

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

Preliminary Hydrogeological Assessment-Draft

69 and 117 John Street, Mississauga, Ontario

Palmer Project # 2209001

Prepared For

13545130 Canada Inc.

.January 19, 2023

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

January 19, 2023

Bashar Ghreiwati 13545130 Canada Inc. Montreal, Quebec H3G 1Y7 c/o Scott Kruse Weston Consulting

Re: Preliminary Hydrogeological Assessment – 69 and 117 John Street, Mississauga, Ontario Project #: 2209001

Palmer is pleased to submit the attached report presenting the results of our preliminary hydrogeological assessment for the proposed development located at 69 and 117 John Street, Mississauga, Ontario. The preliminary hydrogeological assessment covers all the items provided in the proposal with adjustment based on site constraints, and includes the following three major components:

- Site hydrogeological characterization;
- Construction and long-term dewatering assessment; and
- Hydrogeological impact assessment.

Palmer conducted the required assessments and analysis completed in general accordance with the Water Taking User Guide for Environmental Activity and Sector Registry (EASR) and the Permit To Take Water (PTTW) Manual (2005) published by MECP as well as practices generally accepted in Ontario, and concluded that:

- The site is underlain by a multi aquifer-aquitard system comprising of a highly permeable fill/ sand fill aquifer, a low permeability till aquitard and a moderate permeability bedrock aquifer.
- Excavations below the groundwater table, which was measured as shallow as approximately 2.67
 m below grade, will require significant dewatering to maintain a dry excavation for the building
 foundations and underground parking structure.
- If the shoring system allows groundwater to flow freely into foundation pit (i.e., non-watertight), the
 proposed development is expected to require temporary dewatering of up to a maximum of
 1,844,100 L/day to maintain safe working conditions and stable cutting slopes. A typical daily rate
 under steady state conditions is estimated to be 1,018,285 L/day. As the maximum estimated
 dewatering rate is over 400,000 L/day, a Category 3 PTTW application with the MECP is required;
- If a rigid watertight shoring system is used and installed sufficiently into the competent bedrock, the
 proposed development is estimated to still require temporary dewatering of approximately 316,672
 L/day to unwater the volume of water within the excavation. As this dewatering rate is less than
 400,000 L/day it may be completed under an EASR registration with the MECP. It would also only
 be needed for approximately 60 days or until the volume of porewater is removed
- An additional 458,025 L/day of water should be accounted for in dewatering planning assuming direct precipitation from a 25 mm storm event.

- No impacts to groundwater quantity to neighboring groundwater users, the municipal water supply system, natural heritage system or storm sewers are not anticipated from the proposed development, if mitigation measures are implemented as recommended; and
- No impacts to groundwater quality are expected should appropriate mitigation measures and best management practices are implemented as recommended.

We trust that this report is completed within our terms of reference and suitable for your present requirements. If you have any questions or require further information, please do not hesitate to contact our office. This report is subject to the Statement of Limitations found at the end of the report.

Yours truly,	
Palmer	
DRAFT	
Jason Cole, M.Sc., P.Geo.	
VP, Principal Hydrogeologist	

Table of Contents

Letter

1.	Intro	oduction	1					
	1.1	Proposed Development	1					
	1.2	Scope of Work						
2.	Mot	hodology	•					
۷.		Background Study and Record Review						
	2.1	· · · · · · · · · · · · · · · · · · ·						
	2.2	Borehole Drilling, Monitoring Well Installation and Existing Monitoring Wells						
	2.3 2.4	Soil ClassificationIn-Situ Hydraulic Test						
	2.4	Groundwater Sampling						
	2.6	Groundwater Level Monitoring						
	2.7	WWIS Well Record and PGMN Well Inventory						
•								
3.	Reg	ional Setting						
	3.1	Physiography, Hydrology and Climate						
	3.2	Geology and Hydrogeology	8					
	3.3	Groundwater Resources						
	3.4	Natural Heritage	9					
4.	Sou	rce Water Protection	9					
5 .	Site	Geological and Hydrogeological Conditions	. 14					
	5.1	Stratigraphy						
	5.2	Groundwater Levels, Flow Direction and Gradients						
	5.3	Hydraulic Conductivity						
	5.4	Infiltration Rate						
	5.5	Groundwater Chemistry						
6.	Con	struction Dewatering Assessment	. 20					
	6.1	Excavation Dimension and Targeted Groundwater Level						
	6.2	Dewatering Rate Estimation						
	6.3	Rigid Watertight Shoring System						
	6.4	Location of Discharge and Dewatering Methods						
	6.5	PTTW, EASR and Municipal Permits						
7.	Peri	nanent Groundwater Seepage	. 24					
	7.1	Permanent Groundwater Seepage Rate Estimation						
	7.1	Treatment of Permanent Groundwater Seepage						
	1 .2	riodinon of i cimanon Croanawater Occpage	∠					

8.	Impact Assessment and Mitigation	ı 26
	8.1 Natural Heritage Features	26
	9	26
	8.3 Private Water Wells	26
	8.4 Discharge Receiver	27
	8.5 Foundation Soils	27
9.	Summary of Findings and Recomm	mendations27
10.	Signatures	30
Limi	itations of Report	31
Refe	erences	32
List	of Figures	
	e 1. Site Investigation Plan	
	e 2. MECP Well Records	
•	e 3. Physiography	
_	e 4. Surficial Geology	
Figure	e 5. Bedrock Geology	12
•	e 6. Source Water Protection	
Figure	e 7. Groundwater Level Contours and Flow Direction	າກ16
List	of Tables	_
	1. Monitoring Well Summary	
	2. Summary of MECP Water Well Records	
	3. Monthly Averaged Climate Data (1981 – 2010)	
	Summary of Stratigraphy Groundwater Levels	
	Groundwater Levels Hydraulic Conductivity Summary	
	7. Hydraulic Conductivity by Grain Size Analysis	
	8. Infiltration Rate	
	9. Exceedance over Peel Sewer Discharge Limits	
	10. Excavation Parameters and Targeted Ground	
	11. Dewatering Analysis Results	
Table	12. Permanent Groundwater Seepage Rate	25
List	of Appendices	

Appendix A. Site Plan (Tregebov Cogan Architect, 2022)

Appendix B. Borehole and Well Logs (Palmer, 2022 and Chung and Vander, 2019)

Appendix C. Grain Size Distribution (Terrapex, 2022) and K-Value Estimation

Appendix D. Single Well Response Tests (Palmer, 2022)
Appendix E. Groundwater Chemistry Analyses (ALS, 2022)

Appendix F. Well Records (WWIS)

1. Introduction

Palmer was retained by Centracondos de la Montagne 1000 de la Montagne (13545130 Canada Inc.) (the "client") to complete a Preliminary Hydrogeological Assessment for the proposed development located at 69 and 117 John Street, Mississauga, ON L5A 1Y5 (the "site" or "property") (**Figure 1**). We understand that the client plans to submit Official Plan Amendment (OPA) and Zoning By-Law Amendment (ZBA) applications with the City of Mississauga for a proposed high density residential development. The site is approximately 1.6 ha in area and is located at the northeast quadrant of Hurontario Street and John Street, bordered to the north by the Canadian Pacific Railway (CPR). The site currently is vacant and was a former sand pit that has been backfilled.

The purpose of the preliminary hydrogeological assessment is to delineate site conditions and assess construction dewatering requirement, and based on which to assess the impacts of construction dewatering to natural environment, municipal water supply system and municipal sewer system.

It should be noted that the preliminary hydrogeological assessment was conducted in tandem with preliminary geotechnical investigation and environmental site assessment (ESA) all undertaken by Palmer.

1.1 Proposed Development

Based on design drawings and information provided by the client (provided in **Appendix A**), the proposed development includes the following features:

- Three (3) tower buildings of 33, 23 and 16 stories;
- A six (6) story podium that connects each tower;
- Three (3) levels of underground parking to a depth of 11 m below grade;
- An earth berm along the south flank of CPR alignment;
- Pavement and landscaping features;
- Underground utilities including storm sewer, sanitary sewer and water supply; and
- Shallow utilities including gas lines, hydro service and telecommunication lines.

1.2 Scope of Work

Based on the understanding of the proposed development, the preliminary knowledge of the site conditions as well as regulatory requirements of agencies, the scope of work for this hydrogeological assessment is proposed to include the following components:

- Characterizing regional physical and environmental settings through records review and Source Water Protection policies and background mapping;
- Characterizing site subsurface condition through drilling, hydraulic test and groundwater sampling, and data analysis and interpretation;
- Preliminary construction dewatering assessment;
- Permanent or long-term dewatering assessment;
- Impact assessment; and

 Completion of a Hydrogeological Report and effects assessment to provide design and permitting recommendations.

This study was completed in general accordance with the Water Taking User Guide for Environmental Activity and Sector Registry (EASR) and the Permit To Take Water (PTTW) Manual (2005) published by MECP as well as practices generally accepted in Ontario.

2. Methodology

The methodology employed to complete the hydrogeological assessment included records reviews, site reconnaissance, borehole drilling and monitoring well installation, groundwater monitoring, hydraulic tests, and groundwater sampling, and are described below.

2.1 Background Study and Record Review

Detailed background and record review was conducted for the area surrounding the site to delineate the regional setting of the site, including physical setting and environmental setting. The regional setting will help delineate site conditions, help with data interpretation, and help with impact assessment. The sources of records reviewed are listed in the References Section.

The sources of data and records reviewed included, but not limited to, Ontario Geological Survey database (physiography, geology and boreholes), MECP database (well record, natural heritage, hydrology, source protection and environmental instruments), data from Conservation Authorities (watershed plan, subwatershed studies, source protection plan, stormwater criteria and LID), and data from the municipalities (official plan, zoning plan, permit application, well head protection policies and sewer use bylaw).

Four (4) previous study reports had been identified for the property, including:

- 1. Phase I Environmental Site Assessment, by Chung and Vander Doelen Engineering LTD (2019);
- 2. Phase II Environmental Site Assessment, by Chung and Vander Doelen Engineering LTD (2019);
- 3. Supplemental Soil and Groundwater Testing by Peritus Environmental Consultants INC. in 2022; and
- 4. Soil Investigation by Soil-Eng Limited in 1988.

The following will present the parts from these studies that will contribute to the site characterization and data analysis for present study.

The <u>Phase II ESA completed by Chung</u> and Vander Doelen Engineering LTD (2019) was based on 12 boreholes (with four (4) monitoring wells) which were executed following general geotechnical protocols despite that they were drilled for the ESA. The borehole logs and well logs provided factual data that can be used for helping with characterizing site conditions. The four (4) monitoring wells were inspected during site reconnaissance and were found in good condition. These wells will be enlisted for the present study.

The study by Soil-Eng Ltd (1988) was based on five (5) boreholes with depths of 7 m, without monitoring wells installed. Considering the age of the study and the limited depth of boreholes, the value of this study is limited.

2.2 Borehole Drilling, Monitoring Well Installation and Existing Monitoring Wells

As mentioned above, Palmer's preliminary hydrogeological assessment was conducted in tandem with Palmer's preliminary geotechnical investigations and a Phase Two ESA. A total of sixteen (16) boreholes (BH22-1 to BH22-16) were drilled from November 3 to November 11, 2022. Borehole drilling was executed by specialized driller subcontractors supervised by Palmer staff. In general, the borehole drilling and soil sampling followed the guidelines of Professional Engineers of Ontario (PEO), ASTM D1586 as well as O.Reg. 153/04. Eight (8) boreholes were installed with monitoring wells following O.Reg. 903. The details of these monitoring wells are shown in **Table 1**, and well logs and borehole logs are attached as **Appendix B**.

The four (4) historical monitoring wells (BH1, 5, 9, 12) installed by Chung and Vander Doelen Engineering LTD. (2019) were identified at the site and are enlisted for the present study. Their details are shown in **Table 1**, and the well logs are attached as **Appendix B**.

Surface Screened Stick-up Depth Screened Slug Groundwater **Borehole ID** Elevation Interval (mbgs) Unit **Test** Quality Sampling (m) (masl) (mbgs) Sand fill and BH22-1 119.1 0.91 4.54 1.5-4.5 Yes sand Sand fill and BH22-2 119.0 1.0 4.51 1.5-4.5 Yes silt till BH22-3 1.0 4.56 1.5-4.5 Sand fill 119.7 Sand fill and BH22-7 118.7 1.08 5.93 2.9-5.9 Yes silt till BH22-8 117.9 1.17 4.45 1.5-4.5 Yes Sand fill and BH22-9 119.4 1.07 5.86 2.9-5.9 Yes silt till BH22-11 117.7 12.25 9.2-12.2 1.02 Shale Yes Yes BH22-16 119.2 0.86 20.55 16.8-18.3 Shale Yes Shale BH1 119.6 0.96 13.64 6.1-10.5 Yes BH5 118.8 1.0 13.58 7.5-10.5 Shale Yes BH9 117.6 1.01 10.68 7.6-10.6 Shale Yes **BH12** 119.5 0.68 5.4 2.4-5.4 Fine sand Yes

Table 1. Monitoring Well Summary

2.3 Soil Classification

Soil samples were brought back to Palmer soil lab for detailed classification and analysis. Soil classification was conducted following the guidelines of ASTM D2487 and geological principles. The results are presented on the borehole logs in **Appendix B**. Grain size analysis was commissioned to Terrapex and was conducted for four (4) representative samples (BH22-4/SS6, BH22-12/SS7, BH22-13/SS5 and BH22-16/SS6) following the MTO standards and ASTM standards (LS-702, ASTM D421, ASTM D422). The

purposes of the grain size analysis were to gauge the soil classification and to estimate hydraulic conductivity (K-value) for the stratigraphy units that could not be covered by the slug tests. The grain size analysis results and K-value estimation results are attached as **Appendix C**.

2.4 In-Situ Hydraulic Test

Single well response tests (SWRT or slug test) were conducted on November 23,26, 2022 and January 5, 2023 in 11 monitoring wells to estimate hydraulic conductivity (K-value) of the screened interval. The slug test was executed in general accordance with ASTM D4044 (Standard Test Method for Field Procedure for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers) and the generally accepted practices in Ontario. All wells were developed by removing at least 3 well casing volumes of water from the well prior to completing hydraulic testing or sampling.

Based on site conditions, the methods of falling head and rising head with a solid 1 m long slug and falling head with water injection was used. The results of the slug tests are attached as **Appendix D**.

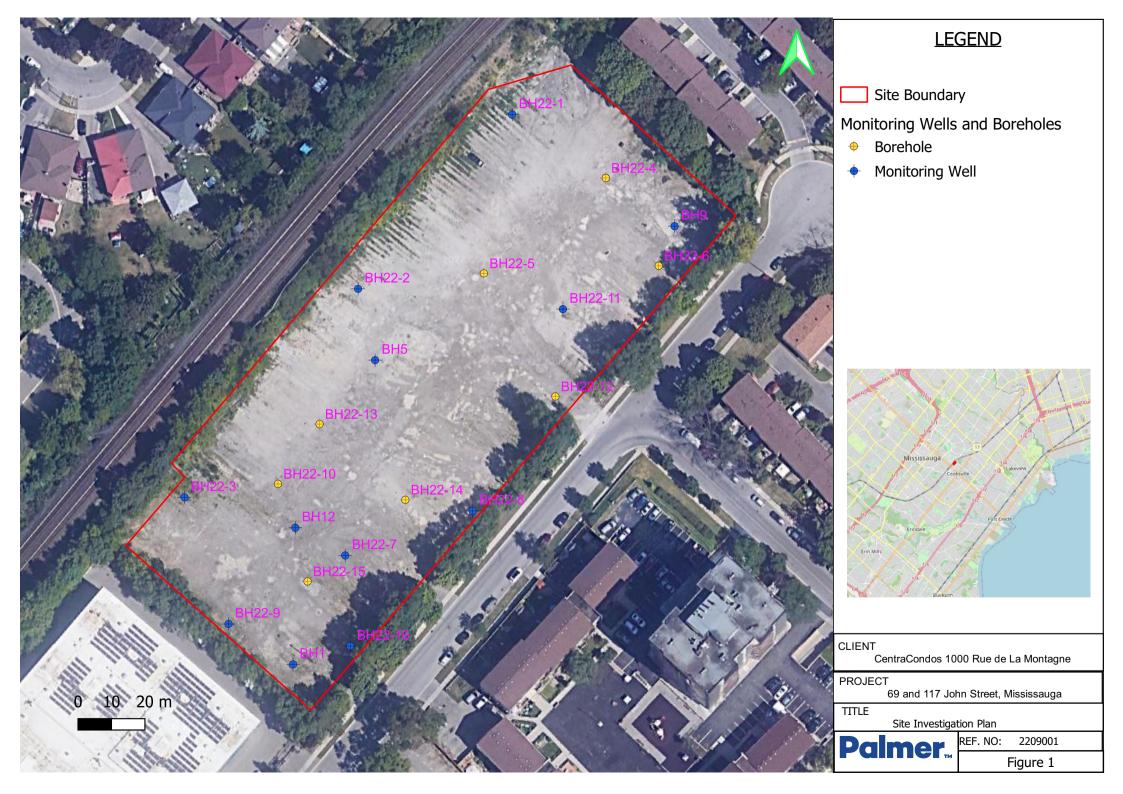
2.5 Groundwater Sampling

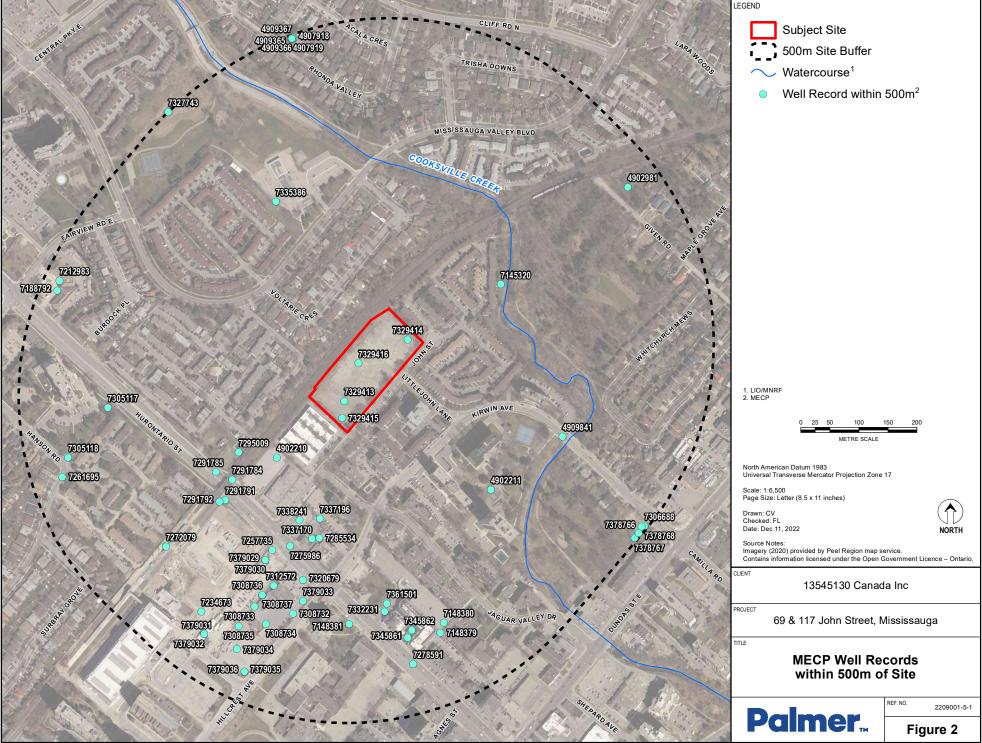
Groundwater sampling was conducted on November 18, 2022 in general accordance with provincial practices and Palmer's standard operating procedure (SOP). Chemical analysis was conducted by ALS Environmental Laboratory, which has been accredited Canadian Association for Laboratory Accreditation (CALA). The groundwater sampling involved taking one (1) sample from the BH22-11, and the sample was tested against the parameters of Limits for Sanitary Sewer Discharge and Limits for Storm Sewer Discharge in By-law 53-2010 of Peel Region. The test results are attached as **Appendix E**.

2.6 Groundwater Level Monitoring

Groundwater level monitoring was conducted through manual measurement of groundwater levels to delineate water level trends and fluctuation magnitude. As required by the hydrogeological assessment, Palmer completed more than four (4) rounds of site visits for groundwater level monitoring. Together with each round of groundwater level monitoring, maintenance for monitoring wells had been carried out. Depending upon the results, additional groundwater level monitoring may be required in the spring to confirm high groundwater level conditions.

2.7 WWIS Well Record and PGMN Well Inventory


Well records within 500 m from the site boundary were queried from the database of the Water Well Information System (WWIS) of MECP for fields of well ID, completion date, well depth, static groundwater levels, aquifer type (bedrock or overburden well) and water use. Total 62 wells were identified. The results of well survey were attached as **Appendix F** and **Table 2** lists the summary of well records. Most wells are monitoring wells installed after the year of 2000. Only two domestic wells and one industrial well that have potential to supply water were identified, and they were installed before 1968. No Provincial Groundwater Monitoring Network (PGMN) was identified within 10 km from the site.



Given the urban nature of this site, no active potable groundwater wells are expected within 500 m of the site.

Table 2. Summary of MECP Water Well Records

Cla	ssification	Record Number
	Domestic/livestock	2
	Commercial	-
	Industrial	1
	Municipal	-
Water Use	Monitoring	-
	Monitoring and Test Hole	43
	Irrigation	-
	Decommissioned	-
	Unknow/Not used	23
	Fresh	-
Water Ovelity	Salty	-
Water Quality	Untested	-
	Unknown	-
	Overburden	17
Aquifer	Bedrock	26
	Unknown	19

3. Regional Setting

Regional setting is referred to as regional conditions in physiography, geology and groundwater resources surrounding the site, which will help delineate the site conditions and interpret data and information collected about the site, as well as help with dewatering assessment, and impact assessment.

The physical setting was delineated through record review. Record review covered all publicly available sources of information and data, including provincial agencies, federal agencies, conservation authorities and local municipalities.

3.1 Physiography, Hydrology and Climate

The site sits on the south edge of a till plain unit (Chapman & Putnam, 1984 and OGS), which borders the Iroquois Lake beaches to the south (**Figure 3**). The site is located in Cooksville Creek watershed (or Subwatershed 22) under the jurisdiction of Credit Valley Conservation Authority. It should be noted that Cooksville Creek is not a tributary to Credit River, and discharges into Lake Ontario directly. The site is about 160 m away from Cooksville Creek. The site is also located in Oak Ridges Moraine Groundwater Program (ORMGP) area.

The site is in a continental climate region with a warm, humid summer and a cold winter as well as wet spring, dry summer and moderate rainfall in autumn. The region is generally affected by warm, moist air masses from the south and cold, dry air masses from the north and experiences a wide range of weather conditions through the course of an average year. The following table lists the average and daily values of major climate parameters collected at the closest climate station (Toronto Lester B. Pearson International Airport) for the period between 1981 and 2010 (**Table 3**).

Monthly Jan Feb Mar Jun Jul Oct Apr May Aug Sep Nov Dec **Averaged Value** Daily Air T (°C) -5.5 9.5 -2.2 -4.5 0.1 7.1 13.1 18.6 21.5 20.6 16.2 3.7 Rainfall (mm) 25.1 24.3 74.3 71.5 75.7 78.1 74.5 60.6 68 32.6 63 34 Snowfall (cm) 29.5 24 17.7 4.5 0 0 0 0 0.4 7.5 24.9 Precipitation (mm) 47.7 51.8 49.8 68.5 74.3 71.5 75.7 78.1 74.5 61.1 75.1 57.9 **Extreme Daily** Jan Feb Mar May Jun Jul Sep Oct Nov Dec Apr Aug **Value** Extreme Daily 58.7 118.5 8.08 108 121.4 31.8 41.7 55.8 92.7 53.8 86.1 40.9 Rainfall (mm) Extreme Daily 36.8 39.9 32.3 26.7 2.3 0 0 0 0 7.4 33.5 28.2 Snowfall (cm)

Table 3. Monthly Averaged Climate Data (1981 – 2010)

3.2 Geology and Hydrogeology

Surficial geology surrounding the site was mapped by Ontario Geological Survey (OGS) as coarse-textured glaciolacustrine deposits of sand, gravel, minor silt and clay deposited in a littoral environment associated

with ancient glacial lake, Lake Iroquois (**Figure 4**). Coarse-textured glaciolacustrine deposits constitute local significant aguifer. The site is also known to be a former sand pit that has been in-filled.

Bedrock underlays the overburden and was mapped as Georgian Bay Formation of Late Ordovician (O3) age and consists of shale, limestone, dolostone, siltstone (**Figure 5**). Georgian Bay Formation serves as regional aquitard in the area based on regional hydrogeology of Ontario.

3.3 Groundwater Resources

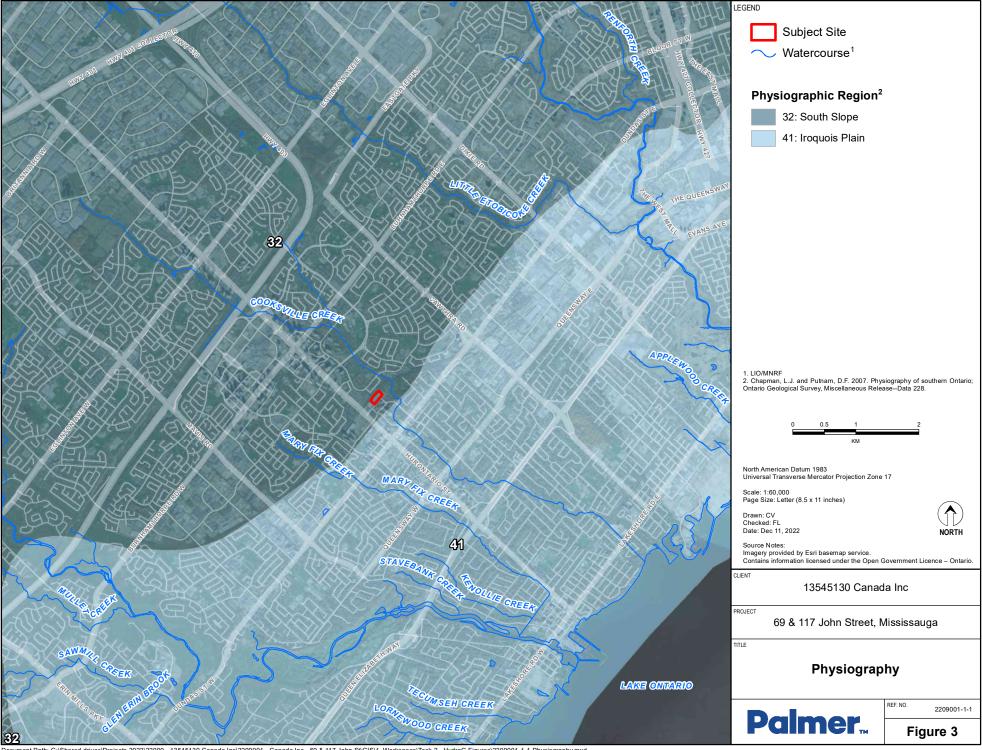
Groundwater resources are delineated through groundwater levels, groundwater quality, and hydrostratigraphy or aquifer system. Five major sources of information about regional groundwater resources include ORMGP, municipal supply wells, WWIS and PGMN as introduced above.

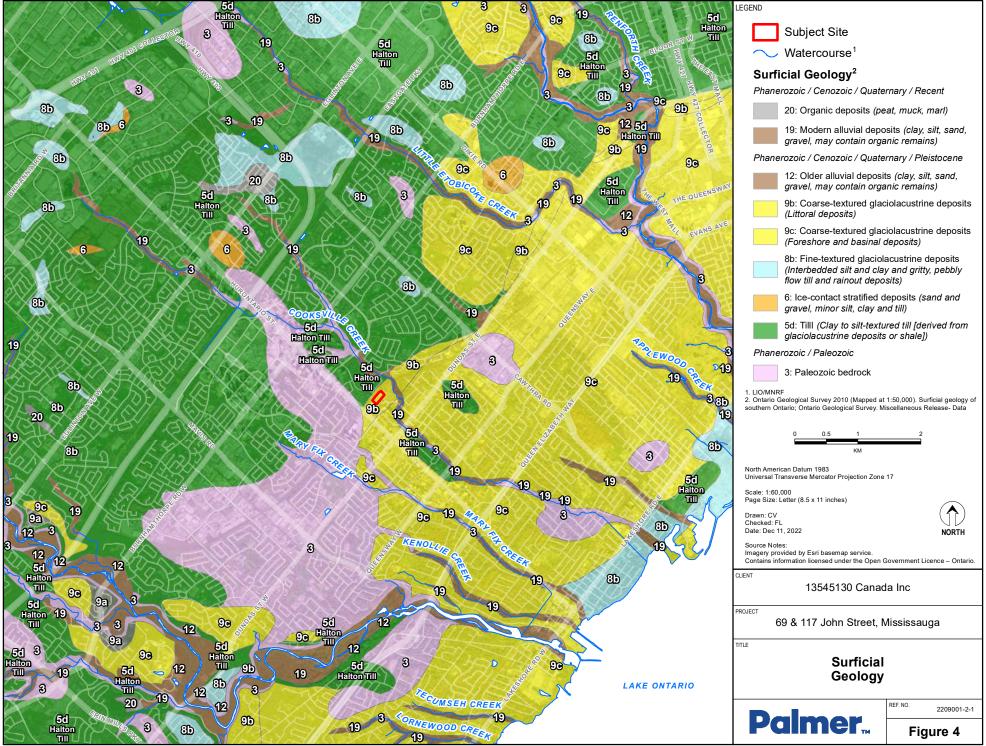
Based on ORMGP mapping, there are no significant overburden or bedrock aquifers under the site and surrounding area. The contact aquifer, which is composed of weathered bedrock and lag gravel, may exist locally depending on elevations and thickness of the contact zone.

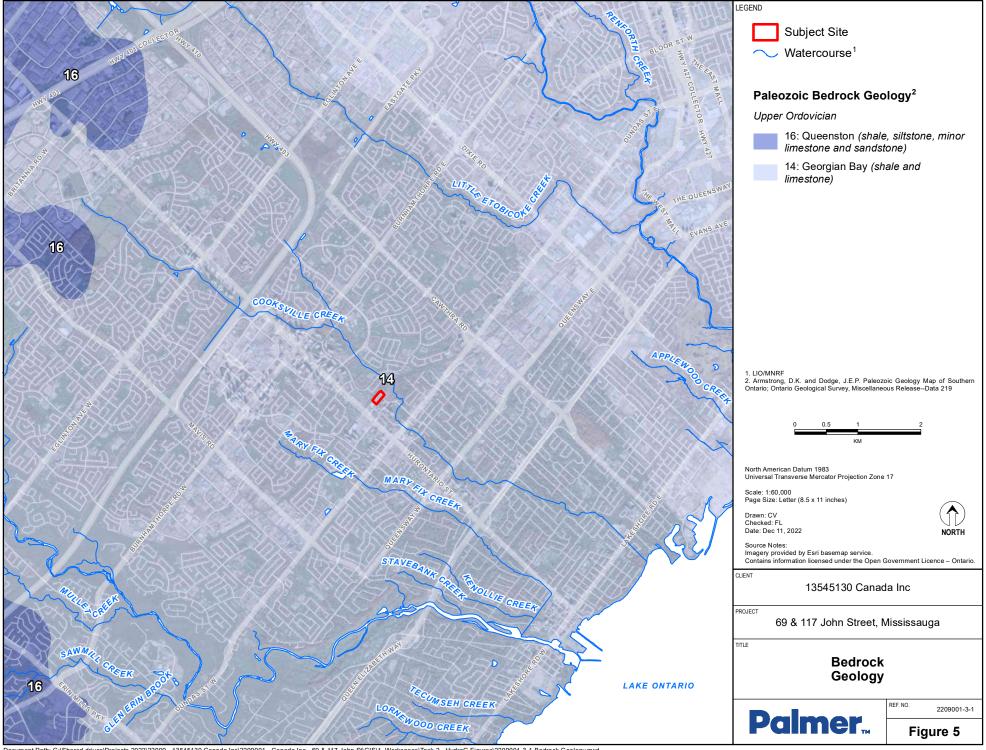
The water supply for the residential area surrounding the site was provided by South Peel Drinking Water System owned and operated by Peel Region, which is a lake-based water supply system including two water treatment plant (WTP) (Arthur P. Kennedy WTP and Lorne Park WTP).

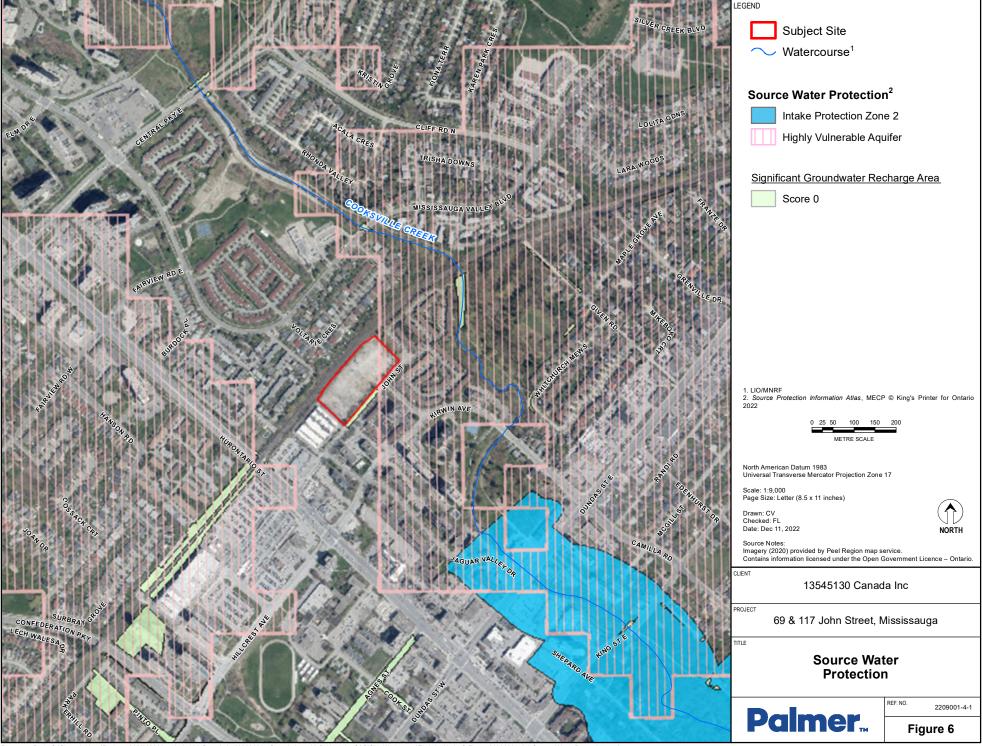
3.4 Natural Heritage

Based on the provincial natural heritage mapping, the major natural heritage feature identified near the site is Cooksville Creek, located approximately 160 m to the east of the property boundary. No wetlands or other natural features were identified.


4. Source Water Protection


The site is located within the Credit Valley Source Protection Area under the Source Protection Plan of CTC Source Protection Region. The Source Protection Plan designated the following 10 types of vulnerable areas:


- Wellhead Protection Area-Quality
- Wellhead Protection Area E-(GUDI)
- Intake Protection Zone-Quality
- Intake Protection Zone-Quantity
- Issue Contributing Area


- Significant Groundwater Recharge Area
- Highly Vulnerable Aquifer
- Event Based Area
- Wellhead Protection Area Q1-Quantity
- Wellhead Protection Area Q2-Quantity

Based on the provincial source protection mapping and the above source protection plan (**Figure 6**), the east corner of the site is above a Highly Vulnerable Aquifer (HVA) with score of 6.0. An Intake Protection Zone (IPZ-2 with score of 2.5) is located about 400 m to the south of the site. Therefore, based on Source Water Protection policies, there are no restrictions to site development but steps should be taken to maintain groundwater quality to provincial requirements.

5. Site Geological and Hydrogeological Conditions

The site is a vacant former sand pit, and grown with sparse vegetation. The total area of the site is about 1.5 hectares (Ha). The ground surface undulates gently sloping from west to east with elevations ranging from approximately 120 to 118 meters above sea level (masl). Surface water drains to the east corner through overland sheet flow.

Subsurface conditions of the site have been delineated based on the information and data acquired through borehole drilling, groundwater monitoring, hydraulic testing, groundwater sampling and grain size analysis.

5.1 Stratigraphy

Site stratigraphy not only serves as medium to support proposed structures but also act as porous medium to store and transmit groundwater. Based on the information from the borehole logs (**Appendix B**) and topography, the site is divided into two parts in stratigraphy, west part and east part, and each part has its own stratigraphic characteristics. The stratigraphy of each part of the site is summarized in **Table 4**, which includes data from Palmer's Geotechnical Investigation (Palmer, 2022) for reference.

Top Elev **Bottom Elev Natural Water Unit No Unit Name N-Value** Lithology (masl) Content (masl) West Part (BH22-2, BH22-3, BH22-5, BH22-7, BH22-9, BH22-10, BH22-12, BH22-14, BH1, BH5, BH12) Gravelly sand, trace to some 119.6-118.8 1 Fill 117.5-115.6 Damp to moist 5-29 silt, brown to dark brown. Fine sand, trace to some Damp to Sand fill to gravel and silt. Clayey silt 2 117.5-115.6 114.7-113.2 5-29 saturated lens to the east. Brown to sand (wet) grey. Clayey silt till to shaly till, 3 Till 114.7-113.2 112.3-113.7 Moist to wet 17-74 grey Grey shale, occasionally 4 Bedrock 112.6-112.7 105.7-105.2 limestone seams East Part (BH22-1, BH22-4, BH22-6, BH9) Sand, gravel, some silt, dark Fill 119.1-117.4 1 115.2-113.9 Moist 21-22 brown to grey Clayey silt till to shaly till, 2 Till 115.2-113.9 110.3 13-77 Moist to wet grey. Grey shale, occasionally 3 102.2 **Bedrock** 110.3

Table 4. Summary of Stratigraphy

As shown in **Table 3**, the difference in stratigraphy between the west part and east part of the site is the sandfill to sand unit, which covers about two thirds of the site extending from west to east and gradually thinning out in the eastern part of the site. The west part accounts for about 85% of the site.

limestone seams

5.2 Groundwater Levels, Flow Direction and Gradients

Twelve monitoring wells (as shown on **Figure 1**) were installed at the site as part of previous and current site investigations. Groundwater conditions in the open boreholes were observed during and upon completion of drilling. Moisture condition of soil was tracked in order to predict and delineate groundwater condition. The details of observation for groundwater conditions can be found in borehole logs in **Appendix B**.

Four (4) rounds of manual groundwater level measurement will ultimately be conducted for the eight monitoring wells installed by Palmer and the four monitoring wells enlisted. The representative manual measurement results of the first two (2) monitoring rounds completed to date are summarized in **Table 5**.

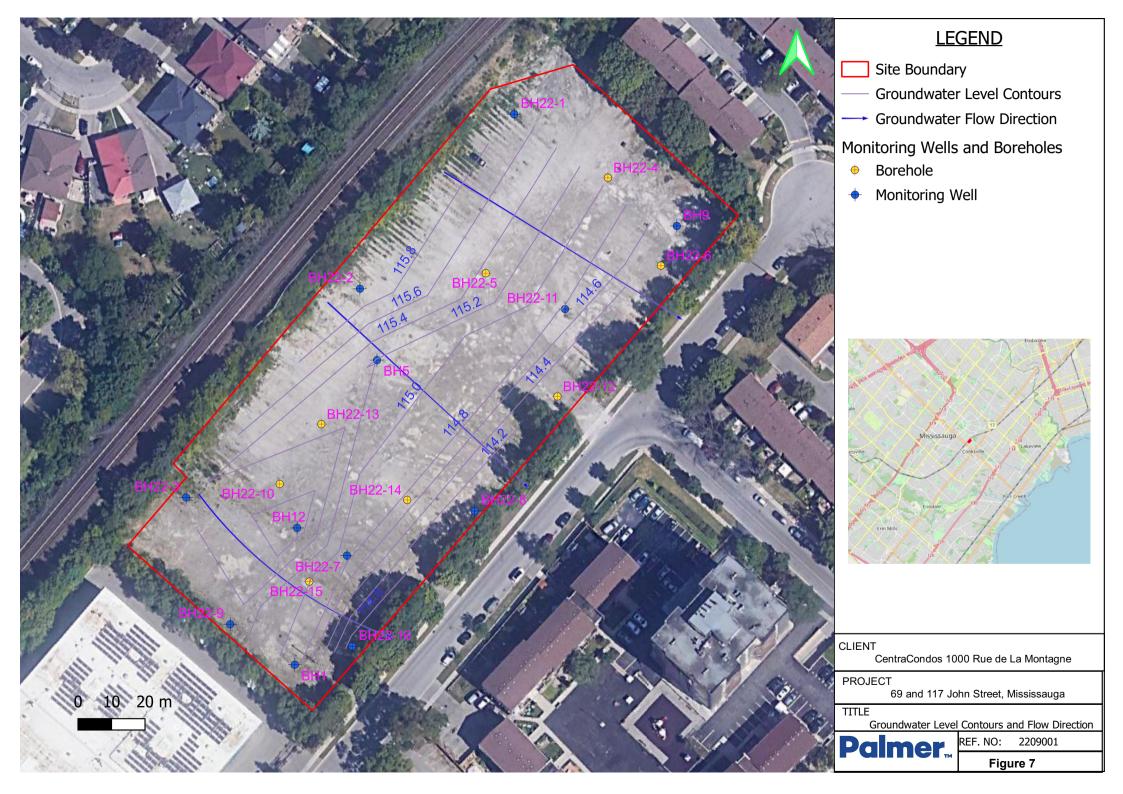

Water Level (m) **Surface** Depth Well ID **Elevation** Nov 18, 22 Dec 22, 22 (mbgs) (masl) mbgs mbgs masl masl BH22-1 119.1 4.54 3.35 115.75 3.21 115.89 BH22-2 119.0 4.51 115.99 3.01 3.05 115.95 BH22-3 119.7 4.56 4.28 115.42 4.30 115.40 BH22-7 118.7 5.93 3.84 114.86 3.83 115.27 BH22-8 117.9 4.45 2.77 115.23 115.13 2.67 BH22-9 119.4 5.86 4.09 115.31 4.10 115.30 BH22-11 117.7 12.25 2.92 114.78 3.00 114.70 BH22-16 119.2 20.55 5.32 113.88 6.21 112.99 BH1 119.6 13.64 4.70 114.90 4.93 114.67 BH₅ 118.8 13.58 3.62 115.18 3.59 115.21 BH9 117.6 10.68 3.13 114.47 3.12 114.48 **BH12** 119.5 5.40 3.79 115.71 4.07 115.43

Table 5. Groundwater Levels

Based on the elevation of groundwater levels, the groundwater table contours and flow direction were delineated and shown in **Figure 7**. The horizontal groundwater gradient is about 2.4% and the flow direction is from northwest to southeast, to Cooksville Creek.

It should be noted that no significant vertical gradient was anticipated in overburden in the area surrounding the site based on regional conditions and the well hydraulics for at the site, and therefore, the groundwater table elevation should not be significantly different from the groundwater levels measured from other depths, and the aquifer-aquitard system of the overburden should be treated as an unconfined system. Bedrock is separated from the upper porous fill sand by a till layer, and therefore, the bedrock should be treated as confined system.

Additional groundwater level monitoring is planned for spring 2023 between the months of March to May.

5.3 Hydraulic Conductivity

Hydraulic conductivity (K-value) of saturated zones were estimated through single well response tests (SWRTs) or slug tests, which has been introduced above. The results of the slug tests are summarized by hydrostratigraphic unit (sand and fill, and bedrock) in **Table 6**.

Table 6. Hydraulic Conductivity Summary

Borehole ID	Surface Elevation (masl)	Depth (mbgs)	Screened Interval (mbgs)	Screened Unit	Method	K-value (m/s)	Geometric Mean K (m/s)	90 th Percentile K (m/s)
BH22-1	119.1	4.54	1.5-4.5	Sand fill and sand	Falling head	2.4x10 ⁻⁴		
					Falling head	2.3x10 ⁻⁴		
				Sand fill and	Falling head	2.0x10 ⁻⁴		
BH22-2	119.0	4.51	1.5-4.5	silt till	Rising head	1.1x10 ⁻⁴		
					Rising head	7.2x10 ⁻⁵		
BH22-3	119.7	4.56	1.5-4.5	Sand fill	Falling head	-	4.0.40-4	2.4x10 ⁻⁴
BH22-7	118.7	5.93	3.0-6.0	Sand fill and silt till	Falling head	1.1x10 ⁻⁴	1.0x10 ⁻⁴	2.4X10 ⁴
BH22-8	117.9	4.45	1.5-4.5	-	Falling head	5.6x10 ⁻⁶		
DI IOO O	440.4	F 00	0.0.0.0	Sand fill and	Falling head	2.5x10 ⁻⁴		
BH22-9	119.4	5.86	3.0-6.0	silt till	Rising head	1.9x10 ⁻⁴		
BH12	119.5	5.40	2.4-5.4	Fine cond	Falling head	1.1x10 ⁻⁴		
BH12	119.5	5.40	2.4-5.4	Fine sand	Rising Head	6.6x10 ⁻⁵		
BH22-11	117.7	12.25	9.2-12.2	Shale	Falling head	2.7x10 ⁻⁷		
BH22-16	119.2	20.55	16.8-18.3	Shale	Falling head	3.7x10 ⁻⁸		
BH1	119.6	13.64	6.1-10.5	Shale	Falling head	6.7x10 ⁻⁶	9.6x10 ⁻⁷	6.2x10 ⁻⁶
BH5	118.8	13.58	7.5-10.5	Shale	Falling head	5.6x10 ⁻⁶		
ВН9	117.6	10.68	7.6-10.6	Shale	Falling head	2.2x10 ⁻⁶		

The K-values was also estimated with grain size analysis results. Four soil samples for grain size analysis were taken from four boreholes which represents shallow to middle saturated conditions (Table 7). The results of grain size analysis were used to get K-values through the following empirical equation.

$$K(Sauerbrei, 1932) = \frac{\rho g}{\mu} [(3.75 \times 10^{-5}) \times \tau] \left[\frac{n^3}{(1-n)^2} \right] d_{17}^2 \frac{cm}{s}$$

Where K = hydraulic conductivity (cm/s)

 $\rho = 3.1x10^{-8}T^3 - 7.0x10^{-6}T^2 + 4.19x10^{-5}T + 0.99985$

 $g = 980 \text{ cms}^{-2}$

 μ = -7.0x10⁻⁸T³ + 1.002x10⁻⁵T² - 5.7x10⁻⁴T + 0.0178

 τ = 1.093x10⁻⁴T² + 2.102x10⁻²T + 0.5889 n = porosity as a fraction of aquifer volume

T = water temperature (°C)

Table 7. Hydraulic Conductivity by Grain Size Analysis

Borehole ID	Sample No	Depth Range (mbgs)	Sampled Unit	K-value (m/s)
BH22-3	SS6	3.8-4.6	Sand fill	1.8x10 ⁻⁹
BH22-12	SS7	6.0-6.7	Silt till	1.7x10 ⁻⁸
BH22-13	SS5	3.0-3.8	Silty sand	9.5x10 ⁻⁸
BH22-16	SS6	4.6-5.5	Silty sand	2.6x10 ⁻⁵

The K-values derived from grain size analysis results are highly volatile due to reworking of sampled soils and destruction of sedimentological structures, and therefore, they are not factored into dewatering rate estimation. They have been used to assess the hydraulic properties of the till to confirm that its hydraulic conductivity is sufficiently low to be considered an aquitard.

5.4 Infiltration Rate

Infiltration rate was estimated through the following empirically equation between K-values and infiltration rate provided in the SG-6 Percolation Time and Soil Descriptions of the Supplementary Guidelines of Ontario Building Code 1997 (**Table 8**) for the formations in shallow depths The following empirical correlation presented in the Stormwater Management Criteria of TRCA:

$$K = (6 \times 10^{-11})I^{3.7363}$$

Where:

K = hydraulic conductivity (cm/s)

I = infiltration rate (mm/hr)

Table 8. Infiltration Rate

Borehole	rehole 1 1)enth		Screened K-		Infiltration Rate		Geometric Mean		90th Percentile	
ID	Elevatio n (masl)	(mbgs)	Interval (mbgs)	value (m/s)	cm/min	T (min/cm)	cm/min	T (min/cm)	cm/min	T (min/cm)
BH22-1	119.1	4.54	1.5-4.5	2.4x10 ⁻	33.5	3	26.0	3.7	33.5	4.2
BH22-2	119.0	4.51	1.5-4.5	2.3x10 ⁻	33.0	3	26.9	3.7	33.3	4.2

				2.0x10 ⁻	32.0	3	
				1.1x10 ⁻	27.3	4	
				7.2x10 ⁻	24.3	4	
TBH22-7	118.7	5.93	3.0-6.0	1.1x10 ⁻	26.9	4	
BH22-8	117.9	4.45	1.5-4.5	5.6x10 ⁻	12.2	8	
BH22-9	119.4	5.86	3.0-6.0	2.5x10 ⁻	33.8	3	
BH22-9	119.4	5.66	3.0-0.0	1.9x10 ⁻	31.4	3	
BH12	119.5	5.40	2.4-5.4	1.1x10 ⁻	27.2	4	
DI112	119.5	5.40	2.4-0.4	6.6x10 ⁻	23.6	4	

5.5 Groundwater Chemistry

One (1) groundwater sample was taken from BH22-11 on November 18, 2022 and tested against the parameters of Limits for Sanitary Sewer Discharge and Limits for Storm Sewer Discharge in By-law 53-2010 of Peel Region. The test results are attached in **Appendix E**, and **Table 9** lists the exceedances.

Table 9. Exceedance over Peel Sewer Discharge Limits

Analyte	Units	Storm Sewer Limits	Sanitary Sewer Limits	BH22-11
TSS	mg/L	15	350	276
TKN	mg/L	1	100	1.76
Total phosphorus	mg/L	0.4	10	0.55
Total manganese	mg/L	0.05	5	0.286

In addition, as part of the Palmer Phase Two ESA conducted in tandem with this preliminary hydrogeological assessment, groundwater samples were taken from monitoring wells BH22-1, BH22-2, BH22-3, BH22-7, Bh22-8, Bh22-9, BH12, BH1. The groundwater samples were tested for the parameters of metals, VOV, PHC and PAH. The test results were compared against Table 3 standards of O. Reg 153 and no groundwater exceedances were identified. Testing results can be found in the Palmer Phase Two ESA report.

Groundwater quality was observed during drilling and sampling. No visual and olfactory evidence of contamination such as visible petroleum hydrocarbon film or sheen as well as smell and odor were identified.

It should be noted that Palmer Phase Two ESA identified a number of exceedances for soil samples including PHC, arsenic, cadmium, lead, SAR and EC.

6. Construction Dewatering Assessment

Dewatering for construction is conducted to fulfil three purposes: provide a dry working condition, help maintain ground stability and help maintain healthy and safe working environment. Based on the above characterization of site conditions, the recorded groundwater levels (ranging from 2.6 to 6.2 mbgs) are higher than the bottom floor of the underground parking (11 m below grade), and therefore construction dewatering must be assessed.

6.1 Excavation Dimension and Targeted Groundwater Level

Excavation dimension is determined by structure footprint and over-excavation. Assuming trench boxes or shoring system will be used for all excavation, the excavation walls will be vertical, and it is reasonable to add 1.0 m over-excavation to excavation walls to account for excavation precision and the space required by the shoring system. As introduced in Section 1, the part of the proposed development that involves excavation is the 3-levels of underground parking. Based on design drawings provided by the client, the bottom floor of the underground parking has a depth of 11.0 m. Plus 0.5 m floor thickness and 0.5 m of over-excavation, the excavation floor depth is assumed to be 12.0 m.

Targeted groundwater level to be lowered to is assumed to be one meter below the bottom of the excavation floor to account for capillary rise, and suction caused by vibration.

Grading plan is not available. For the purpose of dewatering estimation, it is reasonable to use the existing grades at the west end of the proposed building as the reference, which is about 119 masl. **Table 10** summarizes the excavation parameters and values used for the dewatering assessment.

Structure Underground Parking

Horizontal Dimension (m x m) 197 x 93

Building grade (masl) 119.0

Excavation Floor Depth (mbgs) 12.0

Excavation Floor Depth (masl) 107.0

Groundwater Level Target (masl) 106.0

Table 10. Excavation Parameters and Targeted Groundwater Level

6.2 Dewatering Rate Estimation

Dewatering rate (liters/day or L/day) is key parameter for implementing construction dewatering and impact assessment, and can cover three parts of water that have potential to flow or seep into an excavation trenches or pits, including (1) static groundwater seepage, (2) storage of groundwater that has to be depleted before groundwater flow attains a static state, and (3) storm water. Based on the form of the excavation pit, the excavation space will be treated as trench for estimating dewatering rate.

Static Groundwater Seepage and Influence Zone:

Based on the above delineation of excavation dimensions and stratigraphy, the excavation will penetrate all overburden units and extend into the shale bedrock. As the two penetrated hydrostratigraphic units have drastically different hydraulic properties, static groundwater seepage estimation was broken into the following two components:

- Upper Unit saturated fill unit and sand unit; and
- Lower Unit partially saturated till unit and bedrock unit.

The upper unit is in unconfined condition and the dewatering rate for the upper unit will be estimated with Dupuit-Thiem equation:

```
Q = K(H^2 - h_w^2) / [0.733 log (R / r_w)] + xK(H^2 - h^2)/L
```

The low unit is under confined condition and the dewatering rate for the lower unit will be estimated with Jacob's modified equition

```
Q = KB(H - h_w) / [0.733 log (R / r_w)] + 2xKB(H-h)/L
```

Q = pumping rate

K = hydraulic conductivity (m/s)

H = original water level (m) above lower aquitard

hw = targeted level (m) above the lower aquitard

R = influence radius (combined) (m)

r_w = well radius or equivalent radius (m)

B=thickness of confined aquifer (m)

x=length of trench (m)

L=line source distance (m) which is the greater of $R_0/2$ or 10 m

Radius of influence zone is calculated with Sichart and Kryieleis formula:

 $R_0 = C(H-h_w)K^{1/2}$ C = 3000 for wells $R = R_0 + r_w$

The calculations provided in the section are based on the assumption that the <u>shoring system allows free flow of groundwater into foundation pit (i.e., non-watertight).</u> It should be noted that partially saturated till unit and bedrock unit are treated as saturated units and bedrock is treated porous medium, which is out of convenience and is considered more conservative.

Storage of Groundwater:

The storage of groundwater was assessed based on porosity of excavated soil, the volume of excavated saturated soil plus the volume of saturated soil enclosed by drawdown cone and influence zone column as well as the potential of free gravity flow of groundwater in saturated zone. The saturated zones which have potential to release free gravity flow groundwater include the saturated sand fill and sand, which have a combined saturated thickness of 2.0 to 2.5 m. The storage for these two units will have to be considered. Based on the nature of construction, a depletion period of 60 days is assumed. Two types of storage are provided, including storage with rigid shoring and storage in natural state.

The underlying till unit is usually moist in natural water content. Given its low hydraulic conductivity, free gravity groundwater flow is not anticipated during excavation period. The bedrock including weathered and unweathered shale has limited storage as secondary porosity is the major space within bedrock to store and transmit groundwater. Therefore, groundwater storge depletion will not be considered for till unit and bedrock.

Stormwater:

Based on Palmer's experience, it is reasonable to use 25 mm/day rainfall intensity to estimate potential stormwater that may accumulate in the foundation pit. Based on the above climate records (**Table 3**) 25 mm/day rainfall intensity corresponds to one quarter of the extreme daily rainfall.

Dewatering Summary:

Table 11 presents the input parameter values and output values for dewatering quantity estimation. The maximal required pumping rate without watertight shoring or with a shoring system allowing free groundwater seepage into the foundation pit is estimated to be 2,862,385L/day.

Based on the classification of soil encountered in the boreholes and the expected limited extent to the high permeability fill soils off site, it is likely that the volume of groundwater storage and the steady state dewatering rate will be less than predicted. Not withstanding this, the client and their contactor should be prepared to manage the dewatering rates predicted in **Table 11**. If rigid shoring system is applied, the groundwater seepage may be significantly reduced. This is further discussed in Section 6.5 below.

Table 11. Dewatering Analysis Results

Parameters	Upper Unit (sand and sandy fill)	Lower Stage (bedrock)	Combined Dewatering Rates		
Horizontal Dimension (mxm)	197 x 93	197 x 93	-		
Excavation Depth (masl)	113.6	107	-		
Groundwater Level Target (masl)	113.6	106	-		
Groundwater Level (masl)	116.0	113.6	-		
K (m/s)	2.4x10 ⁻⁴	6.2x10 ⁻⁶	-		
H (m)	2.4	9.0	-		
h (m)	0	0	-		
В	-	5			
x (m)	197	197	-		
R_0 (m)	111	123	-		
Q _{static} (L/day)	751,131	267,154	1,018,285		
Q _{StaticFOS=1.5} (L/day)	1,126,697	400,731	1,527,428		
Q _{storage} (L/day)**	316,672	0	316,672		
Q _{Groundwater} (L/day) with FOS			1,844,100		
Qstormwater (L/day)	458,025				
Total Q (L/day)	2,302,125				

^{**} assumes 60 days to fully deplete the groundwater storage

6.3 Rigid Watertight Shoring System

Based on site subsurface conditions, high dewatering volumes, and the sensitivity of the building features surrounding the site, a rigid watertight shoring system, such as sheet pile wall or an interlocking caisson wall, should be considered for this project. Should the rigid watertight shoring system be adopted, the required temporary dewater rate will be the storage part of the above estimated dewatering rate, which is 316,672 L/day. As the dewatering rate is less than 400,000 L/day, PTTW application is not required, but it must be registered on the MECP EASR system.

Permanent groundwater seepage will also be avoided if the rigid watertight shoring system is incorporated into "bathtub" watertight foundation. A direct precipitation volume of 458,025 L/day should be accounted for in dewatering planning and discharge permit applications.

6.4 Location of Discharge and Dewatering Methods

MECP construction dewatering guides provided several options for discharging pumped water, including:

- Discharge to a sewage works that has the appropriate environmental compliance approval (ECA);
- Transfer to a waste management system that has the appropriate environmental compliance approval (ECA) or is registered under the non-hazardous waste transportation systems EASR;
- Discharge to a municipal sanitary sewer or storm sewer in accordance with any municipal requirements; and
- Discharge to surface land.

Based on the understanding of site conditions, the recommended discharge location is the storm sewers installed along John Street owned and operated by Peel Region. Treatment of dewatering discharge will be required to meet Peel Region Storm Sewer Discharge Standards.

Dewatering method should be selected based on site subsurface condition and shoring system to be employed. As discussed above, the upper overburden units including sand fill unit and sand unit are incohesive and show various relative densities. Cutting slope cannot sustain its form even being flattened due to incohesiveness of soil, internal erosion of groundwater seepage (piping) and vibration caused by train traffic. Based on the site condition, the following two combinations of shoring system and dewatering method may be considered:

- 1. Rigid shoring sump pump;
- 2. Non-rigid shoring pre-drainage though active dewatering methods; and
- 3. Rigid shoring on north edge along railway, non-rigid shoring along other sides pre-drainage though active dewatering methods on the east, west and south sides.

Rigid shoring system is referred to as sheet pile wall, secant pile wall or other continuous piles that are installed into one to three meters below bottom of foundation wall into dense soil or bedrock prior to the start of excavation. Soil movement retained with rigid shoring system is limited and groundwater seepage is mostly or totally blocked. The storage of groundwater within foundation pit can be dealt with sump pumps, but it may be more easily completed with active dewatering methods such as well points or eductors.

Non-rigid shoring is referred to as soldier pile system (H pile and lagging), tie-back walls and etc. Non-rigid shoring is usually installed in parallel with excavation. Certain amount of movement of retained soil is allowed, and groundwater seepage and associated basal heave may occur if groundwater level is not lowered in advance of excavation. For non-rigid shoring, pre-drainage is recommended through active dewatering methods, which may include well-points, eductors or multiple deep wells. Sump pumps at the base of the excavation may also be required.

The third combination incorporates rigid shoring on north edge along railway to reduce the risk of settlement and deformation of railway foundation soil and non-rigid shoring along other sides of the foundation pit to reduce cost. Under this scenario, pre-drainage is still recommended on the east, west and south sides of the excavation through active dewatering methods, which may include well-points, eductors or multiple deep wells. Sump pumps at the base of the excavation may also be required.

A specialist dewatering contractor is recommended to be retained to confirm dewatering methods.

6.5 PTTW, EASR and Municipal Permits

Water taking in Ontario is governed with Section 34 of Ontario Water Resources Act and its Regulation 387/04. The act and regulation require that no person shall take more than 50,000 litres of water on any day by any means except in accordance with a permit.

Construction dewatering is governed with Part II. 2 of Environmental Protection Act and its Regulation 63/16. Based on the act and regulation, construction dewatering with rates between 50,000 and 400,000 L/day can go through Environmental Activity and Sector Registry (EASR) and do not have to apply for a PTTW if the impact to natural resource and environment is not significant and no sensitive features are involved. As provided in the regulation, this water taking limit is specific to the taking of groundwater and does not include storm water contribution.

Based on the above assessment and understanding of the water taking legislations, if non-watertight shoring methods are used (i.e., pile and lagging) construction dewatering for this project is expected to be above 400,000 L/day, and therefore applying for a PTTW is required. If watertight shoring methods are implemented and properly sealed into a confining unit, the construction dewatering rate is expected to be less than 400,000 L/day requiring a registration on the MECP EASR sytem.

As mentioned above, the pumped water is recommended to be discharged into storm sewers installed along road curbs. The storm sewers are owned and operated by Peel Region as part of its stormwater management system. A discharge permit from Peel Region will be required.

7. Permanent Groundwater Seepage

Based on the groundwater levels data collected up to date, groundwater levels are invariably higher than the finished floor elevation. There is potential that groundwater will migrate into basement causing either basement flooding or wet condition.

7.1 Permanent Groundwater Seepage Rate Estimation

Groundwater that seeps into underground space comes from the static groundwater seepage flow, and the seepage rate is estimated based on the same principle as the above construction dewatering assessment. The following table lists the results of estimation for permanent groundwater seepage rate assuming that groundwater seeps into underground space freely (i.e., non-watertight foundations). As this volume of passive drainage exceeds 50,000 L/day, a long-term PTTW with the MECP would be required.

Table 12. Permanent Groundwater Seepage Rate

Structure	Upper Stage	Lower Stage	Combined
Horizontal Dimension (mxm)	197 x 93	197 x 93	
Floor Depth (masl)	113.6	108	-
Groundwater Level Target (masl)	113.6	107	-
Groundwater Level (masl)	116.0	113.6	-
K (m/s)	1.0x10 ⁻⁴	9.6x10 ⁻⁷	-
H (m)	2.4	6.6	-
h (m)	0	0	-
x (m)	197	197	-
Q _{static} (L/day)	453,325	46,878	500,203
Q _{StaticFOS=1.5} (L/day)	679,988	70,317	750,305

7.2 Treatment of Permanent Groundwater Seepage

There are three methods to treat the permanent groundwater seepage: passive dewatering, positive dewatering and water-tight foundation design.

<u>Passive dewatering</u> can be employed where the storm sewers lower than basement floor exists close to the property. The groundwater supposed to seep into basement can be directed to the nearby storm sewer through foundation drainage and subfloor drainage system.

<u>Positive dewatering</u> is basically a sump pump system. The groundwater seepage is collected through foundation drainage and subfloor drainage system into a sump pit within or outside the basement, and the collected water is pumped to storm or sanitary sewers.

<u>Bathtub Water-tight foundation</u> is a type of raft foundation constructed with water proofing material and structures. Construction cost is high due to complicated construction procedure and expensive materials which are required to ensure permanent water proofing.

Based on the above analysis, the permanent ground seepage is approximately 15 milliliter/s per meter of foundation drainage. Well-designed foundation floor drainage and foundation wall drainage should be enough to deal with the groundwater seepage if the drainage system can be linked to storm sewer lower than the basement floor. If storm sewers near the site is higher than the basement floor, sump pump system or <u>water-tight foundation</u> will have to be considered.

As aforementioned, the permanent groundwater seepage issue can be avoided if "bathtub" watertight foundation is adopted.

8. Impact Assessment and Mitigation

The construction and operation of the proposed development both have the potential to cause quantity and quality impact of groundwater to natural heritage, municipal water sources, private water supply and discharge receiver. The following presents the assessment of impact to each major resource and environmental features and ways of mitigation if the impact is negative.

8.1 Natural Heritage Features

As presented in Section 4.1, the site is not located natural heritage system, and the major natural heritage feature identified is Cooksville Creek approximately 160 m to the east boundary of the property. The influence zone is 234 m if groundwater is allowed to flow into excavation pit freely. Based on Lake Ontario Integrated Shoreline Strategy Characterization Report (CVC, 2018), Cooksville does not receive significant amount of baseflow. Therefore, temporary construction dewatering will not have negative effect to the flow regime of Cooksville Creek.

If rigid or semi-rigid shoring systems are adopted, the required dewatering rate will be drastically reduced, and the influence zone will be negligible. No impacts to Cooksville Creek are expected.

8.2 Source Water Protection

As presented in Section 4.2, the east corner of the site is above a Highly Vulnerable Aquifer (HVA) with score of 6.0. An Intake Protection Zone (IPZ-2 with score of 2.5) is located about 400 m to the south of the site. Water quantity and quality impact of construction dewatering to the municipal water sources is not anticipated. However, other construction and operation activities have potentials to release contaminants into environment, which may migrate to HVA through infiltration and pathways. These potentials will be mitigated through spill management plan, salt management plan and other best management practices (BMPs) implemented by contractors and the property owner.

8.3 Private Water Wells

As presented above, the water supply for the residential area surrounding the site was provided through South Peel Drinking Water System owned and operated by Peel Region, which is a lake-based water supply system. As shown in the results of MECP well record inventory (Appendix F), only three wells have to the potential of still being used for water supply. However, they were completed before 1970s and far away from the dewatering influence zone. Consequently, impact of dewatering to private wells are not expected.

8.4 Discharge Receiver

As presented above, the pumped water for the purpose of conduction dewatering is recommended to be discharged into storm sewers along John Street. The potential impact of discharged water to the storm sewers includes quantity impact (flooding) and quality impact. Quantity impact will be addressed by scheduling excavation and dewatering activities during dry weather or dry seasons if the pumped water plus storm precipitation exceeds conveying capacity of the storm sewers.

As presented above, groundwater sampling program identified several exceedances over Limits for Storm Sewer Discharge in By-law 53-2010 of Peel Region. These exceedances may be associated with high turbidity of raw groundwater and can often be eliminated through filtering and settling. Therefore, quality impact of discharged groundwater to storm system will be insignificant if the pumped groundwater is treated through settling and filtering. Additional groundwater sampling is required prior to finalizing a discharge permit application or treatment system design.

8.5 Foundation Soils

Dewatering and decreased groundwater levels will reduce the pore pressure and increase effective stress between soil particles. Given that the upper overburden soils are unconsolidated sand and fill soils the increase effective stress between soil particles has the potential to cause settlement of foundation soils. Building features within or close to the influence zone include railway to the north, warehouse to the west, residential house to the east, asphalt pavement and storm and sanitary sewers systems to the south of the site. Construction dewatering will put these building features under risk. These building features have different degrees of sensitivity to settlement. For the purpose of controlling soil settlement, rigid shoring system as discussed above is recommended for whole foundation pit, or at least the north excavation wall should be braced with rigid shoring as the railway is the most sensitive to soil settlement.

A comprehensive settlement monitoring program should be implemented by the client or the contractors. A specialist geotechnical firm should be retained to make the settlement monitoring plan and to execute field monitoring. It should be noted that monitoring is the last and final guarantee to ensure and confirm the effectiveness of all preventive measures.

9. Summary of Findings and Recommendations

Based on record review and field investigations, the major findings of the hydrogeological assessment is summarized as follows:

- Surficial geology surrounding the site was mapped by Ontario Geological Survey (OGS) as coarsetextured glaciolacustrine deposits of sand, gravel, minor silt and clay deposited in a littoral environment associated with ancient glacial lake, Glacial Lake Iroquois;
- Four hydrostratigraphic units were identified within the site including shallow fill, fill sand, clayey till and shale. The excavation will extend into shale bedrock:
- The measured groundwater levels range from 2.7 to 6.2 mbgs or 115.2 to 113.0 masl. No apparent fluctuation was identified based monitoring data collected up to date;

- Hydraulic conductivity estimated from slug tests for screened units ranges from 5.6x10⁻⁶ to 2.4x10⁻⁴ m/s for overburden units and ranges from 3.7x10⁻⁸ to 6.7x10⁻⁶ m/s for bedrock units. The 90th percentile values were used to estimate construction dewatering rates and the geometric mean values were used to estimate permanent groundwater seepage;
- Infiltration rate were derived from hydraulic conductivity through empirically equation, and ranges from 12 to 33 cm/min. The infiltration rate will inform design of infiltration facilities on site;
- Groundwater chemical testing for the parameters of Peel Region sewer use by-law did not identify any exceedances;
- If the shoring system allows groundwater to flow freely into foundation pit (i.e., non-watertight), the
 proposed development is expected to require temporary dewatering of up to a maximum of
 1,844,100 L/day to maintain safe working conditions and stable cutting slopes. A typical daily rate
 under steady state conditions is estimated to be 1,018,285 L/day. As the maximum estimated
 dewatering rate is over 400,000 L/day, a Category 3 PTTW application with the MECP is required;
- If a rigid watertight shoring system is used and installed sufficiently into the competent bedrock, the proposed development is estimated to still require temporary dewatering of approximately 316,672 L/day to unwater the volume of water within the excavation. As this dewatering rate is less than 400,000 L/day it may be completed under an EASR registration with the MECP. It would also only be needed for approximately 60 days or until the volume of porewater is removed;
- An additional 458,025 L/day of water should be accounted for in dewatering planning assuming direct precipitation from a 25 mm storm event;
- A discharge permit may be required by Peel Region and/or the City of Mississauga;
- No impacts to groundwater quantity to neighboring groundwater users, the municipal water supply system, natural heritage system or storm sewers are not anticipated from the proposed development, if mitigation measures are implemented as recommended; and
- No impacts to groundwater quality are expected should appropriate mitigation measures and best management practices are implemented as recommended.

The above hydrogeological assessment and conclusions are based on the assumptions that the client and the contractors will undertake the execution and construction of the project following all applicable codes, regulations, guidelines and BPMs, and these assumptions will end up being realized through actual construction activities. Considering the large dewatering quantity anticipated and ambient conditions of the proposed development, a water taking plan, discharge plan and monitoring plan may be required by agencies to ensure compliance of construction activities with all applicable codes, regulations, guidelines and BPMs.

This hydrogeological report should be considered preliminary until the final project design can assessed. Groundwater systems and other natural system are highly complex and can have significant uncertainties between borehole locations. Additional hydrogeological testing is expected to be required as the project moves towards a Site Plan Application (SPA).

In addition, to help address unexpected occurrences during construction, the following steps are recommended:

 The client should have enough pumping capacity in place to deal with unexpected seasonal perched groundwater and stormwater accumulation. The climate data was presented in the report for the reference of the client;

- The client should have hydrogeologists to conduct hydrogeological inspection as needed during excavation to confirm groundwater conditions and witness dewatering process; and
- While hiring excavation contractors, the client should ensure that the excavators have enough experiences and capacity in dewatering.

10. Signatures

This report was prepared, reviewed and approved by the undersigned:

Prepared By:		
	Lauren Bourke, M.Env.Sc.	
	Environmental Scientist	
Prepared By:		
	Frank C. Liu, P.Eng.	
	Senior Hydrogeologist	
Reviewed By:		
	Jason Cole, M.Sc., P.Geo.	
	VP Principal Hydrogeologist	

Limitations of Report

The extent of this study was limited to the specific scope of work for which we were retained and that is described in this report. Palmer has assumed that the information provided by the client or any secondary sources of information are factual and accurate. Palmer accepts no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or negligent acts from relied upon data. Judgment has been used by Palmer in the interpretation of the information provided but subsurface physical and chemical characteristics may differ from regional scale geology mapping and vary between or beyond well/borehole locations given the inherent variability in geological conditions.

Palmer is not a guarantor of the geological or groundwater conditions at the subject site, but warrants only that its work was undertaken and its report prepared in a manner consistent with the level of skill and diligence normally exercised by competent geoscience professionals practicing in the Province of Ontario. Our findings, conclusions and recommendations should be evaluated in light of the limited scope of our work.

The information and opinions expressed in the Report are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT PALMER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS PALMER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belongs to Palmer. Any use which a third party makes of the Report is the sole responsibility of such third party. Palmer accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Palmer's express written permission. Should the project design change following issuance of the Report, Palmer must be provided the opportunity to review and revise the Report in light of such alteration or variation.

References

Bedrock Geology, OGSEarth, Ministry of Energy, Northern Development and Mines, August 2019 https://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth

Canadian Climate Normals 1981-2010 Station Data, Environmental and Climate Change Canada. Geotechnical Boreholes, OGSEarth, Ministry of Energy, Northern Development and Mines, August 2019 https://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth

Chapman, L.J. and Putnam, D.F.

The Physiography of Southern Ontario, 1984, Ontario Geological Survey.

Credit Valley Conservation Authority, 2018.

Lake Ontario Integrated Shoreline Strategy Characterization Report.

Geology of Ontario, Special Volume 4, Part 2, Ontario Geological Survey, 1992.

Intensity-Duration-Frequency (IDF) curves, Ontario Ministry of Transportation (MTO).

MECP. MAP Well Records of Ontario.

MECP. Ontario Source Protection Atlas.

MECP. Provincial Groundwater Monitoring Network.

Ontario Digital Terrain Model Ministry of Natural Resources and Forestry.

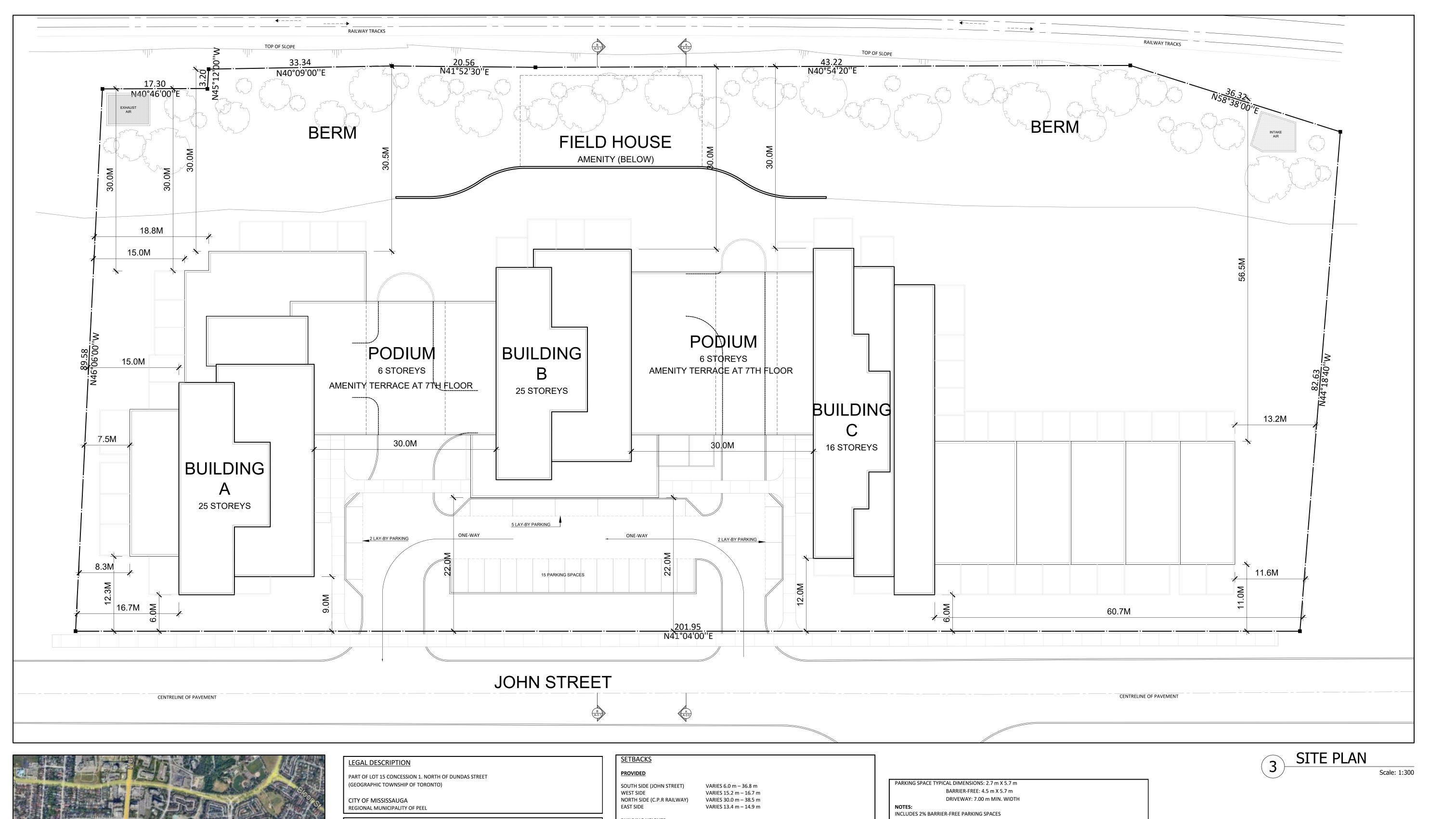
MNDM. Ontario Geology Survey, Central Database.

Surficial Geology, OGSEarth, Ministry of Energy, Northern Development and Mines, August 2019 https://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth

Water Well Information System (WWIS) of Ontario.

Appendix A

Site Plan


Tregebov Cogan Architect, 2022



69 & 117 JOHN STREET, MISSISSAUGA, ON

PROPOSED DEVELOPMENT PLANS

PRINT DATE :DECEMBER 19, 2022

SITE DATA LOT AREA 18,690 sq.m (1.87 hectare) BUILDING AREA (GROUND FLOOR) 4,740 sq.m 25% of LOT AREA **GROSS FLOOR AREA** 73,900 sq.m FLOOR SPACE INDEX (F.S.I) FLOOR AREAS AND SUITES TOTAL UNITS 14,300 73,900 NO COMMERCIAL USES ARE PROPOSED FLOOR AREAS REFLECT 750 sq.m FLOOR PLATES FOR TOWERS FLOOR AREAS DO NOT EXCLUDE CIRCULATION SPACE MIN. SUITE AREA 50 sq.m AVERAGE AREA/SUITE (net) 65 sq.m UNITS PER HECTARE (U.P.H) 590

15%

2,805 m

LAND USE AT GRADE PAVED AREA PROVIDED

SOUTH SIDE (JOHN STREET) VARIES 6.0 m – 36.8 m
WEST SIDE VARIES 15.2 m – 16.7 m
NORTH SIDE (C.P.R RAILWAY) VARIES 30.0 m – 38.5 m
EAST SIDE VARIES 13.4 m – 14.9 m

BUILDING HEIGHTS

TOWER 1 HEIGHT TO TOP OF FLAT ROOF 80 m
(TAKEN FROM ESTABLISHED GRADE LINE)

TOWER 2 HEIGHT TO TOP OF FLAT ROOF 80 m
(TAKEN FROM ESTABLISHED GRADE LINE)

TOWER 3 HEIGHT TO TOP OF FLAT ROOF 53 m
(TAKEN FROM ESTABLISHED GRADE LINE)

1 BEDROOM 572 0.8 457 2 BEDROOM 462 0.8 370
3 BEDROOM 111 0.8 89
OTAL RESIDENTIAL PARKING 916
VISITOR PARKING 1,145 0.15 172
OTAL PARKING REQUIRED 1,088

BARRIER-FREE: 4.5 m X 5.7 m
DRIVEWAY: 7.00 m MIN. WIDTH

NOTES:
INCLUDES 2% BARRIER-FREE PARKING SPACES
SURFACE LEVEL PARKING ARE SHORT-TERM VISITOR PARKING SPACES
PARKING RATIOS ARE BASED ON NEW REQUIREMENTS OF MISSISSAUGA CITY COUNCIL

BICYCLE PARKING PROVIDED

SURFACE LEVEL 40 SPACES
BASEMENT LEVELS 1,000 SPACES
TOTAL ON SITE 1,040 SPACES

PROVIDED SHARED OUTDOOR AMENITY (AT FLOOR 7)	1,380 sq.m	
INDOOR AMENITY (TOTAL OF FLOORS 1 AND 7)	1,250 sq.m	
INDOOR AMENITY (BERM FIELD HOUSE) TOTAL	450 sq.m 8,830 sq.m	
INDOOR AMENITY (BERM FIELD HOUSE)	450 sq.m	

SURFACE LEVEL SPOTS ARE SHORT-TERM VISITOR SPACES

PROJECT NAME:

CONSULTANTS:

69 & 117 JOHN ST. MISSISSAUGA

2022-12-19 02 FOR REVIEW

ARCHITECT:

OWNER:

DATE No. ISSUE

2022-04-22 01 PRELIMINARY COORDINATIO

TREGEBOV COGAN ARCHITECT

40 Saint Clair Avenue East, Suite 303 Toronto, ON M4T 1M9 PHONE: 647.352.3350

DRAWING TITLE:

SITE STATISTICS, CONTEXT PLAN AND SITE PLAN

PRINT DATE: 19-DEC-2022

NORTH
PROJ. No.:
1101
SCALE:
AS NOTED
DRAWN BY:

DEV APPLICATION NO:

DWG NO.

AJT

1 STATISTICS

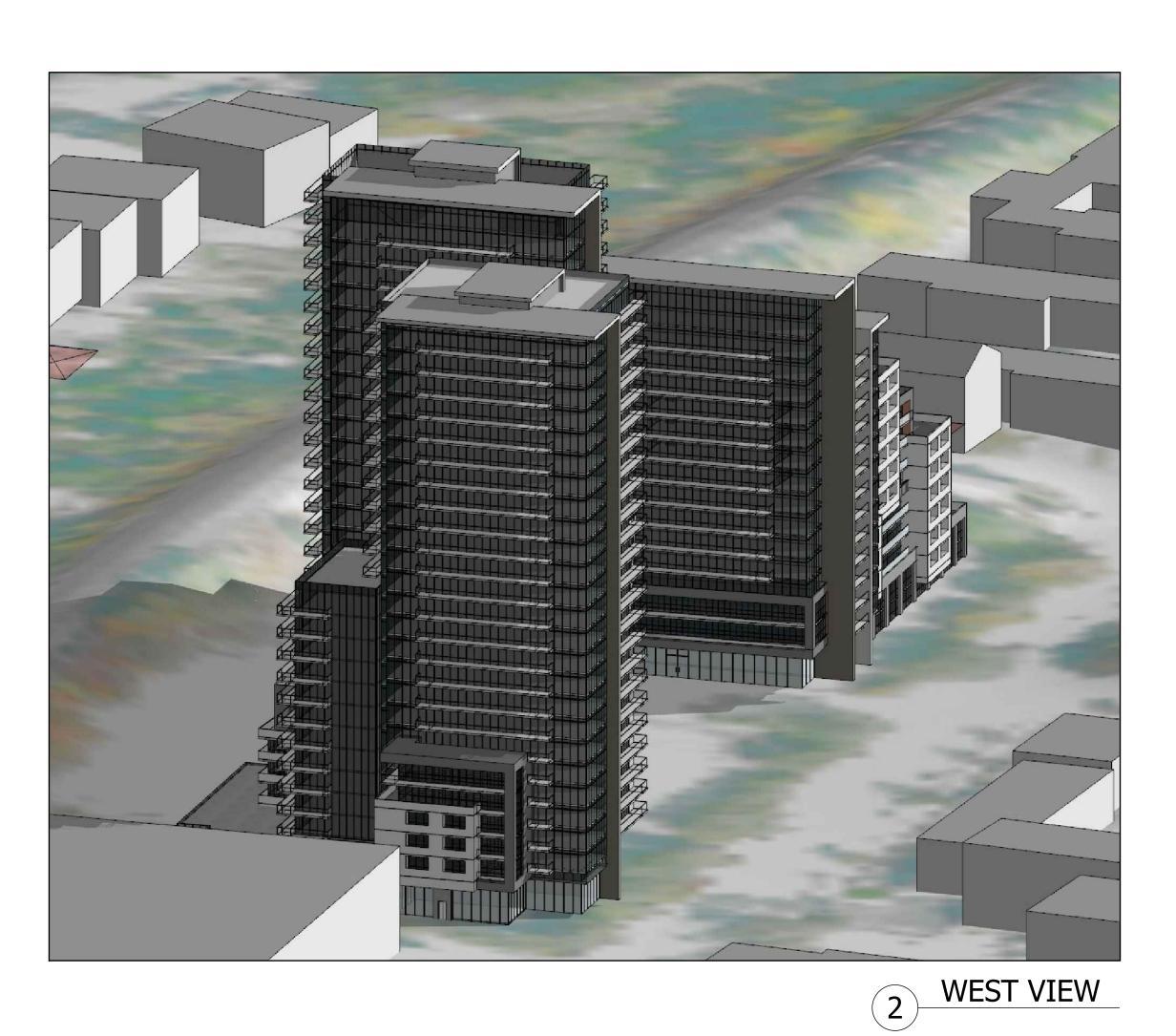
5,750 sq.m

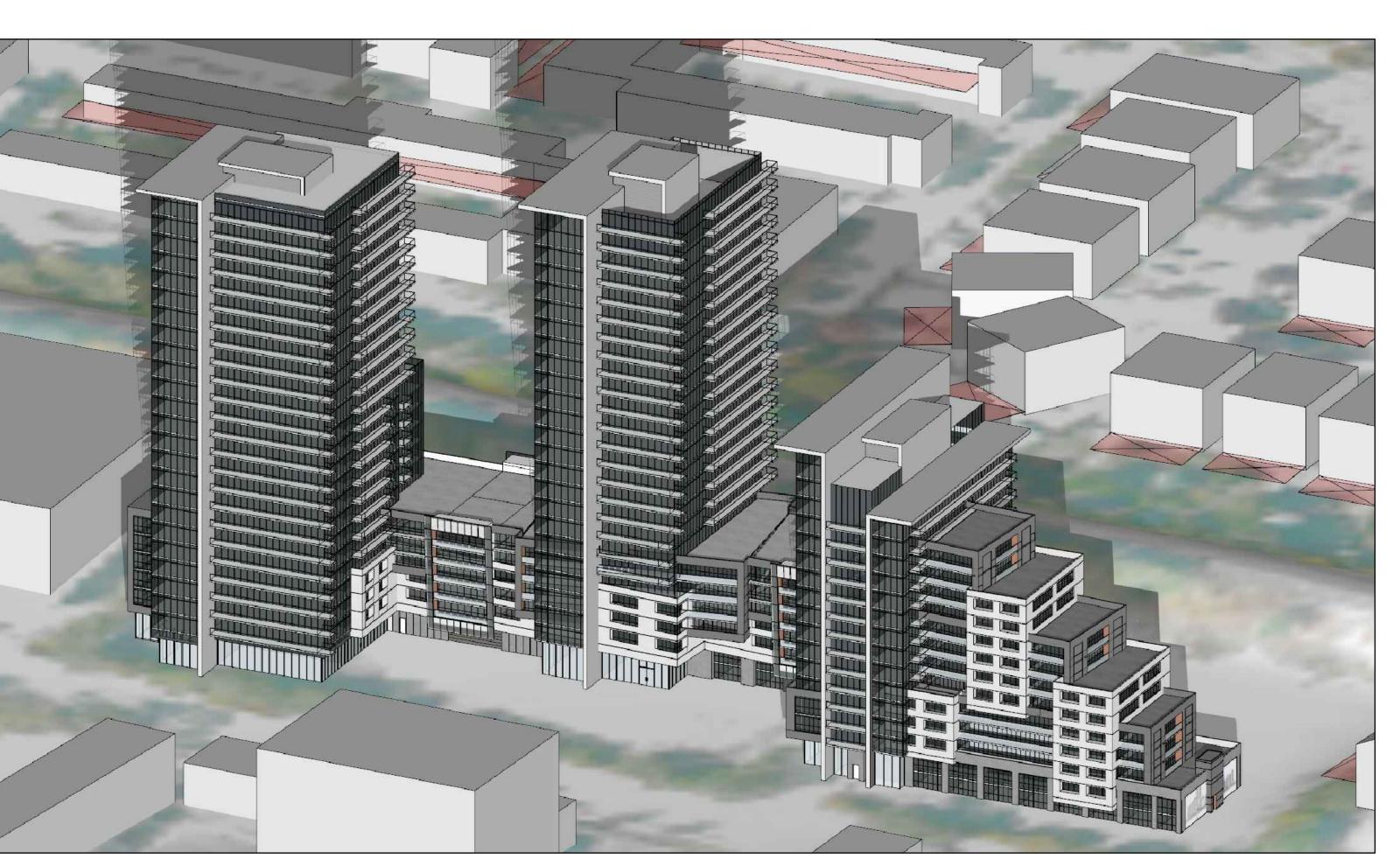
1,250 sq.m

7,000 sq.m


OUTDOOR REAR YARD AMENITY SPACE EXCLUDES PRIVATE PATIOS AND RAILWAY BERM AREAS

LANDSCAPE AREAS


LANDSCAPE AREA (ON GRADE)

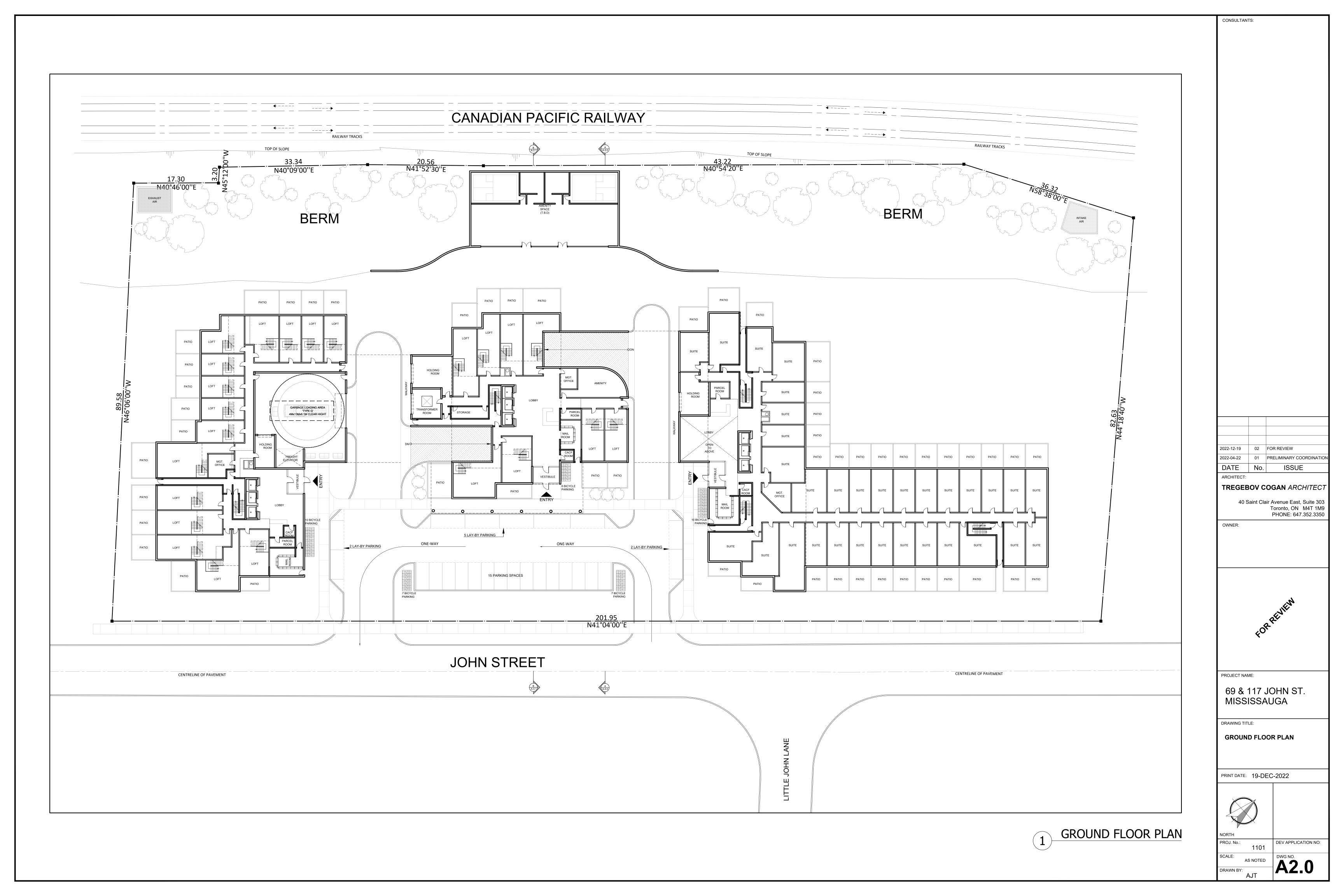

OUTDOOR AMENITY (AT FLOOR 7)

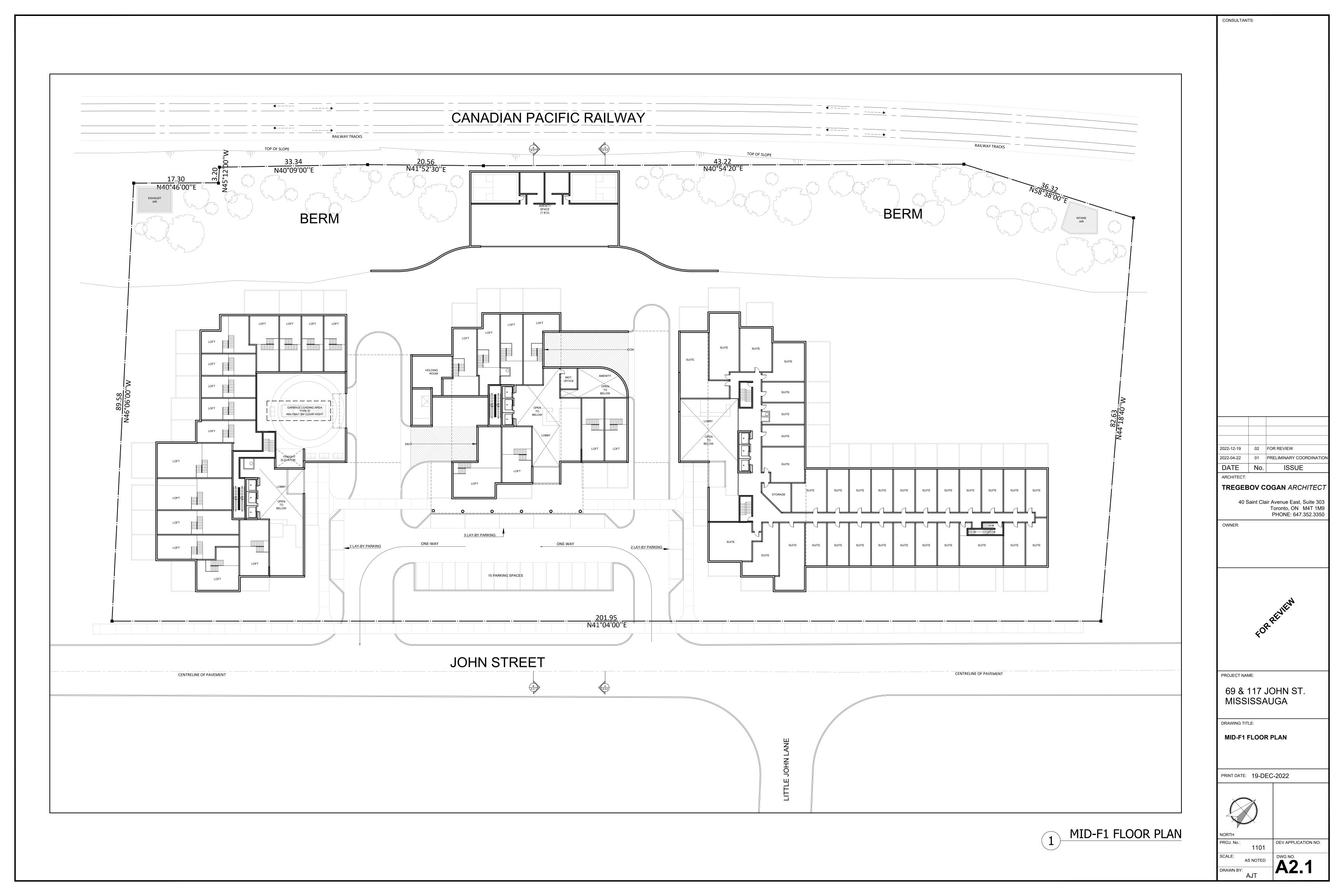
3 NORTH VIEW

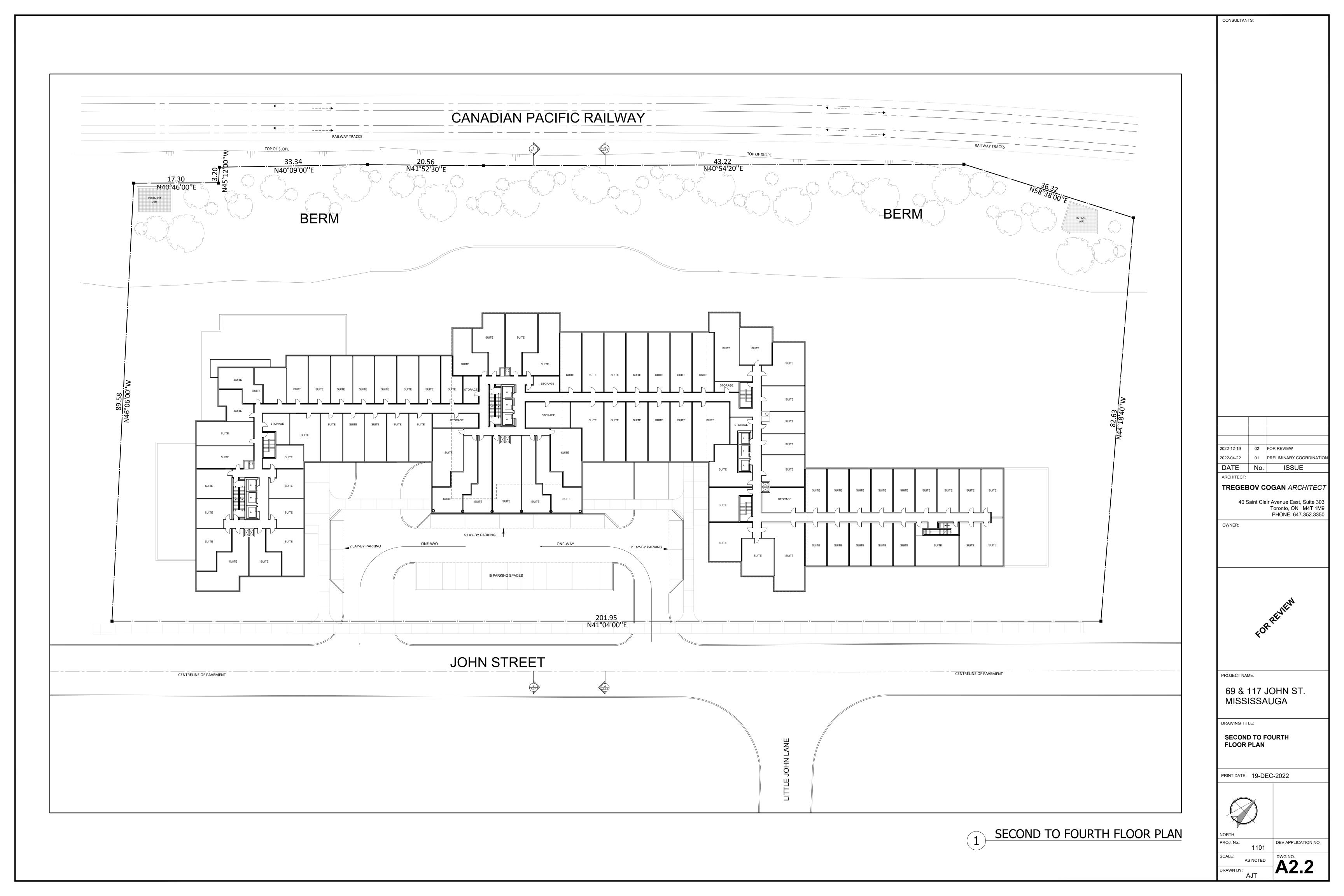
DATE No. ISSUE

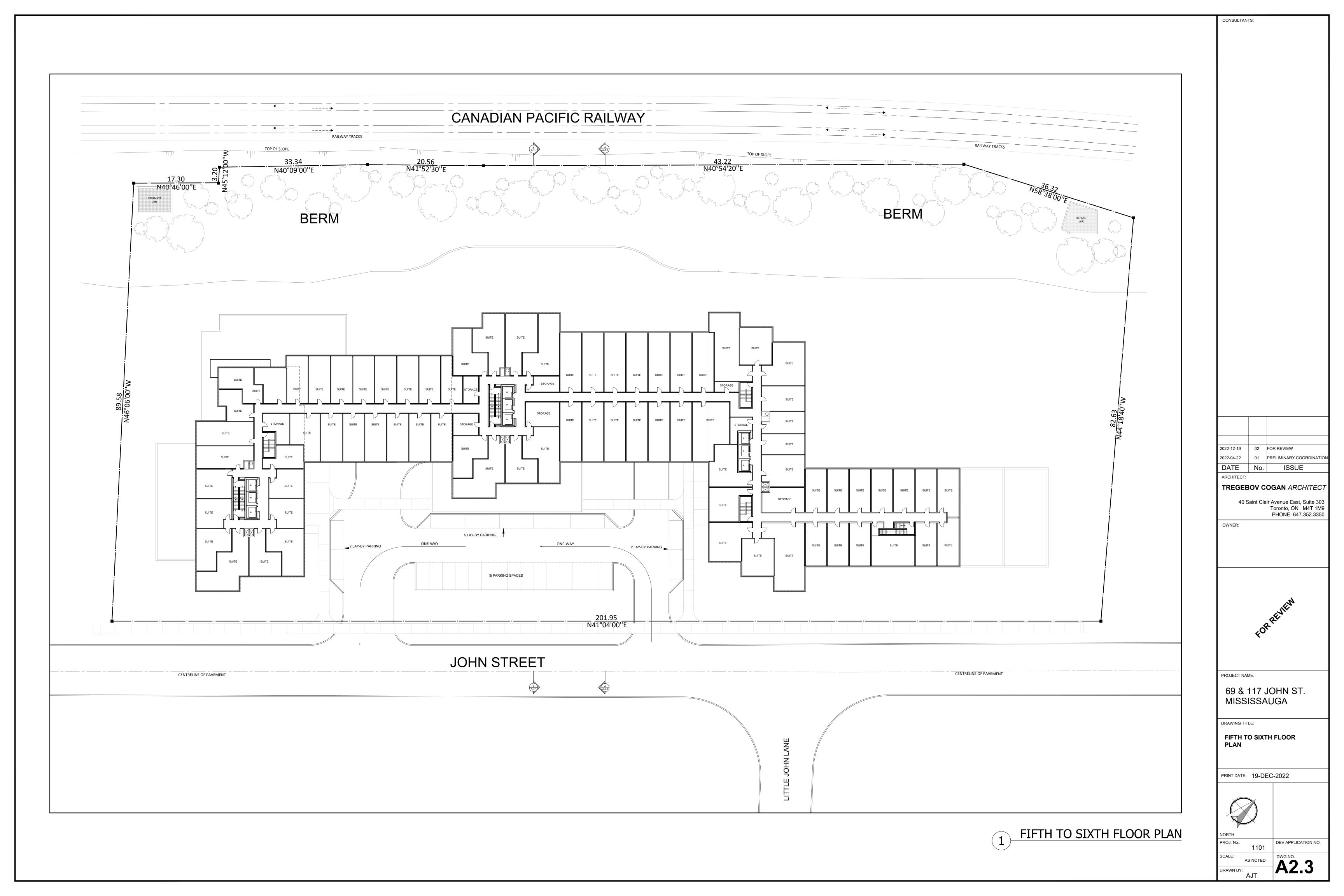
ARCHITECT: TREGEBOV COGAN ARCHITECT 40 Saint Clair Avenue East, Suite 303 Toronto, ON M4T 1M9 PHONE: 647.352.3350

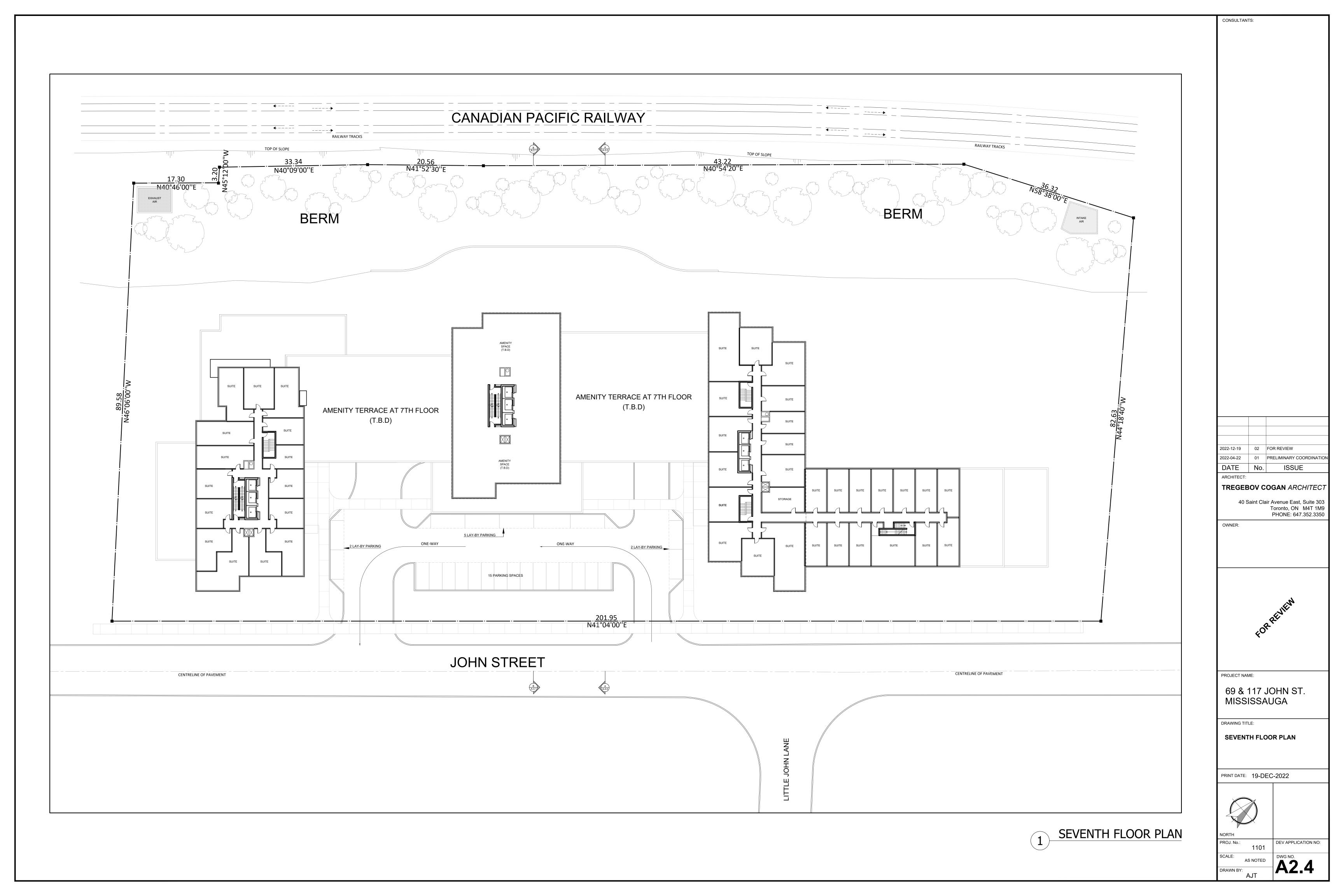
PROJECT NAME:

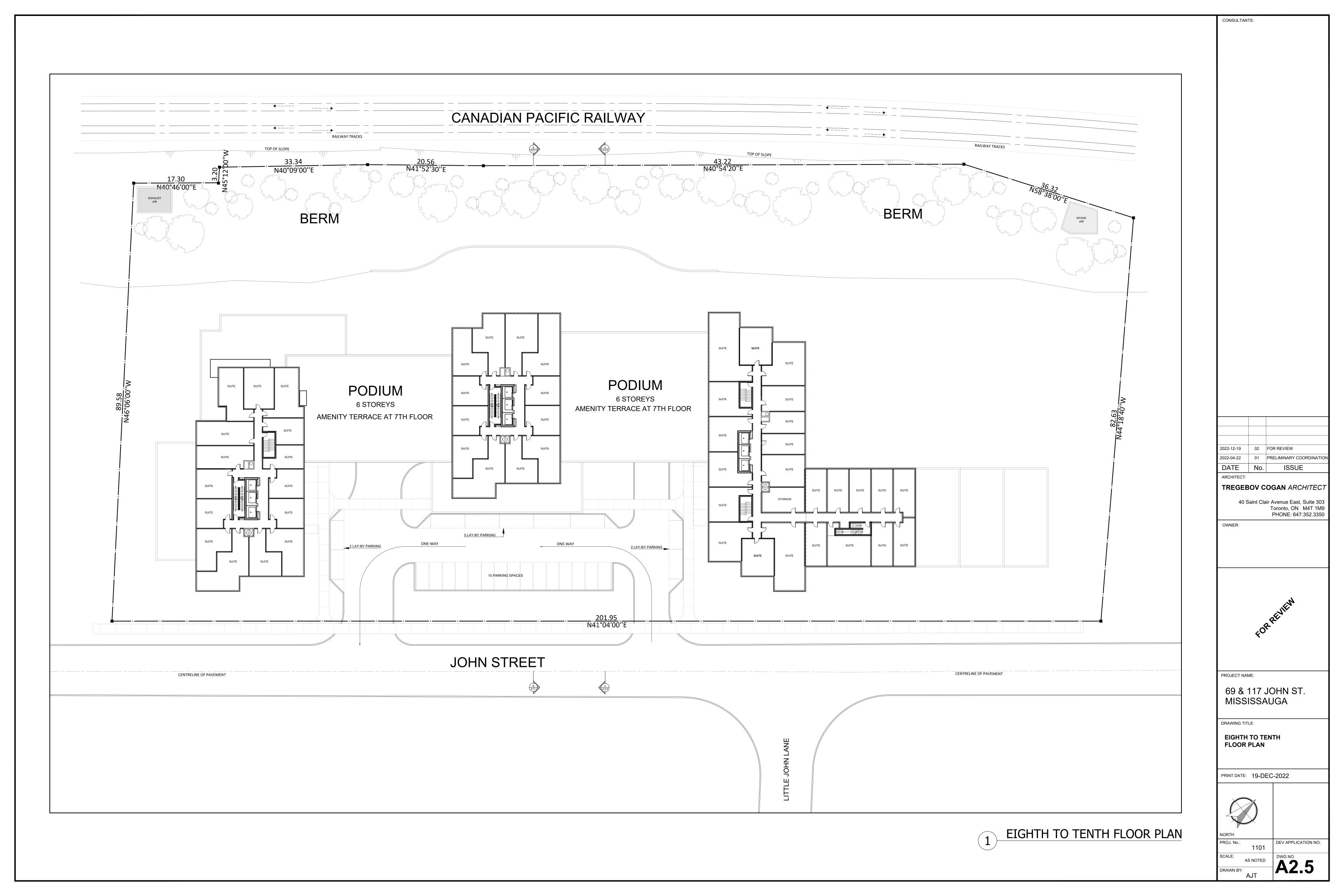

69 & 117 JOHN ST. MISSISSAUGA

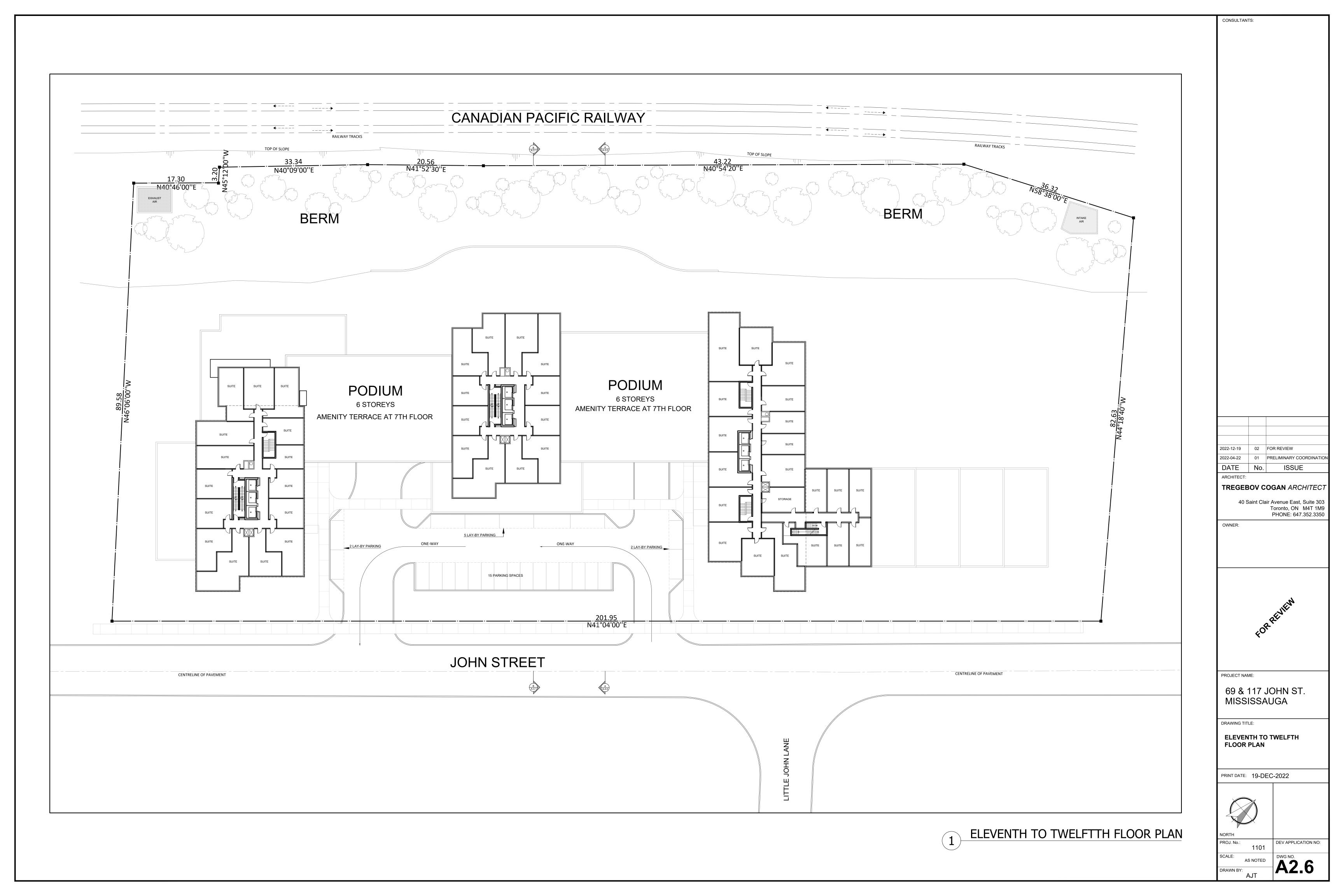

BUILDING MASSING VIEWS

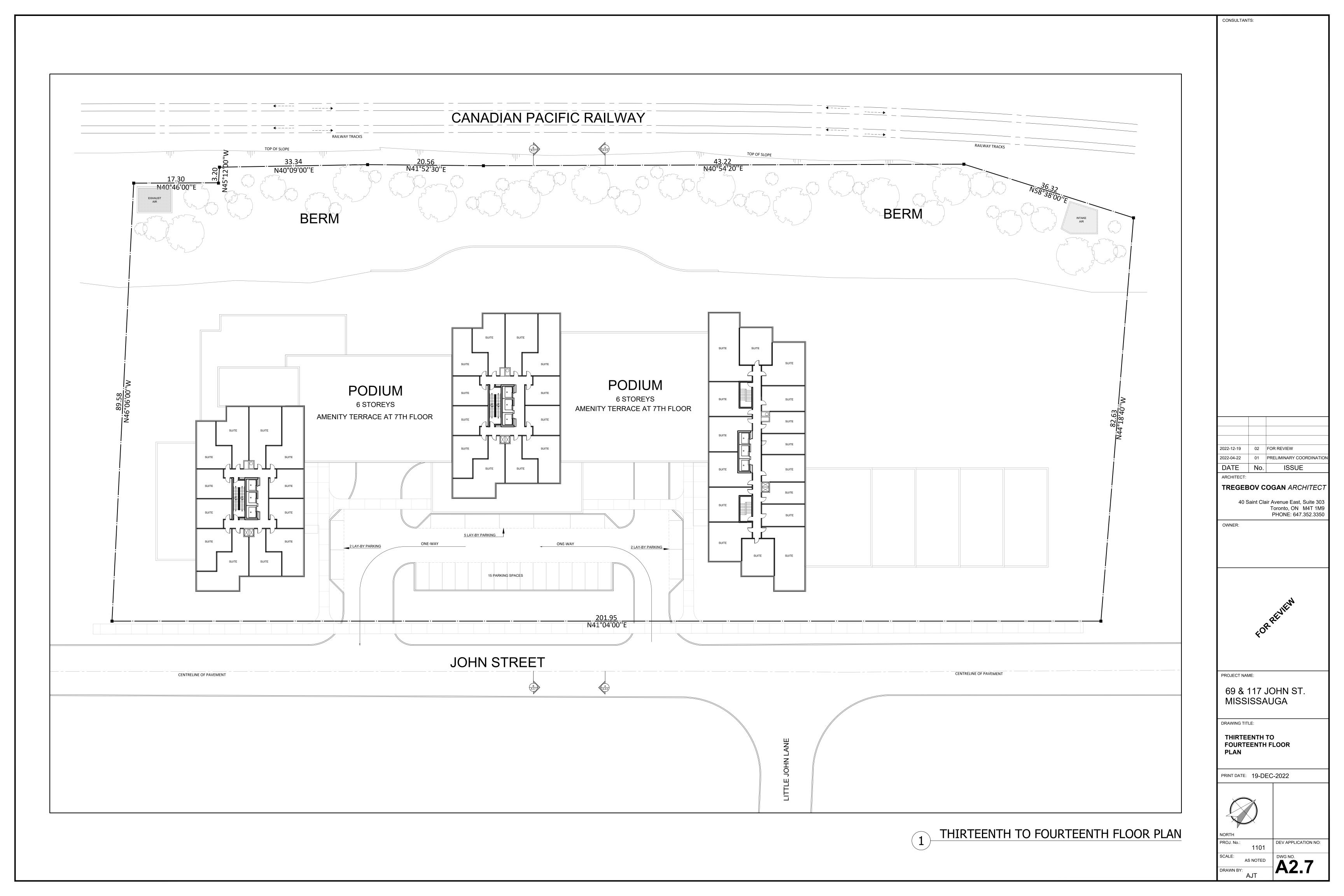

PRINT DATE: 19-DEC-2022

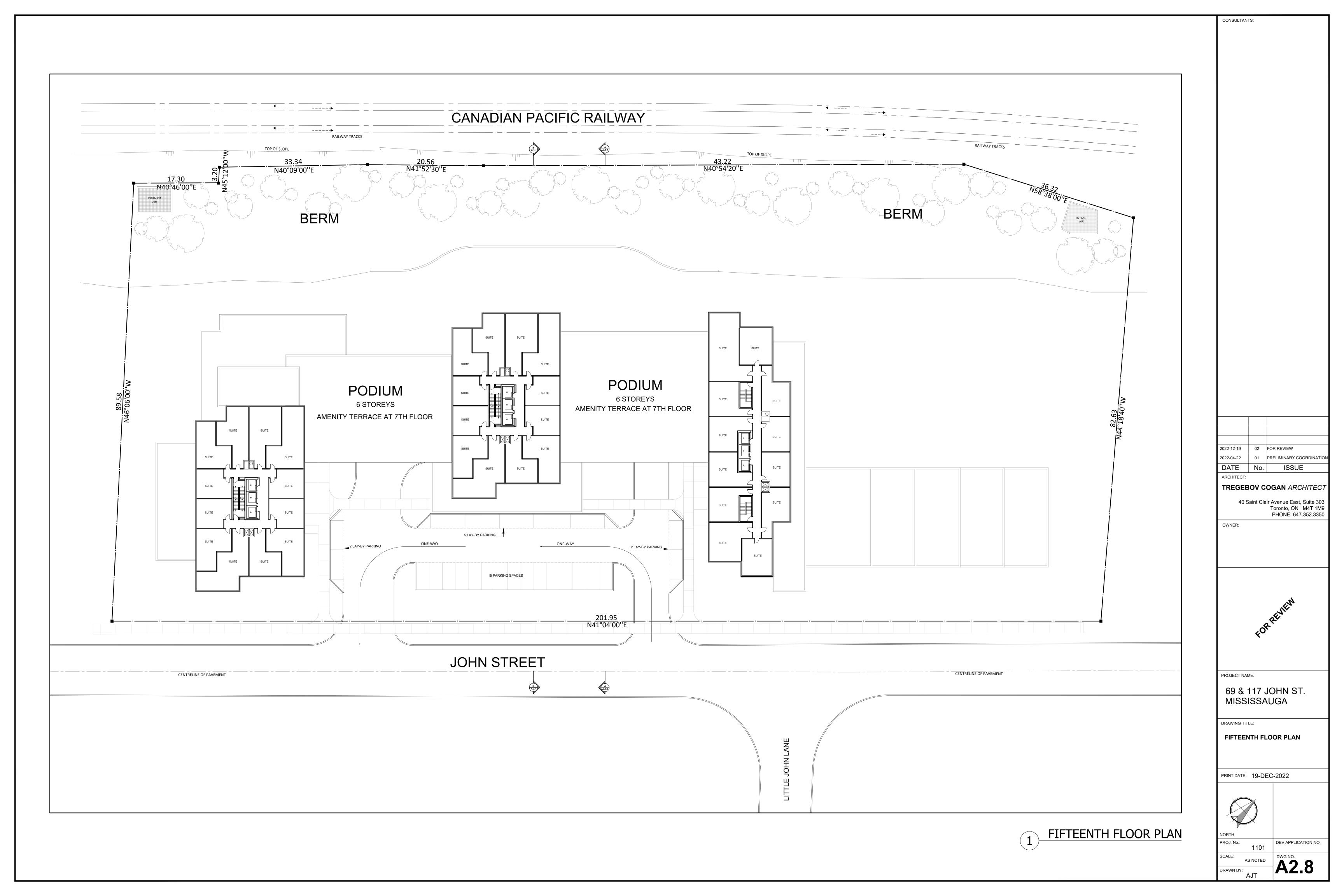

DEV APPLICATION NO: 1101

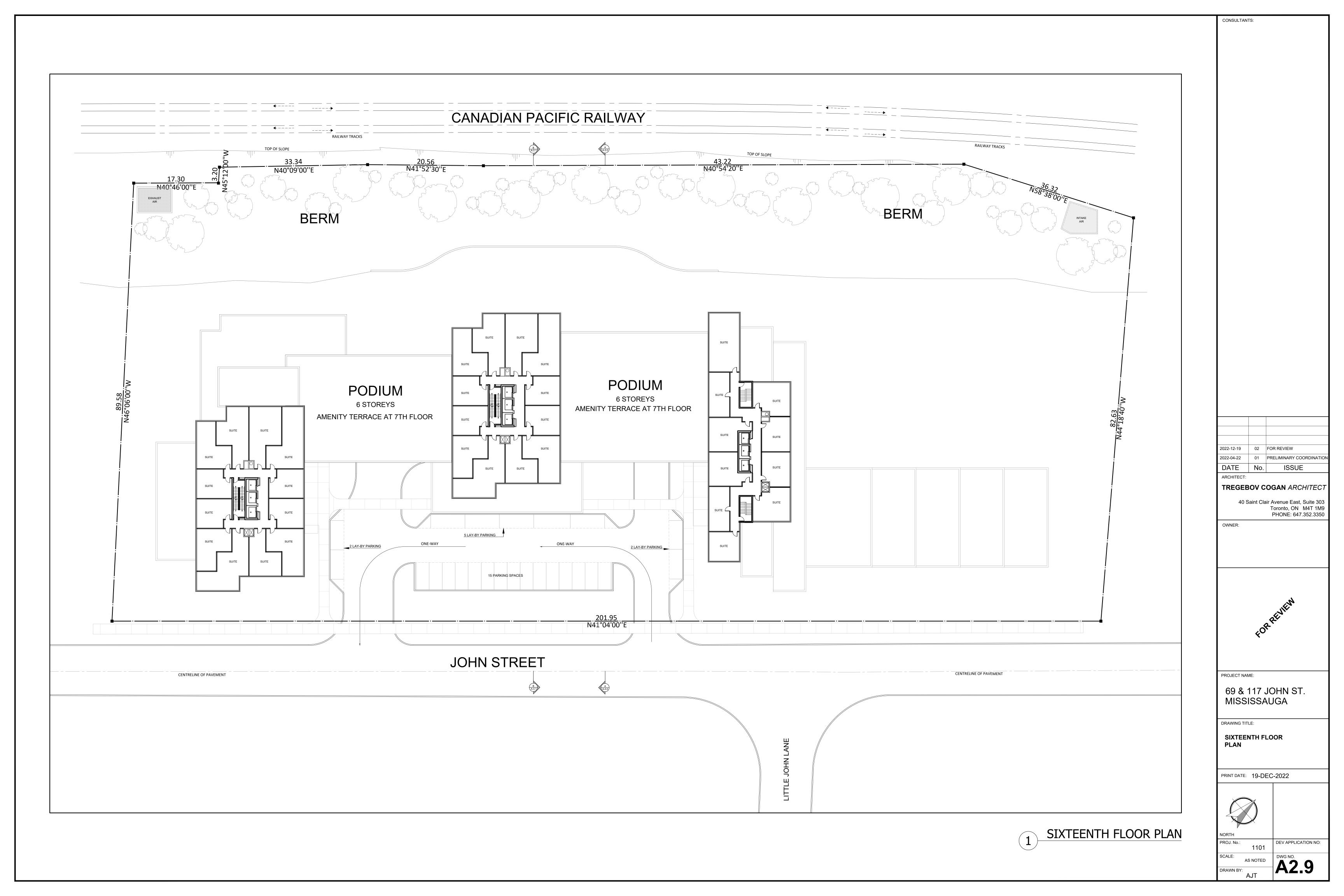


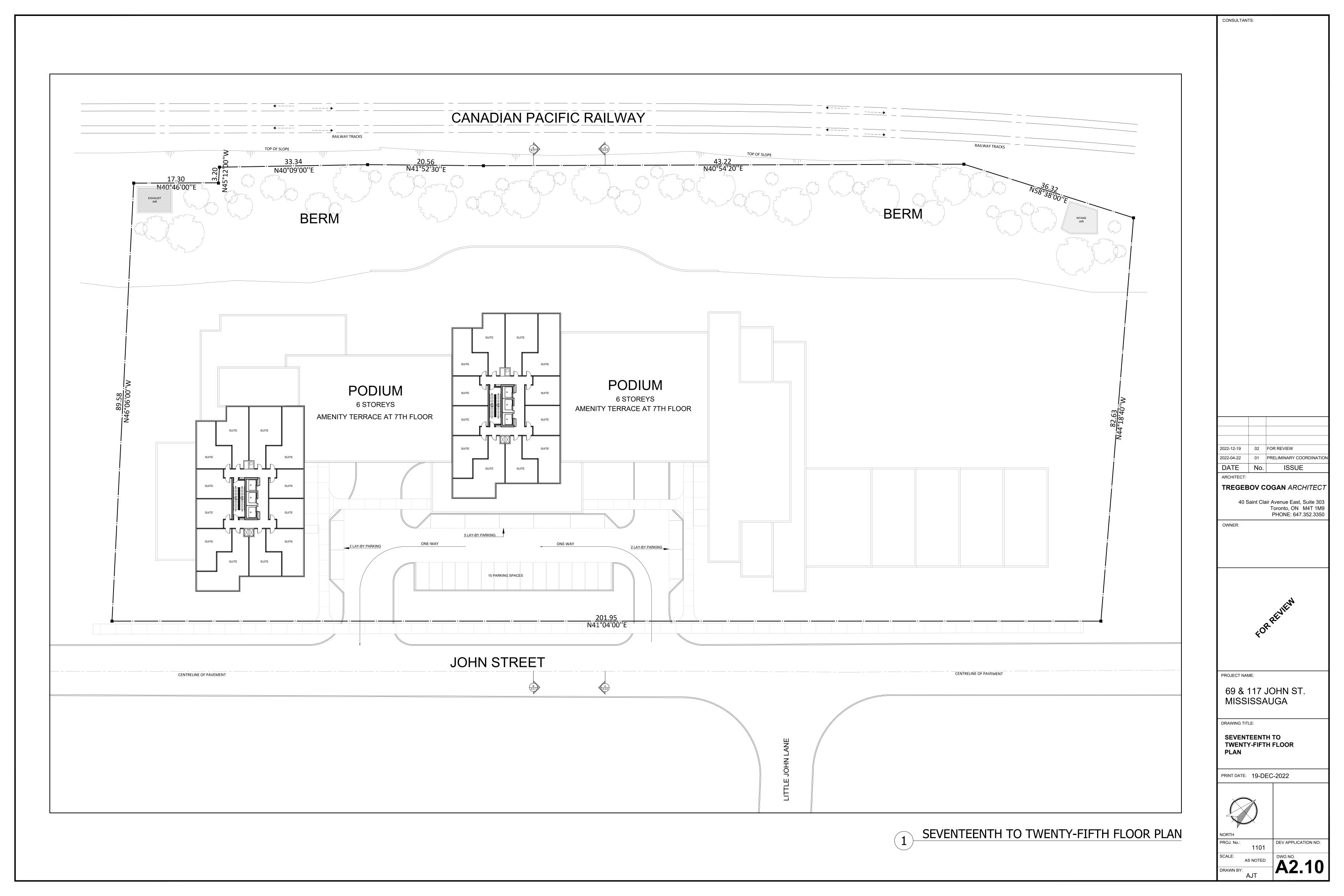


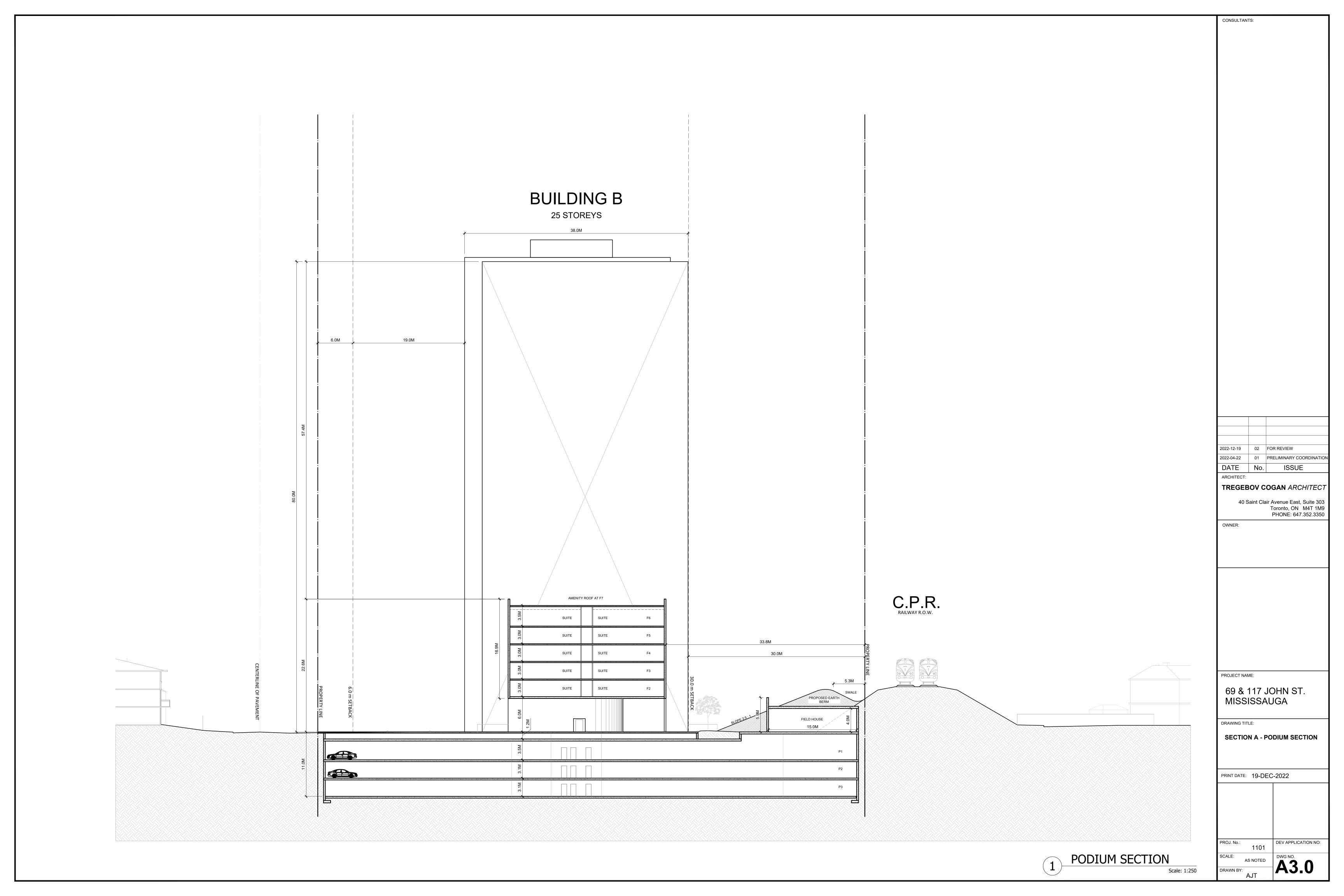


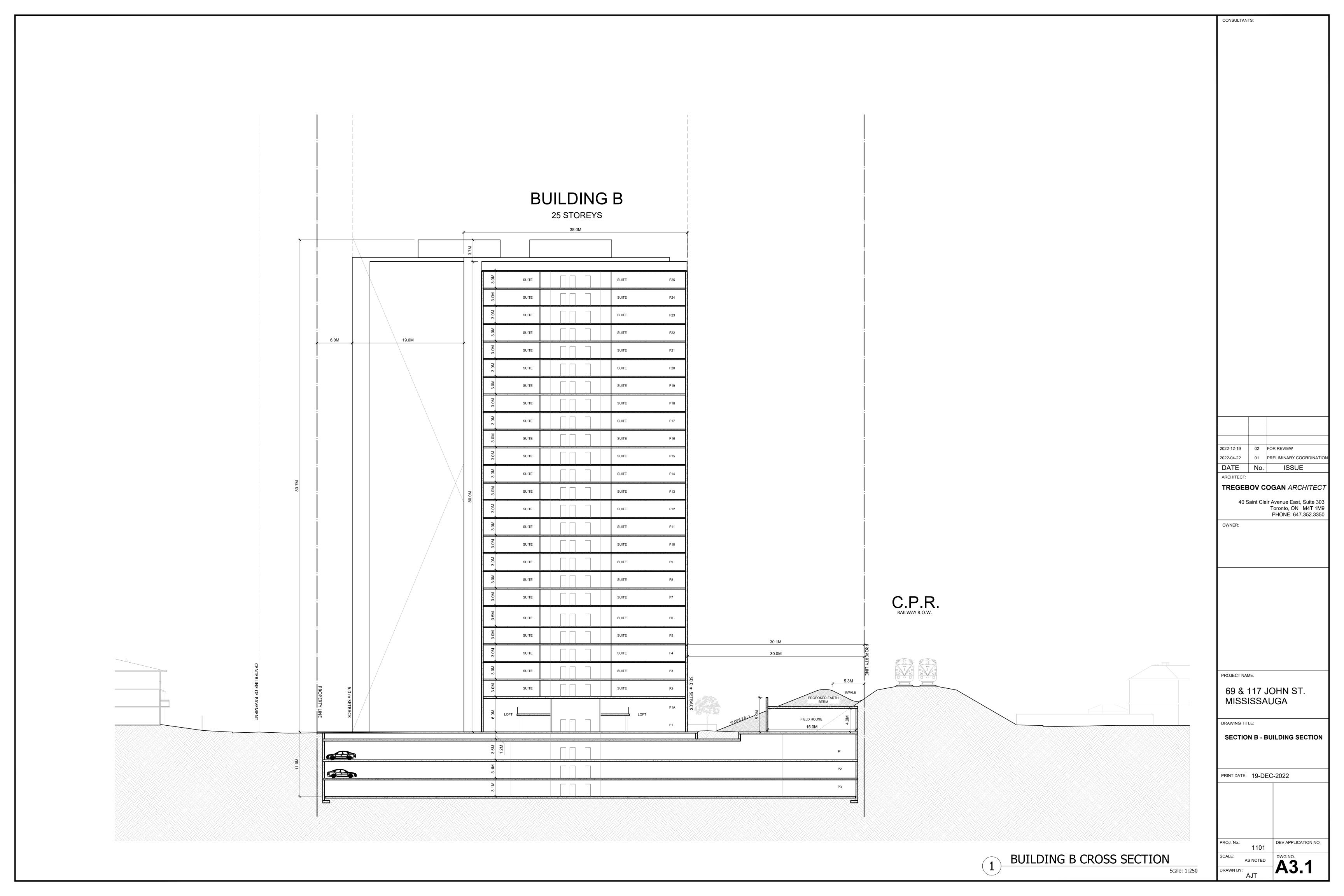


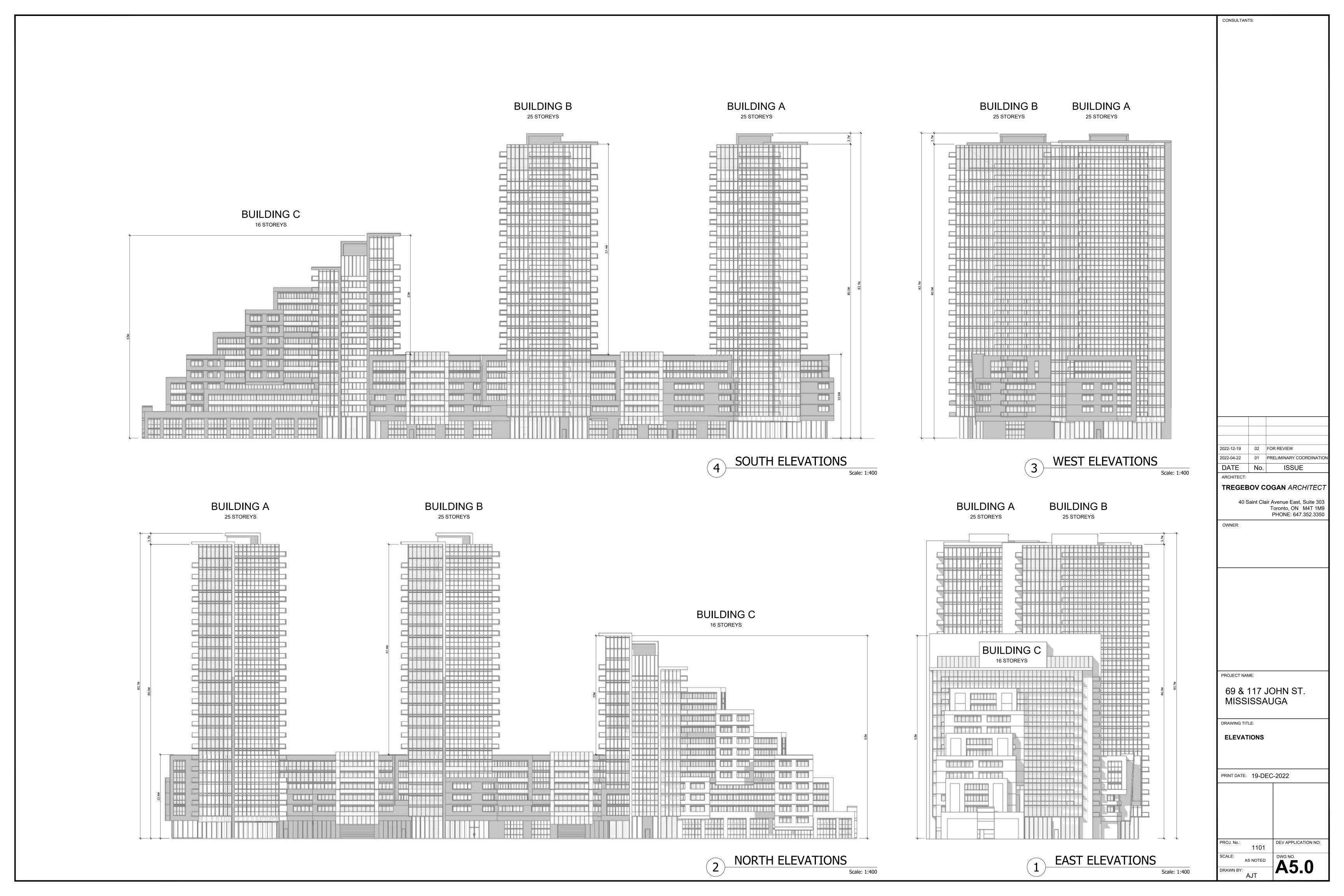












PLAN OF TOPOGRAPHY OF THIS PLAN AND REPORT WERE PREPARED FOR DUPONT VICTORIAN HOMES (MISSISSAUGA) LTD. AND THE UNDERSIGNED ACCEPTS NO RESPONSIBILITY FOR USE BY OTHER PARTIES. CONCESSION I, North of Dundas Street CITY OF MISSISSAUGA REGIONAL MUNICIPALITY OF PEEL SCALE = 1 : 300 CANADIAN PACIFIC RAILWAY P.I.N. 13155 - 0386 17.30 N 40° 46' 00" E TC 120.49 ; BC 120.36 PART P.I.N. 13156 - 0003 P.I.N. 13156 - 0004 (LT) HIGH BRICK BUILDING JOHN STREET Rim 117.15 (by Registered Plan M-I) Povemen! Centretine MH
Rim 119.39 STREET Rim 118.35 P.I.N. 13/56 - 00/7 (by By-Law N° 2500 & By-Law N° 3607, Inst. N° By-Law 644) SURVEYOR'S CERTIFICATE ELEVATION NOTE © COPYRIGHT ELEVATIONS SHOWN HEREON IN METRES
AND ARE RELATED TO CITY OF MISSISSAUGA DATUM
BENCH MARK N° 793 HAVING A PUBLISHED ELEVATION OF
IIO.955 METRES. TO OBTAIN GEODETIC ELEVATIONS
(1978 G.S.C. RE-ADJUSTMENT), SUBTRACT 0.121 METRES
FROM VALUES SHOWN HEREON. I CERTIFY THAT THE FIELDWORK REPRESENTED HEREON WAS COMPLETED FEBRUARY 2ND, 2004. NO PERSON MAY COPY, REPRODUCE, DISTRIBUTE OR ALTER THIS PLAN IN WHOLE OR IN PART WITHOUT WRITTEN PERMISSION FROM RABIDEAU & CZERWINSKI. ONTARIO LAND SURVEYORS. TOP OF CURB MONUMENT PLANTED BOTTOM OF CURB CATCH BASIN MANHOLE WATER KEY RABIDEAU CZERWINSKI ONTARIO LAND SURVEYORS DIAMETER BOUNDARY NOTE METRIC FIRE HYDRANT P. SALNA, O.L.S. → → DOORSILL ELEVATION BOUNDARY INFORMATION SHOWN HEREON IS TAKEN DIRECTLY FROM A PLAN OF SURVEY PREPARED BY D. H. BROWN, SURVEYING LTD., DATED MARCH 18TH, 2003 AND HAS NOT BEEN VERIFIED BY A FIELD SURVEY. R. P. LEEPER, O.L.S. DISTANCES SHOWN HEREON ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048 PETER J. HOMER ORIGIN UNKNOWN 777 THE QUEENSWAY, UNIT E, TORONTO, ONTARIO Ontario Land Surveyor P.I.N. — PROPERTY IDENTIFIER (416) 252-2511DRAWN : J. H. MOHER CHECKED BY : PJH PLAN N' : RC6200

Appendix B

Borehole and Well Logs

Palmer, 2022 and Chung and Vander, 2019

PROJECT: Geotechnical Investigation - 69 & 117 John St CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers PROJECT LOCATION: City of Mississauga, ON Diameter: 200 mm REF. NO.: 2209001 DATUM: Geodetic Date: Nov 3, 2022 ENCL NO.: 1 BH LOCATION: See Borehole Location Plan N 4826927.98 E 611489.09 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT REMARKS LIMIT AND LIMIT 40 60 80 100 GROUND WATE Ę (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m NATURAL U (kN/m³ SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE 40 60 80 10 20 119.1 Ground Surface GR SA SI CL FILL: silty sand, trace clay, trace to -Concrete some gravel, brown, moist, compact -Sand to very dense SS 15 contains rootlets concrete block/slab encountered **Bentonite** 61/ 118 2 SS initial 200mn Sand 117.6 FILL: silty sand, trace clay, trace gravel, trace wood pieces, brown, wet, loose to compact 3 SS 8 117 SS 22 4 1<u>16.0</u> 3.1 Screen FILL: gravelly sand, trace clay, trace silt, brown, moist to wet, loose W. L. 115.9 m Dec 22, 2022 5 SS 9 115.3 FILL: clayey silt, trace clay, trace gravel, brown, moist, loose 3.8 SILTY SAND: trace silt, trace 115 gravel, grey, moist to wet, compact 6 SS 11 114.5 CLAYEY SILT TILL: trace sand, trace gravel, grey, moist to wet, stiff SS -Rentonite 11 **END OF BOREHOLE** 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. 2. Water Level Readings Date W. L. Depth (mBGS) Dec 22, 2022 3.21

Palmer... LOG OF BOREHOLE BH22-02

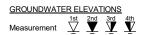
PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers

Diameter: 200 mm

PROJECT LOCATION: City of Mississauga, ON


REF. NO.: 2209001

DATUM: Geodetic

Date: Nov 3, 2022 to Nov 4, 2021

ENCL NO.: 2

	I UM: Geodetic	NI 40	0007		- 0444	40.05		Date.	NOV .	3, 2022	: 10 1	10V 4,	2021			Er	NCL N	J.: 2		
ВН	LOCATION: See Borehole Location Plan SOIL PROFILE	N 48		5.93 E		43.05		DYNA	VIC CO	NE PEN PLOT	IETRA	TION								
	JOIL PROFILE	1	3	AIVIFL	.E3	e:						_		PLASTI	IC NATI	JRAL TURE	LIQUID LIMIT		TW.	REMARKS AND
(m)		10			ωı	GROUND WATER CONDITIONS	_			0 6			00	LIMIT W _P	CON	TENT v	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZE
ELE\	DESCRIPTION	STRATA PLOT	띪		BLOWS 0.3 m	2 E	ELEVATION	SHEA	AR STI	RENG INED	TH (kF	Pa) FIELD V	ANE	-		—		S S S S S S S S	RAL KN	DISTRIBUTION
DEPT	n	RAT	NUMBER	TYPE		N N	¥	• QI	JICK TE	RIAXIAL	×	& Sensiti LAB VA	ivity ANE	WA	TER CC	NTEN	Γ (%)	A.	¥	(%)
	.0 Ground Surface	ST	N	Σ	ż	8 8	ä	2	0 4	0 6	0 8	0 10	00	1	0 2	20 3	30			GR SA SI CL
_ 0.	0 FILL: gravelly sand, trace clay, trace silt, brown to grey, moist,	\bowtie				* *	Concr	ete												
ţ	compact	\boxtimes					Sand													
-			1	SS	16			-												
F		\bowtie						-												
_1 <u>18</u> .	2	\bigotimes	\vdash				-Bento	nite												
0.	8 FILL: silty sand, some gravel, trace clay, brown, moist, compact to loose	X						[
Ë	ciay, brown, moist, compact to loose	\otimes	2	SS	20		118													
ŀ			_	33	20			-												
F		\bowtie					Sand	ļ												
ļ.		\bowtie						ŀ												
ŀ		X					1	-												
Ŧ.		\boxtimes	3	SS	7			ļ.												
2							117													
116.	contains metal chain link fence garbage, moved location 1.5m.	\bowtie				目	1	-												
	FILL: gravelly sand, trace clay,																			
t	trace silt, grey, moist, compact to loose	\bowtie					1	-												
-	loose	\bowtie	4	SS	21	l ∄		-												
ļ		\otimes						Ŀ												
3		X	_				Scree W. L.	n												
F		\boxtimes					W. L. 7	116.0 r 2, 2022	n <u>2</u>											
Ė		\bowtie	5	SS	40			ť												
115.	.4	\bigotimes	o l	33	10	l: 目:		-												
3. 115.	.6 FILL: clayey silt, trace sand, trace						:													
3.	gravel, grey, moist, loose SANDY SILT TILL: trace gravel,	h	\vdash				1	-												
4	trace clay, grey, moist to wet,					ΙĦ	115											1		
ŀ	compact to loose		6	SS	13		1													
ŧ		Ш				目:		-												
-							<u>:</u>	-												
ŀ																				
Ŀ								ŀ												
5			7	SS	7		-Bento	nite												
İ																				
<u>- 113.</u> 5.		1 91																		
"	Upon completion of drilling, a																			
	50mm diameter monitoring well was installed in the borehole.																			
	Water Level Readings:																			
	Date W. L. Depth (mBGS) Dec 22, 2022 3.05																			
	3.00																			
														l						
34.8 -3-10														l						
IW LOGOL 09 GPU 23-																				
FT 2023) to																				
-ACCLARR B-202 PM ROCK INTONCI CRIMINIU LOGOLIB RSOAL-2018 - DD ZANDT, JÖHSTREET ZIZÜB DIGAPI 23-1-10																				
20 STORY TOOK																				
18 DIG 2														l						
ROCK-JPR ROCK-20														l						
PALMER PALMER																				

GRAPH NOTES

+ 3 , \times 3 : Numbers refer to Sensitivity

 \bigcirc $^{\mbox{\bf 8}=3\%}$ Strain at Failure

PROJECT: Geotechnical Investigation - 69 & 117 John St CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers PROJECT LOCATION: City of Mississauga, ON Diameter: 200 mm REF. NO.: 2209001 DATUM: Geodetic Date: Nov 4, 2021 ENCL NO.: 3 BH LOCATION: See Borehole Location Plan N 4826813.65 E 611391.18 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT REMARKS LIMIT AND LIMIT 40 60 100 NATURAL UNIT 80 GROUND WATE (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE

O UNCONFINED + & Sensitivity

O ULICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE 40 60 80 10 20 30 119.7 Ground Surface GR SA SI CL Concr FILL: silty sand, trace clay, trace -Concrete gravel, contains cobbles, brown, moist, loose SS 6 110 -Bentonite SS 7 2 -Sand FILL: gravelly sand, trace silt, contains cobbles, brown to grey, 118 moist to wet, very loose 3 SS 3 wet below 2.6m 4 SS 2 117 1<u>16.6</u> 3.1 Screen FILL: silty sand, trace clay, grey, moist, compact 5 SS 11 116 SS 26 W. L. 115.4 m Dec 22, 2022 115.1 CLAYEY SILT TILL: trace sand, 4.6 115 trace gravel, grey, wet, very stiff SS 25 -Bentonite 114.4 **END OF BOREHOLE** 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. 2. Water Level Readings Date W. L. Depth (BGS) Dec 22, 2022 4.3m

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers

PROJECT LOCATION: City of Mississauga, ON

Diameter: 200 mm REF. NO.: 2209001

DATUM: Geodetic Date: Nov 3, 2022 ENCL NO.: 4

BH LO	OCATION: See Borehole Location Plan	N 48	_			17.39		IDVALA	410.00	NIE DE	VICTO A	TION										
	SOIL PROFILE		S	AMPL	.ES	· ~		RESIS	TANCE	NE PEN PLOT	NETRA	HON		PLASTI LIMIT	C NATI	URAL	LIQUID		M	RI	EMAR	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	L AR STI NCONF JICK TE	L RENG INED RIAXIAL	TH (kl + . ×	Pa) FIELD V & Sensit LAB V	OO L ANE ivity ANE OO	W _P WA	TER CC	w O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DIST	(%)	SIZE JTION
117.7	Ground Surface FILL: silty sand, trace to some clay,	XX	z	-	F	00	Ш	-	0 4	10 6	1	50 1	1	-	0 2	20 3	1			GR S	3A S	SI CL
-	trace gravel, contains silty clay pockets, contains cobbles, brown, moist, compact to loose contains rootlets		1	SS	13		117	- - - -						0								
1 - - - - 116.2			2	SS	10			- - - -							o							
116.2 1.5 - - - 2 115.5	trace gravel, contains cobbles, brown, moist, compact		3	SS	22		116	-							0							
- 115.0 - 2.7 - 2.7	FILL: clayey silt, trace sand, trace gravel, some organics, brown, wet, very loose contains silty clay pocket SILT: some clay, trace sand, brown, wet, very loose		4	SS	4		115	- - - - -									0					
- 3.1 - - - - - - 113.9	SILTY SAND TILL: trace clay, some gravel, brown, wet, loose		5	SS	10		114	- - - -							0							
3.8 - - - -	CLAYEY SILT TILL: some sand, trace gravel, contains cobbles, brown to grey, moist to wet, very stiff to very hard		6	SS	18			-							0					17 ·	15 4	7 21
- - - <u>5</u> -			7	SS	24		113	-							0							
- - - -							112	- - - -														
_6 - - - - _111.2			8	SS	67/ 275mn	- M		- - -							0							
1850. 2010 to	END OF BOREHOLE																					
	1					<u> </u>		<u> </u>														

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

O ^{8=3%} Strain at Failure

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers

PROJECT LOCATION: City of Mississauga, ON

Diameter: 200 mm REF. NO.: 2209001

DATUM: Geodetic

Date: Nov 3, 2022 ENCL NO.: 5 BH LOCATION: See Borehole Location Plan N 4826872.93 E 611478.93 DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS AND LIMIT 40 60 100 80 GROUND WATE (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m ELEV DEPTH DISTRIBUTION DESCRIPTION (%) WATER CONTENT (%) TYPE 40 60 80 10 20 118.0 Ground Surface GR SA SI CL FILL: sand, trace silt, some gravel, dark brown to brown, moist, compact SS 17 0 117 SS 2 20 3 SS 12 0 116 silty clay layers FILL: silt, some sand, trace clay, brown, moist to wet, very loose SS 4 4 115 FILL: sand, trace silt, brown, moist 5 SS 9 114 113.9 CLAYEY SILT TILL: trace sand, SS trace gravel, brown to grey, moist, firm to very stiff SS 16 0 113 112 grey below 6.1m 70 8 SS 0 END OF BOREHOLE

<u>GRAPH</u> **NOTES**

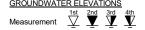
+ 3, × 3: Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Solid Stem Augers


PROJECT LOCATION: City of Mississauga, ON

Diameter: 150 mm REF. NO.: 2209001

DATUM: Geodetic

Date: Nov 3, 2022 ENCL NO.: 6

BH L	OCATION: See Borehole Location Plan	N 48				35.11		DVALA	410.00	NE DE	UETD A	TION									_
	SOIL PROFILE		s	AMPL	.ES	· ~		RESIS	TANCE	NE PEI PLOT	NETRA	IION		PLASTI	C NATI	JRAL	LIQUID		۲	REMARKS	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	● Ql	R STI CONF JICK TE	L RENG INED RIAXIAL	TH (kf + . ×	LAB VA	ANE vity ANE		TER CC	w DNTEN	LIMIT W _L ———	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIOI (%)	
117.4	Ground Surface	ST	ž	≽	ż	<u> </u>	日	2	0 4	0 6	8 08	0 10	00	1	0 2	20 3	80			GR SA SI (CL
0.0	FILL: sand, trace silt, some gravel, contains rootlets, brown, moist to wet, compact		1	SS	17		117	-						0						l	
- - - - - - -			2	SS	20		116	-						0						l	
- - - <u>-</u> 2 - 115.1	contains clayey silt pockets		3	SS	12			-								0					
2.3	FILL: clayey silt, trace sand, trace	\aleph				1	115													ı	
- - 114.7 - 2.7 - - 3114.4	SILT: some clay, trace sand, brown, wet, very loose		4	SS	4			- - - -							C	>					
3.1	SILTY CLAY: trace to some sand, trace gravel, brown, moist, stiff		5	SS	9		114	- - - -							0					l	
113.6 3.8 4 - -	CLAYEY SILT TILL: trace sand, trace gravel, brown to grey, moist, firm to very stiff		6	SS	8		113	- - - -							0					l	
- - - - 5	grey below 4.6m		7	SS	16		110	- - -							0						
-							112	-												l	
- - - 6								-												l	
- - 111.1			8	SS	70			-							0					ı	
6.4	END OF BOREHOLE	ZLLL																			ヿ
884. JRI. 90 (2008). JAN STRET 788 W (0.1.) + 10																					
Page 1	<u> </u>													<u> </u>							┙

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

 \bigcirc $^{\mbox{\bf 8}=3\%}$ Strain at Failure

PROJECT: Geotechnical Investigation - 69 & 117 John St CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers PROJECT LOCATION: City of Mississauga, ON Diameter: 200 mm REF. NO.: 2209001 DATUM: Geodetic Date: Nov 4, 2022 ENCL NO.: 7 BH LOCATION: See Borehole Location Plan N 4826796.32 E 611439.19 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT REMARKS LIMIT AND LIMIT 40 60 80 100 GROUND WATE INO (m) STRATA PLOT **GRAIN SIZE** BLOWS 0.3 m NATURAL U (kN/m³ SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE

O UNCONFINED + & Sensitivity

O ULICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE 60 80 10 20 119.1 Ground Surface GR SA SI CL FILL: sand, some gravel, trace silt, -Concrete contains clayey silt pocket, dark -Sand brown to brown, moist to wet, SS 16 118 2 SS 12 Bentonite FILL: silt, some sand, trace clay, brown, wet, loose 3 SS 6 0 117 FILL: sand, some silt, trace clay, brown, moist to wet, loose to compact SS 9 0 Sand 116 contains silt layer and organic 5 SS 19 0 W. L. 115.2 m Dec 22, 2022 SS 18 Screen SILTY CLAY: some sand, trace gravel, brown, moist to wet, very stiff SS 18 7 0 114 113.7 CLAYEY SILT TILL: trace sand, trace gravel, contains shale fragments, grey, moist, very hard 84/ 8 SS -Bentonite 0 initial END OF BOREHOLE 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole.

2. Water Level Readings: W. L. Depth (BGS) Date Dec 22, 2022 3.83m

PROJECT: Geotechnical Investigation - 69 & 117 John St CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers PROJECT LOCATION: City of Mississauga, ON Diameter: 200 mm REF. NO.: 2209001 DATUM: Geodetic Date: Nov 4, 2022 ENCL NO.: 8 BH LOCATION: See Borehole Location Plan N 4826809.63 E 611477.31 DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE 40 60 80 10 20 30 GR SA SI CL 117.9 Ground Surface Concr Straight augered to 4.6m, no -Concrete sample collected Bentonite 117 -Sand 116 W. L. 115.3 m Dec 22, 2022 115 -Screen 114 **END OF BOREHOLE** 1. Upon completion of drilling, a 50mm diameter monitoring wells was installed in the borehole. 2. Water Level Readings:
Date W. L. Depth (mBGS)
Dec 22, 2022 2.67

 $\frac{\text{GRAPH}}{\text{NOTES}}$ + 3 , \times

+ ³, × ³: Numbers refer to Sensitivity

O 8=3% Strain at Failure

Palmer..

LOG OF BOREHOLE BH22-09

PROJECT: Geotechnical Investigation - 69 & 117 John St CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers PROJECT LOCATION: City of Mississauga, ON Diameter: 200 mm REF. NO.: 2209001 DATUM: Geodetic Date: Nov 4, 2022 ENCL NO.: 9 BH LOCATION: See Borehole Location Plan N 4826775.85 E 611404.33 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT REMARKS LIMIT AND LIMIT 40 60 100 NATURAL UNIT 80 GROUND WATE (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE

O UNCONFINED + & Sensitivity

O ULICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE 40 60 80 10 20 30 119.4 Ground Surface GR SA SI CL FILL: sand, trace to some silt, trace -Concrete to some gravel, contains cobbles, -Sand contains rootlets, dark brown to brown, moist to wet, compact SS 13 119 2 SS 20 118 Bentonite 3 SS 23 0 117 SS 28 4 Sand 116 5 SS 18 wet below 3.8m W. L. 115.3 m SS 14 Dec 22, 2022 115 Screen CLAYEY SILT TILL: some sand, trace gravel, contains cobbles, brown to grey, moist, stiff to very stiff SS 11 0 114 contains shale fragment, grey below 8 SS 26 -Bentonite 112.8 **END OF BOREHOLE** 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. 2. Water Level Readings: Date W. L. Depth (mBGS) Dec 22, 2022 4.1

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers

PROJECT LOCATION: City of Mississauga, ON

Diameter: 200 mm REF. NO.: 2209001

DATUM: Geodetic

Date: Nov 4, 2022 ENCL NO.: 10

BH LOCATION: See Borehole Location Plan N 4826815.3 E 611421.09

DITEC	OCATION: See Borehole Location Plan SOIL PROFILE	11 40	_	SAMPL				DYNA	MIC CC	NE PEN PLOT	NETRA	TION								DELLA DICO
(m)		_				GROUND WATER CONDITIONS		ء ا	n A	ın e	0 8	30 1	00	PLASTI LIMIT	C NATI MOIS CON	JRAL TURE TENT	LIQUID LIMIT	Ë.	NATURAL UNIT WT (kN/m³)	REMARKS AND
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	~		BLOWS 0.3 m	O WA	NO	SHEA	AR ST	RENG	TH (kl	Pa)	/ANE	W _P	\ 	w >	W _L	POCKET PEN. (Cu) (kPa)	RAL UN	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	ZATA	NUMBER	ЭE		OUNI	ELEVATION	0 UI	NCONF JICK TI	INED RIAXIAL	+ . ×	& Sensit	tivity ANE	WA ⁻	TER CC	NTEN	T (%)	90 0	NATUR)	(%)
119.1	Ground Surface		N	TYPE	ż	GR	ELE						00	1	0 2	0 3	30			GR SA SI CL
0.0	FILL: sand, some gravel, trace silt, contains rootlets, contains brick	\bigotimes					119											1		
-	pieces, brown, moist to wet, compact	\bigotimes	1	SS	16									0						
-	•	\bowtie						_												
		\bowtie																		
1		\bowtie																		
-		\bowtie	2	SS	22		118							0				ł		
-		\bowtie																		
-		\bowtie																		
-		\bowtie																		
2		\bowtie	3	SS	30									0						
-		\bowtie					117											1		
-		\bowtie																		
-		\bowtie																		
-		\bowtie	4	SS	29									0						
3		\bowtie																		
-		\bowtie					116													
-		\bowtie	5	SS	29									0						
-		\bowtie	٦	55	29			Ŀ												
		\bowtie																		
<u>4</u>	wet below 3.8m	\bowtie																		
-		\bowtie	6	SS	13		115								0			1		
114.7		\bowtie																		
- 4.4 -	SILT: trace clay, trace sand, contains sand layers, brown, wet,							-												
-	compact							-												
<u>114.1</u>		Щ	7	SS	16			-							0					
- 5.0 -	SILTY CLAY: some sand, trace gravel, contains shale fragments,						114	-												
-	grey, wet, very stiff to very hard							-												
-								-												
-																				
6								-												
- 113.0 6.2	END OF BOREHOLE	XX		(88)	50/ initial/		113								0			\vdash	Н	
					50mm															
0.000																				

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers/Rock Coring

PROJECT LOCATION: City of Mississauga, ON

Diameter: 200 mm/96 mm REF. NO.: 2209001

DATUM: Geodetic Date: Nov 10, 2022 to Nov 11, 2022 ENCL NO.: 11 BH LOCATION: See Borehole Location Plan N 4826869.87 E 611504.27 DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS LIMIT AND LIMIT 40 60 80 100 GROUND WATE INO (m) STRATA PLOT **GRAIN SIZE** BLOWS 0.3 m NATURAL U (kN/m³ SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE

O UNCONFINED + & Sensitivity

O ULICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE 40 60 80 10 20 30 117.7 Ground Surface GR SA SI CL TOPSOIL: 100mm -Concrete 118.6 SS 17 0 1 Sand FILL: gravelly sand, some silt, trace 117.0 clay, trace gravel, dark brown, 117 0.7 moist, compact 2 SS 15 FILL: sand to silty sand, some silt, trace clay, trace to some gravel, trace wood pieces, dark brown, 116 3 moist, compact SS 11 o 115.5 SILTY SAND: some clay, trace gravel, contains clayey silt layer, 4 SS 14 contains silt layer, brown, moist, W. L. 114.7 m 5 SS 13 Dec 22, 2022 114 _4113.6 CLAYEY SILT TILL: trace sand, trace gravel, brown to grey, moist, -Bentonite very stiff 6 SS 20 0 112 SS 39 111 "110.6 SHALE: highly weathered, grey, 109.9 8 SS 79/ 110 **ROCK CORING STARTS, REFER** initial TO ROCK CORE LOG 200mm 109 Sand 108 -Screen 106 Bentonite **END OF BOREHOLE** 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. 2. Water Level Readings: W. L. Depth (mBGS) Date Dec 22, 2022 3.0

PROJECT: Geotechnical Investigation - 69 & 117 John St CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers/Rock Coring REF. NO.: 2209001 LOCATION: City of Mississauga, ON Diameter: 200 mm/96 mm ENCL NO.: 11 DATUM: Geodetic Date: Nov-10-2022 to Nov-11-2022 BH LOCATION: See Borehole Location Plan N 4826869.87 E 611504.27 CORE SAMPLE UNIAXIAL COMPRESSION (MPa POINT LOAD TEST UCS DIAMETRAL (MPa) INDEX GROUND WATER CONDITIONS HARD LAYER (%) DENSITY (g/cm³) E (GPa) TOTAL CORE RECOVERY (%) % Weathering Index POINT LOAD TEST UCS AXIAL (MPa)* ROCK SOLID CORE RECOVERY (% (m) FRACTURE I (per 0.3 m) DISCONTINUITIES DESCRIPTION ELEV DEPTH NUMBER RQD (%) SIZE 109.9 Rock Surface **≅10∅.8** 8.0 GEORGIAN BAY FORMATION: Soft Layer: 7.82m-8.03m 20 highy weathered to moderately Fracture: 8.13-8.15m (15°) 2 W4weathered, laminated to thinly Fragment Zone: 8.23m-8.28m HQ 78 100 82 N/A bedded with fragmented layers very weak to weak, grey SHALE <u>108.5</u> **GEORGIAN BAY FORMATION:** Soft Layer: 9.6m-9.63m Fragment Zone: 9.77m-9.79m, moderately to slightly weathered, 2 laminated to thinly bedded with 3 fragmented layers, weak to 10.11m-10.15m W 2 HQ 100 95 N/A 83 18.9 medium strong, grey SHALE 1 <u>۸</u>3 3 107.0 10.7 2 5 HQ 100 100 N/A 60 4 3 3 105.4 END OF BOREHOLE Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. 2. Water Level Readings: Date W. L. Depth (mBGS) Dec 22, 2022 3.0

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers/Rock Coring

PROJECT LOCATION: City of Mississauga, ON

Diameter: 200 mm/96 mm REF. NO.: 2209001

DATUM: Geodetic

Date: Nov 10, 2022 ENCL NO.: 12

BHLO	OCATION: See Borehole Location Plan	N 48	2684	3.5 E	61150	4.4		DVALA	410.00	NE DE	IETD A	TION										
	SOIL PROFILE		s	AMPL	.ES	m m		RESIS	TANCE	NE PEN PLOT	NETRA	IION		PLASTI	C NATI	JRAL	LIQUID		∀	R	EMA	
(m)		占				GROUND WATER CONDITIONS		2	0 4	0 6	0 8	30 1	00		C NATU MOIS CON		LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	G	ANI IAIA) SIZE
ELEV	DESCRIPTION	STRATA PLOT	æ		BLOWS 0.3 m	W OI	ELEVATION			RENG	TH (k	Pa)	ANF	W _P		v >	W _L	Э. Э.	RAL (KN/m	DIS		JTION
DEPTH	DECORAL FICH	₹AT/	NUMBER	ᆺ		NDO TIQN	:VAT		NCONF		+ . ×	FIELD V & Sensit LAB V	ivity ANE	WA	TER CC	NTEN	T (%)	90	NATU		(%)	1
117.8	Ground Surface	STF	N	TYPE	ż	S S	EE						00	1	0 2	0 3	30				SA	SI CL
118	TOPSOIL: 100mm	XX	1	SS	66																	
117.1	FILL: gravelly sand, trace silt, contains cobbles, contains rootlets,	\bigotimes	Ŀ		-																	
0.7	grey, moist, very dense /	\bowtie	2	SS	13		117							-								
	FILL: sand, some silt, trace clay, trace rootlets, contains cobbles,	\bowtie		- 00	13																	
	brown, moist, compact to very loose	\otimes	3	SS	3		116															
115.6		\bowtie	Ľ	33	3		110															
2.2	FILL: silty sand, some clay, some gravel, contains cobbles, contains	\bowtie			25																	
114.8	pottery pieces, brown, moist to wet,	\otimes	4	SS	25		115							٥								
3.0	compact wet below 2.7m	ĬĬ.			1																	
-	SILTY SAND: trace clay, trace		5	SS	11											В						
± 113.7	gravel, brown, wet, compact contains silt pockets						114	F														
4.1	CLAYEY SILT TILL: some sand,	M	1																			
E	trace gravel, contains shale fragments, grey, moist to wet, very	111					112															
<u>-5</u>	stiff to hard		6	SS	18		113								0							
		H																				
							112															
-			\vdash																			
F			7	SS	34			Ē						٥						19	21 4	48 12
71107		KK					111															
110.7 7.2	SHALE: highly weathered, trace																					
110.1	gravel, grey, wet				50/		110															
- ₈ 7.8	ROCK CORING STARTS, REFER TO ROCK CORE LOG	X	8	SS	initial		110							0								
					1 <u>25m</u> ŋ	ľ																
		W					109															
<u>-9</u>																						
-		\gg						Ē.														
10							108															
								-														
ŧ l		W					107															
11							107															
		\gg																				
12							106															
105.5		\gg																				
12.3	END OF BOREHOLE 1. Borehole was open upon																					
	completion of drilling.																					
2																						
390 23+																						
20221230																						
AN STREE																						
2000 L LO																						
018 000 2																						
E 800.																						
						<u> </u>																

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

○ ^{8=3%} Strain at Failure

LOG OF ROCK CORE BH22-12

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers/Rock Coring REF. NO.: 2209001

LOCATION: City of Mississauga, ON Diameter: 200 mm/96 mm ENCL NO.: 12

DATUM: Geodetic Date: Nov-10-2022

	OCATION: See Borehole Location Plan 1	N 48268	243 5	F 61	1504.4	1		Dat	C. INC	JV-10-2022						
Dire	COATION. See Boreliole Escalion Flair 1	1 40200		RE IPLE	1304.						\Box	(C)		<u>a</u>)a)	
(m) ELEV DEPTH		GROUND WATER CONDITIONS	NUMBER S	BLE SIZE	TOTAL CORE RECOVERY (%)	SOLID CORE RECOVERY (%)	HARD LAYER (%)	RQD (%)	FRACTURE INDEX (per 0.3 m)	DISCONTINUITIES	Veathering Index	HYDRAULIC SONDUCTIVITY (cm/s	POINT LOAD TEST UCS AXIAL (MPa)*	POINT LOAD TEST UCS DIAMETRAL (MPa)*	UNIAXIAL COMPRESSION (MPa)	DENSITY (g/cm³) E (GPa)
11 0.2	Moderately weathered to slightly weathered, laminated to thinly bedded, grey, weak SHALE (92~96%), Moderately weathered, light grey, weak to medium strong	0	1	HQ		93	0	47	5 3 2 2 6	Fragmented Zone: 7.62m-7.67m, 8.84m-8.89m	^	10	<u> </u>		0.0	
-108.6 - 9.2 -108.1 - 9.7 - 9.7	GEORGIAN BAY FORMATION: SHALE (80~90%), Moderately weathered to slightly weathered,	-	2	HQ	100	100	39	62	4 -1 -4 -3 -1	Hard Layer: 9.82m-10.31m Fracture: 9.47m-9.50m (90°), 9.82m-9.93m (90°)	W3-W2				18	
10.7	weak to medium strong, LIMESTONE (10~20%), Slightly weathered, light grey, weak to medium strong		3	HQ	100	96	18	66	5 1 2 1	Soft Layer: 10.84m-10.88m 10.85m ~ 10.88m Hard Layer: 11.46m-11.58m, 12.09m-12.24m Broken Zone: 12.07m-12.09m						
105.5.3 12.3									4							

LOG OF BOREHOLE BH22-13

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers/Rock Coring

PROJECT LOCATION: City of Mississauga, ON

REF. NO.: 2209001

DATUM: Geodetic

Date: Nov 8, 2022 to Nov 9, 2022

Diameter: 200 mm/96 mm

ENCL NO.: 13

BH LOCATION: See Borehole Location Plan N 4826834.89 E 611436.88

DITEC	SOIL PROFILE	11 40		SAMPL				DYNA RESIS	MIC CO	NE PEN	IETRA	TION			ΝΔΤ	IIRΔI			_	REM	ARKS
(m)		F				GROUND WATER CONDITIONS			20 4		_	_	00	LIIVIII		ITENT	LIQUID LIMIT W _L T (%)	PEN.	NIT W	Al	ND
ELEV	DESCRIPTION	STRATA PLOT	ı.		BLOWS 0.3 m	M DI	NOI	SHEA	AR STI	RENG	TH (kl	Pa) FIELD V	'ANE	W _P		w o	W _L	CKET (KP.	IRAL U	GRAII DISTRI	N SIZE BUTION
DEPTH	22501111 11611	'RAT	NUMBER	TYPE		NOS	ELEVATION	● Q	UICK TE	RIAXIAL	×	LAB V	ANE			ONTEN	T (%)	9	NATU	(9	%)
118.7 - 11 8 : 6	Ground Surface TOPSOIL: 100mm	S	ž		ż	5 8	ᆸ	- 2	20 4	0 6	3 0	0 1	00	1	0 2	20 3	30			GR SA	SI CL
- 11 8 9: 4 9	FILL: silty sand to sand, trace clay,	\bigotimes	1	SS	13									٥							
F ₁	trace gravel, contains cobbles and limestone pieces, brown, moist,	\bowtie	_				118														
117.2	compact	\bowtie	2	SS	65									0							
1.5	FILL: clayey silt, some sand to	\bigotimes				1	117	_													
<u>-2</u> - 116.4	sandy, trace gravel, trace brick fragments, brown, moist to wet, very	\bigotimes	3	SS	29			Ė							0						
2.3	stiff wet below 2m	ĬĬ	4	SS	12	1	116														
- 3	SILTY SAND: trace clay, trace gravel, contains cobbles, contains			33	12		116														
[clayey silt pocket, brown, wet, compact		5	SS	14												•			6 64	22 8
E ,	compact						115	_													
114.5 4.2	SANDY SILT: some clay, grey,							-													
- "-	wet, loose		-			-	114	_													
<u>5</u>			6	SS	8			Ė							c						
113.0							440														
5.7	CLAYEY SILT TILL/SHALE COMPLEX: trace sand, trace	熣					113														
Ē	gravel, grey, wet, very dense		7	SS	50/ initial									,							
[,			Ľ	33	125mn		112	_													
-																					
111.0			_		50/		111														
- ₈ 7.7	ROCK CORING STARTS, REFER TO ROCK CORE LOG	X	8	SS	initial			E						0							
					100mn	1															
- - 9		\gg					110														
		X	1					Ē													
Ē.			1				109														
10		\gg																			
-		X	1				108														
11			1																		
Ē		\gg						E													
12		\mathbb{X}	}				107														
								Ė													
		\gg					106	_													
13		\mathbb{W}	1																		
E							105														
14		S)					100	•													
		\mathbb{K}	1					Ē													
150000 T							104	F													
103.4	END OF BOREHOLE	W						<u> </u>													
SOCK HUDB	Borehole was open upon completion of drilling.																				
1016 23090, PM J	completion of utiling.																				
SOL - 2018																					
PAUME																					

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

○ ^{8=3%} Strain at Failure

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers/Rock Coring REF. NO.: 2209001 LOCATION: City of Mississauga, ON Diameter: 200 mm/96 mm ENCL NO.: 13

DATUM: Geodetic Date: Nov-08-2022 to Nov-09-2022

		œ	CO SAN	RE IPLE			-		×)/sec		льа)*	МРа)	
(m) ELEV DEPTH	ROCK DESCRIPTION Rock Surface	GROUND WATER CONDITIONS	NUMBER	SIZE	TOTAL CORE RECOVERY (%)	SOLID CORE RECOVERY (%)	HARD LAYER (%)	RQD (%)	FRACTURE INDEX (per 0.3 m)	DISCONTINUITIES	Weathering Index	CONDUCTIVITY (cm	POINT LOAD TEST UCS AXIAL (MPa)*	POINT LOAD TEST UCS DIAMETRAL (MPa)*	UNIAXIAL COMPRESSION (MPa)	DENSITY (g/cm³)
1 0 . 0 . 09.5	GEORGIAN BAY FORMATION: Highly weathered to slightly weathered, laminated to thinly bedded, grey, weak to medium strong SHALE (60~95%), Moderately weathered, light grey,		1	HQ	100	75	N/A	25	25 25 2 3	Soft Layer: 10.84m-10.88m Hard Layer: 11.46m-11.58m, 12.09m-12.24m Broken Zone: 12.07m-12.09m	W4					
9.2	weak to medium strong LIMESTONE (5~40%)		2	HQ	100	97	N/A	67	2 3 2 2 5	Fragmented Zone: 10.72m-10.77m Fractures: 9.75m-9.83m (90°)	W3-W2					
0 9 .9 10.8	GEORGIAN BAY FORMATION: Highly weathered to moderately weathered, laminated to thinly bedded, grey, very weak to weak SHALE (70~90%), Moderately weathered, light grey, medium		3	HQ	100	95	5	70	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Hard Layer: 10.85m-10.92m Fragmented Zone: 10.77m-10.85m	w3 w4-w3					
06.4 12.3 05.9 12.8	strong LIMESTONE (10~30%) Lost core zone, residual soil/silf/washed away during coring GEORGIAN BAY FORMATION: Moderately weathered to slightly	-	4	HQ	98	95	20	23	2 5 10 5 3	Hard Layers: 12.42m-12.52m, 13.07m-13.21m, 13.68m-13.74m _m ~ 12.78m Soft Layer: 12.70m-12.78m Fractures: 12.34m-12.37m (90°), 12.53m (15°), 13.07m-13.21m (90°)	W3-W2 W6					
04.9 13.8 03.4	weathered, laminated to slightly weathered, laminated to thinly bedded, grey, weak to medium strong SHALE (55~80%), Moderately to slightly weathered, light grey, medium strong to strong LIMESTONE (20~45%)		5	HQ	100	96	23	64	2 10 2 3 0	Hard Layers: 14.30m-14.38m, 14.99m-15.24m Fragmented Zone: 13.82m-13.87m Fractures: 13.87m-13.89m (90°), 13.94m-13.97m (90°), 15.06m (15°)	W2 W				46.1	
	Borehole was open on completion of drilling.															

LOG OF BOREHOLE BH22-14

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers/Rock Coring

PROJECT LOCATION: City of Mississauga, ON

Diameter: 200 mm/96 mm REF. NO.: 2209001

DATUM: Geodetic

Date: Nov 9, 2022 to Nov 10, 2022 ENCL NO.: 14

BH LOCATION: See Borehole Location Plan N 4826815.94 E 611464.25

BHL	SOIL PROFILE	IN 40	_	SAMPL				DYNA! RESIS	MIC CO	NE PEN	NETRA	TION			NATI	LIDAL				DEMARKS
(m)		 -				GROUND WATER CONDITIONS		2	0 4	0 6	0 8	30 1	00	PLASTI LIMIT	C MOIS CON	TURE TENT	LIQUID LIMIT	EN.	NATURAL UNIT WT (kN/m³)	REMARKS AND
ELEV	DESCRIPTION	STRATA PLOT	_ س		BLOWS 0.3 m	D WA	NO	SHEA	R ST	RENG	TH (kf	Pa) FIELD V. & Sensit	ANE	W _P	\ 	w 0	W _L	XET F u) (kPa	RN/m³)	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	SATA	NUMBER	Й		OUNI	ELEVATION	O UN ● QI	NCONF	ined Riaxial	+ . ×	& Sensit	ivity ANE	WA	TER CC	ONTEN	Γ (%)	P00	NATUF.	(%)
	Ground Surface	STE	Ž	TYPE	ż	9.00 0.00	ELE						00	1	0 2	20 3	30			GR SA SI CL
118:0	TOPSOIL: 100mm FILL: gravelly sand, some silt,		1	ss	14									٥						
=1 <u>17.4</u> = 0.7	contains cobbles, contains rootlets, contains concrete pieces, grey to																			
[0.7	brown, moist, compact	\otimes	2	ss	16		117													
-	FILL: sand, some silt, trace to some gravel, contains cobbles,	\otimes																		
- - 115.9	brown, moist, compact	\bowtie	3	SS	12		440							0						
2.2	FILL: silty sand, trace gravel, some						116													
	clay, contains cobbles, brown to grey, moist to wet, loose to very	\bowtie	4	SS	4										0					
<u>-3</u>	loose	\bowtie					115	-												
F		\bowtie	5	SS	3											0				
± 4114.0		\bowtie					111													
4.1	SILTY CLAY TO CLAYEY SILT: some sand to sandy, trace gravel,		1				114													
F.	trace rootlets, grey, moist to wet,		6	SS	4															
<u>-5</u> -	soft		Ľ	33	-		113									1				
112.4		12																		
5.6	CLAYEY SILT TILL/SHALE COMPLEX: trace sand, trace						112	-												
E	gravel, grey, moist, very hard	熩	7	SS	69/ initial		112								0					
E					2 <u>50m</u> ŋ	•														
=							111	-												
110.4					50/															
₈ 7.7	ROCK CORING STARTS, REFER TO ROCK CORE LOG	W	8	ss	50/ initial		110	-						(
					75mm	1	110													
E.																				
<u>-</u>							109	-												
-																				
10							108													
-							100													
Ē.																				
11			1				107	-												
Ē								-												
12							106													
E							100													
E.																				
13							105													
ŧ l																				
14		>>	1				104													
							104													
102.8	END OF BODEHO! F	W	_				103												Щ	
15.2	END OF BOREHOLE 1. Borehole was open upon																			
233307	completion of drilling.																			
- 2018 D																				
SALMERSO																				
						CDVDH	3	3 1		e refer		e-3%								· ·

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers/Rock Coring REF. NO.: 2209001 ENCL NO.: 14

LOCATION: City of Mississauga, ON Diameter: 200 mm/96 mm DATUM: Geodetic Date: Nov-09-2022 to Nov-10-2022

		Ľ.	CC SAN	RE IPLE			(9)		EX		Т	n/sec)		МРа)*	(MPa)	
(m) ELEV DEPTH 110.4	ROCK DESCRIPTION Rock Surface	GROUND WATER CONDITIONS	NUMBER	SIZE	TOTAL CORE RECOVERY (%)	SOLID CORE RECOVERY (%)	HARD LAYER (%)	RQD (%)	FRACTURE INDEX (per 0.3 m)		Weathering Index	CONDUCTIVITY (cm/sec)	UCS AXIAL (MPa)*	POINT LOAD TEST UCS DIAMETRAL (MPa)*	UNIAXIAL COMPRESSION (MPa)	DENSITY (q/cm ³)
11 0.4	GEORGIAN BAY FORMATION: Highly weathered to moderately weathered, laminated to thinly bedded, grey, weak SHALE		1	HQ	100	72	4	16	16 22 7 3 4	Hard Layer: 14.30m-14.38m, 14.99m-15.24m Fragmented Zone: 13.82m - 13.87m Fractures: 13.87m-13.89m (90°), 13.94m-13.97m (90°), 15.06m (15°)	W2 W4-W3					
9.2	Lost core zone, residual soil/silt washed away during coring		2	HQ	58	20	N/A	0	18 25 14 25 25	Lost Zone: 9.42m-9.75m, 10.36m-10.67m Fragmented Zones: 9.14m-9.19m, 9.32m-9.42m, 9.87m-9.94m, 10.01m-10.36m	W4-W3				128.7	
107.4 10:7	GEORGIAN BAY FORMATION Slightly weathered, laminated to thinly bedded, grey, medium strong SHALE (50~60%), Slightly weathered, light grey, strong to very strong LIMESTONE (40~50%)	_	3	HQ	96	94	26	32	10 5 1 5 3	Lost Zone: 10.67m-10.73m Hard Layer: 11.40m-11.73m, 12.04m-12.10m Fragmented Zone: 10.77m-10.80m	W3-W2					
12.2 05.4 12.7	GEORGIAN BAY FORMATION: LIMESTONE/SHALE: Highly weathered to slightly weathered, laminated to thinly	-	4	HQ	100	80	N/A	48	7 19 5 5	Fractures: 12.55m-12.57m (90°), 13.13m-13.17m (90°) Fragmented Zone: 12.34m-12.40m, 12.37m-12.42m, 12.55m-12.60m, 12.65m-12.80m	W4-W3					
13.7	bedded, grey, weak to medium strong SHALE (80~96%) Slightly weathered to moderately weathered, light grey, medium strong to very strong LIMESTONE (4~20%)		5	HQ	100	95	N/A	83	0 9 0	Fragmented Zone: 14.48m-14.55m	W3-W2					
15.2	END OF BOREHOLE 1. Borehole was open upon completion of drilling.															

LOG OF BOREHOLE BH22-15

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers/Rock Coring

Diameter: 200 mm/96 mm

PROJECT LOCATION: City of Mississauga, ON

REF. NO.: 2209001

DATUM: Geodetic

Date: Nov 7, 2022 to Nov 8, 2022 ENCL NO.: 15

BH LOCATION: See Borehole Location Plan N 4826788.27 E 611428.09

5116	SOIL PROFILE	. 1 70		AMPL				DYNAI RESIS	MIC CO TANCE	NE PEN	IETRA	TION		<u> </u>	_ NAT	URΔI				REMARKS
(m)		F				GROUND WATER CONDITIONS			0 4		_	_	00	PLASTI LIMIT	CON	TENT	LIQUID LIMIT W _L T (%)	PEN.	LW TINI	AND
ELEV	DESCRIPTION	STRATA PLOT	ļ Ķ		BLOWS 0.3 m	NO W	NOIT			RENG	TH (kl	Pa) FIELD V	ANE	W _P		w 0	W _L	OU) (KP	JRAL U (KN/m³	GRAIN SIZE DISTRIBUTION
DEPTH	223.41 11011	'RAT	NUMBER	TYPE		NUOS	ELEVATION	• QI		RIAXIAL	×	FIELD V & Sensit LAB V	ANE			ONTEN	Γ (%)	185	NATL	(%)
119.3 - 11 9 . 2	Ground Surface TOPSOIL: 100mm	S	ž	<u></u>	ż	5 G		-	0 4	0 6	0 8	0 1	00	1	0 2	20 3	30			GR SA SI CL
[' '8':¥	FILL: gravelly sand, trace clay,	\bigotimes	1	SS	16		119							0						
	trace silt, contains cobbles, dark brown to brown, moist, compact to	\bowtie				1														
	loose	\bigotimes	2	SS	6		118							0						
Ē.		\bigotimes	3	SS	5	1								0						
117.0		\bigotimes		55	,		117							Ľ						
2.3	SILTY SAND: some clay, trace gravel, contains cobbles, contains		4	SS	13										0					
<u>-3</u>	clayey silt layer, contains shale fragments, brown to grey, moist,																			
-	compact to very dense		5	SS	20		116							0						
4						•														
							115	-												
5			6	SS	21										c					
			Ľ		21		114													
<u>-6</u>		陆	-		94/		113													
			7	SS	initial 250mn		113								0					
7.112.3	CLAYEY SILT TILL/SHALE				20011111	Ī														
111.6	COMPLEX: trace sand, trace gravel, grey, moist to wet, very hard						112													
8 7.7	ROCK CORING STARTS, REFER TO ROCK CORE LOG		8	SS	50/ initial										0					
	TO ROCK CORE LOG				100mn	•	111													
E		\gg																		
			1				110													
10		\gg					400													
-		\mathbb{K}	1				109													
11																				
		\gg					108	-												
12			1																	
							107													
		\gg																		
<u>13</u>		\mathbb{X}	}				106													
							100													
14		\gg																		
922							105													
1500001818000018180000181800001818000018180000181800001818000001818000000																				
MCG FORM		\gg					104													
103.5	END OF BOREHOLE	W	-																	
17 5 200 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1. 1. Borehole was open upon completion of drilling.																			
ALROCKAPA ALRI SOL. 26	completion of uniling.																			
8,7			Ц		<u> </u>													Ц		

LOG OF ROCK CORE BH22-15

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers/Rock Coring REF. NO.: 2209001

LOCATION: City of Mississauga, ON Diameter: 200 mm/96 mm ENCL NO.: 15

DATUM: Geodetic Date: Nov-07-2022 to Nov-08-2022

1	JM: Geodetic							Dat	e: No	ov-07-2022 to Nov-08-2022						
BH L	OCATION: See Borehole Location Plan	N 4826			11428	3.09								*.	21	
(m) ELEV DEPTH	ROCK DESCRIPTION Rock Surface	GROUND WATER CONDITIONS	NUMBER S	RE IZE 3ZIS	TOTAL CORE RECOVERY (%)	SOLID CORE RECOVERY (%)	HARD LAYER (%)	RQD (%)	FRACTURE INDEX (per 0.3 m)	DISCONTINUITIES	Weathering Index	HYDRAULIC CONDUCTIVITY (cm/sec	POINT LOAD TEST UCS AXIAL (MPa)*	POINT LOAD TEST UCS DIAMETRAL (MPa)*	UNIAXIAL COMPRESSION (MPa)	DENSITY (g/cm³) E (GPa)
11 7.6	GEORGIAN BAY FORMATION: moderately weathered to slightly weathered, laminated to thinly bedded, light grey to grey, weak to strong SHALE (81-100%), thinly laminated to medium bedded with		1	HQ	100	61	7	22	>25 >25 12 8 4	Fracture: 8.64m-8.69m (90°), 8.81m-8.84m (15°) Fragment Zone: 7.62m-7.86m, 7.98m-8.05m, 8.2m-8.28m	W3					
9.1	grey to grey, medium strong to strong LIMESTONE (0~19%)		2	HQ	100	85	N/A	13	8 17 8 5	Fragment Zone: 9.45m-9.6m						
10.0 10.7 11 11 12 12 107.1			3	HQ	83	72	N/A	25	8 11 >25 8 3	Soft Layer: 11.19m-11.51m Fracture: 10.95m-10.96m (15°) Fragment Zone: 10.81m-10.86m, 11.58m - 11.63m						
12.2			4	HQ	85	62	17	28	3 2 5 20 >25	Soft Layer: 13.21m-13.72m Fracture: 12.83m-12.85m (90°)	W3-W2					
13.7			5	HQ	100	78	32	17	16 6 6 3	Soft Layer: 14.12m-14.15m Fragment Zone: 13.72m-13.86m					137.5	
104.0 15.2 103.5			6	HQ	100	81	N/A	43	13	Fracture: 15.51m (15°) Fragment Zone: 15.24m-15.32m						
15.8																

LOG OF BOREHOLE BH22-16

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

PROJECT LOCATION: City of Mississauga, ON

DATUM: Geodetic

Method: Hollow Stem Augers/Rock Coring

Diameter: 200 mm/96 mm

Date: Nov 7, 2022 to Nov 8, 2022

ENCL NO.: 16

REF. NO.: 2209001

BH LOCATION: See Borehole Location Plan N 4826769.25 E 611440.73

	SOIL PROFILE		_	AMPL				DYNA RESIS	MIC CO TANCE	NE PEN PLOT	ETRA	ΓΙΟΝ		D. 407	_ NATI	URAL			_	REI	//ARKS	s
(m)		F				GROUND WATER CONDITIONS				0 60		_	00	PLASTI LIMIT			LIQUID LIMIT W _L ————————————————————————————————————	a) EN.	NATURAL UNIT WT (kN/m³)	P	AND	
ELEV	DESCRIPTION	STRATA PLOT	<u>س</u>		BLOWS 0.3 m	W OI	Š Š	SHE	R ST	RENGT INED	H (kF	Pa)	ANE	W _P	\ 	<i>w</i> 0	W _L	SKET.	RAL U	DISTR	IN SIZ IBUTI	
DEPTH	BEGGIAII TION	RAT/	NUMBER	TYPE		NDO	ELEVATION	O UI ● QI	NCONF JICK TE	ined Riaxial	+ ×	& Sensit	ivity ANE	WA	TER CC	ONTEN	T (%)	O O	NATU	'	(%)	
	Ground Surface	*A 1.	₹	≱	ż	8 8	⊟ Concr		0 4	0 60	8 (0 1	00	1	0 2	20 3	30	▙		GR SA	A SI	CL
- 11 9 .₽	FILL: silty sand, trace clay, trace		1	SS	16		Sand'	-						0								
F.	gravel, contains cobbles, dark rown to brown, moist, compact	\bigotimes																				
Ė		\bowtie	2	SS	18		118							0				-				
		\bowtie																				
<u>-2</u>		\bowtie	3	SS	13		117							0								
E		\bowtie	4	SS	6			Ē							c							
- ₃	contains clayey silt pockets	\bowtie	Ľ					E														
-		\bowtie	5	SS	54		116							0								
- 115.1	contains limestones and cobble fragments	\bowtie						Ē														
4.1	SILTY SAND: trace clay, contains	m					115	_														
Ē.	silt layer, contains shale complex fragments, grey, wet, compact to							-														
<u>-5</u> - -	very dense	鵾	6	SS	18		114	_							0			-		4 81	12	3
-																						
<u>-6</u>		鵾					113															
-			7	SS ,	67/ 225mn		113								0							
- ₇		鵾																				
Ē							112	<u> </u>														
111.5 8 7.7	ROCK CORING STARTS, REFER TO ROCK CORE LOG				50/																	
-	TO ROCK CORE LOG		8	SS	initial 100mn		111 -Bento	pito.							}			-				
E							Denio	E														
<u>-9</u>							110															
E																						
10																						
-							109															
11								Ē														
							108											-				
-																						
12							107											-				
-								Ė														
13 -							100															
-							106															
<u>14</u>																						
E							105	-										-				
								Ė														
G FORM NEW TELL 2025/2000							104	<u> </u>										-				
000 H/000								E														
91 38 PM 80 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							103															
20L-2018							Sand	ŧ														
]##- 17	Continued Next Page						:	<u> </u>										Щ				

Continued Next Page **GROUNDWATER ELEVATIONS** Measurement $\stackrel{1st}{\underline{\bigvee}}$ $\stackrel{2nd}{\underline{\bigvee}}$ $\stackrel{3rd}{\underline{\bigvee}}$ $\stackrel{4th}{\underline{\bigvee}}$

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

○ ^{8=3%} Strain at Failure

LOG OF BOREHOLE BH22-16

PROJECT: Geotechnical Investigation - 69 & 117 John St

CLIENT: 13545130 Canada Inc

Method: Hollow Stem Augers/Rock Coring

PROJECT LOCATION: City of Mississauga, ON

Diameter: 200 mm/96 mm REF. NO.: 2209001 ENCL NO.: 16

DATUM: Geodetic

Date: Nov 7, 2022 to Nov 8, 2022

BH LOCATION: See Borehole Location Plan, N 4826769 25 E 611440 73

BH L	OCATION: See Borehole Location Plan	N 48	2676	9.25 E	61144	10.73															
	SOIL PROFILE		S	AMPL	ES			DYNA! RESIS	MIC CO TANCE	NE PEN PLOT	NETRAT	TION		DI ACTI	_ NAT	URAL	HOUID		F	REMA	RKS
(m)		_				GROUND WATER CONDITIONS		2	0 4	0 6	0 8	10 1	00	PLASTI LIMIT	MOIS CON	TURE TENT	LIQUID LIMIT W _L ————————————————————————————————————	EN.	NATURAL UNIT WT (kN/m³)	AN	ID
ELEV		P. C.			WS u	WA	Z	SHEA	∟ ∖R STI	RENG	TH (kF	∟—— Pa)	-	W _P	,	N	$\mathbf{W}_{\!L}$	(KPa	ALU N/m³)	GRAIN DISTRIE	
DEPTH	DESCRIPTION	¥	3ER		BLOWS 0.3 m	DND DEC	ATI(O UI	NCONF	RENG INED	÷	FIÉLD V. & Sensit	ANE ivity				T (0()	900	J. S.	DISTRIE	
		STRATA PLOT	NUMBER	TYPE		ROL	ELEVATION	U Q	JICK IF	VIANIAL	_	LAD V	AŃE 00		TER CC			_	≨		
-	Continued ROCK CORING STARTS, REFER	S X	z	-	£				0 4	0 6	0 0	0 1	1	<u>'</u>	0 2	20 :	30			GR SA	SI CL
Ė	TO ROCK CORE LOG(Continued)	X					102														
F	,					▎∄▝	-Scree	n H													
18		\bowtie						Ē													
Ė						$[\cdot, \vdash] \cdot$	101											1			
E		W						-													
19																					
Ē		X					100 -Bento	⊢—— nite										1			
Ē								Ė													
<u>20</u>																					
98.7							99											1			
20.5	END OF BOREHOLE	ľ																			
	Upon completion of drilling, a 50mm diameter monitoring well was																				
	installed in the borehole.																				
	2. Water Level Readings: Date W. L. Depth (mBGS)																				
	Dec 22, 2022 6.21																				
														1							
														1							
														1							
LOGOGL GPU 23-5-																					
RM NEW 2023) 1041.																					
STREET;														1							
ROOK IN																					
2022 PM DIG 20090														l							
DA ADDIAMPRE SUBLINE ROCK HYDOOD ROKK HYDOODS LINE BLAND 15-44 STREET 2020 BLAND 15-44 STREET 2020 BLAND 15-44														1							
SOL-ROC LIMER SON														1							
-d	l.									1		1					1		\Box		

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical Investigation - 69 & 117 John St REF. NO.: 2209001 CLIENT: 13545130 Canada Inc Method: Hollow Stem Augers/Rock Coring LOCATION: City of Mississauga, ON Diameter: 200 mm/96 mm ENCL NO.: 16 DATUM: Geodetic Date: Nov-07-2022 to Nov-08-2022 BH LOCATION: See Borehole Location Plan N 4826769.25 E 611440.73 CORE SAMPLE INDEX GROUND WATER CONDITIONS UNIAXIAL COMPRESSION (N 8 % POINT LOAD TEST UCS AXIAL (MPa)* POINT LOAD TEST UCS DIAMETRAL ((g/cm³) ROCK CORE VERY (% HARD LAYER (m) CORE VERY (9 FRACTURE I (per 0.3 m) DISCONTINUITIES DESCRIPTION Neathering ELEV DEPTH NUMBER DENSITY (E (GPa) %) TOTAL (SOLID C RQD (SIZE 111.5 Rock Surface **GEORGIAN BAY FORMATION:** Fracture: 8.17m-8.23m (90°), ₈11**7.**5 >25 8.66m-8.7m (75°), 9.02m - 9.07m moderately weathered, laminated >25 to thinly bedded with fragment W3 22 HQ 100 43 N/A 0 layers, weak, reddish brown to grey Fragment Zone: 7.7m-8.15m, SHALE 9 8.31m-8.41m, 8.48m-8.56m 12 - 110.0 **GEORGIAN BAY FORMATION:** Fracture: 10.13m-10.16m (15°), 17 slightly weathered, laminated to thinly bedded with fragment layers, 10.67m-10.69m (90°) 9 Fragment Zone: 9.22m-9.32m 5 HQ 93 N/A 0 grey, weak to medium strong 2 100 SHALE (80~90%) 7 slightly weathered, thinly to 9 108.4 medium bedded, light grey to grey, 10.8 Fracture: 11.35m-11.4m (90°), 6 medium strong to strong LIMESTONE (10~20%) 11.71m-1.81m (90°) 7 HQ 100 100 N/A 0 7 6 5 106.9 Fragment Zone: 13.08m-13.1m 6 5 HQ 100 98 N/A 20 9 3 105.4 Soft Layer: 14.15m-14.63m 14 13.8 19 Fracture: 14.9m-14.92m (90°) >25 Fragment Zone: 14.63m-14.78m >25 HO 100 60 N/A n 15 8 8 15.4 5 6 HQ 100 100 N/A 9 31 18 2 102.5 <u>2</u> 3 ₁₇ 16.7 Fracture: 18.15m - 18.23m (90°) Fragment Zone: 17.75m-17.91m 3 2 HQ 100 38 7 90 N/A 16 5 100.9 2 Fracture: 19.18m-19.2m (45°) 2 100 | 100 | N/A 8 HQ 41 3 6 4 99.5 19.8 3 HQ 100 100 N/A 72 1 END OF BOREHOLE 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. 2. Water Level Readings: Date W. L. Depth (mBGS) Dec 22, 2022 6.21

FILE No: G19726

BOREHOLE No. 1

Enclosure No.: 1 Sheet 1 of 2

0

Client: **Drewlo Holdings Inc.**

Project: Proposed 25-Storey Apartment Complex

Location: 69-117 John Street, Mississauga

EQUIPMENT DATA

Machine: **Diedrich D50T**Method: **HSA & DC**

Size: 108 mm I.D. & HQ
Date: Feb 14 - 19 TO Feb 14 - 19

`			<u> </u>	$\underline{}$											\sim			- 19 10 reb 14 - 19
		SOIL LITHOLOGY			SA	MP	LE		HEAR S				CC	ATE NTE	R NT			
, , , , , ,	DEPTH (m)	DESCRIPTION Ground Elevation: 119.58 m	DEPTH (m)	SYMBOL	SAMPLE ID	TYPE	N-VALUE	LA 5 PEN STA	LD VAN AB TEST 0 10 IETRAT NDARD 0 40	「: Unc. 0 1: ION RE ■ DY	■ P.P. 50 20 CSISTAN 'N. CON	□ 00 VCE 1E ○		(%) W O 20		WELL DATA	DEPTH (m)	REMARKS
		loose brown gravelly sand FILL trace to some silt	0.5		1	SS							0				0.5	steel stick up casing set in concrete
		moist	-1.0 -		2	SS	7	•					0				-1.0 -	
	117.48 2.10		1.5		3	SS	5	•					0				-1.5 - -2.0	
		loose to compact brown Fine SAND trace to some gravel and silt	2.5		4	SS	12						0				2.5	
		damp to saturated	-3.0 - 3.5		5	SS	9	•					0				-3.0 · - - - 3.5	bentonite seal/50 mm I.D. PVC riser
19-4-16			-4.0 -		6	SS	13	•						0		Ţ	- -4.0 -	- split spoon dripping - water level at 4.28 m
VD_ENG.GDT			4.5		7	SS	23		•					0			4.5 - -5.0	depth on March 19, 2019
ISSAUGA.GPJ C	114.38 5.20	very stiff grey SANDY CLAYEY SILT TILL trace gravel	5.5	4		SS	17	•					C	,			5.5	
G19726 DREWLO - 69-117 JOHN STREET, MISSISSAUGA.GPJ CVD_ENG.GDT 19-4-16	113.58 6.00	moist very stiff grey SHALEY TILL	6.5		9	SS	28						0				6.5	-4.5 m long, 38 mm I.D. PVC screen with
LO - 69-117 JOH	112.58 7.00	moist weathered grey	7.0														7.0	sandpack TCR = 0 %
G19726 DREW.		SHALE occ. limestone seams	7.5		RC 1	HQ											7.5	RQD = 0 %

PROJECT MANAGER: **RVD**

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

Enclosure No.: 1 Sheet 2 of 2

Client: Drewlo Holdings Inc.

Project: **Proposed 25-Storey Apartment Complex**

69-117 John Street, Mississauga

EQUIPMENT DATA

Machine: Diedrich D50T HSA & DC Method:

Size: 108 mm I.D. & HQ Date: Feb 14 - 19 TO Feb 14 - 19

1			ال							Date: Fe t) 14 .	- 19 TO Feb 14 - 19
		SOIL LITHOLOGY		5	SAN	MPLE			WATER CONTENT (%)			
	ELEV./ DEPTH (m)	DESCRIPTION	DEPTH (m)	SYMBOL	SAMPLE ID	TYPE N-VALUE	PENETRATION RESIST	P. □ 200 ANCE	$\begin{array}{c c} & (\%) \\ W_{P} & W & W_{L} \\ & & & \end{array}$	1.7.7	DEPTH (m)	REMARKS
		(continued)	<u> </u>	S	SA	Ż	STANDARD ● DYN. Co 20 40 60	80 	10 20 30		-	
			8.5	F	RC 2 I	HQ					-	TCR = 100 % RQD = 18.3 %
			-9.0 -									
			9.5	F	C 3 I	HQ					9.5	TCR = 98.3 % RQD = 33.3 %
			10.5				_				10.5	
			-11.0 - - 11.5		RC 4 H	HQ					- 11.0 - - - 11.5	TCR = 98.3 % RDO = 78.3 %
-4-16			- -12.0								- -12.6 -	- Bentonite seal
SAUGA.GPJ CVD_ENG.GDT 19-4-16			12.5								- 12.5 -	TCR = 80.0 %
GPJ CVD			-13.0	F	C 5 I	HQ					- 13.0 - -	
	105.86 13.72	End of Borehole	13.5								13.5	
EET, MISSIS	13.72	End of Borenoie	-14.0								14.0	
7 JOHN STRI			14.5								14.5	
VLO - 69-11			- 15.0 -								15.0	
G19726 DREWLO - 69-117 JOHN STREET, MISSIS			15.5								15.5	
CVD BOREHOLE (2017)	PROJEC	CT MANAGER: RVD		•	C		NG & VANDER DC ENGINEERING LTI 311 Victoria Street North Kitchener, Ontario N2H 5E1			-	-	
CVD BO						ph.	(519) 742-8979, fx. (519) 742-	7739				

CHUNG & VANDER DOELEN ENGINEERING LTD.

FILE No: G19726

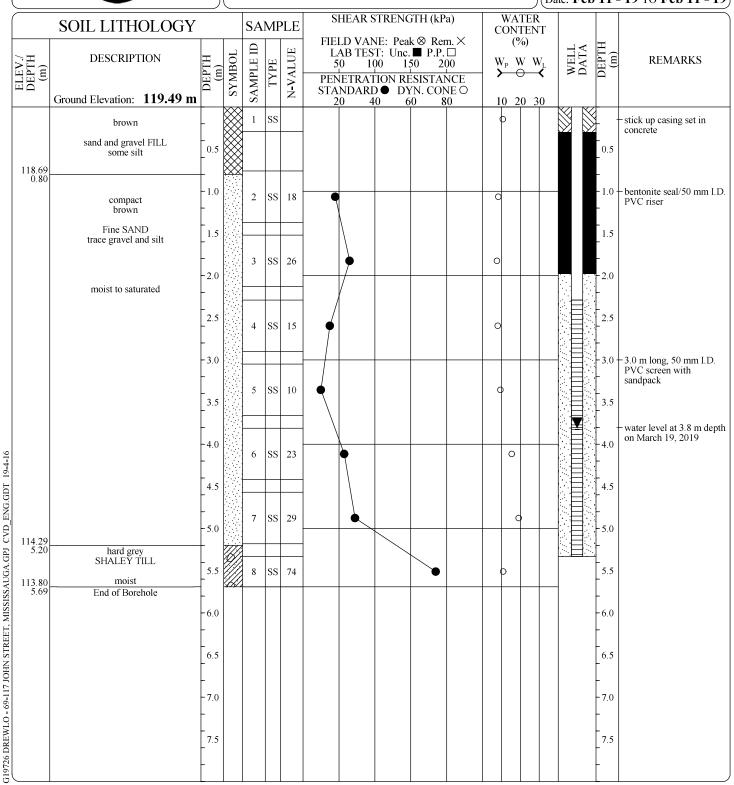
BOREHOLE No. 12

Enclosure No.: 12 Sheet 1 of 1

0

Client: Drewlo Holdings Inc.

Project: Proposed 25-Storey Apartment Complex


Location: 69-117 John Street, Mississauga

EQUIPMENT DATA

Machine: Diedrich D50T
Method: Hollow Stem Auger

Size: **108 mm I.D.**

Date: Feb 11 - 19 TO Feb 11 - 19

PROJECT MANAGER: **RVD**

CVD BOREHOLE (2017)

CHUNG & VANDER DOELEN ENGINEERING LTD.

Enclosure No.: 5 Sheet 1 of 2

Client: Drewlo Holdings Inc.

Project: **Proposed 25-Storey Apartment Complex**

69-117 John Street, Mississauga

EQUIPMENT DATA

Machine: Diedrich D50T Method: HSA & DC

108 mm I.D. & HQ Date: Feb 21 - 19 TO Feb 21 - 19

		SOIL LITHOLOGY			SA	MP	LE	SI	HEAR S	STRENC	GTH (kP	a)	W.	ATER NTENT	aic. FC		
	ELEV./ DEPTH (m)	DESCRIPTION	DEPTH (m)	SYMBOL	SAMPLE ID	TYPE	N-VALUE	LA 5 PEN	AB TES 0 1 ETRAT	T: Unc. 00 1. ΓΙΟΝ RI	ESISTAN	□ 00 NCE		(%) W W _L → ≺	WELL DATA	DEPTH (m)	REMARKS
		Ground Elevation: 118.79 m		S _V	SA		Ż	S1A 2	NDAKI 0 4		/N. CON		10	20 30	NZI NZ		
		compact dark brown to grey sand, silt, clay and shale FILL	0.5		1	ss							0			0.5	steel stick up casing set in concrete
	117.49 1.30	damp	1.0		2	SS	29		•				0			- -1.0 -	
	1.30	compact brown	1.5		3	SS	25		•				0			1.5 -	
		Fine SAND trace to some silt occ. gravelly pockets/lenseas	-2.0													-2.0 -	
		moist to saturated	2.5		4	SS	20	7						0		2.5	split spoon dripping
	115.59 3.20		-3.0													-3.0	
	3.20 115.19	firm grey CLAYEY SILT wet	3.5		5	SS	5	lacksqrup						0	<u>¥</u>	3.5	water levelat 3.27 m depth on March 19, 2019
	3.60	compact grey														-	
9-4-16		interbedded SAND AND SILT occ. clayey lenses/pockets	-4.0		6	ss	15	•						•		-4.0 · -	bentonite seal/50 mm I.D. PVC riser
SSAUGA.GPJ CVD_ENG.GDT 19-4-16		saturated	4.5													4.5	
VD ENC	112.50		-5.0		7	SS	16	•						0	▋┃	- - 5.0	
A.GPJ (113.59 5.20	very stiff grey	5.5													- - 5.5	
		SANDY CLAYEY SILT TILL trace gravel	- 5.5		8	ss	21									- -	
T, MISS	112.69 6.10	moist	6.0		9	SS	50/	-							▋┃	-6.0 -	
IN STREE		weathered grey SHALE	6.5				100 mm					`				6.5	
69-117 JOH		occ. limestone seams	7.0		10	SS	64/ 150					•				- - 7.0	
G19726 DREWLO - 69-117 JOHN STREET, MISSI			7.5		RC 1	HQ	mm									7.5	TCR = 71.4 % RQD = 0 %
																<u> </u>	<u> </u>
CVD BOREHOLE (2017)	PROJE	CT MANAGER: RVD				CH			VEEF ictoria		LTD. orth						
CVD BC							ph. ((519) 742				739					

CHUNG & VANDER DOELEN ENGINEERING LTD.

Enclosure No.: 5 Sheet 2 of 2

Client: Drewlo Holdings Inc.

Project: **Proposed 25-Storey Apartment Complex**

Location: 69-117 John Street, Mississauga

EQUIPMENT DATA

Machine: Diedrich D50T HSA & DC Method:

108 mm I.D. & HQ

Date: **Feb 21 - 19** TO **Feb 21 - 19**

		\rightarrow	CHEAD CEDENICEH (LD.)	$\overline{}$		1 - 19 10 Feb 21 - 19
	SOIL LITHOLOGY	SAMF		WATER CONTENT		
ELEV./ DEPTH (m)	DESCRIPTION	DEPTH (m) SYMBOL SAMPLE ID TYPE	FIELD VANE: Peak ⊗ Rem. × LAB TEST: Unc. ■ P.P. □ 50 100 150 200 PENETRATION RESISTANCE STANDARD ● DYN. CONE ○	(%) W _P W W _L ➤ → ←	WELL DATA	E E REMARKS
	(continued)	SAI	Z STANDARD ● DYN. CONE ○ 20 40 60 80	10 20 30		
G19726 DKEWLO - 69-117 JOHN STREET, MISSISSAUGA, GPJ CVD_ENG.GDJ 194-16	End of Borehole	RC 2HQ 8.5 -9.0 -9.5 RC 3HQ -10.0 -11.0 RC 4HQ -11.5 -12.0 -13.5 -14.0 -15.5 -15.5				TCR = 91.7 % RQD = 23.3 % 8.5 9.0 - 3.0 m long, 38 mm l.D. PVC screen with sandpack 9.5 TCR = 41.7 % RQD = 8.3 % 10.0 TCR = 100 % RQD = 71.7 % 11.5 TCR = 98.3 % RQD = 76.7 % 13.5 14.0 14.5 15.0 15.5
	CT MANAGER: RVD		HUNG & VANDER DOELEN ENGINEERING LTD. 311 Victoria Street North Kitchener, Ontario N2H 5E1 ph. (519) 742-8979, fx. (519) 742-7739			<u>'</u>

CHUNG & VANDER DOELEN ENGINEERING LTD.

Enclosure No.: 9 Sheet 1 of 2

Client: Drewlo Holdings Inc.

Project: **Proposed 25-Storey Apartment Complex**

69-117 John Street, Mississauga

EQUIPMENT DATA

Machine: Diedrich D50T HSA & DC Method:

Size: 108 mm I.D. & HQ Date: Feb 19 - 19 TO Feb 20 - 19

										SHEAR STRENGTH (kPa) WATE					oate: Fer) 19	- 19 TO Feb 20 - 19	
		SOIL LITHOLOGY			SA	MF	PLE						CO	TMC	ER ENT			
ELEV./ DEPTH	(m)	DESCRIPTION	DEPTH (m)	SYMBOL	SAMPLE ID	TYPE	N-VALUE	L. 5	AB TES 0 10 JETRAT	T: Unc. 00 1: TION RI	ESISTA	□ 00 NCE	W >	(% P W	(δ) V W _L → (WELL DATA	DEPTH (m)	REMARKS
		Ground Elevation: 117.55 m	_	S	-SA		Ż		NDARI 0 4	0 €	/N. CO1 50 8	NE O	10 d) 2(30			
		compact dark brown to brown sand and gravel FILL	0.5		1	SS											0.5	steel stick up casing set in concrete
		some silt to silty moist to wet	-1.0		2	SS	22		•				0				- - 1.0 -	
			1.5		3	SS	21	-						0			- - - - 2.0	
1,15	. , .		-					1 /									-	
115 2	2.40	very stiff grey	2.5		4	SS	13							0		Ţ	2.5	water level at 2.75 m depth on March 19, 2019
		SANDY CLAYEY SILT TILL trace gravel	3.0														-3.0 -	
		moist	3.5		5	SS	18	•						0		П	- - 3.5 -	bentonite seal/50 mm I.D. PVC riser
19-4-16			4.0	4	6	SS	28)			-4.0 - -	
7D_ENG.GDT			4.5	4	7	SS	28							0			-4.5 - -5.0	
의 112 달 5	2.35 5.20	hJ	-														-	
SISSAUGA.		hard grey SHALEY TILL	5.5		8	SS	47									П	- - 5.5 -	
SIREEI, MIS		moist	6.5		9	SS	77				•		0				-6.0 - - 6.5	
69-117 JUHN			7.0														- - - 7.0	
G19/26 DKEWLO - 69-11/JOHN STREET, MISSISSAUGA,GP CVD ENGGDT 194-16 2011	0.25 7.30	weathered grey SHALE	7.5		RC 1	ΗQ		-									7.5	TCR = 25.0 % RQD = 0 %
PRO)JEC	and CT MANAGER: RVD	L		1(CH		NG & ENGII	NEEF		LTD		-		1	<u></u>	1	1
CVD BOREHOLE							ph.		ner, Ont	ario N2I	∃ 5E1	739						

CHUNG & VANDER DOELEN ENGINEERING LTD.

Enclosure No.: 9 Sheet 2 of 2

Client: Drewlo Holdings Inc.

Project: **Proposed 25-Storey Apartment Complex**

69-117 John Street, Mississauga

EQUIPMENT DATA

Machine: Diedrich D50T HSA & DC Method:

Size: 108 mm I.D. & HQ Date: Feb 19 - 19 TO Feb 20 - 19

(- 19 TO Feb 20 - 19
		SOIL LITHOLOGY			SA	MP	LE	SHEAR STRENGT		W. COI	ATER NTENT (%)			
	ELEV./ DEPTH (m)	DESCRIPTION	DEPTH (m)	SYMBOL	SAMPLE ID	TYPE	N-VALUE	FIELD VANE: Peak LAB TEST: Unc. 50 100 15 PENETRATION RES STANDARD ● DY	■ P.P. □ 0 200 SISTANCE	W_{P}	(%) ₩ W _L	WELL DATA	DEPTH (m)	REMARKS
+		(continued)			S.		_	20 40 60		10	20 30	 :	1	
		??SHALEY TILL??	8.5		RC 2	HQ							8.5	-TCR = 66.7 % -RQD = 43.3 %
		occ. to frequent cobbles from 9.2	-9.0										-9.0 -	-3.0 m long, 38 mm I.D. PVC screen with sandpack
		to 11.1 m depth	9.5		RC 3	HQ							1	-TCR = 25.0 % -RQD = 0 %
			10.0										10.0	
			-11.0		RC 4	·HQ							- 11.0	-TCR = 47.6 % -RQD = 13.1 %
			11.5		RC 5	HQ								-TCR = 0 % -RQD = 0 %
3DT 19-4-16			12.0										- 12.0 - - 12.5	- Bentonite seal
SAUGA.GPJ CVD_ENG.GDT 19-4-16			-13.0		RC 6	HQ								-TCR = 0 % -RQD = 0 %
SSISSAUGA.GF			13.5		10	SS	100/ 115			•			- 13.5 -	
G19726 DREWLO - 69-117 JOHN STREET, MISSIS			14.0				mm						- 14.0 - - 14.5	
) - 69-117 JOH			- 15.0									_	- -15.0 -	
9726 DREWLO	102.18 15.37	End of Borehole	15.5	;	<u>11</u>	SS	100/ 125 mm						15.5	
<u> </u>	PROJEC	CT MANAGER: RVD	<u> </u>		(CH		IG & VANDER INGINEERING I	LTD.			<u> </u>		
CVD BOR						ph. (Kitchener, Ontario N2H 519) 742-8979, fx. (519)							

CHUNG & VANDER DOELEN ENGINEERING LTD.

Appendix C

Grain Size Distributions and K-Value Estimation

Terrapex, 2022

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Palmer Environmental Consulting Group Inc. (PECG)

Project: PECG PRJ# 2209001 **Project Number: CA19009** Sample Number: BH 22-4, SS6

Material Description: CLAYEY SILT some gravel some sand

Testing Remarks: HYDROMETER DETAILS: Spec. Grav. 2.75(assumed); Vb=53cm³; L2=13.8cm; L1=10.7cm; hs=

0.16cm/Div; A=30.2cm²; Mass of Disp. Agent=40g/1 Test Date: Nov.29 2022

Tested by: AM/CM

			Sie	eve Test Dat	a		
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	
297.62	0.00	6"					
		3"					
		2"					
		1.5"					
		1"	0.00	0.00	100	0	
		0.75"	17.88	0.00	94	6	
		0.625"	0.00	0.00	94	6	
		0.53"	0.00	0.00	94	6	
		0.375"	10.91	0.00	90	10	
		0.265"	1.60	0.00	90	10	
		#4	4.91	0.00	88	12	
		#10	14.60	0.00	83	17	
50.00	0.00	#20	1.98	0.00	80	20	
		#40	1.60	0.00	77	23	
		#60	1.53	0.00	75	25	
		#140	3.14	0.00	70	30	
		#200	1.02	0.00	68	32	
			I Inc. Inc.	mater Test	D-1-		

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 83

Weight of hydrometer sample =50.0

Hygroscopic moisture correction:

Moist weight and tare = 66.72Dry weight and tare = 66.53Tare weight = 34.76 Hygroscopic moisture = 0.6%

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -3.5

Meniscus correction only = 1.0Specific gravity of solids = 2.75Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.7225166 - 0.16 x Rm

_			
10	rra	-	v
	110	II JE	- X

	Hydrometer Test Data (continued)									
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained	
1.00	22.2	40.0	37.0	0.0129	41.0	10.2	0.0411	61	39	
2.00	22.2	37.7	34.7	0.0129	38.7	10.5	0.0296	57	43	
5.00	22.2	35.0	32.0	0.0129	36.0	11.0	0.0191	52	48	
16.25	22.2	30.7	27.7	0.0129	31.7	11.7	0.0109	45	55	
31.00	22.2	28.0	25.0	0.0129	29.0	12.1	0.0081	41	59	
60.00	22.1	25.0	21.9	0.0129	26.0	12.6	0.0059	36	64	
90.00	22.1	23.2	20.1	0.0129	24.2	12.9	0.0049	33	67	
120.00	22.2	22.1	19.1	0.0129	23.1	13.0	0.0042	31	69	
251.00	22.4	18.8	15.8	0.0129	19.8	13.6	0.0030	26	74	
1440.00	23.0	14.1	11.3	0.0128	15.1	14.3	0.0013	18	82	

Fractional Components

Cobbles	Crovel		Sand		Fines				
Copples	Gravel	Coarse	Fine	Total	Silt	Clay	Total		
0	17	6	9	15	47	21	68		

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0016	0.0039	0.0076	0.0156	0.0393	0.8649	2.8234	7.7137	20.6217

Fineness Modulus

_____ Terrapex _____

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Palmer Environmental Consulting Group Inc. (PECG)

Project: PECG PRJ# 2209001 **Project Number: CA19009** Sample Number: BH 22-12, SS7

Material Description: SANDY SILT some gravel some clay

Testing Remarks: HYDROMETER DETAILS: Spec. Grav. 2.75(assumed); Vb=53cm³; L2=13.8cm; L1=10.7cm; hs=

0.16cm/Div; A=30.2cm²; Mass of Disp. Agent=40g/1 Test Date: Nov.30 2022

Tested by: AM/CM

			Sie	eve Test Dat	a		
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	
263.58	0.00	6"					
		3"					
		2"					
		1.5"					
		1"					
		0.75"					
		0.625"	0.00	0.00	100	0	
		0.53"	7.27	0.00	97	3	
		0.375"	5.71	0.00	95	5	
		0.265"	5.38	0.00	93	7	
		#4	8.23	0.00	90	10	
		#10	22.20	0.00	81	19	
50.00	0.00	#20	2.85	0.00	77	23	
		#40	2.18	0.00	73	27	
		#60	1.89	0.00	70	30	
		#140	4.48	0.00	63	37	
		#200	1.77	0.00	60	40	
			Hydro	meter Test l	Data		

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 81

Weight of hydrometer sample =50.0

Hygroscopic moisture correction: Moist weight and tare = 77.98Dry weight and tare = 77.81

35.29 Tare weight = Hygroscopic moisture = 0.4%**Automatic temperature correction**

Composite correction (fluid density and meniscus height) at 20 deg. C = -3.5

Meniscus correction only = 1.0Specific gravity of solids = 2.75

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.7225166 - 0.16 x Rm

_			
10	rra	-	v
	110	II JE	- X

	Hydrometer Test Data (continued)									
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained	
1.00	22.2	33.7	30.7	0.0129	34.7	11.2	0.0431	49	51	
2.00	22.1	30.5	27.4	0.0129	31.5	11.7	0.0312	44	56	
5.00	22.2	27.0	24.0	0.0129	28.0	12.2	0.0202	38	62	
15.00	22.0	22.0	18.9	0.0129	23.0	13.0	0.0121	30	70	
30.25	22.1	19.7	16.6	0.0129	20.7	13.4	0.0086	27	73	
60.00	22.1	17.0	13.9	0.0129	18.0	13.8	0.0062	22	78	
90.00	22.1	15.5	12.4	0.0129	16.5	14.1	0.0051	20	80	
120.00	22.2	14.7	11.7	0.0129	15.7	14.2	0.0044	19	81	
250.00	22.5	12.2	9.2	0.0128	13.2	14.6	0.0031	15	85	
1440.00	22.9	9.5	6.6	0.0128	10.5	15.0	0.0013	11	89	

Fractional Components

Cobbles	Crovel		Sand		Fines					
Copples	Cobbles Gravel	Coarse	Fine	Total	Silt	Clay	Total			
0	19	8	13	21	48	12	60			

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0032	0.0052	0.0118	0.0228	0.0451	0.0749	1.6072	2.9460	4.7923	9.3479

Fineness Modulus

__ Terrapex _____

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Palmer Environmental Consulting Group Inc. (PECG)

Project: PECG PRJ# 2209001 **Project Number: CA19009** Sample Number: BH 22-13, SS5

Material Description: SILTY SAND trace clay trace gravel

Testing Remarks: HYDROMETER DETAILS: Spec. Grav. 2.75(assumed); Vb=53cm^3; L2=13.8cm; L1=10.7cm; hs=

0.16cm/Div; A=30.2cm²; Mass of Disp. Agent=40g/1 Test Date: Nov.30 2022

Tested by: AM/CM

			Sie	eve Test Dat	а	
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained
364.02	0.00	6"				
		3"				
		2"				
		1.5"				
		1"				
		0.75"				
		0.625"				
		0.53"	0.00	0.00	100	0
		0.375"	2.81	0.00	99	1
		0.265"	2.05	0.00	99	1
		#4	5.06	0.00	97	3
		#10	10.54	0.00	94	6
50.00	0.00	#20	2.09	0.00	90	10
		#40	3.33	0.00	84	16
		#60	15.25	0.00	55	45
		#140	12.03	0.00	33	67
		#200	1.36	0.00	30	70

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 94

Weight of hydrometer sample =50.0

Hygroscopic moisture correction:

Moist weight and tare = 48.68Dry weight and tare = 48.57Tare weight = 20.77 Hygroscopic moisture = 0.4%

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -3.5

Meniscus correction only = 1.0Specific gravity of solids = 2.75Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.7225166 - 0.16 x Rm

т	^	ra	-	^	v
		10	w		ж

Hydrometer Test Data (continued)									
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	22.2	17.5	14.5	0.0129	18.5	13.8	0.0478	27	73
2.00	22.2	16.0	13.0	0.0129	17.0	14.0	0.0341	24	76
5.00	22.2	14.7	11.7	0.0129	15.7	14.2	0.0217	22	78
16.00	22.2	12.8	9.8	0.0129	13.8	14.5	0.0123	18	82
30.00	22.3	12.0	9.0	0.0129	13.0	14.6	0.0090	17	83
60.50	22.2	10.8	7.8	0.0129	11.8	14.8	0.0064	14	86
90.00	22.4	10.0	7.0	0.0129	11.0	15.0	0.0052	13	87
120.00	22.4	9.3	6.3	0.0129	10.3	15.1	0.0046	12	88
250.00	22.5	7.5	4.5	0.0128	8.5	15.4	0.0032	8	92
1442.00	22.8	6.8	3.9	0.0128	7.8	15.5	0.0013	7	93

Fractional Components

Cobbles Gravel			Sand		Fines			
Cobbles Gravel	Gravei	Coarse	Fine	Total	Silt	Clay	Total	
0	6	10	54	64	22	8	30	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0038	0.0070	0.0168	0.0740	0.1664	0.2234	0.2720	0.3862	0.4597	0.8005	2.2887

Fineness Modulus	c _u	C _c
1.25	70.79	5.24

______ Terrapex _____

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Palmer Environmental Consulting Group Inc. (PECG)

Project: PECG PRJ# 2209001 Project Number: CA19009 Sample Number: BH 22-16, SS6

Material Description: SAND some silt trace gravel trace clay

Testing Remarks: HYDROMETER DETAILS: Spec. Grav. 2.75(assumed); Vb=53cm^3; L2=13.8cm; L1=10.7cm; hs=

0.16cm/Div; A=30.2cm²; Mass of Disp. Agent=24g/1 Test Date: Nov.29 2022

Tested by: CM

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained	
314.37	0.00	6"					
		3"					
		2"					
		1.5"					
		1"					
		0.75"					
		0.625"					
		0.53"	0.00	0.00	100	0	
		0.375"	2.26	0.00	99	1	
		0.265"	1.98	0.00	99	1	
		#4	1.09	0.00	98	2	
		#10	7.10	0.00	96	4	
100.00	0.00	#20	3.04	0.00	93	7	
		#40	3.31	0.00	90	10	
		#60	30.56	0.00	61	39	
		#140	44.51	0.00	18	82	
		#200	3.10	0.00	15	85	
			Llydro	meter Test	Doto		

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 96

Weight of hydrometer sample =100.0 Hygroscopic moisture correction:

Moist weight and tare = 50.93

Dry weight and tare = 50.86

Tare weight = 19.93

Hygroscopic moisture = 0.2%

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -1.8

Meniscus correction only = 1.0Specific gravity of solids = 2.75Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.7225166 - 0.16 x Rm

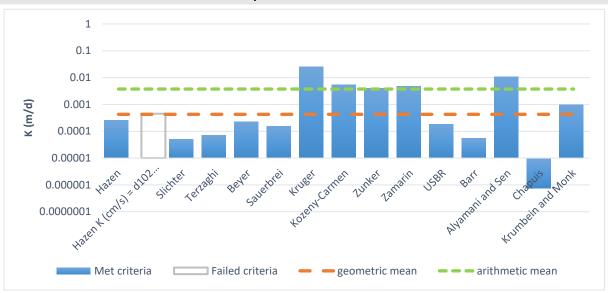
_ Terrapex _

			Hydrome	ter Test D	ata (cor	ntinued)			
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	22.4	13.0	11.7	0.0129	14.0	14.5	0.0490	11	89
2.00	22.4	12.0	10.7	0.0129	13.0	14.6	0.0348	10	90
5.00	22.4	10.0	8.7	0.0129	11.0	15.0	0.0223	8	92
15.25	22.3	8.7	7.4	0.0129	9.7	15.2	0.0128	7	93
30.00	22.3	7.8	6.5	0.0129	8.8	15.3	0.0092	6	94
60.00	22.2	6.9	5.6	0.0129	7.9	15.5	0.0065	5	95
90.00	22.4	6.7	5.4	0.0129	7.7	15.5	0.0053	5	95
120.25	22.5	6.2	4.9	0.0128	7.2	15.6	0.0046	5	95
250.00	22.6	4.8	3.6	0.0128	5.8	15.8	0.0032	3	97
1440.00	22.9	4.0	2.8	0.0128	5.0	15.9	0.0013	3	97

Fractional Components

Cobbles Gravel			Sand		Fines			
		Coarse	Fine	Total	Silt	Clay	Total	
0	4	6	75	81	12	3	15	

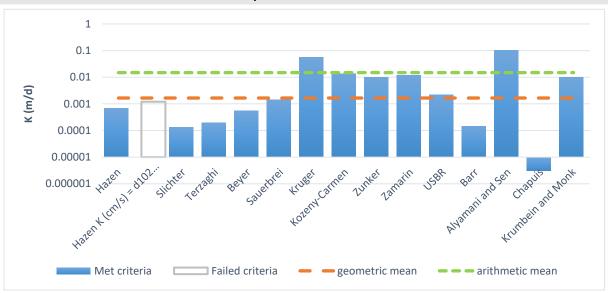
D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0051	0.0338	0.0762	0.1206	0.1637	0.1955	0.2231	0.2485	0.3070	0.3368	0.4273	1.5045


Fineness Modulus	c _u	C _c
1.15	7.36	3.19

Sample ID: BH22-4/SS6 Date: Dec 2022

Sample Mass (g): T (oC): <u>20</u>

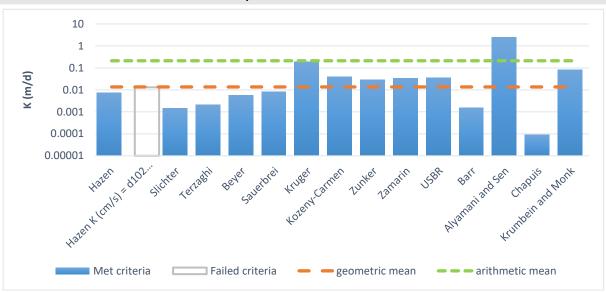
Poorly sorted silt low in fines


Estimation of Hydraulic	cm/s	m/s	m/d
Conductivity	CITI/3	111/3	III/ U
Hazen	.295E-06	.295E-08	0.00
Hazen K (cm/s) = d_{10} (mm)	.522E-06	.522E-08	0.00
Slichter	.580E-07	.580E-09	0.00
Terzaghi	.828E-07	.828E-09	0.00
Beyer	.263E-06	.263E-08	0.00
Sauerbrei	.177E-06	.177E-08	0.00
Kruger	.294E-04	.294E-06	0.03
Kozeny-Carmen	.626E-05	.626E-07	0.01
Zunker	.472E-05	.472E-07	0.00
Zamarin	.551E-05	.551E-07	0.00
USBR	.210E-06	.210E-08	0.00
Barr	.622E-07	.622E-09	0.00
Alyamani and Sen	.125E-04	.125E-06	0.01
Chapuis	.887E-09	.887E-11	0.00
Krumbein and Monk	.115E-05	.115E-07	0.00
geometric mean	.495E-06	.495E-08	0.00
arithmetic mean	.434E-05	.434E-07	0.00

Sample ID: BH22-12/SS7 Date: Dec 2022

Sample Mass (g): T (oC): <u>20</u>

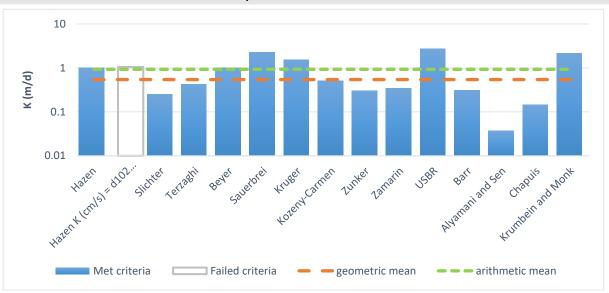
Poorly sorted silt low in fines


Estimation of Hydraulic	cm/s	m/s	m/d
Conductivity	CITI/3	111/3	III/ U
Hazen	.791E-06	.791E-08	0.00
Hazen K (cm/s) = d_{10} (mm)	.140E-05	.140E-07	0.00
Slichter	.155E-06	.155E-08	0.00
Terzaghi	.222E-06	.222E-08	0.00
Beyer	.647E-06	.647E-08	0.00
Sauerbrei	.165E-05	.165E-07	0.00
Kruger	.642E-04	.642E-06	0.06
Kozeny-Carmen	.154E-04	.154E-06	0.01
Zunker	.116E-04	.116E-06	0.01
Zamarin	.135E-04	.135E-06	0.01
USBR	.255E-05	.255E-07	0.00
Barr	.167E-06	.167E-08	0.00
Alyamani and Sen	.119E-03	.119E-05	0.10
Chapuis	.355E-08	.355E-10	0.00
Krumbein and Monk	.114E-04	.114E-06	0.01
geometric mean	.192E-05	.192E-07	0.00
arithmetic mean	.173E-04	.173E-06	0.01

Sample ID: BH22-13/SS5 Date: Dec 2022

Sample Mass (g): T (oC): <u>20</u>

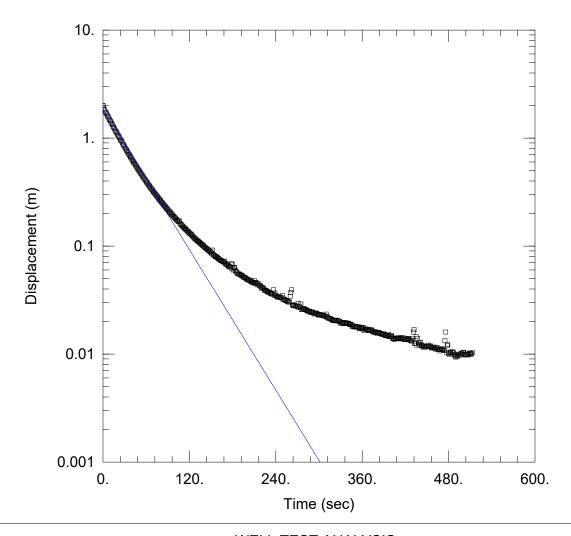
Poorly sorted sand low in fines


Estimation of Hydraulic	cm/s	m/s	m/d
Conductivity	CITI/3	111/3	III/ U
Hazen	.861E-05	.861E-07	0.01
Hazen K (cm/s) = d_{10} (mm)	.152E-04	.152E-06	0.01
Slichter	.169E-05	.169E-07	0.00
Terzaghi	.241E-05	.241E-07	0.00
Beyer	.662E-05	.662E-07	0.01
Sauerbrei	.949E-05	.949E-07	0.01
Kruger	.218E-03	.218E-05	0.19
Kozeny-Carmen	.447E-04	.447E-06	0.04
Zunker	.334E-04	.334E-06	0.03
Zamarin	.386E-04	.386E-06	0.03
USBR	.406E-04	.406E-06	0.04
Barr	.181E-05	.181E-07	0.00
Alyamani and Sen	.293E-02	.293E-04	2.53
Chapuis	.103E-06	.103E-08	0.00
Krumbein and Monk	.947E-04	.947E-06	0.08
geometric mean	.158E-04	.158E-06	0.01
arithmetic mean	.245E-03	.245E-05	0.21

Sample ID: BH22-16/SS6 Date: Dec 2022

Sample Mass (g): T (oC): <u>20</u>

Poorly sorted sand low in fines


Estimation of Hydraulic	cm/s	m/s	m/d
Conductivity	CITI/3	111/3	III/ U
Hazen	.118E-02	.118E-04	1.02
Hazen K (cm/s) = d_{10} (mm)	.121E-02	.121E-04	1.05
Slichter	.293E-03	.293E-05	0.25
Terzaghi	.489E-03	.489E-05	0.42
Beyer	.116E-02	.116E-04	1.00
Sauerbrei	.264E-02	.264E-04	2.28
Kruger	.176E-02	.176E-04	1.52
Kozeny-Carmen	.590E-03	.590E-05	0.51
Zunker	.348E-03	.348E-05	0.30
Zamarin	.400E-03	.400E-05	0.35
USBR	.315E-02	.315E-04	2.72
Barr	.356E-03	.356E-05	0.31
Alyamani and Sen	.428E-04	.428E-06	0.04
Chapuis	.167E-03	.167E-05	0.14
Krumbein and Monk	.250E-02	.250E-04	2.16
geometric mean	.628E-03	.628E-05	0.54
arithmetic mean	.108E-02	.108E-04	0.93

Appendix D

Single Well Response Tests

Palmer, 2022

Data Set: G:\...\BH1_SelfConfining.aqt

Date: 01/03/23 Time: 16:04:21

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

AQUIFER DATA

Saturated Thickness: 8.95 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH1)

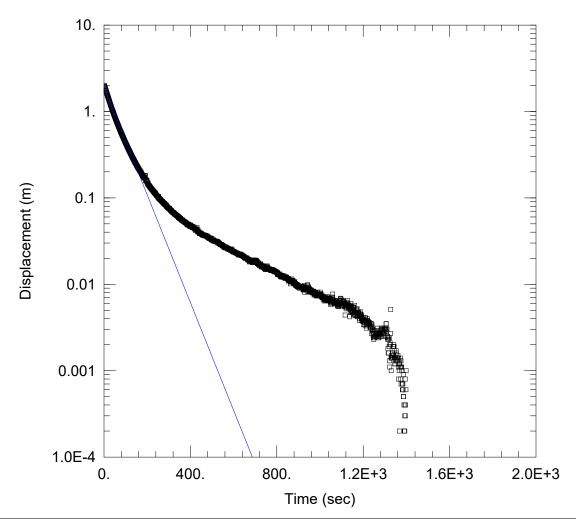
Initial Displacement: 1.992 m

Total Well Penetration Depth: 8.87 m

Casing Radius: 0.01905 m

Static Water Column Height: 8.95 m

Screen Length: 4.5 m Well Radius: 0.01905 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Confined

Solution Method: Hvorslev

K = 6.658E-6 m/sec

y0 = 1.85 m

Data Set: G:\...\BH5.aqt

Date: <u>01/03/23</u> Time: <u>16:03:06</u>

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

AQUIFER DATA

Saturated Thickness: 7.5 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH5)

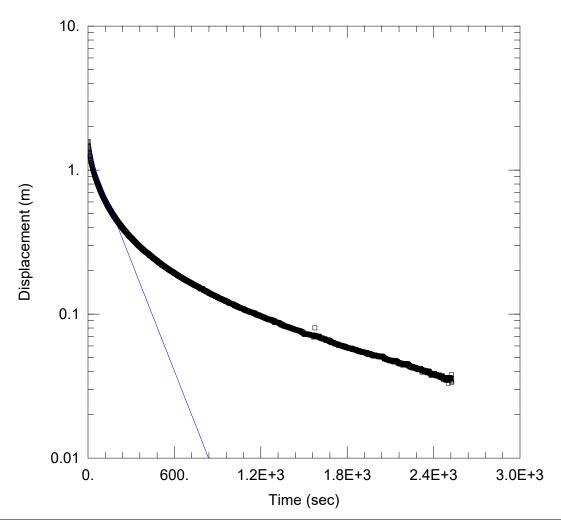
Initial Displacement: 2.004 m

Total Well Penetration Depth: 7.48 m

Casing Radius: 0.0194 m

Static Water Column Height: 10.01 m

Screen Length: 3. m Well Radius: 0.0194 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Confined

K = 5.575E-6 m/sec

Solution Method: Hvorslev

y0 = 1.912 m

Data Set: G:\...\BH9.aqt

Date: <u>01/03/23</u> Time: <u>16:11:51</u>

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

AQUIFER DATA

Saturated Thickness: 12.27 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH9)

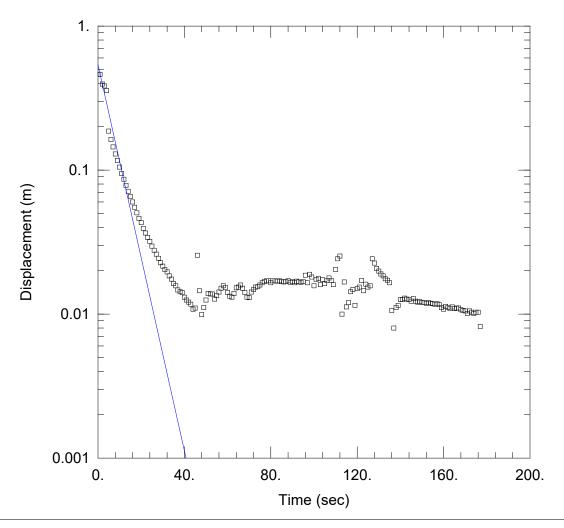
Initial Displacement: 1.583 m

Total Well Penetration Depth: 7.58 m

Casing Radius: 0.01905 m

Static Water Column Height: 12.27 m

Screen Length: 3. m Well Radius: 0.01905 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Confined

K = 2.202E-6 m/sec

Solution Method: Hvorslev

y0 = 1.355 m

Data Set: G:\...\BH12.aqt

Date: 01/03/23 Time: 16:25:37

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

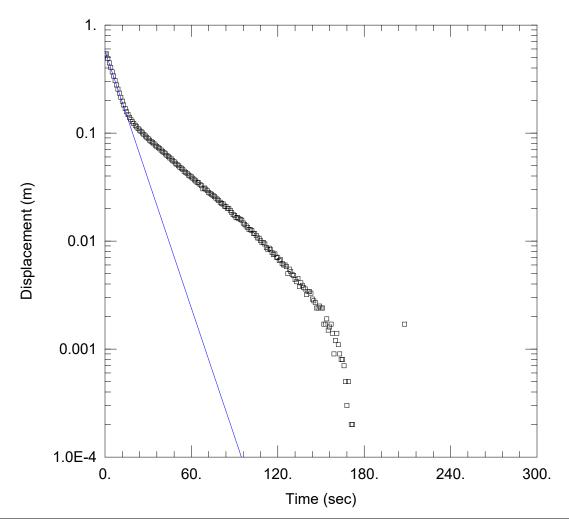
AQUIFER DATA

Saturated Thickness: 1.61 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH12)

Initial Displacement: 0.4625 m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m


Static Water Column Height: 1.61 m

Screen Length: <u>3.</u> m Well Radius: <u>0.0254</u> m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0001106 m/sec y0 = 0.539 m

Data Set: G:\...\BH12_2.aqt

Date: <u>01/03/23</u> Time: <u>16:28:47</u>

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

AQUIFER DATA

Saturated Thickness: 1.61 m Anisotropy Ratio (Kz/Kr): 0.1

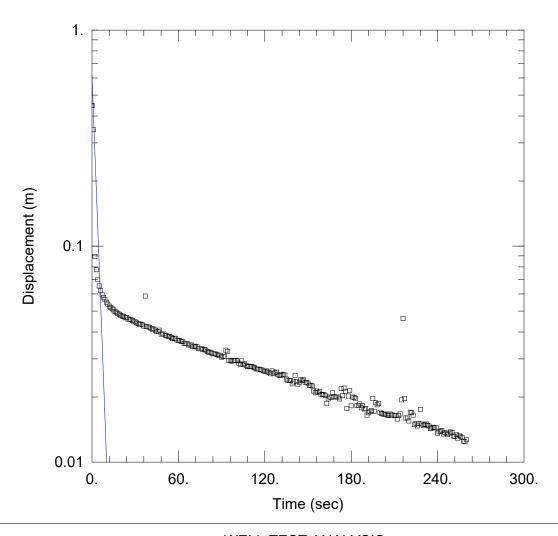
WELL DATA (BH12)

Initial Displacement: <u>0.5406</u> m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 1.61 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

K = 6.549E-5 m/sec

Solution Method: Bouwer-Rice

y0 = 0.5745 m

Data Set: G:\...\BH22-1_Beginning.aqt

Date: 01/03/23 Time: 10:22:36

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 23, 2022

AQUIFER DATA

Saturated Thickness: 1.94 m Anisotropy Ratio (Kz/Kr): 0.1

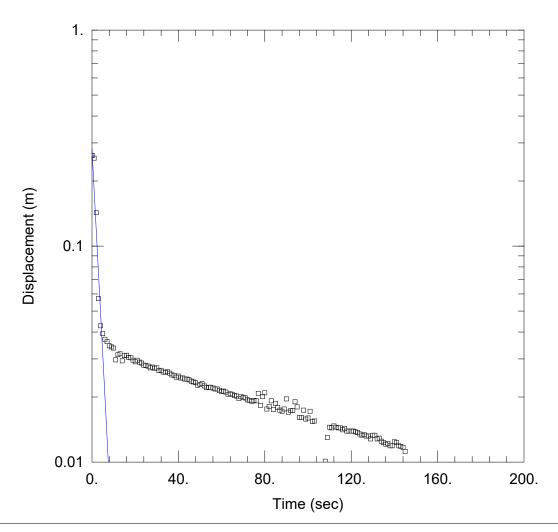
WELL DATA (BH22-1)

Initial Displacement: <u>0.4467</u> m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 1.27 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0002426 m/sec

y0 = 0.6146 m

Data Set: G:\...\BH22-2_FH1_unconfined_beginning.aqt

Date: 01/03/23 Time: 10:31:26

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 23, 2022

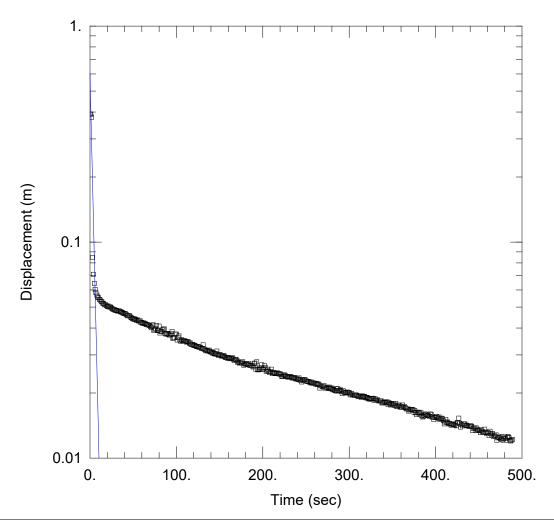
AQUIFER DATA

Saturated Thickness: 2.25 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH22-2)

Initial Displacement: <u>0.2622</u> m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m


Static Water Column Height: 1.46 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0002295 m/sec y0 = 0.2812 m

Data Set: G:\...\BH22-2_FH2_unconfined_beginning.aqt

Date: 01/03/23 Time: 10:36:18

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 23, 2022

AQUIFER DATA

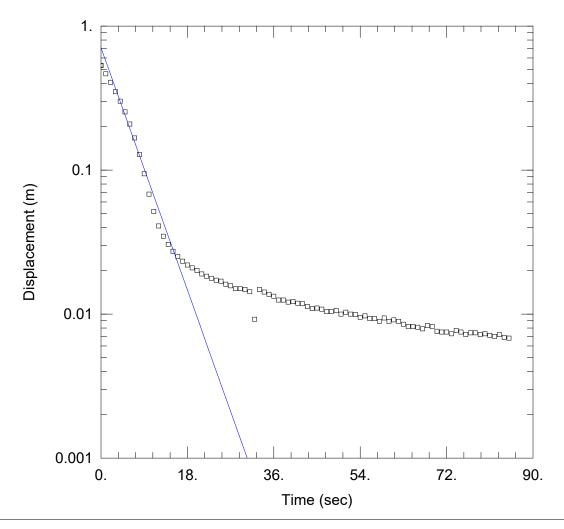
Saturated Thickness: 2.25 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH22-2)

Initial Displacement: <u>0.3909</u> m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 1.46 m


Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0002037 m/sec y0 = 0.5987 m

Data Set: G:\...\BH22-2_RH1_unconfined_beginning.aqt

Date: 01/03/23 Time: 10:41:13

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 23, 2022

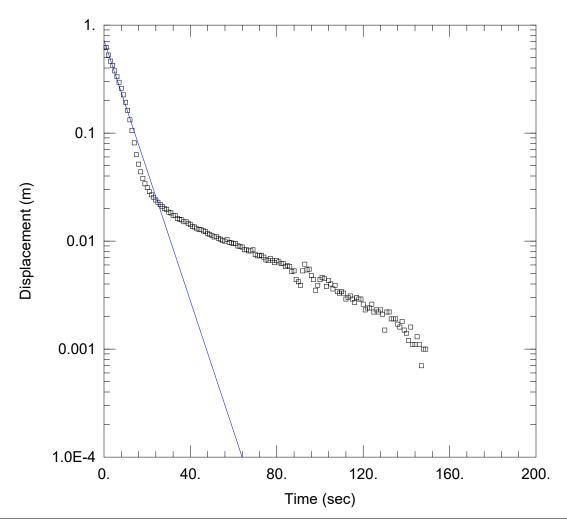
AQUIFER DATA

Saturated Thickness: 2.25 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH22-2)

Initial Displacement: 0.5322 m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m


Static Water Column Height: 1.46 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.000112 m/sec y0 = 0.7072 m

Data Set: G:\...\BH22-2_RH2.aqt

Date: <u>01/03/23</u> Time: <u>10:51:29</u>

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 23, 2022

AQUIFER DATA

Saturated Thickness: 2.25 m Anisotropy Ratio (Kz/Kr): 0.1

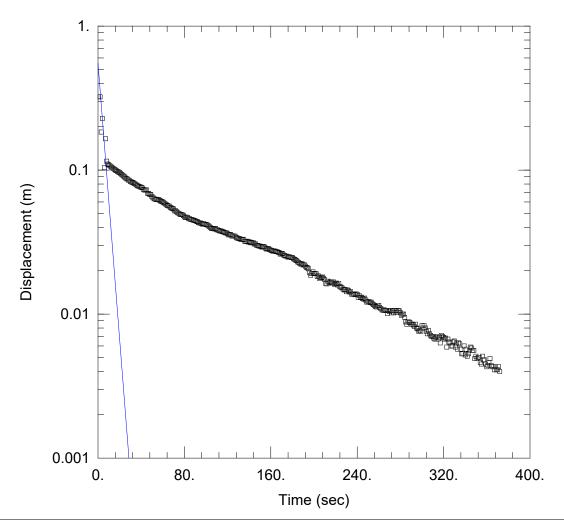
WELL DATA (BH22-2)

Initial Displacement: 0.6222 m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 1.46 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

K = 7.236E-5 m/sec

Solution Method: Bouwer-Rice

y0 = 0.7222 m

Data Set: G:\...\BH22_7_start.aqt

Date: 01/03/23 Time: 14:14:19

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

AQUIFER DATA

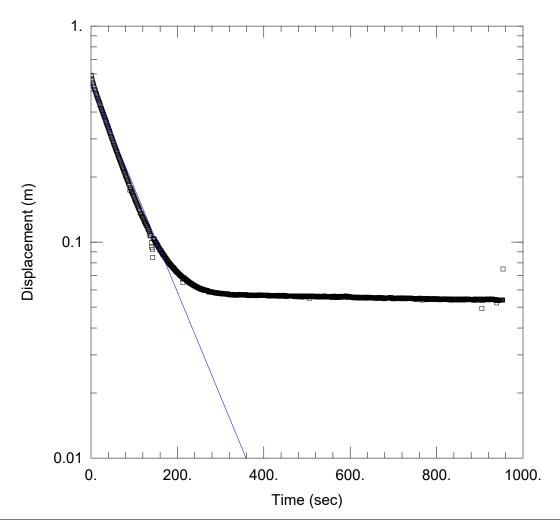
Saturated Thickness: 2.45 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH22-7)

Initial Displacement: 0.3223 m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 2.08 m


Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

Solution Method: Bouwer-Rice

SOLUTION

Aquifer Model: Unconfined

K = 0.0001059 m/secy0 = 0.5534 m

Data Set: G:\...\BH22-8_A.aqt

Date: <u>01/04/23</u> Time: <u>12:07:42</u>

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 23, 2022

AQUIFER DATA

Saturated Thickness: 2.34 m Anisotropy Ratio (Kz/Kr): 0.1

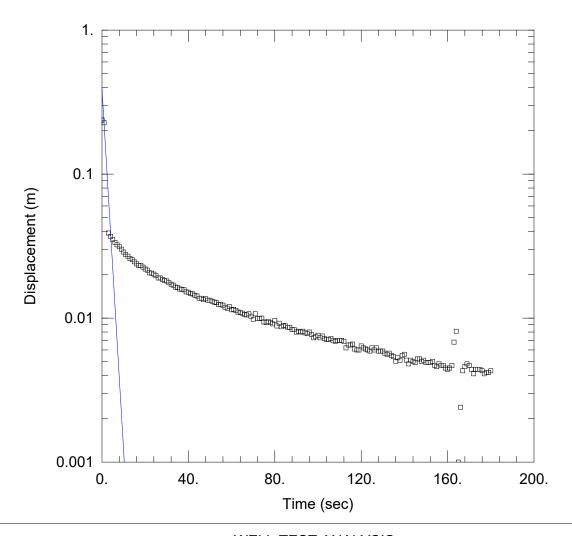
WELL DATA (BH22-8)

Initial Displacement: <u>0.5904</u> m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 1.69 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

K = 5.588E-6 m/sec

Solution Method: Bouwer-Rice

y0 = 0.5446 m

Data Set: G:\...\BH22-9_beginning..aqt

Date: 12/23/22 Time: 14:36:43

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

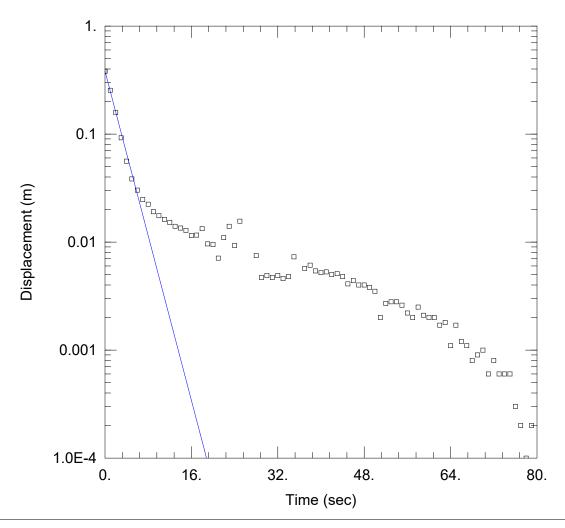
AQUIFER DATA

Saturated Thickness: 2.72 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH22-9)

Initial Displacement: 0.2372 m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m


Static Water Column Height: 1.78 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0002506 m/sec y0 = 0.3893 m

Data Set: G:\...\BH22-9RH_beginning..aqt

Date: 12/23/22 Time: 14:42:05

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

AQUIFER DATA

Saturated Thickness: 2.72 m Anisotropy Ratio (Kz/Kr): 0.1

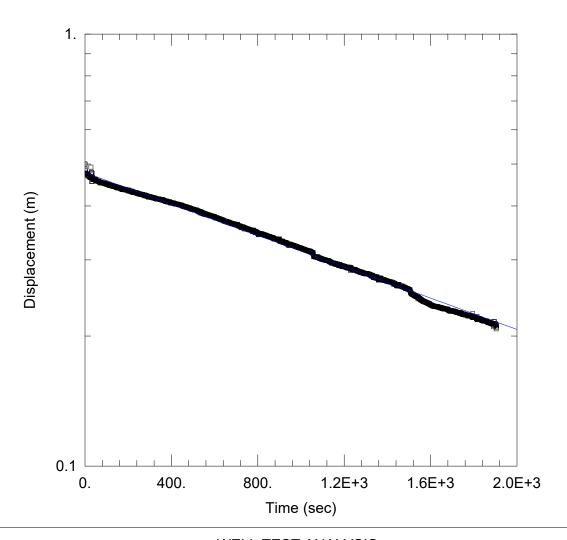
WELL DATA (BH22-9)

Initial Displacement: 0.3813 m Total Well Penetration Depth: 3. m

Casing Radius: 0.0254 m

Static Water Column Height: 1.78 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0001906 m/sec y0 = 0

y0 = 0.3826 m

Data Set: G:\...\BH22-11_SelfConfining.aqt

Date: 01/04/23 Time: 13:33:10

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Nov 26, 2022

AQUIFER DATA

Saturated Thickness: 9.52 m Anisotropy Ratio (Kz/Kr): 0.1

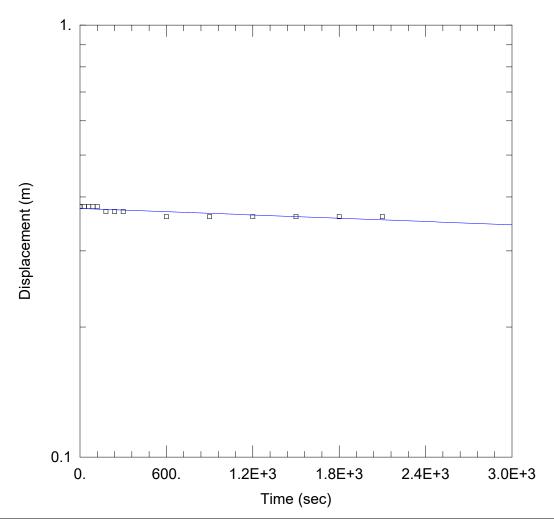
WELL DATA (BH22-11)

Initial Displacement: 0.5 m

Total Well Penetration Depth: 9.27 m

Casing Radius: 0.0254 m

Static Water Column Height: 9.52 m


Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Confined

Solution Method: Hvorslev

K = 2.661E-7 m/sec y0 = 0.4776 m

Data Set: G:\...\BH22-16-Jan5.aqt

Date: 01/09/23 Time: 10:17:20

PROJECT INFORMATION

Company: Palmer Client: Canada Inc Project: 2209001

Location: Mississauga, On Test Date: Jan 5, 2023

AQUIFER DATA

Saturated Thickness: 14.34 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH22-16)

Initial Displacement: 0.38 m

Casing Radius: 0.0254 m

Total Well Penetration Depth: 14.38 m

Static Water Column Height: 14.38 m

Screen Length: 1.5 m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Confined

Solution Method: Hvorslev

K = 3.701E-8 m/sec y0 = 0.3763 m

Appendix E

Groundwater Chemistry Analyses

ALS, 2022

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **WT2222346** Page : 1 of 11

Client Palmer Environmental Consulting Group Inc. Laboratory : Waterloo - Environmental

Contact : Frank Liu Account Manager : Andrew Martin

Address : 74 Berkeley Street Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

 Telephone
 :--- Telephone
 : +1 519 886 6910

 Project
 : 2209001
 Date Samples Received
 : 18-Nov-2022 13:37

PO : ---- Issue Date : 30-Nov-2022 13:35
C-O-C number : 20-999595
Sampler : CLIENT

Quote number : (Q88296) PALMER 2022 STANDING OFFER

Toronto ON Canada M5V 1E3

No. of samples received :1

No. of samples analysed :1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Site

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page : 3 of 11 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Method Result		Comment
Laboratory Control Sample (LCS) Recov	veries							
Volatile Organic Compounds	QC-752840-002		methyl ethyl ketone [MEK]	78-93-3	E611D	144 % LCS-H	70.0-130%	Recovery greater than
								upper control limit
Volatile Organic Compounds	QC-752840-002		tetrachloroethane,	79-34-5	E611D	153 % LCS-H	70.0-130%	Recovery greater than
			1,1,2,2-					upper control limit

Result Qualifiers

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Page : 4 of 11 Work Order : WT2222346

Amber glass total (sulfuric acid) [ON MECP]

BH22-11

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Matrix: Water

Analyte Group

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analysis

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Sampling Date

Method

E318

Extraction / Preparation

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Container / Client Sample ID(s) **Holding Times** Eval Analysis Date Holding Times Eval Preparation Rec Actual Rec Actual Date Aggregate Organics: Biochemical Oxygen Demand (Carbonaceous) - 5 day HDPE [BOD HT-4d] E555 ✓ BH22-11 18-Nov-2022 21-Nov-2022 4 days 3 days Aggregate Organics : Mineral Oil & Grease by Gravimetry Amber glass (hydrochloric acid) 5 days BH22-11 E567SG 18-Nov-2022 22-Nov-2022 ✓ 22-Nov-2022 40 days 0 days 28 days Aggregate Organics : Oil & Grease by Gravimetry Amber glass (hydrochloric acid) E567 1 BH22-11 18-Nov-2022 22-Nov-2022 5 days 22-Nov-2022 40 days 0 days 28 days Aggregate Organics : Phenols (4AAP) in Water by Colorimetry Amber glass total (sulfuric acid) [ON MECP] BH22-11 E562 18-Nov-2022 22-Nov-2022 23-Nov-2022 28 days 6 davs Anions and Nutrients: Fluoride in Water by IC HDPE [ON MECP] BH22-11 E235.F 18-Nov-2022 22-Nov-2022 23-Nov-2022 28 days 6 days ✓ Anions and Nutrients : Sulfate in Water by IC HDPE [ON MECP] BH22-11 E235.SO4 18-Nov-2022 22-Nov-2022 23-Nov-2022 28 days 6 days ----Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)

18-Nov-2022

23-Nov-2022

✓

28 days 6 days

23-Nov-2022

Page : 5 of 11 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🕥	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analysis		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)			Date	Nec	Actual			Nec	Actual	
Amber glass total (sulfuric acid) [ON MECP]										
BH22- 11	E372-U	18-Nov-2022	23-Nov-2022				24-Nov-2022	28 days	7 days	✓
Cyanides : Total Cyanide										
UV-inhibited HDPE - total (sodium hydroxide) BH22- 11	E333	18-Nov-2022	25-Nov-2022				25-Nov-2022	14 days	8 days	✓
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] BH22- 11	E012A.EC	18-Nov-2022					19-Nov-2022	48 hrs	35 hrs	✓
Nonylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode										
Amber glass/Teflon lined cap - LCMS BH22- 11	E749B	18-Nov-2022	24-Nov-2022	7 days	7 days	✓	29-Nov-2022	7 days	5 days	✓
Nonylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negativ	ve Mode									
Amber glass/Teflon lined cap - LCMS BH22- 11	E749A	18-Nov-2022	24-Nov-2022	7 days	7 days	✓	29-Nov-2022	7 days	5 days	✓
Phthalate Esters : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP] BH22- 11	E655F	18-Nov-2022	23-Nov-2022	14 days	6 days	✓	24-Nov-2022	40 days	1 days	√
Physical Tests : pH by Meter										
HDPE [ON MECP] BH22- 11	E108	18-Nov-2022	22-Nov-2022				23-Nov-2022	14 days	6 days	✓
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP] BH22- 11	E160	18-Nov-2022					24-Nov-2022	7 days	7 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-MS										
Amber glass/Teflon lined cap BH22- 11	E687	18-Nov-2022	21-Nov-2022	14 days	4 days	✓	22-Nov-2022	40 days	1 days	✓

Page : 6 of 11 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
		Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
		Date	Rec	Actual			Rec	Actual	
E508	18-Nov-2022	21-Nov-2022				21-Nov-2022	28 days	3 days	✓
E420	18-Nov-2022	21-Nov-2022				22-Nov-2022	180	5 days	✓
							days		
E611D	18-Nov-2022	22-Nov-2022				22-Nov-2022	14 days	5 days	✓
	E508	E508 18-Nov-2022 E420 18-Nov-2022	Preparation Date E508 18-Nov-2022 21-Nov-2022 E420 18-Nov-2022 21-Nov-2022	Preparation Date Holding Rec E508 18-Nov-2022 21-Nov-2022 E420 18-Nov-2022 21-Nov-2022	Preparation Date Holding Times Rec Actual E508 18-Nov-2022 21-Nov-2022 E420 18-Nov-2022 21-Nov-2022	Preparation Date Holding Times Rec Eval E508 18-Nov-2022 21-Nov-2022 E420 18-Nov-2022 21-Nov-2022	Preparation Holding Times Eval Analysis Date	Preparation Holding Times Eval Analysis Date Holding Rec Actual	Preparation Holding Times Eval Analysis Date Holding Times Rec Actual

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 7 of 11 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		5)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	751178	1	20	5.0	5.0	1
E. coli (MF-mFC-BCIG)	E012A.EC	749981	1	7	14.2	5.0	✓
Fluoride in Water by IC	E235.F	753246	1	4	25.0	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	761880	1	20	5.0	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	761879	1	20	5.0	5.0	✓
pH by Meter	E108	753250	1	6	16.6	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	753517	1	10	10.0	5.0	✓
Sulfate in Water by IC	E235.SO4	753247	1	18	5.5	5.0	✓
Total Cyanide	E333	757482	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	753515	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	751079	1	12	8.3	5.0	✓
Total metals in Water by CRC ICPMS	E420	752020	1	10	10.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	753516	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	754190	1	19	5.2	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	752840	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	751178	1	20	5.0	5.0	✓
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	755346	1	2	50.0	5.0	✓
Fluoride in Water by IC	E235.F	753246	1	4	25.0	5.0	✓
Mineral Oil & Grease by Gravimetry	E567SG	750814	1	13	7.6	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	761880	1	20	5.0	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	761879	1	20	5.0	5.0	✓
Oil & Grease by Gravimetry	E567	750813	1	13	7.6	5.0	✓
PCB Aroclors by GC-MS	E687	750866	1	6	16.6	4.7	✓
pH by Meter	E108	753250	1	6	16.6	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	753517	1	10	10.0	5.0	✓
Sulfate in Water by IC	E235.SO4	753247	1	18	5.5	5.0	✓
Total Cyanide	E333	757482	0	19	0.0	5.0	sc
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	753515	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	751079	1	12	8.3	5.0	✓
Total metals in Water by CRC ICPMS	E420	752020	1	10	10.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	753516	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	754190	1	19	5.2	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	752840	1	20	5.0	5.0	1

Page : 8 of 11 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Matrix: Water		Evaluat	ion: × = QC freque	ency outside spe	ecification; ✓ =	QC frequency wi	thin specificatio
Quality Control Sample Type			Co	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	751178	1	20	5.0	5.0	✓
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	755346	1	2	50.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	749981	1	7	14.2	5.0	✓
Fluoride in Water by IC	E235.F	753246	1	4	25.0	5.0	✓
Mineral Oil & Grease by Gravimetry	E567SG	750814	1	13	7.6	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	761880	1	20	5.0	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	761879	1	20	5.0	5.0	✓
Oil & Grease by Gravimetry	E567	750813	1	13	7.6	5.0	✓
PCB Aroclors by GC-MS	E687	750866	1	6	16.6	4.7	✓
Phenols (4AAP) in Water by Colorimetry	E562	753517	1	10	10.0	5.0	✓
Sulfate in Water by IC	E235.SO4	753247	1	18	5.5	5.0	✓
Total Cyanide	E333	757482	0	19	0.0	5.0	×
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	753515	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	751079	1	12	8.3	5.0	✓
Total metals in Water by CRC ICPMS	E420	752020	1	10	10.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	753516	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	754190	1	19	5.2	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	752840	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Fluoride in Water by IC	E235.F	753246	1	4	25.0	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	761880	1	20	5.0	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	761879	1	20	5.0	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	753517	1	10	10.0	5.0	1
Sulfate in Water by IC	E235.SO4	753247	1	18	5.5	5.0	✓
Total Cyanide	E333	757482	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	753515	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	751079	1	12	8.3	5.0	✓
Total metals in Water by CRC ICPMS	E420	752020	1	10	10.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	753516	1	19	5.2	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	752840	1	20	5.0	5.0	✓

Page : 9 of 11 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
	Waterloo -			0 0
	Environmental			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Waterloo -			pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
				filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Waterloo -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis
Floorida in Matan house		10/-4	EDA 200 4 (m	methods are available for these types of samples.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Waterloo -			detection.
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
Culture III Water by 10	L233.304	VVator	Li 7 (coc. i (ilicu)	detection.
	Waterloo -			detection.
	Environmental			
Total Kjeldahl Nitrogen by Fluorescence (Low	E318	Water	Method Fialab 100,	TKN in water is determined by automated continuous flow analysis with membrane
Level)			2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Environmental			
Total Cyanide	E333	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow
				Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.
	Waterloo -			
	Environmental			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)				persulfate digestion of the sample.
	Waterloo -			
	Environmental			
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Waterloo -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.

Page : 10 of 11 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Waterloo -			
	Environmental			
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to
	Waterloo - Environmental			samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.
				Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry	E562 Waterloo -	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to form a red complex which is measured colorimetrically.
	Environmental			·
Oil & Grease by Gravimetry	E567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
	Waterloo -			
	Environmental			
Mineral Oil & Grease by Gravimetry	E567SG	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane, followed by silica gel treatment after which the extract is evaporated to dryness. The residue is then weighed to determine
	Waterloo -			Mineral Oil and Grease.
	Environmental			
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the
	Waterloo -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Environmental			the headspace in accordance with Henry's law.
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
, ,	Waterloo -			
	Environmental			
PCB Aroclors by GC-MS	E687	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
	Waterloo -			
	Environmental			
Nonylphenol, Octylphenol and BPA in Water	E749A	Water	J. Chrom A849 (1999)	An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol-D4,
by LC-MS-MS Negative Mode			p.467-482	Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	Waterloo -			analyzed by LC-MS/MS.
	Environmental			
Nonylphenol Ethoxylates in Water by	E749B	Water	J. Chrom A849 (1999)	Water samples are filtered and analyzed on LCMS/MS by direct injection.
LC-MS-MS Positive Mode			p.467-482	
	Waterloo -			
	Environmental			

Page : 11 of 11 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Animal & Vegetable Oil & Grease by Gravimetry	EC567A.SG	Water	APHA 5520 (mod)	Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric) minus Mineral Oil & Grease (gravimetric)
•	Waterloo -			,
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Waterloo -		,	analytical method as TKN. This method is unsuitable for samples containing high levels
	Environmental			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Waterloo -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
	Waterloo -		(0 & 0.0400) (04)	
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Environmental			
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
Pesticides, PCB, and Neutral Extractable	EP660	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid
Chlorinated Hydrocarbons Extraction				extraction.
	Waterloo -			
	Environmental			
Preparation of Nonylphenol and Nonylphenol Ethoxylates	EP749	Water	J. Chrom A849 (1999) p.467-482	An aliquot of $5.0 \pm 0.10 \text{mL}$ of filtered sample is spiked with Nonylphenol-D4, Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	Waterloo -			analyzed by LC-MS/MS.
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order Page : 1 of 12 :WT2222346

Client : Palmer Environmental Consulting Group Inc. Laboratory : Waterloo - Environmental

: Frank Liu **Account Manager** Contact : Andrew Martin Address :74 Berkeley Street

Address :60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :+1 519 886 6910

Date Samples Received : 18-Nov-2022 13:37

Date Analysis Commenced : 19-Nov-2022

Issue Date :30-Nov-2022 13:35

Telephone

Project :2209001 PO

C-O-C number :20-999595 Sampler : CLIENT

Site

Quote number : (Q88296) PALMER 2022 STANDING OFFER

Toronto ON Canada M5V 1E3

No. of samples received : 1 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Metals, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Rachel Cameron	Supervisor - Semi-Volatile Extractions	Waterloo Organics, Waterloo, Ontario
Sanja Risticevic	Department Manager - LCMS	Waterloo LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo Organics, Waterloo, Ontario

Page : 2 of 12 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 12 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC	Lot: 753250)											
WT2222429-001	Anonymous	pН		E108	0.10	pH units	8.13	8.12	0.123%	4%		
Physical Tests (QC	Lot: 754190)											
WT2222336-002	Anonymous	solids, total suspended [TSS]		E160	5.0	mg/L	84.7	86.7	2.33%	20%		
Anions and Nutrien	ts (QC Lot: 753246)											
WT2222423-001	Anonymous	fluoride	16984-48-8	E235.F	0.200	mg/L	0.610	0.616	0.006	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 753247)											
WT2222423-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	3.00	mg/L	41.9	41.7	0.508%	20%		
Anions and Nutrien	ts (QC Lot: 753515)											
WT2222363-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	5.00	mg/L	61.9	58.2	6.16%	20%		
Anions and Nutrien	ts (QC Lot: 753516)											
WT2222346-001	BH22- 11	phosphorus, total	7723-14-0	E372-U	0.0200	mg/L	0.550	0.542	1.58%	20%		
Cyanides (QC Lot:	757482)											
WT2222062-001	Anonymous	cyanide, strong acid dissociable		E333	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR		
Microbiological Tos	ets (QC Lot: 749981)	(total)										
WT2222414-001	Anonymous	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	160	100	46.2%	65%		
Total Metals (QC Lo	ot: 751079)											
TY2204129-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Total Metals (QC Lo	ot: 752020)											
TY2204000-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.221	0.220	0.631%	20%		
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00026	0.00028	0.000010	Diff <2x LOR		
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00080	0.00077	0.00002	Diff <2x LOR		
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000071	0.0000062	0.0000009	Diff <2x LOR		
		chromium, total	7440-47-3	E420	0.00050	mg/L	0.00075	0.00074	0.00001	Diff <2x LOR		
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00056	0.00053	0.00002	Diff <2x LOR		
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00223	0.00225	0.00001	Diff <2x LOR		
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000149	0.000149	0.0000004	Diff <2x LOR		
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0512	0.0511	0.148%	20%		
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00113	0.00104	8.09%	20%		
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00096	0.00098	0.00002	Diff <2x LOR		

Page : 4 of 12 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Total Metals (QC Lo	ot: 752020) - continued												
TY2204000-001	Anonymous	selenium, total	7782-49-2	E420	0.000050	mg/L	0.000098	0.000133	0.000035	Diff <2x LOR			
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00696	0.00711	2.05%	20%			
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0034	0.0035	0.00005	Diff <2x LOR			
Aggregate Organics	(QC Lot: 751178)												
WT2222418-002	Anonymous	carbonaceous biochemical oxygen demand [CBOD]		E555	3.0	mg/L	<3.0	<3.0	0.0%	30%			
Aggregate Organics	(QC Lot: 753517)												
WT2222371-001	Anonymous	phenols, total (4AAP)		E562	0.0010	mg/L	<0.0050	0.0015	0.0035	Diff <2x LOR			
Volatile Organic Co	mpounds (QC Lot: 7528	340)											
WT2222321-001	Anonymous	benzene	71-43-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		chloroform	67-66-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR			
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR			
		ethylbenzene	100-41-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	<20	0	Diff <2x LOR			
		styrene	100-42-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		tetrachloroethylene	127-18-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		toluene	108-88-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		trichloroethylene	79-01-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR			
		xylene, m+p-	179601-23-1	E611D	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR			
		xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR			
Nonylphenols (QC	Lot: 761879)												
WT2222374-001	Anonymous	nonylphenols [NP]	84852-15-3	E749A	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR			
Nonylphenols (QC	Lot: 761880)												
WT2222374-001	Anonymous	nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.10	μg/L	<0.10	<0.10	0	Diff <2x LOR			
		nonylphenol monoethoxylates [NP1E0]	n/a	E749B	2.0	μg/L	<2.0	<2.0	0	Diff <2x LOR			

 Page
 :
 5 of 12

 Work Order
 :
 WT2222346

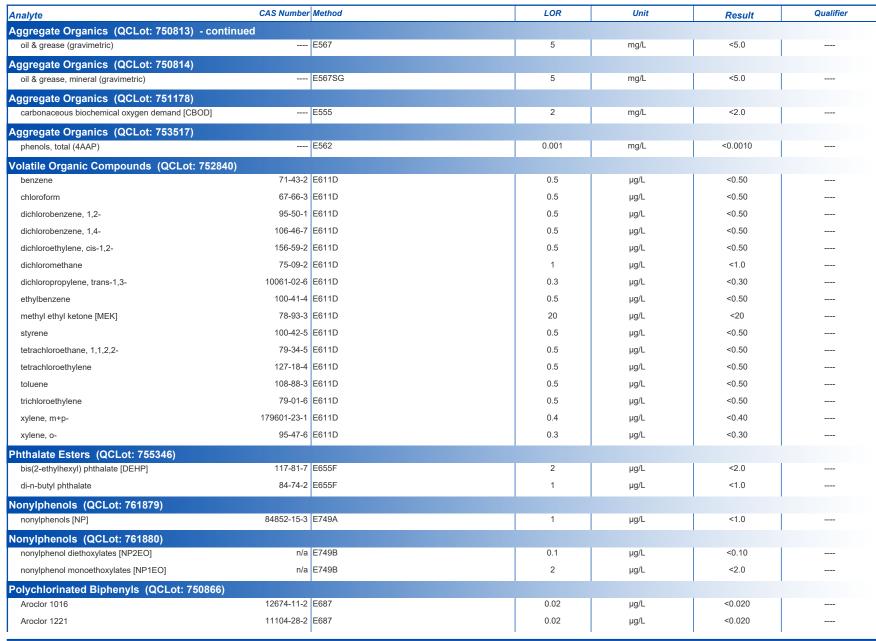
Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water


Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 754190)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 753246)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 753247)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 753515)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 753516)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Microbiological Tests (QCLot: 749981)					
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	<1	
Total Metals (QCLot: 751079)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.0000050	
Total Metals (QCLot: 752020)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
lead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	

Page : 6 of 12 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Sub-Matrix: Water

Page : 7 of 12 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Sub-Matrix: Water

 Page
 :
 8 of 12

 Work Order
 :
 WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Physical Tests (QCLot: 753250)									
pH		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 754190)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	100	85.0	115	
Anions and Nutrients (QCLot: 753246)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 753247)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	99.5	90.0	110	
Anions and Nutrients (QCLot: 753515)									
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	95.3	75.0	125	
Anions and Nutrients (QCLot: 753516)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.53 mg/L	104	80.0	120	
Total Metals (QCLot: 751079)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	103	80.0	120	
Total Metals (QCLot: 752020)									
aluminum, total	7429-90-5	E420	0.003	mg/L	0.1 mg/L	101	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	0.05 mg/L	102	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	0.05 mg/L	103	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.005 mg/L	102	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.0125 mg/L	100	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.0125 mg/L	101	80.0	120	
copper, total	7440-50-8		0.0005	mg/L	0.0125 mg/L	99.6	80.0	120	
ead, total	7439-92-1		0.00005	mg/L	0.025 mg/L	105	80.0	120	
manganese, total	7439-96-5		0.0001	mg/L	0.0125 mg/L	101	80.0	120	
molybdenum, total	7439-98-7		0.00005	mg/L	0.0125 mg/L	96.9	80.0	120	
nickel, total	7440-02-0		0.0005	mg/L	0.025 mg/L	99.9	80.0	120	
selenium, total	7782-49-2		0.00005	mg/L	0.05 mg/L	97.2	80.0	120	
silver, total	7440-22-4		0.00001	mg/L	0.005 mg/L	89.8	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.025 mg/L	97.2	80.0	120	
titanium, total	7440-32-6		0.0003	mg/L	0.0125 mg/L	98.2	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.025 mg/L	93.9	80.0	120	

 Page
 :
 9 of 12

 Work Order:
 WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Sub-Matrix: Water						Laboratory Co	entrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Aggregate Organics (QCLot: 750813)									
oil & grease (gravimetric)		E567	5	mg/L	200 mg/L	86.7	70.0	130	
Aggregate Organics (QCLot: 750814)									
oil & grease, mineral (gravimetric)		E567SG	5	mg/L	100 mg/L	80.6	70.0	130	
Aggregate Organics (QCLot: 751178)									'
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	198 mg/L	103	85.0	115	
Aggregate Organics (QCLot: 753517)									
phenols, total (4AAP)		E562	0.001	mg/L	0.02 mg/L	92.8	85.0	115	
Volatile Organic Compounds (QCLot: 752840)								
benzene	71-43-2	E611D	0.5	μg/L	100 μg/L	112	70.0	130	
chloroform	67-66-3	E611D	0.5	μg/L	100 μg/L	108	70.0	130	
dichlorobenzene, 1,2-	95-50-1	E611D	0.5	μg/L	100 μg/L	110	70.0	130	
dichlorobenzene, 1,4-	106-46-7	E611D	0.5	μg/L	100 μg/L	88.9	70.0	130	
dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	μg/L	100 μg/L	107	70.0	130	
dichloromethane	75-09-2	E611D	1	μg/L	100 μg/L	103	70.0	130	
dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	μg/L	100 μg/L	119	70.0	130	
ethylbenzene	100-41-4	E611D	0.5	μg/L	100 μg/L	110	70.0	130	
methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	100 μg/L	# 144	70.0	130	LCS-H
styrene	100-42-5	E611D	0.5	μg/L	100 μg/L	120	70.0	130	
tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	μg/L	100 μg/L	# 153	70.0	130	LCS-H
tetrachloroethylene	127-18-4	E611D	0.5	μg/L	100 µg/L	103	70.0	130	
toluene	108-88-3	E611D	0.5	μg/L	100 µg/L	118	70.0	130	
trichloroethylene	79-01-6	E611D	0.5	μg/L	100 µg/L	92.5	70.0	130	
xylene, m+p-	179601-23-1	E611D	0.4	μg/L	200 μg/L	111	70.0	130	
xylene, o-	95-47-6	E611D	0.3	μg/L	100 μg/L	111	70.0	130	
Phthalate Esters (QCLot: 755346)									1
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	μg/L	6.4 μg/L	106	50.0	140	
di-n-butyl phthalate	84-74-2	E655F	1	μg/L	6.4 μg/L	108	50.0	140	
Nonylphenols (QCLot: 761879)									1
nonylphenols [NP]	84852-15-3	E749A	1	μg/L	10 μg/L	86.6	75.0	125	
Nonylphenols (QCLot: 761880)									1
nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	μg/L	1 μg/L	101	75.0	125	
nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	μg/L	20 μg/L	107	75.0	125	

Page : 10 of 12 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Polychlorinated Biphenyls (QCLot: 7508)	66)								
Aroclor 1016	12674-11-2	E687	0.02	μg/L	0.2 μg/L	123	60.0	140	
Aroclor 1221	11104-28-2	E687	0.02	μg/L	0.2 μg/L	123	60.0	140	
Aroclor 1232	11141-16-5	E687	0.02	μg/L	0.2 μg/L	123	60.0	140	
Aroclor 1242	53469-21-9	E687	0.02	μg/L	0.2 μg/L	123	60.0	140	
Aroclor 1248	12672-29-6	E687	0.02	μg/L	0.2 μg/L	93.0	60.0	140	
Aroclor 1254	11097-69-1	E687	0.02	μg/L	0.2 μg/L	114	60.0	140	
Aroclor 1260	11096-82-5	E687	0.02	μg/L	0.2 μg/L	112	60.0	140	
Aroclor 1262	37324-23-5	E687	0.02	μg/L	0.2 μg/L	112	60.0	140	
Aroclor 1268	11100-14-4	E687	0.02	μg/L	0.2 μg/L	112	60.0	140	

Qualifiers

Qualifier Description

LCS-H Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Page : 11 of 12 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water								e (MS) Report		
					Spi		Recovery (%)	Recovery	/ Limits (%)	
.aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
nions and Nutri	ents (QCLot: 753246)									
WT2222423-001	Anonymous	fluoride	16984-48-8	E235.F	9.86 mg/L	10 mg/L	98.6	75.0	125	
nions and Nutri	ents (QCLot: 753247)									
NT2222423-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	952 mg/L	1000 mg/L	95.2	75.0	125	
nions and Nutri	ents (QCLot: 753515)									
NT2222363-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	312 mg/L	2.5 mg/L	125	70.0	130	
nions and Nutri	ents (QCLot: 753516)									
WT2222346-001	BH22- 11	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.1 mg/L	ND	70.0	130	
yanides (QCLo	t: 757482)									
WT2222062-001	Anonymous	cyanide, strong acid dissociable (total)		E333	0.229 mg/L	0.25 mg/L	91.8	75.0	125	
otal Metals (QC	Lot: 751079)									
TY2204129-002	Anonymous	mercury, total	7439-97-6	E508	0.0000930 mg/L	0.0001 mg/L	93.0	70.0	130	
otal Metals (QC	Lot: 752020)									
TY2204223-001	Anonymous	aluminum, total	7429-90-5	E420	0.0981 mg/L	0.1 mg/L	98.1	70.0	130	
		antimony, total	7440-36-0	E420	0.0511 mg/L	0.05 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0526 mg/L	0.05 mg/L	105	70.0	130	
		cadmium, total	7440-43-9	E420	0.00532 mg/L	0.005 mg/L	106	70.0	130	
		chromium, total	7440-47-3	E420	0.0128 mg/L	0.0125 mg/L	103	70.0	130	
		cobalt, total	7440-48-4	E420	0.0128 mg/L	0.0125 mg/L	102	70.0	130	
		copper, total	7440-50-8	E420	0.0129 mg/L	0.0125 mg/L	103	70.0	130	
		lead, total	7439-92-1	E420	0.0257 mg/L	0.025 mg/L	103	70.0	130	
		manganese, total	7439-96-5	E420	0.0119 mg/L	0.0125 mg/L	95.4	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0124 mg/L	0.0125 mg/L	99.4	70.0	130	
		nickel, total	7440-02-0	E420	0.0254 mg/L	0.025 mg/L	102	70.0	130	
		selenium, total	7782-49-2	E420	0.0521 mg/L	0.05 mg/L	104	70.0	130	
		silver, total	7440-22-4	E420	0.00464 mg/L	0.005 mg/L	92.8	70.0	130	
		tin, total	7440-31-5	E420	0.0250 mg/L	0.025 mg/L	99.9	70.0	130	
		titanium, total	7440-32-6	E420	0.0123 mg/L	0.0125 mg/L	98.4	70.0	130	
		zinc, total	7440-66-6	E420	0.0242 mg/L	0.025 mg/L	96.8	70.0	130	

Page : 12 of 12 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Aggregate Orgar	nics (QCLot: 753517)	- continued								
WT2222371-001	Anonymous	phenols, total (4AAP)		E562	0.0166 mg/L	0.02 mg/L	82.9	75.0	125	
Volatile Organic	Compounds (QCLot:	752840)								
WT2222321-001	Anonymous	benzene	71-43-2	E611D	86.5 µg/L	100 μg/L	86.5	60.0	140	
		chloroform	67-66-3	E611D	92.6 μg/L	100 μg/L	92.6	60.0	140	
		dichlorobenzene, 1,2-	95-50-1	E611D	96.9 µg/L	100 μg/L	96.9	60.0	140	
		dichlorobenzene, 1,4-	106-46-7	E611D	93.8 µg/L	100 μg/L	93.8	60.0	140	
		dichloroethylene, cis-1,2-	156-59-2	E611D	94.3 µg/L	100 μg/L	94.3	60.0	140	
		dichloromethane	75-09-2	E611D	82.1 µg/L	100 μg/L	82.1	60.0	140	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	101 μg/L	100 μg/L	101	60.0	140	
		ethylbenzene	100-41-4	E611D	90.2 μg/L	100 μg/L	90.2	60.0	140	
		methyl ethyl ketone [MEK]	78-93-3	E611D	118 µg/L	100 μg/L	118	60.0	140	
		styrene	100-42-5	E611D	98.5 μg/L	100 μg/L	98.5	60.0	140	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	89.2 μg/L	100 μg/L	89.2	60.0	140	
		tetrachloroethylene	127-18-4	E611D	74.1 µg/L	100 μg/L	74.1	60.0	140	
		toluene	108-88-3	E611D	88.5 µg/L	100 μg/L	88.5	60.0	140	
		trichloroethylene	79-01-6	E611D	85.6 µg/L	100 μg/L	85.6	60.0	140	
		xylene, m+p-	179601-23-1	E611D	194 μg/L	200 μg/L	96.8	60.0	140	
		xylene, o-	95-47-6	E611D	98.4 μg/L	100 μg/L	98.4	60.0	140	
Nonylphenols (C	QCLot: 761879)									
WT2222374-001	Anonymous	nonylphenols [NP]	84852-15-3	E749A	11.7 μg/L	10 μg/L	117	60.0	140	
Nonylphenols (C	QCLot: 761880)									
WT2222374-001	Anonymous	nonylphenol diethoxylates [NP2EO]	n/a	E749B	1.07 µg/L	1 μg/L	107	60.0	140	
		nonylphenol monoethoxylates [NP1EO]	n/a	E749B	24.6 μg/L	20 μg/L	123	60.0	140	

Alle the Office Bree

Canada Toll Free: 1 800 668 9878

Page

Work Order Reference WT2222346

Environmental Division Waterloo

Phone:

Company:

parmer

Contact and company name below will appear on the final report

Select Report Format: POF DECEL DED (DIGITAL)

Reports / Recipients

Turnaround Time (TAT) Requested

☐ Compare Results to Criteria on Report - provide details below if box checked Merge QC/QCI Reports with COA ☐ YES ☐ NO ☐ N/A

fank. Liu @ PEGG. ca

Frank

7:1

Report To

www.alsglobal.com

Contact:

Street:

74 Berkeley St

Select Distribution: Email 1 or Fax

D BMAIL

☐ MAIL ☐ FAX

Company address below will appear on the final report

647-972-043

10日	Analysis Request
AM to confirm availability.	For all tests with rush TATs requested, please contact your AM to confirm availability
	Date and Time Required for all E&P TATs:
Telephone: +1 519 886 6910	Same day [E2] if received by 10am M-S - 200% rush surcharge. Additinal fe may apply to rush requests on weekends, statutory holidays and non-routine te
	1 day [E] if received by 3pm M-F - 100% rush surcharge minimum
ラインでいったが	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum
	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum
	4 day [P4] if received by 3pm M-F- 20% rush surcharge minimum
	Routine [R] If received by 3pm M-F - no surcharges apply

City/Province:	Toronto, ON	The state of the s	Email 2			-		ale and	Date and Time Required for all E&P TATS:	for all E&P TA	[8]					
Postal Code:	MSA ZWT		Email 3					0.00	E-yr all	taste with rugh	ATs requested.	nlease contact yo	For all tests with rush TATs requested, please contact your AM to confirm availability	waiiabiiity.		
Invoice To S	Same as Report To	□ No		Invoice F	Invoice Recipients				1 00		Analy	Analysis Regiest	The state of the s			
0	Copy of Invoice with Report ☑ YES □	□ NO	Select Invoice Distribution:	stribution: LL	BMAIL MAIL	FAX	3		Indicate F	marad (E) Dras	arved (P) or Fil	ared and Preser	Indicate Eillered (F) Preserved (P) or Filtered and Preserved (F/P) below		and a	1
Company:			Email 1 or Fax	accounter	Email 1 or Fax accounting of PELG, La	la	R		Highcone	mered () harrow	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		100			
Contact:	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUM	THE PERSON NAMED IN	Email 2				NE	1	1	+	1	1		I		
	Project Information		0	il and Gas Requir	Oil and Gas Required Fields (client use)	e)	All		7					73		D
ALS Account # / Quote #.	P		AFE/Cost Center:	The sales	PO#		NT		e	1	30.00		The state of the s			OL
Job# 220900	_		Major/Minor Code:		Routing Code:		0:	rej	eg							Н
PO / AFE:	The state of the s	A	Requisitioner:			The state of the s	FC	Ya	ck							ON
LSD:	A STATE OF THE PERSON NAMED IN	rel	Location:				0	an	Par	T T			The state of			S
ALS Lab Work	ALS Lab Work Order # (ALS use only): WT222346	22346	ALS Contact:		Sampler:	Charles of	IBEF	h s	L S				1			IPLE
ALS Sample #	Sample Identification and/or Coordinates (This description will appear on the report)	sample Identification and/or Coordinates		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	NUN	Per	560	1		1 2				SAI
	DIA 3 -11			10-NOU-22	11	whiter	10	<							1	
	N. T.	DISTRICTOR A SPIN		1	Section 5 con	90 pt-10 %	1	- 8								1
				Section of the section of											1 .	
	The second of th															
1 1 2	ALL THE RESIDENCE OF THE PARTY		The State of the S	THE DIG TO S	A STATE OF	A LEASE SALES	7	1	1		X		The second			
						Section State	4									
STEELS OF	The same of the sa			1 11 11 11	THE REAL PROPERTY.	ALIEN OF THE S		1		1 11 11		T T				151
Card Loss			THE PLANE OF	N 422-198	deres de select									4		
	The state of the s			A D SOLD STATE		The state of the s		A LA					100			
					the from dron down	helow			-	SAMP	E RECEIP	DETAILS (SAMPLE RECEIPT DETAILS (ALS use only)	1		
Drinking	Drinking Water (DW) Samples¹ (client use)	Notes / Spec	ify Limits for result	(Excel COC only)	Notes / Specify Limits for result evaluation by selecting from Grown below. (Excel COC only)	Delon	Cooli	Cooling Method:	nod:	NONE ICE	ICE NICE	TICE PACKS FROZEN	FROZEN	COOLING INITIATED	5	NG IMI
Are samples taken	Are samples taken from a Regulated DW System?				The same		Subn	ission	Submission Comments identified on Sample Receipt Notification:	entified on S	ample Rece	pt Notification		□ YES [ON
Ak 🗆 Ak	☐ YES NO	Peel Region Sandary Senser and Storm Senser	Santary	Server an	of stoom ?	enser	Cook	er Cust	Cooler Custody Seals Intact: YES	TEMPERATUR	□ YES □ N/A URES *C	A Sample	Sample Custody Seals Intact: YES FINAL COOLER TEMPERATURES *C	Intact:		☐ YES
Are samples for hu	nan co	Brichard init	したかん	Sport Street			0.0				A. Carrie	5.7		17		
L YES	C	Г		INITIAL SHIPME	INITIAL SHIPMENT RECEPTION (ALS use only)	LS use only)	1			F	NAL SHIPN	ENT RECEP	FINAL SHIPMENT RECEPTION (ALS use only)	e only)		
Released by:	Released by: Date:	Time:	Received by:	L B	Date:	18 NOV. 2021	the state of the state of	Time:	Received by:	J.P		Date:	Date 26 22- 11-18	20		一一
Tongaga of T				20.11	- 1× N	04,204		15				2004	1111	0		-

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY

YELLOW - CLIENT COPY

MA VW-108, OS-561, OR-064, OGNGH-258

Address

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order : **WT2222346** Page : 1 of 6

Client : Palmer Environmental Consulting Group Inc. Laboratory : Waterloo - Environmental

Contact : Frank Liu Account Manager : Andrew Martin

: 74 Berkeley Street Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

 Telephone
 : -- Telephone
 : +1 519 886 6910

 Project
 : 2209001
 Date Samples Received
 : 18-Nov-2022 13:37

PO : ---- Date Analysis Commenced : 19-Nov-2022 C-O-C number : 20-999595 Issue Date : 30-Nov-2022 13:36

Sampler : CLIENT

Site : ---Quote number : (Q88296) PALMER 2022 STANDING

Quote number : (Q88296) PALMER 2022 STANDING OFFER
No. of samples received : 1

Toronto ON Canada M5V 1E3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 1

- General Comments
- Analytical Results

No. of samples analysed

Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Rachel Cameron	Supervisor - Semi-Volatile Extractions	Organics, Waterloo, Ontario
Sanja Risticevic	Department Manager - LCMS	LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Organics, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre
CFU/100mL	colony forming units per hundred millilitres
mg/L	milligrams per litre
pH units	pH units

>: greater than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit.

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .

Workorder Comments

Matrix spike recovery was above ALS DQO non detect sample results were considered reliable.

Qualifiers

Qualifier	Description
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample
	tested.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

<: less than.

Page : 3 of 6 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Analytical Results

-			Client sample ID	BH22- 11					
Sub-Matrix: Water		S	ampling date/time	18-Nov-2022					
(Matrix: Water)			, 5	00:00					
Analyte	Method	LOR	Unit	WT2222346-001		RMPSUB	RMPSUB		
						SAN	STM		
Physical Tests									
pH	E108	0.10	pH units	7.99		5.5 - 10 pH	6 - 9 pH units	 	
					DLUG	units			
solids, total suspended [TSS]	E160	3.0	mg/L	276	DLHC	350 mg/L	15 mg/L	 	
Anions and Nutrients									1
fluoride	E235.F	0.020	mg/L	0.744	DLDS	10 mg/L		 	
Kjeldahl nitrogen, total [TKN]	E318	0.050	mg/L	1.76	DLM	100 mg/L	1 mg/L	 	
phosphorus, total	E372-U	0.0020	mg/L	0.550	DLM	10 mg/L	0.4 mg/L	 	
sulfate (as SO4)	E235.SO4	0.30	mg/L	42.3	DLDS			 	
Cyanides									
cyanide, strong acid	E333	0.0020	mg/L	<0.0020		2 mg/L	0.02 mg/L	 	
dissociable (total)									
Microbiological Tests									
coliforms, Escherichia coli [E.	E012A.EC	1	CFU/100mL	<1			200	 	
coli]							CFU/100mL		
Total Metals									
aluminum, total	E420	0.0030	mg/L	8.08	DLHC	50 mg/L		 	
antimony, total	E420	0.00010	mg/L	<0.00100	DLHC	5 mg/L		 	
arsenic, total	E420	0.00010	mg/L	0.00420	DLHC	1 mg/L	0.02 mg/L	 	
cadmium, total	E420	0.0000050	mg/L	<0.0000500	DLHC	0.7 mg/L	0.008 mg/L	 	
chromium, total	E420	0.00050	mg/L	0.0122	DLHC	5 mg/L	0.08 mg/L	 	
cobalt, total	E420	0.00010	mg/L	0.00715	DLHC	5 mg/L		 	
copper, total	E420	0.00050	mg/L	0.0116	DLHC	3 mg/L	0.05 mg/L	 	
lead, total	E420	0.000050	mg/L	0.00312	DLHC	3 mg/L	0.12 mg/L	 	
manganese, total	E420	0.00010	mg/L	0.286	DLHC	5 mg/L	0.05 mg/L	 	
mercury, total	E508	0.0000050	mg/L	0.0000055		0.01 mg/L	0.0004 mg/L	 	
molybdenum, total	E420	0.000050	mg/L	0.000513	DLHC	5 mg/L		 	
nickel, total	E420	0.00050	mg/L	0.0150	DLHC	3 mg/L	0.08 mg/L	 	
selenium, total	E420	0.000050	mg/L	<0.000500	DLHC	1 mg/L	0.02 mg/L	 	
silver, total	E420	0.000010	mg/L	<0.000100	DLHC	5 mg/L	0.12 mg/L	 	
tin, total	E420	0.00010	mg/L	<0.00100	DLHC	5 mg/L		 	
titanium, total	E420	0.00030	mg/L	0.0557	DLHC	5 mg/L		 	
zinc, total	E420	0.0030	mg/L	<0.0300	DLHC	3 mg/L	0.04 mg/L	 	

Page : 4 of 6 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Project : 22	109001							
Analyte	Method	LOR	Unit	WT2222346-001 (Continued)	RMPSUB SAN	RMPSUB STM		
Aggregate Organics				(Gontanada)	OAI4	01111		
carbonaceous biochemical	E555	2.0	mg/L	<3.0 BODL	300 mg/L	15 mg/L	 	
oxygen demand [CBOD]	2000	2.0	mg/L	0.0	000 mg/ =	10 mg/ 2		
oil & grease (gravimetric)	E567	5.0	mg/L	<5.0			 	
oil & grease, animal/vegetable (gravimetric)	EC567A.SG	5.0	mg/L	<5.0	150 mg/L		 	
oil & grease, mineral (gravimetric)	E567SG	5.0	mg/L	<5.0	15 mg/L		 	
phenols, total (4AAP)	E562	0.0010	mg/L	0.0014	1 mg/L	0.008 mg/L	 	
Volatile Organic Compounds	s							
benzene	E611D	0.50	μg/L	<0.50	10 μg/L	2 μg/L	 	
chloroform	E611D	0.50	μg/L	<0.50	40 μg/L	2 μg/L	 	
dichlorobenzene, 1,2-	E611D	0.50	μg/L	<0.50	50 μg/L	5.6 μg/L	 	
dichlorobenzene, 1,4-	E611D	0.50	μg/L	<0.50	80 μg/L	6.8 µg/L	 	
dichloroethylene, cis-1,2-	E611D	0.50	μg/L	<0.50	4000 μg/L	5.6 µg/L	 	
dichloromethane	E611D	1.0	μg/L	<1.0	2000 μg/L	5.2 μg/L	 	
dichloropropylene, trans-1,3-	E611D	0.30	μg/L	<0.30	140 μg/L	5.6 µg/L	 	
ethylbenzene	E611D	0.50	μg/L	<0.50	160 μg/L	2 μg/L	 	
methyl ethyl ketone [MEK]	E611D	20	μg/L	<20	8000 µg/L		 	
styrene	E611D	0.50	μg/L	<0.50	200 μg/L		 	
tetrachloroethane, 1,1,2,2-	E611D	0.50	μg/L	<0.50	1400 µg/L	17 μg/L	 	
tetrachloroethylene	E611D	0.50	μg/L	<0.50	1000 μg/L	4.4 μg/L	 	
toluene	E611D	0.50	μg/L	<0.50	270 μg/L	2 μg/L	 	
trichloroethylene	E611D	0.50	μg/L	<0.50	400 μg/L	8 μg/L	 	
xylene, m+p-	E611D	0.40	μg/L	<0.40			 	
xylene, o-	E611D	0.30	μg/L	<0.30			 	
xylenes, total	E611D	0.50	μg/L	<0.50	1400 μg/L	4.4 μg/L	 	
Volatile Organic Compounds	s Surrogates							
bromofluorobenzene, 4-	E611D	1.0	%	88.8			 	
difluorobenzene, 1,4-	E611D	1.0	%	107			 	
Phthalate Esters								
bis(2-ethylhexyl) phthalate [DEHP]	E655F	2.0	μg/L	3.1	12 μg/L	8.8 µg/L	 	
di-n-butyl phthalate	E655F	1.0	μg/L	<1.0	80 μg/L	15 μg/L	 	
Semi-Volatile Organics Surre	ogates							
fluorobiphenyl, 2-	E655F	1.0	%	80.0			 	
terphenyl-d14, p-	E655F	1.0	%	96.7			 	

Page : 5 of 6
Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Analyte	Method	LOR	Unit	WT2222346-001	RMPSUB	RMPSUB				
				(Continued)	SAN	STM				
henolics Surrogates										
tribromophenol, 2,4,6-	E655F	0.20	%	96.7						
Nonylphenols										
nonylphenol diethoxylates [NP2EO]	E749B	0.10	μg/L	<0.10						
nonylphenol ethoxylates, total	E749B	2.0	μg/L	<2.0	200 μg/L					
nonylphenol monoethoxylates [NP1EO]	E749B	2.0	μg/L	<2.0						
nonylphenols [NP]	E749A	1.0	μg/L	<1.0	20 μg/L					
Polychlorinated Biphenyls										
Aroclor 1016	E687	0.020	μg/L	<0.020						
Aroclor 1221	E687	0.020	μg/L	<0.020						
Aroclor 1232	E687	0.020	μg/L	<0.020						
Aroclor 1242	E687	0.020	μg/L	<0.020						
Aroclor 1248	E687	0.020	μg/L	<0.020						
Aroclor 1254	E687	0.020	μg/L	<0.020						
Aroclor 1260	E687	0.020	μg/L	<0.020						
Aroclor 1262	E687	0.020	μg/L	<0.020						
Aroclor 1268	E687	0.020	μg/L	<0.020						
polychlorinated biphenyls [PCBs], total	E687	0.060	μg/L	<0.060	1 μg/L	0.4 μg/L				
decachlorobiphenyl	E687	0.1	%	71.3						
tetrachloro-m-xylene	E687	0.1	%	104						

Please refer to the General Comments section for an explanation of any qualifiers detected.

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
BH22- 11	Water	solids, total suspended [TSS]		RMPSUB	STM	276 mg/L	15 mg/L
	Water	Kjeldahl nitrogen, total [TKN]		RMPSUB	STM	1.76 mg/L	1 mg/L
	Water	phosphorus, total		RMPSUB	STM	0.550 mg/L	0.4 mg/L
	Water	manganese, total		RMPSUB	STM	0.286 mg/L	0.05 mg/L

Page : 6 of 6 Work Order : WT2222346

Client : Palmer Environmental Consulting Group Inc.

Project : 2209001

Key:

RMPSUB Ontario Reg.Mun. of Peel Sewer Bylaw #53-2010 (APR, 2019)

SAN Peel Sanitary Sewer (53-2010)
STM Peel Storm Sewer (53-2010)

Appendix F

Well Records (WWIS)

WELL ID	COMPLETED	DEPTH	DP BEDROCK	STATIC LEV	WELL USE	WATER	FORMATION
4902210	1964-01-11	8.2	0.0	4.6	IN		BRWN CLAY MSND 0009 BRWN MSND 0026 BLUE CLAY MSND 0027
4902211	1958-11-12	15.5	5.2		DO		BRWN MSND GRVL 0017 BLUE SHLE 0051
4902981	1968-09-09	8.8	0.0		DO		LOAM 0001 GRVL 0018 BLUE CLAY 0029
4907918	1994-10-11	4.3	0.0	0.0	NU		BRWN FILL SAND LOOS 0010 GREY TILL SILT HARD 0014
4907919	1994-10-11	4.3	0.0	0.0	NU		BRWN FILL SAND LOOS 0010 GREY TILL SILT HARD 0014
4909365	2004-02-17	4.3	0.0	0.0	NU		BRWN CLAY TILL FILL 0014
4909366	2004-02-17	4.3	0.0	0.0			BRWN CLAY TILL FILL 0014
4909367	2004-02-17	4.9	0.0	0.0	NU		BRWN CLAY TILL FILL 0016
4909841	2005-06-30	7.6	0.0	0.0			GREY SILT CLAY SHLE 0025
7145320	2010-04-28	4.8	0.0	0.0	MT		BLCK SOFT 0000 BRWN SAND SOFT 0009 GREY SHLE SILT HARD 0016
7148379	2010-06-21	3.1	0.0	0.0	TH		BRWN SAND GRVL LOOS 0006 BRWN CLAY SILT DNSE 0010
7148380	2010-06-21	3.4	0.0	0.0			BRWN SAND GRVL LOOS 0006 GREY CLAY SILT DNSE 0011
7148381	2010-06-21	0.0	0.0	0.0	MO		
7188792	2012-03-22	0.0	0.0	0.0			
7212983	2013-09-27	0.0	0.0	0.0			
7234673	2014-11-27	0.0	0.0	0.0			
7257735	2015-12-14	0.0	0.0	0.0			
7261695	2016-02-03	7.9	0.0	0.0	MO		GREY SILT SAND HARD 0005 BLCK SHLE HARD 0026
7272079	2016-08-24	0.0	0.0	0.0	MT		
7275986	2016-10-18	5.3	0.0	0.0	MO		BRWN SAND FILL PCKD 0003 BRWN SILT CLAY SOFT 0012 GREY SHLE LMSN LYRD
7278591	2016-11-25	5.3	0.0	0.0	MO		BRWN SILT CLAY HARD 0009 GREY SHLE ROCK 0017
7285534		0.0	0.0	0.0			
7291784	2017-06-28	2.2	0.0	0.0	MO		BRWN SAND GRVL FILL 0001 GREY SHLE LMSN LYRD 0007
7291785	2017-06-27	5.8	0.0	0.0	MO		BRWN SAND GRVL FILL 0004 GREY SHLE LMSN LYRD 0019
7291791	2017-06-22	7.4	0.0	0.0	MO		GREY SAND SLTY FILL 0007 GREY SHLE LMSN LYRD 0024
							BRWN SAND GRVL FILL 0001 GREY SILT CLAY DNSE 0007 BRWN SAND LOOS 0009
7291792	2017-06-23	7.6	0.0	0.0	MO		GREY SILT CLAY DNSE 0012 GREY SHLE LMSN LYRD 0025
7295009	2017-09-06	6.0	0.0	0.0	MO		BRWN LOAM SAND SOFT 0003 BRWN SAND CLAY SOFT 0012 GREY SILT CLAY DNSE
7305117	2018-01-05	7.9	0.0	0.0	MO		BRWN LOAM LOOS 0001 BRWN SILT SAND PCKD 0015 GREY SHLE HARD 0026
7305118	2018-01-05	8.5	0.0	0.0	MO		BRWN LOAM LOOS 0001 BRWN SILT SAND PCKD 0025 GREY SHLE HARD 0028
7306688	2017-09-13	7.6	0.0	0.0	TH MO		BRWN LOAM FILL SILT 0012 BRWN FSND SILT GRVL 0015 GREY SILT CLAY TILL 0025
7308732	2018-03-14	6.1	0.0	0.0	MO		FILL 0005 SAND 0010 SHLE 0020
7308733	2018-03-14	6.1	0.0	0.0	MO		FILL 0005 SAND 0010 SHLE 0020
7308734	2018-03-14	3.8	0.0	0.0	MO		FILL 0005 SAND 0010 SHLE 0012
7308735	2018-03-14	6.1	0.0	0.0	MO		FILL 0005 SAND 0010 SHLE 0020
7308736	2018-03-23	2.4	0.0	0.0	MO		BRWN LOAM 0002 BRWN FILL CLAY 0008
7308737	2018-03-23	6.1	0.0	0.0	MO		BRWN LOAM 0012 BRWN FILL CLAY 0020 GREY SHLE
7312572	2018-04-13	0.0	0.0	0.0			
7320679	2017-07-13	5.7	0.0	0.0	MO		BRWN SAND GRVL FILL 0002 BRWN SAND SILT SOFT 0009 GREY SILT CLAY DNSE
7327743	2018-11-16	0.0	0.0	0.0			
7332231	2019-04-08	4.5	0.0	0.0	MT		BLCK 0000 GREY GRVL 0001 BRWN SAND 0005 BRWN SILT CLAY 0007 GREY SHLE
7329413	2019-02-11	5.3	0.0	0.0	MT		BRWN SAND GRVL PCKD 0002 BRWN SILT FILL CLAY 0005 BRWN SAND SILT SOFT
7329414	2019-02-20	15.2	0.0	0.0	MT		BRWN SAND GRVL PCKD 0003 BRWN CLAY SILT SOFT 0008 BRWN SAND SILT SOFT
							BRWN SAND GRVL PCKD 0002 BRWN CLAY SILT SOFT 0006 BRWN SAND SILT SOFT
7329415	2019-02-14	13.7	0.0	0.0	MT		0012 GREY SILT TILL SAND 0017 GREY SHLE SILT WTHD 0045
							BRWN SILT FILL HARD 0002 BRWN SAND GRVL HARD 0007 BRWN SAND SILT SOFT
7329416	2019-02-21	13.7	0.0		MT		0012 GREY SILT TILL HARD 0019 GREY SHLE SILT CLAY 0045
7335386	2019-06-01	6.1	0.0		MO		BLCK 0003 BRWN FILL 0012 GREY CLAY SLTY 0020
7337170	2019-05-28	6.1	0.0	0.0	MT		BRWN SAND GRVL PCKD 0011 GREY CLAY SILT DNSE 0012 GREY SHLE LMSN ROCK

7337196	2019-05-27	6.1	0.0	0.0	TH		BRWN SAND GRVL PCKD 0012 GREY CLAY SAND DNSE 0013 GREY SHLE LMSN ROCK
7338241	2019-07-10	6.0	0.0	0.0	MT		BRWN SAND GRVL FILL 0010 BRWN CLAY SILT HARD 0016 GREY SHLE ROCK 0020
7345861	2019-07-03	3.7	0.0	0.0	MT		BRWN FILL GRVL 0002 BRWN SAND SILT DRY 0008 BRWN SAND SILT WBRG 0012
7345862	2019-07-03	3.7	0.0	0.0	MT		GREY GRVL 0000 BRWN FILL GRVL SAND 0002 BRWN SAND SILT DRY 0008
7361501	2020-03-12	0.0	0.0	0.0			
7378766	2020-12-09	6.7	0.0	0.0	MO	18	BRWN GRVL SAND 0015 BLUE SHLE WTHD 0022
7378767	2020-12-09	5.8	0.0	0.0	MO		BRWN GRVL SAND 0015 BLUE SHLE WTHD 0019
7378768	2020-12-09	6.7	0.0	0.0	MO		BRWN GRVL SAND 0015 BLUE SHLE WTHD 0022
7379029	2020-12-04	0.0	0.0	0.0			
7379030	2020-12-04	0.0	0.0	0.0			
7379031	2020-12-04	0.0	0.0	0.0			
7379032	2020-12-04	0.0	0.0	0.0			
7379033	2020-12-04	0.0	0.0	0.0			
7379034	2020-12-04	0.0	0.0	0.0			
7379035	2020-12-04	0.0	0.0	0.0			
7379036	2020-12-04	0.0	0.0	0.0			