

Queenscorp (Erin Mills) Group

4099 Erin Mills Parkway, City of Mississauga

Functional Servicing and Stormwater Management Report (FSR/SWM)

October 28, 2024

4099 Erin Mills Park, City of Mississauga

Functional Servicing and Stormwater Management Report (FSR/SWM)

October 28, 2024

Prepared By:

Arcadis Professional Services (Canada) Inc. 8133 Warden Ave, Unit 300 Markham, ON L6G 1B3 Canada

Phone: 1 905 763 2322 www.arcadis.com

Our Ref: #137429

Prepared For:

Queenscorp (Erin Mills) Group

Shazia Nishat, Ph.D., P.Eng. Civil Engineer Land Engineering

Musil 1

Nav Grewal, CD, BSc

Associate Manager

Land Engineering

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Version Control

Issue	Revision No.	Date Issued	Description
First Submission	1	August 2022	Issued for ZBA Submission
Second Submission	2	October 2024	Issued for ZBA Submission

Contents

1	Intro	oduction	1
	1.1	Background	1
	1.2	Site Description	1
2	Dev	elopment Proposal	2
3	Terr	ns of Reference and Methodology	2
	3.1	Terms of Reference	2
	3.2	Methodology: Stormwater Drainage and Management	2
	3.3	Methodology: Sanitary Discharge	3
	3.4	Methodology: Water Usage	3
4	Gro	undwater	4
5	Stor	mwater Management and Drainage	4
	5.1	Stormwater Management Criteria	4
	5.2	Existing Storm Sewer System	5
	5.3	Existing Storm Drainage	5
	5.4	Stormwater Management Plan	6
	5.5	Quantity Control	6
	5.6	Water Balance	7
	5.7	Quality Control	8
	5.8	Stormwater Outlet	8
6	San	itary Drainage System	9
	6.1	Pre-Development Sanitary Flows	9
	6.2	Post-Development Sanitary Flows	9
	6.3	Proposed Sanitary Connection	10
7	Wat	er Supply System	11
	7.1	Existing System	11
	7.2	Proposed Water Supply	11
	5.2.1	Proposed Water Supply Requirements	11
	7.3	Hydrant Coverage	12
	7.4	Proposed Watermain Connection	12
8	Site	Grading	12
	8.1	Existing Grades	12
	8.2	Proposed Grades	12

9	Site Acc	ess12
10	Utilities	13
11	Conclus	sions and Recommendations13
Ta	bles	
Tab	le 3.1	Sanitary Criteria
Tab	le 3.2	Water Usage
Tab	le 5.1	Stormwater Management Criteria 4
Tab	le 5.2	Allowable Release Rates
Tab	le 5.3	Post-Development Input Parameters
Tab	le 5.4	Propsoed Release Rates and Storage Details
Tab	le 5.5	Water Balance8
Tab	le 6.1	Pre-Development Equivalent Population Calculations9
Tab	le 6.2	Post-Development Equivalent Population Calculations
Tab	le 11.1	Stormwater Management Summary
Fi	gure	S
FIG	-1	Location Plan Appendix A
FIG	-2	Aerial Plan Appendix A
DAF	P-01	Pre-Development Storm Drainage PlanAppendix B
DAF	P-02	Post-Development Storm Drainage PlanAppendix B
A	pen	dices
Арр	endix A	Background Information
App	endix B	Stormwater Data Analysis
App	endix C	Sanitary Data Analysis
App	endix D	
App	endix E	Engineering Plans

1 Introduction

1.1 Background

Arcadis Professional Services (Canada) Inc. (Arcadis) was retained by the Queenscorp (Erin Mills) Group (the "Client") to prepare a Functional Servicing Report and Stormwater Management Report (FSR/SWM) in support of a Zoning By-Law Amendment (ZBA) application for a development comprising of five (5) mid to high-rise residential buildings (ranging from 5-14 storeys) and four (4) stacked townhouse blocks with a total of gross floor area (GFA) of 58,293 m² (57,503 m² residential + 790 m² retail) at 4099 Erin Mills Parkway, in the City of Mississauga (the "City") and the Region of Peel (the "Region").

The purpose of this report is to provide site specific information for the City of Mississauga and the Region of Peel's review with respect to infrastructure required to support the proposed development regarding storm drainage, water supply, and sanitary discharge.

We have obtained information regarding existing storm, sanitary and water services on Erin Mills Parkway, Folkway Drive, Sawmill Valley Drive, Farrier Court and the existing site. The following documents were reviewed:

- Plan and Profile drawings received from the Region of Peel;
- Plan and Profile drawings received from the City of Mississauga;
- Topographic Survey and Locates prepared by JD Barnes Ltd. dated February 14th. 2022:
- Site Plan (Partial Re-Submission) prepared by Turner Fleischer Architects Inc. (TFAI), dated September 19th, 2024; and
- Site Statistics (Partial Rezoning Submission) prepared by TFAI, dated September 19th, 2024.

1.2 Site Description

The existing 26,391 m² (2.64ha) site is located on the east side of Erin Mills Parkway between Hwy 403 and Burnhamthorpe Road West. The site is bounded by Erin Mills Parkway to the west, Folkway Drive to the north, Sawmill Valley Drive to the west and existing townhouses and Farrier Court to the south. The legal description is as follows: Block II, Registered Plan M-247, City of Mississauga, Regional Municipality of Peel. The site's municipal address is 4099 Erin Mills Parkway (Pkwy), Mississauga, ON, L5L 3P9. Please refer to **Figures FIG-1 and FIG-2** in **Appendix A** for the location and aerial plans of the site respectively.

The existing site is currently comprised of a one-storey brick building serving as a retail/commercial plaza with an asphalt parking lot. The existing site has private vehicle accesses off of Erin Mills Parkway, Folkway Drive and Sawmill Valley Drive. The site generally slopes from northwest to southeast. The storm flows are collected through a series of existing catch basins across the site's parking lot and are carried via an existing storm network to the discharge point at Farrier Court, south of the site.

Under pre-development conditions, external drainage from the existing townhouse development to the south enters the site and is conveyed through a swale to an existing catch basin which discharges to the existing site's storm outlet in Farrier Court. Under the post-development conditions, this external drainage will not be blocked and will continue to be conveyed in a similar way along the southern property limit. The proposed stormwater management design will account for this flow and further details will be provided in **Section 5.0**. The site is located in an area of the City that is well established and serviced by a network of municipal infrastructure including roads, sewers, watermains, and other services and utilities.

2 Development Proposal

The 26,391 m² (2.64ha) site is located on the east side of Erin Mills Parkway between Hwy 403 and Burnhamthorpe Road West. The proposed development will include one (1) high-rise (14-storeys), four (4) mid-rise residential buildings (ranging from 5 to 8 storeys), and four (4) stacked townhouse blocks with a total GFA of 58,293 m² (57,503 m² residential + 790 m² retail). Additionally, the site will feature a private road network with three access points to Erin Mills Parkway, Folkway Drive and Sawmill Valley Drive and 2 levels of underground parking. The entire development will include 925 parking spaces. Please refer to **Appendix A** for the proposed Site Plan and site statistics prepared by TFAI (September 2024).

3 Terms of Reference and Methodology

3.1 Terms of Reference

The Terms of Reference used for the scope of this report were based on current Region of Peel Public Works Stormwater Design Criteria and Procedural Manual, Region of Peel Transportation and Works Department Water and Wastewater Branch Standards and the City of Mississauga standards and specifications (City Guidelines).

3.2 Methodology: Stormwater Drainage and Management

The following report provides a review of the pre- and post-development site conditions and comments on opportunities to reduce post-development peak flows. Requirements set by the City of Mississauga, Region of Peel and Ministry of the Environment Conservation and Parks (MECP) were reviewed. The following SWM criteria are to be applied:

Water Quantity

Post-development stormwater discharge to be limited to pre-development levels for the 2–100-year storms as well as the Regional Storm. Post-development discharge to City's storm sewer system to be determined using City's IDF curves and post-development discharge to Regional's storm sewer system to be determined using Region's IDF curves. A maximum runoff coefficient of 0.50 shall be used in calculating the pre-development peak runoff.

Water Balance

Runoff resulting from a 5 mm rainfall event or best efforts shall be retained on-site using Low Impact Development (LID) practices including infiltration, evapotranspiration and/or water reuse measures.

Water Quality

Enhanced Level 1 Protection, with a long-term average removal of 80% of the Total Suspended Solids (TSS) must be achieved on an annual loading basis.

3.3 Methodology: Sanitary Discharge

The sanitary sewage flows will be determined using sanitary sewer design calculations that consider the land use and building statistics as supplied by the design team. The calculated values provide peak sanitary flow discharge with infiltration considerations. The estimated sanitary flows in the proposed site will be calculated based on the Peel Region 2020 DC Background Study criteria shown in **Table 3.1** below.

Table 3.1 Sanitary Criteria

USAGE	DESIGN FLOW	UNITS	PERSONS PER AREA
Residential (Apartments)	302.8	Litres / Person / Day	Large Apartments (> 228 m ²) = 3.0 ppu Large Apartments (< 228 m ²) = 1.6 ppu
Residential (Multiples)	302.8	Litres / Person / Day	Townhouses = 3.4 ppu
Commercial/Retail	302.8	Litres / Person / Day	50 persons/ha
Infiltration	0.2	Litres / sec / ha	-

Based on the calculated peak flows, the adequacy of the loading infrastructure to support the proposed development will be discussed in **Section 6: Sanitary Drainage System**.

3.4 Methodology: Water Usage

The water usage flows will be determined using watermain design calculations that consider the land use and building statistics as supplied by the design team. The domestic water usage will be calculated based on the Region of Peel's watermain design criteria and standards. Specifically, the proposed water system will be designed to satisfy the following demand conditions:

- Average consumption rate;
- · Max day factor; and,
- Peak hour factor.

The domestic water usage was based on the Region of Peel design criteria for water demand is summarized in **Table 3.2** below.

Table 3.2 Water Usage

USAGE	WATER DEMAND	UNITS	MAX DAY FACTOR	PEAK HOUR FACTOR
Residential	280	Litres / Capita / Day	2.0	3.0
ICI	300	Litres / Employee / Day	1.4	3.0

Fire suppression flow calculations were undertaken in accordance with the Region of Peel fire suppression standards. Pressure and flow testing to determine the adequacy of the existing watermain to support the proposed development with fire suppression in accordance with the Fire Underwriters Survey (FUS) Guidelines will be discussed in the subsequent **Section 7: Water Supply System**.

4 Groundwater

A Hydrogeological Report is required to determine the impacts of groundwater and potential permanent discharge to the municipal systems as it relates to the flow rate and quality of the groundwater. A Hydrogeological Report is not available with this submission and will be provided when available with future submissions.

5 Stormwater Management and Drainage

5.1 Stormwater Management Criteria

Based on a review of the City Guidelines, the Stormwater Management Criteria applicable to the site are as outlined in **Table 5.1** below.

Table 5.1 Stormwater Management Criteria

CRITERIA	REQUIREMENT
Water Balance	Retain 5 mm onsite
Quantity Control	Post to Pre for all storms (i.e. 2, 5, 10, 25, 50 & 100 year) & Regional Storm.
Quality Control	80% TSS Removal

The project site is located in the Mullet Creek Watershed as identified by the City of Mississauga Watershed Boundaries; figure attached in **Appendix B** for reference. Below is an excerpt from the City of Mississauga Transportation and Works Department Storm Drainage Design Requirements identifying the original source of the water quantity design guidelines:

Mullet Creek (CVC)	Provide post to pre control for all storms (i.e. 2,5,10,25,50 & 100 year)	Hydrologic Model: GAWSER Model-Return period peak flows based on 24 hour SCS Type II distribution	
	& Regional storm	Gateway West Subwatershed Study	
	Consider storm sewer	(Gartner Lee Limited & Cosburn Patterson Math 1999)	
	constraints outlined in	50000000 V	
	Streetsville Area Drainage Study (Dillon, 1994)	Gateway West Subwatershed Study Update by Kidd Consulting	
	Study (Billott, 1994)	(Update in Progress)	

It is also important to note that the subject site is located outside the Streetsville Area Drainage Study (Dillon 1994) boundary and as a result this component of the above criteria is not applicable. Please refer to the City of Mississauga Watershed Boundaries figure attached in **Appendix B** for further detail.

5.2 Existing Storm Sewer System

According to the plan and profiles and existing information reviewed as stated in Section 1.1, the following existing storm sewers are available in the vicinity of the site:

- Existing 600 mm CONC. storm sewer on Farrier Court, flowing east as per existing plan and profile drawing 30525-D provided by the Region of Peel.
- Existing 825 mm CONC. storm sewer on Sawmill Valley Drive flowing southeast as per existing plan and profile drawing 54895-D provided by the Region of Peel.
- Existing 525 mm CONC. storm sewer on Folkway Drive, flowing northeast as per existing plan and profile drawing C-16185, provided by the City of Mississauga.
- Existing 300 mm PVC storm sewer on the northeast side of Erin Mills Parkway, flowing southeast as per existing plan and profile drawing 26218-D, provided by the Region of Peel.
- Existing 450 mm CONC. storm sewer on the southwest side of Erin Mills Parkway, flowing southeast as per existing plan and profile drawing 26218-D, provided by the Region of Peel.

The existing site stormwater drains to the 600 mm CONC storm sewer on Farrier Court and ultimately discharges to Mullet Creek downstream. This discharge strategy will be maintained in the proposed condition.

5.3 Existing Storm Drainage

The pre-development drainage patterns have been illustrated in **Figure DAP-01** which can be found in **Appendix B** for reference. The existing site has been identified as **Area A1Pre** (2.639 ha) drains to the existing 600 mm CONC storm sewer on Farrier Court via existing roof drains and on-site catchbasins. Allowable release rates were determined via the site area (2.64 ha) and the associated pre-development runoff coefficients. The allowable 2, 5, 10, 25, 50- and 100-year (2-100-year) release rates were determined using the City's IDF data for the corresponding 2-100-year storm events and a time of concentration of 15 minutes. In keeping with the City of Mississauga stormwater management design criteria, although the site is paved in the existing condition, a maximum predevelopment runoff coefficient of 0.5 was used to determine the target release rates. Pre-development target release rates were calculated using the modified rational method for the 2-100-year City of Mississauga storms. Visual OTTHYMO version 6.2 (VO) was used to model the site hydrology and pre-development target release rate for the Regional Storm. The site is to have post-development flows controlled to pre-development levels. **Table 5.2** below summarizes the allowable site release rates. Please refer to **Appendix B** for detailed calculations and VO outputs/results.

Table 5.2 Allowable Release Rates

RETURN PERIOD (YEARS)	AREA (ha)	STORM INTENSITY (mm/hr)	ALLOWABLE RELEASE RATE (L/s)
2	2.64	59.9	219.5
5	2.64	80.5	295.1
10	2.64	99.2	363.5
25	2.64	113.9	417.5
50	2.64	127.1	466.0
100	2.64	140.7	515.7
Regional Storm	2.64	Please refer Appendix B	375.0

5.4 Stormwater Management Plan

Quantity Control will be provided via a stormwater management tank and an orifice tube on the P1 level of the underground parking structure, quality control by a StormFilter/MFS Unit, and water balance via rainwater retention and reuse through irrigation.

Under post-development conditions, the majority of the storm drainage (95%) will be captured via Roof Drains, and Area Drains and will be controlled to the internal building storm drainage collection system. A small external area (0.127 ha) from the east will be picked up by the proposed storm drainage system. The controlled drainage from the building internal system (roof drains, internal area drains, and landscaped areas) is identified as A1Post and the controlled external drainage area as EXT1. A small area on the north side of the property along Sawmill Valley Drive and a small area on the west side of the property along Folkway Drive will flow uncontrolled to the north and west respectively. The two (2) uncontrolled flow areas have been lumped together as A2Post. A2Post accounts for uncontrolled flows to the City's ROW.

The post-development drainage patterns have been illustrated in **Figure DAP-02** included in **Appendix B**. The relevant drainage parameters of the post-development drainage areas can be found in **Appendix B** and are summarized below in **Table 5.3**.

Table 5.2 Post-Development Input Parameters

Drainage Area	Drainage Area (ha)	С	Tc (min.)
A1Post (Controlled – To Building Internal-Storm System)	2.479	0.79	15
A2Post (Uncontrolled – To Sawmill Valley and Folkway Dr.)	0.1602	0.58	15
EXT	0.1274	0.44	15

5.5 Quantity Control

Detention storage will be provided in an underground stormwater management tank within the P1 level with a footprint of 281.8 m². The outflow will be controlled by a 300 mm orifice tube. Please refer to **Drawing C201** and **Drawing C101**, in **Appendix E**, for the servicing and grading details respectively. Using the City's IDF curve data for A1Post, and EXT1, modified rational method calculations were undertaken to determine the maximum storage required during each storm event. Uncontrolled flows from A2Post were also calculated using the City's IDF curve data. VO version 6.2 was used to determine the post-development target release rate for the Regional Storm. Based on the modified rational method and VO modeling, the target site release rates, storage volumes and associated HGL depths are outlined in **Table 5.4** below. For detailed calculations please refer to **Appendix B**.

Table 5.3 Proposed Release Rates and Storage Details

RETURN PERIOD (YEARS)	SITE ALLOWABLE RELEASE RATE (L/s)	CONTROLLED RELEASE RATE A1POST+EXT1 (L/s)	UNCONTROLLED RELEASE RATE A2POST (L/s)	TOTAL RELEASE RATE (L/s)	TANK HGL DEPTH (m)	REQUIRED TANK STORAGE (m³)	PROVIDED TANK STORAGE (m³)
2	204.0	177.0	15.6	192.6	0.5	140.7	140.7
5	274.2	215.8	20.9	236.7	0.7	209.2	209.2
10	337.7	247.2	25.8	273.0	1.0	274.4	274.4
25	384.9	286.8	32.6	319.4	1.3	369.5	369.5
50	426.4	324.3	39.7	364.0	1.7	472.5	472.5
100	470.1	353.9	45.7	399.7	2.0	562.6	562.6
Regional Storm	375	320	23	340		465	793.3

As can be seen in **Table 5.4**, the total release rates (controlled + external + uncontrolled) from the site are well below the corresponding target release rates and 300 mm orifice tube are capable of supporting the proposed development. The 281.8 m² stormwater management tank provides a maximum storage of 793.3 m³, thereby sufficiently providing the required storage volumes as shown in **Table 5.4**.

5.6 Water Balance

Based on the 5 mm retention requirements, the site water balance volume required is 132 m³. Initial Abstraction for the site totals 43.8 m³, leaving 88.2 m³ to be provided in the stormwater management tank for re-use. Flows from the site will be treated for quality through a StormFilter unit, model SF0824 (standard detail provided in **Appendix B**) and directed to the stormwater management tank within the P1 level. This water will be stored in a 0.6 m deep sump beneath the orifice tube outlet and will be pumped for reuse via irrigation and/or mechanical methods to achieve the water balance targets. 0.35 m of the 0.6 m deep sump will be available as retention storage. **Table 5.5** below summarise the 5 mm retention for the site. Please refer to **Appendix B** for Water Balance calculations.

Table 5.5 Water Balance

Criteria	Area (m²)	Volume of Water (m³)
Total Volume of Water to be Retained on Site	26,391	132.0
Conventional Roof	9,488	9.5
Green Roof	0	0.0
Landscape	1,234	6.2
Landscape over P1	5,619	28.1
Permeable Pavers	0	0.0
Impervious	10,050	0.0
Volume Retained through Initial Abstraction	43.8	
Volume to be Reused within 72 hrs	88.2	
Retention Volume Provided		98.6

Irrigation calculations and/or mechanical calculations will be provided during the detailed design stage to confirm and support the design strategy and water re-use methods noted above.

5.7 Quality Control

As mentioned in **Section 3.2**, 80% TSS removal is required in order to meet the City's SWM guidelines. Majority of the site (62%) is covered by buildings (hence roofs) and landscaped areas. Quality control via landscape and rooftop areas are inherently clean as they are not exposed to oil and grit. Quality control will be provided via a StormFilter unit, model SF0824 as specified by Contech Engineered Solutions. This unit will be placed downstream of the stormwater management tank and will treat water to an 80% TSS removal rate as required by the City of Mississauga. Therefore, all the drainage captured from the site will be treated via the filter unit and the minimum City required 80% TSS removal will be achieved. Please refer to **Appendix B** for detailed TSS removal calculations.

Please also refer to **Appendix B** for details on the proposed StormFilter unit as well as a copy of the verification statement for this unit from ETV Canada.

5.8 Stormwater Outlet

The proposed StormFilter unit will ultimately convey drainage through a control manhole and proposed 525 mm diameter concrete storm service at a 1.1% slope to the existing 600 mm storm pipe in Farrier Court. Discharging to Farrier Court maintains the site's existing stormwater discharge location. The 525 mm storm pipe @ 1.1% slope will have a full flow capacity of approximately 451.1 L/s, which will be adequate to convey the major system discharge of **399.5** L/s (Orifice Controlled incl. EXT drainage) during the 100-yr storm event. The controlled from the site ensure that the existing storm network has sufficient capacity to support the proposed development. Please refer to **Drawing C201**, the site servicing plan, in **Appendix E**, for the storm sewer layout.

6 Sanitary Drainage System

According to the plan and profiles and existing information reviewed as stated in Section 1.1, the following existing sanitary sewers are available in the vicinity of the site:

- Existing 250 mm PVC sanitary sewer on Farrier Court, flowing east as per existing plan and profile drawing 30525-D provided by the Region of Peel.
- Existing 250 mm PVC sanitary sewer on Sawmill Valley Drive flowing southeast as per existing plan and profile drawing 54895-D provided by the Region of Peel.
- There is no existing sanitary sewer infrastructure available on Folkway Drive fronting the subject site
 as per existing plan and profile drawing C-16185, provided by the City of Mississauga.
- There is no existing sanitary sewer infrastructure available on Erin Mills Parkway fronting the subject site as per existing plan and profile drawing 26218-D, provided by the Region of Peel.

The existing commercial plaza on the site, discharges its sanitary flows through an existing control manhole and into the existing 250 mm PVC sanitary sewer on Farrier Court. This discharge strategy will be maintained in the proposed condition.

6.1 Pre-Development Sanitary Flows

The current land is occupied by a commercial plaza and large parking lot. There is an existing sanitary service connection that services the existing commercial/retail plaza, which is located at the southeast side of the site, discharging to Farrier Court. The existing pre-development sanitary flows have been approximated below using the Region of Peels Sanitary Sewer Design Criteria. Detailed Calculations are provided in **Appendix C**.

Table 6.1 Pre-Development Equivalent Population Calculations

LAND USE	SITE AREA (ha) OR GFA (ha)	POPULATION DENSITY (pp/ha)	TOTAL POPULATION (Capita)
Existing Commercial	2.64	50	132

The calculated pre-development flow contribution is:

- Pre-Development Flow = (pop x 302.8 L/cap/day x peaking factor)/86,400 + Infiltration Allowance
- Pre-Development Flow = (132 x 302.8 x 4.21)/86400 + 0.5
- Pre-Development Flow = 2.50 L/s

6.2 Post-Development Sanitary Flows

The anticipated sanitary discharge flows for the proposed site were calculated based on the Region's design criteria outlined in **Table 3.1** in **Section 3.3**, along with the proposed site statistics found in **Appendix A**. The unit count and population density of the Apartment and Row Dwelling areas as well as the GFA of the commercial area were considered in the analysis. Additionally, the Harmon Peaking Factor equation was applied in order to evaluate the post-development peak sanitary flows. The design inputs for the subject site are shown in **Table 6.2** below.

Table 6.2 Post-Development Equivalent Population Calculations

LAND USE	SITE AREA	RESIDENTIAL UNITS / COMMERCIAL GFA	UNITS / DENSITY COMMERCIAL GFA (ppu or pp/ha)	
Residential (Apartments)	1.43	597	1.6	955
Commercial (Apartments)		0.0777 ha	50	4
		Т	otal (Apartments)	959
Residential (Townhouses)	1.21	112	3.4	381
			TOTAL (SITE)	1340

^{*} Population density criteria as per Region of Peel 2020 DC Background Study (as mentioned in Table 3.1):

- Multiples (Townhouses) 3.4.
- Large Apartments (larger than 750 square feet) 3.0. @ >228.6 sqm
- Small Apartments (equal to or less than 750 square feet) 1.6. @ =<228.6 sqm

The calculated post-development flow contribution is:

- Post-Development Flow = (pop x 302.8 L/cap/day x peaking factor) / 86,400 + Infiltration Allowance
- Post-Development Flow = [(959 x 3.81) + (381 x 4.03)] x 302.8 / 86400 + 0.5
- Post-Development Flow = 18.7 L/s

The sanitary discharge flow calculated above was calculated using the Region of Peel Sanitary Sewer Design Criteria of 302.8 litres/capita/day, and an infiltration rate of 0.2 L/s/ha. Based on the above criteria, a net peak design flow of 18.7 L/s was calculated for the subject property. This is an increase of **16.2 L/s** against the existing predevelopment sanitary discharge flows. Please refer to **Appendix C** for detailed sanitary flow calculations.

6.3 Proposed Sanitary Connection

The proposed development consists of one (1) high-rise and four mid-rise residential apartment buildings with 790 m² of retail space. The site also features four (4) stacked townhouse blocks and a large underground parking structure. The entire development will be serviced through the underground parking structure as designed by the Mechanical engineer. The sanitary flows will ultimately discharge through proposed sanitary control manhole MH1A and be conveyed to the existing 250 mm PVC sanitary sewer in Farrier Court via a proposed 250 mm diameter PVC sanitary service at 0.5%. The 250 mm sanitary pipe @ 0.5% slope will have a full flow capacity of approximately 43.9 L/s, which will be adequate to convey the total proposed sanitary discharge of **18.7 L/s.** Please refer to **Drawing C201**, the site servicing plan, in **Appendix E** for the sanitary sewer layout.

⁻ Singles/Semi 4.2.

7 Water Supply System

7.1 Existing System

According to the plan and profiles and existing information reviewed as stated in Section 1.1, the following existing watermains are available in the vicinity of the site:

- Existing 50 mm copper water service on Farrier Court, as per existing plan and profile drawing 30525-D provided by the Region of Peel.
- Existing 200 mm PVC watermain on Sawmill Valley Drive, as per existing plan and profile drawing 54895-D provided by the Region of Peel.
- Existing 300 mm PVC watermain on Folkway Drive, as per existing plan and profile drawing C-16185, provided by the City of Mississauga.
- Existing 300 mm PVC watermain on Erin Mills Parkway, as per existing plan and profile drawing 26218-D, provided by the Region of Peel.

Hydrant flow tests were completed on Sawmill Valley Drive and Erin Mills Parkway on May 4th, 2022, and the results were compared against the domestic and fire flow demands from the proposed development in order to assess the adequacy of the existing water infrastructure.

7.2 Proposed Water Supply

The estimated water consumption for the proposed commercial development was calculated based on the water demand shown in **Table 3.2** in **Section 3.4**, based on the Region of Peel's watermain design criteria revised June 2010 and the Ontario Building Code.

The water supply for public fire protection was calculated based on the guidelines provided by the FUS, to demonstrate that the existing flows and pressure are adequate to meet the minimum requirement for fire suppression outlined in the FUS.

5.2.1 Proposed Water Supply Requirements

The estimated water consumption as well as fire demand calculations were carried out for each of the five (5) buildings (Buildings A, B, C, D and E) and the proposed stacked townhouses. It is anticipated that an average daily consumption of approximately 4.3 L/s, a max daily demand of 8.7 L/s and a peak hourly demand of 13.0 L/s will be required to service this entire proposed development with domestic water. Detailed calculations have been included in **Appendix D**. According to the fire demand calculations, a minimum fire suppression flow of approximately 151.0 L/s at a pressure of 150 kPa (20 PSI) will be required for the proposed site. Please refer to the detailed calculations found in **Appendix D**.

The results from the hydrant test conducted on Erin Mills Parkway adjacent to the proposed development shows that approximately 606.5 L/s (9,613 USGPM) is available at a pressure of 20 PSI. Based on the results of this test, it is anticipated that the existing 300 mm watermain on Erin Mills Parkway will meet sufficient fire suppression capacity to service the proposed development.

7.3 Hydrant Coverage

There are two existing hydrants located within the development's proximity along Erin Mills Parkway. Additionally, there is one existing hydrant on the north side of Folkway Drive, two existing hydrants on Sawmill Valley Drive and one existing hydrant on Farrier Court within the vicinity of the proposed development. Due to the size of the proposed development, four private hydrants are being proposed within the property to ensure there is adequate hydrant coverage. Please refer to **Drawing C201**, the site servicing plan, in **Appendix E** for the locations of the existing, and proposed hydrants as outlined above.

7.4 Proposed Watermain Connection

Water supply for the site will be provided by a connection made to the existing 300 mm diameter watermain on Folkway Drive and the existing 300 mm diameter watermain on Erin Mills Parkway. Private fire hydrants will be placed throughout the site and serviced via the mechanical system's fire system. Please refer to **Drawing C201**, the site servicing plan, in **Appendix E**.

8 Site Grading

8.1 Existing Grades

The overall grade difference across the site is approximately 6.75 m and it slopes from northwest to southeast. Under pre-development conditions, drainage from the site, is captured in existing catch basins and conveyed through an internal sewer network to the ultimate discharge point at Farrier Court. A small external area at the southeast side of the site drains back toward the subject site but is picked up via an existing swale and catch basin. This will be maintained in the proposed condition.

8.2 Proposed Grades

The proposed grades will match current drainage patterns wherever feasible. Grades will be maintained along property lines to the extent practical and where this is not possible, retaining walls and 3:1 maximum slopes will be used to match the existing grade. Storm events up to and including the Regional Storm and the 100-year storm design event, will be captured within the site. Overland flow for events exceeding those noted above, will be directed to the southeast corner of the site and ultimately to Sawmill Valley Drive via the proposed drive aisles and landscape areas across the site. Please refer to **Appendix E** for more grading information.

9 Site Access

According to the architectural plans, three (3) vehicular accesses to the proposed development will be made. One access will be off Erin Mills Parkway, another off of Folkway Drive and the third access will connect to Sawmill Valley Drive at the north side of the site.

10 Utilities

As this development is within an urbanized area of the City, all utilities, including telephone, cable, and electricity and gas are readily available to service the subject property.

11 Conclusions and Recommendations

Based on our investigations, we conclude the following:

Stormwater Management

SWM Criteria are achieved via retention/detention storage in the 281.8 m² stormwater management tank within the P1 level, a 300 mm orifice tube, a stormwater quality unit and water reuse via irrigation/mechanical. Table 11.1 summarizes the proposed SWM measures. Stormwater drainage will be conveyed via a proposed 525 mm diameter concrete storm sewer at a 1.1% slope to the existing 600 mm storm pipe in Farrier Court, thereby maintaining the site's existing stormwater discharge location.

Table 11.1 Stormwater Management Summary

CRITERIA	REQUIREMENT	METHOD	CRITERION ACHIEVED?
Quantity Control	Post to pre control for all storms (i.e. 2, 5, 10, 25, 50 & 100 year) & Regional Storm.	Underground Detention Storage	Y
Quality Control	80% TSS Removal	StormFilter Unit (model SF0824)	Y
Water Balance	Retain 5 mm onsite	Irrigation and Mechanical as required.	Y

Sanitary Sewers

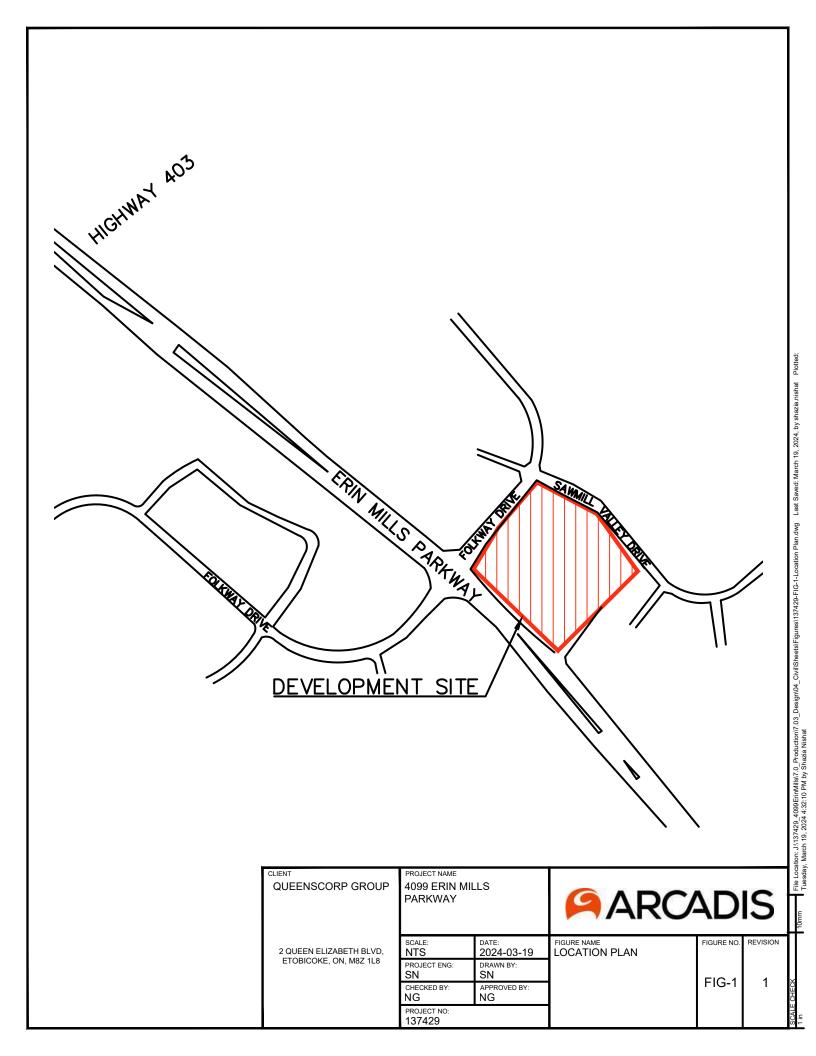
In the pre-development condition, the existing site generates approximately 2.5 L/s of sanitary flow and in the post-development condition, the proposed site generates approximately 18.7 L/s of sanitary flow. The expected increase in peak sanitary discharge flow in the post development condition is approximately 16.2 L/s. The flow will be directed to an existing 250 mm diameter sanitary sewer in the Farrier Court and will be conveyed by a proposed 250 mm diameter sanitary service connection at 0.5% slope.

Water Supply

Water supply for the site will be provided by a connection made to the existing 300 mm diameter watermain on Folkway Drive and the existing 300 mm diameter watermain on Erin Mills Parkway. The average domestic water consumption rates anticipated to be drawn from the existing water networks is approximately 4.3 L/s, a maximum daily consumption of 8.7 L/s and a peak hourly demand of 13.0 L/s. The site requires a minimum flow rate of 151.0 L/s at a pressure of 150 kPa (20 PSI) to account for both fire and domestic flows. The hydrant results show 606.5 L/s of water supply available in the watermain system. No improvements are required to the existing municipal watermain system. Four private hydrants are proposed within the subject site to provide required fire coverage.

Site Grading

The proposed grades will match current drainage patterns wherever feasible. Grades will be maintained along property lines to the extent practical and where this is not possible, retaining walls and 3:1 maximum slopes will be used to match the existing grade. Storm events up to and including the Regional Storm and the 100-year storm design event, will be captured within the site. Overland flow for events exceeding those noted above, will be directed to the east corner of the site and ultimately to Sawmill Valley Drive via the proposed drive aisles and landscape areas across the site. Please refer to **Appendix E** for more grading information.


Recommendations

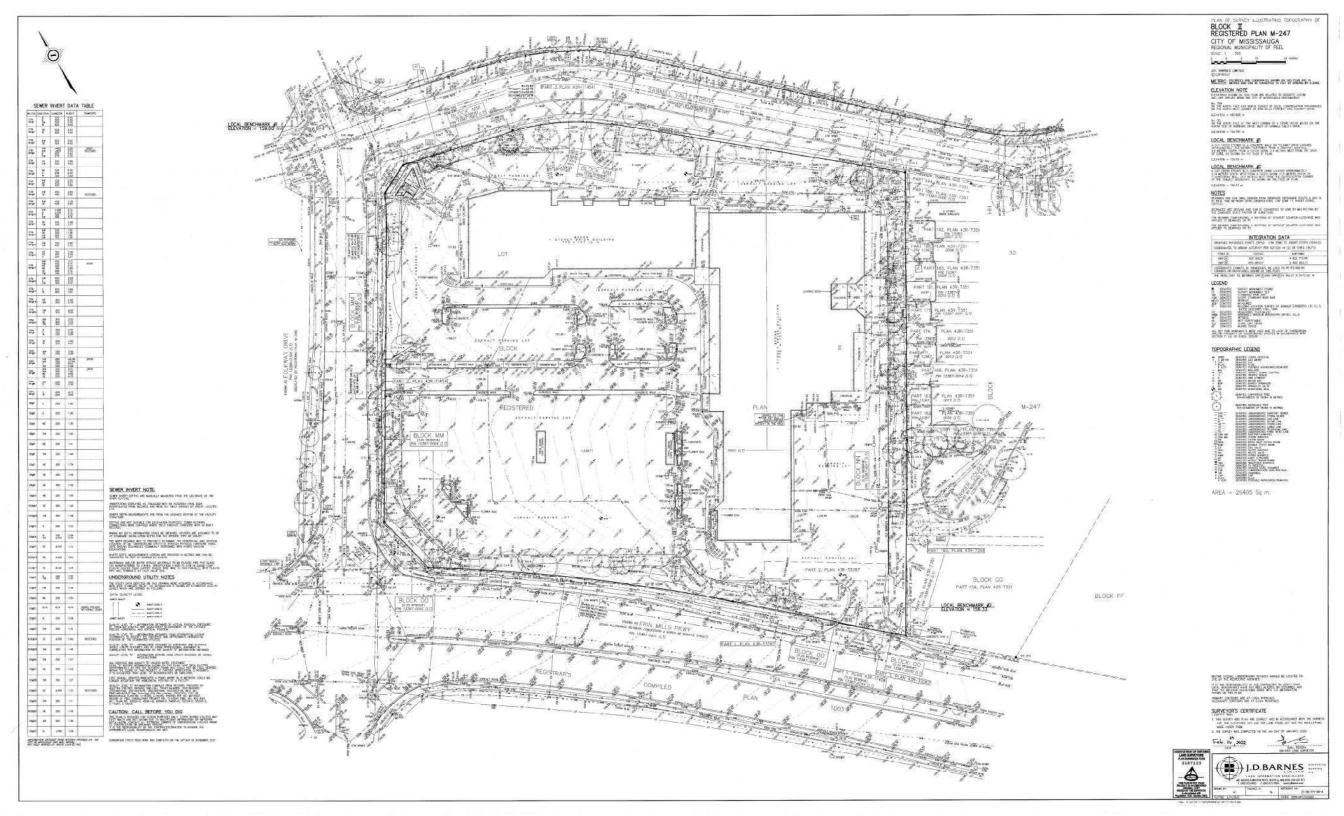
In summary, the site and the proposed re-development can be adequately serviced in respect to water supply, sanitary drainage, stormwater drainage, and SWM. The stormwater quantity and quality controls can be implemented in accordance with the City's SWM guidelines.

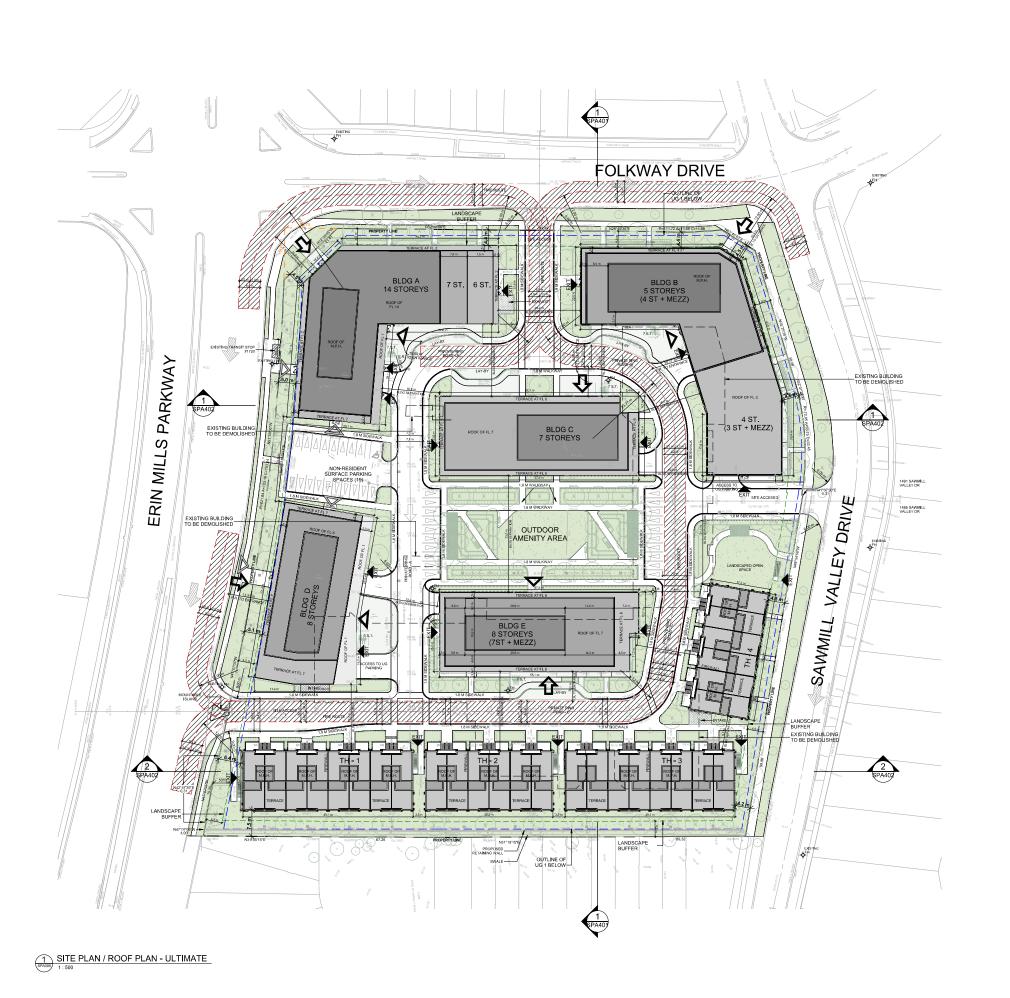
Accordingly, we hereby recommend the adoption of this report as it relates to the provision of servicing works, and for the purposes of Zoning By-Law Amendment approval.

Appendix A

Background Information

PROJECT NAME QUEENSCORP GROUP 4099 ERIN MILLS **ARCADIS PARKWAY** DATE: 2022-07-18 FIGURE NAME AERIAL PLAN SCALE: FIGURE NO. 2 QUEEN ELIZABETH BLVD, NTS ETOBICOKE, ON, M8Z 1L8 PROJECT ENG: DRAWN BY: ND GO


> APPROVED BY: ND


CHECKED BY:

NG PROJECT NO: 137429

FIG-2

1

TURNER FLEISCHER

LEGEND

PRIMARY RESIDENTIAL ENTRANCE SECONDARY RESIDENTIAL ENTRANCE

RETAIL ENTRANCE

EXIT

FIRE HYDRANT

SIAMESE CONNECTION

S.T. SHORT TERM BIKES

OUTLINE OF UG1

LANDSCAPE BUFFER

EXISTING BUILDING TO BE DEMOLISHED

| 2024-09-19 | PARTIAL REZONING SUBMISSION | MNZ | 2022-08-22 | OFFICIAL PLAN AND REZONING SUBMISSION | AYU | M | DATE | DESCRIPTION | B*

QUEENSCORP"

4099 Erin Mills Parkway, Mississauga, ON

SITE PLAN / ROOF PLAN

SPA005

STATISTICS

	M2	SF
PROPOSED SITE AREA:	26,391	284,076
NEW PROPOSAL GFA	58,293	627,469
FSI	2.21	
NEW RESIDENTIAL UNIT#	709	

	M2	SF	%
Building Area	10,856	116,858	41.1%
Landscaped Area	10,689	115,055	40.5%
Paved Area	4,846	52,161	18.4%
Total Site Area	26,391	284,074	100.0%

(GFA EXCLUDES U/G PARKING, MECH.P.H., EXIT STAIR WELLS, INDOOR AMENITY SPACE, BICYCLE STORAGE, GARBAGE CHUTES, GARBAGE ROOM PER CITY OF MISSISSAUGA ZONING BY LAW.)

	DESCRIPT	ION			RESIDENTIA	L		RETAIL		TOTAL GI	- ^
	DESCRIPTI	ON	TOTA	L GFA		NET SALEABI	LE	KETAIL		TOTAL G	·A
	TYPE	FLOORS#	m2	ft2	m2	ft2	UNIT	m2	ft2	m2	ft2
U/G PARKING		2	520	5592						520	5,592
BUILDING 'A'	RESIDENTIAL BASE	15(14+MEZZ.)	17,934	193,043	16,221	174,597	256	408	4,392	18,342	197,435
BUILDING 'B'	RESIDENTIAL BASE	5(4+MEZZ.)	6,120	65,871	5,086	54,742	74			6,120	65,871
BUILDING 'C'	RESIDENTIAL BASE	7	6,668	71,768	5,955	64,097	82			6,668	71,768
BUILDING 'D'	RESIDENTIAL BASE	8	6,950	74,807	6,250	67,272	93	382	4,109	7,332	78,916
BUILDING 'E'	RESIDENTIAL BASE	8(7+MEZZ.)	7,247	78,003	6,485	69,800	92			7,247	78,003
TOTAL			45,437	489,085	39,996	430,508	597	790	8,500	46,227	497,585

		DESCRIPTI	ON			RESIDENTIAL	_		RETAIL	TOTAL GFA	۸
		DESCRIPTI	ON	TOTAL	L GFA		NET SALEABL	Ë		TOTAL GFA	-
		TYPE	FLOORS#	m2	ft2	m2	ft2	UNIT		m2	ft2
В	TO B STACKED TOWNHOUS	108.3M2/ UNIT	4	12,066	129,881	12,066	129,881	112		12,066	129,881

PROPOSED PARKING SUPPLY

RESIDENTIAL	UNITS #	MIN. RATE	PARKING SPACES
Buii d ing 'a'	256	1.1	282
BUILDING 'B'	74	1.1	81
BUILDING 'C'	82	1.1	91
BUILDING 'D'	93	1.1	103
BUILDING 'E'	92	1.1	102
B-B STACKED TOWNHOUSES	112	1.1	123
SUB TOTAL	709	1.1	783
NON-RESIDENTIAL			
RESIDENTIAL VISITOR	709	0.2	142
RETAIL	790	5/100M2	40
SUB TOTAL (BEFORE SHARIN	G)		182
SUB TOTAL (AFTER SHARING)	1		142
TOTAL (BEFORE SHARING)			965
TOTAL (AFTER SHARING)			925

*MINIMUM PARKING RATE AS PER PROPOSED SITE SPECIFIC BY-LAW

AMENITY REQUIRED

5.6m2 per unit	3970 m2

AMENITY PROVIDED

INDOOR	1790 m2
OUTDOOR	2270 m2
TOTAL	4061 m2

BICYCLE PARKING - REQUIRED

DIGTOLL FARMING - NEGOINED					
	RESIDENTIAL		NON-RESIDENTI	AL	TOTAL
USE	RATIO	SPACES	RATIO	SPACES	
SHORT TERM (CLASS B)	0.05 / UNIT	35	0.20 / 100m²	0	35
LONG TERM (CLASS A)	0.60 / UNIT	425	0.15 / 100m²	0	425
TOTAL REQUIRED		460		0	460
*					

^{*} BICYCLE PARKING RATIOS AS PER CITY OF MISSISSAUGA ZONING BY-LAW

*BICYCLE PARKING SPACES SHALL NOT BE REQUIRED FOR NON-RESIDENTIAL USES WITH LESS THAN 1000 m2 OF GFA - NON-RESIDENTIAL.

PROPOSED PARKING PROVIDED

FLOOR	USE		TOTAL
	RESIDENTIAL	NON- RESIDENTIAL	
FLOOR 1		39	39
U/G LEVEL 1	556	103	659
U/G LEVEL 2	227		227
TOTAL PROVIDED	783	142	925
RATIO	1.10		

UNII MIX S	SUMMARY									
BLDG			SALEABLE					AVG. UNIT SIZE		
	BUILDING	1B	2B	2B+D	3B	TOTAL	m²	ft²		
	A	192	35	17	12	256	63.4	682		
	В	43	17	8	6	74	68.7	740		
	С	37	26	14	5	82	72.6	782		
	D	53	30	3	7	93	67.2	723		
	E	65	9	11	7	92	70.5	759		
BLDG A+B+C+D	SUBTOTAL	390	117	53	37	597				
+E	TOTAL UNITS	390	1	170		597				
	UNIT MIX	65.3%	19.6%	8.9%	6.2%	100.0%				
	UNIT MIX TOTAL	65.3%	28.	.5%	6.2%	100.0%	67.0	721		
	AVG UNIT SIZE (m²)	58.2	75.2	86.5	105.5	67.0	67.0	/21		
	AVG UNIT SIZE (ft²)	627	810	931	1,135	721				
	AVG UNIT SIZE TOTAL (m²)	58.2	78	3.7	91.0	67.0]			
	AVG UNIT SIZE TOTAL (ft²)	627	8-	48	980	721				

.6m2 per unit	3970 m2
•	

EVSE PARKING - PROVIDED

157

157

20%

EVSE

NON-RESIDENTIAL

15

15

ACCESSIDI E DADKING - PROVIDED

FLOOR	SPA	CES	TOTAL
	RESIDENTIAL	VISITOR	
FLOOR 1		1	
U/G LEVEL 1	2	5	
U/G LEVEL 2	2		
TOTAL PROVIDED	4	6	1

GROSS FLOOR AREA DEFINITION CITY OF MISSISSAUGA ZONING BY-LAW 0225-2007

Gross Floor Area / (GFA) - Apartment Zone

Gross Floor Area / (GFA) - Residential

Gross Floor Area / (GFA) - Non-Residential

Height

means the sum of the areas of each storey of a building, structure or part thereof, above or below established grade, excluding storage below established grade and a parking structure above or below established grade, measured from the exterior of outside walls, orfrom the midpoint of common walls.

means the sum of the areas of each storey of a building above or below established grade, measured from the exterior of outside walls of the building including floor area occupied by interior walls but excluding any part of the building used for mechanical floor area, stairwells, elevators, motor vehicle parking, bicycle parking, storage lockers, below-grade storage, any enclosed area used for the collectionor storage of disposable or recyclable waste generated within the building, common facilities for the use of the residents of the building, a day care and amenity area. (0174-2017)

means the sum of the areas of each storey of a building measured from the exterior of outside walls but shall not include any part of the building used for motor vehicle parking.

means the sum of the areas of each storey above or below established grade, measured from the exterior of outside walls, or from the midpoint of common walls, including the area of any floor system or assembly located within a storey which is designed or used for access and passage by persons and including all parts of the building or structure or part thereof below established grade used for retail, office, industrial or warehouse uses, but excluding the following:

(1) any part of the building, structure or part thereof used for mechanical floor area;

(2) areas of stairwells, washrooms or elevators;

(3) any endosed area used for the collection or storage of disposable or recyclable waste generated within the building or structure or part thereof;

(4) any part of the building or structure or part thereof above or below established grade used for motor vehicle parking or the provision of loading spaces:

spaces:
(5) any part of the building, structure or part thereof below established grade used for storage incidental to other uses in the building, structure or part thereof or provided and reserved for the personal needs of the occupants of the building, structure or part thereof including lunch rooms, longes or filmses rooms;
(6) accessory outdoor tank, (0379-2009)

means, with reference to the height of a building, structure or part thereof, except a detached dwelling, semi-detached, duplex, triplex, fourplex, townhouse, back to back townhouse or stacked townhouse, the vertical distance between the established grade and:

(1.1) the highest point of the roof surface of a flat roof; or

(1.2) the mean height level between the eaves and ridge of a sloped roof.

(1.3) the mean height level between the eaves and highest point of the flat roof where there is a flat roof on top of a sloped roof; or

(1.4) the highest point of a structure without a roof.

SHORT TERM (CLASS B)

RESIDENTIAL

LONG TERM (CLASS A)

SUB-TOTAL

BICYCLE PARKING - PROVIDED

FLOOR

FLOOR 1 U/G LEVEL 1 TOTAL PROVIDED

TH UNIT MIX PROVIDED

THE OWN WHAT INOVI	TH ONLY MIXT ROYIDED									
BLDG	TYPE	AVG UN	IIT SIZE							
	2B	m2	ft2							
TH	112	107.7	1160							
TOTAL UNITS	112									

TURNER FLEISCHER

DRAWING LIST

Sheet Name	Sheet Number

| 2024-09-19 | PARTIAL REZONING SUBMISSION | MNZ | 2022-08-22 | OFFICIAL PLAN AND REZONING SUBMISSION | AYU | DATE | DESCRIPTION | BY

QUEENSCORP*

4099 Erin Mills Parkway, Mississauga,

STATISTICS

2024-09-19 DRAWN BY ATS

SPA002

RESIDENTIAL RETAIL TOTAL GFA (TFA - EXCLUSIONS) FLOOR TOTAL RESIDENTIAL BLDG A Floor 1 BLDG A Floor 2 BLDG A Floor 3 BLDG A Floor 4 BLDG A Floor 5 BLDG A Floor 6 BLDG A Floor 7 15,100 16,296 16,296 16,296 16,296 16,296 BLDG A Floor 8 BLDG A Floor 9 BLDG A Floor 10 BLDG A Floor 11 BLDG A Floor 12 BLDG A Floor 13 BLDG A Floor 14 TOTAL (ROUNDED) 256 16,220,6 174,597 1,713,7 18,447 17,934,3 193,043

	AMENITY AR	EA BREAKDOW	'N		TOTAL FLOOR	AREA BREAKDOV	VN	
	OUTDOO	R AMENITY	INDOOR /	INDOOR AMENITY		AREA EXCLUSIONS		OOR AREA
┑.	m²	ft²	m²	ft²	m²	ft²	m²	ft²
30			333.3	3,588	355.9	3,831	1,913.7	20,59
30 30 36 36 36 38 38 38 36 36 36 36					47.4	510	1,450.2	15,61
96					47.3	510	1,561.3	16,80
96					47.4	510	1,561.3	16,80
96					47.4	510	1,561.3	16,80
96					47.4	510	1,561.3	16,80
38					47.4	510	1,374.8	14,79
38					47.4	510	1,374.8	14,79
36					47.4	510	1,214.8	13,07
36					47.4	510	1,214.8	13,07
36					47.4	510	1,214.8	13,07
66					47.4	510	1,214.8	13,07
36					47.4	510	1,214.8	13,07
66					47.4	510	1,214.8	13,07
					266.2	2,865	266.2	2,86
13 35			333,313	3,587,750	1,237,777	13,323,330	19,913,377	214,345,89
35			333.3	3,588	1,237.8	13,323	19,913.4	214,34

Last Updated: Tuesday, 06 August 2024 16:42:27 PM

TOTAL FLOOR AREA

TOTAL FLOOR AREA

TOTAL FLOOR AREA BREAKDOW

GROSS FLOOR AREA BREAKDOWN

	FLOOR	# OF UNITS		TOTAL GFA (TFA - EXCLUSIONS)				
		GIVIIS	SALE	ABLE	NON-SA	LEABLE	(IFA-LAG	.0310143)
			m²	ft²	m²	ft²	m²	ft²
	BLDG B Floor 1	9	528.8	5,692	479.3	5,159	1,008.1	10,851
BLDG B	BLDG B Mezz		326.9	3,519			326.9	3,519
DLDG B	BLDG B Floor 2	24	1,522.6	16,389	254.7	2,741	1,777.2	19,130
	BLDG B Floor 3	27	1,718.0	18,493	172.3	1,855	1,890.4	20,348
	BLDG B Floor 4	14	989.3	10,649	127.6	1,373	1,116.9	12,023
	BLDG B M.P.H.							
	TOTAL	74	5,085,672	54,741,740	1,033,879	11,128,584	6,119,551	65,870.324
	TOTAL (ROUNDED)	74	5,085.7	54,742	1,033.9	11,129	6,119.6	65,870

AMENITY AREA BREAKDOWN

TOTAL PARTY OF THE	J. DITEMBOT	•		TOTALTECORY	TCD CDICE
OUTDOOR	R AMENITY	INDOOR.	AMENITY	AREA EXCI	USIONS
m²	ft*	m²	ft²	m²	ft²
		463.4	4,988	544.3	
				61.5	
				63.8	
				46.3	
				462.9	
		463,392	4,987,917	1,178,670	12,68
		463.4	4,988	1,178.7	1
				Last Updated: Tue	sday, 06 /

TOTAL FLOOR AREA BREAKDOWN

GROSS FLOOR AREA BREAKDOWN

GITOGO I	LOOK AKEA BREAKDOWN							
	FLOOR	# OF UNITS		RESIDI	ENTIAL		TOTAL GFA (TFA - EXCLUSIONS)	
		O TATLO	SALE	ABLE	NON-SA	LEABLE	(IIIA EXC	20010140)
			m _s	ft²	m²	ft?	m²	ft ²
	BLDG C Floor 1				147.7	1,590	147.7	1,590
	BLDG C Floor 2	13	932.6	10,039	123.7	1,332	1,056.3	11,370
BLDG C	BLDG C Floor 3	15	1,093.9	11,774	88.3	950	1,182.1	12,724
BLDG C	BLDG C Floor 4	15	1,093.9	11,774	88.3	950	1,182.1	12,724
	BLDG C Floor 5	15	1,093.9	11,774	88.3	950	1,182.1	12,724
	BLDG C Floor 6	12	905.0	9,741	88.3	950	993.2	10,691
	BLDG C Floor 7	12	835.6	8,995	88.3	950	923.9	9,945
	BLDG C M.P.H.							
1	TOTAL	82	5,954,783	64,096,774	712,745	7,671,925	6,667,528	71,768,700
	TOTAL (ROUNDED)	82	5,954.8	64,097	712.7	7,672	6,667.5	71,769

Last Updated: Friday, 23 August 2024 16:24:57 PM

AMENITY AREA BREAKDOWN									
OUTDOOR	AMENITY	INDOOR A	MENITY						
m²	ft²	m²	ft²						
		454.8	4,896						
		454,824	4,895,685						
		454.8	4,896						

GROSS FLOOR AREA BREAKDOWN

FLOOR		# OF UNITS	RESIDENTIAL			TOTAL RESIDENTIAL		RETAIL		TOTAL GFA (TFA - EXCLUSIONS)		
		ONTO	SALEABLE		NON-SALEABLE				RE1	ΓAJL	(TFA-EXCLUSIONS)	
			m²	ft²	m²	ft ²	m²	ft ²	m²	ft²	m²	ft ²
	BLDG D Floor 1				206.3	2,220	206.3	2,220	381.7	4,108	588.0	6,329
	BLDG D Floor 2	11	823.6	8,865	123.5	1,330	947.1	10,195			947.1	10,195
	BLDG D Floor 3	15	980.1	10,550	64.1	690	1,044.3	11,241			1,044.3	11,241
BLDG D	BLDG D Floor 4	15	980.1	10,550	64.1	690	1,044.3	11,241			1,044.3	11,241
	BLDG D Floor 5	15	980.1	10,550	64.1	690	1,044.3	11,241			1,044.3	11,241
	BLDG D Floor 6	15	980.1	10,550	64.1	690	1,044.3	11,241			1,044.3	11,241
	BLDG D Floor 7	11	772.4	8,314	56.8	611	829.1	8,925			829.1	8,925
	BLDG D Floor 8	11	733.4	7,894	56.8	611	790.2	8,505			790.2	8,505
1	BLDG D MPH											
	TOTAL	93	6,249.840	67,272,744	699.974	7,534.456	6,949,813	74,807,200	381.683	4,108.407	7,331,497	78,915.607
	TOTAL (ROUNDED)	93	6,249.8	67,273	700.0	7,534	6,949.8	74,807	381.7	4,108	7,331.5	78,916

Last Updated: Friday, 23 August 2024 16:25:35 PM

AMENITY AREA BREAKDOWN

AMENITY AREA BREAKDOWN	N		TOTAL FLOOR	AREA BREAKDOV	VN		
OUTDOOR AMENITY	OUTDOOR AMENITY INDOOR A		AREA EXC	CLUSIONS	TOTAL FLOOR AREA GRANNOOR AMENTY-EXCL.		
m² ft²	m²	ft²	m²	ft²	m²	ft²	
	267.8	2,883	494.1	5,319	1,349.9	14,530	
			47.7	514	994.9	10,709	
			45.0	485	1,089.3	11,725	
			45.0	485	1,089.3	11,725	
			45.0	485	1,089.3	11,725	
			45.0	485	1,089.3	11,725	
			45.0	485	874.2	9,410	
			45.0	485	835.2	8,990	
			345.8	3,722	345.8	3,722	
	267,808	2,882.660	1,157.873	12,463.242	8,757.177	94,261.509	
	267.8	2,883	1,157.9	12,463	8,757.2	94,262	

Last Updated: Tuesday, 06 August 2024 16:43:06 PM

GROSS FLOOR AREA BREAKDOWN

	FLOOR	# OF UNITS		RESIDE	ENTIAL		TOTAL (TFA - EXC	
		071170	SALE	ABLE	NON-SA	LEABLE	(IIII ENG	20010110)
			m²	ft²	m²	ft²	m²	ft²
	BLDG E Floor 1	5	354.3	3,813	342.4	3,686	696.7	7,499
	BLDG E Mezz		206.6	2,224			206.6	2,224
	BLDG E Floor 2	14	976.0	10,505	72.2	777	1,048.2	11,282
BLDG E	BLDG E Floor 3	16	1,096.3	11,800	72.2	777	1,168.5	12,578
	BLDG E Floor 4	16	1,096.3	11,800	72.2	777	1,168.5	12,578
	BLDG E Floor 5	16	1,096.3	11,800	72.2	777	1,168.5	12,578
	BLDG E Floor 6	13	869.7	9,362	64.9	698	934.6	10,060
	BLDG E Floor 7	12	789.0	8,493	66.0	710	855.0	9,203
	BLDG E M.P.H.							
	TOTAL	92	6,484.589	69,799.561	762.074	8,202,898	7,246.662	78,002.459
	TOTAL (ROUNDED)	92	6,484.6	69,800	762.1	8,203	7,246.7	78,002

Last Updated: Friday, 23 August 2024 16:26:29 PM

TOTAL	FLOOR	ARFA	BREAKDOW

OUTDOOR AMENITY		INDOOR AMENITY		AREA EX	AREA EXCLUSIONS		TOTAL FLOOR AREA		
	.,						GFA+INDOOR AMENITY+EXCL.		
m²	ft²	m²	ft²	m²	ft²	m²	ft²		
		271.1	2,918	329.1	3,542	1,296.8	13,959		
				14.8	160	221.5	2,384		
				44.9	484	1,093.1	11,766		
				44.9	484	1,213.4	13,061		
				44.9	484	1,213.4	13,061		
				44.9	484	1,213.4	13,061		
				44.9	484	979.5	10,544		
				44.9	484	899.9	9,687		
				294.2	3,167	294.2	3,167		
		271.056	2,917.623	907.676	9,770.145	8,425.394	90,690.227		
		271.1	2,918	907.7	9,770	8,425.4	90,690		

Last Updated: Tuesday, 06 August 2024 16:43:19 PM

TURNER FLEISCHER

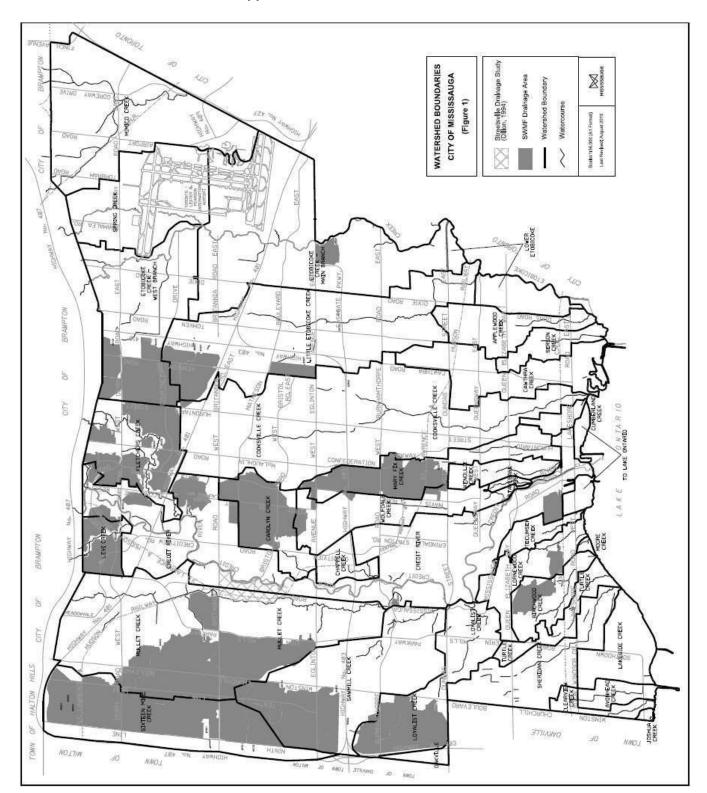
This diverse, is an observer of service is provided by an a transpose of linear Helicides. To contrade manifest you all demonstrates and conditions on all service in the service of the s

1 2022-08-22 OFFICIAL PLAN AND REZONING SUBMISSION AYU

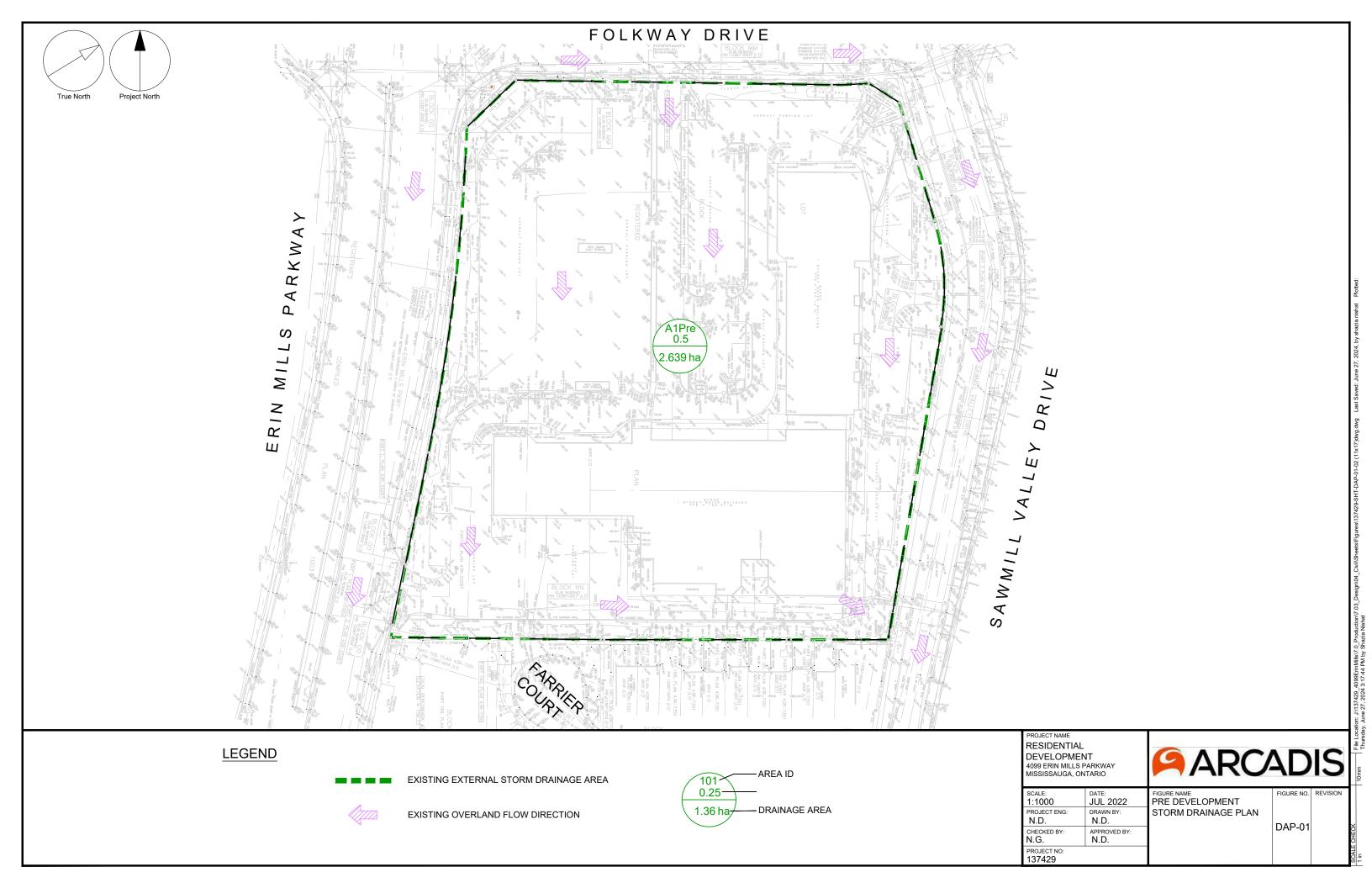
* DATE DESCRIPTION BY

QUEENSCORP

4099 Erin Mills Parkway, Mississauga, ON


STATISTICS AREA BREAKDOWN

PROJECT NO.
19.001
PROJECT DATE
2024-09-06
DRAWN BY
JMS
CHECKED BY
AYU
SCALE
1 · 1


SPA002b 1

Appendix B

Stormwater Data Analysis

Appendix 1: Watershed Boundaries

Residential Townhouse/Condo

Runoff Coefficients

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

A1Post - Controlled	A1Post - Controlled Site Areas								
Conventional Roof	9,488	38.3%	0.90	0.34					
Green Roof	0	0.0%	0.50	0.00					
Landscape	913	3.7%	0.25	0.009					
Landscape over P1	4,959	20.0%	0.45	0.09					
Permeable Pavers	0	0.0%	0.55	0.00					
Impervious	9,429	38.0%	0.90	0.34					
Total Area	24,789	100%		0.79					

A2Post - Uncontrolle	A2Post - Uncontrolled Areas to Folkway and Sawmill Valley Dr									
Conventional Roof	0	0.0%	0.90	0.00						
Green Roof	0	0.0%	0.50	0.00						
Landscape	321	20.0%	0.25	0.05						
Landscape over P1	660	41.2%	0.45	0.19						
Permeable Pavers	0	0.0%	0.55	0.00						
Impervious	621	38.8%	0.90	0.35						
Total Area	1,602	100.0%		0.58						

EXT1 - South External Area									
Conventional Roof	365	28.6%	0.90	0.26					
Green Roof	0	0.0%	0.50	0.00					
Landscape	909	71.4%	0.25	0.18					
Landscape over P1	0	0.0%	0.45	0.00					
Permeable Pavers	0	0.0%	0.55	0.00					
Impervious	0	0.0%	0.90	0.00					
Total Area	1,274	100%		0.44					

Total Site Area	Total Site Area								
Conventional Roof	9,488	36.0%	0.90	0.32					
Green Roof	0	0.0%	0.50	0.00					
Landscape	1,234	4.7%	0.25	0.01					
Landscape over P1	5,619	21.3%	0.45	0.10					
Permeable Pavers	0	0.0%	0.55	0.00					
Impervious	10,050	38.1%	0.90	0.34					
Total Area	26,391	100%		0.77					

4099 Erin Mills Parkway Residential Townhouse/Condo **ARCADIS**

ORIFICE AND SERVICE DESIGN

Tank

Cntrl.MH

Cntrl.MH

CSS.MH

k=0.8

300

Orifice and Storm Service

Storm Service

IDF Curve Equations: City of Mississauga $I_{2-year} = \frac{610}{(T+4.6)^{0.78}}$ I_{25-year} = 1160 (T+4.6)^{0.78}

ALLOWABLE RELEASE RATE AND STORM SERVICE DESIGN

2-100 -YEAR STORM SEWER DESIGN SHEET

Project Name: 4099 Erin Mills Parkway

10.2

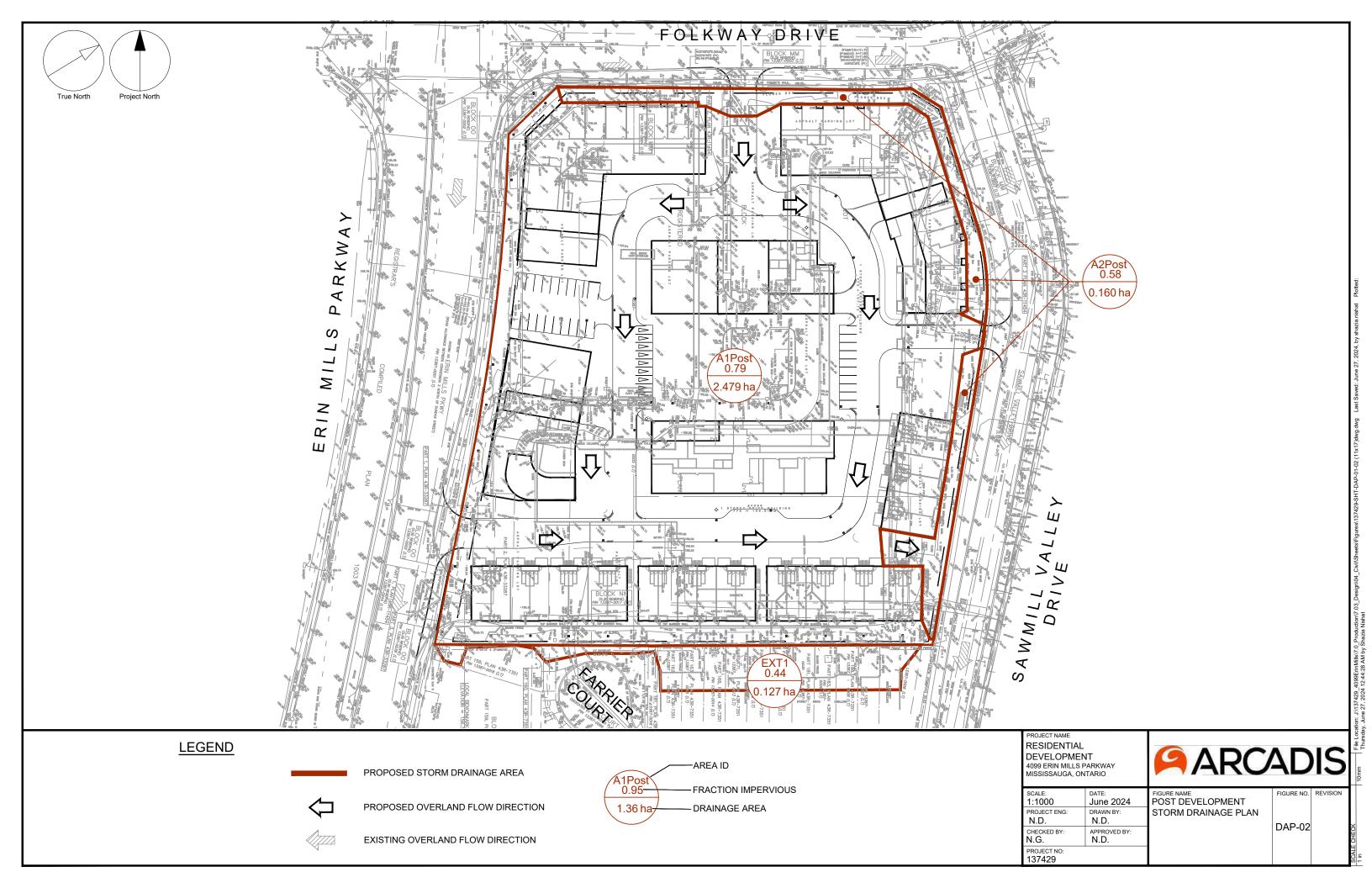
		I _{5-year} =	1010	<u> </u>	I _{50-year} =	(T+4.7) ^{0.78}		25-yr 50-yr 100-yr	1.20							Project Number	te: September 2024	
			(T+4.6) ^{0.78}			(T+4.9) ^{0.78}												
			1	DESIG	N FLOW CALCUL	ATIONS					T	SEWE	R DESIGN & AN	ALYSIS	T		1	
	From To MH MH	A (ha)	R	AxR	Accum. A x R	T _c (min)	l (mm/hr)	Q _{act}	Size of Pipe (mm)	Slope (%)	Nominal Capacity Q _{cap} (L/s)	Full Flow Velocity (m/s)	Actual Velocity (m/s)	Length (m)	Time in Section (min)	Total Time (min)	Percent of Full Flow (%)	Notes
PRE-DEVELOPMENT FLOWS TARGET RELEASE RATES																		
2-Yr Allowable Release Rate		2.6391	0.50	1.320	1.320	15.0	59.89	219.5										
5-Yr Allowable Release Rate		2.6391	0.50	1.320	1.320	15.0	80.51	295.1										
10-Yr Allowable Release Rate		2.6391	0.50	1.320	1.320	15.0	99.17	363.5										
25-Yr Allowable Release Rate		2.6391	0.50	1.320	1.320	15.0	113.89	417.5										
50-Yr Allowable Release Rate		2.6391	0.50	1.320	1.320	15.0	127.13	466.0										
100-Yr Allowable Release Rate		2.6391	0.50	1.320	1.320	15.0	140.69	515.7										
Regional Storm (Hurricane Hazel)			<u> </u>	Refer to Visual	OTTHYMO Model			375.0										
POST DEVELOPMENT FLOWS																		
2-YR POST-DEV FLOWS 2-Yr Controlled Flow		2.4789	0.79					177.0	525	1.10%	451.1	2.1	1.9	25.80	0.2	10.2	39%	
2-Yr Un-Controlled Flow (A2)		0.1602	0.58	0.094	0.094	15.0	59.89	15.6								10.2	0070	
2-Yr Total Post-Dev Discharge		0.1002	0.50	0.001	0.001	10.0	00.00	192.6										
2 Tricker out Dov Discharge								102.0										
5-YR POST-DEV FLOWS	•	•			1						ı					1		
5-Yr Controlled Flow		2.4789	0.79					215.8	525	1.10%	451.1	2.1	2.0	25.80	0.2	10.2	48%	
5-Yr Uncontrolled Flow (A2)		0.1602	0.58	0.094	0.094	15.0	80.51	20.9										
5-Yr Total Post-Dev Discharge								236.7										
40 VP POOT PEV ELOWO																		
10-YR POST-DEV FLOWS 10-Yr Controlled Flow		2.4789	0.79					247.2	525	1.10%	451.1	2.1	2.1	25.80	0.2	10.2	55%	
10-Yr Uncontrolled Flow (A2)		0.1602	0.79	0.094	0.094	15.0	99.17	25.8								10.2	35%	
10-Yr Total Post-Dev Discharge		0.1002	0.30	0.094	0.054	13.0	99.17	273.0										
25-YR POST-DEV FLOWS									525	1.10%	451.1	2.1	2.2	25.80	0.2			
25-Yr Controlled Flow		2.4789	0.79					286.8	525	1.1076	451.1	2.1	2.2	23.60	0.2	10.2	64%	
25-Yr Uncontrolled Flow (A2) 25-Yr Total Post-Dev Discharge		0.1602	0.64	0.103	0.103	15.0	113.89	32.6 319.4										
20 Tr Total Total Sol Bot Blocklango								010.4										
50-YR POST-DEV FLOWS																		
50-Yr Controlled Flow		2.4789	0.79					324.3	525	1.10%	451.1	2.1	2.3	25.80	0.2	10.2	72%	
50-Yr Uncontrolled Flow (A2)		0.1602	0.70	0.112	0.112	15.0	127.13	39.7										
50-Yr Total Post-Dev Discharge								364.0										
100-YR POST-DEV FLOWS										<u> </u>								
100-Yr Controlled Flow		2.4789	0.79					353.9	525	1.10%	451.1	2.1	2.3	25.80	0.2	10.2	78%	
100-Yr Uncontrolled Flow (A2)		0.1602	0.73	0.117	0.117	15.0	140.69	45.7										
100-Yr Total Post-Dev Discharge								399.7										
REGIONAL STORM (HURRICANE HAZEL	POST-DEV FLOWS																	
Regional Storm Controlled Flow	,. 551-524 (2045			Refer to Visual	OTTHYMO Model			320.0	525	1.10%	451.1	2.1	2.3	25.80	0.2	10.2	71%	
Regional Storm Uncontrolled Flow (A2)					OTTHYMO Model			23.0								10.2	. 170	
Regional Storm Total Discharge			T		OTTHYMO Model	Γ		340.0										

Q (L/s)

353.9

353.9

451.1


Orif.(mm) Area (m2) depth (m) head (m)

2.15

2.00

0.07069

Adjustment Factors 10-yr

Rational Method - 2 Year Storm

Residential Townhouse/Condo

$Q = C \times A \times \sqrt{2 \times g \times h}$

		I _{100-year} =	610 (T. 4.0) ^{0.78}	= 59.89 mm/hr
Drainet Name:	14000 Erin Millo Dorlavov	,	(T+4.6) ^{0.78}	
Project Name:	4099 Erin Mills Parkway	\A/ - :	Controlled Area =	2.61
Project Number:	137429	vvei	ghed Runoff Coefficient =	0.77
Date:	September 2024		Orifice Discharge (L/s) =	177.0
Time (min)	Intensity (mm/hr)	Q-2 (L/s)	Q-stored (L/s)	Storage Volume (m
0	0.0	0.000	0.000	0.000
15	59.9	333.415	156.385	140.746
20	50.2	279.265	102.234	122.681
25	43.4	241.734	64.704	97.055
30	38.4	214.026	36.995	66.591
35	34.6	192.639	15.608	32.777
40	31.5	175.576	0.000	0.000
45	29.0	161.611	0.000	0.000
50	26.9	149.946	0.000	0.000
55	25.2	140.040	0.000	0.000
60	23.6	131.512	0.000	0.000
65	22.3	124.082	0.000	0.000
70	21.1	117.546	0.000	0.000
75	20.1	111.746	0.000	0.000
80	19.1	106.561	0.000	0.000
85	18.3	101.893	0.000	0.000
90	17.5	97.668	0.000	0.000
95	16.9	93.822	0.000	0.000
100	16.2	90.305	0.000	0.000
105	15.6	87.075	0.000	0.000
110	15.1	84.097	0.000	0.000
115	14.6	81.342	0.000	0.000
120	14.2	78.785	0.000	0.000
125	13.7	76.404	0.000	0.000
130	13.3	74.181	0.000	0.000
135	13.0	72.100	0.000	0.000
140	12.6	70.148	0.000	0.000
145	12.3	68.312	0.000	0.000
150	12.0	66.583	0.000	0.000
155	11.7	64.950	0.000	0.000
160	11.4	63.406	0.000	0.000
165	11.1	61.943	0.000	0.000
170	10.9	60.555	0.000	0.000
175	10.6	59.236	0.000	0.000
180	10.4	57.981	0.000	0.000
185	10.2	56.785	0.000	0.000
190	10.0	55.643	0.000	0.000

HGL Depth (m) = 0.5 Orifice Diameter (mm) = 300

Storage Volume Required (cu.m) = 140.7
Storage Volume Provided (cu.m) = 140.7

Rational Method - 5 Year Storm

Residential Townhouse/Condo

$Q = C \times A \times \sqrt{2 \times g \times h}$

		I _{100-year}	= 820	= 80.51 mm/hr
		- 100-year	(1+4.0)	
Project Name:	4099 Erin Mills Parkway		Controlled Area =	2.61
Project Number:	137429	V	Veighed Runoff Coefficient =	0.77
Date:	October 2024		Orifice Discharge (L/s) =	215.8
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Volume (r
0	0.0	0.000	0.000	0.000
15	80.5	448.198	232.393	209.153
20	67.4	375.405	159.600	191.520
25	58.4	324.954	109.149	163.723
30	51.7	287.707	71.902	129.423
35	46.5	258.957	43.152	90.618
40	42.4	236.020	20.215	48.515
45	39.0	217.247	1.442	3.893
50	36.2	201.567	0.000	0.000
55	33.8	188.251	0.000	0.000
60	31.8	176.786	0.000	0.000
65	30.0	166.799	0.000	0.000
70	28.4	158.013	0.000	0.000
75	27.0	150.216	0.000	0.000
80	25.7	143.245	0.000	0.000
85	24.6	136.971	0.000	0.000
90	23.6	131.291	0.000	0.000
95	22.7	126.121	0.000	0.000
100	21.8	121.393	0.000	0.000
105	21.0	117.052	0.000	0.000
110	20.3	113.049	0.000	0.000
115	19.6	109.345	0.000	0.000
120	19.0	105.907	0.000	0.000
125 130	18.4 17.9	102.706 99.718	0.000 0.000	0.000 0.000
135	17.9		0.000	0.000
140	16.9	96.921 94.297	0.000	0.000
145	16.5	94.297	0.000	0.000
150	16.1	89.505	0.000	0.000
155	15.7	87.310	0.000	0.000
160	15.3	85.234	0.000	0.000
165	15.0	83.268	0.000	0.000
170	14.6	81.402	0.000	0.000
175	14.3	79.629	0.000	0.000
180	14.0	77.941	0.000	0.000
185	13.7	76.334	0.000	0.000
190	13.4	74.799	0.000	0.000
100	10.4	7 1.7 00	0.000	0.000

HGL Depth (m) = 0.7 Orifice Diameter (mm) = 300

Storage Volume Required (cu.m) = 209.2
Storage Volume Provided (cu.m) = 209.2

Rational Method - 10 Year Storm

Residential Townhouse/Condo

$Q = C \times A \times \sqrt{2 \times g \times h}$

ARCA		l _{100-year} =	= 1010 (T : 4.0) ^{0.78}	= 99.17 mm/hr
D : (N	Lione E : Mill B	,	(1+4.6)	0.04
Project Name:	4099 Erin Mills Parkway	147	Controlled Area =	2.61
Project Number:	137429	VVe	eighed Runoff Coefficient =	0.77
Date:	October 2024		Orifice Discharge (L/s) =	247.2
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Volume (m
0	0.0	0.000	0.000	0.000
15	99.2	552.048	304.871	274.384
20	83.1	462.389	215.212	258.254
25	71.9	400.248	153.071	229.606
30	63.7	354.371	107.193	192.948
35	57.3	318.959	71.782	150.741
40	52.2	290.707	43.530	104.472
45	48.1	267.585	20.407	55.100
50	44.6	248.271	1.094	3.282
55	41.7	231.870	0.000	0.000
60	39.1	217.749	0.000	0.000
65	36.9	205.448	0.000	0.000
70	35.0	194.626	0.000	0.000
75	33.2	185.023	0.000	0.000
80	31.7	176.436	0.000	0.000
85	30.3	168.708	0.000	0.000
90	29.0	161.712	0.000	0.000
95	27.9	155.344	0.000	0.000
100	26.9	149.521	0.000	0.000
105	25.9	144.173	0.000	0.000
110	25.0	139.243	0.000	0.000
115	24.2	134.681	0.000	0.000
120	23.4	130.447	0.000	0.000
125	22.7	126.504	0.000	0.000
130	22.1	122.824	0.000	0.000
135	21.4	119.379	0.000	0.000
140	20.9	116.146	0.000	0.000
145	20.3	113.107	0.000	0.000
150 155	19.8	110.244	0.000 0.000	0.000
155 160	19.3 18.9	107.540 104.984	0.000	0.000 0.000
165	18.4	104.984	0.000	0.000
			0.000	0.000
170 175	18.0 17.6	100.263 98.079	0.000	0.000
180	17.0	96.001	0.000	0.000
185	16.9		0.000	
190		94.021	0.000	0.000
190	16.5	92.131	0.000	0.000

HGL Depth (m) = 1.0 Orifice Diameter (mm) = 300

Storage Volume Required (cu.m) = 274.4

Storage Volume Provided (cu.m) = 274.4

Rational Method - 25 Year Storm

Residential Townhouse/Condo

$Q = C \times A \times \sqrt{2 \times g \times h}$

		$I_{100\text{-year}} = \frac{1160}{(\text{Total } 9.978)} = 113.89 \text{ mm}$				
		I _{100-year} =	(T+4.6) ^{0.78}	= 113.89 mm/m		
Project Name:	4099 Erin Mills Parkway		Controlled Area =	2.61		
Project Number:	137429	Wei	ghed Runoff Coefficient =	0.85		
Date:	September 2024		286.8			
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Volume (m³)		
0	0.0	0.000	0.000	0.000		
15	113.9	697.439	410.590	369.531		
20	95.4	584.167	297.317	356.780		
25	82.6	505.660	218.810	328.216		
30	73.1	447.700	160.850	289.530		
35	65.8	402.962	116.112	243.835		
40	60.0	367.270	80.420	193.008		
45	55.2	338.057	51.208	138.261		
50	51.2	313.658	26.808	80.424		
55	47.8	292.937	6.087	20.088		
60	44.9	275.096	0.000	0.000		
65	42.4	259.556	0.000	0.000		
70	40.2	245.884	0.000	0.000		
75	38.2	233.751	0.000	0.000		
80	36.4	222.904	0.000	0.000		
85	34.8	213.140	0.000	0.000		
90	33.4	204.301	0.000	0.000		
95	32.0	196.256	0.000	0.000		
100 105	30.8 29.7	188.900 182.144	0.000 0.000	0.000 0.000		
110	29.7	175.915	0.000	0.000		
115	27.8	170.152	0.000	0.000		
120	26.9	164.802	0.000	0.000		
125	26.1	159.821	0.000	0.000		
130	25.3	155.171	0.000	0.000		
135	24.6	150.819	0.000	0.000		
140	24.0	146.735	0.000	0.000		
145	23.3	142.896	0.000	0.000		
150	22.7	139.278	0.000	0.000		
155	22.2	135.863	0.000	0.000		
160	21.7	132.633	0.000	0.000		
165	21.2	129.573	0.000	0.000		
170	20.7	126.669	0.000	0.000		
175	20.2	123.910	0.000	0.000		
180	19.8	121.285	0.000	0.000		
185	19.4	118.782	0.000	0.000		
190	19.0	116.395	0.000	0.000		

HGL Depth (m) = 1.3 Orifice Diameter (mm) = 300

Storage Volume Required (cu.m) = 369.5
Storage Volume Provided (cu.m) = 369.5

Rational Method - 50 Year Storm

Residential Townhouse/Condo

$Q = C \times A \times \sqrt{2 \times g \times h}$

		, -	1300	= 127.13 mm/hr
			$(T+4.7)^{0.78}$	= 127.13 mm/m
Project Name:	4099 Erin Mills Parkway		Controlled Area =	2.61
Project Number:	137429	Weigh	ed Runoff Coefficient =	0.92
Date:	September 2024	C	rifice Discharge (L/s) =	324.3
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Volume (m ³)
0	0.0	0.000	0.000	0.000
15	127.1	849.291	524.946	472.451
20	106.6	711.929	387.583	465.100
25	92.3	616.581	292.236	438.353
30	81.7	546.114	221.769	399.183
35	73.6	491.681	167.336	351.405
40	67.1	448.229	123.884	297.322
45	61.8	412.650	88.305	238.423
50	57.3	382.922	58.576	175.729
55	53.5	357.668	33.323	109.965
60	50.3	335.919	11.574	41.666
65	47.4	316.970	0.000	0.000
70	45.0	300.296	0.000	0.000
75	42.7	285.498	0.000	0.000
80	40.8	272.265	0.000	0.000
85	39.0	260.353	0.000	0.000
90	37.4	249.567	0.000	0.000
95	35.9	239.750	0.000	0.000
100 105	34.5 33.3	230.771 222.525	0.000 0.000	0.000 0.000
110	32.2	222.525 214.922	0.000	0.000
115	31.1	207.887	0.000	0.000
120	30.1	201.356	0.000	0.000
125	29.2	195.275	0.000	0.000
130	28.4	189.598	0.000	0.000
135	27.6	184.284	0.000	0.000
140	26.8	179.298	0.000	0.000
145	26.1	174.609	0.000	0.000
150	25.5	170.191	0.000	0.000
155	24.9	166.021	0.000	0.000
160	24.3	162.076	0.000	0.000
165	23.7	158.339	0.000	0.000
170	23.2	154.793	0.000	0.000
175	22.7	151.423	0.000	0.000
180	22.2	148.216	0.000	0.000
185	21.7	145.160	0.000	0.000
190	21.3	142.244	0.000	0.000

HGL Depth (m) = 1.7 Orifice Diameter (mm) = 300

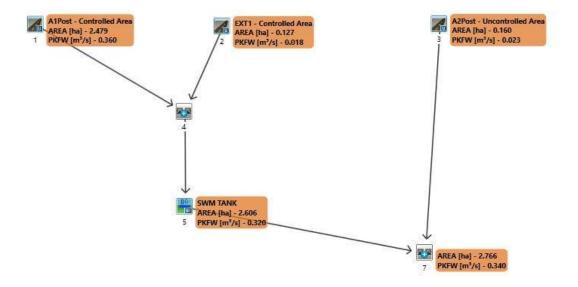
Storage Volume Required (cu.m) = 472.5 Storage Volume Provided (cu.m) = 472.5

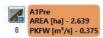
Rational Method - 100 Year Storm

Residential Townhouse/Condo

$Q = C \times A \times \sqrt{2 \times g \times h}$

		, –	1450	= 140.69 mm/hr
			$(T+4.9)^{0.78}$	= 140.69 mm/m
Project Name:	4099 Erin Mills Parkway		Controlled Area =	2.61
Project Number:	137429	Weighe	d Runoff Coefficient =	0.96
Date:	September 2024		ifice Discharge (L/s) =	353.9
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Volume (m ³)
o ´	0.0	0.000	0.000	0.000
15	140.7	979.012	625.081	562.573
20	118.1	821.974	468.043	561.652
25	102.4	712.640	358.709	538.063
30	90.8	631.669	277.738	499.929
35	81.8	569.029	215.098	451.707
40	74.6	518.969	165.038	396.091
45	68.7	477.942	124.011	334.829
50	63.8	443.636	89.705	269.116
55	59.6	414.477	60.546	199.802
60	56.0	389.352	35.421	127.516
65	52.8	367.453	13.522	52.734
70	50.0	348.175	0.000	0.000
75	47.6	331.060	0.000	0.000
80	45.4	315.752	0.000	0.000
85	43.4	301.968	0.000	0.000
90	41.6	289.485	0.000	0.000
95	40.0	278.120	0.000	0.000
100	38.5	267.725	0.000	0.000
105	37.1	258.176	0.000	0.000
110	35.8	249.370	0.000	0.000
115	34.7	241.221	0.000	0.000
120	33.6	233.655	0.000	0.000
125 130	32.6 31.6	226.610	0.000 0.000	0.000 0.000
135	30.7	220.031 213.873	0.000	0.000
140	29.9	208.094	0.000	0.000
145	29.1	202.660	0.000	0.000
150	28.4	197.539	0.000	0.000
155	27.7	192.704	0.000	0.000
160	27.0	188.131	0.000	0.000
165	26.4	183.799	0.000	0.000
170	25.8	179.687	0.000	0.000
175	25.3	175.780	0.000	0.000
180	24.7	172.061	0.000	0.000
185	24.2	168.517	0.000	0.000
190	23.7	165.135	0.000	0.000
	•			


 HGL Depth (m) =
 2.0


 Orifice Diameter (mm) =
 300

 Orifice Invert (m) =
 151.1

Storage Volume Required (cu.m) = Storage Volume Provided (cu.m) =

562.6 562.6

000 000 1 and 200 2s re fil kroe 8b3d fil kroe	I I I TTTTT T T Distri 7 - 202 served. * ename: ename: ssa7641 -4d9a-9 ename:	SSSSS TTTTT T T T tbuted tells 22 Smart C:\Prog	U UUUU H H H Sy T City T T T T T T T T T T T T T T T T T T T	U UUU H H H H art y W A Fil	Y Y Y Y Y City W ater Ir	L LLLLL M M MM MM M M M M M Nater In	0 0 000 T P U T	TM **** MO 6.2\VO2\voin.dat 7f20-4b6a-bcd2-f3cedfa38989
000 000 1 and 200 2s re fil kroe 8b3d fil kroe	I TTTTT T T T Oistri 7 - 202 served. * ename: ename: ssa7641 -4d9a-9 ename: ssa7641	SSSSS TTTTT T T T tbuted tells 22 Smart C:\Prog	H H H Sy T T T T T T T T T T T T T T T T T T	UU H H H H art y W A Fil	Y Y Y Y Y City W ater Ir	M M MM MM M M M M Molater In	0 0 0 0 000 c	***** MO 6.2\VO2\voin.dat
000 000 1 and 200 2s re fil kroe 8b3d fil kroe	I TTTTT T T T Oistri 7 - 202 served. * ename: ename: ssa7641 -4d9a-9 ename: ssa7641	SSSSS TTTTT T T T tbuted tells 22 Smart C:\Prog	H H H Sy T T T T T T T T T T T T T T T T T T	UU H H H H art y W A Fil	Y Y Y Y Y City W ater Ir	M M MM MM M M M M Molater In	0 0 0 0 000 c	***** MO 6.2\VO2\voin.dat
000 0 000 1 and 200 2s re fil kroe 8b3d fil kroe	TTTTT T T T T Oistri 7 - 202 served. * ename: ename: ssa7641 -4d9a-9 ename: ssa7641	TTTTT T T T Souted to the second of the seco	H H H by Sm t City	H H H art y W A Fil	Y Y Y Y City W ater Ir I L E D es (x86	M M MM M M M Mater In	0 0 0 0 000 c	***** MO 6.2\VO2\voin.dat
0 0 0 0 1 and 200 cs re fil kroe 8b3d fil kroe	T T T Distri 7 - 202 served. * ename: ssa7641 -4d9a-9 ename: ssa7641	T T T shuted b 22 Smart C:\Prop \AppDat	H H H by Sm t Cit D E T gram	H H art y W A Fil cal 3be	Y Y Y City W ater Ir I L E C es (x86	MM MM M M Mater In	0 0 0 0 000 c	***** MO 6.2\VO2\voin.dat
0 0000 1 and 2000 2s re fil kroe 8b3d (fil kroe	T T Distri 7 - 202 served. * ename: ename: ssa7641 -4d9a-9 ename: ssa7641	T T buted b 2 Smart **** C:\Prop AAppDat 0618-fb7	H H by Sm t Cit D E T gram ta\Lo 768f1	H H art y W A Fil	Y Y City W ater Ir I L E D es (x86	M M Mater In nc O O U	0 0 000 T P U T	MO 6.2\VO2\voin.dat
fil fil kroe 8b3d fil kroe	Distri 7 - 202 served. * ename: ename: ssa7641 -4d9a-9 ename: ssa7641	buted be a second of the secon	by Sm t Cit D E T gram ta\Lo 768f1	art y W A Fil cal 3be	City Water Ir I L E D es (x86	Vater In nc) OU 5)\Visua	T P U T	MO 6.2\VO2\voin.dat
fil fil kroe 8b3d fil kroe	Distri 7 - 202 served. * ename: ename: ssa7641 -4d9a-9 ename: ssa7641	buted be a second of the secon	by Sm t Cit D E T gram ta\Lo 768f1	art y W A Fil cal 3be	City Water Ir I L E D es (x86	Vater In nc) OU 5)\Visua	T P U T	MO 6.2\VO2\voin.dat
fil fil kroe 8b3d fil kroe	7 - 202 served. * ename: ename: ssa7641 -4d9a-9 ename: ssa7641	22 Smart **** [C:\Prog \AppDat 0618-fb7	t City D E T gram ta\Lo	y W A Fil cal 3be	I L E C es (x86 \Civica f2\	o O U 5)\Visua	T P U T	MO 6.2\VO2\voin.dat
fil kroe 8b3d fil kroe	ename: ename: ssa7641 -4d9a-9 ename: ssa7641	C:\Prog \AppDat 0618-fb7	gram ta\Lo 768f1	Fil cal 3be	es (x86 \Civica f2\	5)\Visua	1 ОТТНҮ!	MO 6.2\VO2\voin.dat
fil kroe 8b3d fil kroe	ename: ssa7641 -4d9a-9 ename: ssa7641	.\AppDat 9618-fb7 .\AppDat	ta\Lo 768f1	cal 3be	\Civica f2\			
kroe 8b3d fil kroe	ssa7641 -4d9a-9 ename: ssa7641	0618-fb7 .\AppDa1	768f1	3be	f2\	a\VH5\1e	eed1b8-	7f20-4b6a-bcd2-f3cedfa38989\
kroe 8b3d fil kroe	ssa7641 -4d9a-9 ename: ssa7641	0618-fb7 .\AppDa1	768f1	3be	f2\	a\VH5\1e	eed1b8-	7f20-4b6a-bcd2-f3cedfa38989\
·8b3d / fil kroe	-4d9a-9 ename: ssa7641	0618-fb7 .\AppDa1	768f1	3be	f2\	i /vnɔ /1e	eeuibo-	7120-400a-0Cu2-13Ceu1a30909
/ fil kroe	ename: ssa7641	.\AppDat						
			ta\Lo	cal	\Civica			
·8b3d	-4d9a-9					a\VH5\1e	eed1b8-	7f20-4b6a-bcd2-f3cedfa38989`
		0618-†b7	768f1	3be	f2\			
27/2	024					TIME:	01:24:0	02
								
***	*****	*****	****	***	*****	*****	**	
JLATI	ON : Ha	zel					**	
****	*****	*****	****	***	*****	******	**	
			_					
ST0	RM	Fil	lenam					AppD
* - *	JLATI ****	**************************************	**************************************	**************************************				**************************************

000d4cba-5164-491d-8b5a-aa1480037b73\5f0323be Ptotal=212.00 mm | Comments: Hazel RAIN | TIME RAIN | TIME RAIN | TIME TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.00 6.00 3.00 13.00 6.00 23.00 | 9.00 53.00 1.00 4.00 | 4.00 17.00 | 7.00 13.00 | 10.00 38.00 2.00 6.00 | 5.00 13.00 | 8.00 13.00 | 11.00 13.00 CALIB | STANDHYD (0001)| Area (ha)= 2.48 |ID= 1 DT= 5.0 min | Total Imp(%)= 79.00 Dir. Conn.(%)= 79.00IMPERVIOUS PERVIOUS (i) Surface Area (ha)=1.96 0.52 Dep. Storage Average Slope (mm) =1.00 1.50 1.00 (%)= 2.00 Length (m) =128.56 40.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME) HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	6.00	3.083	13.00	6.083	23.00	9.08	53.00
0.167	6.00	3.167	13.00	6.167	23.00	9.17	53.00
0.250	6.00	3.250	13.00	6.250	23.00	9.25	53.00
0.333	6.00	3.333	13.00	6.333	23.00	9.33	53.00
0.417	6.00	3.417	13.00	6.417	23.00	9.42	53.00
0.500	6.00	3.500	13.00	6.500	23.00	9.50	53.00
0.583	6.00	3.583	13.00	6.583	23.00	9.58	53.00
0.667	6.00	3.667	13.00	6.667	23.00	9.67	53.00
0.750	6.00	3.750	13.00	6.750	23.00	9.75	53.00
0.833	6.00	3.833	13.00	6.833	23.00	9.83	53.00
0.917	6.00	3.917	13.00	6.917	23.00	9.92	53.00
1.000	6.00	4.000	13.00	7.000	23.00	10.00	53.00
1.083	4.00	4.083	17.00	7.083	13.00	10.08	38.00
1.167	4.00	4.167	17.00	7.167	13.00	10.17	38.00
1.250	4.00	4.250	17.00	7.250	13.00	10.25	38.00
1.333	4.00	4.333	17.00	7.333	13.00	10.33	38.00
1.417	4.00	4.417	17.00	7.417	13.00	10.42	38.00
1.500	4.00	4.500	17.00	7.500	13.00	10.50	38.00
1.583	4.00	4.583	17.00	7.583	13.00	10.58	38.00
1.667	4.00	4.667	17.00	7.667	13.00	10.67	38.00
1.750	4.00	4.750	17.00	7.750	13.00	10.75	38.00

```
1.833
                   4.00 | 4.833
                                  17.00 | 7.833
                                                  13.00 | 10.83
                                                                 38.00
                  4.00 | 4.917
                                  17.00 | 7.917
          1.917
                                                 13.00 | 10.92
                                                                 38.00
          2.000
                   4.00 | 5.000
                                  17.00 | 8.000
                                                 13.00 | 11.00
                                                                 38.00
          2.083
                   6.00 | 5.083
                                  13.00 | 8.083
                                                 13.00 | 11.08
                                                                 13.00
                  6.00 | 5.167
          2.167
                                  13.00 | 8.167
                                                 13.00 | 11.17
                                                                 13.00
          2.250
                   6.00 | 5.250
                                  13.00 | 8.250
                                                 13.00 | 11.25
                                                                 13.00
          2.333
                   6.00 | 5.333
                                 13.00 | 8.333
                                                 13.00 | 11.33
                                                                 13.00
                   6.00 | 5.417
                                  13.00 | 8.417
                                                 13.00 | 11.42
          2.417
                                                                 13.00
          2.500
                   6.00 | 5.500
                                 13.00 | 8.500
                                                 13.00 | 11.50
                                                                 13.00
                                  13.00 | 8.583
          2.583
                  6.00 | 5.583
                                                 13.00 | 11.58
                                                                 13.00
          2.667
                   6.00 | 5.667
                                  13.00 | 8.667
                                                 13.00 | 11.67
                                                                 13.00
          2.750
                   6.00 | 5.750
                                  13.00 | 8.750
                                                 13.00 | 11.75
                                                                 13.00
                   6.00 | 5.833
                                 13.00 | 8.833
                                                 13.00 | 11.83
          2.833
                                                                 13.00
          2.917
                   6.00 | 5.917
                                 13.00 | 8.917
                                                 13.00 | 11.92
                                                                 13.00
                   6.00 | 6.000
                                  13.00 | 9.000
                                                 13.00 | 12.00
          3.000
                                                                 13.00
Max.Eff.Inten.(mm/hr)=
                         53.00
                                        50.33
          over (min)
                                        15.00
                           5.00
Storage Coeff. (min)=
                           3.83 (ii)
                                       13.12 (ii)
Unit Hyd. Tpeak (min)=
                          5.00
                                        15.00
Unit Hyd. peak (cms)=
                          0.25
                                       0.08
                                                     *TOTALS*
PEAK FLOW
               (cms) =
                          0.29
                                        0.07
                                                      0.360 (iii)
TIME TO PEAK
                         10.00
               (hrs)=
                                       10.00
                                                      10.00
RUNOFF VOLUME
                (mm) =
                                                     203.13
                          211.00
                                       173.55
TOTAL RAINFALL
                (mm) =
                          212.00
                                       212.00
                                                     212.00
RUNOFF COEFFICIENT =
                            1.00
                                         0.82
                                                       0.96
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

j st	LIB ANDHYD (0002) 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.13 44.00	Dir. Conn.(%)=	44.00
			IMPERVI	OUS	PERVIOUS (i)	
	Surface Area	(ha)=	0.0	5	0.07	
	Dep. Storage	(mm) =	1.0	9	1.50	
	Average Slope	(%)=	1.0	9	2.00	
	Length	(m)=	29.1	9	40.00	
	Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANS	SFORMED	H)	/ETOGRAPH	1	
T T A	4 -	DATE: I		TT145	D 4 T 1	1

		IRA	NSFORME	D HYETOGR	APH	•		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	6.00	3.083	13.00	6.083	23.00	9.08	53.00	
0.167	6.00	3.167	13.00	6.167	23.00	9.17	53.00	
0.250	6.00	3.250	13.00	6.250	23.00	9.25	53.00	
0.333	6.00	3.333	13.00	6.333	23.00	9.33	53.00	
0.417	6.00	3.417	13.00	6.417	23.00	9.42	53.00	
0.500	6.00	3.500	13.00	6.500	23.00	9.50	53.00	
0.583	6.00	3.583	13.00	6.583	23.00	9.58	53.00	
0.667	6.00	3.667	13.00	6.667	23.00	9.67	53.00	
0.750	6.00	3.750	13.00	6.750	23.00	9.75	53.00	
0.833	6.00	3.833	13.00	6.833	23.00	9.83	53.00	
0.917	6.00	3.917	13.00	6.917	23.00	9.92	53.00	
1.000	6.00	4.000	13.00	7.000	23.00	10.00	53.00	
1.083	4.00	4.083	17.00	7.083	13.00	10.08	38.00	
1.167	4.00	4.167	17.00	7.167	13.00	10.17	38.00	
1.250	4.00	4.250	17.00	7.250	13.00	10.25	38.00	
1.333	4.00	4.333	17.00	7.333	13.00	10.33	38.00	
1.417	4.00	4.417	17.00	7.417	13.00	10.42	38.00	
1.500	4.00	4.500	17.00	7.500	13.00	10.50	38.00	
1.583	4.00	4.583	17.00	7.583	13.00	10.58	38.00	
1.667	4.00	4.667	17.00	7.667	13.00	10.67	38.00	
1.750	4.00	4.750	17.00	7.750	13.00	10.75	38.00	
1.833	4.00	4.833	17.00	7.833	13.00	10.83	38.00	
1.917	4.00	4.917	17.00	7.917	13.00	10.92	38.00	
2.000	4.00	5.000	17.00	8.000	13.00	11.00	38.00	
2.083	6.00	5.083	13.00	8.083	13.00	11.08	13.00	
2.167	6.00	5.167	13.00	8.167	13.00	11.17	13.00	
2.250	6.00	5.250	13.00	8.250	13.00	11.25	13.00	
2.333	6.00	5.333	13.00	8.333	13.00	11.33	13.00	
2.417	6.00	5.417	13.00	8.417	13.00	11.42	13.00	
2.500	6.00	5.500	13.00	8.500	13.00	11.50	13.00	
2.583	6.00	5.583	13.00	8.583	13.00	11.58	13.00	
2.667	6.00	5.667	13.00	8.667	13.00	11.67	13.00	
2.750	6.00	5.750	13.00	8.750	13.00	11.75	13.00	
2.833	6.00	5.833	13.00	8.833	13.00	11.83	13.00	
2.917	6.00	5.917	13.00	8.917	13.00	11.92	13.00	
3.000	6.00	6.000	13.00	9.000	13.00	12.00	13.00	
nten.(mm/	(hr)-	53.00		50.33				
1 CC11 (111111/	· · · / –	22.00		JU • JJ				

Max.Eff.Inten.(mm/hr)=	53.00	50.33	
over	(min)	5.00	15.00	
Storage Coeff.	(min)=	1.57 (ii)	10.86 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.33	0.09	
•				*TOTALS*
PEAK FLOW	(cms)=	0.01	0.01	0.018 (iii)
TIME TO PEAK	(hrs)=	9.42	10.00	10.00

```
RUNOFF VOLUME (mm)= 211.00 173.55 189.98
TOTAL RAINFALL (mm)= 212.00 212.00 212.00
    RUNOFF COEFFICIENT =
                               1.00
                                           0.82
                                                          0.90
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
           CN^* = 85.0 Ia = Dep. Storage (Above)
     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
          THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0004)|
                         AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)
1 + 2 = 3
     ID1= 1 ( 0001): 2.48 0.360 10.00
+ ID2= 2 ( 0002): 0.13 0.018 10.00
                                                  203.13
                                                  189.98
       _____
       ID = 3 (0004):
                           2.61 0.378
                                          10.00
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

```
RESERVOIR( 0005)
                    OVERFLOW IS OFF
| IN= 2---> OUT= 1 |
                             STORAGE
| DT= 5.0 min |
                     OUTFLOW
                                        OUTFLOW STORAGE
                             (ha.m.)
                     (cms)
                                        (cms) (ha.m.)
                      0.0000 0.0000
                                           0.2800
                                                    0.0360
                              0.0050
                                        0.3020
                      0.0560
                                                     0.0410
                                        0.3220
                                                     0.0470
                      0.1250
                              0.0100
                      0.1680 0.0160
                                                    0.0520
                                        0.3410
                                        | 0.3590
| 0.3760
                      0.2020
                               0.0210
                                                     0.0570
                      0.2310
                               0.0260
                                                     0.0620
                      0.2570 0.0310 | 0.3920
                                                     0.0670
                           AREA
                                  QPEAK TPEAK
                                                     R.V.
  (ha) (cms) (hrs)
INFLOW: ID= 2 ( 0004) 2.606 0.378 10.00
OUTFLOW: ID= 1 ( 0005) 2.606 0.320 10.08
                                                      (mm)
                                                      202.49
                                                      202.48
```

PEAK FLOW REDUCTION [Qout/Qin](%)= 84.75 TIME SHIFT OF PEAK FLOW (min)= 5.00 MAXIMUM STORAGE USED (ha.m.) = 0.0465

CALIB

```
| STANDHYD ( 0003)|
                          (ha) = 0.16
                    Area
|ID= 1 DT= 5.0 min |
                    Total Imp(%)= 58.00
                                          Dir. Conn.(%)= 58.00
-----
                           IMPERVIOUS
                                        PERVIOUS (i)
    Surface Area
                    (ha)=
                                           0.07
                               0.09
    Dep. Storage
                    (mm) =
                               1.00
                                           1.50
    Average Slope
                    (%)=
                                          2.00
                              1.00
    Length
                     (m)=
                              32.66
                                          40.00
    Mannings n
                              0.013
                                          0.250
```

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME) HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	6.00	3.083	13.00	6.083	23.00	9.08	53.00
0.167	6.00	3.167	13.00	6.167	23.00	9.17	53.00
0.250	6.00	3.250	13.00	6.250	23.00	9.25	53.00
0.333	6.00	3.333	13.00	6.333	23.00	9.33	53.00
0.417	6.00	3.417	13.00	6.417	23.00	9.42	53.00
0.500	6.00	3.500	13.00	6.500	23.00	9.50	53.00
0.583	6.00	3.583	13.00	6.583	23.00	9.58	53.00
0.667	6.00	3.667	13.00	6.667	23.00	9.67	53.00
0.750	6.00	3.750	13.00	6.750	23.00	9.75	53.00
0.833	6.00	3.833	13.00	6.833	23.00	9.83	53.00
0.917	6.00	3.917	13.00	6.917	23.00	9.92	53.00
1.000	6.00	4.000	13.00	7.000	23.00	10.00	53.00
1.083	4.00	4.083	17.00	7.083	13.00	10.08	38.00
1.167	4.00	4.167	17.00	7.167	13.00	10.17	38.00
1.250	4.00	4.250	17.00	7.250	13.00	10.25	38.00
1.333	4.00	4.333	17.00	7.333	13.00	10.33	38.00
1.417	4.00	4.417	17.00	7.417	13.00	10.42	38.00
1.500	4.00	4.500	17.00	7.500	13.00	10.50	38.00
1.583	4.00	4.583	17.00	7.583	13.00	10.58	38.00
1.667	4.00	4.667	17.00	7.667	13.00	10.67	38.00
1.750	4.00	4.750	17.00	7.750	13.00	10.75	38.00
1.833	4.00	4.833	17.00	7.833	13.00	10.83	38.00
1.917	4.00	4.917	17.00	7.917	13.00	10.92	38.00
2.000	4.00	5.000	17.00	8.000	13.00	11.00	38.00
2.083	6.00	5.083	13.00	8.083	13.00	11.08	13.00
2.167	6.00	5.167	13.00	8.167	13.00	11.17	13.00
2.250	6.00	5.250	13.00	8.250	13.00	11.25	13.00
2.333	6.00	5.333	13.00	8.333	13.00	11.33	13.00
2.417	6.00	5.417	13.00	8.417	13.00	11.42	13.00
2.500	6.00	5.500	13.00	8.500	13.00	11.50	13.00
2.583	6.00	5.583	13.00	8.583	13.00	11.58	13.00
2.667	6.00	5.667	13.00	8.667	13.00	11.67	13.00
2.750	6.00	5.750	13.00	8.750	13.00	11.75	13.00
2.833	6.00	5.833	13.00	8.833	13.00	11.83	13.00

```
2.917 6.00 | 5.917 13.00 | 8.917 13.00 | 11.92
                                                                                         13.00
               3.000 6.00 | 6.000 13.00 | 9.000 13.00 | 12.00 13.00
Max.Eff.Inten.(mm/hr)=
                                   53.00
                                                     50.33
              over (min) 5.00 15.00
eff. (min)= 1.68 (ii) 10.97 (ii)
peak (min)= 5.00 15.00
peak (cms)= 0.32 0.09
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                       *TOTALS*
PEAK FLOW (cms)= 0.01 0.01
TIME TO PEAK (hrs)= 9.42 10.00
RUNOFF VOLUME (mm)= 211.00 173.55
TOTAL RAINFALL (mm)= 212.00 212.00
RUNOFF COEFFICIENT = 1.00 0.82
                                                                          0.023 (iii)
                                                                          10.00
                                                                        195.23
                                                                       212.00
                                                                       0.92
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

.....

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH -	 _			,																							-		-	-			-																						-																	
-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-																•	•																•	•				•				•	•											•	•
-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-													•	•	•					•					•	•	•	•	•	•	•		•	•	•				•	•		•	•	•		•	•	•	•		•	•

		1104	ANDI OMIL	DITTLIGUN	AFII	=	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	6.00	3.083	13.00	6.083	23.00	9.08	53.00
0.167	6.00	3.167	13.00	6.167	23.00	9.17	53.00
0.250	6.00	3.250	13.00	6.250	23.00	9.25	53.00
0.333	6.00	3.333	13.00	6.333	23.00	9.33	53.00
0.417	6.00	3.417	13.00	6.417	23.00	9.42	53.00
0.500	6.00	3.500	13.00	6.500	23.00	9.50	53.00
0.583	6.00	3.583	13.00	6.583	23.00	9.58	53.00
0.667	6.00	3.667	13.00	6.667	23.00	9.67	53.00
0.750	6.00	3.750	13.00	6.750	23.00	9.75	53.00
0.833	6.00	3.833	13.00	6.833	23.00	9.83	53.00
0.917	6.00	3.917	13.00	6.917	23.00	9.92	53.00
1.000	6.00	4.000	13.00	7.000	23.00	10.00	53.00
1.083	4.00	4.083	17.00	7.083	13.00	10.08	38.00
1.167	4.00	4.167	17.00	7.167	13.00	10.17	38.00
1.250	4.00	4.250	17.00	7.250	13.00	10.25	38.00
1.333	4.00	4.333	17.00	7.333	13.00	10.33	38.00
1.417	4.00	4.417	17.00	7.417	13.00	10.42	38.00
1.500	4.00	4.500	17.00	7.500	13.00	10.50	38.00
1.583	4.00	4.583	17.00	7.583	13.00	10.58	38.00
1.667	4.00	4.667	17.00	7.667	13.00	10.67	38.00
1.750	4.00	4.750	17.00	7.750	13.00	10.75	38.00
1.833	4.00	4.833	17.00	7.833	13.00	10.83	38.00
1.917	4.00	4.917	17.00	7.917	13.00	10.92	38.00
2.000	4.00	5.000	17.00	8.000	13.00	11.00	38.00
2.083	6.00	5.083	13.00	8.083	13.00	11.08	13.00
2.167	6.00	5.167	13.00	8.167	13.00	11.17	13.00
2.250	6.00	5.250	13.00	8.250	13.00	11.25	13.00
2.333	6.00	5.333	13.00	8.333	13.00	11.33	13.00
2.417	6.00	5.417	13.00	8.417	13.00	11.42	13.00
2.500	6.00	5.500	13.00	8.500	13.00	11.50	13.00
2.583	6.00	5.583	13.00	8.583	13.00	11.58	13.00
2.667	6.00	5.667	13.00	8.667	13.00	11.67	13.00
2.750	6.00	5.750		8.750	13.00	11.75	13.00
2.833		5.833		:	13.00		13.00
2.917	6.00	5.917		:	13.00		13.00
3.000	6.00	6.000	13.00	9.000	13.00	12.00	13.00
nten.(mm	•	53.00		50.33			
over (5.00		15.00			
	(min)=		• •	13.19 (ii)		
Tnoak /	(min)_	5 00		15 00			

Max.Eff.Inten.(r	mm/hr)=	53.00	50.33	
over	(min)	5.00	15.00	
Storage Coeff.	(min)=	3.90 (ii)	13.19 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.25	0.08	
				TOTALS
PEAK FLOW	(cms)=	0.19	0.18	0.375 (iii)
TIME TO PEAK	(hrs)=	10.00	10.00	10.00
RUNOFF VOLUME	(mm) =	211.00	173.55	192.27

4099 Erin Mills Parkway Residential Townhouse/Condo

Water Balance Calculations

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

Total Volume to be Retained	
Required Water Balance (mm):	5.0
Recall Site Area (m ²):	26,391
Total Water Balance to be Retained (m³):	132.0

Volume Achieved Through Initial Abstraction					
Surface	Area (m²)		I.A.	Vol. (m³)	
Conventional Roof	9,488		1	9.5	
Green Roof	0		5	0.0	
Landscape	1,234		5	6.2	
Landscape over P1	5,619		5	28.1	
Permeable Pavers	0		5	0.0	
Impervious	10,050		0	0.0	
Total Area:	26,391			43.8	

Water Balance Summary	Vol. (m³)
Total Water Balance to be Retained (m ³):	132.0
Recall Initial Abstraction (see above):	43.8
Water Balance Vol. to be re-used via Mechanical/Irrigation:	88.2

Check Tank Capacity to Capture Re-Use Volume	
Area of SWM Tank (m ²):	281.8
Sump Depth Provided (m):	0.6
Float Switch Operating Range (m):	0.35
Total Water Balance Achieved:	98.6

Residential Townhouse/Condo

Water Quality Calculations

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: October 2024

Designed By: SN

TSS Removal (Treated)

Surface	Area (m²)	% Area of Site	Inherent TSS Removal	StormFilter TSS Removal	Overall TSS Removal
Conventional Roof	9,853	36%	80%	80%	35%
Green Roof	0	0%	80%	80%	0%
Landscape	1,823	7%	80%	80%	6%
Landscape over P1	4,959	18%	80%	80%	17%
Permeable Pavers	0	0%	50%	80%	0%
Impervious	9,429	34%	0%	80%	28%
Sub-Total		95%			86%
Uncontrolled Hardscaped	0	0%	80%	0%	0%
Uncontrolled Softscaped	1,274	5%	80%	0%	4%
Total Site + EXT:	27,338	100%			90%

Site Meets 80% TSS Removal

Determining Number of Cartridges for Flow Based Systems

Date 12/07/2022 Black Cells = Calculation

Site Information

Project Name

Project Location

OGS ID

Drainage Area, Ad

Impervious Area, Ai

Pervious Area, Ap

% Impervious

Runoff Coefficient, Rc

Treatment storm flow rate, Q_{treat}

Peak storm flow rate, Qpeak

Filter System

Filtration brand

Cartridge height

Specific Flow Rate

Flow rate per cartridge

4099 Erin Mills Parkway

Toronto, ON

OGS

6.26 ac (2.533 ha)

5.00 ac

1.26

80% 0.77

2.48 cfs (70.3 L/s)

TBD cfs

StormFilter

27 in

2.00 gpm/ft²

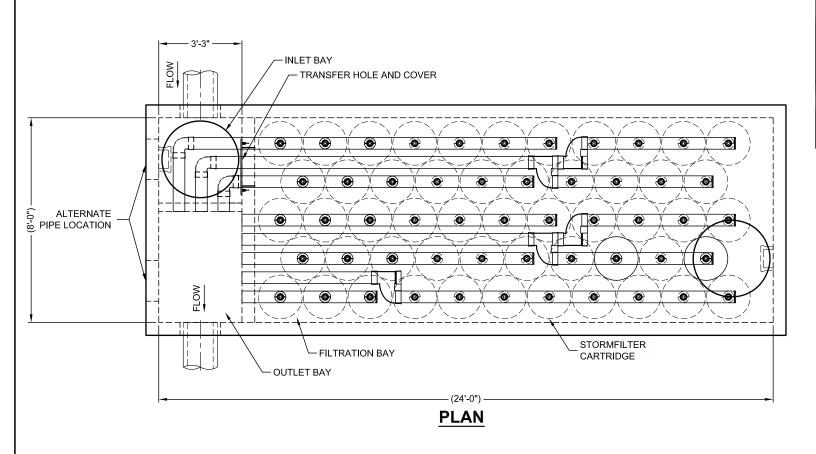
22.50 gpm

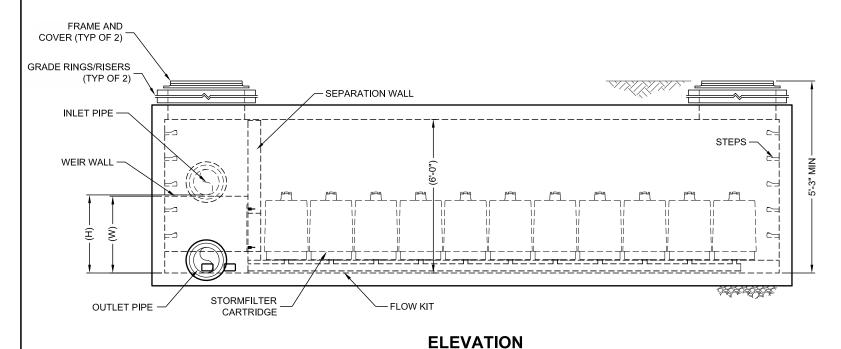
SUMMARY

Number of Cartridges	59
Media Type	Perlite

Event Mean Concentration (EMC)

Annual TSS Removal

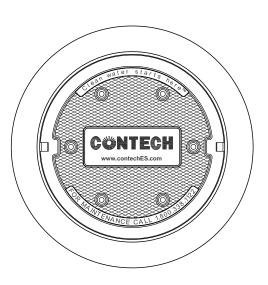

Percent Runoff Capture


150 mg/L

80%

90%

Recommend SF0824 vault installed in with Diversion & Junction structure or CIP



STORMFILTER DESIGN TABLE

- THE 8' x 24' PEAK DIVERSION STORMFILTER TREATMENT CAPACITY VARIES BY CARTRIDGE COUNT AND LOCALLY APPROVED SURFACE AREA SPECIFIC FLOW RATE. PEAK CONVEYANCE CAPACITY TO BE DETERMINED BY ENGINEER OF RECORD.
- THE PEAK DIVERSION STORMFILTER IS AVAILABLE IN A LEFT INLET (AS SHOWN) OR RIGHT INLET CONFIGURATION.
- ALL PARTS AND INTERNAL ASSEMBLY PROVIDED BY CONTECH UNLESS OTHERWISE NOTED.

CARTRIDGE HEIGHT	27"		18"		LOW DROP	
SYSTEM HYDRAULIC DROP (H - REQ'D. MIN.)	3.05'		2.3'		1.8'	
HEIGHT OF WEIR (W)	3.00'		2.25'		1.75'	
TREATMENT BY MEDIA SURFACE AREA	2 gpm/ft ²	1 gpm/ft ²	2 gpm/ft ²	1 gpm/ft ²	2 gpm/ft ²	1 gpm/ft ²
CARTRIDGE FLOW RATE (gpm)	22.5	11.25	15	7.5	10	5

STRUCTURE ID WATER QUALITY FLOW RATE (cfs) PEAK FLOW RATE (cfs) RETURN PERIOD OF PEAK FLOW (yrs) # OF CARTRIDGES REQUIRED CARTRIDGE FLOW RATE MEDIA TYPE (CSF, PERLITE, ZPG) PIPE DATA: I.E. MATERIAL DIAMETER INLET PIPE OUTLET PIPE INLET BAY RIM ELEVATION FILTER BAY RIM ELEVATION HEIGHT ANTI-FLOTATION BALLAST WIDTH NOTES/SPECIAL REQUIREMENTS:

SITE SPECIFIC

DATA REQUIREMENTS

FRAME AND COVER

(DIAMETER VARIES) N.T.S.

PERFORMANCE SPECIFICATION

FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE 7-INCHES. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 37 SECONDS.

SPECIFIC FLOW RATE SHALL BE **2 GPM/SF (MAXIMUM)**. SPECIFIC FLOW RATE IS THE MEASURE OF THE FLOW (GPM) DIVIDED BY THE MEDIA SURFACE CONTACT AREA (SF). MEDIA VOLUMETRIC FLOW RATE SHALL BE **6 GPM/CF OF MEDIA (MAXIMUM)**.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY
- 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH REPRESENTATIVE. www.ContechES.com
- 4. STORMFILTER WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- 5. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' 5' AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STORMFILTER STRUCTURE (LIFTING CLUTCHES PROVIDED).
- C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL SECTIONS AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH OUTLET PIPE INVERT WITH OUTLET BAY FLOOR.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF.
- F. CONTRACTOR TO REMOVE THE TRANSFER HOLE COVER WHEN THE SYSTEM IS BROUGHT ONLINE.

www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

800-338-1122 513-645-7000 513-645-7993 FAX

THE STORMWATER MANAGEMENT STORMFILTER 8' x 24' PEAK DIVERSION STORMFILTER STANDARD DETAIL

VERIFICATION STATEMENT

GLOBE Performance Solutions

Verifies the performance of

The Stormwater Management StormFilter®

Developed by CONTECH Engineered Solutions LLC Scarborough, Maine, USA

Registration: GPS-ETV_2020-06-15_NJDEP

In accordance with

ISO 14034:2016

Environmental Management — Environmental Technology Verification (ETV)

John D. Wiebe, PhD
Executive Chairman

GLOBE Performance Solutions

June 15, 2020 Vancouver, BC, Canada

Verification Body
GLOBE Performance Solutions
404 – 999 Canada Place | Vancouver, B.C | Canada | V6C 3E2

Verification Overview

This Environmental Technology Verification (ETV) of The Stormwater Management StormFilter® (StormFilter) is the first part of a two-part verification process and entails the verification of performance claims (#1 & 2) based on laboratory testing in accordance with the New Jersey Department of Environmental Protection (NJDEP) Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January, 2013). This verification complements the subsequent verification of field testing data, collected in accordance with The Washington State Department of Ecology emerging stormwater treatment technologies, in accordance with guidelines identified by Ecology (2011) in the Technology Assessment Protocol – Ecology (TAPE).

Technology description and application

The Stormwater Management StormFilter® (StormFilter) is a manufactured treatment device that is provided by Contech Engineered Solutins LLC (Contech). The StormFilter improves the quality of stormwater runoff before it enters receiving waterways through the use of its customizable filter media, which removes non-point source pollutants. As illustrated in **Figure I**, the StormFilter is typically comprised of a vault or manhole structure that houses rechargeable, media-filled filter cartridges. Stormwater entering the system percolates through these media-filled cartridges, which trap particulates and remove pollutants. Once filtered through the media, the treated stormwater is discharged through an outlet pipe to a storm sewer system or receiving water.

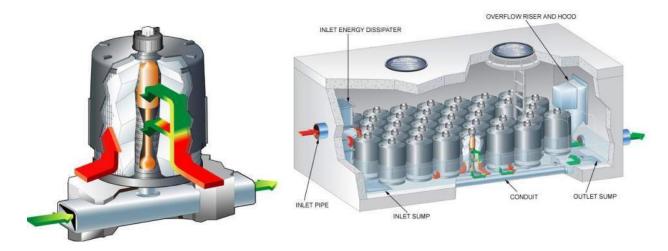


Figure I Individual StormFilter Cartridge (Left) and Typical Vault StormFilter Installation (Right)

Depending on the treatment requirements and expected pollutant characteristics at an individual site, the per cartridge filtration flow rate and driving head can be adjusted. The flow rate is individually controlled for each cartridge by a restrictor disc located at the connection point between the cartridge and the underdrain manifold. Driving head is managed by positioning of the inlet, outlet, and overflow elevations. The StormFilter is typically designed so that the restrictor disc passes the design treatment rate once the water surface reaches the shoulder of the cartridge which is equivalent to the cartridge height. Since the StormFilter uses a restrictor disc to restrict treatment flows below the hydraulic capacity of the media

the system typically operates under consistent driving head for the useful life of the media. Site specific head constraints are also addressed by three different cartridge heights (low drop (effective height of 12 inches), 18, and 27 inches) which operate on the same principal and surface area specific loading rates. The StormFilter requires a minimum of 1.8 ft, 2.3 ft and 3.05 ft of drop between inlet invert and outlet invert to accommodate the low drop, 18 and 27 inch cartridges, respectively, without backing up flow into the upstream piping during operation. When site conditions limit the amount of drop available across the StormFilter then flow is typically backed up into the upstream piping during operation to ensure sufficient driving head is provided. If desirable the StormFilter can be designed to operate under additional driving head.

The StormFilter is offered in multiple configurations including plastic, steel, and concrete catch basins; and precast concrete manholes, and vaults. Other configurations include panel vaults, CON/SPAN®, box culverts, and curb inlets. The filter cartridges operate consistently and act independently regardless of housing which enables linear scaling.

The StormFilter cartridge can house different types of media including perlite, zeolite, granular activated carbon (GAC), CSF® leaf media, MetalRx™, PhosphoSorb® or various media blends such as ZPG™ (perlite, zeolite and GAC). All of the media use processes associated with depth filtration to remove solids. Some media configurations also provide additional treatment mechanisms such as cation exchange, and/or adsorption, chelation, and precipitation. This verification is specific to a laboratory evaluation of the StormFilter using perlite media.

Performance conditions

The data and results published in this Verification Statement were obtained from the laboratory testing conducted on The Stormwater Management StormFilter® device, in accordance with the New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January, 2013) (NJDEP Filtration Protocol). Prior to starting the performance testing program, a quality assurance project plan (QAPP) was submitted to and approved by the New Jersey Corporation for Advanced Technology (NJCAT).

Performance claim(s)

Performance Claim I (NJCAT)

The Stormwater Management StormFilter®, with perlite media, demonstrated at least 80% removal of total suspended solids at a design hydraulic loading rate of 1.44 l/s/m² (2.12 gpm/ft²) of media surface area and at a constant influent test sediment concentration of 200 mg/L in laboratory testing conducted under the 2013 NJDEP Protocol (removal efficiency test). This performance claim was verified at a 95% level of confidence.

Performance Claim 2 (NJCAT)

During the load testing (mass sediment load capacity) conducted under the 2013 NJDEP Protocol, The Stormwater Management StormFilter®, with perlite media, maintained at least 80% removal of total suspended solids at a design hydraulic loading rate of 1.44 l/s/m² (2.12 gpm/ft²) of media surface area to a cumulative mass sediment load of 54.3 lbs by a single 45.72 cm tall and 18in cartridge. This performance claim was verified statistically at a 95% level of confidence.

Performance results

Performance Claim I (NJCAT):

Raw data summarizing the percent removal of influent total suspended solids (TSS) by The Stormwater Management StormFilter®, at a concentration of 200 mg/L and a loading rate of 2.12 gpm/sq. ft. of media surface area.

Run #	Average Influent TSS Concentration (mg/L)	Background (mg/L)	Adjusted Effluent (mg/L)	TSS Removed (%)
I	203	2.11	37.7	81.8
2	210	1.83	35.4	83.7
3	207	2.84	40.5	81.2
4	213	2.04	36.8	83.3
5	212	2.17	35.8	83.7
6	208	2.34	38.0	82.3
7	212	2.08	38.4	82.5
8	203	2.42	35.8	83.0
9	206	2.86	35.2	83.5
10	207	3.16	35.6	83.3

Sum	823
N (COUNT)	10
Mean (AVG)	82.3
STDEV.s	0.871
VAR.s	0.758
Z (alpha)	1.65
Z (beta)	1.29
Hypothesized mean	80.0

Performance Claim 2 (NJCAT):

Raw data summarizing the percent removal of influent total suspended solids (TSS) and its capture by The Stormwater Management StormFilter®, at 200 mg/L (Run 1-45) and 400mg/L (Run 46-66).

Run#	Average Influent TSS Concentration (mg/L)	Background (mg/L)	Adjusted Effluent (mg/L)	Mass Captured (lbs)	TSS Removed (%)
I	203	2.11	37.7	0.640	81.8
2	210	1.83	35.4	1.32	83.7
3	207	2.84	40.5	1.96	81.2
4	213	2.04	36.8	2.65	83.3
5	212	2.17	35.8	3.33	83.7
6	208	2.34	38.0	3.99	82.3
7	212	2.08	38.4	4.67	82.5
8	203	2.42	35.8	5.32	83.0
9	206	2.86	35.2	5.98	83.5
10	207	3.16	35.6	6.65	83.3
11	200	1.78	37.4	7.29	81.8
12	209	1.55	36.0	7.96	83.4
13	211	2.29	40.9	8.62	81.3
14	206	1.96	37.7	9.21	excluded
15	209	2.32	36.2	9.87	83.2
16	202	2.07	36.5	10.5	82.6
17	206	1.97	39.9	11.2	81.3
18	203	3.13	35. I	11.8	83.2
19	204	2.57	37.2	12.5	82.4
20	210	2.64	35.6	13.1	83.6
21	199	3.17	39.8	13.8	80.7
22	206	3.07	40.5	14.4	80.9
23	203	3.32	37.1	15.1	82.3
24	206	2.91	38.5	15.7	81.8
25	203	3.44	37.4	16.3	82. I
26	204	2.77	40.4	17.0	80.8
27	208	2.85	29.4	17.6	excluded
28	199	2.46	37.7	18.2	81.5
29	199	3.72	37.6	18.8	81.6
30	202	3.66	37.6	19.5	82.0
31	200	3.41	42.4	20.1	79.3
32	202	3.17	43.4	20.7	79.1
33	204	4.52	42.5	21.3	79.8
34	200	5.11	40.0	22.0	80.6
35	198	4.11	44.4	22.5	78. I
36	204	3.90	43. I	23.2	79.5
37	203	4.55	43. I	23.8	79.4
38	202	4.84	41.4	24.4	80.0
39	203	5.55	34.8	25.1	83.3
40	203	6.34	39.9	25.7	80.9
41	199	3.53	43.3	26.3	78.7
42	199	3.21	45. I	26.9	75.7 77.9
43	200	3.21	40.9	27.5	80.1
נד	200	J. L I	TU./	27.3	OV. I

ISO 14034:2016 - Environmental Management - Environmental Technology Verification (ETV)

44	203	3.41	40.0	28.2	80.9
45	202	3.61	46.6	28.8	77.4
46	401	1.78	79.2	30.0	80.8
47	402	1.91	81.6	31.3	80.2
48	401	2.38	85.6	32.5	79.2
49	396	2.83	87.0	33.7	78.5
50	412	1.62	85.5	35.0	79.6
51	396	3.66	87.6	36.2	78.3
52	396	4.12	90.1	37.3	77.6
53	403	4.05	92.4	38.5	77.4
54	403	4.85	89.9	39.8	78. I
55	400	3.59	86.3	41.0	78.8
56	400	1.85	89.0	42.2	78.2
57	403	2.33	88.7	43.4	78.5
58	407	3.25	89.6	44.6	78.2
59	395	3.22	92.5	45.8	76.9
60	404	3.01	88.2	47.0	78.5
61	410	1.82	90.7	48.2	excluded
62	398	2.15	86.6	49.4	78.6
63	401	2.60	88. I	50.6	78.3
64	402	2.75	91.5	51.9	77.6
65	403	4.10	89.1	53.1	78.2
66	402	3.65	89.5	54.3	77.8

Sum	5069
N (COUNT)	63
Median	80.7
STDEV.s	2.03
VAR.s	4.12
Z (alpha)	1.65
Z (beta)	1.29
Hypothesized median	80.0

Performance Claims were statistically analyzed and verified using the *mean* percent removal values for Claim #1, which utilized normally distributed data. The data set for Claims #2 was not normally distributed, which required the use of the *median* of the data as a surrogate for the mean, in order to be verified statistically at a 95% level of confidence.

Verification

This verification was completed by the Verification Expert, the Centre for Advancement of Water and Wastewater Technologies ("CAWT"), contracted by GLOBE Performance Solutions, applying the International Standard ISO 14034:2016 Environmental management -- Environmental technology verification (ETV). Data and information provided by Contech Engineered Solutions LLC to support the performance claim included the following:

Performance test report "NJCAT TECHNOLOGY VERIFICATION, Stormwater Management StormFilter® (StormFilter) With Perlite Media" prepared by Contech Engineered Solutions, November 2016. This report is based on a test program was conducted at Contech's Portland, Oregon laboratory under the direct supervision of Scott A. Wells, Ph.D. and Associates in accordance with the New Jersey Department of Environmental Protection (NJDEP) Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January, 2013) and in compliance with the requirements of ISO/IEC 17025.

What is ISO 14034:2016 Environmental management – Environmental technology verification (ETV)?

ISO 14034:2016 specifies principles, procedures and requirements for environmental technology verification (ETV) and was developed and published by the International Organization for Standardization (ISO). The objective of ETV is to provide credible, reliable and independent verification of the performance of environmental technologies. An environmental technology is a technology that either results in an environmental added value or measures parameters that indicate an environmental impact. Such technologies have an increasingly important role in addressing environmental challenges and achieving sustainable development.

For more information on the The Stormwater Management StormFilter® please contact:

CONTECH Engineered Solutions LLC 71 US Route I, Suite F Scarborough, ME 04074 USA Tel: 207-885-9830 info@conteches.com www.conteches.com For more information on ISO 14034:2016 / ETV please contact:

GLOBE Performance Solutions
404 – 999 Canada Place
Vancouver, BC
V6C 3E2 Canada
Tel: 604-695-5018 / Toll Free: 1-855-695-5018
etv@globeperformance.com
www.globeperformance.com

Limitation of verification - Registration: GPS-ETV_2020-06-15_NJDEP

GLOBE Performance Solutions and the Verification Expert provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.

Printed: June 15, 2020 Expires: June 30, 2023 Page 7 of 7

Appendix C

Sanitary Data Analysis

www.arcadis.com C

Residential Development

Peel Region Design Criteria for Sanitary Sewers

m/s

3.50

Domestic Flow = 302.8 L/cap/day
Population Density = 50 pp/ha
Infiltration= 0.20 L/s/ha
Mannings= 0.013
Minimum Velocity = 0.75 m/s

Maximum Velocity =

All information below is based on Region of Peel Sanitary Sewer Design Criteria Section 2.1 and Std. Dwg. 2-9-2

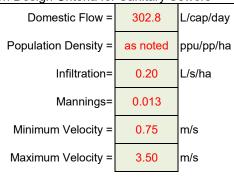
Sanitary Sewer Design Sheet

Existing Condition

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024


Prepared By: SN

				DES	SIGN FLOW	CALCULATI	ONS					SEWER	DESIGN & A	NALYSIS			
	From	То	Area (ha)	Commercial Population Density	Peaking Factor	Sewage Flow	Infiltration Flow	Ground Water	Total Flow, Qd	Nominal Diameter	Pipe Slope	Pipe Length	Full Flow Capacity,	Full Flow Velocity	Actual Velocity	Percent of Full Flow	Notes
				(pp/ha)		(L/s) (1)	(L/s) (2)	(L/s) (3)	(L/s) (1) thru (3)	(mm)	(%)	(m)	Qf (L/s)	(m/s)	(m/s)	(%)	
Existing Condition	Serv	rices															
Ex. Commercial Plaza	Ctrl. MH	Ex. Sewer	2.64	50 132	4.21	1.9	0.5	0.0	2.5	250	0.9%	11.2	58.9	1.16	0.57	4%	Ex. San. Service

Residential Development

Peel Region Design Criteria for Sanitary Sewers

Sanitary Sewer Design Sheet

Proposed Full Buildout

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Prepared By: SN

	ı	1													r							
							DES	IGN FLOW	CALCULATI	ONS							SEWER	DESIGN & A	ANALYSIS			
			Area	No. of		Apartment	Townhouse	Comm.	Population	Peaking	Sewage	Infiltration	Ground	Total								
	From	То		Residential	Retail GFA	Population	Population	Density		Factor	Flow	Flow	Water	Flow, Qd	Nominal Diameter	Pipe Slope	Pipe Length	Full Flow Capacity,	Full Flow Velocity	Actual Velocity	Percent of Full Flow	Notes
				Units		1.6/unit	3.4/unit	50/ha			(L/s)	(L/s)	(L/s)	(L/s)								
			(ha)		(ha)	(ppu)	(ppu)	(pp/ha)			(1)	(2)	(3)	(1) thru (3)	(mm)	(%)	(m)	Qf (L/s)	(m/s)	(m/s)	(%)	
Proposed Full Buildout	Ser	vices																				
Apartment Buildings			1.43	597	0.0790	955		4	959	3.81	12.8	0.3	0.0	13.1								
B-B Stacked Townhouses			1.21	112			381		381	4.03	5.4	0.2	0.0	5.6								
TOTAL	Ctrl. MH	Ex. Sewer	2.64	709	0.0790				1340			0.5	0.0	18.7	250	0.50%	27.0	43.9	0.87	0.83	43%	San. Service

All information below is based on Region of Peel Sanitary Sewer Design Criteria Section 2.1

and Std. Dwg. 2-9-2

Appendix D

Water Demand Analysis

www.arcadis.com

4099 Erin Mills Parkway Residential Development

ARCADIS

DOMESTIC WATER DEMAND CALCULATIONS

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

	Peaking Factors	
Land Use	Peak Hour	Maximum Day
Residential	3.00	2.00
ICI	3.00	1.40

	_			_			_		_	_									
1.	ADD	=	300	L/ca	p/day	per	R	egion	of	Pe	el	star	nda	rds	for	ICI			
1.	ADD	=	280	L/ca _i	p/day	per	R	egion	01	Pe	eı	star	nda	rds	tor	Re	side	ntia	7/

3. Population Densities per Region of Peel standards

4. Peaking factors per Region of Peel standards

Building A					(ADDxP.F.)	(ADDxP.F.)
	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)
Apartment Buildings	256	1.6 ppu	410	1.3	4.0	2.7
Commercial/Retail	.0408 ha	50 pp/ha	3	0.01	0.03	0.01
		Totals	410	1.3	4.0	2.7

Building B					(ADDxP.F.)	(ADDxP.F.)
	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)
Apartment Buildings	74	1.6 ppu	119	0.4	1.2	0.8
Commercial/Retail		50 pp/ha	0	0.00	0.00	0.00
		Totals	119	0.4	1.2	0.8

Building C					(ADDxP.F.)	(ADDxP.F.)
	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)
Apartment Buildings	82	1.6 ppu	132	0.4	1.3	0.9
Commercial/Retail		50 pp/ha	0	0.00	0.00	0.00
		Totals	132	0.4	1.3	0.9

Building D											
	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)					
Apartment Buildings	93	1.6 ppu	149	0.5	1.4	1.0					
Commercial/Retail	.0382 ha	50 pp/ha	2	0.01	0.02	0.01					
		Totals	149	0.5	1.5	1.0					

Building E		<u> </u>										
	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)						
Apartment Buildings	92	1.6 ppu	148	0.5	1.4	1.0						
Commercial/Retail		50 pp/ha	0	0.00	0.00	0.00						
		Totals	148	0.5	1.4	1.0						

Stacked Townhouses										
	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)				
Townhouses	112	3.4 ppu	381	1.2	3.7	2.5				
Commercial/Retail		50 pp/ha	0	0.00	0.00	0.00				
		Totals	381	12	3.7	2.5				

Site					(ADDxP.F.)	(ADDxP.F.)
	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)
Apartment Buildings	597	1.6 ppu	956	3.1	9.3	6.2
B-B Stacked Townhouses	112	3.4 ppu	381	1.2	3.7	2.5
Commercial/Retail	.0790 ha	50 pp/ha	4	0.01	0.04	0.02
		Totals	1,341	4.3	13.0	8.7

Residential Development

FIRE FLOW DEMAND CALCULATIONS Building A

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

Based on the Water Supply for Public Fire Protecetion Manual, 2020 by the Fire Underwriters Survey

Step 1: Calculate Fire Flow (based on area)

Construction Coefficient =	1.0	
Largest Floor Area =	1,412	m^2
Floor Above =	1,412	m^2
Floor Below =	1,412	m^2
Area =	2,117	m^2
Fire Flow (F) =	10,000	L/min

F = required fire flow (L/min)

 $F = 220C\sqrt{A}$

C = coefficient related to type of construction

0.6 for fire resistive (fully protected, 3-hr ratings)

0.8 for non combustable (i.e. unprotected metal buildings)

1.0 for ordinary construction

1.5 for wood frame construction

A = total floor area excluding basements 50% below grade

Step 2: Adjustment for Building Occupancy (shall not be less than 2000 L/s)

Occupancy Adjustment =	0.00	
F ₁ = Fire Flow x Adjustment =	10,000	L/min
· •		,

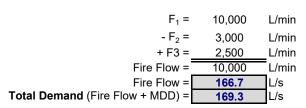
Non-Combust. -25% Free Burning 15% mited Comb. -15% Rapid Burning 25%

Combustable No change

Step 3: Adjust F1 for Fire Supression System

Sprinkler Adjustment =	30%	
$F_2 = F_1 x Adjustment =$	3,000	L/min

Automatic Sprinklers (monitored) -50% Adequatly Designed System


-30%

Step 4: Adjust F1 for Exposure / Proximity (shall not exceed 75%)

Proximity Adjustment =	25%	(max 75%)
$F_3 = F_1 \times Factor =$	2,500	L/min

Separation	Adjustment	Separation	Adjustment
0m to 3m	25%	20.1m to 30m	10%
3.1m to 10m	20%	30.1m to 45m	5%
10.1m to 20m	15%		

Step 5: Calculate Adjusted Fire Flow (shall not be less than 2000 L/min or greater than 45,000 L/min)

Fire Flow = $F_1 - F_2 + F_3$

Checks:

Fire Flow greater than 2000 L/min Fire Flow less than 45,000 L/min

^{*} If vertical openings are inadequately protected, consider two largest two largest adjoining floors plus 50% of each of any floors above up to

^{*} If vertical openings are adequately protected (one hour rating), consider largest floor area + 25% of two immediately floors.

Residential Development

FIRE FLOW DEMAND CALCULATIONS Building B

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

Based on the Water Supply for Public Fire Protecetion Manual, 1999 by the Fire Underwriters Survey

Step 1: Calculate Fire Flow (based on area)

Construction Coefficient =	1.0	
Largest Floor Area =	1,718	m^2
Floor Above =	989	m^2
Floor Below =	1,523	m^2
Area =	2,346	m^2
Fire Flow (F) =	11,000	L/min

F = required fire flow (L/min)

 $F = 220C\sqrt{A}$

C = coefficient related to type of construction

0.6 for fire resistive (fully protected, 3-hr ratings)

0.8 for non combustable (i.e. unprotected metal buildings)

1.0 for ordinary construction

1.5 for wood frame construction

A = total floor area excluding basements 50% below grade

Step 2: Adjustment for Building Occupancy (shall not be less than 2000 L/s)

Occupancy Adjustment =	0.00	
F ₁ = Fire Flow x Adjustment =	11,000	L/min
•		

Non-Combust. -25% Free Burning 15% mited Comb. -15% Rapid Burning 25%

Combustable No change

Step 3: Adjust F1 for Fire Supression System

Sprinkler Adjustment =	30%	
$F_2 = F_1 x Adjustment =$	3,300	L/min

Automatic Sprinklers (monitored) -50%
Adequatly Designed System -30%

Step 4: Adjust F1 for Exposure / Proximity (shall not exceed 75%)

Proximity Adjustment =	30%	(max 75%)
$F_3 = F_1 \times Factor =$	3,300	L/min

Separation	Adjustment	Separation	Adjustment
0m to 3m	25%	20.1m to 30m	10%
3.1m to 10m	20%	30.1m to 45m	5%
10.1m to 20m	15%		

Step 5: Calculate Adjusted Fire Flow (shall not be less than 2000 L/min or greater than 45,000 L/min)

F ₁ =	11,000	L/min
- F ₂ =	3,300	L/min
+ F3 =	3,300	L/min
Fire Flow =	11,000	L/min
Fire Flow =	183.3	L/s
Total Demand (Fire Flow + MDD) =	184.1	L/s

Fire Flow = $F_1 - F_2 + F_3$

Checks:

Fire Flow greater than 2000 L/min Fire Flow less than 45,000 L/min

^{*} If vertical openings are inadequately protected, consider two largest two largest adjoining floors plus 50% of each of any floors above up to

^{*} If vertical openings are adequately protected (one hour rating), consider largest floor area + 25% of two immediately floors.

Residential Development

FIRE FLOW DEMAND CALCULATIONS Building C

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

Based on the Water Supply for Public Fire Protecetion Manual, 1999 by the Fire Underwriters Survey

Step 1: Calculate Fire Flow (based on area)

_		
Construction Coefficient =	1.0	
Largest Floor Area =	1,094	m^2
Floor Above =	1,094	m^2
Floor Below =	1,094	m^2
Area =	1,641	m^2
Fire Flow (F) =	9,000	L/min
•	•	•

F = required fire flow (L/min)

 $F = 220C\sqrt{A}$

C = coefficient related to type of construction

0.6 for fire resistive (fully protected, 3-hr ratings)

0.8 for non combustable (i.e. unprotected metal buildings)

1.0 for ordinary construction

1.5 for wood frame construction

A = total floor area excluding basements 50% below grade

Step 2: Adjustment for Building Occupancy (shall not be less than 2000 L/s)

Occupancy Adjustment =	0.00	
F ₁ = Fire Flow x Adjustment =	9,000	L/min
		•

Non-Combust. -25% Free Burning 15% mited Comb. -15% Rapid Burning 25%

Combustable No change

Step 3: Adjust F1 for Fire Supression System

Sprinkler Adjustment =	30%	
$F_2 = F_1 x Adjustment =$	2,700	L/min

Automatic Sprinklers (monitored) -50%
Adequatly Designed System -30%

Step 4: Adjust F1 for Exposure / Proximity (shall not exceed 75%)

Proximity Adjustment =	50%	(max 75%)
$F_3 = F_1 \times Factor =$		Ĺ/min ´

Separation	Adjustment	Separation	Adjustment
0m to 3m	25%	20.1m to 30m	10%
3.1m to 10m	20%	30.1m to 45m	5%
10.1m to 20m	15%		

Step 5: Calculate Adjusted Fire Flow (shall not be less than 2000 L/min or greater than 45,000 L/min)

9,000 L/min $-F_{2} =$ 2.700 L/min + F3 = 4.500 L/min Fire Flow = 11,000 L/min Fire Flow = 183.3 L/s Total Demand (Fire Flow + MDD) = 184.2 L/s

Fire Flow = $F_1 - F_2 + F_3$

Checks:

Fire Flow greater than 2000 L/min Fire Flow less than 45,000 L/min

^{*} If vertical openings are inadequately protected, consider two largest two largest adjoining floors plus 50% of each of any floors above up to

^{*} If vertical openings are adequately protected (one hour rating), consider largest floor area + 25% of two immediately floors.

Residential Development

FIRE FLOW DEMAND CALCULATIONS Building D

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

Based on the Water Supply for Public Fire Protecetion Manual, 1999 by the Fire Underwriters Survey

Step 1: Calculate Fire Flow (based on area)

Construction Coefficient =	1.0	
Largest Floor Area =		m^2
Floor Above =	980	m^2
Floor Below =	980	m^2
Area =	1,470	m^2
Fire Flow (F) =	8,000	L/min
	='	

F = required fire flow (L/min)

 $F = 220C\sqrt{A}$

C = coefficient related to type of construction

0.6 for fire resistive (fully protected, 3-hr ratings)

0.8 for non combustable (i.e. unprotected metal buildings)

1.0 for ordinary construction

1.5 for wood frame construction

A = total floor area excluding basements 50% below grade

Step 2: Adjustment for Building Occupancy (shall not be less than 2000 L/s)

Occupancy Adjustment =	0.00	
F ₁ = Fire Flow x Adjustment =	8,000	L/min
		•

Non-Combust. -25% Free Burning 15% mited Comb. -15% Rapid Burning 25%

Combustable No change

Step 3: Adjust F1 for Fire Supression System

Sprinkler Adjustment =	30%	
$F_2 = F_1 x Adjustment =$	2,400	L/min

Automatic Sprinklers (monitored) -50%
Adequatly Designed System -30%

Step 4: Adjust F1 for Exposure / Proximity (shall not exceed 75%)

Proximity Adjustment =	40%	(max 75%)
$F_3 = F_1 \times Factor =$	3,200	L/min

Separation	Adjustment	Separation	Adjustment
0m to 3m	25%	20.1m to 30m	10%
3.1m to 10m	20%	30.1m to 45m	5%
10.1m to 20m	15%		

Step 5: Calculate Adjusted Fire Flow (shall not be less than 2000 L/min or greater than 45,000 L/min)

F ₁ =	8,000	L/min
- F ₂ =	2,400	L/min
+ F3 =	3,200	_L/min
Fire Flow =	9,000	L/min
Fire Flow =	150.0	L/s
Total Demand (Fire Flow + MDD) =	151.0	L/s

Fire Flow = $F_1 - F_2 + F_3$

Checks:

Fire Flow greater than 2000 L/min Fire Flow less than 45,000 L/min

^{*} If vertical openings are inadequately protected, consider two largest two largest adjoining floors plus 50% of each of any floors above up to

^{*} If vertical openings are adequately protected (one hour rating), consider largest floor area + 25% of two immediately floors.

Residential Development

FIRE FLOW DEMAND CALCULATIONS **Building E**

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

Based on the Water Supply for Public Fire Protecetion Manual, 1999 by the Fire Underwriters Survey

Step 1: Calculate Fire Flow (based on area)

Construction Coefficient =	1.0	
Largest Floor Area =	1,096	m^2
Floor Above =	1,096	m^2
Floor Below =	1,096	m^2
Area =	1,644	m^2
Fire Flow (F) =	9,000	L/min
•		

F = required fire flow (L/min)

 $F = 220C\sqrt{A}$

C = coefficient related to type of construction

0.6 for fire resistive (fully protected, 3-hr ratings)

0.8 for non combustable (i.e. unprotected metal buildings)

1.0 for ordinary construction

1.5 for wood frame construction

A = total floor area excluding basements 50% below grade

Step 2: Adjustment for Building Occupancy (shall not be less than 2000 L/s)

Occupancy Adjustment =	0.00	
F ₁ = Fire Flow x Adjustment =	9,000	L/min
•		,

Non-Combust. -25% Free Burning 15% mited Comb. -15% Rapid Burning 25%

Combustable No change

Step 3: Adjust F1 for Fire Supression System

Sprinkler Adjustment =	30%	
$F_2 = F_1 x Adjustment =$	2,700	L/min

Automatic Sprinklers (monitored) -50% Adequatly Designed System -30%

Step 4: Adjust F1 for Exposure / Proximity (shall not exceed 75%)

Proximity Adjustment =	45%	(max 75%)
$F_3 = F_1 \times Factor =$	4,050	L/min

Separation	Adjustment	Separation	Adjustment
0m to 3m	25%	20.1m to 30m	10%
3.1m to 10m	20%	30.1m to 45m	5%
10.1m to 20m	15%		

Step 5: Calculate Adjusted Fire Flow (shall not be less than 2000 L/min or greater than 45,000 L/min)

F ₁ =	9,000	L/min
- F ₂ =	2,700	L/min
+ F3 =	4,050	L/min
Fire Flow =	10,000	L/min
Fire Flow =	166.7	L/s
Total Demand (Fire Flow + MDD) =	169.1	L/s

Fire Flow = $F_1 - F_2 + F_3$

Checks:

Fire Flow greater than 2000 L/min Fire Flow less than 45,000 L/min

^{*} If vertical openings are inadequately protected, consider two largest two largest adjoining floors plus 50% of each of any floors above up to

^{*} If vertical openings are adequately protected (one hour rating), consider largest floor area + 25% of two immediately floors.

Residential Development

HEAD LOSS CALCULATIONS

Project Name: 4099 Erin Mills Parkway

Project Number: 137429

Date: September 2024

Designed By: SN

ARCADIS

Hydrant Flow Test - Erin Mills Parkway

Flow	Flow	Flow	Pressure	Pressure
(gpm)	(L/s)	(L/min)	(psi)	(kPa)
0	0.0	0	66	455
1,186	74.8	4,490	64	441
2,201	138.9	8,332	63	434

Residual Pressure at Main

Source: Walski, Thomas M. (2007): Advanced Water Distribution Modeling and Management

$$Q_{R} = Q_{F} \times \frac{hr^{0.54}}{hf^{0.54}}$$

where: Q_R = flow predicted at desired residual pressure

Q_F = total flow measured during test

 $h_{\rm r}$ = pressure drop to desired residual pressure

h_f = pressure drop to measured during test

Domestic (PHD) Fire Flow (Fire+MDD) To 20 psi

Flow	Flow	Flow	Residual Pressure @ M	
(gpm)	(L/s)	(L/min)	(psi)	(kPa)
207	13.0	782	66	455
2,918	184.1	11,046	61	420
9,613	606.5	36,390	20	138

(Goal Seek)

Projecting Curve to Fire Flow Projecting Curve to 20 psi

Residual Pressure at Building

$$h_L = \frac{10.675*L*Q^{1.85}}{C^{1.85}*D^{4.8655}}$$

where: h_L = Pressure Drop (m)

L = Length of Service (m)

Q = Flow Rate (m^3/s)

D = Pipe Diameter (m)

C = Roughness Coefficient

PHD Conditions

(1 gal = 3.785 L)

ile i MDD Colluliolis	ire +	MDD	Conditions
-----------------------	-------	-----	------------

	Domestic	
L=	50.0	m
Q=	0.013	m ³ /s
D=	200	mm
C=	110	
$h_L =$	0.1	m
$h_L =$	2.9	in
$h_L =$	0.1	psi
$h_L =$	0.7	kPa
	•	-

	Fire Service	
L=	70.0	m
Q=	0.184	m ³ /s
D=	250	mm
C=	110	
h _L =	4.6	m
h _L =	182.7	in
$h_L =$	6.6	psi
$h_L =$	45.5	kPa

Domestic Fire

Flow	Flow	Flow	Residual Pressure @ Bld	
(gpm)	(L/s)	(L/min)	(psi)	(kPa)
207	13.0	782	66	454
2,918	184.1	11,046	54	375

Residual Pressure (DOMESTIC) at building is greater than 40 psi (275 kPa). Residual Pressure (FIRE) at building is greater than 20 psi (140 kPa).

HYDRANT FLOW TESTING

NOTE:Hydrants tested according to NFPA 291: Recommended Practice for Fire Flow Testing and Marking of Hydrants

GENERAL INFORMATION

General Information

Date of Testing 4-May-22 Project Number: 137429

Site Location / Address: 4099 Erin Mills Parkway

Region / Municipality
Peel Region
Hydrants Opened By:
Peel Region
Tested by:
Daniel S
Val V

HYDRANT TEST INFORMATION

Hydrant Test Location - Residual Hydrant=R, Flow Hydrant=F (North at Top)

Test Data

Time of Test 11:07 AM Pipe Size (mm) 200

Flow Hydrant Test Location (description) On Sawmill Valley Drive

Residual Hydrant Test Location (description) NE corner of Erin Mills and Folkway Dr

Static Pressure(PSIG)

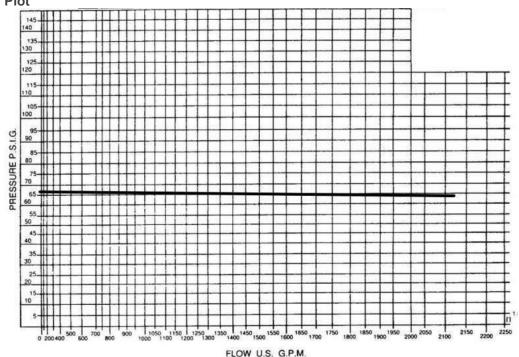
Q1 Test Data (1 Orifice)

# OUTLETS	ORIFICE SIZE(IN)	PITOT PRESSURE(PSIG)	FLOW(USGPM)	RESIDUAL PRESSURE(PSIG)
1	2.5	58	1278	65

QT Test Data (2 Orifices)

# OUTLETS	ORIFICE SIZE(IN)	PITOT PRESSURE(PSIG)	FLOW(USGPM)	RESIDUAL PRESSURE(PSIG)
2	2.5	40	2122	64

Calculations


...... d- pipe diameter (inches)p- pitot reading (psig)

Q1= $(29.83)(0.9)(2.5)^2 \sqrt{58}=1278$ Q1 - 1 Orifice(s) QT= $2(29.83)(0.9)(2.5)^2 \sqrt{40}=2122$ QT - 2 Orifice(s)

Static Pressure(PSIG) 66

Test Results - Plot

PAGE 2 OF 3 2022-05-04

HYDRANT FLOW TESTING

NOTE:Hydrants tested according to NFPA 291: Recommended Practice for Fire Flow Testing and Marking of Hydrants

GENERAL INFORMATION

General Information

Date of Testing 4-May-22 Project Number: 137429

Site Location / Address: 4099 Erin Mills Parkway

Region / Municipality
Peel Region
Hydrants Opened By:
Peel Region
Tested by:
Daniel S
Val V

HYDRANT TEST INFORMATION

Hydrant Test Location - Residual Hydrant=R, Flow Hydrant=F (North at Top)

Test Data

Time of Test 11:28 AM Pipe Size (mm) 200

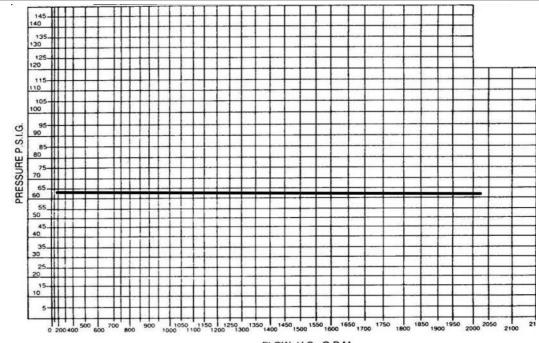
Flow Hydrant Test Location (description) second hydrant down Erin mills, east
Residual Hydrant Test Location (description) NE corner of Erin mills and folkway

Static Pressure(PSIG) 66

Q1 Test Data (1 Orifice)

# OUTLETS	ORIFICE SIZE(IN)	PITOT PRESSURE(PSIG)	FLOW(USGPM)	RESIDUAL PRESSURE(PSIG)
1	2.5	50	1186	64

QT Test Data (2 Orifices)


# OUTLETS	ORIFICE SIZE(IN)	PITOT PRESSURE(PSIG)	FLOW(USGPM)	RESIDUAL PRESSURE(PSIG)
2	2.5	43	2201	63

Calculations

Q1 - 1 Orifice(s) Q1= $(29.83)(0.9)(2.5)^2 \sqrt{50}=1186$ QT - 2 Orifice(s) QT= $2(29.83)(0.9)(2.5)^2 \sqrt{43}=2201$

Static Pressure(PSIG) 66

Test Results - Plot

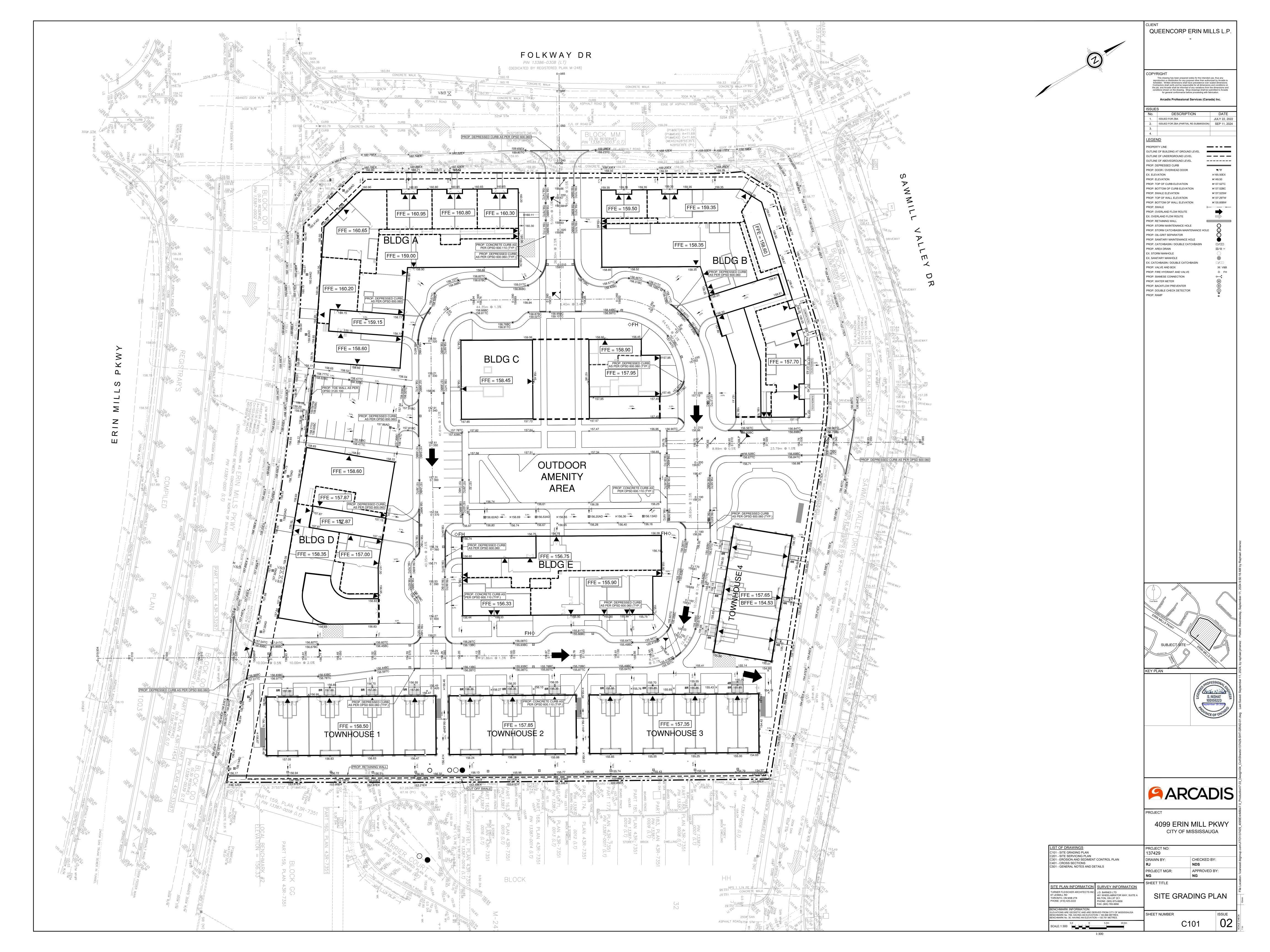
FLOW U.S. G.P.M.

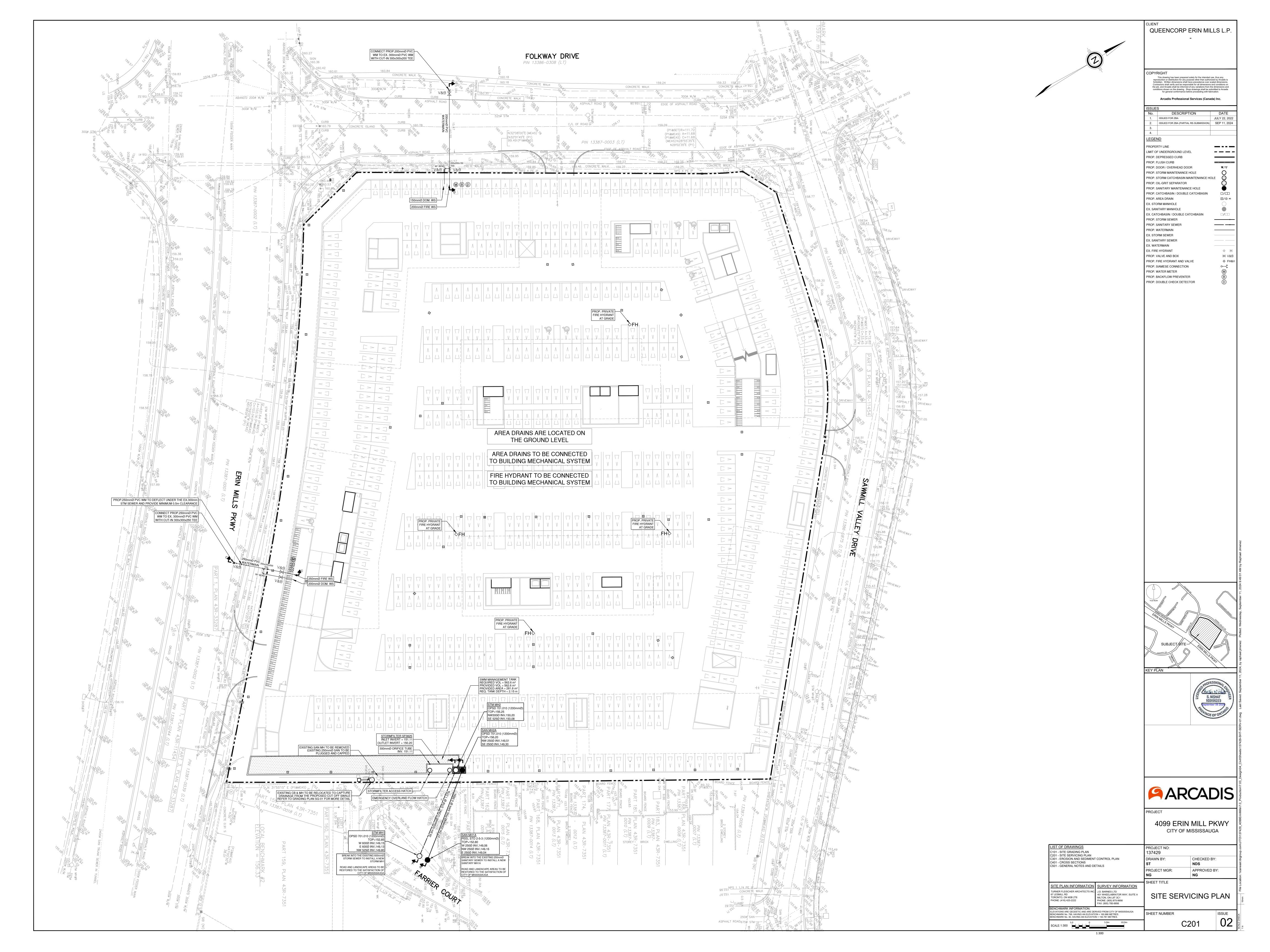
2022-05-04 PAGE 2 OF 2

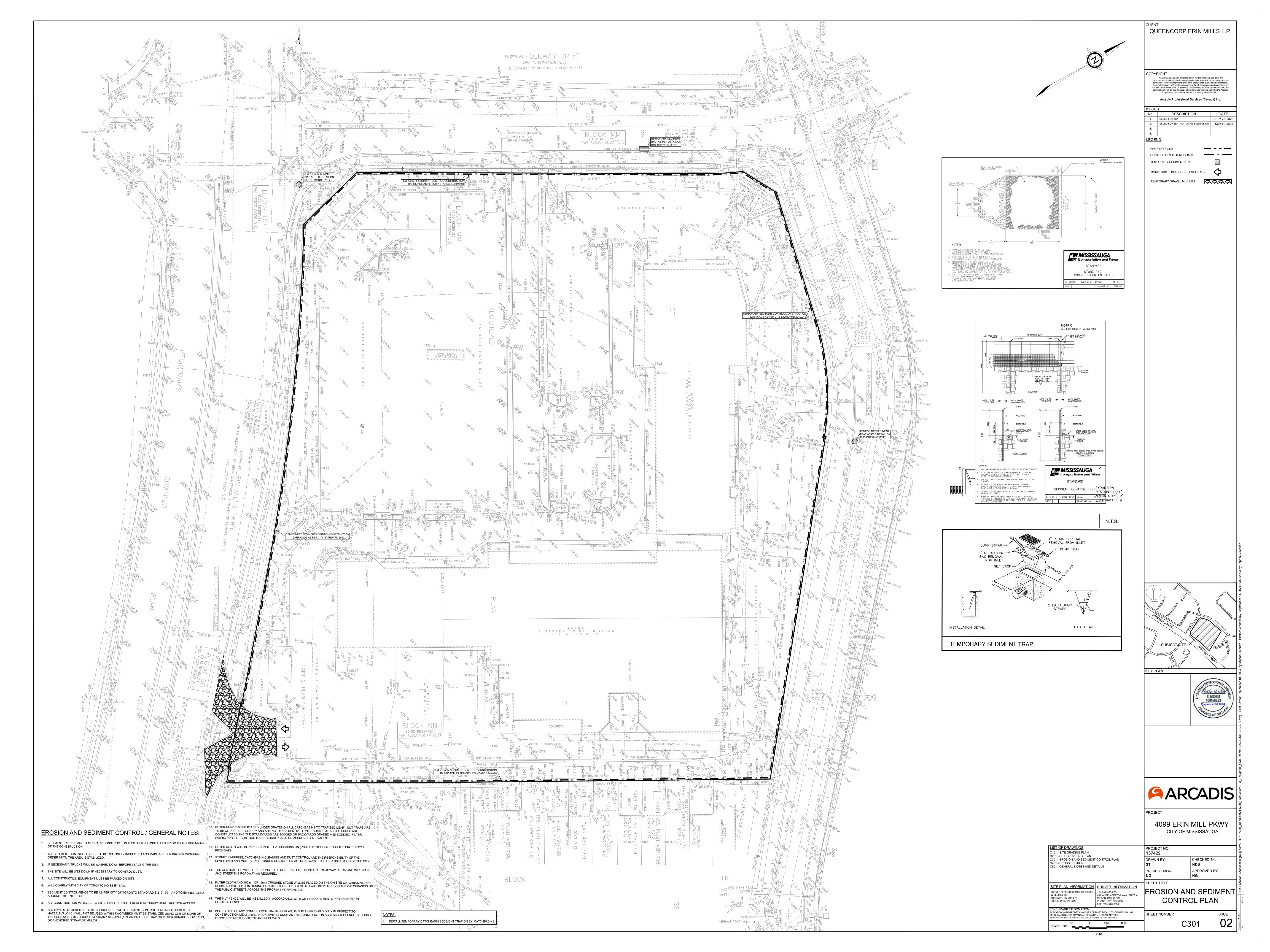
Appendix E

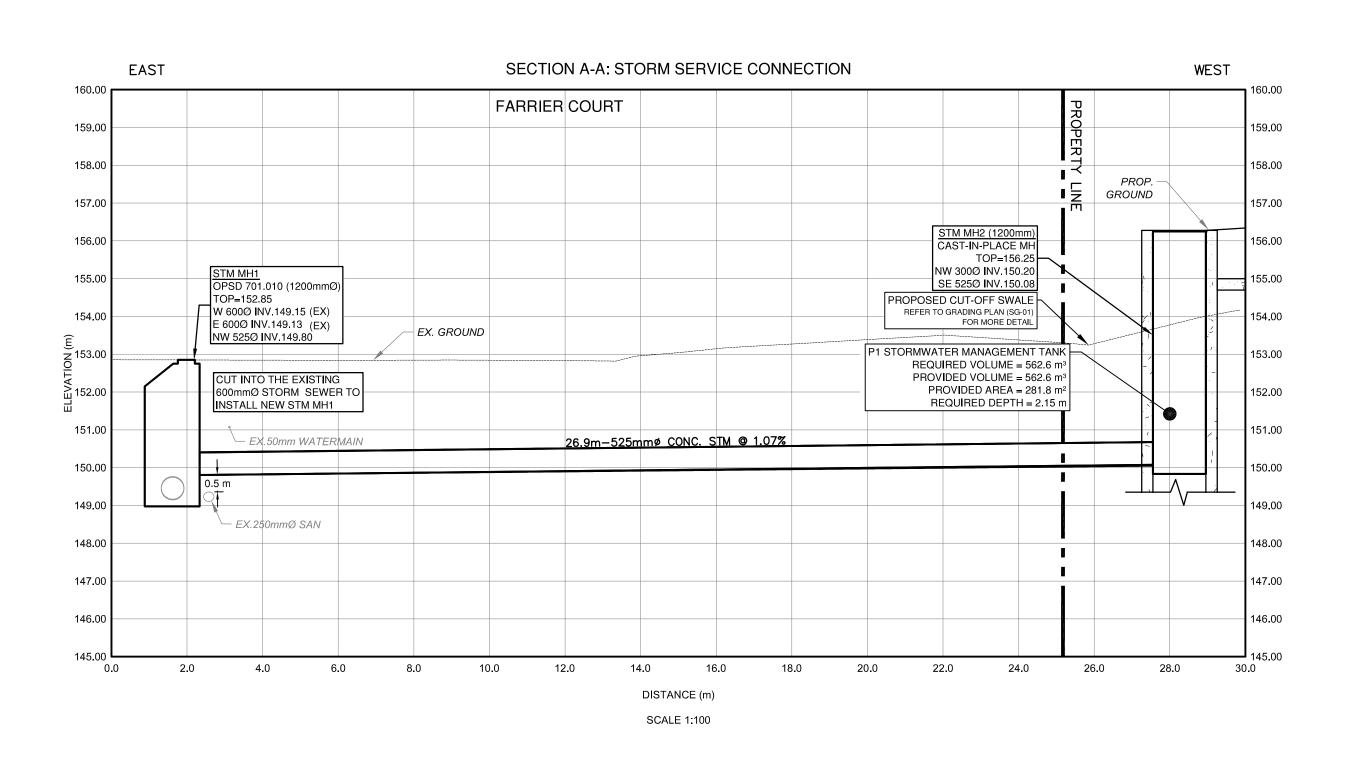
Engineering Plans

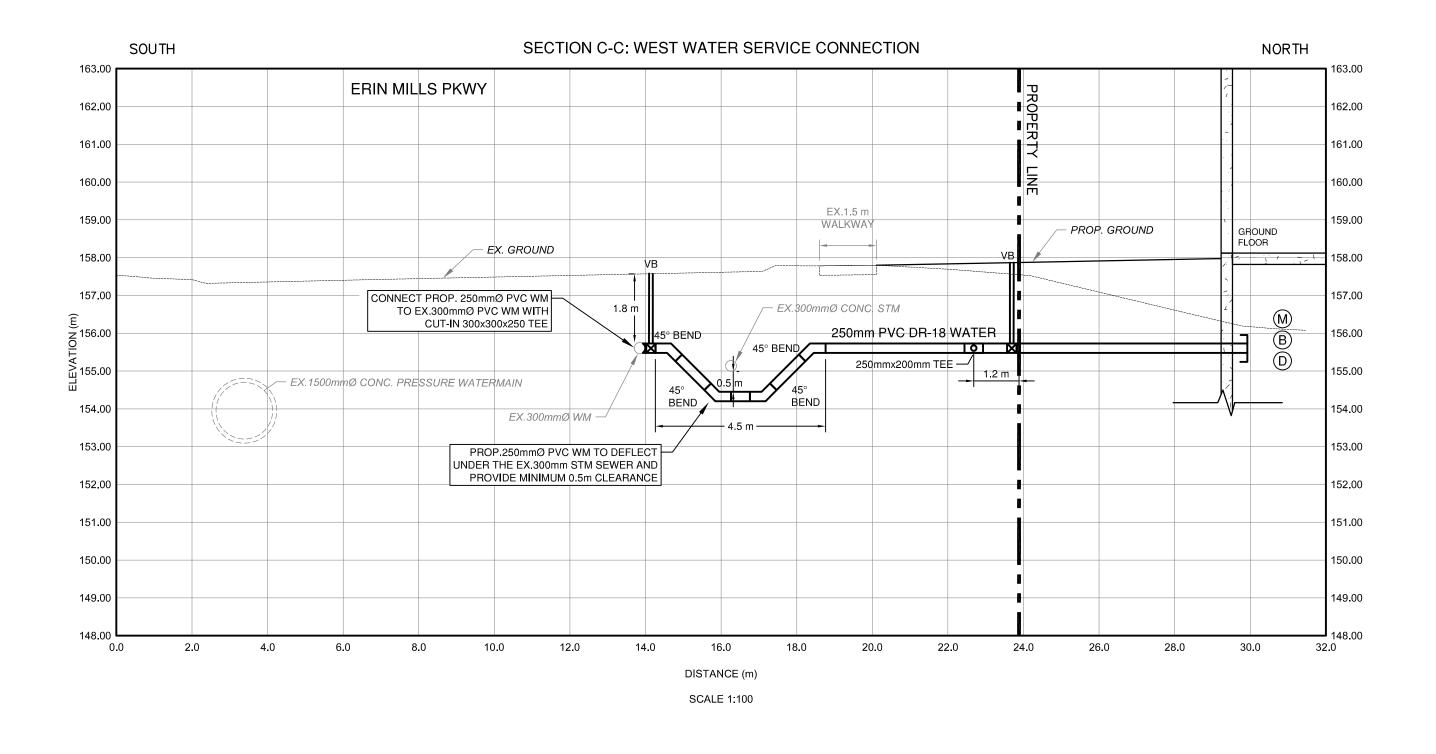
C101 - Site Grading Plan

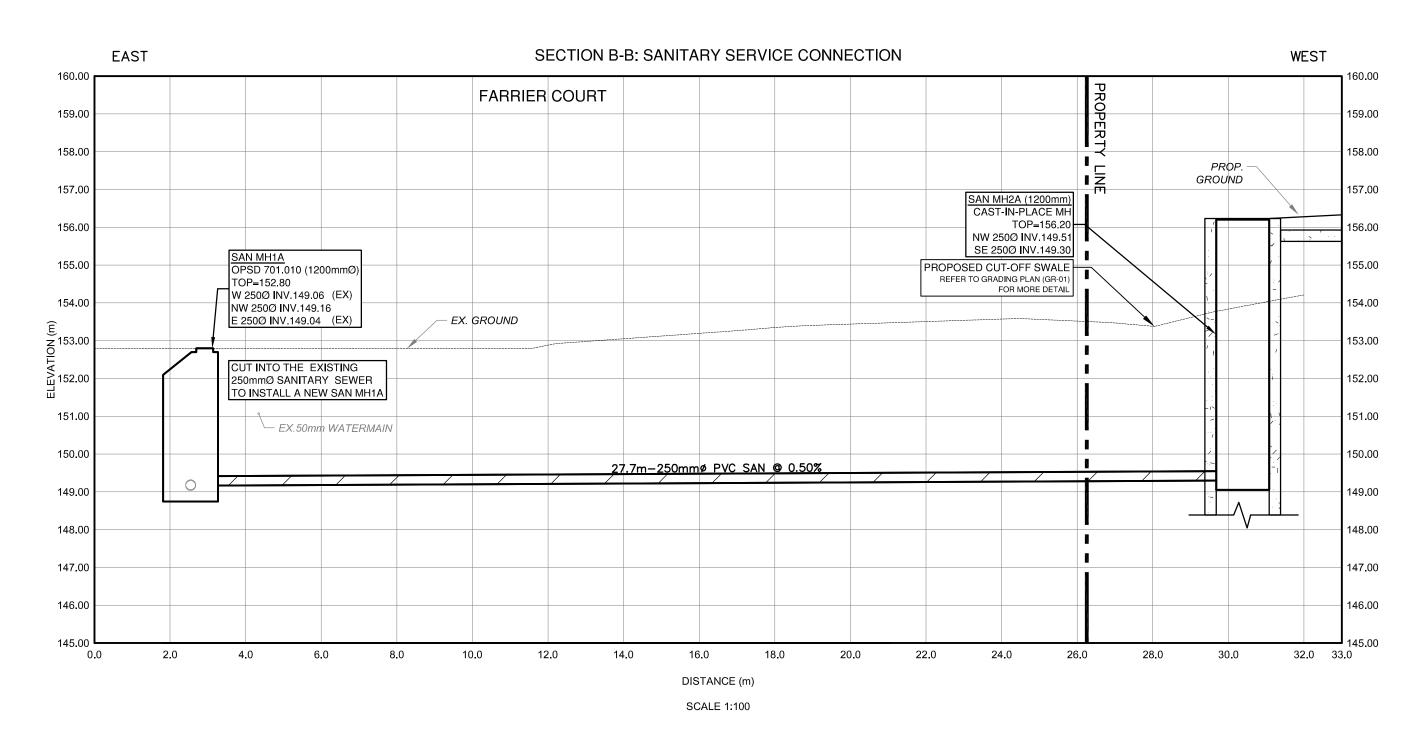

C201 - Site Servicing Plan

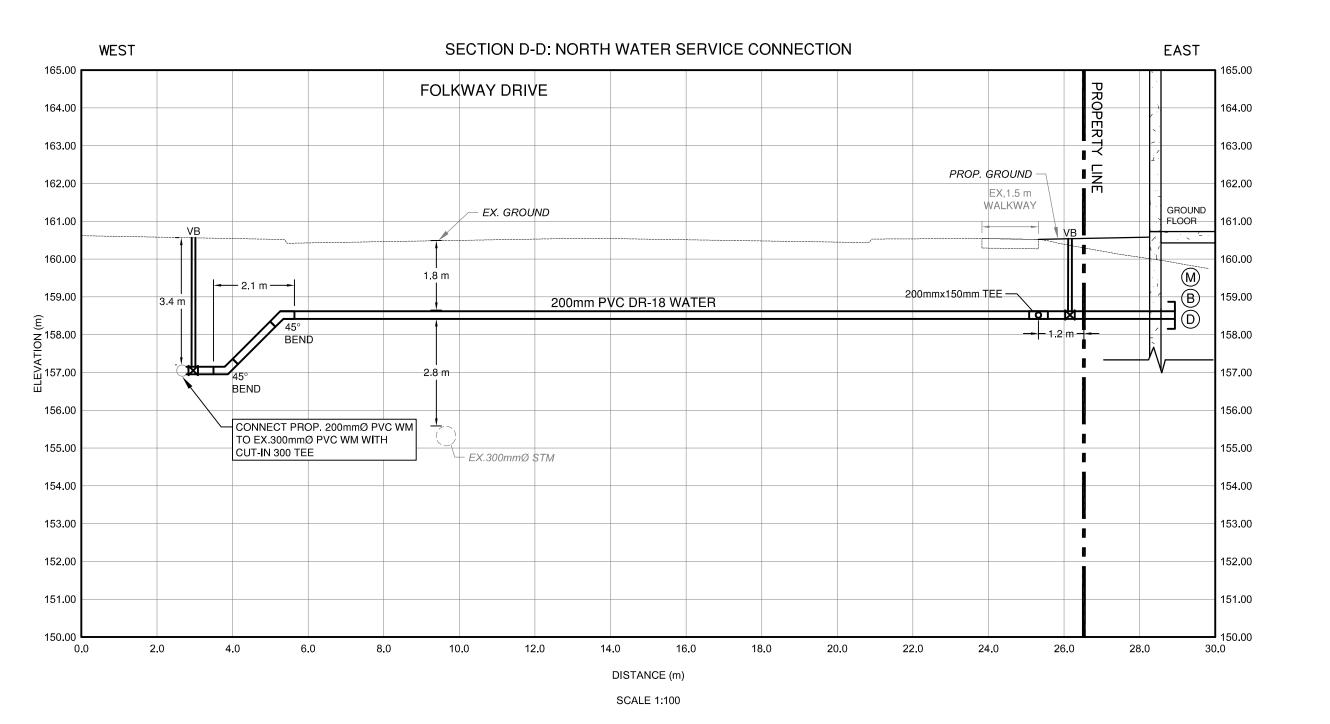

C301 - Erosion and Sediment Control Plan


C401 - Cross Sections


C501 - General Notes and Details


www.arcadis.com

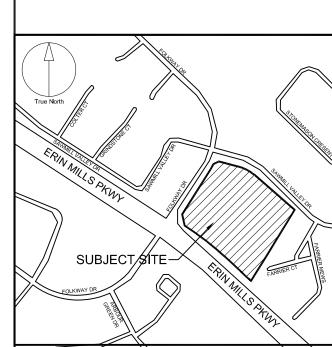




QUEENCORP ERIN MILLS L.P.

COPYRIGHT

This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by Arcadis is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and Arcadis shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to Arcadis for general conformance before proceeding with fabrication.


Arcadis Professional Services (Canada) Inc.

ISSUES

No. DESCRIPTION DA

1. ISSUED FOR ZBA JULY 22, 2022
2. ISSUED FOR ZBA (PARTIAL RE-SUBMISSION) SEP 11, 2024

LEGEND

KEY PLAN

4099 ERIN MILL PKWY
CITY OF MISSISSAUGA

LIST OF DRAWINGS
C101 - SITE GRADING PLAN
C201 - SITE SERVICING PLAN
C301 - EROSION AND SEDIMENT CONTROL PLAN
C401 - CROSS SECTIONS
C501 - GENERAL NOTES AND DETAILS

CONTROL PLAN
TAILS

DRAWN BY:
ST

PROJECT MGR:
NG

SURVEY INFORMATION

DRAWN BY:
ST

PROJECT MGR:
NG

PROJECT NO: 137429

SITE PLAN INFORMATION

TURNER FLEISCHER ARCHITECTS INC.
67 LESMILL RD
TORONTO, ON M3B 2T8
PHONE: (416) 425-2222

BENCHMARK INFORMATION:
ELEVATIONS ARE GEODETIC AND ARE DERIVED FROM CITY OF MISSISSAUGA
BENCHMARK No. 799, HAVING AN ELEVATION = 160.866 METRES.
BENCHMARK No. 30, HAVING AN ELEVATION = 150.781 METRES.

SCALE:1:100 1.0 0 1.0m 2.0m 3.0m 4.0m 5.0m

1:100

CROSS SECTIONS

CHECKED BY:

APPROVED BY:

NDS

SHEET NUMBER C401 O2

SERVICING NOTES UNLESS OTHERWISE NOTED ON THE DRAWINGS, THE FOLLOWING REQUIREMENTS SHALL A. **GENERAL** FOR DIMENSIONS AND DETAILS NOT SHOWN, SEE STANDARD DRAWINGS REFERRED TO ON THESE

2. ALL DIMENSIONS TO BE CHECKED BY THE CONTRACTOR FOR ACCURACY PRIOR TO CONSTRUCTION AND ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER. 5. ALL CONSTRUCTION INDICATED THUS ---- IS BY OTHERS UNLESS OTHERWISE NOTED. 4. ALL TIES ARE TO BE TAKEN TO THE CENTRE OF MANHOLES.

5. ALL TRENCHING TO BE DONE IN ACCORDANCE WITH "THE OCCUPATIONAL HEALTH & SAFETY ACT". 6. ALL RECONSTRUCTION, RESTORATION AND RELOCATION TO BE TO THE SATISFACTION OF THE COMMISSIONER OF PUBLIC WORKS, OR DIRECTOR OF INFRASTRUCTURE THROUGHOUT. . FOR STORM SEWERS, CLASS B SEWER TRENCH BEDDING IS TO BE USED AS PER CITY STANDARD 2112.080. SEWER BEDDING AND COVER MATERIAL SHALL CONFORM WITH CITY STANDARD 2112.090 AND 2112.100 RESPECTIVELY. IF WATER IS PRESENT IN THE TRENCH EXCAVATION, THEN 19mm CLEAR STONE OR 6mm WASHED CRUSHED GRAVEL IS TO BE USED FOR BEDDING IN ACCORDANCE WITH CITY

STANDARDS 2112.110, RESPECTIVELY. . WHERE WET OF SOFT TRENCH SUB-GRADE CONDITIONS ARE ENCOUNTERED, FURTHER ON-SITE GEOTECHNICAL ASSESSMENT MAY BE REQUIRED TO DETERMINE OR RE-EXAMINE THE APPROPRIATE BEDDING IN ORDER TO STABILIZE THE SUB-GRADE FOR SEWER CONSTRUCTION (ie: INCREASE IN BEDDING THICKNESS; STONE IMMERSION TECHNIQUES; LEAK PROOFING OR WRAPPING OF SEWER PIPE JOINTS; CLASS A BEDDING; ETC.). TRENCH BACKFILLING SHALL COMPLY WITH THE CITY'S ENGINEERING POLICY STATEMENT. WHERE THE

PROCTOR DENSITY WITHIN 2% OF OPTIMUM MOISTURE CONTENT. THE TOP 1000mm OF THE SUB-GRADE IS TO BE COMPACTED TO A MINIMUM OF 98% OF STANDARD PROCTOR DENSITY 2 TO 3% DRIER THAN OPTIMUM MOISTURE CONTENT. 10. SAND BACKFILL IS REQUIRED ADJACENT TO MANHOLES, CATCHBASINS AND SERVICE CONNECTIONS.

EXCAVATED INORGANIC NATIVE SUBSOIL IS USED FOR TRENCH BACKFILLING, THE BACKFILL SHOULD BE PLACED IN MAXIMUM 200mm THICK LAYERS, AND COMPACTED TO A MINIMUM OF 95% STANDARD

1. CONTRACTOR TO REMAIN ON SPECIFIED TRUCK ROUTE DURING CONSTRUCTION. THIS ROUTE IS TO BE VERIFIED WITH THE ENGINEER BY THE CONTRACTOR PRIOR TO CONSTRUCTION. 12. PROVIDE PROTECTION TO CONTROL MONUMENTS.

13. DESIGN AND INSPECT SHORING, BRACING, AND UNDERPINNING REQUIRED FOR WORK.

14. REMOVAL OF EXISTING PIPE, STRUCTURE AND APPURTENANCES SHALL INCLUDE OFF SITE DISPOSAL. 15. CONTRACTOR TO SUPPLY ENGINEER WITH ALL UNDERGROUND STORM, SANITARY AND WATERMAIN "AS-BUILT" INFORMATION INCLUDING TOP OF APPURTENANCES. 16. ALL MATERIALS AND CONSTRUCTION METHODS MUST CORRESPOND TO THE CURRENT PEEL PUBLIC WORKS STANDARDS AND SPECIFICATIONS. 17. ALL SURFACE DRAINAGE WILL BE SELF CONTAINED, COLLECTED AND DISCHARGED AT A LOCATION TO BE APPROVED PRIOR TO THE ISSUANCE OF A BUILDING PERMIT. 18. THE PORTIONS OF THE DRIVEWAY WITHIN THE MUNICIPAL BOULEVARD WILL BE PAVED BY THE 19. AT THE ENTRANCE TO THE SITE, THE MUNICIPAL CURB AND SIDEWALK BE CONTINUOUS THROUGH THE DRIVEWAY AND A CURB DEPRESSION WILL BE PROVIDED FOR EACH ENTRANCE.

20. ALL PROPOSED CURBING WITHIN THE MUNICIPAL BOULEVARD AREA FOR THE SITE IS TO SUIT AS A) FOR ALL SINGLE FAMILY RESIDENTIAL PROPERTIES INCLUDING ON STREET TOWNHOUSES, ALL CURBING IS TO STOP AT THE PROPERTY LIMIT OR THE BACK OF THE MUNICIPAL SIDEWALK, WHICHEVER IS APPLICABLE, OR, B) FOR ALL OTHER PROPOSALS INCLUDING INDUSTRIAL, COMMERCIAL AND CONDOMINIUM

DÉVELOPMENTS, ALL ENTRANCE TO THE SITE ARE TO BE IN ACCORDANCE WITH O.PS.D. 350.010. 21. ALL EXCESS EXCAVATED MATERIAL WILL BE REMOVED FROM THE SITE. 22. THE APPLICANT WILL BE RESPONSIBLE FOR THE COST OF ANY UTILITY RELOCATIONS NECESSITATED

B. STORM SEWERS (CITY)

ALL STORM SEWERS SHALL BE IN ACCORDANCE WITH THE CITY OF MISSISSAUGA SPECIFICATIONS AND DETAILS FOR STORM SEWERS. ALL CONCRETE SEWER PIPE UP TO AND INCLUDING 375 mm DIAMETER SHALL BE EQUAL TO C.S.A. SPECIFICATION A251.1, CLASS 3, OR LATEST AMENDMENT. 3. ALL CONCRETE SEWER PIPE 450 mm TO 600 mm DIAMETER SHALL BE EQUAL TO C.S.A. SPECIFICATION A257.2, CLASS 65, OR LATEST AMENDMENT. . ALL CONCRETE SEWER PIPE 675 mm DIAMETER AND OVER SHALL BE EQUAL TO C.S.A. SPECIFICATION A257.2, CLASS 50, OR LATEST AMENDMENT OR AS SPECIFIED ON DRAWINGS. 5. ALL ROYAL KOR-FLO RIBBED SEWER PIPE SHALL BE EQUAL TO C.S.A. SPECIFICATION B-182.1-02

OTHERWISE NOTED. 6. ALL CATCHBASIN LEADS SHALL BE FITTED WITH APPROVED RUBBER GASKET JOINTS. 7. ALL BACKFILL FOR SEWERS, WATERMAINS AND UTILITIES WITHIN THE ROAD ALLOWANCE MUST BE MECHANICALLY COMPACTED TO 95% STANDARD PROCTOR DENSITY. 8. ALL STORM SEWERS SHALL BE CONSTRUCTED WITH BEDDING IN ACCORDANCE WITH CITY STD. 2112.080 CLASS 'B', UNLESS OTHERWISE NOTED. RESPONSIBLE FOR ALL COSTS INCURRED TO SUPPLY ADDITIONAL BEDDING AND/OR HIGHER CLASS PIPE INCLUDING ALSO THE CONSULTANT COSTS TO REDESIGN AND OBTAIN MUNICIPAL APPROVAL. 10. ALL SEWERS WITH GRADES OF 0.60% OR LESS TO BE CONSTRUCTED WITH LASER AND INSTRUMENT CHECKED PRIOR TO BACKFILLING. 1. WHERE CATCHBASINS ARE LOCATED ON BACKFILLED MATERIAL DUE TO SEWER CONSTRUCTION, SUCH MATERIAL TO BE REPLACED WITH 15 MPa CONCRETE TO SOLID GROUND. 2. SINGLE STREET CATCHBASINS TO BE OPSD 705.010 WITH OPSD. FRAME AND GRATE AS PER OPSD. 704.010. LEAD TO BE 250mm DIA. OR AS SPECIFIED.

AND A.S.T.M. SPECIFICATIONS D-3034-00 AND D-3212-96A(2003) OR LATEST AMENDMENT, UNLESS

13. DOUBLE STREET CATCHBASINS TO BE OPSD 705.020 WITH OPSD. FRAME AND GRATE AS PER OPSD. 704.010. LEAD TO BE 300mm DIA. OR AS SPECIFIED. 14. ALL STORM MANHOLES TO BE AS PER OPSD 701.010, 701.011, 701.012 AND 701.013. 15. ALL MANHOLES TO BE BENCHED THROUGHOUT TO THE OBVERT OF ALL PIPES ON A VERTICAL PROJECTION FROM SPRINGLINE, EXCEPT AS OTHERWISE NOTED.

16. ALL STORM MANHOLES TO HAVE OPSD. 401.010 COVERS. 17. HALF BULKHEADS TO BE INSTALLED IN STORM SEWER OUTLET MANHOLES PRIOR TO CONSTRUCTION AND MAINTAINED TO THE SATISFACTION OF THE CITY OF MISSISSAUGA.

GENERAL NOTES FOR GRADING <u>A. GENERAL</u>

THE ORIGINAL TOPOGRAPHY AND GROUND ELEVATIONS, SERVICING AND SURVEY INFORMATION SHOWN ON THIS PLAN ARE SUPPLIED FOR INFORMATION ONLY. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO VERIFY THE ACCURACY OF ALL INFORMATION OBTAINED FROM THIS PLAN, ENGINEERING PLANS OR

FOR EXACT LOCATION OF SERVICE CONNECTIONS, STREET APPURTENANCES, DRIVEWAY LOCATIONS AND CATCHBASINS AND LEADS, CONTRACTOR TO REFER TO ENGINEERING PLANS.

ALL GROUND SURFACES SHALL BE EVENLY GRADED WITHOUT PONDING AREAS AND WITHOUT LOW POINTS EXCEPT WHERE APPROVED SWALE OR CATCHBASIN OUTLETS ARE PROVIDED.

1. "EX" INDICATES THE FINAL GRADE AT A LOCATION TO BE THE SAME AS THE EXISTING GRADE. (AT BOUNDARY POINTS THE EXISTING GRADE IS TAKEN TO BE IMMEDIATELY ADJOINING THE DEVELOPMENT LANDS) FINAL PERIMETER GRADES FOR THE SITE WHERE NOT OTHERWISE SHOWN HEREON SHALL BE COINCIDENT WITH THE ADJOINING PERIMETER GRADES OF AN ADJACENT LOT OR BLOCK WHICH SHALL HAVE BEEN PREVIOUSLY ESTABLISHED BY, OR CONSTRUCTED IN ACCORDANCE WITH A MUNICIPAL SITE PLAN APPROVAL

OR DEVELOPER GRADING APPROVAL. EMBANKMENTS FORMED DURING THE GRADING SHALL HAVE THE FOLLOWING MAXIMUM GRADES: (A) ADJACENT TO DRIVEWAYS, AND SWALE SIDESLOPES - 3:1 MAXIMUM

(B) BETWEEN STRUCTURES IN ANY DIRECTION - 3:1 MAXIMUM SLOPE. MAXIMUM DRIVEWAY AND PARKING AREA PAVEMENT GRADES TO BE 5.0%. GRADING AND SODDING OF ADJACENT ROADWAY BOULEVARDS WILL BE PERFORMED IN ACCORDANCE WITH MUNICIPAL SPECIFICATIONS. ALL WATER

BOXES, MANHOLE AND CHAMBER COVERS TO BE SET FLUSH WITH FINISHED SOD DRIVEWAY APRON CONSTRUCTION BETWEEN CURB AND STREET LINE TO BE BY CONTRACTOR IN ACCORDANCE WITH MUNICIPAL SPECIFICATIONS.

10. THE BUILDER WILL CONFORM WITH THE CURB CUT LOCATION POLICIES OF THE MUNICIPALITY AND BE RESPONSIBLE FOR ALL RECTIFICATIONS WHICH MAY BE

REQUIRED DUE TO DISCREPANCY. . ANY TOPSOIL OR ORGANIC MATERIAL CAPABLE OF PRODUCING METHANE WILL BE REMOVED FROM THE SITE OR STOCKPILED FOR LANDSCAPING PURPOSES ONLY.

C. NOTES FOR REGION OF PEEL

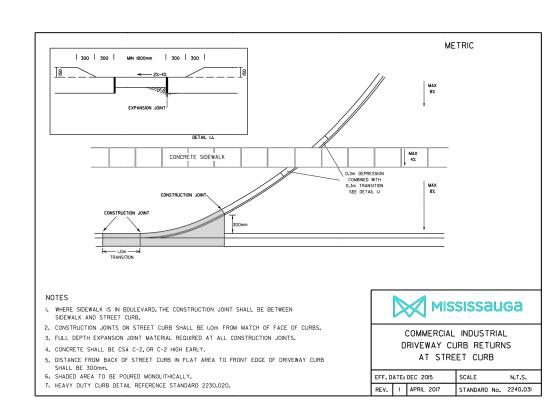
GENERAL NOTES

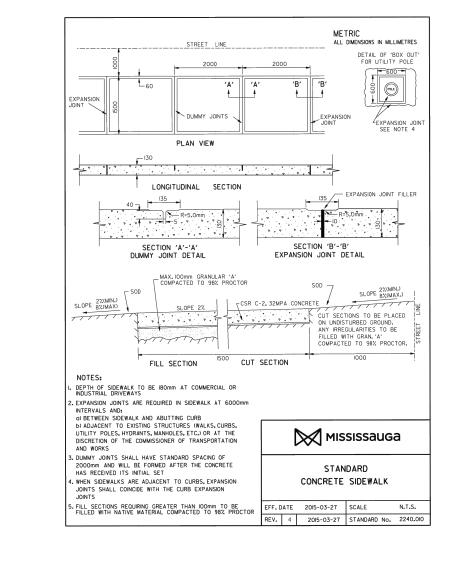
OF PEEL STANDARDS 1-7-7 OR 1-7-8.

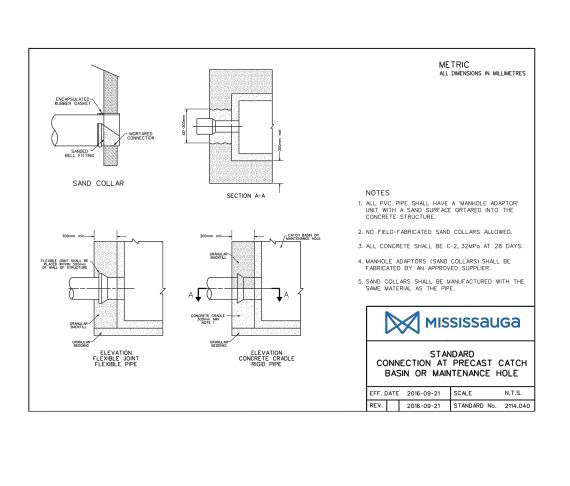
LOCATION OF ALL EXISTING UTILITIES IN THE FIELD TO BE ESTABLISHED BY THE CONTRACTOR. . THE CONTRACTOR(S) SHALL BE SOLELY RESPONSIBLE FOR LOCATES, EXPOSING, SUPPORTING AND PROTECTING OF ALL UNDERGROUND AND OVERHEAD UTILITIES AND STRUCTURES EXISTING AT THE TIME OF CONSTRUCTION IN THE AREA OF HIS WORK. $\,$ WHETHER SHOWN ON THE PLANS OR NOT, AND FOR ALL REPAIRS AND CONSEQUENCES RESULTING FROM DAMAGE TO SAME.

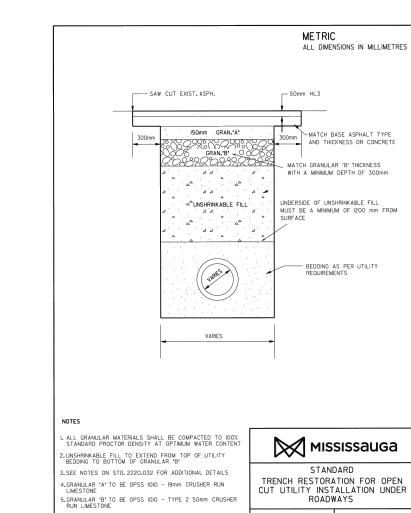
THE CONTRACTOR(S) SHALL BE SOLELY RESPONSIBLE TO GIVE 72 HOURS WRITTEN NOTICE TO UTILITIES PRIOR TO CROSSING SUCH UTILITIES, FOR THE PURPOSE OF INSPECTION BY THE CONCERNED UTILITY. THIS INSPECTION WILL BE FOR THE DURATION OF THE CONSTRUCTION, WITH THE CONTRACTOR RESPONSIBLE FOR ALL COSTS ARISING FROM SUCH INSPECTION. . ALL MATERIALS AND CONSTRUCTION METHODS MUST CORRESPOND TO THE CURRENT PEEL PUBLIC WORKS STANDARDS AND SPECIFICATIONS. 5. WATERMAIN AND / OR WATER SERVICE MATERIALS 100 mm (4") AND LARGER MUST BE PVC DR18 (AWWA C900) SIZE 50 mm (2") AND SMALLER MUST BE TYPE K SOFT COPPER (ASTM B88-49) 6. WATERMAINS AND / OR WATER SERVICES ARE TO HAVE A MINIMUM COVER OF 1.7 M (5'6") WITH A MINIMUM HORIZONTAL SPACING OF 1.2 M (4') FROM THEMSELVES AND ALL OTHER UTILITIES. . PROVISIONS FOR FLUSHING WATER LINE PRIOR TO TESTING, ETC. MUST BE PROVIDED WITH AT LEAST

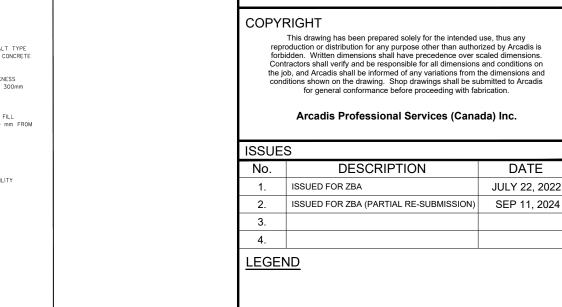
POINTS AT THE END, THE SAME SIZE AS THE LINE. THEY MUST ALSO BE HOSED OR PIPED TO ALLOW THE WATER TO DRAIN ONTO A PARKING LOT OR DOWN A DRAIN. ON FIRE LINES, FLUSHING OUTLET TO BE 100 mm (4") DIAMETER MINIMUM ON A HYDRANT. 8. ALL CURB STOPS TO BE 3.0 M (10') OFF THE FACE OF THE BUILDING UNLESS OTHERWISE NOTED. 9. HYDRANT AND VALVE SET TO REGION STANDARD 1 - 6 - 1 DIMENSION A AND B, 0.7 M (2') AND

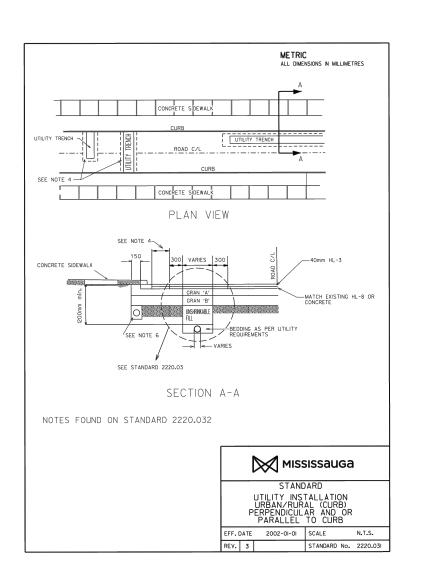

A 50 mm (2") OUTLET ON 100 mm (4") AND LARGER LINES. COPPER LINES ARE TO HAVE FLUSHING

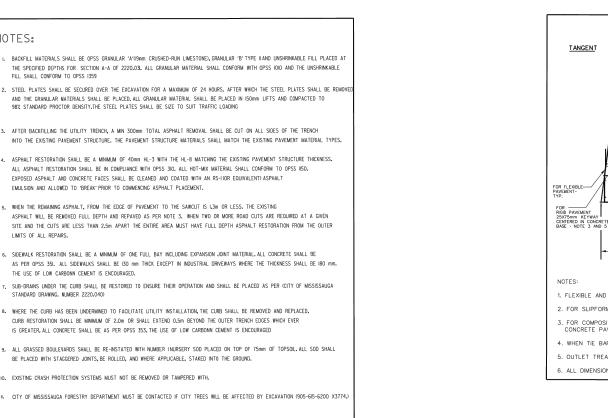

0.9 M (3') AND TO HAVE PUMPER NOZZLE. 10. WATERMAINS TO BE INSTALLED TO GRADES AS SHOWN ON APPROVED SITE PLAN. COPY OF GRADE SHEET MUST BE SUPPLIED TO INSPECTOR PRIOR TO COMMENCEMENT OF WORK, WHERE REQUESTED

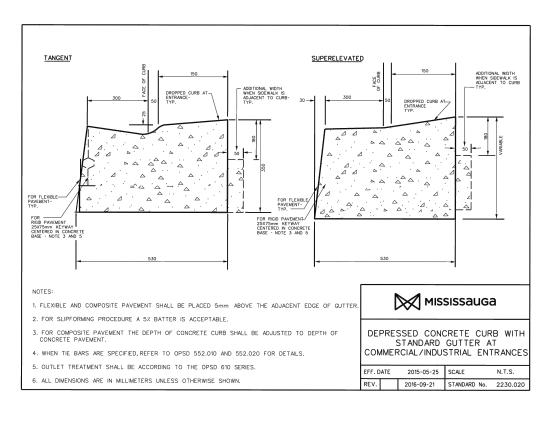

11. WATERMAINS MUST HAVE A MINIMUM VERTICAL CLEARANCE OF 0.3 M (12") OVER / 0.5 M (20") UNDER SEWERS AND ALL OTHER UTILITIES WHEN CROSSING. 12. ALL PROPOSED WATER PIPING MUST BE ISOLATED FROM EXISTING LINES IN ORDER TO ALLOW INDEPENDENT PRESSURE TESTING AND CHLORINATING FROM EXISTING SYSTEMS.

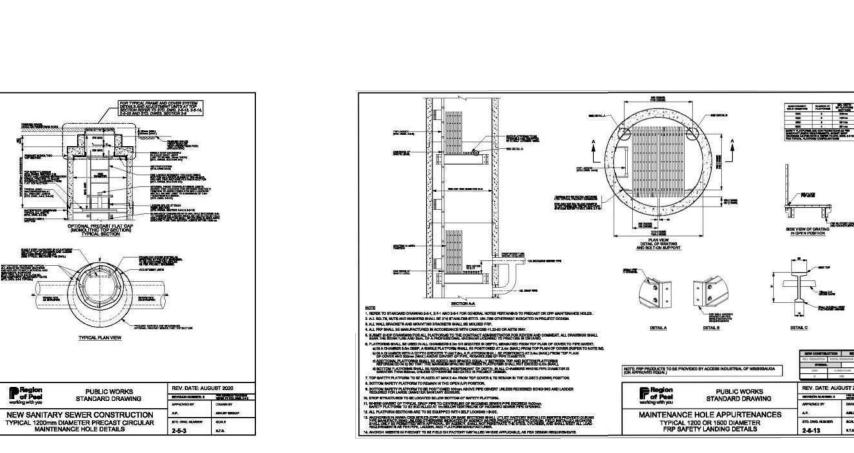

3. ALL LIVE TAPPING AND OPERATION OF REGION WATER VALVES SHALL BE ARRANGED THROUGH THE REGIONAL INSPECTOR ASSIGNED OR BY CONTACTING THE OPERATIONS AND MAINTENANCE DIVISION 4. ALL PROPOSED WATER PIPING MUST BE ISOLATED THROUGH A TEMPORARY CONNECTION THAT SHALL INCLUDE AN APPROPRIATE CROSS-CONNECTION CONTROL DEVICE. CONSISTENT WITH THE DEGREE OF HAZARD, FOR BACKFLOW PREVENTION OF THE ACTIVE DISTRIBUTION SYSTEM, CONFORMING TO REGION

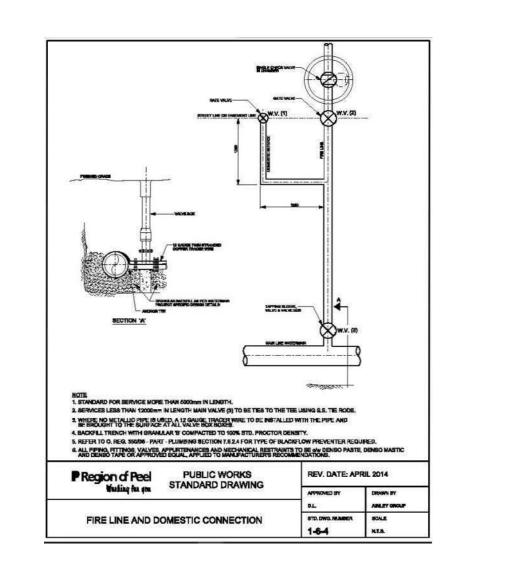

Tapered top See alternative C SUMP DETAIL ALTERNATIVES Bottom riser section with inlet and outlet openings to s Riser sections as required Ø1200 Monolithic base with inlet and outlet openings to suit See alternatives A and B A PRECAST SLAB BASE 1 The sump is measured from the lowest invert. Granular backfill shall be placed to a minimum thickness of 300mm all around the B Precast concrete components shall be according to OPSD 701.030, 701.031, or 701.032. B CAST-IN-PLACE BASE Structure exceeding 5.0m in depth shall include safety platform according to OPSD 404.020. D Pipe support according to OPSD 708.020. For benching and pipe opening details, see OPSD 701.021. 91200 ——— For adjustment unit and frame installation, se OPSD 704.010 All dimensions are nominal. All dimensions are in millimetres unless otherwise shown. C PRECAST FLAT CAP ONTARIO PROVINCIAL STANDARD DRAWING Nov 2014 Rev 5 PRECAST CONCRETE MAINTENANCE HOLE 1200mm DIAMETER

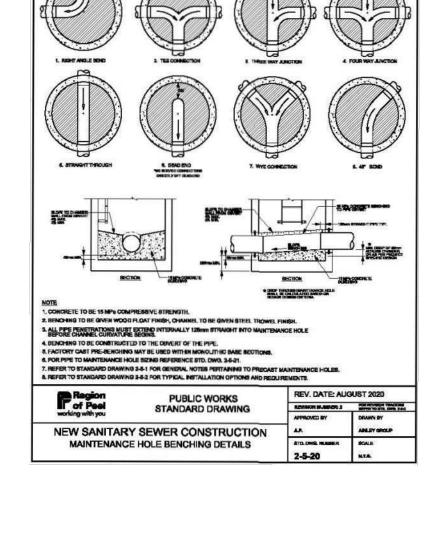


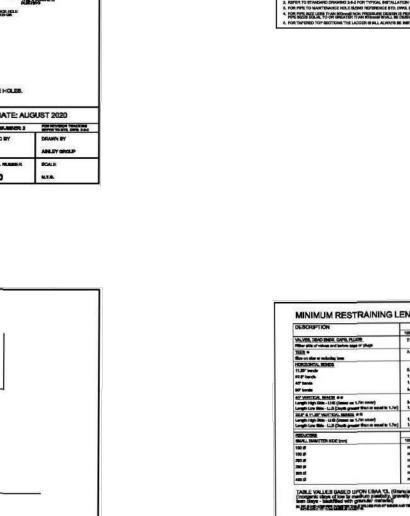


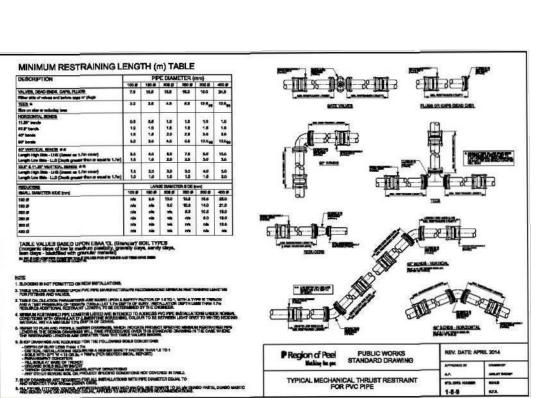

QUEENCORP ERIN MILLS L.P.

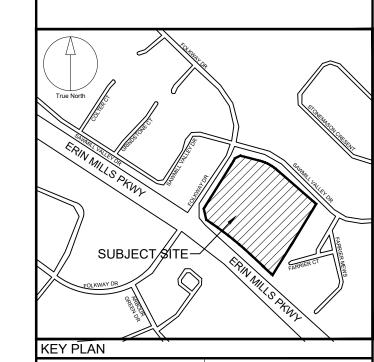


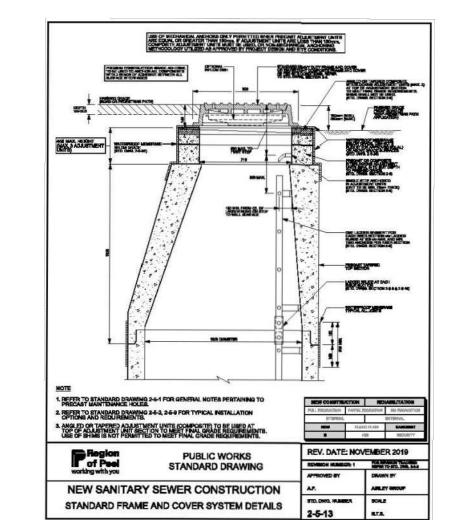

MISSISSauga

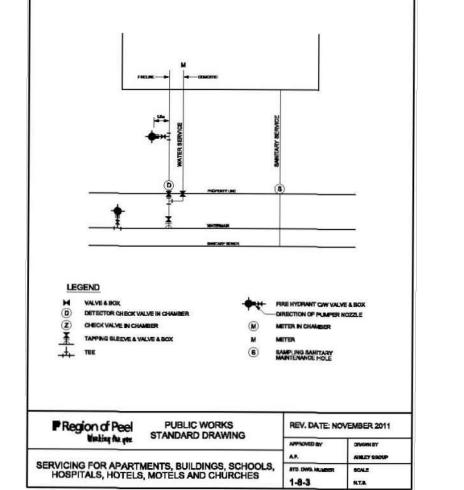

UTILITY INSTALLATION NOTES




- Martin Manager of Services







	PROJECT
	4099 ERIN MILL PKWY CITY OF MISSISSAUGA
LIST OF DRAWINGS	PROJECT NO:
C101 - SITE GRADING PLAN C201 - SITE SERVICING PLAN	137429

C301 - EROSION AND SEDIMENT C401 - CROSS SECTIONS C501 - GENERAL NOTES AND DE		DRAWN BY: ST	CHECKED BY NDS	:
		PROJECT MGR: APPROVED BY: NG		Y:
SITE PLAN INFORMATION TURNER FLEISCHER ARCHITECTS INC. 67 LESMILL RD TORONTO, ON M3B 2T8 PHONE: (416) 425-2222	SURVEY INFORMATION J.D. BARNES LTD 401 WHEELABRATOR WAY, SUITE A MILTON, ON L9T 3C1 PHONE: (905) 875-9956 FAX: (905) 785-9956	GENERAL NOTES AND DETAILS		
BENCHMARK INFORMATION: ELEVATIONS ARE GEODETIC AND ARE DERIVED FROM CITY OF MISSISSAUGA BENCHMARK No. 799, HAVING AN ELEVATION = 160.866 METRES. BENCHMARK No. 30, HAVING AN ELEVATION = 150.781 METRES. SCALE:		SHEET NUMBER	 2501	1SSUE 02

Arcadis Professional Services (Canada) Inc. 8133 Warden Ave, Unit 300 Markham, ON L6G 1B3 Canada

Phone: 1 905 763 2322

www.arcadis.com