF PAVEMENT ARE TO MAINTAIN A MINIMUM GRADE OF 0.5%
5. STOPPING SIGHT DISTANCE REFER TO THE TAC MANUAL, TABLES 1.2.5.2 AND 1.2.5.3 DERIVED USING THE COEFFICIENT OF FRICTION FOR WET PAVEMENT.
6. MINIMUM RADII MAY BE REDUCED WITH THE USE OF SUPERELEVATION AS DIRECTED BY THE COMMISSIONER OF TRANSPORTATION AND WORKS IF SUPERELEVATION IS USED, THE DESIGN IS TO ADHERE TO THE REQUIREMENTS OF TABLE 2.1.2.6 IN THE TAC MANUAL.
7. STOPPING SIGHT DISTANCES MEETS $60 \mathrm{~km} / \mathrm{h}$, MINIMUM RADIUS MEETS $50 \mathrm{~km} / \mathrm{h}$ REQUIREMENTS.

A- MISSISSAUGA					
STANDARD					
GEOMETRIC DESIGN					
STANDARDS FOR ROADS					
EFF. DATE		2002-01-01	Scale		N.T.S.
REV.			STANDARD	No.	2211.010

APPENDIX G
Sight Line Review

SIGHT DISTANCE REVIEW STUDY
Trans-Plan Inc.

Note: Referenced Table 9.9.4 and Table 9.9 .6 from TAC 2017 for sight distance requirements

