

NYX Tannery LP Functional Servicing and Stormwater Management Report 51 & 57 Tannery St. and 208 Emby Drive. Mississauga, ON.

City File (OPZR - 104636)

April 19, 2024 (Revised July 4, 2024)

GE Project #: 23-904

Table of Contents

1.0	Introduction
1.1	General Information
1.2	Objectives
1.3	Existing Conditions
1.4	Proposed Development
2.0	Sanitary Servicing
2.1	Existing and Proposed Sanitary Sewer Infrastructure
3.0	Water Supply and Distribution
3.1	Existing and Proposed Water Infrastructure
4.0	Stormwater Management
4.1 4.2	Design Criteria6 Existing Storm Drainage System
4.2 4.3	Proposed Storm Drainage System
Table	1: Site Statistics
Table	2: Peak Post Development Flows and Required Storage
5.0	Conclusions and Recommendations
0.0	
Figur	res
- :	- 4 Otto Longition
Figure	e 1 Site Location

Appendices

- A Proposed Development and Existing Information
- B Sanitary Design Information
- C Stormwater Management Design Information
- D Water Design Information

1.0 Introduction

1.1 General Information

Greystone Engineering Inc. have been retained by Montcrest Asset Management to prepare a Functional Servicing and Stormwater Management Report for the proposed development at 51 and 57 Tannery Street in the City of Mississauga.

The property is located at the Southeast corner of Tannery Street and Broadway Street with a CPR Rail line to the East, Mullet Creek to the West, Tannery Street to the North and Emby Drive with existing commercial / industrial to the South. Refer to **Figure 1** for site location.

This Functional Servicing and Stormwater Management Report (FSR) has been completed to support the OPA/ZBA and future Site Plan Approval (SPA) applications.

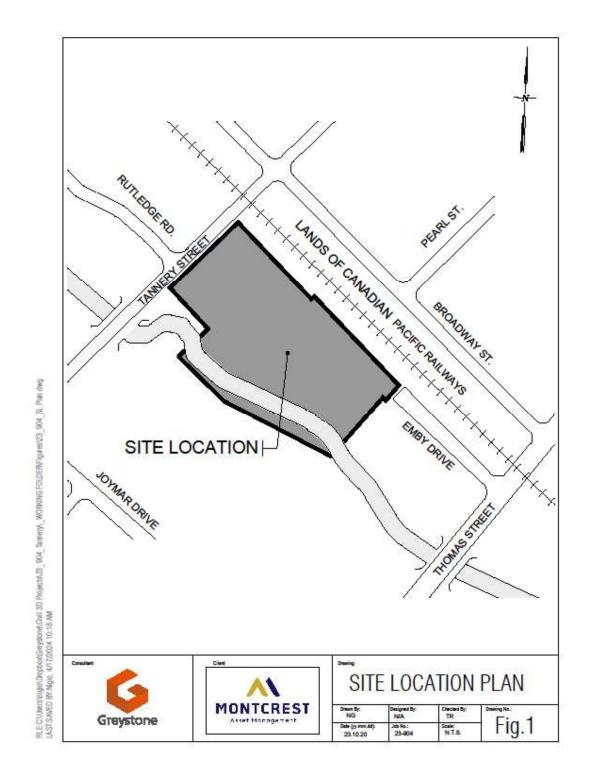
1.2 Objectives

The objectives of this Functional Servicing and Stormwater Management Report are to:

- Confirm the location of existing infrastructure both internal and adjacent to the subject site.
- Evaluate and confirm capacity for sanitary servicing.
- Evaluate and confirm adequate supply and on-site distribution of municipal water to meet domestic and fire flow requirements.
- Provide Stormwater Management design in keeping with the City of Mississauga and Credit Valley Conservation Authority (CVC) requirements.
- Provide on-site retention and re-use of the 5.0mm storm as part of the City of Mississauga SWM design requirements.
- Quantity control of the 2-100 yr post development flows to the 10 yr pre development flow will be required for flows discharging to the City sewer.
- Provide Level 1 quality control with a minimum of 80% TSS removal.
- Implement LID features to the development where feasible.

All the above will be done in accordance with accepted engineering practices.

1.3 Existing Conditions


The site is currently a mixed-use development of residential and commercial / industrial. As mentioned above, the site is located at the Southeast corner of Tannery Street and Broadway Street with a CPR Rail line to the East, Mullet Creek to the West, Tannery Street to the North and Emby Drive with existing commercial / industrial to the South. Refer to **Figure 1** for site location.

The site generally drains East to West overland to Mullet Creek. There is an existing 500 mm diameter CSP culvert that bisects the property picking up external drainage from the CPR lands to the East (0.35 ha) and discharging to Mullet Creek. Other than the 500mm CSP, there are no storm systems in place on the site.

Servicing (storm, sanitary and water) are existing within Tannery St. to the North.

Refer to drawing DR1 and ESC1 in Appendix A for existing drainage details.

Figure 1 Site Location

1.4 Proposed Development

The proposed development will consist of a 14 Storey residential building with 633 units and underground parking. The total site area is 1.85 ha. As part of the development plan there will be a road dedication (0.023 ha) and valley land dedication (0.404 ha) leaving the proposed development area as 1.42 ha. For the purposes of this report, the site development area of 1.42 ha will be used.

The site will be serviced by existing municipal infrastructure for storm, water and sanitary within Tannery Street. Access to the site will be off of Tannery Street.

Refer to **drawing DR1-DR4** in **Appendix A** for existing drainage details.

2.0 Sanitary Servicing

2.1 Existing and Proposed Sanitary Sewer Infrastructure

There is an existing 250 mm diameter PVC sanitary sewer at 1.6% slope within Tannery St. and an existing 250 mm sanitary at 2.2% within Emby Drive. The existing Tannery sewer starts at EX MH 6A servicing the existing residential on both the north (Retirement residence at 175 Rutledge St) and south (within the proposed development) sides of Tannery St. We estimate a total sanitary contribution from the existing developments to be **5.2 L/s**.

A sanitary connection is proposed to the Tannery sewer with a new sanitary manhole (MH 01A). This sanitary sewer has a full flow capacity of **73.5 L/s.**

The Region of Peel Design standard 2-9-2 was used to analyze the proposed sanitary flows. Sewage flows are based on 302.8 Litres per capita day (Lpcd). Using the Regions allowance of 302.8 Lpcd, the proposed sanitary flow is estimated as follows:

633 units x 2.7 ppu = 1709.1 people x 302.8 Lpcd x 3.64 PF = **21.79 L/s** Infiltration allowance = 1.42 ha x 0.28 L/s/ha = 0.40 L/s Total combined flow = **22.2 L/s**.

This represents approximately 30% of the total capacity of the existing 250 mm sewer.

Refer to **Appendix A**, **dwg S1** for proposed design and **Appendix B** for sanitary information.

The existing sanitary infrastructure has sufficient capacity to service the proposed development.

3.0 Water Supply and Distribution

3.1 Existing and Proposed Water Infrastructure

There is an existing 12" (300mm) diameter PVC watermain within Tannery Street and an existing 300mm diameter PVC watermain within Emby Drive connecting to the existing 300 mm watermain within Thomas St. The existing watermain within Emby drive services the existing commercial / industrial lands that are part of the proposed redevelopment.

Flow tests were completed by Classic Fire Protection Inc. for both Thomas St. and Tannery St. dated May 10, 2019 and June 15, 2017 respectively. On Thomas St. the existing static water pressure is **75 psi** with an estimated residual flow of **2867 GPM** at **20 psi**. On Tannery St. the existing static water pressure is **62 psi** with an estimated residual flow of **3522 GPM** at **20 psi**. Refer to **Appendix D** for flow test results.

The site will be serviced using the existing 300 mm watermain within Tannery St. using a 200 mm PVC connection per Region of Peel standard 1-8-6. Refer to **Drawing S1** for details.

Property line valves will be added as well as a private hydrant within the site. Private hydrants are proposed with a maximum distance of 45 m to Siamese locations to meet OBC and NFPA requirements.

Using the Fire Underwriters Survey (FUS) for fireflow calculations, the estimated Peak Day Domestic Demand is **166 GPM** and Fire Flow demand for the development is **3386 GPM**. There is sufficient water pressure and volume to provide fire protection and domestic water to the proposed development. Based on the height of the building a booster pump will be required for fire protection.

Refer to **Appendix A, Drawings S1** for the proposed connections. Refer to **Appendix D** for flow test results, water demand calculations and Region of Peels water-wastewater design tables.

4.0 Stormwater Management

4.1 Design Criteria

The site is subject to the stormwater management design criteria outlined in the City of Mississauga development criteria Section 8 – Storm Drainage Design Requirements and the Credit Valley Conservation Authority (CVC) stormwater management design criteria. Stormwater design criteria is as follows:

- Provide on-site storage, reuse and retention of the 5.0mm storm as part of the City of Mississauga and TRCA SWM design requirements for water balance.
- Post to pre quantity control is required for all storm events from the 2 -100 year discharging to Mullett creek per CVC requirements. For stormwater discharging to City sewers, post development flows must be controlled to the 10 year storm (C = 0.5.) per the City of Mississauga standards.
- Provide Level 1 Quality control with a minimum of 80% TSS.
- Where feasible, provide low impact development measures (LID).
- Implement erosion and sediment control measures prior to construction to prevent sediment transport and erosion during construction.

4.2 Existing Storm Drainage System

As mentioned in Section 1.3, the site generally drains East to West overland to Mullet Creek. There is an existing 500 mm diameter CSP culvert that bisects the property picking up external drainage from the CPR lands to the East (0.352 ha) and discharging to Mullet Creek. The 100 year external flow is estimated to be 54.1 L/s (Lea Consulting Stormwater Management Brief, March 2021). Other than the 500mm CSP, there are no storm systems in place on the site.

Refer to "Pre Development Drainage Plans" provided in **Appendix A**.

Refer to **drawing DR1** and **ESC1** in **Appendix A** for existing drainage details.

4.3 Proposed Storm Drainage System

The Modified Rational Method (MRM) was used to calculate runoff rates from the site to quantify peak flows and required detention storage. Intensity-Duration-

Frequency curves from the City of Mississauga were used to simulate rainfall data. SWMHYMO was used to generate flows and storage requirements for the Regional storm.

Post development drainage for the site will be directed to a stormwater vault located within the building at the Northwest corner of the site. Refer to the Post Development Drainage Plan provided in **Appendix A**. The existing CPR external flows will be redirected to the existing 1050 mm diameter concrete storm sewer at 0.5% on Tannery St. which discharges to Mullet Creek approximately 45m upstream of its current discharge location.

The site has an allowable release rate of **195.61 L/s** being the 10 year design storm at a runoff coefficient of C=0.50.

Table 1 below outlines the site statistics and runoff coefficients used in the stormwater analysis. **Table 2** below outlines post development flows as well as storage requirements based on the 10 year design storm at a runoff coefficient of C=0.50.

Table 1: Site Statistics

Location	Current Area (ha)	Proposed Area (ha)
Building Area C=0.90	0.28	0.47
Landscaped Area C=0.25	0	0.38
Impervious Area C=0.90	1.14	0.57
Total Area:	1.42	1.42
Runoff Coeff:	0.90	0.73

Table 2: Peak Post Development Flows and Required Storage

Site	Q (L/s) 2 yr	Q (L/s) 5 yr	Q (L/s) 10 yr	Q (L/s) 25 yr	Q (L/s) 50 yr	Q (L/s) 100 yr	Q (L/s) Reg
Post Dev't Flow	172	231	284	359	407	454	206
Storage Required to meet 10 yr (m ³)	0	32	79.6	147	191	233	113

Refer to **Appendix C** for calculations.

The site will control the 100 yr post development flows to the 10 year storm at a runoff coefficient of C=0.5, **Q= 195.6** L/s. Storage requirements are shown above in Table 2. During the 100 yr storm event approximately **233** m³ of storage is required.

Site drainage will be directed to a stormwater vault with ($17.0 \, \text{m} \times 10.5 \, \text{m} \times 1.4 \, \text{m}$ deep) to provide a minimum of **250 m³** of storage at elevation . The invert of the storm inlet will be set to 153.67 m with a tank bottom elevation of 152.27 m. Stormwater will be pumped out at the 10 yr allowable release rate of 195.6 L/s with a backup pump system.

Refer to SWM calculations in Appendix C

An emergency overland flow pipe and DICB will be provided on the West side of the vault in case of pump failure on both pumps or power failure.

The 5.0 mm site water balance will be provided through irrigation reuse in the proposed stormwater vault between elevation 152.27 m and 152.67 m to meet the required 5.0 mm reuse volume of **71** m 3 (1.42 ha x 5.0mm).

As part of the LID initiative, the site has been designed with larger than typical landscaped areas around the site. A combination of grassed areas, grassed swales and permeable pavers in landscaped areas to promote infiltration have been incorporated into the design. As mentioned above, the bottom 0.4 m of the SWM Vault will be used for irrigation of the landscaped areas.

Level 1 quality control will be provided using a Stormceptor EF04 providing 92% TSS removal.

Erosion and Sediment Controls will be implemented prior to construction as outlined on **Drawing ESC1**, **Appendix A**, consisting of Silt Fence, Mud mat at construction entrance and siltation control devices on existing CB's. These interim measures will ensure that all sediment laden runoff is maintained within the site and not transported downstream.

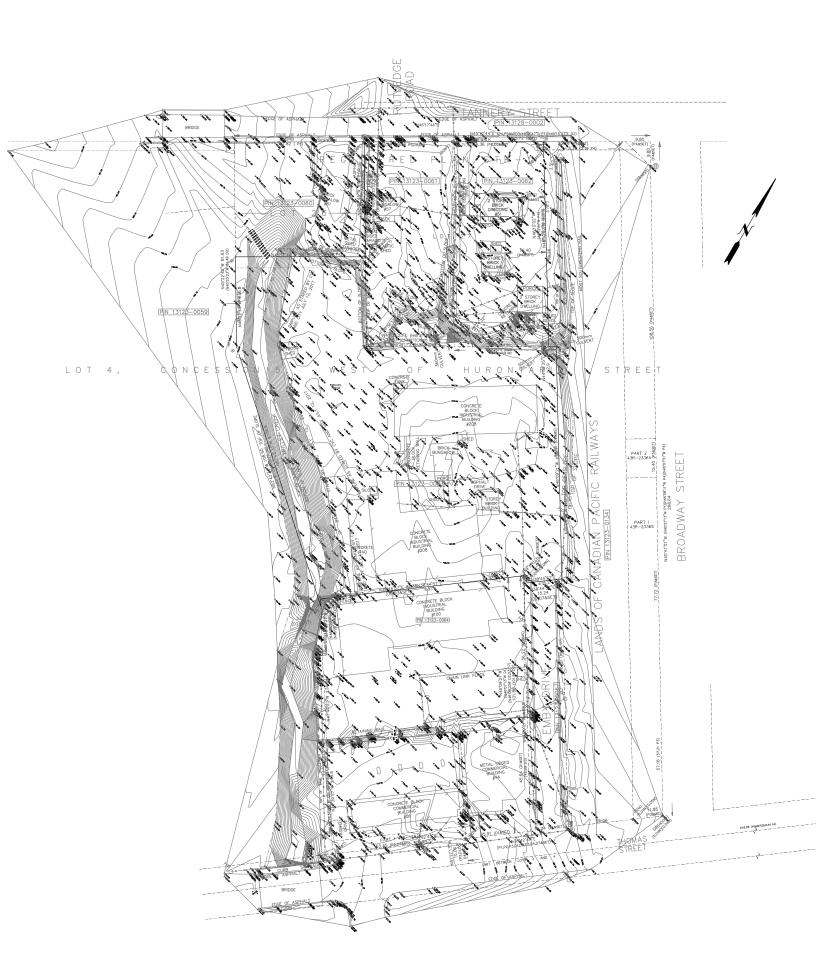
Refer to **Appendix A (Drawings S1/G1)** for proposed design and **Appendix C** for stormwater design calculations.

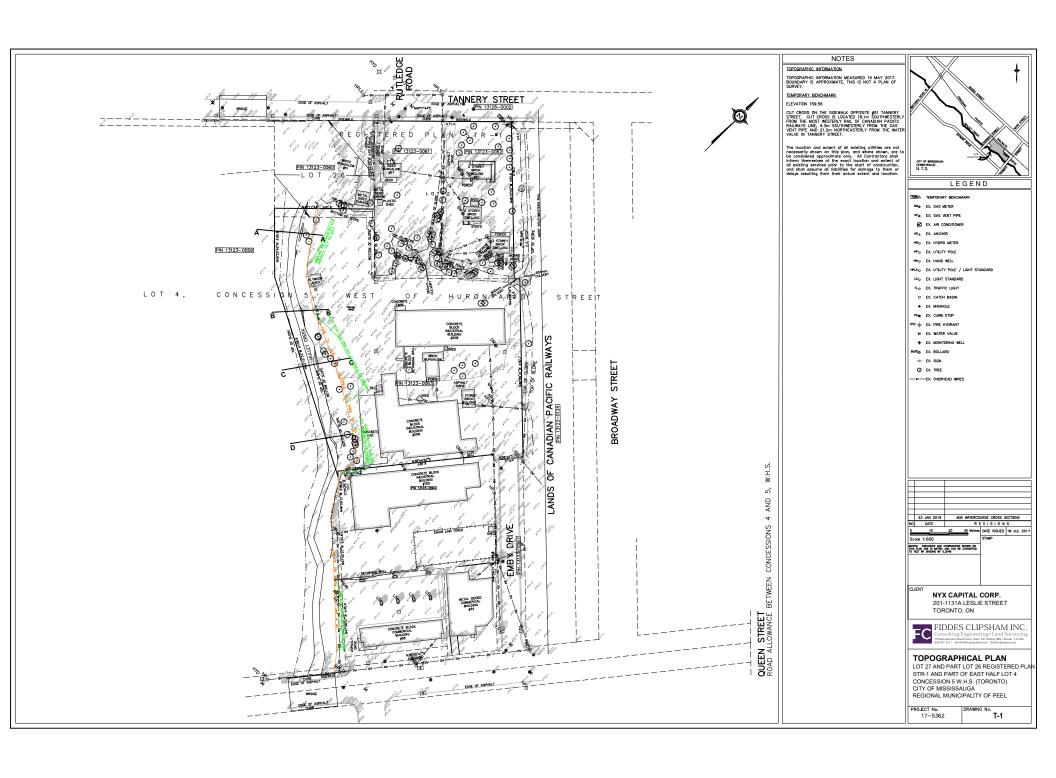
5.0 Conclusions and Recommendations

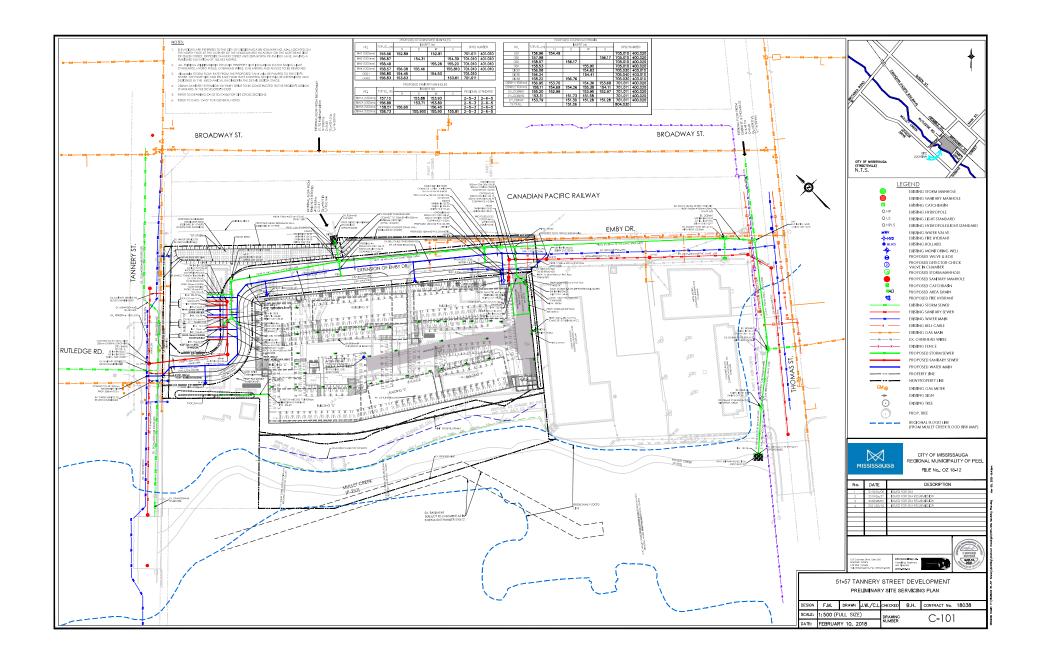
The servicing analysis provided within this report is summarized as follows:

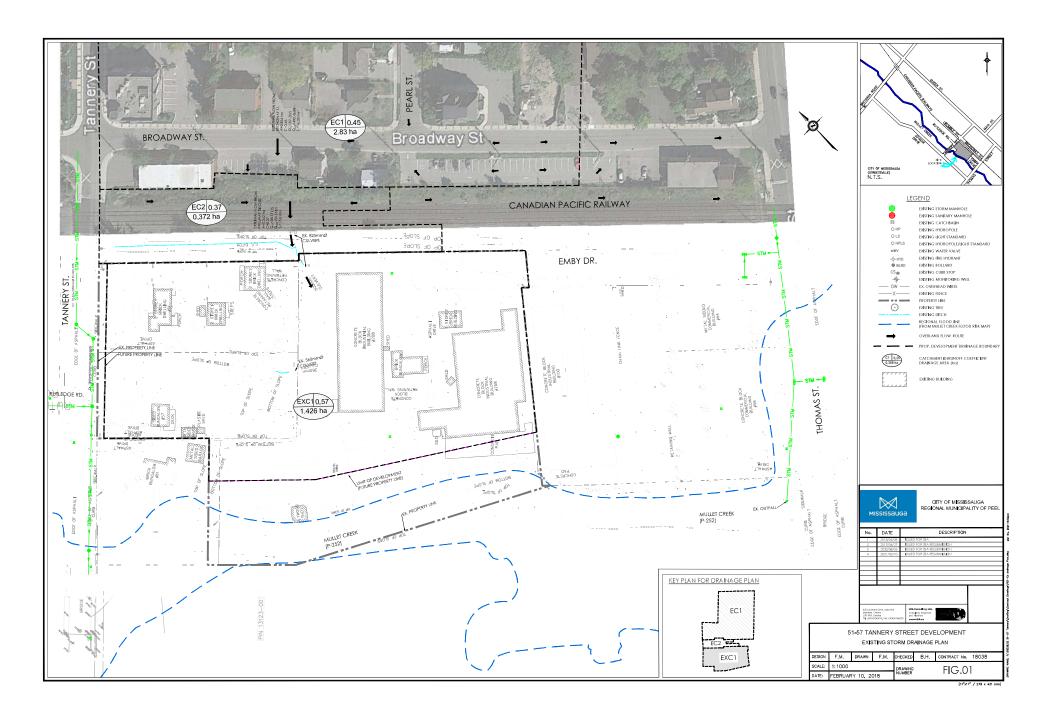
- A sanitary connection is proposed to the Tannery sewer with a new sanitary manhole (MH 01A). This sanitary sewer has a full flow capacity of 73.5 L/s.
 The estimated sanitary flows from the proposed development is 22.2 L/s.
- Flow tests were completed by Classic Fire Protection Inc. for both Thomas St. and Tannery St. On Thomas St. the existing static water pressure is 75 psi with an estimated residual flow of 2867 GPM at 20 psi. On Tannery St. the existing static water pressure is 62 psi with an estimated residual flow of 3522 GPM at 20 psi.
- The site will be serviced by a 200 mm watermain to the 300 mm watermain within Tannery St. The fire flow demand is estimated at 3386 GPM. There is sufficient water pressure and volume to provide fire protection and domestic water to the proposed development.
- A new private hydrant will be provided within 45 m of proposed Siamese locations to meet OBC and NFPA requirements.
- The 100 yr post development flow of 454 L/s will be controlled to the allowable 10 yr storm at C=0.5 of 195.6 L/s requiring approximately 233m³ of storage.
- The 5.0 mm site water balance will be provided through irrigation reuse in the proposed stormwater vault between elevation 152.27 m and 152.67 m to meet the required 5.0 mm reuse volume of 71 m³
- Level 1 quality control will be provided using a Stormceptor EF04 providing 92% TSS removal.
- Erosion and Sediment Controls will be implemented prior to construction as outlined on **Drawing ESC1**.

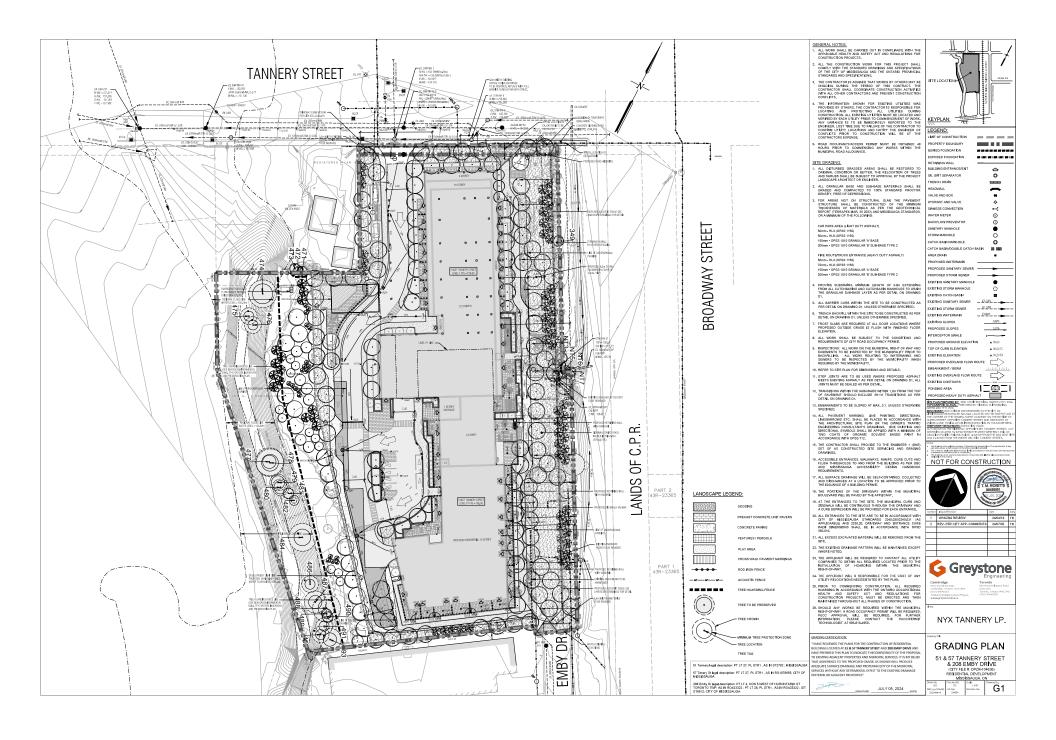
This Functional Servicing and Stormwater Management Report has been submitted in support of the 51 and 57 Tannery Street OPA/ZBA and SPA applications. The proposed development can be completed with the servicing designs outlined in this report.

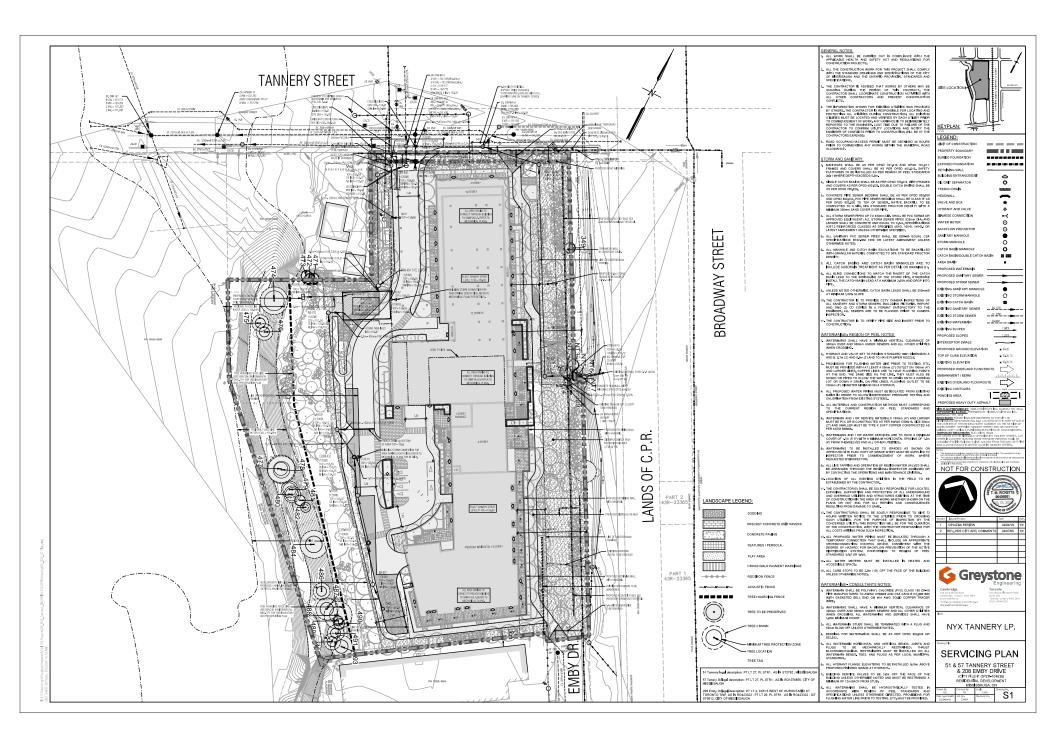

Prepared by:

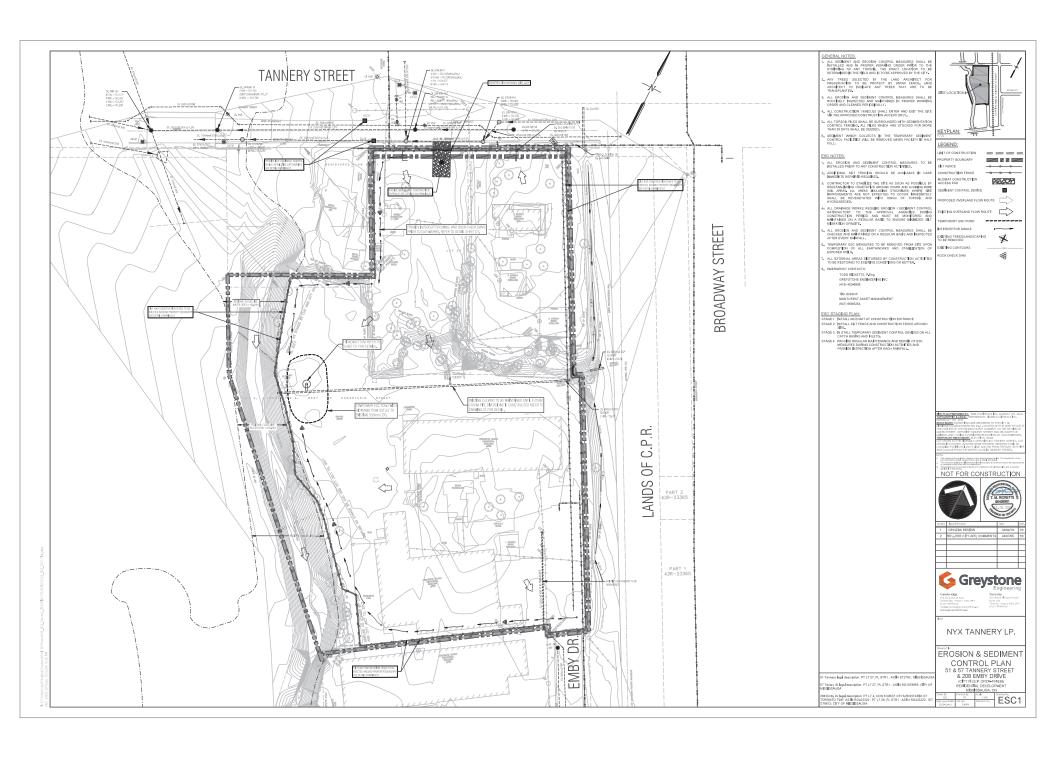

Greystone Engineering Inc.

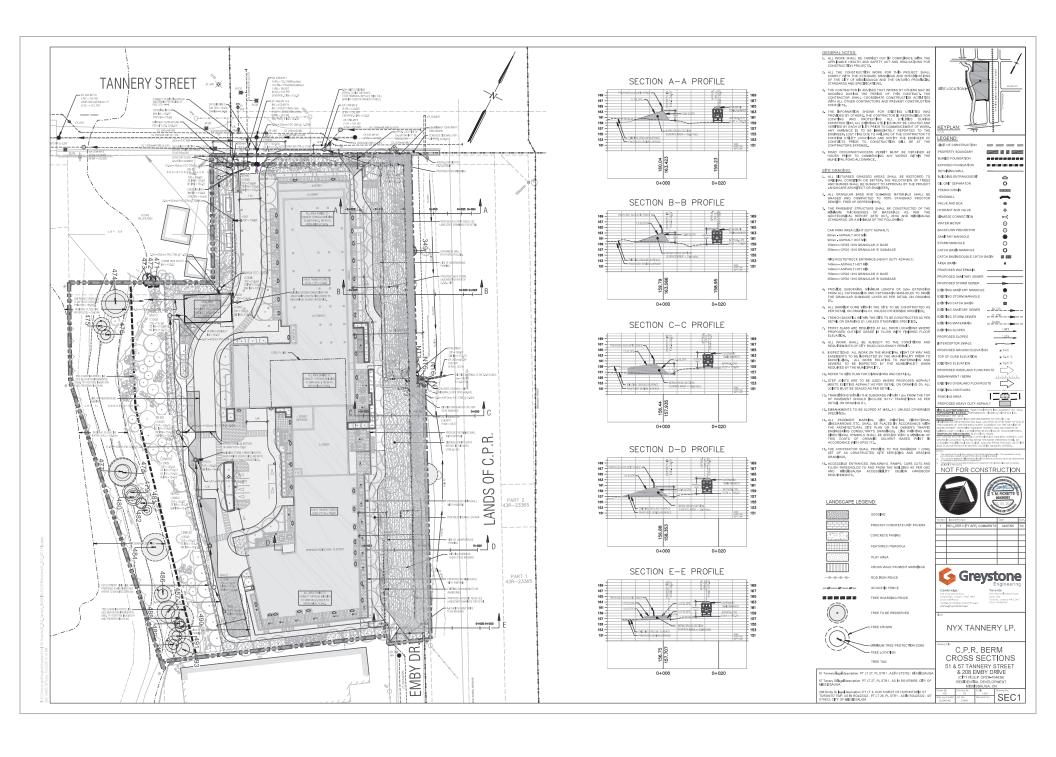


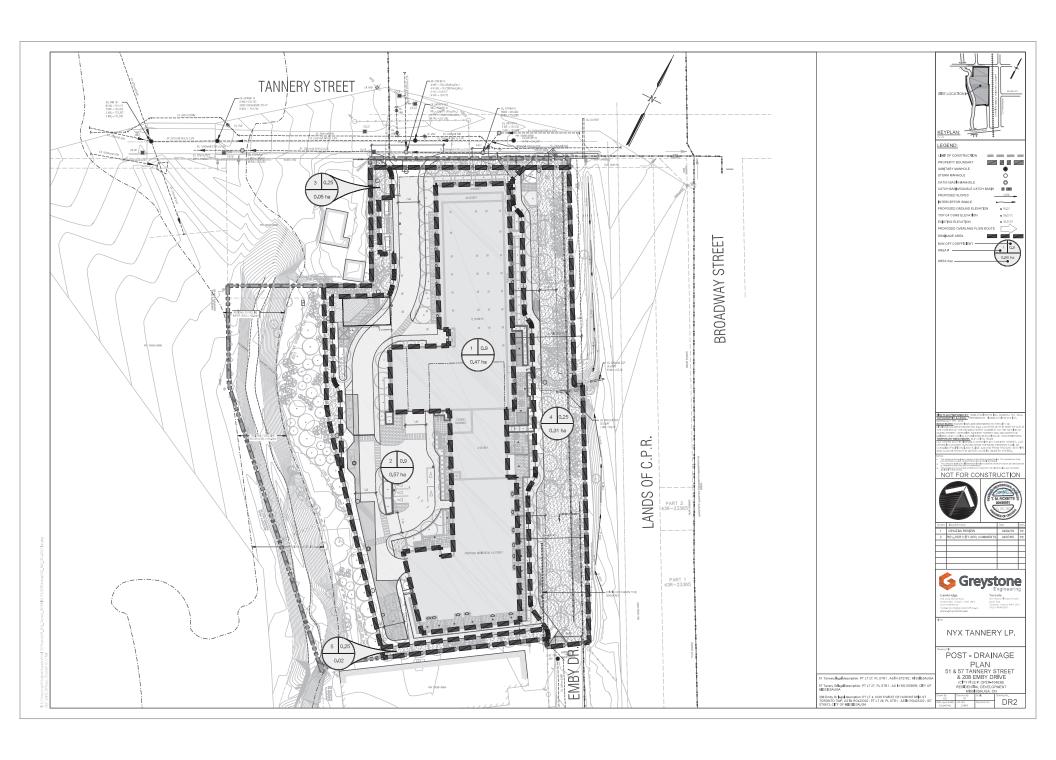

Todd Ricketts, P.Eng. Principal.

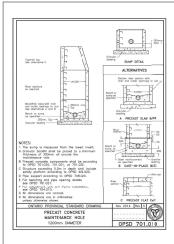

Appendix A
Proposed Development and
Existing Information

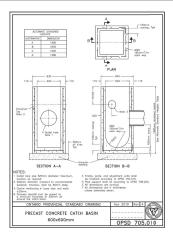


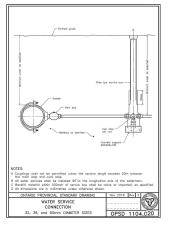


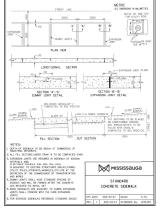


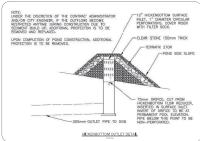


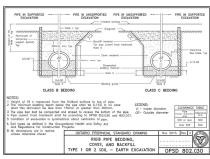


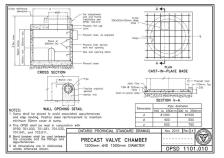


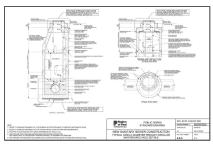


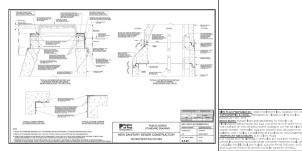


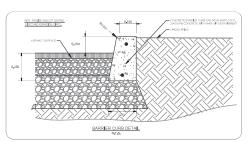


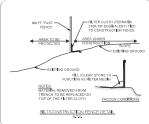


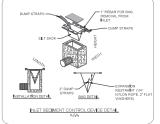


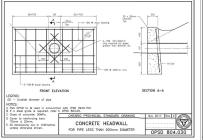


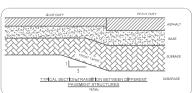


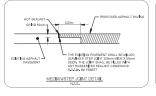


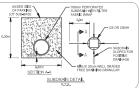


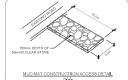












1 Tennary Invalidace interes PT LT 27 PL STR1 AS IN ST2792 MISSISSAL 67 Tenery Stillegal description: PT LT 27, PL STR1, AS IN RO1078665; CITY OF

208 Emby Dr | logal| description: PT LT 4, CON 5 WEST OF HURONTARIO ST TORONTO TWP, AS IN R0423322 ; PT LT 28, PL STR1 , AS IN R0423322 ; ST6812; C[TY OF MISS[SSAUGA

		, V (,	M. RICKETTS 90436951 1. (5, 20) Mace of OKIME	*)
	Number	Issuea/Revision	Date	Aits.
	1	OPA/ZBA REV I EW	24/04/19	TR
	2	REV. PER CITY APP, COMMENTS	24/07/05	TR
	<u> </u>			Н
	\vdash		_	Н
	_			Н
				П
tion of New Committee for benefitted and		Greys		9
210	154 H Carnii (9150 Todd	orage, ontario non sere siute presenta	toune Housene hou	
	Gest			

NYX TANNERY LP.

DETAIL PLAN

51 & 57 TANNERY STREET & 208 EMBY DRIVE (CITY FILE #: 0PZR-104636) RESIDENTIAL DEVELOPMENT MISSISSAUGA, O

D1

Appendix B Sanitary Design Information

2. DESIGN FLOWS

Design calculations for sanitary sewer systems shall be completed on Standard Drawing 2-5-1 2-9-1 (appended hereto).

2.1. Population Equivalents based on Land Use

Residential

Population equivalent densities are to be calculated based upon the following criteria:

Density	Pop./Hectare
Single family (greater than 10m frontage)	50 persons/hectare
Single family (less than 10m frontage)	70 persons/hectare
Semi-detached	70 persons/hectare
Row dwellings	175 persons/hectare
Apartments	475 persons/hectare

Apartments

If the proposed population equivalent is greater than 475 persons/hectare, based on a rate of 2.7 people per unit (ppu), then the calculated population equivalent shall be used for design.

Standard Drawing 2-5-2 2-9-2 (appended hereto) lists domestic sewage flows versus population including a peaking factor.

Industrial

For light industrial areas, use an equivalent population of 70 persons per hectare. Refer to Standard Drawing 2-5-2 2-9-2 for sanitary sewage flows. Individual studies are to be made for special industries and major industrial areas.

Design - Sanitary Revised: July 2009

Population	Peak Flow (m³/sec)	Population	Peak Flow (m³/sec)	Population	Peak Flow (m³/sec)
1000	0.0130	4750	0.0542	13000	0.1292
1050	0.0139	5000	0.0569	14000	0.1376
1100	0.0145	5250	0.0594	15000	0.1459
1150	0.0151	5500	0.0618	16000	0.1540
1200	0.0157	5750	0.0640	17000	0.1620
1300	0.0169	6000	0.0666	18000	0.1700
1400	0.0181	6250	0.0691	19000	0.1779
1500	0.0193	6500	0.0710	20000	0.1857
1600	0.0204	6750	0.0737	25000	0.2236
1700	0.0217	7000	0.0762	30000	0.2601
1800	0.0228	7250	0.0784	35000	0.2955
1900	0.0239	7500	0.0809	40000	0.3298
2000	0.0251	7750	0.0830	45000	0.3634
2200	0.0273	8000	0.0854	50000	0.3963
2400	0.0296	8250	0.0878	55000	0.4286
2600	0.0318	8500	0.0898	60000	0.4603
2800	0.0340	8750	0.0922	65000	0.4915
3000	0.0361	9000	0.0945	70000	0.5224
3250	0.0387	9250	0.0968	75000	0.5528
3500	0.0415	9500	0.0981	80000	0.5828
3750	0.0441	9750	0.1010	85000	0.6126
4000	0.0467	10000	0.1033	90000	0.6420
4250	0.0492	11000	0.1120	95000	0.6711
4500	0.0518	12000	0.1210	100000	0.7000

Notes:

- 1. Domestic sewage flows are based upon a unit sewage flow of 302.8 Lpcd.
- 2. The flows in the above table include the Harmon Peaking Factor.
- 3. Domestic sewage flow for less than 1000 persons shall be 0.013m³/sec.
- 4. Domestic sewage flow for greater than 100,000 persons shall be 7.0×10^{-6} m³/sec per capita.
- 5. Lpcd = Litres per capita per day 1 Litre = 0.001 metre³

Region of Peel	Date: June 2005 Rev: 1
Working for you	Approved:
SEWAGE FLOWS (EXCLUDING INFILTRATION)	STD. DWG. 2-5-2 2-9-2

Project Name: 51 + 57 Tannery St, Mississauga

Project Number: 23-904 Date: 18-Apr-24

Design by: T.Ricketts

Title: PROPOSED SANITARY CALCULATIONS

Region of Peel Sanitary Design Calculations*

The Region of Peel uses a contibuting flow of 302.8 L/person/day as sanitary flow with a peaking factor dependent on population

Therefore residential flows are equal to: 0.00350463 L/person/s

Total Units = 633

This is an equivalent population of:

This population gives a peaking factor of:

1709.10

3.64

Proposed Residential peak flows from the site are:

21.79 L/s

Toposcu Residential peak news from the site are.

Commercial Sanitary Contribution

Commercial area = - m²

at 180,000 L/floor ha/day (incl. PF)

L/dayL/sec

Infiltration

Infiltration allowance = 0.280 L/sec/ha (all areas)

Total site area = 1.420 ha Infiltration = **0.398** L/sec

Total prop. Infiltration flows from site:

Total Peak Flow = 0.40 L/sec

Total Proposed Sanitary Contribution

22.2 L/sec

Residential Data - SRM Architects

Unit Size	# of Units ppu	equiv.* Total	persons
Studio	31	2.7	83.7
1 Bedroom	342	2.7	923.4
2 Bedroom	187	2.7	504.9
3 Bedroom	73	2.7	197.1

633

1709.1

Commercial Data - NOT USED

Total

Location	GFA sq.m ppu	equiv. Tota	al persons
	1.1p	/100 m2	
P2	0	1.1	0
P1	0	1.1	0
Level 1	0	1.1	0
Level 2	0	1.1	0
Level 4	0	1.1	0
Total	0		0.0

^{*} Calculations completed using Region of Peel Design Criteria - Sanitary Sewers (July 2009)

^{*} Average 2.7 ppu Region of Peel std

Appendix C Stormwater Management Design Information

Project: 51 + 57 Tannery Prepared by: Todd Ricketts
Task: 10 yr Post-Development Flowrates Checked by: Todd Ricketts

Date: **18-Apr-24** Project #: **23-904**

Date.	10-Api-24				Froject # .	23-904
2-year	Post-Dev Flov	V	IDF Values:	City of Mississa	nuga	
Α	610					
В	4.6					
С	0.78					
Tc	15.000	minutes				
	Land U	se	Runoff	Intensity	Area	Runoff
	Descript	ion	Coefficient	(mm/hr)	(ha)	(L/s)
	Parking	Area	0.9	59.89	0.5700	85.3
	Landsca	аре	0.25	59.89	0.3800	15.8
	Buildir	ng	0.9	59.89	0.4700	70.4
Total				1.42	171.5	
Q			$Q = \underline{CiA}$			
			0.36			
			- 171 E L /c			

= 171.5 L/s

Project: **51 + 57 Tannery** Prepared by: Todd Ricketts **10** yr Post-Development Flowrates Task: Checked by: Todd Ricketts

Date: 18-Apr-24 Project # : 23-904

Date.	IO API ZT				Troject # .	23 307
5-year	Post-Dev Flow	I	IDF Values:	City of Mississa	iuga	
Α	820					
В	4.6					
С	0.78					
Tc	15.000	minutes				
			1			
	Land U	se	Runoff	Intensity	Area	Runoff
	Descript	ion	Coefficient	(mm/hr)	(ha)	(L/s)
	Parking <i>i</i>	Area	0.9	80.51	0.5700	114.7
	Landsca	npe	0.25	80.51	0.3800	21.2
	Buildin	ıg	0.9	80.51	0.4700	94.6
Total					1.42	230.6
Q) = <u>CiA</u>			
			0.36			
			= 230.6 L/s			

51 + 57 Tannery Prepared by: Todd Ricketts Project: 10 yr Allowable Release Checked by: Todd Ricketts Task:

18-Apr-24 Project # : 23-904 Date:

					,	
10-yea	ar Allowable (C=0.5	IDF Values:	City of Mississa	iuga	
Α	1010					
В	4.6					
С	0.78					
Тс	15.000	minutes				
·			'	ı	1	
	Land	Use	Runoff	Intensity	Area	Runoff
	Descri	ption	Coefficient	(mm/hr)	(ha)	(L/s)
	Total	Site	0.5	99.17	1.4200	195.6
			0.5	99.17	0.0000	0.0
			0.5	99.17	0.0000	0.0
Total Q					1.420	195.6
			$Q = \underline{CiA}$			
			0.36			
			= 195.6 L/s			

Prepared by: Todd Ricketts Project: **51 + 57 Tannery** 10 yr Post-Development Flowrates
18-Apr-24 Checked by: **Todd Ricketts**Project # : 23-904 Task:

Date:	18-Apr-24				Project # :	23-904
10-yea	r Post-Dev Flo	w Proposed	IDF Values:	City of Mississa	uga	
Α	1010					
В	4.6					
С	0.78					
Тс	15.000	minutes				
					1	
	Land U	se	Runoff	Intensity	Area	Runoff
Description			Coefficient	(mm/hr)	(ha)	(L/s)
Parking Area		0.9	99.17	0.5700	141.3	
Landscape			0.25	99.17	0.3800	26.2
Building			0.9	99.17	0.4700	116.5
Total					1.42	284.0
		(Q = <u>CiA</u>			
			0.36			

= 284 L/s

Project: 51 + 57 Tannery Prepared by: Todd Ricketts
Task: 25 yr Post-Development Flowrates Checked by: Todd Ricketts

Date: **18-Apr-24** Project # : **23-904**

Date.	IO Api ZT				π	23 307
25 year	r Post-Dev Flo	w Proposed	IDF Values:	City of Mississa	uga	
Α	1160					
В	4.6					
С	0.78					
Тс	15.000 minutes Note Runoff Coefficient factor of 1.1 applied - max C=1.0					
			1			
Land Use			Runoff	Intensity	Area	Runoff
	Descript	tion	Coefficient	(mm/hr)	(ha)	(L/s)
	Parking	Area	0.99	113.89	0.5700	178.5
Landscape			0.275	113.89	0.3800	33.1
Building			0.99	113.89	0.4700	147.2
Total					1.420	358.8
Q) = <u>CiA</u>			
			0.36			
			= 358 8 1 /s			

Project: **51 + 57 Tannery** Prepared by: Todd Ricketts **50** yr Post-Development Flowrates Task: Checked by: Todd Ricketts

18-Apr-24 Project # : 23-904 Date:

Date.	10-Apr-24	•			Project # :	23-904	
50-yea	ar Post-Dev F	low Proposed	IDF Values:	City of Mississa	uga		
Α	1300						
В	4.7						
С	0.78						
Тс	15.000	15.000 minutes Note Runoff Coefficient factor of 1.2 applied - max C=1.0					
Land Use			Runoff	Intensity	Area	Runoff	
	Descrip	otion	Coefficient	(mm/hr)	(ha)	(L/s)	
Parking Area			1	127.13	0.5700	201.3	
Landscape			0.3	127.13	0.3800	40.3	
Building			1	127.13	0.4700	166.0	
Total					1.420	407.5	
			$Q = \underline{CiA}$				
			0.36				

= 407.5 L/s

51 + 57 Tannery Prepared by: Todd Ricketts Project: Checked by: Todd Ricketts **100** yr Post-Dev Flowrates - Proposed Task:

18-Apr-24 Project #: 23-904 Date:

Date.	IO API II				Troject # :	25 501	
100-year Post Dev Flow Proposed IDF Values: City of Mississauga							
Α	1450						
В	4.9						
С	0.78						
Tc	15.000	minutes	Note Runoff C	oefficient factor	of 1.25 appli	ied - max C=1.0	
Land Use			Runoff	Intensity	Area	Runoff	
Description		Coefficient	(mm/hr)	(ha)	(L/s)		
Parking Area		1	140.69	0.5700	222.8		
Landscape		0.32	140.69	0.3800	47.5		
Building			1	140.69	0.4700	183.7	
	Total				1.420	454.0	
$Q = \underline{CiA}$							
			0.36				

= 454 L/s

Task **On-site Storage** Checked by: **Todd Ricketts**

Date: **18-Apr-24** Project no.: **23-904**

10 - YR Design Storm A= 1010

		Site
	Runoff Coeff. (C):	0.726
Total Site	Drainage Area (ha):	1.4200
Rainfall (10 Year)	Control Flow (m3/s)	0.196

Rainfall (1	0 Year)		Control Flow (m3/s)	0.196	
TIME	I	Inflow	Storage	Max Stor	
minutes	mm/HR	CIA/360	Rate	Reqd	
		cms	cms	(cu.m.)	
15.00	99.17	0.284	0.088	79.6	max
20.00	83.06	0.238	0.042	50.8	
25.00	71.90	0.206	0.010	15.5	
30.00	63.66	0.182	0.000	0.0	
35.00	57.30	0.164	0.000	0.0	
40.00	52.22	0.150	0.000	0.0	
45.00	48.07	0.138	0.000	0.0	
50.00	44.60	0.128	0.000	0.0	
55.00	41.65	0.119	0.000	0.0	
60.00	39.11	0.112	0.000	0.0	
65.00	36.91	0.106	0.000	0.0	
70.00	34.96	0.100	0.000	0.0	
75.00	33.24	0.095	0.000	0.0	
80.00	31.69	0.091	0.000	0.0	
85.00	30.31	0.087	0.000	0.0	
90.00	29.05	0.083	0.000	0.0	
95.00	27.90	0.080	0.000	0.0	
100.00	26.86	0.077	0.000	0.0	
105.00	25.90	0.074	0.000	0.0	
110.00	25.01	0.072	0.000	0.0	
115.00	24.19	0.069	0.000	0.0	
120.00	23.43	0.067	0.000	0.0	
125.00	22.72	0.065	0.000	0.0	

Task **On-site Storage** Checked by: **Todd Ricketts**

Date: **18-Apr-24** Project no.: **23-904**

25 - YR Design Storm A= 1160

Note Runoff Coefficient factor of 1.1 applied - max C=1.0

					C'I	
				D off Co. off (C).	Site	
T				Runoff Coeff. (C):	0.799	
Total Site	T \/ 2 = 11\			Drainage Area (ha):	1.4200	
Rainfall (2	5 Year)			Control Flow (m3/s)	0.196	
		1	7 (1	<u> </u>		
TIME	I		Inflow	Storage	Max Stor	
minutes	mm/HR		CIA/360	Rate	Reqd	
			cms	cms	(cu.m.)	
15.00	112.00		0.250	0.463	1.46.0	
15.00	113.89		0.359	0.163	146.9	max
20.00	95.40		0.301	0.105	125.9	
25.00	82.58		0.260	0.065	96.8	
30.00	73.11		0.230	0.035	62.5	
35.00	65.80		0.207	0.012	24.6	
40.00	59.98		0.189	0.000	0.0	
45.00	55.21		0.174	0.000	0.0	
50.00	51.22		0.161	0.000	0.0	
55.00	47.84		0.151	0.000	0.0	
60.00	44.92		0.142	0.000	0.0	
65.00	42.39		0.134	0.000	0.0	
70.00	40.15		0.126	0.000	0.0	
75.00	38.17		0.120	0.000	0.0	
80.00	36.40		0.115	0.000	0.0	
85.00	34.81		0.110	0.000	0.0	
90.00	33.36		0.105	0.000	0.0	
95.00	32.05		0.101	0.000	0.0	
100.00	30.85		0.097	0.000	0.0	
105.00	29.74		0.094	0.000	0.0	
110.00	28.73		0.090	0.000	0.0	
115.00	27.79		0.088	0.000	0.0	
120.00	26.91		0.085	0.000	0.0	
125.00	26.10		0.082	0.000	0.0	
		-				-

Task **On-site Storage** Checked by: **Todd Ricketts**

Date: **18-Apr-24** Project no.: **23-904**

50 - YR Design Storm A= 1300

Note Runoff Coefficient factor of 1.2 applied - max C=1.0

		Site
	Runoff Coeff. (C):	0.813
Total Site	Drainage Area (ha):	1.4200
Rainfall (50 Year)	Control Flow (m3/s)	0.196

Raillian (5	o reary			Control Flow (1115/5)	0.100	
TIME	I		Inflow	Storage	Max Stor	
minutes	mm/HR		CIA/360	Rate	Reqd	
			cms	cms	(cu.m.)	
15.00	127.13		0.408	0.212	190.8	max
20.00	106.57		0.342	0.146	175.3	
25.00	92.30		0.296	0.100	150.4	
30.00	81.75		0.262	0.066	119.7	
35.00	73.60		0.236	0.040	84.7	
40.00	67.10		0.215	0.020	46.8	
45.00	61.77		0.198	0.002	6.6	
50.00	57.32		0.184	0.000	0.0	
55.00	53.54		0.172	0.000	0.0	
60.00	50.28		0.161	0.000	0.0	
65.00	47.45		0.152	0.000	0.0	
70.00	44.95		0.144	0.000	0.0	
75.00	42.74		0.137	0.000	0.0	
80.00	40.76		0.131	0.000	0.0	
85.00	38.97		0.125	0.000	0.0	
90.00	37.36		0.120	0.000	0.0	
95.00	35.89		0.115	0.000	0.0	
100.00	34.54		0.111	0.000	0.0	
105.00	33.31		0.107	0.000	0.0	
110.00	32.17		0.103	0.000	0.0	
115.00	31.12		0.100	0.000	0.0	
120.00	30.14		0.097	0.000	0.0	
125.00	29.23		0.094	0.000	0.0	
		•				•

Task On-site Storage Checked by: Todd Ricketts

Date: **18-Apr-24** Project no.: **23-904**

100 - YR Design Storm A= 1450

Mississauga B= 4.9 C= 0.78

Note Runoff Coefficient factor of 1.25 applied - max C=1.0

				- " " "	Site	
				Runoff Coeff. (C):	0.818	
Total Site				Drainage Area (ha):	1.4200	r.
Rainfall (10	00 Year)			Control Flow (m3/s)	0.196	
TIME	I		Inflow	Storage	Max Stor	
minutes	mm/HR		CIA/360	Rate	Reqd	
			cms	cms	(cu.m.)	
45.00			0.454	0.050	222 5	
15.00	140.69		0.454	0.258	232.5	max
20.00	118.12		0.381	0.186	222.7	
25.00	102.41		0.330	0.135	202.3	
30.00	90.77		0.293	0.097	175.2	
35.00	81.77		0.264	0.068	143.4	
40.00	74.58		0.241	0.045	108.2	
45.00	68.68		0.222	0.026	70.3	
50.00	63.75		0.206	0.010	30.4	
55.00	59.56		0.192	0.000	0.0	
60.00	55.95		0.181	0.000	0.0	
65.00	52.81		0.170	0.000	0.0	
70.00	50.03		0.161	0.000	0.0	
75.00	47.58		0.154	0.000	0.0	
80.00	45.38		0.146	0.000	0.0	
85.00	43.39		0.140	0.000	0.0	
90.00	41.60		0.134	0.000	0.0	
95.00	39.97		0.129	0.000	0.0	
100.00	38.47		0.124	0.000	0.0	
105.00	37.10		0.120	0.000	0.0	
110.00	35.84		0.116	0.000	0.0	
115.00	34.66		0.112	0.000	0.0	
120.00	33.58		0.108	0.000	0.0	
125.00	32.57		0.105	0.000	0.0	
		•				•

Task **On-site Storage**Checked by: **Todd Ricketts**

Date: **18-Apr-24** Project no.: **23-904**

2 - YR Design Storm

Mississauga B= 4.6

C = 0.78

A = 610

					Site	
				Runoff Coeff. (C):	0.726	
Total Site				Drainage Area (ha):	1.4200	
Rainfall (2	Year)			Control Flow (m3/s)	0.196	
TIME	I		Inflow	Storage	Max Stor	
minutes	mm/HR		CIA/360	Rate	Reqd	
			cms	cms	(cu.m.)	
15.00	59.89		0.172	0.000	0.0	max
20.00	50.16		0.144	0.000	0.0	max
25.00	43.42		0.124	0.000	0.0	max
30.00	38.45		0.110	0.000	0.0	max
35.00	34.60		0.099	0.000	0.0	max
40.00	31.54		0.090	0.000	0.0	max
45.00	29.03		0.083	0.000	0.0	max
50.00	26.94		0.077	0.000	0.0	max
55.00	25.16		0.072	0.000	0.0	max
60.00	23.62		0.068	0.000	0.0	max
65.00	22.29		0.064	0.000	0.0	max
70.00	21.12		0.060	0.000	0.0	max
75.00	20.07		0.057	0.000	0.0	max
80.00	19.14		0.055	0.000	0.0	max
85.00	18.30		0.052	0.000	0.0	max
90.00	17.54		0.050	0.000	0.0	max
95.00	16.85		0.048	0.000	0.0	max
100.00	16.22		0.046	0.000	0.0	max
105.00	15.64		0.045	0.000	0.0	max
110.00	15.11		0.043	0.000	0.0	max
115.00	14.61		0.042	0.000	0.0	max
120.00	14.15		0.041	0.000	0.0	max
125.00	13.72		0.039	0.000	0.0	max
		•				

Task **On-site Storage** Checked by: **Todd Ricketts**

Date: **18-Apr-24** Project no.: **23-904**

5 - YR Design Storm

Mississauga B= 4.6

C = 0.78

A= 820

			Runoff Coe	Site f. (C): 0.726	
Total Site			Drainage Area	• • • • • • • • • • • • • • • • • • • •	
Rainfall (5	Year)		Control Flow		
rtainian (5	. ca. ,		30	(5/5)	
TIME	I	Inflo	ow Storage	. Max Sto	r
minutes	mm/HR	CIA/3		Reqd	
		cm	s cms	(cu.m.))
				·	
15.00	80.51	0.23		31.5	max
20.00	67.43	0.19	0.000	0.0	
25.00	58.37	0.16	0.000	0.0	
30.00	51.68	0.14	0.000	0.0	
35.00	46.52	0.13	0.000	0.0	
40.00	42.40	0.12	0.000	0.0	
45.00	39.02	0.13	12 0.000	0.0	
50.00	36.21	0.10	0.000	0.0	
55.00	33.82	0.09	97 0.000	0.0	
60.00	31.76	0.09	91 0.000	0.0	
65.00	29.96	0.08	0.000	0.0	
70.00	28.38	0.08	0.000	0.0	
75.00	26.98	0.07	77 0.000	0.0	
80.00	25.73	0.07	74 0.000	0.0	
85.00	24.60	0.07	70 0.000	0.0	
90.00	23.58	0.06	0.000	0.0	
95.00	22.66	0.06	0.000	0.0	
100.00	21.81	0.06	0.000	0.0	
105.00	21.03	0.06	0.000	0.0	
110.00	20.31	0.0!	0.000	0.0	
115.00	19.64	0.0!	0.000	0.0	
120.00	19.02	0.0!	0.000	0.0	
125.00	18.45	0.05	0.000	0.0	

```
Metric units
*# Project Name: [Tannery] Project Number: [23-904]
*# Date : July 2024
*# Modeller : [T. Ricketts, P.Eng.]
*# Company : Greystone Engineering Inc
*# Company
  License # : 4842139
*#
*#
*#
  Modeling proposed development conditions Regional Storm
*#
*#
*#**********************
*#**********************
*****
START
            TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[1]
            ["C:\SWM\Tannery\Hazel.stm"] <--storm filename</pre>
*%------
----|
READ STORM
           STORM FILENAME=["STORM.001"]
*%-----|
*# Catchment 201 - To vault
*#**********************
DESIGN STANDHYD ID=[1], NHYD=["201"], DT=[15]min, AREA=[1.42](ha),
            XIMP=[0.82], TIMP=[0.82], DWF=[0.0] (cms), LOSS=[2],
CN = [74],
            SLOPE=[2](%), RAINFALL=[ , , , , ] (mm/hr), END=-1
*%-----
----|
ROUTE RESERVOIR
            IDout=[2],
                  NHYD=["SWM VAULT"], IDin=[1],
            RDT=[ 15 ] (min),
               TABLE of ( OUTFLOW-STORAGE ) values
                      (cms) - (ha-m)
                      0.0 , 0.0 ]
                     [ 0.196 , 0.0089 ]
                     [ 0.196 , 0.0250 ]
                       -1 , -1 ] (max twenty pts)
               IDovf=[3], NHYDovf=["OV-S1"]
----|
*%------|
----|
FINISH
```

======		=======	====	====			====	====	=====	:======:	====
SSSSS 000	W W 11 555	M M	H =====	Н	Y Y	М	М	00	0	222	
S 0 11	W W W 5	MM MM	Н	Н	У У	MM	MM	0	0	2	0
SSSSS 0 11	W W W 5	M M M Ver 5.5	ннн 0 С	НН	Y	M M	M	0	0	2	0
S 0 11	W W 555	M M FEB 20	Н 15	Н	Y	М	M	0	0	222	0
SSSSS 0 11	W W 5	M M	H ==	Н	Y	М	M	00	0	2	0
0 11	5	# 48421			1 7 '	. 34 - 1 -	,			2	0
000	Stormwat 11 555	er Manag	ement =====		irologi	c Mode	Ι.			222	
****** ***** ***** model ***** ***** ***** ***** ***** ****	********* ********* ********* *******	******* ***** **** ** *** **	** **** singl *** base ****	**** e ev d or ***	ent and the province of the pr	* SWM t d cont rincip THYMO- ***** .F. Sa ttawa,	inuo les 83 a **** bour On u, Q	Ver ous h of H and O **** in a tari	5.500 ydrolo YMO an TTHYMO ***** nd Ass o: (61	egic simular ad its 0-89. ********** ********* ********* ****	tion **** C.
	· * * * * * * * * * * * * * * * * * * *		****	***	*****	****	***	***	*****	****	****
*****	******	*****	* *								
+++++	+++++++	++++++	++							++++++++	++++
	++++++++ +++++++		ensed	use	er: Gre	ystone	Eng	inee	ring I	nc.]	
	++++++++				Pic	kering			S	ERIAL#:4842	2139

+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++	
********	***********

*****	+++++ PROGRAM ARRAY DIMENSIONS ++++++

*****	Maximum value for ID numbers : 11

*****	Max. number of rainfall points: 105408

*****	Max. number of flow points : 105408

*******	***********

********	***

	2024-07-04 TIME: 15:34:18 RUN
COUNTER: 000030	*

-	ry\TanneryREG1.dat
*	
* Output file: C:\SWM\Tanne	ry\TanneryREG1.out
*	
* Summary file: C:\SWM\Tanne	ry\TanneryREG1.sum
*	
* User comments:	
*	
*	
1:	
*	
*	
2:	
*	
3:	
*	


```
R0001:C00001-----
*#***********************
*****
*# Project Name: [Tannery]
                      Project Number: [23-904]
*# Date : July 2024
*# Modeller : [T. Ricketts, P.Eng.]
*# Company : Greystone Engineering Inc
*# License # : 4842139
*#
*# Modeling proposed development conditions Regional Storm
*#
*#
*#*********************
| START
             | Project dir.:C:\SWM\Tannery\
----- Rainfall dir.:C:\SWM\Tannery\
  TZERO = .00 hrs on 0
METOUT= 2 (output = METRIC)
  NRUN = 0001
   NSTORM= 1
      # 1=C:\SWM\Tannery\Hazel.stm
______
R0001:C00002-----
_____
| READ STORM | Filename: C:\SWM\Tannery\Hazel.stm
| Ptotal= 285.08 mm| Comments: Hurricane Hazel
______
    TIME RAIN| TIME RAIN| TIME RAIN| TIME
                                             RAIN|
TIME RAIN TIME RAIN
   hh:mm mm/hr| hh:mm mm/hr| hh:mm mm/hr| hh:mm
                                             mm/hr|
hh:mm mm/hr| hh:mm mm/hr
    1:00 2.030| 9:00 2.030| 17:00
                                 2.030| 25:00
                                              2.0301
33:00 2.030| 41:00 17.000
    2:00 2.030| 10:00
                     2.030| 18:00
                                 2.030| 26:00
                                              2.0301
    2.030| 42:00 13.000
34:00
    3:00 2.030| 11:00 2.030| 19:00
                                 2.030| 27:00
                                              2.030|
    2.030| 43:00 23.000
35:00
    4:00
        2.030| 12:00
                     2.030| 20:00
                                 2.030| 28:00
                                             2.030|
     2.030| 44:00 13.000
36:00
    5:00 2.030| 13:00
                     2.030| 21:00
                                 2.030| 29:00
                                             2.0301
37:00
    6.000| 45:00 13.000
    6:00 2.030| 14:00
                     2.030| 22:00
                                 2.030| 30:00
                                             2.030|
    4.000| 46:00 53.000
38:00
    7:00 2.030| 15:00 2.030| 23:00
                                 2.030| 31:00
                                             2.030|
39:00 6.000| 47:00 38.000
    8:00 2.030| 16:00 2.030| 24:00
                                 2.030| 32:00
                                             2.0301
40:00 13.000| 48:00 13.000
```

```
R0001:C00003-----
______
*#*********************
*****
*# Catchment 201 - To vault
*#*********************
| DESIGN STANDHYD | Area (ha) = 1.42
01:201 DT=15.00 | Total Imp(%) = 82.00 Dir. Conn.(%) =
82.00
                         IMPERVIOUS PERVIOUS (i)

      Surface Area
      (ha) =
      1.16

      Dep. Storage
      (mm) =
      .80

      Average Slope
      (%) =
      2.00

                                     .26
                   (mm) = .80

(%) = 2.00

(m) = 97.30
                                        1.50
                                        2.00
                                       40.00
    Length
    Mannings n
                   =
                            .013
                                        .250
    Max.eff.Inten.(mm/hr) = 53.00 48.75

over (min) 15.00 15.00

Storage Coeff. (min) = 2.63 (ii) 12.04 (ii)

Unit Hyd. Tpeak (min) = 15.00 15.00

Unit Hyd. peak (cms) = .11 .08
                                                   *TOTALS*
                                       .03
                            .17
                                     46.00
    PEAK FLOW
                 (cms) =
                                                     .206 (iii)
                 (hrs) =
                           45.75
    TIME TO PEAK
                                                    46.000
    RUNOFF VOLUME
                           284.28
                                      215.69
                  (mm) =
                                                   271.934
                           285.08 285.08
1.00 .76
    TOTAL RAINFALL (mm) =
                                                   285.080
    RUNOFF COEFFICIENT =
*** WARNING: Storage Coefficient is smaller than DT! Use a smaller DT or
a larger area.
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
         CN* = 74.0 Ia = Dep. Storage (Above)
     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE
COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
_____
R0001:C00004-----
______
| ROUTE RESERVOIR -> | Requested routing time step = 15.0 min.
| IN>01:201 |
OUT<02:SWM VAULT | =========== OUTLFOW STORAGE TABLE
_____
----- OUTFLOW STORAGE | OUTFLOW STORAGE | OUTFLOW
STORAGE | OUTFLOW STORAGE
                      (cms) (ha.m.) (cms) (ha.m.) (cms)
(ha.m.) | (cms) (ha.m.)
```

.2500E-01 .000		.0000E+00	.196	6 .8900E-0	2 .196
ROUTING RESUL	TS	AREA	QPEAK	TPEAK	R.V.
INFLOW > 01:2 OUTFLOW < 02:S OVERFLOW < 03:0	WM VAULT	(ha) 1.420 1.420 .000	(cms) .206 .196 .000	(hrs) 46.000 45.500 .000	(mm) 271.934 271.934 .000
	TOTAL NUMBER CUMULATIVE T PERCENTAGE O	IME OF OVE	ERFLOWS	(hours)=	.00
	PEAK FLOW TIME SHIFT O MAXIMUM STO	F PEAK FLO	WC	(min) =	-30.00
R0001:C00005					
*#	-				
FINISH	 				
**************************************	****	*****	*****	*****	******
R0001:C00003 DESI *** WARNING: Stora a larger area. Simulation ende	ge Coefficien	·04 at			smaller DT or

Stormceptor*

Welcome, todd Ricketts | My Projects | Logout | Find a Rep

Imbrium® OGS Net Annual Sediment Load Reduction Sizing Tool

Project Summary Site Details Sizing Result

< Back Cancel Save Sizing Report

Project Name: 51 + 57 Tannery

Site Name: 51 + 57 Tannery Locatio

Location: Mississauga / ON

Site has been saved successfully.

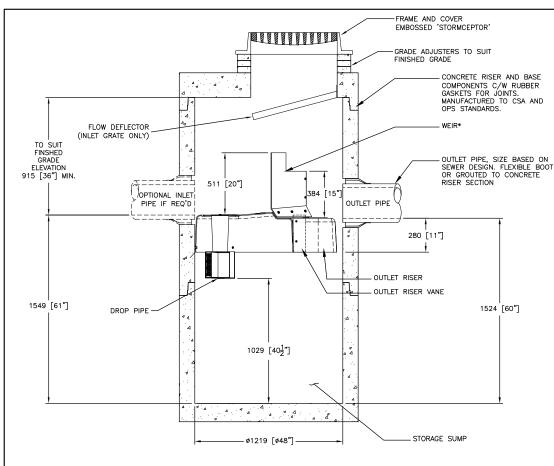
Download Stormceptor Specifications & Drawings

Download Stormceptor EFO Sizing Report

Design Summary

Net Annual Sediment (TSS) Load Reduction Sizing Summary					
Stormceptor Model	TSS Removal Provided (%)				
EFO4	92				
EFO6	99				
EFO8	100				
EFO10	100				
EFO12	100				

Recommended Stormceptor EFO Model: EFO4

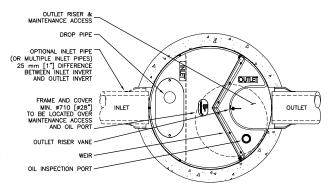

Estimated Net Annual Sediment (TSS) Load Reduction (%):

92

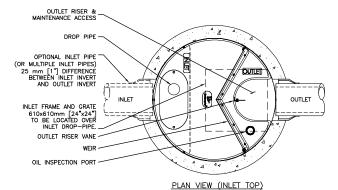
Water Quality Runoff Volume Capture (%):

> 90

Rainfall Intensity (mm/hr)	Rainfall		Flow Rate	Flow Rate (L/min)	Surface Loading Rate (L/min/m ²)	Efficiency	Incremental Removal (%)	Cumulative Removal (%)
0.5	8.5%	8.5%	1.48	88.8	74.0	100	8.5	8.5
1	20.6%	29.1%	2.96	177.6	148.0	100	20.6	29.1
2	16.8%	45.9%	5.92	355.3	296.1	100	16.8	45.9
3	10.8%	56.7%	8.88	532.9	444.1	100	10.8	56.7
4	8.5%	65.2%	11.84	710.6	592.1	100	8.5	65.2
5	6.4%	71.6%	14.80	888.2	740.2	100	6.4	71.6
6	5.5%	77.0%	17.76	1065.9	888.2	100	5.5	77.0
7	3.9%	81.0%	20.72	1243.5	1036.2	98	3.9	80.9
8	2.9%	83.9%	23.69	1421.1	1184.3	88	2.6	83.4
9	2.7%	86.5%	26.65	1598.8	1332.3	79	2.1	85.5
10	2.2%	88.7%	29.61	1776.4	1480.4	70	1.5	87.1
11	1.0%	89.7%	32.57	1954.1	1628.4	64	0.6	87.7
12	1.7%	91.3%	35.53	2131.7	1776.4	59	1.0	88.7
13	1.4%	92.8%	38.49	2309.3	1924.5	54	0.8	89.4
14	1.0%	93.7%	41.45	2487.0	2072.5	50	0.5	89.9
15	0.3%	94.0%	44.41	2664.6	2220.5	47	0.1	90.1
16	0.8%	94.8%	47.37	2842.3	2368.6	44	0.3	90.4
17	0.8%	95.7%	50.33	3019.9	2516.6	41	0.3	90.7
18	0.2%	95.8%	53.29	3197.6	2664.6	40	0.1	90.8
19	1.5%	97.3%	56.25	3375.2	2812.7	37	0.6	91.4
20	0.2%	97.5%	59.21	3552.8	2960.7	36	0.1	91.4
21	0.6%	98.2%	62.17	3730.5	3108.7	33	0.2	91.6
22	0.0%	98.2%	65.14	3908.1	3256.8	32	0.0	91.6
23	0.2%	98.4%	68.10	4085.8	3404.8	30	0.1	91.7
24	0.2%	98.6%	71.06	4263.4	3552.8	30	0.1	91.8
25	0.2%	98.9%	74.02	4441.1	3700.9	28	0.1	91.9
30	1.1%	100.0%	88.82	5329.3	4441.1	24	0.3	92.1
35	0.0%	100.0%	103.62	6217.5	5181.2	20	0.0	92.1
40	0.0%	100.0%	118.43	7105.7	5921.4	18	0.0	92.1
45	0.0%	100.0%	133.23	7993.9	6661.6	16	0.0	92.1


SECTION VIEW

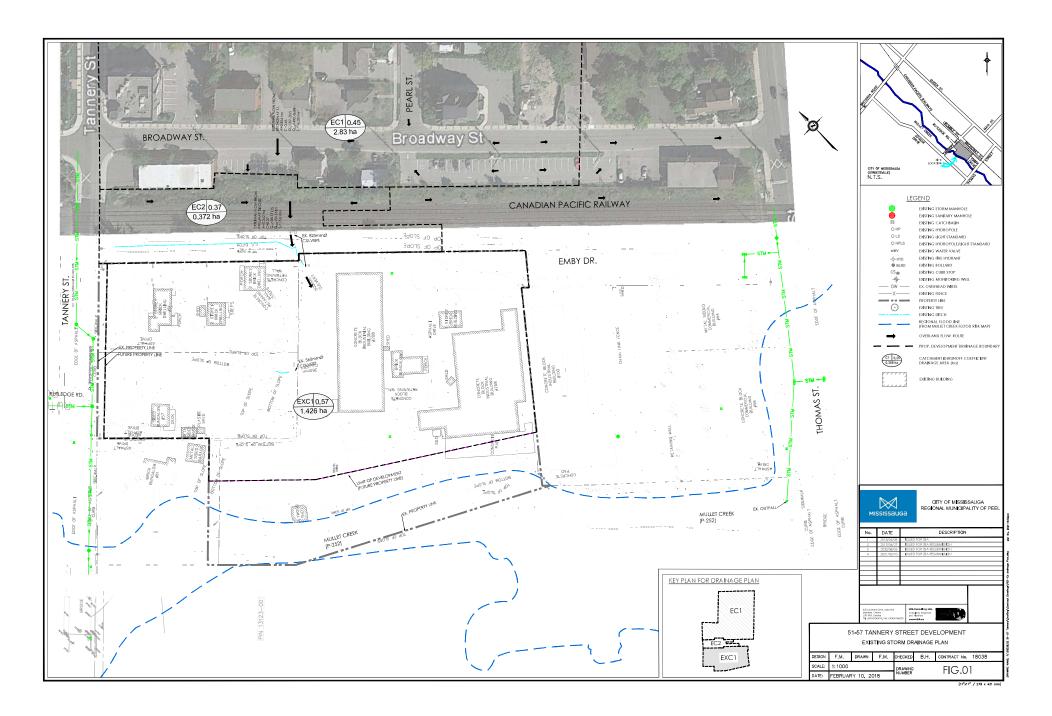
- MAXIMUM SURFACE LOADING RATE (SLR) INTO LOWER CHAMBER THROUGH DROP PIPE IS 113S L/min/m² (27.9 gpm/m²) FOR STORMCEPTOR EF4 AND 535 L/min/m² (13.1 gpm/m²) FOR STORMCEPTOR EF04 (OIL CAPTURE CONFIGURATION). WEIR HEIGHT IS 150 mm (6 INCH) FOR EF04.
- ALL DIMENSIONS INDICATED ARE IN MILLIMETERS (INCHES) UNLESS OTHERWISE SPECIFIED.
- STORMCEPTOR STRUCTURE INLET AND OUTLET PIPE SIZE AND ORIENTATION
- SHOWN FOR INFORMATIONAL PURPOSES ONLY.
 UNLESS OTHERWISE NOTED. BYPASS INFRASTRUCTURE. SUCH AS ALL UPSTREAM DIVERSION STRUCTURES, CONNECTING STRUCTURES, OR PIPE CONDUITS CONNECTING TO COMPLETE THE STORMCEPTOR SYSTEM SHALL BE E. DEVICE ACTIVATION, BY CONTRACTOR, SHALL OCCUR ONLY AFTER SITE HAS PROVIDED AND ADDRESSED SEPARATELY.
- DRAWING FOR INFORMATION PURPOSES ONLY. REFER TO ENGINEER'S SITE/UTILITY PLAN FOR STRUCTURE ORIENTATION.
- NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD


INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STRUCTURE (LIFTING CLUTCHES PROVIDED)
- C. CONTRACTOR WILL INSTALL AND LEVEL THE STRUCTURE, SEALING THE JOINTS, LINE ENTRY AND EXIT POINTS (NON-SHRINK GROUT WITH APPROVED WATERSTOP OR FLEXIBLE BOOT)
- D. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT THE DEVICE FROM CONSTRUCTION-RELATED EROSION RUNOFF
- BEEN STABILIZED AND THE STORMCEPTOR UNIT IS CLEAN AND FREE OF

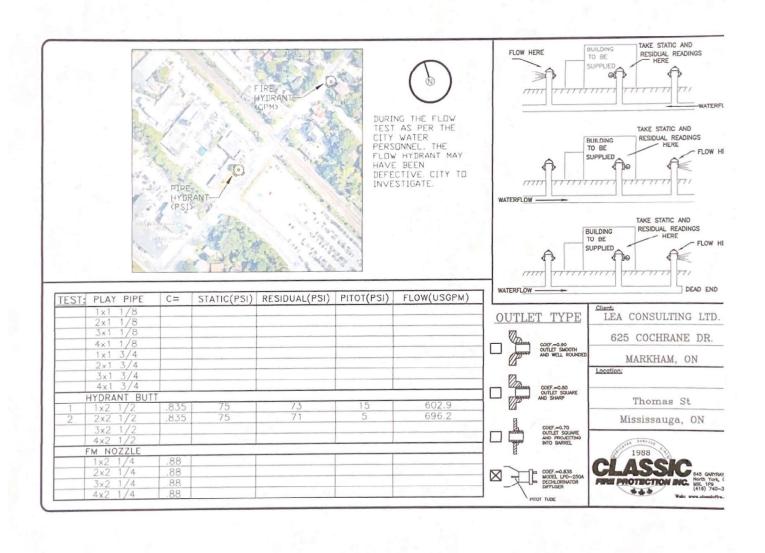
STANDARD DETAIL NOT FOR CONSTRUCTION

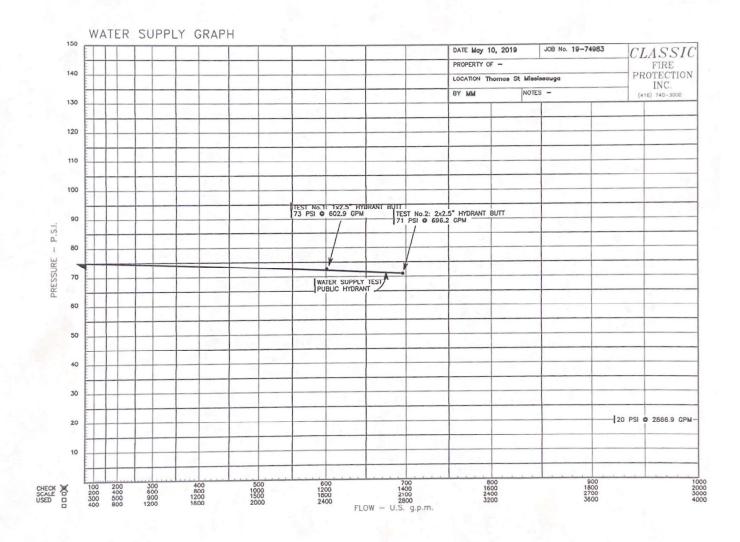
PLAN VIEW (STANDARD)

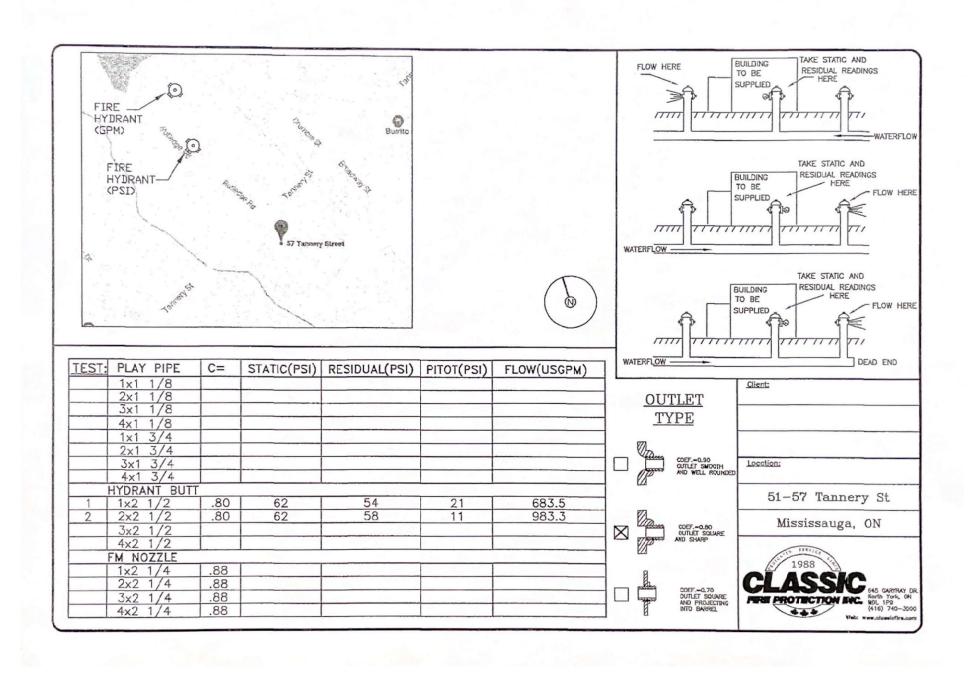


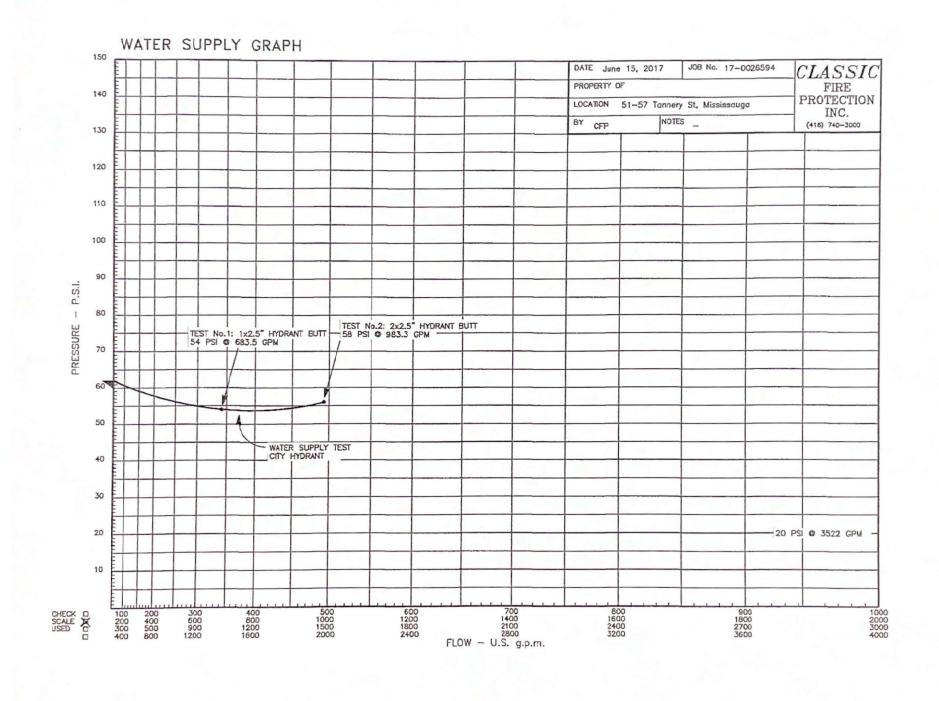
FOR SITE SPECIFIC DRAWINGS PLEASE CONTACT YOUR LOCAL STORMCEPTOR REPRESENTATIVE. SITE SPECIFIC DRAWINGS ARE BASED ON THE BEST AVAILABLE INFORMATION AT THE TIME. SOME FIELD REVISIONS TO THE SYSTEM LOCATION OR CONNECTION PIPING MAY BE NECESSARY BASED ON AVAILABLE SPACE OR SITE CONFIGURATION REVISIONS. ELEVATIONS SHOULD BE MAINTAINED EXCEPT WHERE NOTED ON BYPASS STRUCTURE (IF REQUIRED).

	SITE S	PECIFIC	C DAT	<u>A REQI</u>	JIREME	:NTS	≥	
	STORMCEPT	PTOR MODEL EF4						
	STRUCTURE	*	A Park					
WATER QUALITY FLOW RATE (L/s)						*	1	900
	PEAK FLOW	RATE (L/s	s)			*] [
	RETURN PER	RIOD OF F	PEAK FLO	OW (yrs)		*		
	DRAINAGE A	REA (HA)				*		
	DRAINAGE AREA IMPERVIOUSNESS (%)					*	DATE: 5/26/2017	
	PIPE DATA:	I.E.	MAT'L	DIA	SLOPE 9	% HGL	DESIGNED:	DRAWN:
	INLET #1	*	*	*	*	*	JSK CHECKED:	JSK APPROVED:
	INLET #2	*	*	*	*	*	BSF	SP
	OUTLET	*	*	*	*	*	PROJECT No.: FF4	SEQUENCE No.:
	* PER ENGIN	EER OF F	ECORD				SHEET:	1


tormceptor


1 OF




Functional Servicing and Stormwater Management Report July 4, 2024

Appendix D Water Design Information

2.3 Water Demands

Water demands are to be calculated as follows:

Table #1 - Typical Water Demand Criteria

Population Type	Unit	Avg. Consumption Rate	Max Day Factor	Peak Hour Factor
Residential	L/cap • d	280	2.0	3.0
ICI	L/Employee • d	300	1.4	3.0

ICI = Industrial, Commercial or Institutional

Custom demands for larger volume consumers or those with exceptional peak demands require special considerations regarding flow calculations. Each case will be reviewed on an individual basis.

It has been noted that some new development can generate higher water demands during the first years of occupancy. Factors for this elevated water use include additional lawn watering for new sod and changes in water use patterns. Table #2 states the potential short term water demand criteria for new development. However, over the long term, it is estimated that water use would ultimately be reduced through water conservation programs and other potential factor including rates. As such, for the purpose of projecting long term water requirements, the water demand criteria in Table #1 should be used.

Table #2 - Potential short term water demand criteria for new development

Population Type	Unit	Avg. Consumption Rate	Max Day Factor	Peak Hour Factor
Residential	L/cap • d	409	2.0	3.0
ICI	L/Employee • d	300	2.0	3.0

The Region may impose the higher short-term water demand criteria for new developments where water supply capacity or residual pressure may be marginal.

Design-Water Revised: June 2010

Project Name: 51 + 57 Tannery Street.

Project Number: 23-904 Date: 17-Apr-24

Design by: T.Ricketts

WATER DEMAND AND FIRE FLOW CALCULATION Title:

45 m >

Based on Fire Underwriters Survey

1 F= 220 C (sqrt (A))

Where F= Fire flow in Lpm

C= construction type coefficient

0.6 fire resistive construction

A = total floor area in sq.m. excluding basements (garage or areas with 50% underground)

Floor	Area (sq.m)	%
Level 2	13,940	25%
Level 1	14,403	100%
P1	8.061	25%

Vertical openings protected (1 hr rating) Largest Floor plus 25% of each adjoining floor

19,903 sq.m Largest Area= 18,622 L/min F =

Round to nearest 1000 l/min

F = 19,000 L/min

2 Occupancy Reduction

25% reduction for non-combustible

Reduction = 4750 L/min F = 14,250 L/min

3	Separation Charge				Separation	Charge
	5% North Side	32 m			0 to 3 m	25%
	0% East Side	52.8 m			3.1 to 10 m	20%
	20% South Side	10.4 m			10.1 to 20 m	15%
	5% West Side	34.4 m			20.1 to 30 m	10%
	30%	Total Separation Charge,	4275	L/min	30.1 to 45 m	5%

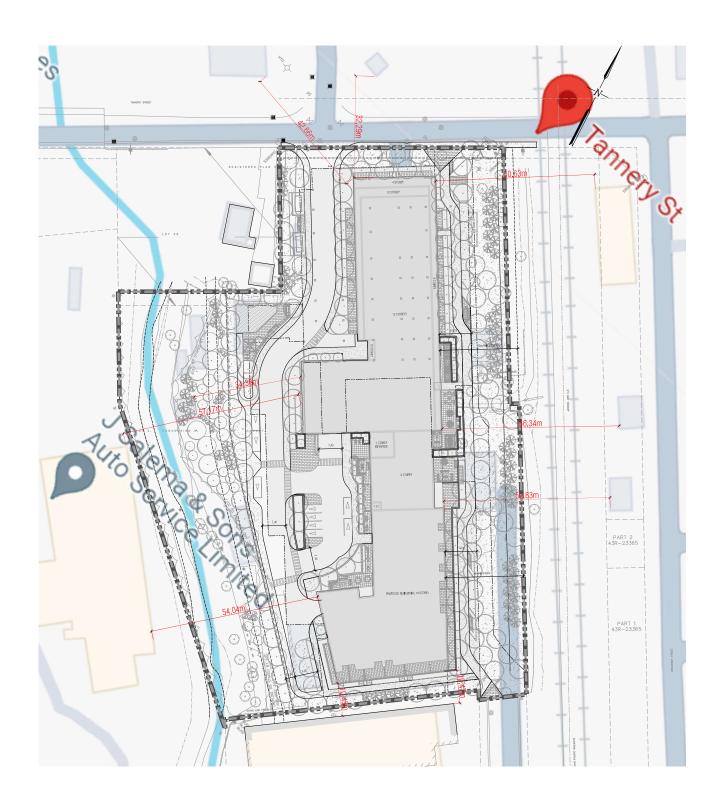
F = 18,525 L/min

4 Sprinkler Reduction

40% Reduction for NFPA Sprinkler System

Reduction = 5700 L/min

5 **Domestic Flow Calculations**


1709 (633 units x 2.7 ppu) Population

Ave. Day Demand = 280 L/cap/day 332 L/min Max. Day Peaking Factor = 2.0 Residential Max. Domestic Flow Rate F_{dom} = 665 L/min

Water Demand = Fire Flow - Sprinkler Reduction + Domestic Flow (F₃ - F₄ + F₅)

F = 18,525 5700 665 13,490 I/min

F = 225 F= 3561 **GPM**

