

TABLE OF CONTENTS

1	EXE	CUTIV	E SUMMARY	5
2	INTR	RODUC	CTION	6
	2.1	SITE [DESCRIPTION	6
	2.2	PROP	ERTY OWNERSHIP	6
	2.3	Curr	ENT AND PROPOSED FUTURE USES	6
	2.4	APPLI	CABLE SITE CONDITION STANDARD	7
3	BAC	KGRO	UND INFORMATION	7
	3.1	PHYSI	ICAL SETTING	7
	3.2	PAST	Investigations	9
4	SCO	PE OF	THE INVESTIGATION	11
	4.1	OVER	VIEW OF SITE INVESTIGATION	11
	4.2	MEDIA	A INVESTIGATED	12
		4.2.1	Rationale for Exclusion and Inclusion of Media	
		4.2.2	Overview of Field Investigation of Media	
	4.3		E ONE CONCEPTUAL SITE MODEL	
	4.4	DEVIA	TIONS FROM SAMPLING AND ANALYSIS PLAN	12
	4.5	IMPED	DIMENTS	14
5	INVE	STIGA	ATION METHOD	14
	5.1	GENE	RAL	14
	5.2	DRILL	ING	14
	5.3	Soil -	- SAMPLING	15
		5.3.1	Equipment Used	15
		5.3.2	Geological Description	
	5.4		- FIELD SCREENING MEASUREMENTS	
	5.5	GROU	INDWATER – FIELD MEASUREMENT OF WATER QUALITY PARAMETERS	15
	5.6	GROU	INDWATER – MONITORING WELL INSTALLATION	15
	5.7	GROU	INDWATER – SAMPLING	16
	5.8	SEDIM	MENT - SAMPLING	17
	5.9	ANALY	YTICAL TESTING	17
	5.10		RESIDUE MANAGEMENT PROCEDURES	17
	5.11		ELEVATION SURVEYING	17
	5.12		QUALITY ASSURANCE AND QUALITY CONTROL MEASURES	17
		5.12.1	Containers, Preservation, Labelling, Handling and Chain of Custody	17
		5.12.2	Equipment Cleaning Procedures	18
		5.12.3	Field Quality Control Measures and Deviations	19
6	REV	IEW Al	ND EVALUATION	19
	6.1	GEOL	OGY	19
		6.1.1	Material in Geological Units	20

		6.1.2	Properties of Aquifers and Aquitards	21
		6.1.3	Rationale for Choice of Aquifers and Aquitards Investigated	21
	6.2	GROL	JNDWATER: ELEVATIONS AND FLOW DIRECTION	21
	6.3	GROL	INDWATER: HYDRAULIC GRADIENTS	22
	6.4	FINE-	MEDIUM SOIL TEXTURE	23
	6.5	Soil -	- FIELD SCREENING	23
	6.6		– Quality	
		6.6.1	Location and Depth of Samples	
		6.6.2	Comparison to Applicable Standards	
			6.6.2.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1))	
		6.6.3	Contaminants of Concern	27
		6.6.4	Contamination Impact on Other Media	27
		6.6.5	Chemical or Biological Transformations	27
		6.6.6	Presence of Light or Dense Non-Aqueous Phase Liquids	27
	6.7	GROL	JNDWATER QUALITY	27
		6.7.1	Location and Depth of Samples	27
		6.7.2	Comparison to Applicable Standards	29
			6.7.2.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1))	30
		6.7.3	Contaminants of Concern	30
		6.7.4	Contamination Impact on Other Media	30
		6.7.5	Chemical or Biological Transformations	30
		6.7.6	Presence of Light or Dense Non-Aqueous Phase Liquids	30
	6.8	SEDIN	MENT – QUALITY	30
	6.9	QUAL	ITY ASSURANCE AND QUALITY CONTROL RESULTS	31
		6.9.1	Subsection 47 (3) of the Regulation	32
		6.9.2	Laboratory Qualification of Results	32
		6.9.3	Overall Quality of Field Data	32
	6.10		PHASE TWO CONCEPTUAL SITE MODEL	32
7	CON	CLUSI	IONS	33
•	7.1		ATURES	
0	DEE			
8	KEF	EKEN(CES	34
9	LIMI	ΓΑΤΙΟΙ	NS AND RESTRICTIONS	35
	9.1	REPO	RT USE	35

FIGURES

- Figure 1 Key Plan
- Figure 2 PCA Locations
- Figure 3 PCA and APEC Locations
- Figure 4 Boreholes and Monitoring Wells Location
- Figure 5A Groundwater Elevations and Contours Overburden
- Figure 5B Groundwater Elevations and Contours Bedrock
- Figure 6 Soil Analytical Results Plan View
- Figure 7 Soil Analytical Results Section A-A'
- Figure 8 Soil Analytical Results Section B-B'
- Figure 9 Soil Analytical Results Section C-C'
- Figure 10 Groundwater Analytical Results Plan View
- Figure 11 Groundwater Analytical Results Section A-A'
- Figure 12 Groundwater Analytical Results Section B-B'
- Figure 13 Groundwater Analytical Results Section C-C'
- Figure 14 Human Health ESM
- Figure 15 Ecological Health ESM

TABLES

- Table 1 Groundwater Elevations
- Table 2 Metals, Hydride Metals, Other Regulated Parameters in Soil
- Table 3 Polycyclic Aromatic Hydrocarbons in Soil
- Table 4 Petroleum Hydrocarbons and BTEX in Soil
- Table 5 Volatile Organic Compounds and Trihalomethanes in Soil
- Table 6 Polychlorinated Biphenyls in Soil
- Table 7 Metals, Hydride Metals, Other Regulated Parameters in Groundwater
- Table 8 Polycyclic Aromatic Hydrocarbons in Groundwater
- Table 9 Petroleum Hydrocarbons and BTEX in Groundwater
- Table 10 Volatile Organic Compounds and Trihalomethanes in Groundwater

APPENDICES

- Appendix A Phase One Conceptual Site Model
- Appendix B Sampling and Analysis Plan
- Appendix C Borehole Logs
- Appendix D Grain Size Analysis
- Appendix E Certificates of Analysis
- Appendix F Phase Two Conceptual Site Model
- Appendix G Standard Field Investigation Protocol

1 Executive Summary

2555 Erin Centre c/o Trinity Point Developments retained Grounded Engineering Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 2555 Erin Centre Boulevard., Mississauga, Ontario (Property). The Phase Two ESA was conducted to investigate the Areas of Potential Environmental Concern (APECs) that have been identified on the Property.

The results of the Phase Two ESA are summarized below:

Applicable Site Condition Standards	MECP Table 3 RPI CT
Soil Contaminants of Potential Concern (CoPCs) Investigated	The following parameters were investigated based on APECs identified in the Phase One ESA:
(SOI OS) IIIVEStiguted	 Metals (M) Hydride-forming Metals (H-M) Arsenic (As), Selenium (Se), Antimony (Sb) Other Regulated Parameters (ORPs) B-HWS, CN-, EC, SAR, Cr(VI), Hg Polycyclic Aromatic Hydrocarbons (PAHs) Petroleum Hydrocarbons (PHCs) Volatile Organic Compounds II - Benzene, Toluene, Ethylbenzene, Xylene (BTEX) Volatile Organic Compounds I (VOCs) The following parameters were investigated for environmental due difference and account to the parameter of a Phone
	diligence purposes in accordance with the general objectives of a Phase Two ESA, per O.Reg. 153/04, Section VIII, 33.1(1) and (2):
Groundwater CoPCs Investigated	 Polychlorinated Biphenyls (PCBs) The following parameters were investigated based on APECs identified in the Phase One ESA:
	 Metals Hydride-forming Metals As, Se, Sb Other Regulated Parameters Cr(VI), CN-, Hg, CI- Sodium (Na) PAHs PHCs BTEX VOCs
Applicable Site Condition Standards Met for Soil? (Yes/No)	Yes
Applicable Site Condition Standards Met for Groundwater? (Yes/No)	Yes

A Record of Site Condition (RSC) can be filed for the Property.

2 Introduction

2.1 Site Description

2555 Erin Centre c/o Trinity Point Developments retained Grounded Engineering Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 2555 Erin Centre Boulevard., Mississauga, Ontario (Property). The Phase Two ESA was conducted to investigate the Areas of Potential Environmental Concern (APECs) that have been identified on the Property. The site location is presented in Figure 1.

The Property is approximately rectangular in shape, with an area of 0.97 ha. The Property is developed with a large single storey slab-on-grade commercial building with tenants including medical clinics, spas/salon, restaurants and a tutoring centre. The remaining portions of the Property are covered by landscaped areas and an at-grade parking lot. The Phase Two ESA has been prepared to support the filing of a Record of Site Condition (RSC) and in accordance with Ontario Regulation 153/04 (O.Reg. 153/04).

2.2 Property Ownership

The Property information is provided below:

Municipal Address	2555 Erin Centre Boulevard, Mississauga, ON
Legal Description	Block 116 Plan 43M-856 city of Mississauga Regional Municipality of Peel
PIN(s)	13121-005 LT
Assessment Roll Number	2105040159400000000
Current Land Use	Commercial
Property Owner Information	Startmont Estate Inc.
Person who has engaged the Qualified Person to conduct the Phase One ESA	Carmina Tupe 2555 Erin Centre c/o Trinity Point Developments 1681 Langstaff Road Vaughan, ON L4K 5T3

2.3 Current and Proposed Future Uses

The Property is considered to be in Commercial Land Use as defined by the Ontario Ministry of the Environment, Conservation and Parks (MECP) O.Reg 153/04.

It is understood that the Phase Two Property will be developed with three (3) new high-rise towers, ranging from 27 to 33-storeys, which will rest on four levels of underground parking (P4) be

neath the entire Property. Grounded understands that the proposed property use is Residential Land Use, as defined by O. Reg. 153/04.

2.4 Applicable Site Condition Standard

The applicable site condition standard for the Phase Two Property is determined to be the Table 3 Site Condition Standard for Residential Land Use in a non-potable groundwater condition for coarse textured soil due to the following reasons:

Current Land Use	Commercial
Future Land Use	Residential
Soil Texture	Coarse based on grain size analysis performed on the soil (Appendix D)
Potable Water Source	Municipal service
Bedrock Depth	Bedrock is located at a depth of greater than 2 m.
Property located within 30 m of a surface water body (Yes/No)	No
Property located in or adjacent to a provincial park or an Area of Natural Significance (Yes/No)	No

Grounded Engineering Inc. notified the Region of Peel of the intention to use non-potable groundwater standards on September 17, 2024. No objections have been received to the use of non-potable groundwater standards on October 1, 2024.

3 Background Information

3.1 Physical Setting

The Ministry of Natural Resources and Forestry (MNRF) and Ministry of Energy, Northern Development and Mines (MENDM) database were searched to obtain topographic and geological maps of Ontario for review. The information obtained are summarized below:

Records	Information
Topographic Maps	The approximate elevation of the Property is 169 m above sea level (masl) and is relatively flat, with a slight slope towards the south.

Records	Information
	The nearest body of water is a tributary of Mullet Creek, located approximately 60 m to the south of the Property. Lake Ontario is located approximately 20 km southeast of the property. Surface water flow is expected to flow to the municipal catch basins located on the Property or the adjacent roadways.
Hydrology	Based on the water level monitoring during the Grounded subsurface investigation, the groundwater direction in both the glacial till and bedrock units were determined to flow locally to the east and north, respectively. Regional groundwater flow is expected to flow to the south/southeast towards the tributary of Mullet Creek and then southeast to Lake Ontario.
Geological Maps	Overburden: Clay to silt-textured till (derived from glaciolacustrine deposits or shale). Bedrock: Queenston Formation comprised of shale, siltstone, minor limestone and sandstone. Depth to Bedrock: Bedrock was encountered during the Grounded subsurface investigation at depths of 4.3 to 6.5 m below grade (Elev. 164.8 to 162.9 m).

Maps from MNRF were reviewed to determine if water bodies were present on the Property and within the Study Area. The Ontario Ministry of Natural Resources National Heritage Information Centre database for Areas of Natural or Scientific Interest (ANSIs) was also reviewed as part of the Phase Two ESA. The information is summarized below:

Water Bodies	Property: No water bodies are located on the Property. Study Area: A tributary of Mullet Creek was observed approximately 60 m to the south of the Property
Wetlands	rraversing southeast-northwest. Property: No Provincially Significant, Non-Provincially Significant, and Unevaluated wetlands are located on the Property.
	Study Area: No Provincially Significant, Non-Provincially Significant, and Unevaluated wetlands are located within the Study Area.
ANSIs	Property: None of the following ANSIs were located on the Property. Study Area: None of the following ANSIs were located within the Study Area. List of ANSIs reviewed: An area reserved or set apart as a provincial park or conservation reserve under the Provincial Parks and Conservation Reserves Act, 2006. An area of natural and scientific interest (life science or earth science) identified by the Ministry of Natural Resources as having provincial significance. A wetland identified by the Ministry of Natural Resources as having provincial significance.

- An area designated by a municipality in its official plan as environmentally significant, however expressed, including designations of areas as environmentally sensitive, as being of environmental concern and as being ecologically significant.
- An area designated as an escarpment natural area or an escarpment protection area by the Niagara Escarpment Plan under the Niagara Escarpment Planning and Development Act.
- An area identified by the Ministry of Natural Resources as significant habitat of a threatened or endangered species.
- An area which is habitat of a species that is classified under section 7 of the Endangered Species Act, 2007 as a threatened or endangered species.
- Property within an area designated as a natural core area or natural linkage area within the area to which the Oak Ridges Moraine Conservation Plan under the Oak Ridges Moraine Conservation Act, 2001 applies.
- An area set apart as a wilderness area under the Wilderness Areas Act.

The Areas of Natural Significances (ANSIs) and water bodies on or adjacent to the Property is shown in Figure 2, if present.

3.2 Past Investigations

The following environmental reports were provided for review for the Property. The findings of the reports are summarized below:

Title	Phase 1 Environmental Site Assessment Existing Commercial Development 2555 Erin Centre Boulevard, Northeast Corner of Erin Mills Parkway and Erin Centre Boulevard, City of Mississauga
Report Date	November 16, 1995
Prepared By	Soil-Eng Limited
Prepared for	Starmont Estates Incorporated c/o History Hill Group
Description of Data, Analysis or Findings	 The Phase I ESA was completed for the purposes of due diligence for refinancing the Property and was generally completed in accordance with CSA Standard Z768-01. Historically the Property was mainly used for agricultural purposes and was vacant farmland until at least 1982. The next available record (topographic map, 1991) showed a structure on the Property that was identified as a sales pavilion for the adjacent subdivision. Previous soil investigation conducted in June 1994 indicated that the Property was used for stockpiling topsoil. This investigation report was not provided for review. At the time of the site inspection completed on November 8 and 10, 1995, the Property was occupied by a commercial strip plaza with 14 units (1 vacant unit) including a dry cleaning depot (Top Hat Cleaners). It was noted that Top Hat Cleaners is strictly a pickup/drop-off location and that no dry cleaning chemicals were used on the Property. The Property was reportedly heated by natural gas-fired HVAC units. A tributary of Mullet Creek was identified to the south of the site, just beyond Erin Centre Boulevard.

- A building audit was conducted and no asbestos insulation or UFFI was observed. No PCB-containing ballasts were found.
- Transformers were observed to the north of the building and in adjacent property to the northeast.
- There were no significant potential environmental concerns reportedly identified in the report.

Grounded's review of this Phase I ESA noted that the Phase One Property was formerly used for light agricultural purposes until the commercial plaza was developed in 1989 with a dry cleaner pickup/drop-off depot (Based on historical aerial photo from 1989, it appeared that the existing building structure resembles the current building configuration). Transformers were observed on the Phase One Property and adjacent to the northeast. These are considered to be potentially contaminating activities on site.

Title	Phase One Environmental Site Assessment, 2555 Erin Centre Boulevard, Mississauga, Ontario.
Report Date	July 29, 2024
Prepared By	Grounded Engineering Inc.
Prepared for	2555 Erin Centre c/o Trinity Point Developments
Description of Data, Analysis or Findings	 Phase One ESA: The Phase One ESA was completed in support of filing a Record of Site Condition (RSC). The Phase One ESA was completed in accordance with O.Reg. 153/04. Historically, the Property was mainly used for light agricultural purposes prior to 1989. A building complex resembling the current commercial plaza configuration was identified in the 1989 aerial photograph. Based on the review of the background information (aerial photographs), there was no evidence indicating high-risk organochlorine pesticide crops (e.g. apple orchards) being grown on the Property during its use for light agricultural purposes. There has been no agricultural activity on the Property since 1989 (for approximately 35 years). At the time of the site inspection complete on June 13 and 27, 2024, the Property was occupied by a commercial strip plaza with sixteen units including various restaurants, medical clinics and beauty salons and associated parking lot. The Property was heated by a natural gas-fired HVAC unit. A tributary of Mullet Creek was identified 60 m to the south of the site. The unit previously occupied by the dry cleaning depot (Top Hat Cleaners) was observed to be operated by a restaurant during the site inspection. An on-site pad-mounted transformer was observed on the northern portion of the Property and an off-site pad-mounted transformer was observed adjacent to the northeast of the Property. The transformers are considered to be non-PCB containing based on Alectra's response dated July 4, 2024. The following Areas of Potential Environmental Concerns were identified in the report: APEC 1 – On-site PCA #30 Importation of fill material of unknown quality APEC 2 – On-site PCA #37 Operation of dry cleaning equipment (where chemicals are used)

 APEC 3 – On-site PCA #55 Transformer manufacturing, processing and
use
 APEC 4 – Off-site PCA #55 Transformer manufacturing, processing and
use
 APEC5 – On-site PCA Other1 De-icing activities
 Based on the results of the Phase One ESA, a Phase Two ESA was required to assess the soil and groundwater quality on site to address the identified APECs on the Property, prior to filing a Record of Site Condition (RSC).

The PCAs and APEC locations are provided in Figure 2.

4 Scope of the Investigation

4.1 Overview of Site Investigation

The scope of the Phase Two ESA is as follow:

Boreholes and	 Advancing of nine (9) boreholes to depths of 0.6 to 19.9 m below ground surface (mbgs)
Monitoring Wells	Installation of eight (8) monitoring wells
	The following parameters were investigated based on APECs identified in the Phase One ESA:
	Metals (M)
	Hydride-forming Metals (H-M)
	 Antimony (Sb), Arsenic (As), Selenium (Se)
	Other Regulated Parameters (ORPs)
	o B-HWS, CN-, EC, SAR, Cr(VI), Hg
Parameters Investigated for Soil	Polycyclic Aromatic Hydrocarbons (PAHs)
investigated for con	Petroleum Hydrocarbons (PHCs)
	Volatile Organic Compounds II - Benzene, Toluene, Ethylbenzene, Xylene (BTEX)
	Volatile Organic Compounds I (VOCs)
	The following parameters were investigated for environmental due diligence purposes in accordance with the general objectives of a Phase Two ESA, per O.Reg. 153/04, Section VIII, 33.1(1) and (2):
	Polychlorinated Biphenyls (PCBs)
	The following parameters were investigated based on APECs identified in the Phase One ESA:
	Metals
Parameters Investigated for	Hydride-forming Metals
Groundwater	o Sb, As, Se
	Other Regulated Parameters
	o Cr(VI), CN-, Hg, Cl-

- Sodium (Na)
- PAHs
- PHCs
- BTEX
- VOCs
- Nine (9) soil samples were submitted for grain size analysis and soil classification.
- All boreholes and monitoring wells were surveyed to a geodetic benchmark.
- All new monitoring wells were developed prior to sampling.
- Groundwater level measurements were conducted in all accessible monitoring wells to determine groundwater elevation on the Property.

4.2 Media Investigated

4.2.1 Rationale for Exclusion and Inclusion of Media

Media	Included/Excluded	Rationale
Soil	Included	Based on the Phase One ESA, soil sampling was required to investigate the CoPCs related to the identified APECs.
Sediment	Excluded	Surface water bodies were not presented on the Property. No sediment sampling was conducted during the Phase Two ESA.
Groundwater	Included	Based on the Phase One ESA, groundwater sampling was required to investigate the CoPCs related to the identified APECs.
Surface Water	Excluded	Surface water bodies were not presented on the Property. No surface water sampling was conducted during the Phase Two ESA.

4.2.2 Overview of Field Investigation of Media

Soil sampling was conducted during the drilling investigation. Groundwater sampling was conducted from the new monitoring wells installed on the Property.

4.3 Phase One Conceptual Site Model

The Phase One Conceptual Site Model (CSM) prepared as part of the Phase One ESA report is provided in Appendix A.

4.4 Deviations From Sampling and Analysis Plan

Deviations to the Sampling and Analysis Plan were as follows:

No intrusive investigation was conducted within the footprint of the location of the former dry cleaner (Unit 15), due to space restrictions and the current use of this unit as an active restaurant.

- The limited access equipment and tools required to drill within a confined space (in Unit 15) are unable to advance to the required depth to reach the groundwater table.
- As such, BH106 and BH108 were advanced directly outside of the footprint of the building
 to investigate APEC 2 and associated CoPCs. The lack of background information available
 for this dry cleaner was supplemented by conservatively expanding the area of APEC 2 to
 incorporate boreholes/monitoring wells located downgradient from the location of the
 former dry-cleaning unit.
- BH106 was advanced directly adjacent to the north of the former dry-cleaner unit to investigate the area in closest proximity to where dry-cleaning equipment would typically be located. Additionally, storage and handling of materials would occur behind the unit.
- Therefore, this location is considered an adequate assessment of where the maximum concentrations of CoPCs for APEC 2 would be located.

A monitoring well was installed at Borehole 102 (BH102) to assess APEC 1 (unknown fill quality), APEC 2 (historical dry-cleaning activities) and APEC 5 (De-icing activities) on the Property, per the intended Sampling and Analysis Plan.

- Following installation, BH102 had an insufficient quantity of groundwater despite being screened within the inferred overburden water table at the Property.
- Therefore, groundwater from this monitoring well was submitted for VOC analysis only given the limited quantity of water available. As such, groundwater from BH102 could only be used to investigate APEC 2 and partially investigate APEC 1 based on the analysis completed.
- It is the opinion of the Qualified Person, however, that APECs 1 and 5 have been adequately assessed for the CoPCs identified in the Phase One ESA for the media potentially impacted (soil and groundwater) in accordance with O.Reg. 153/04 and the Sampling and Analysis Plan, as intended.
 - There were no further deviations noted and all remaining boreholes and monitoring wells were installed without issue.
 - There is adequate coverage within the extents of APEC 1 and APEC 5 (Entire Phase Two Property) as supported by the advancement of BH101, BH103, BH104, BH105, BH106, BH107 and BH108.
 - Soil and groundwater were able to be assessed for the CoPCs identified via the advancement of these other boreholes/monitoring wells.
 - All soil samples met the applicable SCS for the CoPCs assessed, per the Sampling and Analysis Plan, including those collected at BH102. It is therefore unlikely that leaching of the CoPCs through the overburden and into the groundwater table has occurred and that any impacts for these CoPCs exist in the groundwater at the location of BH102.

Despite the above deviations, the Qualified Person has determined that the implemented sampling and analysis plan meets the objectives of the investigation and assessment.

It is the QPs opinion that the Property has been adequately assessed and the maximum concentrations were identified and delineated. The Sampling and Analysis Plan is provided in Appendix B.

4.5 Impediments

No impediments were encountered during the Phase Two ESA.

5 Investigation Method

5.1 General

The Phase Two ESA followed the methods outlined in the Ontario Ministry of the Environment, Conservation, and Parks "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996).

The methods used in the Phase Two ESA did not differ from the associated standard operating procedures. The Standard Field Investigation Protocol is provided in Appendix G.

5.2 Drilling

The Phase Two ESA drilling information is provided below:

Boreholes	BH101 to BH109	
Date of Work	June 24 to 28, 2024	
Name of the Contractor(s)	3D Drilling Inc.	
Equipment Used	 Truck and Track Mounted Hollow stem augers 2 inch split spoon soil sampling device Hand auger sampling device 	
Measures for Cross- contamination Prevention	The split spoon sampling device and hand auger sampling device were washed between each sample to prevent potential cross-contamination	

Sampling Frequency

Please refer to the borehole logs in Appendix C for the sampling frequency

The borehole locations are provided in Figure 4.

5.3 Soil - Sampling

5.3.1 Equipment Used

Below is the equipment used during the soil sampling.

- Sampling containers supplied by the laboratories
- Nitrile gloves
- Cooler with ice
- RKI EAGLE 2 gas monitor

5.3.2 Geological Description

The borehole logs in Appendix C provide an overall geological description of each soil sample collected during the 2024 Phase Two ESA.

5.4 Soil – Field Screening Measurements

Hydrocarbon vapour concentrations were screened in each soil sampling, using an RKI Eagle 2 gas monitor. The monitor is calibrated to *n*-hexane prior to field screening as per the calibration procedure outlined by RKI Instruments in "Eagle 2 Operator's Manual, Part Number:71-0154RK" released March 12, 2019. The monitor has a range of 0 to 40,000 parts per million (ppm) and an accuracy of +/- 5%.

Based on field screening measurements and visual and olfactory examination of all soil samples, selected samples were submitted for petroleum hydrocarbon (PHCs) and volatile organic compounds (VOCs) laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix C.

5.5 Groundwater - Field Measurement of Water Quality Parameters

Water quality parameters including temperature, pH, specific conductivity, total dissolved solids were measured using a Hanna Instruments portable meter prior to sampling.

5.6 Groundwater – Monitoring Well Installation

The Phase Two ESA monitoring well installation information is provided below:

Monitoring Wells	BH101, BH102, BH103, BH104, BH105, BH106, BH107 and BH108	
Date of Work	June 24 to 28, 2024	
Name of the Contractor(s)	3D Drilling Inc.	
Equipment Used	 Truck and Track Mounted Hollow stem augers 2 inch split spoon soil sampling device 	
Measures for Cross- contamination Prevention	The split spoon sampling device was washed between each sample to prevent potential cross-contamination. New well materials were used during install and drilling technicians donned new nitrile gloves to handle well materials prior to install.	
Sampling Frequency	No groundwater samples were collected during drilling event.	
Well Construction	The wells were constructed with 50 mm (2 in.) ID PVC screens and risers. Filter sand was placed around the well screen to approximately 0.3 to 0.8 m above the top of the screen. The wells were then backfilled with bentonite to approximately 0.3 m below ground surface (mbgs). The wells were finished with flush mounts.	
Well Development	The monitoring wells were developed on June 28, July 2, July 24 and August 27, 2024. Well development was conducted with an inertial pump, bailer and hydrolift. A total volume of 321 L of water was removed during the well development. Stabilization of parameters (pH, conductivity, temperature, etc.) of the purged water was monitored before a sample to ensure the samples are representative of the formation water.	

The monitoring well locations are provided in Figure 4.

5.7 Groundwater - Sampling

The monitoring well was sampled using a bailer. The groundwater was purged before sampling to ensure extraction of representative formation groundwater. Stabilization of water quality parameters of the purged water was monitored before a sample was taken to maintain the equilibrium with the surrounding formation water and produce samples that are representative of the formation water.

Sampling methodology from the Ontario Ministry of the Environment, Conservation and Parks (MECP) "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites In Ontario", MECP "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" and MECP "Protocol for Analytical Methods Used in the Assessment of Properties under Par XV.1 of the Environmental Protection Act" were followed in the collection of the groundwater samples.

5.8 Sediment - Sampling

No sediment sampling was conducted as part of this investigation.

5.9 Analytical Testing

Analytical testing of all soil and groundwater samples was conducted by SGS Canada Inc.

5.10 Residue Management Procedures

Residues from the field investigation were managed accordingly as provided below:

Residues	Management Procedures
Soil Cuttings	Soil cuttings generated during the drilling activities were placed in drums and removed to offsite by a licensed waste management contractor.
Groundwater	The purge water generated during the well development and groundwater sampling events was disposed of in drums and removed by a licensed waste management contractor.
Fluids from Equipment Cleaning	The fluids from cleaning were removed from the Property and disposed by the drilling contractor.

5.11 Elevation Surveying

The elevations of the boreholes on the Property were surveyed to a geodetic benchmark on June 28, 2024, and July 24, 2024. The elevation of each borehole on the Property is presented on the borehole logs in Appendix C.

5.12 Quality Assurance and Quality Control Measures

5.12.1 Containers, Preservation, Labelling, Handling and Chain of Custody

The following laboratory supplied sample containers were used for all sampling conducted on the Property.

Davamatay/Craum	Containers	
Parameter/Group	Soil	Groundwater
Inorganic Parameters: Chromium hexavalent (CrVI), cyanide (CN-), pH, electrical conductivity (EC)	250 g soil jar	500 mL PET 60 mL plastic (CrVI) 120 mL plastic (CN-)

Parameter/Croup	Containers	
Parameter/Group	Soil	Groundwater
Soil only: boron, hot water soluble (B-HWS), sodium adsorption ratio (SAR)		
Water only: chloride		
Metals		250 mL HDPE (Metals)
Mercury (Hg)		60 mL amber glass (Hg)
Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene, and xylene (BTEX)	100 g soil jar 2 x 40 mL pre-weighed methanol 5 g soil plug	2 x 40 mL amber vial (zero
Petroleum hydrocarbons (PHCs) F1/ BTEX		headspace)
Polychlorinated biphenyls (PCBs)	100 g soil jar	NA
PHCs (F2-F4)	100	2 x 100 mL bottles fill to top of
Polycyclic aromatic hydrocarbons (PAHs)	100 g soil jar	label
Toxicity characteristic leaching procedure (TCLP)	250 g soil jar	-

All sampling containers were equipped with laboratory supplied labels. The labels indicated the following information:

- Sample ID
- Company name
- Date
- Project number

Samples were placed in coolers with ice after collection for transportation to the laboratory. Sample hold times were met for all submitted soil and groundwater samples. Laboratory supplied Chain of Custody forms were completed for all samples submitted for analysis.

5.12.2 Equipment Cleaning Procedures

Equipment	Cleaning Procedures
Soil sampling	Split spoon sampling devices and hand augering devices were washed between samples to prevent potential cross-contamination.

Equipment	Cleaning Procedures
Groundwater sampling	Water level meter/ water quality monitoring meter was cleaned between monitoring wells.

All other dedicated equipment (nitrile gloves, terracores samplers, tubing) were changed between each sample to avoid cross-contamination.

5.12.3 Field Quality Control Measures and Deviations

For quality control purpose, the following actions were taken:

- At least one (1) duplicate sample is submitted for laboratory analysis for every ten (10) samples submitted for laboratory analysis for each sampled medium.
- Daily calibration of field instruments prior to sampling
- Groundwater trip blanks are used for Quality Assurance purposes for sampling of Volatile Organic Compounds.

No deviations from the quality assurance and quality control measures had occurred.

6 Review and Evaluation

6.1 Geology

Detailed geological information for the Property is presented on the borehole logs in Appendix C. The geology at the Property is summarized below.

Geological Unit Thickness (Estimate)		
Borehole	BH101 to BH109	
	Thickness Range (m)	
Topsoil and Earth Fill	0.4 - 1.9	
Clayey Silt (Glacial Till)	2.3 - 5.0	
Bedrock	Bedrock was encountered during the investigation at a depth of 4.3 to 6.5 mbgs.	

Geological Unit Elevations		
Borehole	BH101 to BH109	
borenoie	Elev. Top Range (masl)	Elev. Bottom Range (masl)
Topsoil and Earth Fill	168.9 - 169.2	167.1 – 168.7
Clayey Silt (Glacial Till)	167.1 – 168.7	162.9 – 164.8
Bedrock	162.9 - 164.8	149.5 – 164.7

6.1.1 Material in Geological Units

Geological Units	Description
Pavement Structure/Topsoil	All borehole locations except for BH109 encountered a pavement structure consisting of 100 to 125 mm asphaltic concrete underlain by 75 to 225 mm of aggregate. At BH109, 150 mm of topsoil was observed.
Earth Fill	Earth fill was encountered at all borehole locations and underlying the pavement structure in BH101 to BH108. The earth fill extended to a depth of 0.8 to 2.3 mbgs (Elev. 167.1 to 168.7 ml). The earth fill varied in composition but generally consists of clayey silt, silty sand and silt with some clay. It contained trace construction debris, rock fragments and trace to some gravel. BH109 was advanced by handauger methods and was terminated in the existing fill at a depth of 0.6 mbgs (Elev. 168.4 m).
Clayey Silt (Glacial Till)	Underlying the fill materials, all the encountered an undisturbed native glacial till deposit with a matrix ranging from cohesive clayey silt, with some sand, to cohesionless silty sand to sandy silt. The glacial till contained trace to some gravel, occasional light grey silt partings and trace shale/rock fragments throughout, as well as possible cobbles and boulders.
	The glacial till was encountered at depths of 0.8 to 2.3 m below grade (Elev. 168.7 to 167.1 m) and extends to depths of 4.3 to 6.5 m below grade (Elev. 164.8 to 162.9 m).
Bedrock	Bedrock was either confirmed (by rock coring) or inferred (by split-spoon sampling and other drilling observations) in BH101 to BH108, underlying the glacial till at depths of 4.3 to 6.5 m below grade (Elev. 164.8 to 162.9 m). Bedrock was confirmed by rock cores recovered in BH101 to BH106 extending to depths of 18.5 to 19.9 m below grade (Elev. 150.8 to 149.5 m). Where coring was not conducted at BH107 and BH108, the top of weathered bedrock was inferred through auger cuttings, split spoon samples, and auger grinding/resistance observations.
	The bedrock beneath the site is the Queenston Formation, which is a deposit predominantly comprising thin to medium bedded red to reddish brown calcareous shale and siltstone ("shale" by local convention) of Upper Ordovician age.

6.1.2 Properties of Aquifers and Aquitards

Aquifers/Aquitards	Description
Earth Fill	The Earth Fill on the Property is considered to be an unconfined aquifer. The earth fill likely drains into the catch basins onsite or storm water systems adjacent to the Property.
Native Soil (Glacial Till)	The native soil is comprised of cohesive clayey silt, with some sand, to cohesionless silty sand to sandy silt (glacial till). The native soil is considered to be an unconfined aquifer.
Bedrock	Bedrock was encountered on the Property. The bedrock is considered to be a confined aquifer due to its ability to allow for the flow of water along horizontal fissures and fractures which are typical of this formation.

6.1.3 Rationale for Choice of Aquifers and Aquitards Investigated

The native Glacial Till unit, and bedrock were chosen for investigation. These strata were chosen for investigation because:

- Possibility of free groundwater present
- The possible location of mobile contamination within the native overburden and lower bedrock units
- The likelihood of horizontal migration of groundwater across the site

6.2 Groundwater: Elevations and Flow Direction

A total of eight (8) monitoring wells were installed by Grounded Engineering Inc. The monitoring wells were located within the APECs identified in the Phase One ESA completed by Grounded (dated July 2024) for the Property. Screened intervals of the monitoring wells were selected for the collection of groundwater samples within the desired stratum.

Five (5) groundwater level measurements were conducted by Grounded Engineering Inc. in the newly installed monitoring wells using a Solinst interface probe on the following dates:

- July 11, 2024
- July 24, 2024
- August 12, 2024
- August 27, 2024
- September 9, 2024

To calculate the groundwater elevation in the monitoring well, the following calculation was completed:

 Geodetic Ground Elevation (masl) – Measured Depth to Water Table (m) + Stick up of Well (m) = Groundwater Elevation (masl)

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) or free-flowing products were detected on the Property. Water level data was collected on July 11, 2024 but was excluded from Table 1 since it was determined that the water levels were still recovering following development and not all monitoring wells reached static elevation. The groundwater levels are presented in Table 1 and Figure 5a and 5b.

Groundwater elevations were assessed in both the overburden (glacial till) and bedrock units. Five (5) monitoring wells (BH102, BH104, BH106, BH107 and BH108) were installed within the native glacial till unit. Groundwater within these monitoring wells was encountered at a depth of 2.95 to 3.40 mbgs (Elev. 165.71 to 166.25 masl). BH107 is partially screened within the earth fill unit and exhibited anomalous groundwater level readings indicative of potential influence from infiltrated stormwater in the earth fill. The groundwater within BH107 was measured at a depth of 2.51 m (Elev. 166.98 m). As such, it was excluded from the overburden contour plan on Figure 5a as it does not appear to be representative of the overburden groundwater levels at the Property.

Three monitoring wells (BH101, BH103 and BH105) were installed within the bedrock unit. Groundwater within these monitoring wells was encountered at a depth of 7.26 to 8.27 mbgs (Elev. 161.20 to 161.74 masl).

The groundwater flow direction in the overburden glacial till unit was determined to be to the east. The groundwater flow direction in the bedrock unit was determined to be to the north. Regionally, groundwater is expected to flow to the south/southeast towards the tributary of Mullet Creek and then southeast to Lake Ontario. Groundwater contours are presented in Figure 5a and 5b.

Based on the highest groundwater level of 2.95 mbgs observed at the Property, there is the potential that the buried utilities could influence the groundwater flow.

6.3 Groundwater: Hydraulic Gradients

Horizontal Hydraulic Gradients	The average horizontal hydraulic gradient at the Property in the native glacial till was determined to be approximately 0.015 m/m (to the east) based on the groundwater levels in boreholes BH104 and BH102. The average horizontal hydraulic gradient at the Property in the bedrock unit was determined to be approximately 0.019 m/m (to the north) based on the groundwater levels in boreholes BH101, BH103, and BH105.
Vertical Hydraulic Gradients	Based on the location and depths of the installed monitoring wells, the vertical gradient could not be calculated.
Hydraulic Conductivity	Glacial Till (Clayey silt, with some sand to silty sand to sandy silt): 2.1 x 10 ⁻⁷ m/s* Bedrock (Sound): 6.0 x 10 ⁻⁹ m/s

^{*} Indicates conductivity was estimated using grain size analysis.

6.4 Fine-Medium Soil Texture

Grain size analysis were completed for selected soil samples from the boreholes at the Property. The grain size analysis is provided in Appendix D.

Based on the grain size analysis completed, it was determined that at least 1/3 of the soil at the Property, measured by volume, consists of coarse textured soil. Therefore, the qualified person has determined that coarse textured soil standards will be applicable for this Property.

6.5 Soil - Field Screening

Based on field screening measurements and visual and olfactory examination of all soil samples, selected samples were submitted for petroleum hydrocarbon (PHCs) and volatile organic compounds (VOCs) laboratory analysis. Complete field screening readings are provided on the borehole logs in Appendix C. No anomalous organic vapour readings were identified to indicate the presence of any volatile contaminants.

6.6 Soil – Quality

6.6.1 Location and Depth of Samples

Sample	De	epth		APEC	M, H-M					
ID	mbgs	masl	Strata	Assessed	& ORPs**	PAHs	PHCs	BTEX	VOCs	PCBs
Grounded	Grounded 2024 Drilling Investigation									
BH101 SS1	0.2 - 0.8	168.9 - 168.3	Fill	1		✓				
BH101 SS2	0.8 - 1.4	168.3 - 167.7	Native	1, 2, 4, 5	✓		✓	✓	✓	
BH101 SS3	1.5 - 2.1	167.5 - 167.0	Native	1		✓				
BH101 SS4	2.3 - 2.5	166.8 - 166.5	Native	5	✓					
BH101 SS5	3.0 - 3.4	166.0 - 165.7	Native	2, 4			✓	✓	✓	
BH102 SS1	0.2 - 0.8	168.9 - 168.3	Fill	1, 2		✓	✓	✓	✓	
BH102 SS2A	0.8 - 0.9	168.3 - 168.1	Fill	1, 5	✓					

Sample	De	pth		APEC	M, H-M					
ID	mbgs	masl	Strata	Assessed	& ORPs**	PAHs	PHCs	BTEX	VOCs	PCBs
BH102 SS3	1.5 - 2.1	167.5 - 167.0	Native	1, 2			✓	✓	✓	
BH102 SS4	2.3 - 2.5	166.8 - 166.6	Native	5	✓					
BH102 SS5	3.0 - 3.3	166.0 - 165.8	Native	DD*		✓				
BH103 SS2	0.8 - 1.4	168.3 - 167.7	Fill	1, 5	✓	✓	✓	✓	✓	
BH103 SS3	1.5 - 2.1	167.5 - 166.9	Native	1, 5	✓	✓				
BH103 SS5	3.0 - 3.3	166.0 - 165.8	Native	DD*			~	✓	✓	
BH104 SS2	0.8 - 1.3	168.4 - 167.9	Native	1, 5	✓	✓	√	✓	✓	
BH104 SS3	1.5 - 1.9	167.7 - 167.3	Native	1, 5	✓					
BH104 SS4B	2.4 - 2.5	166.8 - 166.7	Native	DD*		✓				
BH104 SS5	3.0 - 3.3	166.1 - 165.9	Native	DD*			✓	✓	✓	
BH105 SS1	0.4 - 0.8	169.2 - 168.8	Fill	1, 5	✓	✓				
BH105 SS2A	0.8 - 1.1	168.8 - 168.5	Native	1, 2			✓	✓	✓	
BH105 SS3	1.5 - 1.8	168.0 - 167.7	Native	1, 5	✓	✓				
BH105 SS4A	3.0 - 3.2	166.5 - 166.4	Native	2, DD*			✓	✓	✓	
BH106 SS1	0.2 - 0.8	169.2 - 168.6	Fill	1, DD*		✓				✓
BH106 SS2	0.8 - 1.4	168.6 - 168.0	Fill	1, 2, 3, 5	✓		~	✓	✓	
BH106 SS3	1.5 - 2.1	167.9 - 167.3	Native	1		✓				

Sample	De	epth		APEC	M, H-M					
ID	mbgs	masl	Strata	Assessed	& ORPs**	PAHs	PHCs	BTEX	VOCs	PCBs
BH106 SS4	2.3 - 2.5	167.1 - 166.9	Native	5	✓					
BH106 SS6	4.6 - 4.8	164.8 - 164.6	Native	2, 3			✓	✓	✓	
BH107 SS1	0.1 - 0.7	169.3 - 168.7	Fill	1		✓				
BH107 SS2	0.8 - 1.4	168.6 - 168.0	Fill	1, 5	✓		✓	✓	✓	
BH107 SS3	1.5 - 2.1	167.9 - 167.3	Fill	1			✓	✓	✓	
BH107 SS4	2.3 - 2.7	167.1 - 166.7	Native	1, 5	✓	✓				
BH108 SS1	0.1 - 0.7	169.2 - 168.6	Fill	1		✓				
BH108 SS2	0.8 - 1.4	168.6 - 168.0	Native	1, 2, 5	✓		✓	✓	✓	
BH108 SS3	1.5 - 2.0	167.8 - 167.4	Native	1		✓				
BH108 SS4	2.3 - 2.6	167.1 - 166.7	Native	2, 5, DD*	✓		✓	✓	✓	
BH109 GS1	0.0 - 0.6	169.0 - 168.3	Fill	4, DD*			✓	✓		✓

^{*}DD – Due Diligence in accordance with the general objectives of a Phase Two Site Assessment, per O.Reg. 153/04, Section VIII, 33.1(1) and (2).

6.6.2 Comparison to Applicable Standards

Selected soil samples were analyzed for Contaminants of Potential Concern (CoPCs) of the following:

- Metals
- Hydride-Forming Metals
 - o Sb, As, Se
- Select ORPs
 - o B-HWS
 - o CN-
 - o EC

^{**}Soil samples were submitted for the following select ORPs (B-HWS, CN-, EC, SAR, Cr(VI), Hg, pH).

- o SAR
- Cr(VI)
- o Hg
- PAHs
- PHCs
- BTEX
- VOCs

Selected soil samples were analyzed for due diligence purpose for the following parameter:

PCBs

The results of the analysis were compared to the applicable Site Condition Standard for the Phase Two Property (Table 3 RPI CT). The laboratory certificates of analysis are provided in Appendix E, and the results of the soil chemical analysis are provided in Table 2 to 6 and presented on Figures 6 to 9.

Comparison Table (Table 3 RPI CT Standard)							
Parameter Analyzed	Exceed/Meet	Note:					
Metals	Meet	None					
Hydride-forming Metals	Meet	None					
ORPs	Meet	EC & SAR - Refer to section 6.6.2.1					
PAHs	Meet	None					
PHCs	Meet	None					
ВТЕХ	Meet	None					
VOCs	Meet	None					
PCBs	Meet	None					

6.6.2.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1))

Chemical analysis of the soil indicates that there are exceedances of the MECP Table 3 RPI CT Standards for Electrical Conductivity and Sodium Adsorption Ratio (salt related compound) within the upper soils.

The Property is bound by municipal roadways to the south (Erin Mills Parkway) and to the east (Erin Centre Boulevard). The roadways have public sidewalks between the road and the Property

boundary. The Property features commercial vehicle traffic and car parking. The roadways, sidewalks, and parking area are all salted during the winter months for safety purposes.

The Qualified Person has determined, based on the Phase One Environmental Site Assessment and the Phase Two Environmental Site Assessment, that a substance (salt) has been applied to surfaces of the roadway, sidewalks, driveway and parking area for the safety of vehicular and pedestrian traffic under conditions of snow or ice or both.

The applicable site condition standard is exceeded at the Property solely because of the reason as stated above (application of salt for safety purposes during winter months). As per O.Reg. 153/04 49.1 the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act.

6.6.3 Contaminants of Concern

No Contaminants of Concern were identified within the earth fill and native soil on the Property.

6.6.4 Contamination Impact on Other Media

No Contaminants of Concern were identified within the earth fill and native soil on the Property. It is unlikely that other media on the Property will be impacted.

6.6.5 Chemical or Biological Transformations

No chemical or biological transformations are likely to occur since no Contaminants of Concern were identified in the soil on the Property.

6.6.6 Presence of Light or Dense Non-Aqueous Phase Liquids

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected in the soil on the Property.

6.7 Groundwater Quality

6.7.1 Location and Depth of Samples

	Scree	n Depth		4050	Metals,				VOCs	
Sample ID	mbgs	masl	Screen Strata	APEC Assessed	H-Metals & ORPs*	PAHs	PHCs	ВТЕХ		
August 12 8	August 12 & 13, 2024									
BH101	15.8 - 18.9	153.2 - 150.2	Shale	1, 2	✓	✓	✓	✓	✓	

	Scree	n Depth			Metals,				
Sample ID	mbgs	masl	Screen Strata	APEC Assessed	H-Metals & ORPs*	PAHs	PHCs	BTEX	VOCs
BH102	1.5 - 4.6	167.5 - 164.5	Clayey Silt Till to Shale	1, 2				✓	✓
BH103	15.5 - 18.5	153.6 - 150.5	Shale	1	✓	✓	✓	✓	✓
BH104	1.5 - 4.6	167.7 - 164.6	Clayey Silt Till	1		✓	✓	√	√
BH105	15.6 - 18.7	153.9 - 150.9	Shale	1, 2	✓	✓	✓	✓	✓
BH106	2.9 - 6.0	166.4 - 163.4	Clayey Silt Till	1, 2		✓	✓	✓	✓
BH107	1.8 - 3.4	167.6 - 166.1	Fill to Clayey Silt Till	1		✓	✓	✓	✓
August 27,	2024		,	,			'		
BH104	1.5 - 4.6	167.7 - 164.6	Clayey Silt Till	1	✓				
BH106	2.9 - 6.0	166.4 - 163.4	Clayey Silt Till	1, 2	✓				
BH107	1.8 - 3.4	167.6 - 166.1	Fill to Clayey Silt Till	1	√				
BH108	2.3 - 5.3	167.1 - 164.0	Clayey silt to Bedrock	1, 2	✓		✓	✓	✓
September	4, 2024								
BH104	1.5 - 4.6	167.7 - 164.6	Clayey Silt Till	1	√ 1				
BH106	2.9 - 6.0	166.4 - 163.4	Clayey Silt Till	1	√2				
BH107	1.8 - 3.4	167.6 - 166.1	Fill to Clayey Silt Till	1	√1				
BH108	2.3 - 5.3	167.1 - 164.0	Clayey silt to Bedrock	1		✓			

^{*}Groundwater samples were submitted for the following select ORPs (CI-, Na, Cr(VI), CN-, Hg, pH).

Field filtering as per the requirements of the MECP "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" July 2011, was completed.

¹Groundwater samples were submitted for remaining ORPs (Cl-, CN- and pH) on this date due to insufficient quantity of groundwater in the well on the previous sampling date of August 27, 2024.

²Groundwater samples were submitted for remaining ORPs (pH) on this date due to insufficient quantity of groundwater in the well on the previous sampling date of August 27, 2024.

6.7.2 Comparison to Applicable Standards

Selected groundwater samples were analyzed for Contaminants of Potential Concern (CoPCs) of the following:

- Metals
- Hydride-Forming Metals
 - o Sb, As, Se
- Select ORPs
 - o CN-
 - o Cr(VI)
 - o Hg
 - o CI-
- Na
- PAHs
- PHCs
- BTEX
- VOCs

The results of the analysis were compared to the applicable Site Condition Standard for the Phase Two Property (Table 3 CT). The laboratory certificates of analysis are provided in Appendix E, and the results of the groundwater chemical analysis are provided in Table 7 to 10 and presented on Figures 10 to 13.

Comparison Table (Table 3 CT Standard)							
Parameter Analyzed	Exceed/Meet	Note:					
Metals	Meet	None					
Hydride-forming Metals	Meet	None					
ORPs	Meet	CI - Refer to section 6.7.2.1					
PAHs	Meet	None					
PHCs	Meet	None					
BTEX	Meet	None					
VOCs	Meet	None					

6.7.2.1 Exemption of Salt Related Exceedances (O.Reg. 153/04 Sec 49.1 (1))

Chemical analysis of the groundwater indicates that there are exceedances of the MECP Table 3 CT Standards for Chloride (salt related compound) within monitoring wells BH106 and BH108.

The Property is bound by municipal roadways to the south (Erin Mills Parkway) and to the east (Erin Centre Boulevard). The roadways have public sidewalks between the road and the Property boundary. The Property features commercial vehicle traffic and car parking. The roadways, sidewalks, and parking area are all salted during the winter months for safety purposes.

The Qualified Person has determined, based on the Phase One Environmental Site Assessment and the Phase Two Environmental Site Assessment, that a substance (salt) has been applied to surfaces of the roadway, sidewalks, driveway and parking area for the safety of vehicular and pedestrian traffic under conditions of snow or ice or both.

The applicable site condition standard is exceeded at the Property solely because of the reason as stated above (application of salt for safety purposes during winter months). As per O.Reg. 153/04 49.1 the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act

6.7.3 Contaminants of Concern

No Contaminants of Concern were identified in the groundwater on the Property.

6.7.4 Contamination Impact on Other Media

No Contaminants of Concern were identified with the groundwater on the Property. It is unlikely that other media on the Property will be impacted.

6.7.5 Chemical or Biological Transformations

No chemical or biological transformations are likely to occur since no Contaminants of Concern were identified in the groundwater on the Property.

6.7.6 Presence of Light or Dense Non-Aqueous Phase Liquids

No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected in the soil on the Property.

6.8 Sediment - Quality

Sediment was not present at the Property thus was not investigated as part of the Phase Two ESA.

6.9 Quality Assurance and Quality Control Results

Quality Assurance (QA) and Quality Control (QC) were maintained as per described in Section 5.12 above. In addition, laboratory results were compared to MECP standards for QA/QC under Ontario Regulation 153/04 which requires laboratory results to meet specific method detection limit (MDL) conditions. The sampling and analysis performed conformed with the following guidelines:

- 1. Ministry of the Environment, Conservation and Parks Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- 2. Protocol of Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act of Ontario.

Duplicated samples were submitted at a rate of 10% for both soil and groundwater samples. The following provides a summary of the field duplicate soil samples and the results of the QC comparisons of the duplicate samples:

Parent Sample	Field Duplicate ID	Duplicate Parameters	Exceedances of QC Criteria
Soil		,	
BH101 SS2	DUP 112	M&I PHCs, BTEX VOCs	Results met QC the criterion.
BH101 SS3	DUP 113	PAHs	Results met QC the criterion.
BH102 SS3	DUP 123	PHCs, BTEX VOCs	Results met QC the criterion.
BH107 SS2	DUP 172	M&I	Results met QC the criterion but for selenium and electrical conductivity, which are discussed below. Selenium: The concentration of selenium in the parent sample was 0.2 µg/g, while the duplicate was 0.3 µg/g, leading to a RPD >30%. As the concentrations of selenium in both the original sample and the duplicate were below the Table 3 SCS of 2.4 µg/g, the results are acceptable for interpretation. EC: The EC in the parent sample was 2.9 mS/cm, while the duplicate was 2.6 mS/cm, leading to a RPD >10%. As the EC in both the original sample and the duplicate exceeded the Table 3 SCS of 0.7 mS/cm but are exempted based on 0. Reg. 153/04 Sec. 49.1 (1), the results are acceptable for interpretation.
BH108 SS3	DUP 183	PAHs	Results met QC the criterion.
BH109 GS1	DUP 191	PCBs	Results met the QC criterion.

Parent Sample	Field Duplicate ID	Duplicate Parameters	Exceedances of QC Criteria
Groundwater			
BH102	DUP 12	M&I PHCs, BTEX VOCs	Results met the QC criterion.
BH103	DUP 13	M&I	Results met the QC criterion.
BH104	DUP 14	PAHs PHCs, BTEX	Results met the QC criterion.

6.9.1 Subsection 47 (3) of the Regulation

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47 (3). A certificate of analysis or analytical report has been received for each sample submitted for analysis. All certificates of analysis or analytical reports received have been in full in an appendix to the Phase Two ESA report.

6.9.2 Laboratory Qualification of Results

The laboratory did not make any significant comments that changed the outcome of the analytical results regarding the soil and groundwater samples.

6.9.3 Overall Quality of Field Data

Decision-making related to the quality of field data of the Property was not affected. The overall quality of the field data was considered by the Qualified Person to meet the objectives of the investigation and assessment.

6.10 Phase Two Conceptual Site Model

Phase Two Conceptual Site Model (CSM) is prepared for the Property and is provided in Appendix F.

7 Conclusions

The location and concentration of contamination is provided below:

Soil	No exceedances of the applicable Site Condition Standards were identified in the soil on the Property.
Groundwater	No exceedances of the applicable Site Condition Standards were identified in the groundwater on the Property.

No exceedances of the applicable Site Condition Standards were identified for the soil and groundwater on the Property. As such, remediation or a risk assessment (RA) are not required. A Record of Site Condition (RSC) can be filed for the Property.

7.1 Signatures

The Phase Two ESA has been completed in accordance with O. Reg. 153/04 by, Jessie Hui Chung Wu, M.Env.Sc., under the direction and supervision of Ylena Quan, P.Eng., QP_{RA-ESA}. The findings and conclusions presented in this report have been determined based on the information that was obtained and reviewed from previous investigations provided and on the current investigation for the Phase Two Property.

We trust that this report meets your requirements at present.

For and on behalf of our team,

GROUNDED ENGINEERING

Jessie Hui Chung Wu, M.Env.Sc. Consultant, Environmental Scientist

Matthew Bielaski, P.Eng., QP_{RA-ESA}

Y. D. QUAN 100218271
2024-10-01

8 References

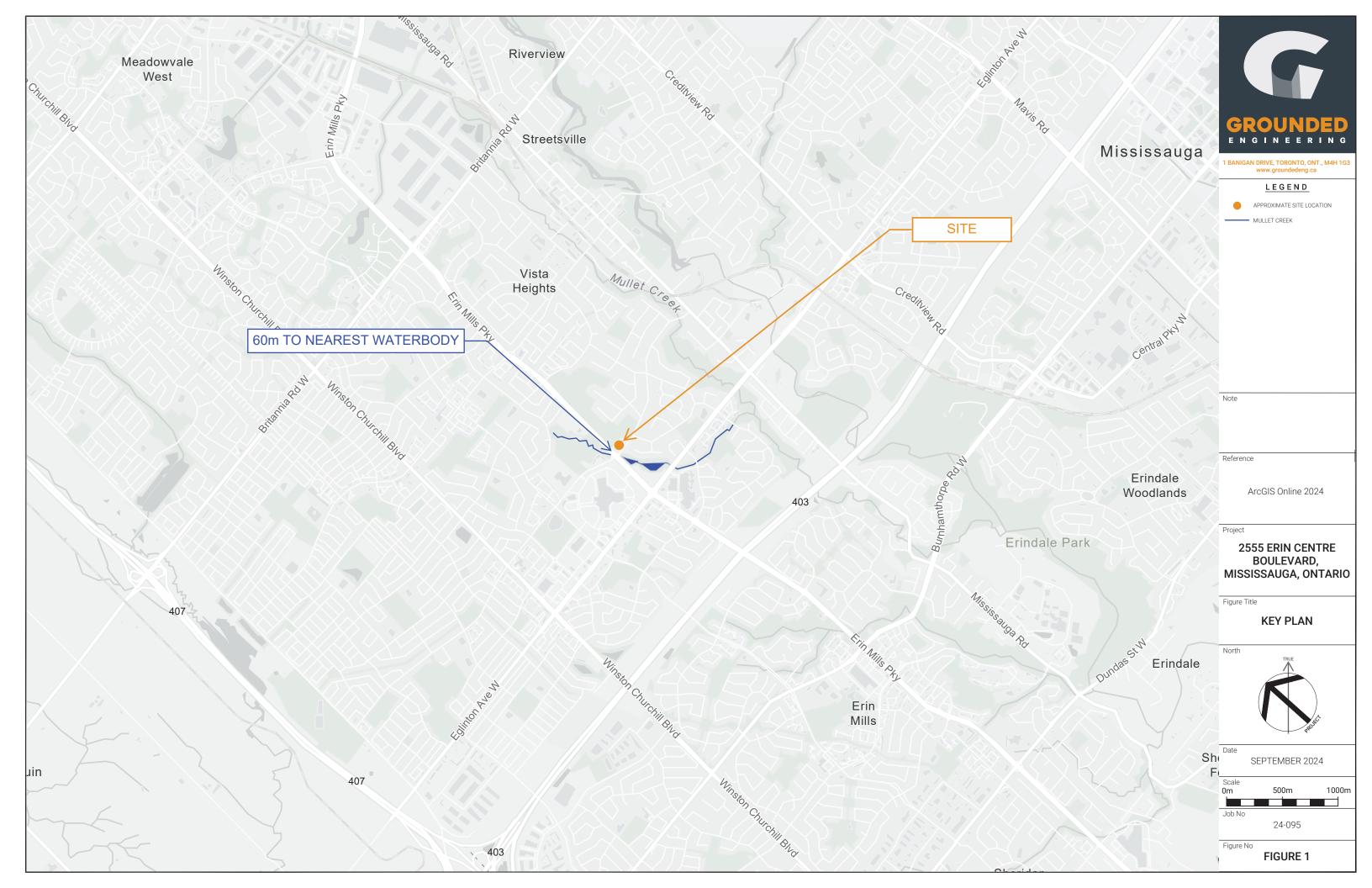
- 1. Ontario Ministry of the Environment, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.*
- 2. Ontario Ministry of the Environment, April 2011. *Soil, Ground Water and Sediment Standards for use under Part XV.* 1
- 3. Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04.
- 4. Ontario Ministry of the Environment, February 2021. *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV. 1 of the Environmental Protection Act.*
- 5. Grounded Engineering, Phase One Environmental Site Assessment, 2555 Erin Centre Boulevard, Mississauga, Ontario. File No. 24-095. July 11, 2024.
- 6. Grounded Engineering, Hydrogeological Review Report, 2555 Erin Centre Boulevard, Mississauga, Ontario. File No. 24-095. September 6, 2024.

9 Limitations and Restrictions

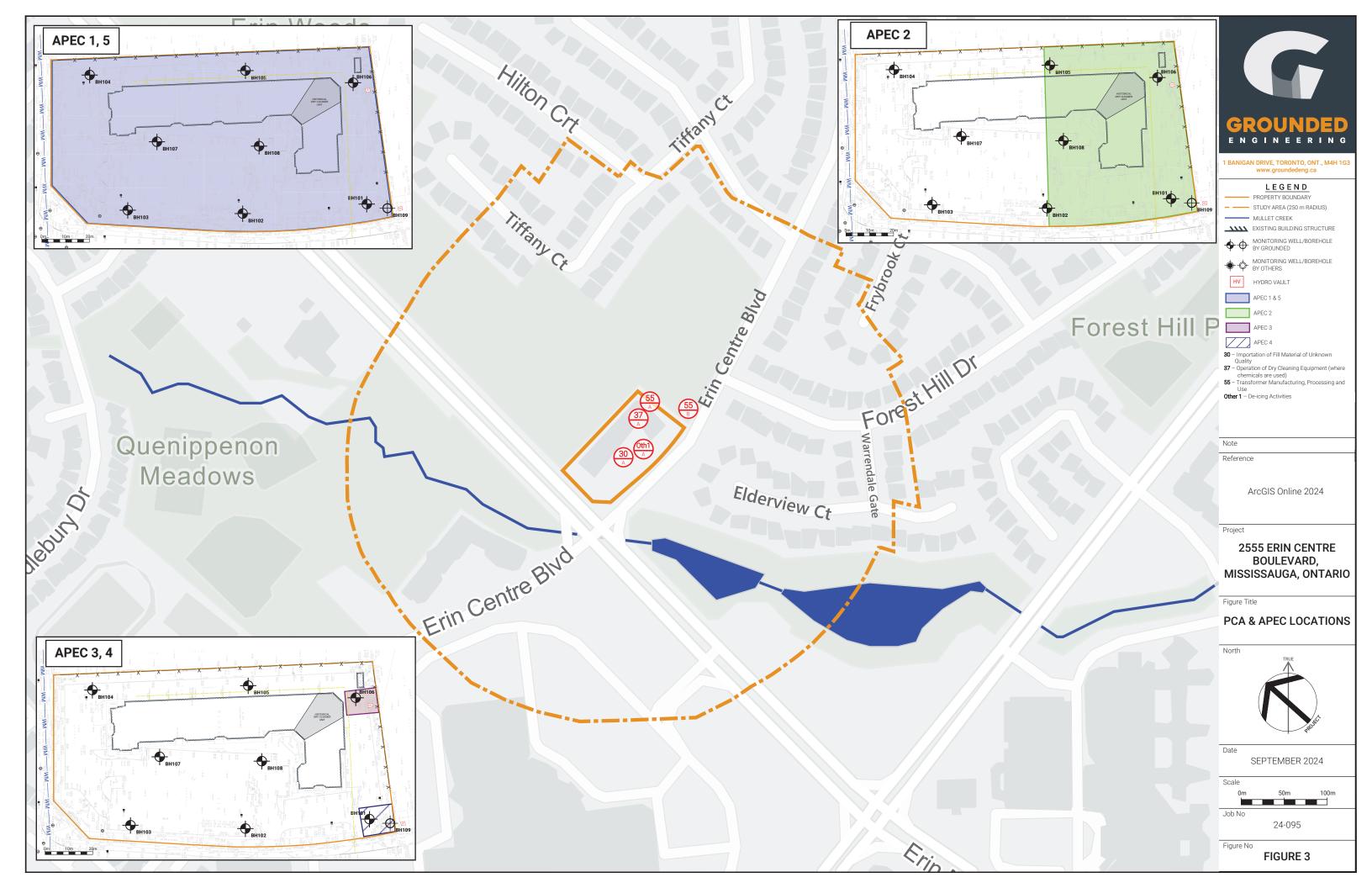
The Phase Two ESA report was prepared for the purpose of identifying potential environmental concerns, including an assessment of the likelihood that the environmental quality of the soil and groundwater at the Property may have been adversely affected by past or present practices at the Property, and/or those of the adjacent properties prior to development of the Property. Any use of which a third party makes of this report, or any reliance on or decision to be made based on it, are the responsibility of such third parties. Grounded Engineering Inc. does not assume any responsibility for errors, omissions, damages or other limitation pertaining to third parties.

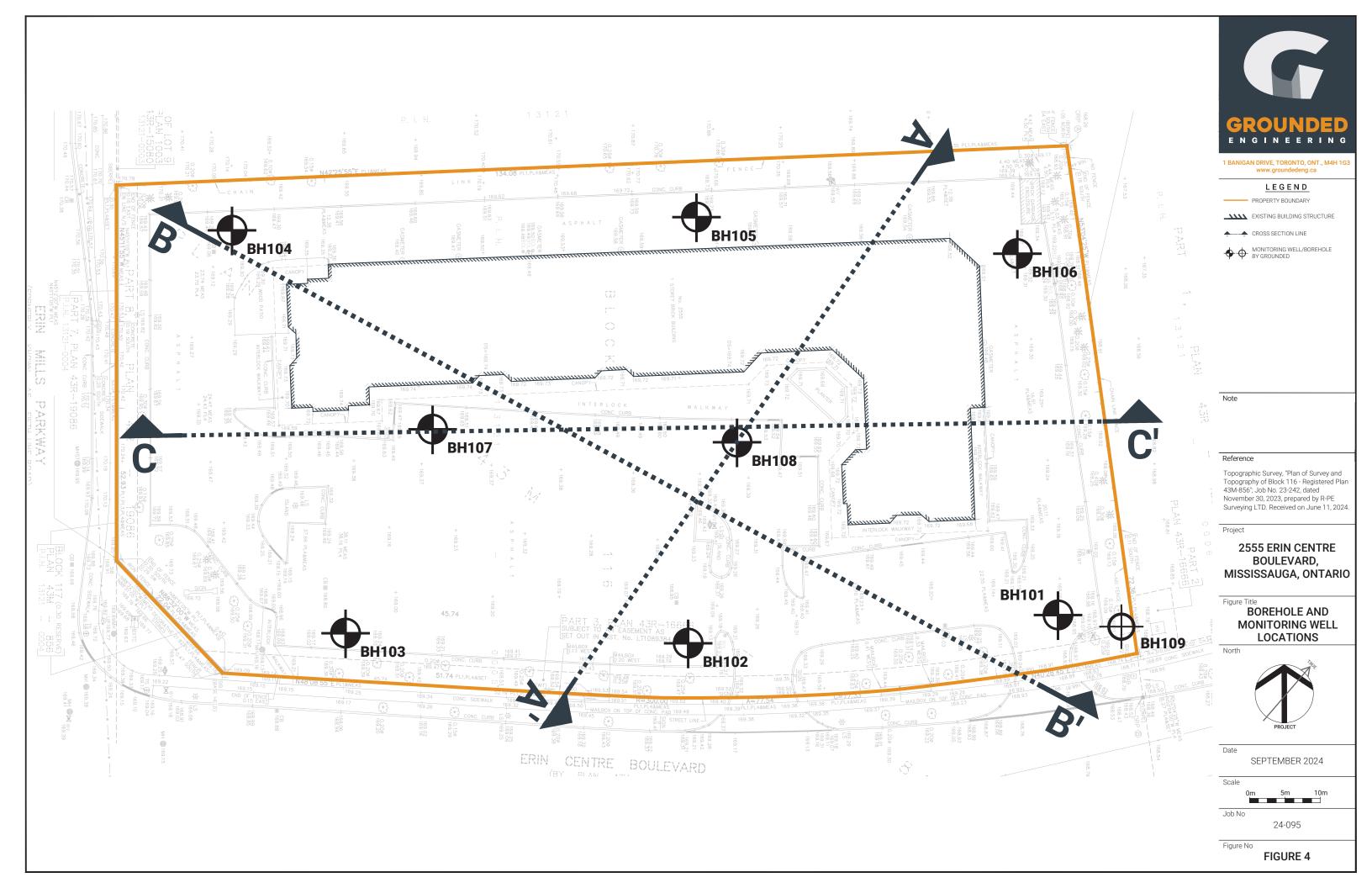
The information presented in this report is based on information collected during the completion of the subsurface investigation conducted by Grounded Engineering Inc. It is based on conditions at the Property at the time of the inspection. The subsurface conditions were assessed based on information collected at specific borehole and monitoring well locations. The actual subsurface conditions between sampling points may be different.

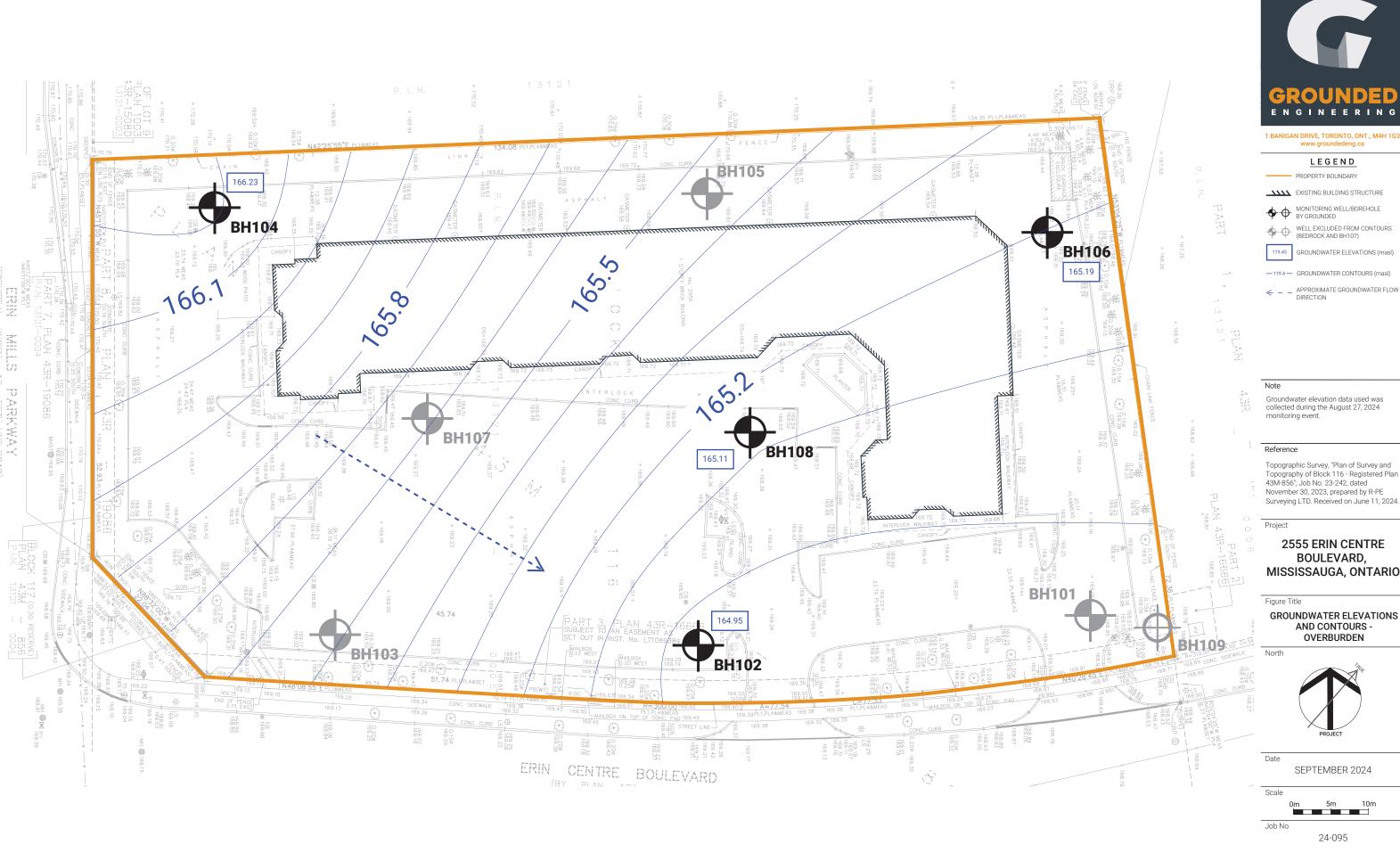
The conclusions presented in this report are based on work undertaken by trained professional and technical staff and are the product of professional care and competence. The report cannot be construed as legal advice or as an absolute guarantee.


If new information regarding the environmental condition of the Phase Two Property is identified during future work, or outstanding responses from regulatory agencies indicate outstanding issues on file with respect to the Phase Two Property, Grounded Engineering Inc. should be notified so that we may re-evaluate the findings of this assessment and provide amendments.

9.1 Report Use

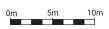

The authorized users of this report are 2555 Erin Centre c/o Trinity Point Developments, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc.


FIGURES



EXISTING BUILDING STRUCTURE

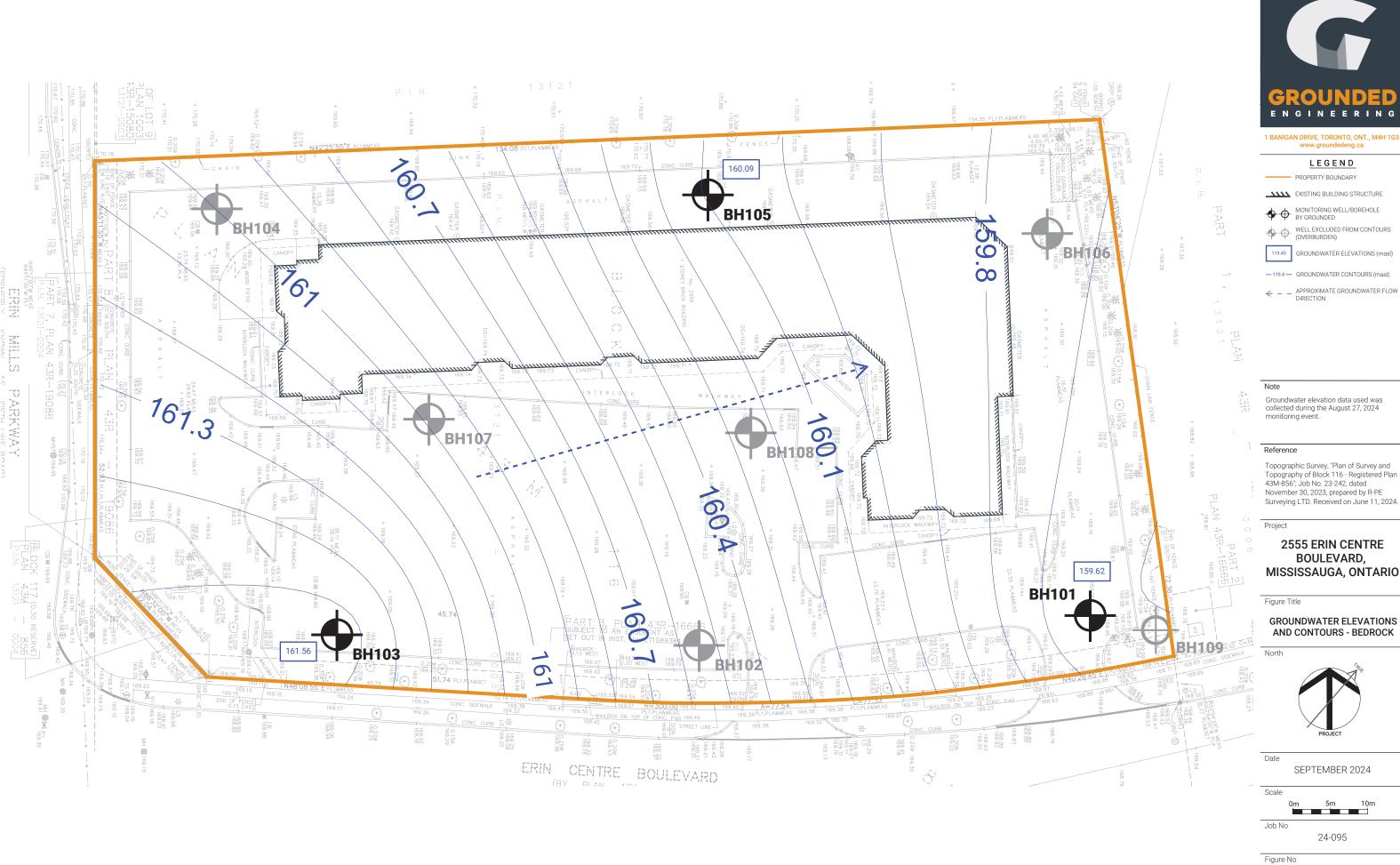
GROUNDWATER ELEVATIONS (masl)


 \leftarrow - - APPROXIMATE GROUNDWATER FLOW DIRECTION

Topographic Survey, "Plan of Survey and Topographic Survey, Plan of Survey and Topography of Block 116 - Registered Plan 43M-856'; Job No. 23-242, dated November 30, 2023, prepared by R-PE Surveying LTD. Received on June 11, 2024.

2555 ERIN CENTRE BOULEVARD, MISSISSAUGA, ONTARIO

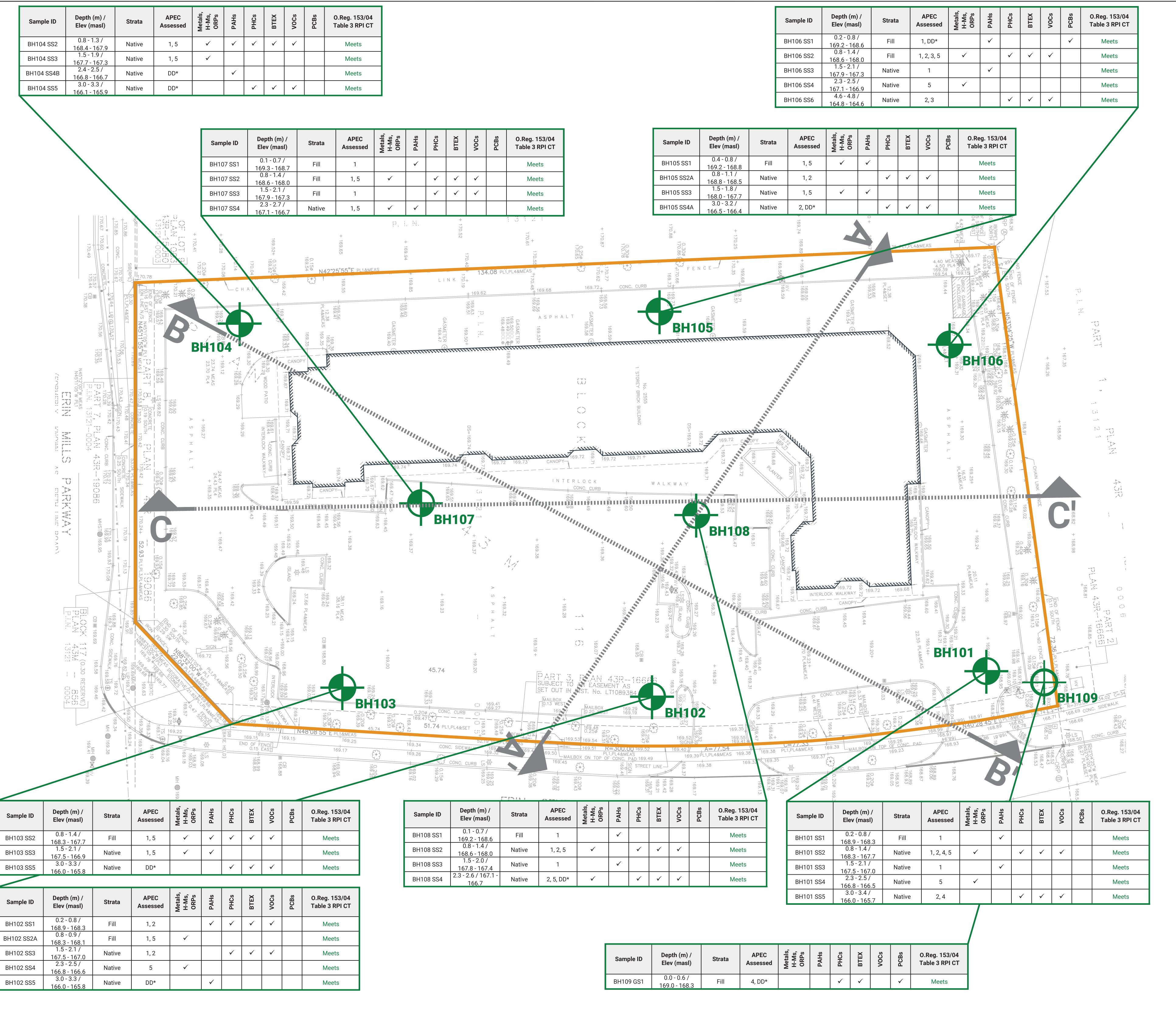
GROUNDWATER ELEVATIONS AND CONTOURS -OVERBURDEN



24-095

Figure No

FIGURE 5A



Topographic Survey, Plan of Survey and Topography of Block 116 - Registered Plan 43M-856'; Job No. 23-242, dated November 30, 2023, prepared by R-PE Surveying LTD. Received on June 11, 2024.

MISSISSAUGA, ONTARIO

GROUNDWATER ELEVATIONS AND CONTOURS - BEDROCK

FIGURE 5B

1 BANIGAN DRIVE, TORONTO, ONTARIO, M4H 1G3 Tel: (647) 264-7909 | www.groundedeng.ca

LEGEND

PROPERTY BOUNDARY

EXISTING BUILDING STRUCTURE

CROSS SECTION LINE

. MONITODING WELL/RC

MONITORING WELL/BOREHOLE
BY GROUNDED

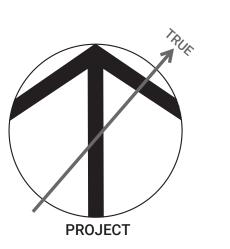
SAMPLE MEETS STANDARDS

ote All samp

All sampled parameters meet Table 3
RPI Standards.
HYDRIDE-FORMING METALS (As, Sb, Se),
OTHER REGULATED PARAMETERS (ORPs)
(B-HWS, Cr(VI), CN, EC, Hg, SAR)

Reference

Topographic Survey, "Plan of Survey and Topography of Block 116 - Registered Plan 43M-856"; Job No. 23-242, dated November 30, 2023, prepared by R-PE Surveying LTD. Received on June 11, 2024.


Project

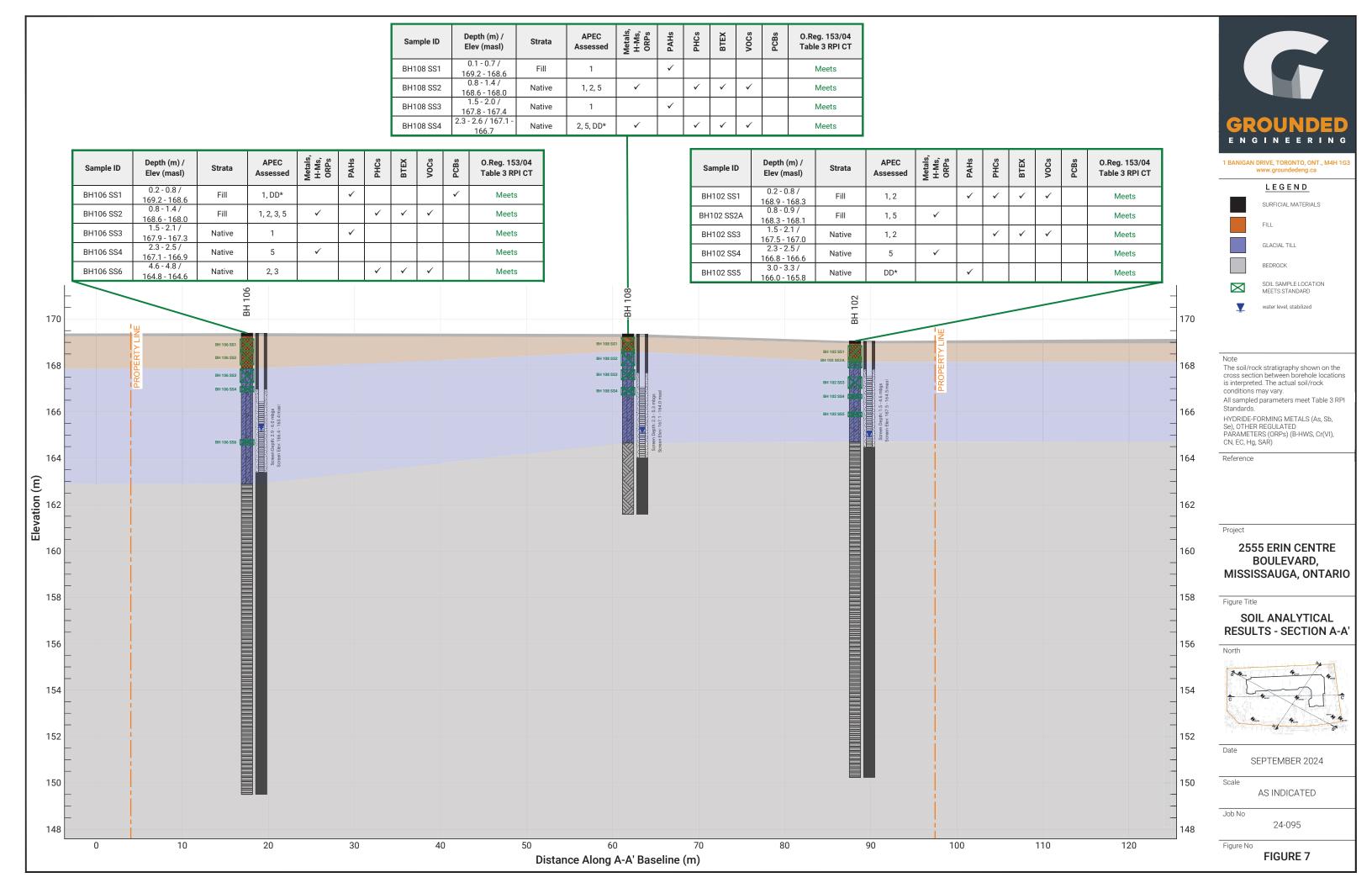
2555 ERIN CENTRE BOULEVARD, MISSISSAUGA, ONTARIO

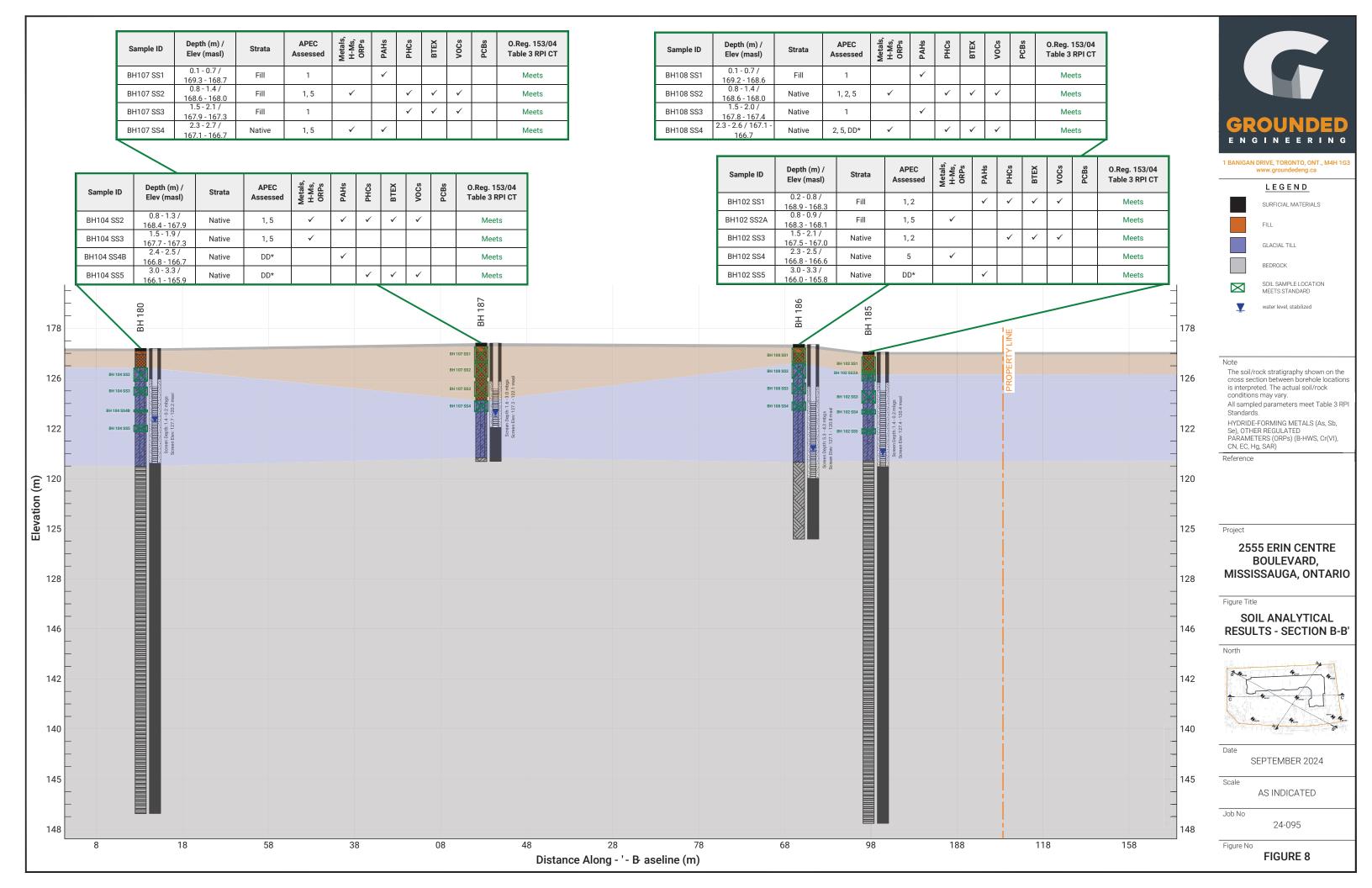
Figure Title

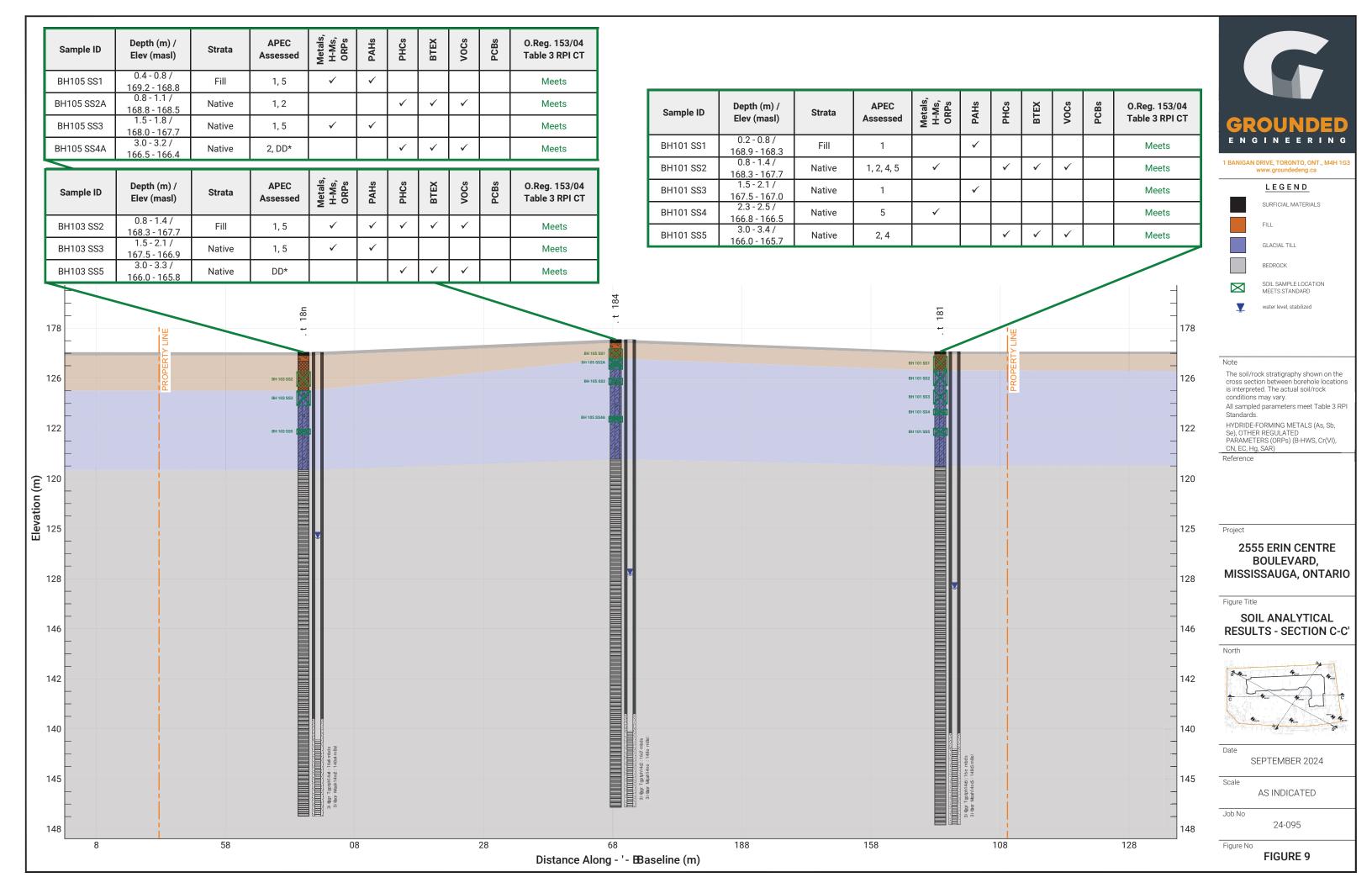
SOIL ANALYTICAL RESULTS - PLAN VIEW

North

Date SEPTEMBER 2024


0m 5m 10m


24-095


Figure No

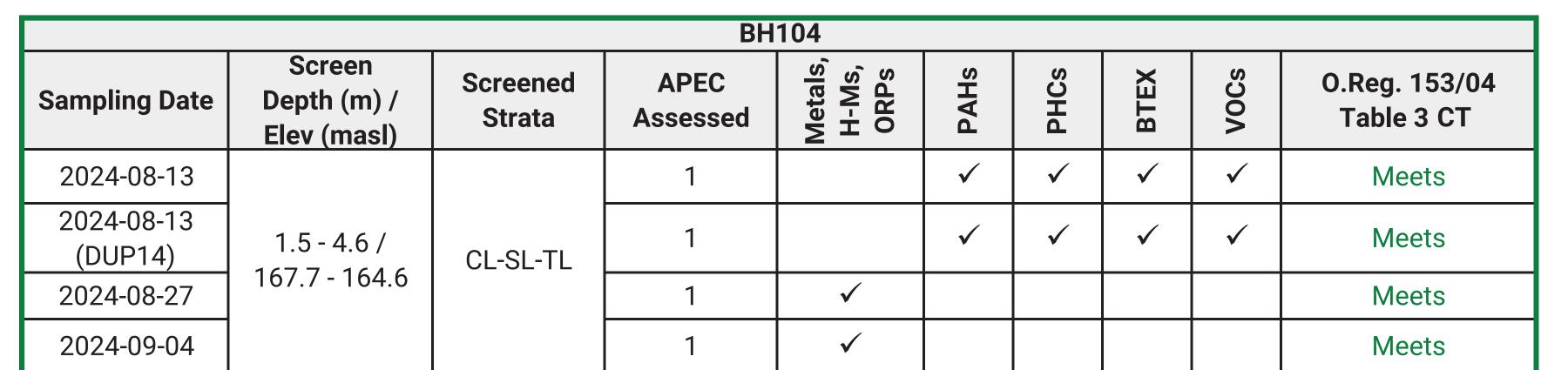
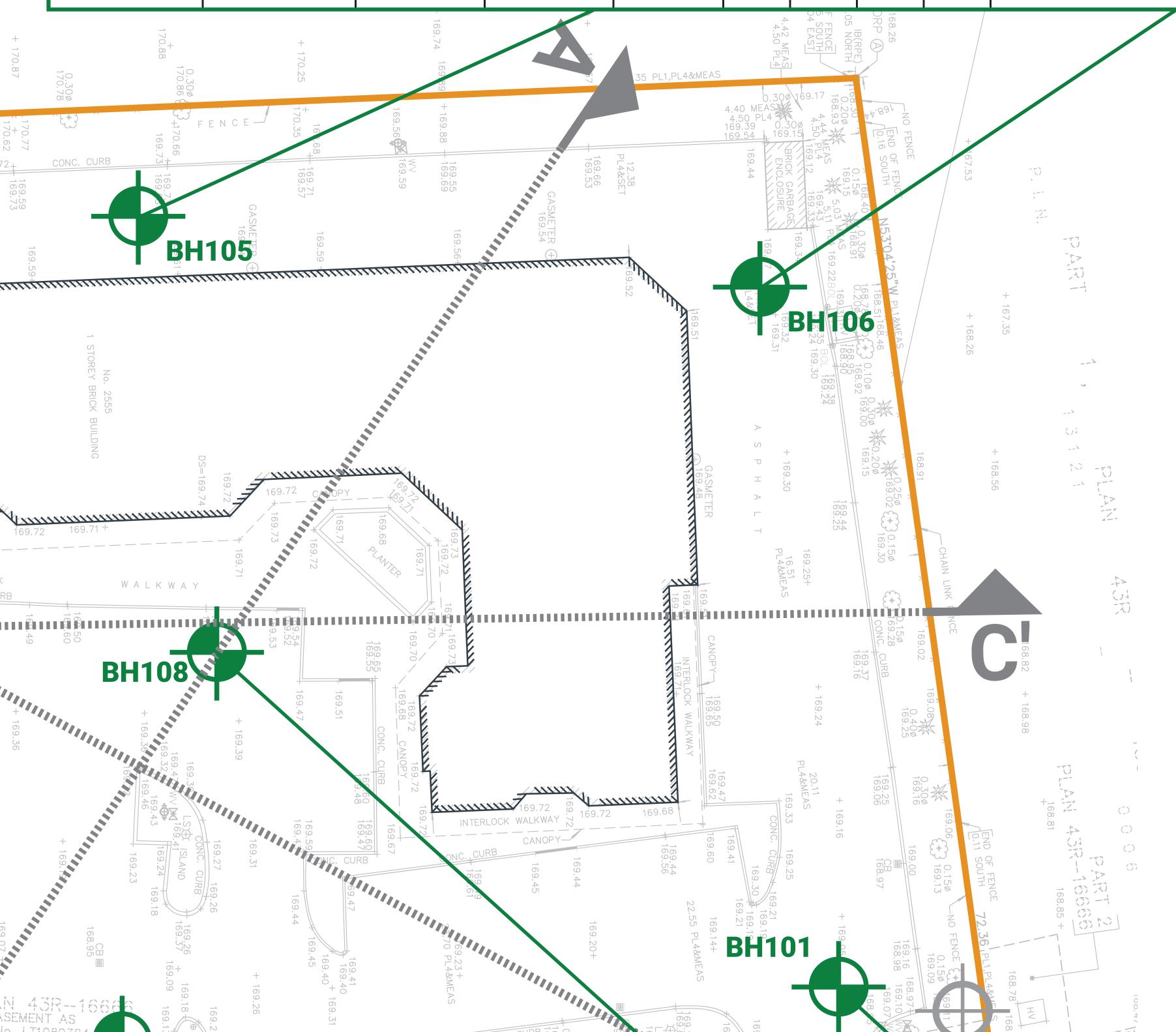

Job No

FIGURE 6

			ВН	107						
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	ВТЕХ	VOCs	O.Reg. 153/04 Table 3 CT	
2024-08-13			1		√	√	√	✓	Meets	1
2024-08-27	1.8 - 3.4 / 167.6 - 166.1	FILL to CL-SL- TL	1	✓						2
2024-09-04			1	✓					Meets	170.61

CHAIN


4 N42°25'55"E PL1&MEAS

134.08 PL1,PL4&MEAS

T

BH105											
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	ВТЕХ	VOCs	O.Reg. 153/04 Table 3 CT		
2024-08-12	15.6 - 18.7 / 153.9 - 150.9	SHALE	1, 2	√	√	√	√	√	Meets		

BH106											
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	ВТЕХ	VOCs	O.Reg. 153/04 Table 3 CT		
2024-08-13			1, 2		√	√	√	√	Meets		
2024-08-27	2.9 - 6.0 / 166.4 - 163.4	CL-SL-TL	1	✓					Meets		
2024-09-04			1	✓					Meets		

			ВН	103					000 83 8. 83 8.
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	ВТЕХ	VOCs	O.Reg. 153/04 Table 3 CT
2024-08-12	15.5 - 18.5 /	OLIAL E	1	✓	✓	✓	√	√	Meets
2024-08-12 (DUP13)	153.6 - 150.5	SHALE	1	✓					Meets

BH102											
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	ВТЕХ	VOCs	O.Reg. 153/04 Table 3 CT		
2024-08-13	1.5 - 4.6 /	CL-SL-TL to	1, 2				√	✓	Meets		
2024-08-13 (DUP12)	167.5 - 164.5	SHALE	1, 2				✓	✓	Meets		

			30						1 4		
BH101											
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	ВТЕХ	VOCs	O.Reg. 153/04 Table 3 CT		
2024-08-12	15.8 - 18.9 / 153.2 - 150.2	SHALE	1, 2	√	√	√	√	✓	Meets		

BH102

DI ANI ATTA

	BH108										
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	ВТЕХ	VOCs	O.Reg. 153/04 Table 3 CT		
2024-08-27	2.3 - 5.3 / 167.1 - 164.1	CL-SL-TL to	1, 2	√		✓	√	√	Meets		
20204-9-04	2.3 - 5.3 / 167.1 - 164.0	BEDROCK	1		✓				Meets		

1 BANIGAN DRIVE, TORONTO, ONTARIO, M4H 1G3 Tel: (647) 264-7909 | www.groundedeng.ca

LEGEND

PROPERTY BOUNDARY

EXISTING BUILDING STRUCTURE

CROSS SECTION LINE

MONITORING WELL/BOREHOLE BY GROUNDED

SAMPLE MEETS STANDARDS

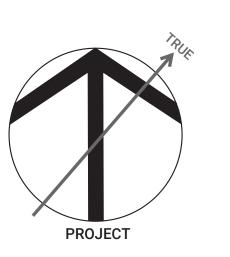
LOCATION NOT TESTED

Note

All sampled parameters meet Table 3 CT Standards.

HYDRIDE-FORMING METALS (As, Sb, Se), OTHER REGULATED PARAMETERS (ORPs) (Cr(VI), CN, Hg, Na, CI)

Reference


Topographic Survey, "Plan of Survey and Topography of Block 116 - Registered Plan 43M-856"; Job No. 23-242, dated November 30, 2023, prepared by R-PE Surveying LTD. Received on June 11, 2024.

Project

2555 ERIN CENTRE
BOULEVARD,
MISSISSAUGA,
ONTARIO

GROUNDWATER
ANALYTICAL RESULTS PLAN VIEW

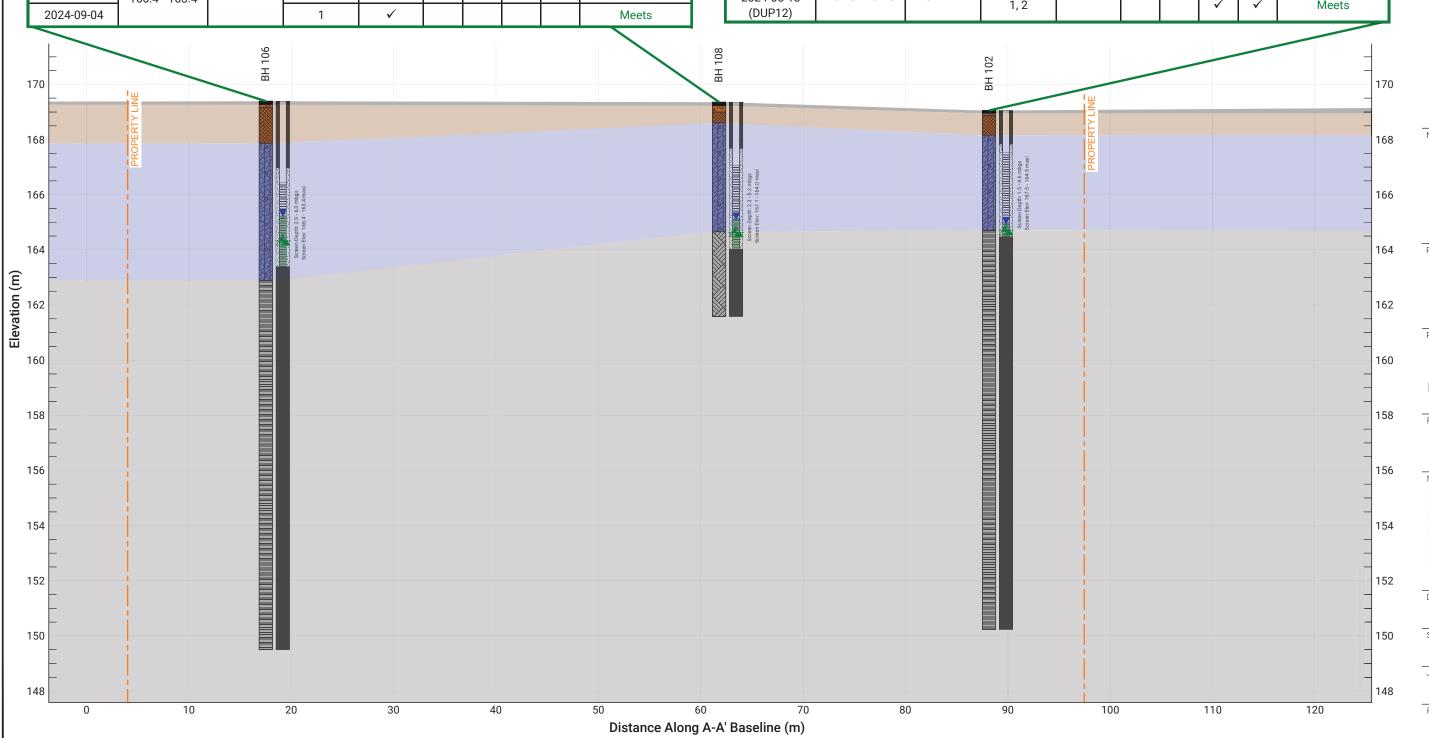
North

Date SEPTEMBER 2024

scale

Job No

Figure No


FIGURE 10

24-095

BH108											
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	втех	VOCs	O.Reg. 153/04 Table 3 CT		
2024-08-27	2.3 - 5.3 / 167.1 - 164.1	CL-SL-TL to	1, 2	✓		✓	✓	✓	Meets		
20204-9-04	2.3 - 5.3 / 167.1 - 164.0	BEDROCK	1		✓				Meets		

BH106										
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	втех	VOCs	O.Reg. 153/04 Table 3 CT	
2024-08-13			1, 2		✓	✓	✓	✓	Meets	
2024-08-27	2.9 - 6.0 / 166.4 - 163.4	CL-SL-TL	1	✓					Meets	
2024-09-04			1	✓					Meets	

	BH102										
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	втех	SOOA	O.Reg. 153/04 Table 3 CT		
2024-08-13	1.5 - 4.6 /	CL-SL-TL to	1, 2				✓	√	Meets		
2024-08-13 (DUP12)	167.5 - 164.5	SHALE	1, 2		·		√	√	Meets		

FILL

TILL

GLACIAL TILL

BEDROCK

GROUNDWATER S

GROUNDWATER SAMPLE LOCATION MEETS STANDARD water level, stabilized

Note

The soil/rock stratigraphy shown on the cross section between borehole locations is interpreted. The actual soil/rock conditions may vary.

All sampled parameters meet Table 3 CT

HYDRIDE-FORMING METALS (As, Sb, Se), OTHER REGULATED PARAMETERS (ORPs) (Cr(VI), CN, Hg,

Reference

Project

2555 ERIN CENTRE BOULEVARD, MISSISSAUGA, ONTARIO

Figure Title

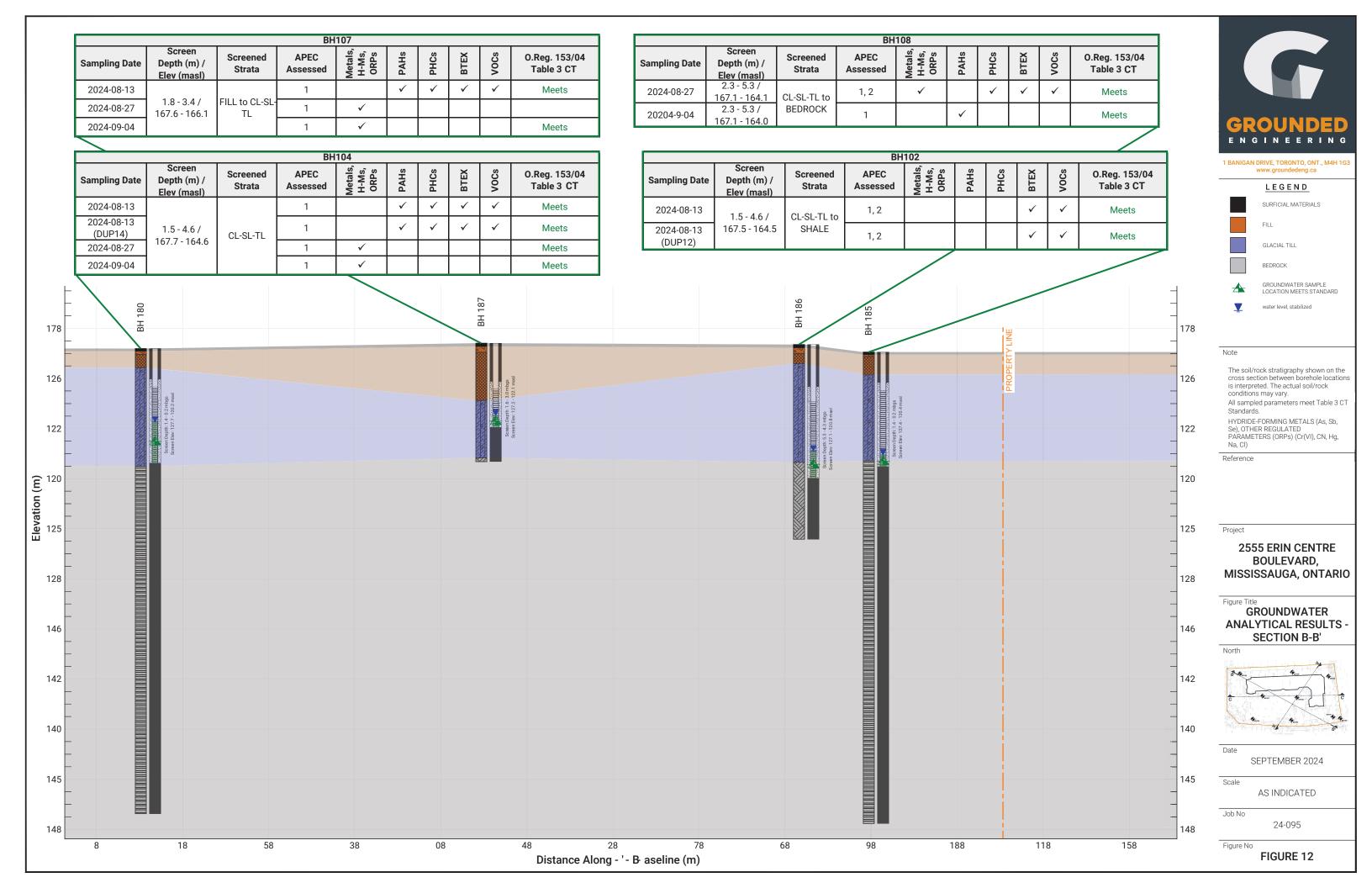
GROUNDWATER ANALYTICAL RESULTS -SECTION A-A'

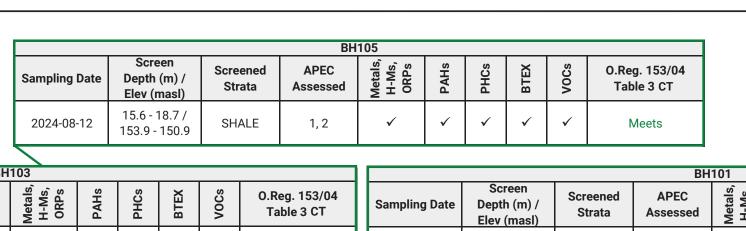
North

ate

SEPTEMBER 2024

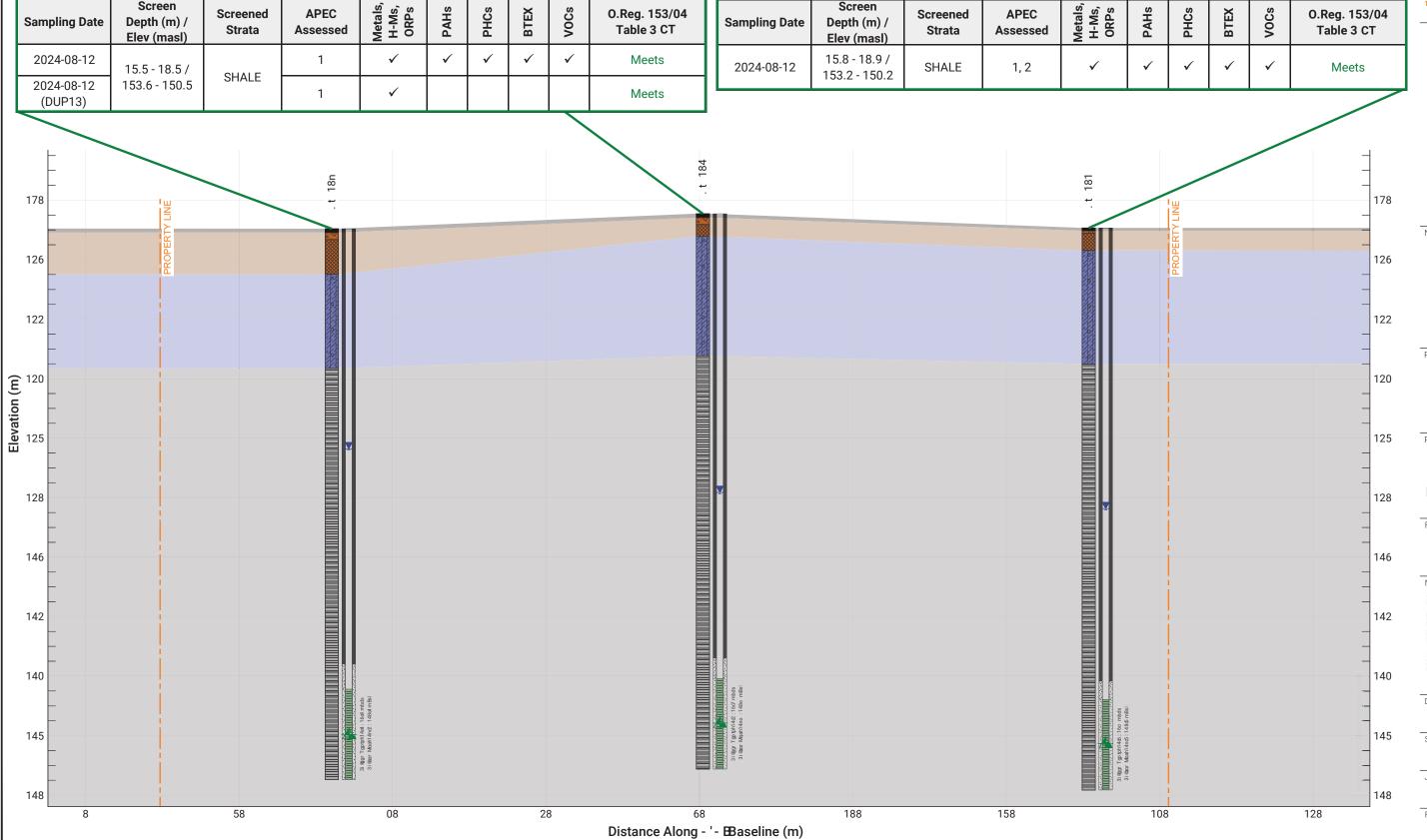
Scale


AS INDICATED


Job No

24-095

Figure No


FIGURE 11

Screen Depth (m) / Elev (masl) Screened Strata APEC Assessed Strata APEC Assessed Strata Strata		BH103										
15.5 - 18.5 / SHALE SHALE Meets	Sampling Date	Depth (m) /		_	Metals, H-Ms, ORPs	PAHs	PHCs	втех	VOCs			
2024-08-12 153.6 - 150.5 1	2024-08-12	15.5 - 18.5 /	011415	1	✓	✓	✓	✓	✓	Meets		
			SHALE	1	✓					Meets		

BH101										
Sampling Date	Screen Depth (m) / Elev (masl)	Screened Strata	APEC Assessed	Metals, H-Ms, ORPs	PAHs	PHCs	втех	VOCs	O.Reg. 153/04 Table 3 CT	
2024-08-12	15.8 - 18.9 / 153.2 - 150.2	SHALE	1, 2	✓	✓	✓	✓	✓	Meets	

1 BANIGAN DRIVE, TORONTO, ONT., M4H 163 www.groundedeng.ca

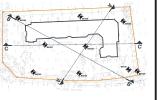
GLACIAL TILL

BEDROCK

GROUNDWATER SAMPLE LOCATION MEETS STANDARD

water level, stabilized

The soil/rock stratigraphy shown on the cross section between borehole locations is interpreted. The actual soil/rock conditions may vary.


All sampled parameters meet Table 3 CT Standards.

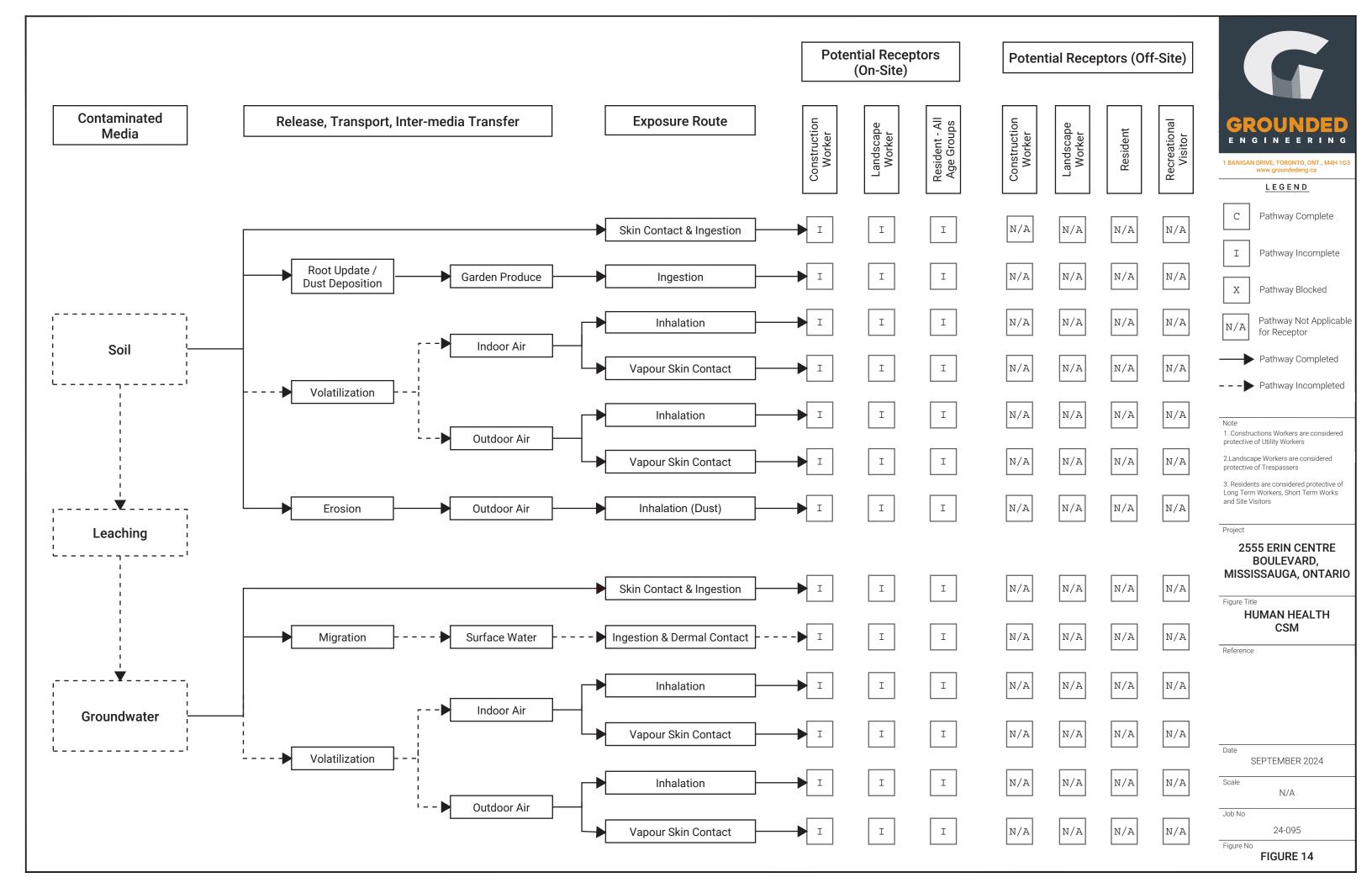
HYDRIDE-FORMING METALS (As, Sb, Se), OTHER REGULATED PARAMETERS (ORPS) (Cr(VI), CN, Hg, Na, CI)

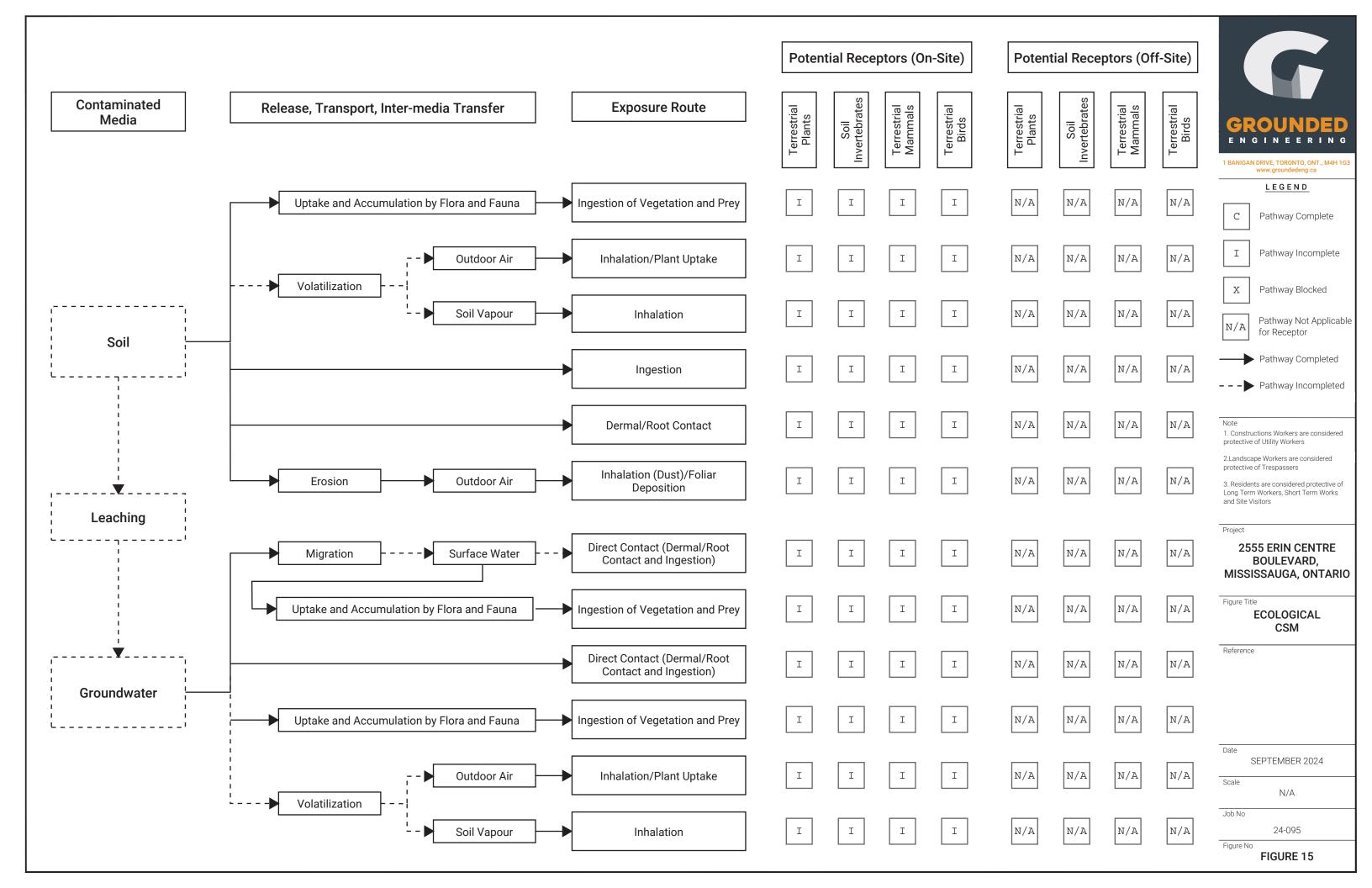
Reference

2555 ERIN CENTRE BOULEVARD, MISSISSAUGA, ONTARIO

GROUNDWATER **ANALYTICAL RESULTS -**SECTION C-C'

SEPTEMBER 2024


Scale


AS INDICATED

24-095

Figure No

FIGURE 13

TABLES

TABLE 1
GROUNDWATER LEVEL MONITORING SUMMARY
2555 Erin Centre Blvd.
TORONTO, ON
PROJECT #24-095

									Grounded	Engineerir	ng				Minimum Elev.		Maximum Elev.		Seasonal
Well ID	Ground Surface	Screen Interval	Screen Interval	Soil Strata	July 19	9, 2024	July 24	4, 2024	August	12, 2024	August	27, 2024	Septem	ber 9, 2024		vest)	-	nest)	Fluctuation
	Elevation (masl)	(mbgs)	(masl)		(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(±m)
BH101	169.1	15.8 - 18.9	153.2 - 150.2	Shale	7.90	161.20	9.17	159.93	8.93	160.17	9.48	159.62	9.59	159.51	14.56	154.54	7.90	161.20	6.66
BH102	169.1	1.5 - 4.6	167.5 - 164.5	Clayey Silt Till	3.39	165.71	3.49	165.61	3.87	165.23	4.15	164.95	4.35	164.75	4.35	164.75	3.39	165.71	0.96
BH103	169.0	15.5 - 18.5	153.6 - 150.5	Shale	7.26	161.74	7.31	161.69	7.39	161.61	7.44	161.56	7.48	161.52	7.48	161.52	7.26	161.74	0.22
BH104	169.2	1.5 - 4.6	167.7 - 164.6	Clayey Silt Till	3.21	165.99	2.95	166.25	3.09	166.11	2.97	166.23	3.02	166.18	3.73	165.47	2.95	166.25	0.78
BH105	169.5	15.6 - 18.7	153.9 - 150.9	Shale	8.27	161.23	8.32	161.18	9.02	160.48	9.41	160.09	9.16	160.34	9.41	160.09	8.27	161.23	1.14
BH106	169.4	2.9 - 6.0	166.4 - 163.4	Clayey Silt Till	3.24	166.16	3.53	165.87	4.17	165.23	4.21	165.19	4.43	164.97	4.43	164.97	3.24	166.16	1.19
BH107	169.4	1.8 - 3.4	167.6 - 166.1	Clayey Silt Till	2.51	166.89	2.52	166.88	2.51	166.89	2.92	166.48	2.67	166.73	2.92	166.48	2.51	166.98	0.41
BH108	169.4	2.3 - 5.3	167.1 - 164.0	Clayey Silt Till/ Bedrock	3.64	165.76	3.40	166.00	3.91	165.49	4.29	165.11	4.34	165.06	4.36	165.04	3.40	166.00	0.96

mbgs = metres below existing ground surface

masl = metres above sea level

* = unstabilized groundwater level

NA = not available: unable to access monitoring well

Table 2: Summary of Soil Quality Results Metals, Hydride Metals, Other Regulated Parameters in Soil 2555 Erin Centre Blvd.

Sample ID					BH 101 SS2	DUP 112	BH 101 SS4	BH102 SS2A	BH102 SS4	BH103 SS2	BH103 SS3	BH104 SS2	BH104 SS3	BH105 SS1
Depth	Ontario Ministry of the Environment,				0.8m - 1.4m	0.8m - 1.4m	2.3m - 2.5m	0.8m - 0.9m	2.3m - 2.5m	0.8m - 1.4m	1.5m - 2.1m	0.8m - 1.3m	1.5m - 1.9m	0.4m - 0.8m
Elevation	Conservation and Parks O.Reg.153/04	Units	EQL	Maximum Concentration	168.3 - 167.7	168.3 - 167.7	166.8 - 166.5	168.3 - 168.1	166.8 - 166.6	168.3 - 167.7	167.5 - 166.9	168.4 - 167.9	167.7 - 167.3	169.2 - 168.8
Lab Report No.	Table 3 SCS RPI Coarse			Concentration	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40177-JUN24	CA40177-JUN24	CA40206-JUN24	CA40206-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24
Sampled Date					2027-06-24	2027-06-24	2027-06-24	2024-06-25	2024-06-25	2028-06-24	2028-06-24	2027-06-24	2027-06-24	2026-06-24
Metals														
Barium	390 ^{#1}	ug/g	0.1	100	74	73	100	87	93	80	50	41	46	53
Beryllium	4 ^{#1}	ug/g	0.02	0.92	0.73	0.78	0.75	0.66	0.92	0.7	0.74	0.79	0.79	0.65
Boron (total)	120 ^{#1}	ug/g	1	19	11	11	13	10	19	11	13	14	13	11
Cadmium	1.2 ^{#1}	ug/g	0.05	0.21	0.08	0.08	0.07	0.11	0.21	0.08	0.06	0.08	0.1	0.06
Chromium (total)	160 ^{#1}	ug/g	0.5	24	18	20	21	19	24	20	22	23	22	17
Cobalt	22 ^{#1}	ug/g	0.01	15	11	13	12	12	15	13	13	14	13	10
Copper	140 ^{#1}	ug/g	0.1	29	9.7	11	21	29	10	11	9.4	9.8	8.9	15
Lead	120 ^{#1}	ug/g	0.1	12	7.8	7.9	11	8.4	12	9.8	11	11	10	9.7
Molybdenum	6.9 ^{#1}	ug/g	0.1	1.6	0.8	0.8	1.2	0.9	1.6	1.1	1.2	1.5	1.4	0.9
Nickel	100 ^{#1}	ug/g	0.5	33	26	28	28	25	33	29	30	31	30	23
Silver	20 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Thallium	1 ^{#1}	ug/g	0.02	0.15	0.09	0.1	0.09	0.13	0.15	0.1	0.1	0.09	0.1	0.08
Uranium	23 ^{#1}	ug/g	0.002	0.74	0.51	0.51	0.74	0.62	0.74	0.64	0.61	0.69	0.64	0.59
Vanadium	86 ^{#1}	ug/g	3	36	21	23	33	26	36	25	27	26	25	24
Zinc	340 ^{#1}	ug/g	0.7	67	51	55	55	56	67	56	58	60	58	47
Hydride-forming Metals														
Antimony	7.5 ^{#1}	ug/g	0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Arsenic	18 ^{#1}	ug/g	0.5	9	7.1	7.4	7.5	9	7	6.4	5.4	8	6.6	7.3
Selenium	2.4 ^{#1}	ug/g	0.1	0.3	0.3	0.3	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2
ORPs - Other Regulated Parameters														
Electrical Conductivity (Lab)	0.7 ^{#1}	ms/cm	0.002	2.9	1.2	1.2	0.58	0.6	0.4	0.63	0.43	0.32	0.27	1.1
Sodium Adsorption Ratio (SAR)	5 ^{#1}	n/a	0.2	86	4.8	5.2	4.2	15.8	9.6	4.8	1.8	6.6	5.1	15
Boron (Hot Water Soluble)	1.5 ^{#1}	ug/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium VI	8 ^{#1}	ug/g	0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2
Cyanide (CN-)	0.051 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Mercury	0.27 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Scenarios:

oochanoo.	
Shaded	Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Coarse
Shaded	Indicates a non-detect exceedance
Shaded	The QP deemed the parameter to be met as per the O.Reg. 153/04 49.1

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

"-" incdicates not analysed.

Guideline Notes:

 $^{\#1}$ "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

Page 1 of 2 2024-09-26

Table 2: Summary of Soil Quality Results Metals, Hydride Metals, Other Regulated Parameters in Soil 2555 Erin Centre Blvd.

Sample ID		BH105 SS3	BH106 SS2	BH106 SS4	BH107 SS2	Dup 172	BH107 SS4	BH108 SS2	BH108 SS4
Depth	Ontario Ministry of the Environment,	1.5m - 1.8m	0.8m - 1.4m	2.3m - 2.5m	0.8m - 1.4m	0.8m - 1.4m	2.3m - 2.7m	0.8m - 1.4m	2.3m - 2.6m
Elevation	Conservation and Parks O.Reg.153/04	168 - 167.7	168.6 - 168	167.1 - 166.9	168.6 - 168	168.6 - 168	167.1 - 166.7	168.6 - 168	167.1 - 166.7
Lab Report No.	Table 3 SCS RPI Coarse	CA40201-JUN24	CA40177-JUN24	CA40177-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24
Sampled Date		2026-06-24	2024-06-24	2024-06-24	2026-06-24	2026-06-24	2026-06-24	2026-06-24	2026-06-24
Metals									
Barium	390 ^{#1}	66	80	100	68	69	55	65	99
Beryllium	4 ^{#1}	0.79	0.75	0.72	0.88	0.87	0.76	0.86	0.86
Boron (total)	120 ^{#1}	16	13	13	13	14	13	15	15
Cadmium	1.2 ^{#1}	0.07	0.09	0.08	0.1	0.1	0.07	0.09	0.12
Chromium (total)	160 ^{#1}	22	19	20	23	23	21	23	23
Cobalt	22 ^{#1}	13	13	13	13	14	12	14	14
Copper	140 ^{#1}	9.5	9.5	10	13	13	8.3	9.8	7.8
Lead	120 ^{#1}	10	9.5	9.4	11	12	9.9	11	11
Molybdenum	6.9 ^{#1}	1.5	0.9	1	1.1	1.1	1.2	1.6	1.3
Nickel	100 ^{#1}	28	28	29	31	32	28	31	31
Silver	20 ^{#1}	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Thallium	1 ^{#1}	0.09	0.09	0.09	0.12	0.12	0.09	0.11	0.11
Uranium	23 ^{#1}	0.65	0.58	0.73	0.66	0.64	0.7	0.67	0.7
Vanadium	86 ^{#1}	26	25	27	28	29	26	26	29
Zinc	340 ^{#1}	57	58	60	61	63	56	60	60
Hydride-forming Metals									
Antimony	7.5 ^{#1}	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Arsenic	18 ^{#1}	7.2	5.8	6.2	7.2	7.6	5.9	7.5	6.5
Selenium	2.4 ^{#1}	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2
ORPs - Other Regulated Parameters									
Electrical Conductivity (Lab)	0.7 ^{#1}	0.4	0.82	0.18	2.9	2.6	1	2.2	1.2
Sodium Adsorption Ratio (SAR)	5 ^{#1}	8.8	2.6	2	86	76.1	21	46	14
Boron (Hot Water Soluble)	1.5 ^{#1}	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium VI	8 ^{#1}	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Cyanide (CN-)	0.051 ^{#1}	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Mercury	0.27 ^{#1}	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Scenarios:

ocenanos.	
Shaded	Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Coarse
Shaded	Indicates a non-detect exceedance
Shaded	The QP deemed the parameter to be met as per the 0.Reg. 153/04 49.1

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

"-" incdicates not analysed.

Guideline Notes:

^{#1}"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

Page 2 of 2 24-095-202

Table 3: Summary of Soil Quality Results Polycyclic Aromatic Hydrocarbons in Soil 2555 Erin Centre Blvd.

Sample ID					BH 101 SS1	BH 101 SS3	DUP 113	BH102 SS1	BH102 SS5	BH103 SS2	BH103 SS3	BH104 SS2	BH104 SS4B	BH105 SS1
Depth	Ontario Ministry of the Environment,			Maximum	0.2m - 0.8m	1.5m - 2.1m	1.5m - 2.1m	0.2m - 0.8m	3m - 3.3m	0.8m - 1.4m	1.5m - 2.1m	0.8m - 1.3m	2.4m - 2.5m	0.4m - 0.8m
Elevation	Conservation and Parks O.Reg.153/04 Table 3 SCS RPI Coarse	Units	EQL	Concentration	168.9 - 168.3	167.5 - 167	167.5 - 167	168.9 - 168.3	166 - 165.8	168.3 - 167.7	167.5 - 166.9	168.4 - 167.9	166.8 - 166.7	169.2 - 168.8
Lab Report No.	Table 3 SCS RPI Coarse				CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40177-JUN24	CA40177-JUN24	CA40206-JUN24	CA40206-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24
Sampled Date					2027-06-24	2027-06-24	2027-06-24	2024-06-25	2024-06-25	2028-06-24	2028-06-24	2027-06-24	2027-06-24	2026-06-24
PAHs - Polycyclic Aromatic Hydrocarbons														
Acenaphthene	7.9 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	0.15 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	0.67 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benz[a]anthracene	0.5 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]pyrene	0.3 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[ghi]perylene	6.6 ^{#1}	ug/g	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo[k]fluoranthene	0.78 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	7 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz[a,h]anthracene	0.1 ^{#1}	ug/g	0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Fluoranthene	0.69 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	62 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno[1,2,3-cd]pyrene	0.38 ^{#1}	ug/g	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Methylnaphthalene, 2-(1-)	-	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene, 1-	NV ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methlynaphthalene, 2-	0.99 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	0.6 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	6.2 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	78 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Scenarios:

Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Coarse Shaded Indicates a non-detect exceedance

Notes:This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

"-" incdicates not analysed.

Guideline Notes:

 $^{\#1}{\mbox{\tiny{"}}}\mbox{Soil,}$ Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

Page 1 of 2 24-095-202 2024-09-26

Table 3: Summary of Soil Quality Results Polycyclic Aromatic Hydrocarbons in Soil 2555 Erin Centre Blvd.

Sample ID			BH105 SS3	BH106 SS1	BH106 SS3	BH107 SS1	BH107 SS4	BH108 SS1	BH108 SS3	Dup 183
Depth	Ontario Ministry of the Environment,		1.5m - 1.8m	0.2m - 0.8m	1.5m - 2.1m	0.1m - 0.7m	2.3m - 2.7m	0.1m - 0.7m	1.5m - 2m	1.5m - 2m
Elevation	Conservation and Parks O.Reg.153/04	Units	168 - 167.7	169.2 - 168.6	167.9 - 167.3	169.3 - 168.7	167.1 - 166.7	169.2 - 168.6	167.8 - 167.4	167.8 - 167.4
Lab Report No.	Table 3 SCS RPI Coarse		CA40201-JUN24	CA40177-JUN24	CA40177-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24
Sampled Date			2026-06-24	2024-06-24	2024-06-24	2026-06-24	2026-06-24	2026-06-24	2026-06-24	2026-06-24
PAHs - Polycyclic Aromatic Hydrocarbons										
Acenaphthene	7.9 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	0.15 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	0.67 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benz[a]anthracene	0.5 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]pyrene	0.3 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[ghi]perylene	6.6 ^{#1}	ug/g	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo[k]fluoranthene	0.78 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	7 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz[a,h]anthracene	0.1 ^{#1}	ug/g	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Fluoranthene	0.69 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	62 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno[1,2,3-cd]pyrene	0.38 ^{#1}	ug/g	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Methylnaphthalene, 2-(1-)	-	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene, 1-	NV ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methlynaphthalene, 2-	0.99 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	0.6 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	6.2 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	78 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Scenarios:

Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Coarse Shaded Indicates a non-detect exceedance

Notes:This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

"-" incdicates not analysed.

Guideline Notes:

 $^{\#1}{\mbox{\tiny{"}}}\mbox{Soil,}$ Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

Page 2 of 2 24-095-202 2024-09-26

Table 4: Summary of Soil Quality Results Petroleum Hydrocarbons and BTEX in Soil 2555 Erin Centre Blvd.

Sample ID					BH 101 SS2	DUP 112	BH 101 SS5	BH102 SS1	BH102 SS3	Dup-123	BH103 SS2	BH103 SS5
Depth	Ontario Ministry of the Environment,				0.8m - 1.4m	0.8m - 1.4m	3m - 3.4m	0.2m - 0.8m	1.5m - 2.1m	1.5m - 2.1m	0.8m - 1.4m	3m - 3.3m
Elevation	Conservation and Parks O.Reg.153/04	Units	EQL	Maximum Detect	168.3 - 167.7	168.3 - 167.7	166 - 165.7	168.9 - 168.3	167.5 - 167	167.5 - 167	168.3 - 167.7	166 - 165.8
Lab Report No.	Table 3 SCS RPI Coarse				CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40177-JUN24	CA40177-JUN24	CA40177-JUN24	CA40206-JUN24	CA40206-JUN24
Sampled Date					2027-06-24	2027-06-24	2027-06-24	2024-06-25	2024-06-25	2024-06-25	2028-06-24	2028-06-24
BTEX - Benzene, Toluene, Ethylbenzene, Xylene												
Benzene	0.21 ^{#1}	ug/g	0.02	ND	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Ethylbenzene	2 ^{#1}	ug/g	0.05	ND	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	2.3 ^{#1}	ug/g	0.05	ND	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylene Mixture	3.1 ^{#1}	ug/g	0.05	ND	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylene (m & p)	NV ^{#1}	ug/g	0.05	ND	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylene, o-	NV ^{#1}	ug/g	0.05	ND	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
PHCs - Petroleum Hydrocarbons												
Petroleum Hydrocarbons F1-BTEX	NV	ug/g	10	ND	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons F1	55 ^{#1}	ug/g	10	ND	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons F2	98 ^{#1}	ug/g	10	ND	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons F3	300 ^{#1}	ug/g	50	164	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
Petroleum Hydrocarbons F4	2,800 ^{#1}	ug/g	50	ND	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50

Scenarios:

Shaded	Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Coarse
Shaded	Indicates a non-detect exceedance

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

Guideline Notes:

^{#1}"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

Page 1 of 3 24-095-202

[&]quot;-" incdicates not analysed.

Table 4: Summary of Soil Quality Results Petroleum Hydrocarbons and BTEX in Soil 2555 Erin Centre Blvd.

Sample ID			BH104 SS2	BH104 SS5	BH105 SS2A	BH105 SS4A	BH106 SS2	BH106 SS6	BH107 SS2	BH107 SS3	BH108 SS2	BH108 SS4
Depth	Ontario Ministry of the Environment,		0.8m - 1.3m	3m - 3.3m	0.8m - 1.1m	3m - 3.2m	0.8m - 1.4m	4.6m - 4.8m	0.8m - 1.4m	1.5m - 2.1m	0.8m - 1.4m	2.3m - 2.6m
Elevation	Conservation and Parks O.Reg.153/04	Units	168.4 - 167.9	166.1 - 165.9	168.8 - 168.5	166.5 - 166.4	168.6 - 168	164.8 - 164.6	168.6 - 168	167.9 - 167.3	168.6 - 168	167.1 - 166.7
Lab Report No.	Table 3 SCS RPI Coarse		CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40177-JUN24	CA40177-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24
Sampled Date			2027-06-24	2027-06-24	2026-06-24	2026-06-24	2024-06-24	2024-06-24	2026-06-24	2026-06-24	2026-06-24	2026-06-24
BTEX - Benzene, Toluene, Ethylbenzene, Xylene												
Benzene	0.21 ^{#1}	ug/g	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Ethylbenzene	2 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	2.3 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylene Mixture	3.1 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylene (m & p)	NV ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylene, o-	NV ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
PHCs - Petroleum Hydrocarbons												
Petroleum Hydrocarbons F1-BTEX	NV	ug/g	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons F1	55 ^{#1}	ug/g	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons F2	98 ^{#1}	ug/g	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons F3	300 ^{#1}	ug/g	< 50	< 50	< 50	135	< 50	164	< 50	< 50	< 50	< 50
Petroleum Hydrocarbons F4	2,800 ^{#1}	ug/g	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50

Scenarios:

Sh	aded	Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Coarse
Sh	aded	Indicates a non-detect exceedance

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

Guideline Notes:

 $^{\#1}$ "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " Marc

Page 2 of 3 2024-09-26

[&]quot;-" incdicates not analysed.

Table 4: Summary of Soil Quality Results Petroleum Hydrocarbons and BTEX in Soil 2555 Erin Centre Blvd.

Sample ID			BH109 GS1
Depth	Ontario Ministry of the Environment,		0m - 0.6m
Elevation	Conservation and Parks O.Reg.153/04	Units	169 - 168.3
Lab Report No.	Table 3 SCS RPI Coarse		CA40206-JUN24
Sampled Date			2028-06-24
BTEX - Benzene, Toluene, Ethylbenzene, Xylene			
Benzene	0.21 ^{#1}	ug/g	< 0.02
Ethylbenzene	2 ^{#1}	ug/g	< 0.05
Toluene	2.3 ^{#1}	ug/g	< 0.05
Xylene Mixture	3.1 ^{#1}	ug/g	< 0.05
Xylene (m & p)	NV ^{#1}	ug/g	< 0.05
Xylene, o-	NV ^{#1}	ug/g	< 0.05
PHCs - Petroleum Hydrocarbons			
Petroleum Hydrocarbons F1-BTEX	NV	ug/g	< 10
Petroleum Hydrocarbons F1	55 ^{#1}	ug/g	< 10
Petroleum Hydrocarbons F2	98 ^{#1}	ug/g	< 10
Petroleum Hydrocarbons F3	300 ^{#1}	ug/g	< 50
Petroleum Hydrocarbons F4	2,800 ^{#1}	ug/g	< 50

Scenarios:

Shaded	Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Coarse
Shaded	Indicates a non-detect exceedance

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

"-" incdicates not analysed.

Guideline Notes:

^{#1}"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " Marc

Table 5: Summary of Soil Quality Results Volatile Organic Compounds and Trihalomethanes in Soil 2555 Erin Centre Blvd.

Sample ID					BH 101 SS2	DUP 112	BH 101 SS5	BH102 SS1	BH102 SS3	Dup-123	BH103 SS2	BH103 SS5	BH104 SS2	BH104 SS5
Depth	Ontario Ministry of the				0.8m - 1.4m	0.8m - 1.4m	3m - 3.4m	0.2m - 0.8m	1.5m - 2.1m	1.5m - 2.1m	0.8m - 1.4m	3m - 3.3m	0.8m - 1.3m	3m - 3.3m
Elevation	Environment, Conservation and	Units	EQL	Maximum	168.3 - 167.7	168.3 - 167.7	166 - 165.7	168.9 - 168.3	167.5 - 167	167.5 - 167	168.3 - 167.7	166 - 165.8	168.4 - 167.9	166.1 - 165.9
Lab Report No.	Parks O.Reg.153/04 Table 3 SCS RPI Coarse			Concentration	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40177-JUN24	CA40177-JUN24	CA40177-JUN24	CA40206-JUN24	CA40206-JUN24	CA40201-JUN24	CA40201-JUN24
Sampled Date	RFTCoarse				2027-06-24	2027-06-24	2027-06-24	2024-06-25	2024-06-25	2024-06-25	2028-06-24	2028-06-24	2027-06-24	2027-06-24
THMs - Trihalomethanes														
Bromodichloromethane	13 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	0.27 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloroform	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibromochloromethane	9.4 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
VOCs - Volatile Organic Compounds														
Acetone	16 ^{#1}	ug/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	2.4 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,2-	3.4 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,3-	4.8 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,4-	0.083 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	16 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,1-	3.5 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,2-	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,1-	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-cis-	3.4*1	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-trans-	0.084 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropane, 1,2-	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropene, 1,3-	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropylene, cis-1,3-	NV ^{#1}	ug/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dichloropropylene, trans-1,3-	NV ^{#1}	ug/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Ethylene dibromide	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexane (n)	2.8 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	16 ^{#1}	ug/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methyl Isobutyl Ketone	1.7 ^{#1}	ug/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methyl tert-Butyl Ether (MTBE)	0.75 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	0.1 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	0.7 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethane, 1,1,1,2-	0.058 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethane, 1,1,2,2-	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	0.28 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,1-	0.38 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,2-	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	0.061 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	4 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Vinyl Chloride	0.02 ^{#1}	ug/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
VOCs - Volatile Organic Compounds (VOC III)														
Bromomethane	0.05 ^{#1}	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Scenarios:

Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Shaded Shaded Indicates a non-detect exceedance

Notes:This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established. "-" incdicates not analysed.

Guideline Notes:

*1"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

Page 1 of 2 24-095-202 2024-09-26

Table 5: Summary of Soil Quality Results Volatile Organic Compounds and Trihalomethanes in Soil 2555 Erin Centre Blvd.

Sample ID			BH105 SS2A	BH105 SS4A	BH106 SS2	BH106 SS6	BH107 SS2	BH107 SS3	BH108 SS2	BH108 SS4
Depth	Ontario Ministry of the		0.8m - 1.1m	3m - 3.2m	0.8m - 1.4m	4.6m - 4.8m	0.8m - 1.4m	1.5m - 2.1m	0.8m - 1.4m	2.3m - 2.6m
Elevation	Environment, Conservation and	Units	168.8 - 168.5	166.5 - 166.4	168.6 - 168	164.8 - 164.6	168.6 - 168	167.9 - 167.3	168.6 - 168	167.1 - 166.7
Lab Report No.	Parks O.Reg.153/04 Table 3 SCS RPI Coarse		CA40201-JUN24	CA40201-JUN24	CA40177-JUN24	CA40177-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24	CA40201-JUN24
Sampled Date	NF1 Coarse		2026-06-24	2026-06-24	2024-06-24	2024-06-24	2026-06-24	2026-06-24	2026-06-24	2026-06-24
•	THMs - Trihalomethanes									
Bromodichloromethane	13 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	0.27 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloroform	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibromochloromethane	9.4 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
VOCs - Volatile Organic Compounds	2.3	3. 3								
Acetone	16 ^{#1}	ug/g	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	2.4 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,2-	3.4 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,3-	4.8 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,4-	0.083 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	16 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,1-	3.5 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,2-	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,1-	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-cis-	3.4 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-trans-	0.084 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropane, 1,2-	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropene, 1,3-	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropylene, cis-1,3-	NV ^{#1}	ug/g	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dichloropropylene, trans-1,3-	NV ^{#1}	ug/g	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Ethylene dibromide	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexane (n)	2.8 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	16 ^{#1}	ug/g	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methyl Isobutyl Ketone	1.7 ^{#1}	ug/g	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methyl tert-Butyl Ether (MTBE)	0.75 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	0.1 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	0.7 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethane, 1,1,1,2-	0.058 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethane, 1,1,2,2-	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	0.28 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,1-	0.38 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,2-	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	0.061 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	4 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Vinyl Chloride	0.02 ^{#1}	ug/g	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
VOCs - Volatile Organic Compounds (VOC III)										
Bromomethane	0.05 ^{#1}	ug/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Scenarios:

Indicates result exceeds MECP O.Reg.153/04 Table 3 SCS RPI Shaded Shaded Indicates a non-detect exceedance

Notes:This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established. "-" incdicates not analysed.

Guideline Notes:

*1"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

Page 2 of 2 24-095-202 2024-09-26

Table 6: Summary of Soil Quality Results Polychlorinated Biphenyls in Soil 2555 Erin Centre Blvd.

Sample ID			EQL	Maximum Detect	BH106 SS1	BH109 GS1	Dup 191				
Depth	Ontario Ministry of the				0.2m - 0.8m	0m - 0.6m	0m - 0.6m				
Elevation	Environment, Conservation and Parks O.Reg.153/04 Table 3 SCS	Units			169.2 - 168.6	169 - 168.3	169 - 168.3				
Lab Report No.	RPI Coarse				CA40177-JUN24	CA40206-JUN24	CA40206-JUN24				
Sampled Date					2024-06-24	2028-06-24	2028-06-24				
PCBs - Polychlorinated Biphenyls											
Polychlorinated Biphenyls	0.35 ^{#1}	ug/g	0.3	ND	< 0.3	< 0.3	< 0.3				

Scenarios:

	Indicates result exceeds MECP
Shaded	O.Reg.153/04 Table 3 SCS RPI
	Coarse
Shaded	Indicates a non-detect exceedance

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

Guideline Notes:

Page 1 of 1 2024-09-26

[&]quot;-" incdicates not analysed.

^{**1&}quot;Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

Table 7: Summary of Groundwater Quality Results Metals, Hydride Metals, Other Regulated Parameters in Groundwater 2555 Erin Centre Blvd.

Sample ID				BH101	BH103	DUP13	BH104	BH104	BH105	BH106	BH107	BH107
Depth				15.85m - 18.9m	15.47m - 18.52m	15.47m - 18.52m	1.52m - 4.57m	1.52m - 4.57m	15.62m - 18.67m	2.95m - 6m	1.83m - 3.35m	1.83m - 3.35m
Elevation	O.Reg. 153/04 All O.Reg.153/04 Table 3 SCS Coarse	Units	Maximum Concentration	153.22 - 150.17	153.57 - 150.52	153.57 - 150.52	167.67 - 164.62	167.67 - 164.62	153.92 - 150.87	166.44 - 163.4	167.58 - 166.05	167.58 - 166.05
Lab Report No.	_ SCS Coarse		Concentration	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40006-SEP24	CA15541-AUG24	CA40090-AUG24	CA15541-AUG24	CA40006-SEP24	CA15541-AUG24
Sampled Date				2024-08-12	2024-08-12	2024-08-12	2024-09-04	2024-08-27	2024-08-12	2024-08-27	2024-09-04	2024-08-27
Metals	<u>'</u>											
Barium (Ba)	29,000	μg/L	571	39.2	47	47.9	-	144	53.7	190	-	9.36
Beryllium (Be)	67	μg/L	0.02	< 0.007	< 0.007	< 0.007	-	< 0.007	< 0.007	0.013	-	0.02
Boron (total)	45,000	μg/L	3270	219	1,290	1,310	-	159	3,270	191	-	22
Cadmium (Cd)	2.7	μg/L	0.43	0.073	0.075	0.083	-	0.058	0.04	0.135	-	0.006
Chromium (Cr)	810	μg/L	0.95	0.48	0.32	0.35	-	0.2	0.33	0.4	=	0.95
Cobalt (Co)	66	μg/L	15.4	0.96	4.04	4.03	-	0.841	0.064	4.28	=	0.77
Copper (Cu)	87	μg/L	4	< 2	< 2	< 2	-	< 2	< 2	< 2	=	4
Lead (Pb)	25	μg/L	< 0.09	< 0.09	< 0.09	< 0.09	-	< 0.09	< 0.09	< 0.09	=	< 0.09
Molybdenum (Mo)	9,200	μg/L	17	3	16	17	-	4.7	13	4.8	=	2.8
Nickel (Ni)	490	μg/L	14.2	1	6	6	-	4	0	6.1	-	2.3
Silver (Ag)	1.5	μg/L	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05	< 0.05	< 0.05	-	< 0.05
Thallium (TI)	510	μg/L	0.06	0.008	0.02	0.02	-	0.018	< 0.005	0.034	=	0.007
Uranium (U)	420	μg/L	15.8	0.679	0.828	0.828	-	8.89	1.11	14	-	1.63
Vanadium (V)	250	μg/L	1.42	1.02	0.33	0.36	-	0.86	0.82	0.82	-	1.42
Zinc (Zn)	1,100	μg/L	62	62	32	31	-	13	9	13	=	4
Hydride-forming Metals												
Antimony (Sb)	20,000	μg/L	< 0.9	< 0.9	< 0.9	< 0.9	-	< 0.9	< 0.9	< 0.9	-	< 0.9
Arsenic (As)	1,900	μg/L	4.5	0.5	1.2	1.3	-	1.4	4.5	0.7	-	2.1
Selenium (Se)	63	μg/L	1.37	0.14	0.13	0.15	-	0.44	0.18	0.57	-	0.4
Sodium												
Sodium (Na)	2,300,000	μg/L	1540000	313,000	397,000	398,000	-	184,000	127,000	1,250,000	-	87,500
ORPs - Other Regulated Parameters												
Chloride (CI-)	2,300,000	μg/L	6300000	880,000	510,000	470,000	630,000	-	64,000	4,000,000	64,000	-
Chromium VI	140	μg/L	1.1	0.5	< 0.2	0.3	-	0.2	0.4	< 0.2	-	1.1
Cyanide (CN-)	66	μg/L	< 2	< 2	< 2	< 2	< 2	-	< 2	< 2	< 2	-
Mercury (Hg)	0.29	μg/L	< 0.01	< 0.01	< 0.01	< 0.01	-	< 0.01	< 0.01	< 0.01	-	< 0.01

Scenarios:

Shaded	Indicates result exceeds O.Reg. 153/04 All for O.Reg.153/04 Table 3 SCS Coarse
Shaded	Indicates a non-detect exceedance
Shaded	The QP deemed the parameter to be met as

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

"-" incdicates not analysed.

Table 7: Summary of Groundwater Quality Results
Metals, Hydride Metals, Other Regulated Parameters in Groundwater
2555 Erin Centre Blvd.

Sample ID		BH108	
Depth	l	2.29m - 5.33m	
Elevation	O.Reg. 153/04 All O.Reg.153/04 Table 3 SCS Coarse	167.07 - 164.02	
Lab Report No.	- 303 Codise	CA15541-AUG24	
Sampled Date		2024-08-27	
Metals			
Barium (Ba)	29,000	571	
Beryllium (Be)	67	0.012	
Boron (total)	45,000	553	
Cadmium (Cd)	2.7	0.426	
Chromium (Cr)	810	0.66	
Cobalt (Co)	66	15.4	
Copper (Cu)	87	< 2	
Lead (Pb)	25	< 0.09	
Molybdenum (Mo)	9,200	10.3	
Nickel (Ni)	490	14.2	
Silver (Ag)	1.5	< 0.05	
Thallium (TI)	510	0.058	
Uranium (U)	420	15.8	
Vanadium (V)	250	0.37	
Zinc (Zn)	1,100	14	
Hydride-forming Metals			
Antimony (Sb)	20,000	< 0.9	
Arsenic (As)	1,900	0.8	
Selenium (Se)	63	1.37	
Sodium			
Sodium (Na)	2,300,000	1,540,000	
ORPs - Other Regulated Parameters			
Chloride (Cl-)	2,300,000	6,300,000	
Chromium VI	140	< 0.2	
Cyanide (CN-)	66	< 2	
Mercury (Hg)	0.29	< 0.01	

Scenarios:

Shaded	Indicates result exceeds O.Reg. 153/04 All for O.Reg.153/04 Table 3 SCS Coarse
Shaded	Indicates a non-detect exceedance
Shaded	The QP deemed the parameter to be met as per the O.Reg. 153/04 49.1

Notes:

This table does not represent the full analytical results, please refer to the laboratory r "NV": No standard established.

Page 2 of 2 24-095-202

[&]quot;-" incdicates not analysed.

Table 8: Summary of Groundwater Quality Results Polycyclic Aromatic Hydrocarbons in Groundwater 2555 Erin Centre Blvd.

Sample ID				BH101	BH103	BH104	DUP14	BH105	BH106	BH107	BH108
Depth	0.00 450/04 411 0.00 450/04		Maximum -	15.85m - 18.9m	15.47m - 18.52m	1.52m - 4.57m	1.52m - 4.57m	15.62m - 18.67m	2.95m - 6m	1.83m - 3.35m	2.29m - 5.33m
Elevation	O.Reg. 153/04 All O.Reg.153/04 Table 3 SCS Coarse	Units		153.22 - 150.17	153.57 - 150.52	167.67 - 164.62	167.67 - 164.62	153.92 - 150.87	166.44 - 163.4	167.58 - 166.05	167.07 - 164.02
Lab Report No.	Tuble 3 300 course		Concentration	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40006-SEP24
Sampled Date				2024-08-12	2024-08-12	2024-08-13	2024-08-13	2024-08-12	2024-08-13	2024-08-13	2024-09-04
PAHs - Polycyclic Aromatic Hydrocarbons											
Acenaphthene	600	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	1.8	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	2.4	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benz[a]anthracene	4.7	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo[a]pyrene	0.81	μg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[ghi]perylene	0.2	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Benzo[k]fluoranthene	0.4	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	1	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz[a,h]anthracene	0.52	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	130	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	400	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno[1,2,3-cd]pyrene	0.2	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Methylnaphthalene, 2-(1-)	-	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methylnaphthalene, 1-	-	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methlynaphthalene, 2-	1800 ^{#1}	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	1,400	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	580	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	68	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Scenarios:

Shaded	Indicates result exceeds O.Reg. 153/04 All for O.Reg.153/04 Table 3 SCS Coarse
Shadad	Indicates a non-detect exceedance

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

Guideline Notes:

24-095-202

#1The methyl naphthalene standards are appliable to both 1-methyl naphthallene and 2-methyl naphthalene, with the provision that if both are detected the sum of the two must not exceed the standard

Page 1 of 1 2024-09-26

[&]quot;-" incdicates not analysed.

Table 9: Summary of Groundwater Quality Results Petroleum Hydrocarbons and BTEX in Groundwater 2555 Erin Centre Blvd.

Sample ID				BH108	BH103	BH101	BH105	BH106	BH107	BH102
Depth	O D. v. 450/04 All O D. v. 450/04		Movimum	2.29m - 5.33m	15.47m - 18.52m	15.85m - 18.9m	15.62m - 18.67m	2.95m - 6m	1.83m - 3.35m	1.52m - 4.57m
Elevation	O.Reg. 153/04 All O.Reg.153/04 Table 3 SCS Coarse	Units	Maximum Concentration	167.07 - 164.02	153.57 - 150.52	153.22 - 150.17	153.92 - 150.87	166.44 - 163.4	167.58 - 166.05	167.53 - 164.48
Lab Report No.			Concentration	CA15541-AUG24	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24
Sampled Date				2024-08-27	2024-08-12	2024-08-12	2024-08-12	2024-08-13	2024-08-13	2024-08-13
BTEX - Benzene, Toluene, Ethylbenzene, Xylene										
Benzene	44	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	2,300	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	18,000	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Xylene Mixture	4,200	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Xylene, m- & p-	-	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PHCs - Petroleum Hydrocarbons										
Petroleum Hydrocarbons F1-BTEX	-	μg/L	< 25	< 25	< 25	< 25	< 25	< 25	< 25	-
Petroleum Hydrocarbons F1	750 ^{#1}	μg/L	< 25	< 25	< 25	< 25	< 25	< 25	< 25	-
Petroleum Hydrocarbons F2	150	μg/L	< 100	< 100	< 100	< 100	< 100	< 100	< 100	-
Petroleum Hydrocarbons F3	500	μg/L	< 200	< 200	< 200	< 200	< 200	< 200	< 200	-
Petroleum Hydrocarbons F4	500	μg/L	< 200	< 200	< 200	< 200	< 200	< 200	< 200	-

Scenarios:

Shaded	Indicates result exceeds O.Reg. 153/04 All for O.Reg.153/04 Table 3 SCS Coarse
Shaded	Indicates a non-detect exceedance

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

Guideline Notes:

^{#1}F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result

[&]quot;-" incdicates not analysed.

Table 9: Summary of Groundwater Quality Results
Petroleum Hydrocarbons and BTEX in Groundwater
2555 Erin Centre Blvd.

Sample ID		DUP12	BH104	DUP14					
Depth	O D - 11 150/04 All O D - 11 150/04	1.52m - 4.57m	1.52m - 4.57m	1.52m - 4.57m					
Elevation	O.Reg. 153/04 All O.Reg.153/04 Table 3 SCS Coarse	167.53 - 164.48	167.67 - 164.62	167.67 - 164.62					
Lab Report No.	Tuble 0 000 course	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24					
Sampled Date		2024-08-13	2024-08-13	2024-08-13					
BTEX - Benzene, Toluene, Ethylbenzene, Xylene									
Benzene	44	< 0.5	< 0.5	< 0.5					
Ethylbenzene	2,300	< 0.5	< 0.5	< 0.5					
Toluene	18,000	< 0.5	< 0.5	< 0.5					
Xylene Mixture	4,200	< 0.5	< 0.5	< 0.5					
Xylene, m- & p-	-	< 0.5	< 0.5	< 0.5					
PHCs - Petroleum Hydrocarbons									
Petroleum Hydrocarbons F1-BTEX	-	-	< 25	< 25					
Petroleum Hydrocarbons F1	750 ^{#1}	-	< 25	< 25					
Petroleum Hydrocarbons F2	150	- < 100		< 100					
Petroleum Hydrocarbons F3	500	- < 200		< 200					
Petroleum Hydrocarbons F4	500	-	< 200						

Scenarios:

Shaded	Indicates result exceeds O.Reg. 153/04 All for O.Reg.153/04 Table 3 SCS Coarse
Shaded	Indicates a non-detect exceedance

Notes:

This table does not represent the full analytical results, please refer to the laboratory results for full details.

"NV": No standard established.

Guideline Notes:

^{#1}F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result

[&]quot;-" incdicates not analysed.

Table 10: Summary of Groundwater Quality Results Volatile Organic Compounds and Trihalomethanes in Groundwater 2555 Erin Centre Blvd.

Sample ID				BH101	BH102	DUP12	BH103	BH104	DUP14	BH105	BH106	BH107	BH108
Depth	-			15.85m - 18.9m	1.52m - 4.57m	1.52m - 4.57m	15.47m - 18.52m	1.52m - 4.57m	1.52m - 4.57m	15.62m - 18.67m	2.95m - 6m	1.83m - 3.35m	2.29m - 5.33m
Elevation	O.Reg. 153/04 All O.Reg.153/04	Units	Maximum	153.22 - 150.17	167.53 - 164.48	167.53 - 164.48	153.57 - 150.52	167.67 - 164.62	167.67 - 164.62	153.92 - 150.87	166.44 - 163.4	167.58 - 166.05	167.07 - 164.02
Lab Report No.	Table 3 SCS Coarse	Onits	Concentration	CA40090-AUG24	CA40090-AUG24	CA40090-AUG24	CA15541-AUG24						
Sampled Date	-			2024-08-12	2024-08-13	2024-08-13	2024-08-12	2024-08-13	2024-08-13	2024-08-12	2024-08-13	2024-08-13	2024-08-27
THMs - Trihalomethanes				2024-00-12	2024-06-13	2024-00-13	2024-00-12	2024-06-13	2024-06-13	2024-00-12	2024-06-13	2024-06-13	2024-08-27
Bromodichloromethane	85,000	ug/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	380	μg/L		< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform		μg/L	< 0.5		< 0.5								
Chloroform	2.4	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5
Dibromochloromethane	82,000	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
VOCs - Volatile Organic Compounds	100.000		1			1				1			
Acetone	130,000	μg/L 	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Carbon Tetrachloride	0.79	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorobenzene	630	μg/L 	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorobenzene, 1,2-	4,600	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorobenzene, 1,3-	9,600	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorobenzene, 1,4-	8	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	4,400	μg/L	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Dichloroethane, 1,1-	320	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichloroethane, 1,2-	1.6	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichloroethylene, 1,1-	1.6	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichloroethylene, 1,2-cis-	1.6	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichloroethylene, 1,2-trans-	1.6	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichloropropane, 1,2-	16	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichloropropylene, 1,3-	5.2	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichloropropylene, cis-1,3-	-	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichloropropylene, trans-1,3-	-	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ethylene dibromide	0.25	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Hexane (n)	51	μg/L	< 1	< 1	<1	< 1	<1	<1	< 1	< 1	< 1	< 1	< 1
Methyl Ethyl Ketone	470,000	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Methyl Isobutyl Ketone	140,000	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Methyl tert-Butyl Ether (MTBE)	190	μg/L	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Methylene Chloride	610	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Styrene	1,300	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethane, 1,1,1,2-	3.3	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethane, 1,1,2,2-	3.2	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene	1.6	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethane, 1,1,1-	640	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethane, 1,1,2-	4.7	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethylene	1.6	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	2,500	μg/L	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Vinyl Chloride	0.5	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
VOCs - Volatile Organic Compounds (V		P9/ -	- 0.2	- 0.2	- 0.2	- 0.2	- 0.2	- 0.2	- 0.2	- 0.2	- 0.2	- 0.2	- 0.2
Bromomethane	5.6	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
bromomethalie	5.0	μу/ L	\ 0.5	\ U.J	\ U.J	` 0.0	\ 0.5	` 0.5	× 0.5	` 0.5	\ U.J	` 0.5	` 0.5

Scanarice:

Indicates result exceeds O.Reg. 153/04 All for O.Reg.153/04				
Table 3 SCS Coarse				
Indicates a non-detect				
exceedance				

Notes:

 $This table does not represent the full analytical results, please {\it refer}\ to\ the\ laboratory\ results\ for\ full\ details.$

"NV": No standard established.

"-" incdicates not analysed.

Page 1 of 1 24-095-202

APPENDIX

APPENDIX A

File No. 24-095 July 29, 2024

Phase One Environmental Conceptual Site Model

2555 Erin Centre Boulevard, Mississauga, Ontario

Phase One ESA including Figures of the Phase One Study Area, which identify the following:	Phase One ESA Information:					
Existing buildings and structures	Existing building and structures are presented in Figure 2.					
Water bodies located in whole or in part on the Phase One Study Area	All water bodies on the Phase One Property and Phase One Study Area are shown on Figure 3.					
Areas of Natural Significance located in whole or in part on the Phase One Study Area	No Life Science ANSIs were identified on the property or within the study area. No Earth Science ANSIs were identified on the property or within the study area.					
Roads (including names) within the Phase One Study Area	All roads within the Phase One Study Area are shown on Figure 3.					
Use of properties adjacent to the Phase One Property	The land use of properties adjacent to the Phase One Property is shown on Figure 3.					
Location of drinking water wells on the Phase One Property	No drinking water wells were present on the Phase One Property.					
Areas where any PCA has occurred, and locations of tanks in the Phase One Study Area	The location of PCAs and tanks, if any, is shown on Figure 4.					
APECs on the Phase One Property	The location of APECs on the Phase One Property is shown on Figure 5.					
Narrative Description and Assessments						
Any areas where Potentially Contaminating Activity (PCAs) on, or potentially affecting, the Phase One Property have occurred	On-site PCAs Associated with APEC 1: • 30 – Importation of Fill Material of Unknown Quality On-site PCAs Associated with APEC 2: • 37 – Operation of Dry Cleaning Equipment (where chemicals are used) On-site PCAs Associated with APEC 3:					

	• 55 – Transformer Manufacturing, Processing and Use						
	On-site PCAs Associated with APEC 5:						
	Other 1 - De-icing Activities						
	Off-site PCAs Associated with APEC 4:						
	• 55 – Transformer Manufacturing, Processing and Use						
Any Contaminants of Potential Concerns (CoPCs)	CoPCs Associated with APEC 1:						
	 Metals, As, Sb, Se, CN-, Hg, Cr(VI), PAHs, PHCs, BTEX and VOCs in soil and groundwater B-HWS in soil 						
	CoPCs Associated with APEC 2:						
	 VOCs in soil and groundwater 						
	CoPCs Associated with APEC 3 & 4:						
	PHCs and BTEX in soil						
	CoPCs Associated with APEC 5:						
	EC and SAR in soilNa and Cl- in groundwater						
The potential of underground utilities (if any present) to affect contaminant distribution and transport	Buried hydro, gas, communication, water and electrical all run through the Property. Based on these observations, there is the potential for underground utilities to affect the distribution and transportation of contaminants underneath the Property.						
Available regional or site specific geological and	Topography:						
hydrogeological information	The approximate elevation of the Property is 169 m above sea level (masl) and is relatively flat, with a slight slope towards the south.						
	<u>Hydrology:</u>						
	 The nearest body of water is a tributary of Mullet Creek, located approximately 60 m to the south of the Property. Lake Ontario is located approximately 20 km southeast of the property. 						
	 Surface water flow is expected to flow to the municipal catch basins located on the Property or the adjacent roadways. Groundwater is expected to flow southeast, towards the tributary of Mullet Creek and ultimately southeast to Lake Ontario. 						
	Overburden:						
	 Clay to silt-textured till (derived from glaciolacustrine deposits or shale). 						

	Queenston Formation comprised of shale, siltstone, minor limestone and sandstone. Bedrock was not encountered during the previous subsurface investigations. Based on the published information, the depth to bedrock is approximately 30 m or less.
Any uncertainty or absence of information obtained in the Phase One ESA that could affect the validity of the CSM	No uncertainty or absence of information obtained in the Phase One ESA is identified to have an effect on the validity of the CSM.

Figure 1 – Key Plan

Figure 2 – Phase One Property

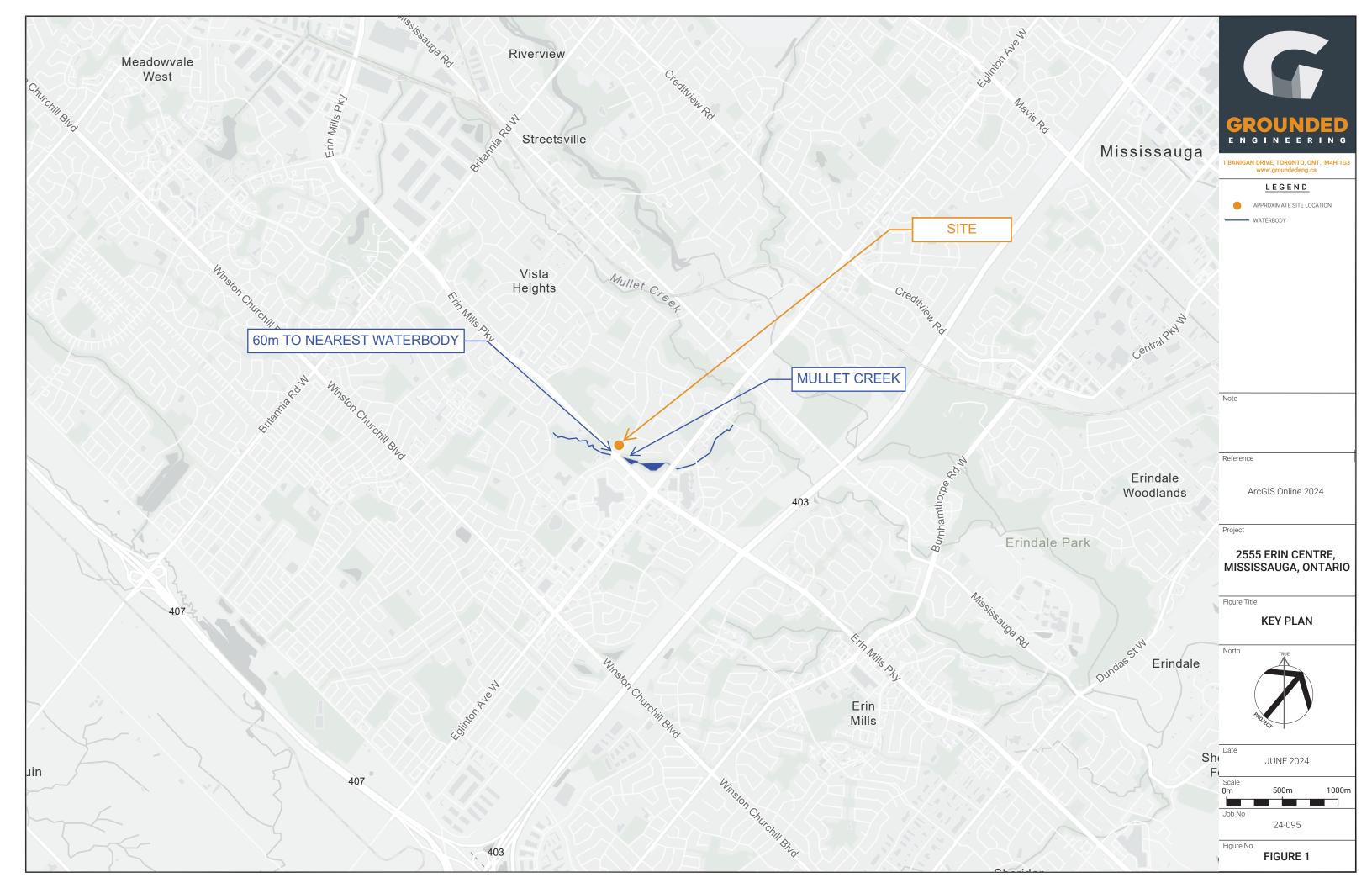
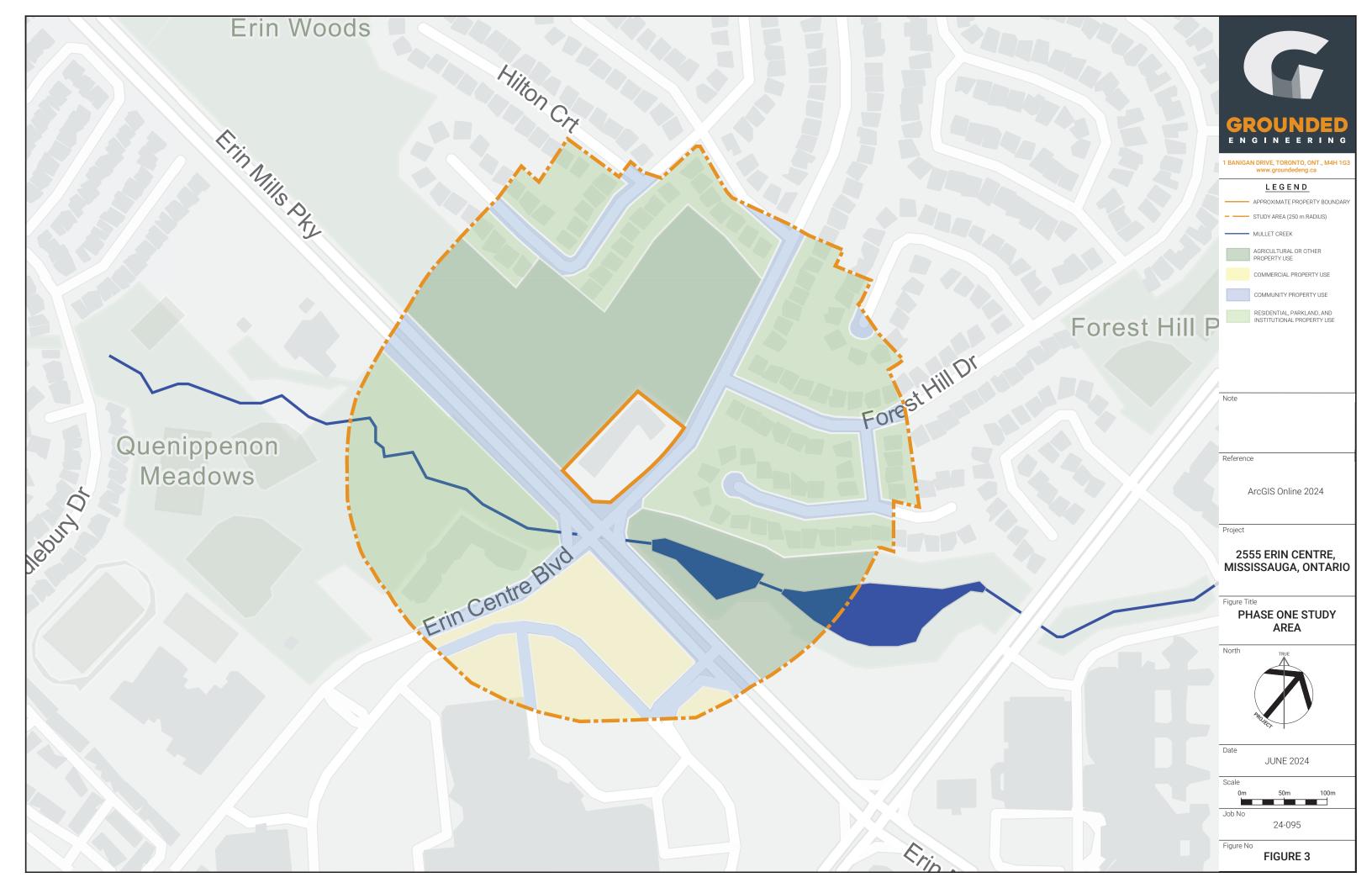

Figure 3 – Phase One Study Area

Figure 4 - PCA Locations


Figure 5 – APEC Locations

FIGURES

APPENDIX B

Appendix B: Sampling and Analysis Plan

Areas of Potential Environmental Concern (APECs) & Location	Potentially Contaminating Activities (PCAs)	Contaminants of Potential Concern (CoPCs)	Media Potentially Impacted (Groundwater, soil and/or sediment)	Borehole or Monitoring Well Associated	Rationale
APEC 1 (Entire Phase One Property)	30 - Importation of Fill Material of Unknown Quality	Metals Sb, As, Se CN- Cr(VI) Hg PAHs PHCs BTEX VOCs	Soil & Groundwater	BH101, 102, 103, 104, 105, 106, 107 & 108	 To assess if the soil and groundwater within the APEC was impacted due to historical use of fill of unknown quality. To determine depth to groundwater and direction of flow.
		B-HWS	Soil		groundwater and direction of now.
APEC 2 (Eastern Portion of Phase One Property)	37 - Operation of Dry Cleaning Equipment (where chemicals are used)	VOCs	Soil & Groundwater	BH101,102, 105 106 & 108	To assess if the soil and groundwater within the APEC was impacted due to historical use of potential dry-cleaning facility onsite. To determine depth to groundwater and direction of flow.
APEC 3 (Northern Portion of Phase One Property)	55 - Transformer Manufacturing, Processing and Use	PHCs BTEX	Soil	BH106	To assess if the soil within the APEC was impacted due to presence of transformer onsite.
APEC 4 (Eastern Portion of Phase One Property)	55 - Transformer Manufacturing, Processing and Use	PHCs BTEX	Soil	BH109	To assess if the soil within the APEC was impacted due to presence of transformer offsite.
APEC 5	Other 1 – De-	EC SAR	Soil	BH101, 102,	To assess if the soil and groundwater within the APEC was impacted due to application of
(Entire Phase One Property)	icing	Na Cl-	Groundwater	105, 104, 105, 106, 107 & 108	salt as a result of de-icing activities. To determine depth to groundwater and direction of flow.

APPENDIX C

Position: E: 604214, N: 4824137 (UTM 17T)

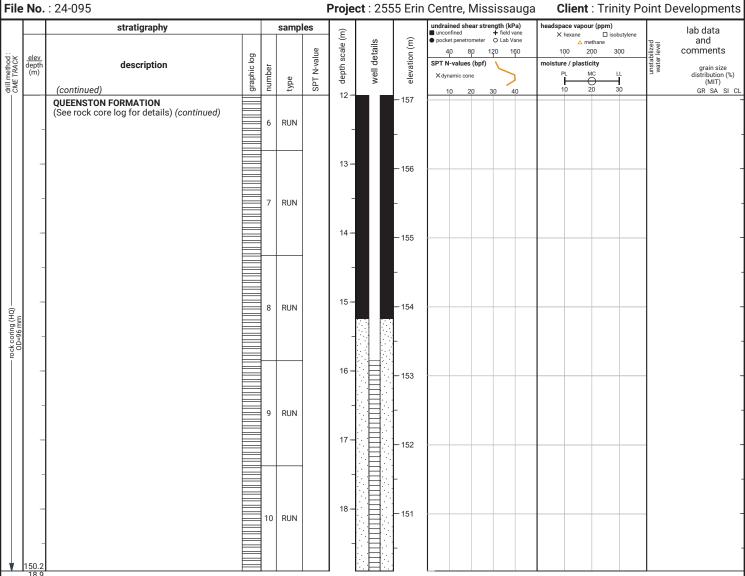
Elev. Datum: Geodetic

BOREHOLE LOG 101

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga undrained shear strength (kPa)

unconfined + field vane

pocket penetrometer O Lab Vane stratigraphy samples headspace vapour (ppm) $\widehat{\Xi}$ X hexane $\widehat{\mathbb{E}}$ △ methane details scale 80 120 100 200 comments SPT N-value elevation method SPT N-values (bpf) moisture / plasticity description number depth grain size distribution (%) (MIT) well X dynamic cone type drill n GROUND SURFACE 169.1 20 GR SA SI CL 40 169 168.9 0.2 100mm ASPHALT 75mm **AGGREGATE** SS 6 0 **FILL**, clayey silt, some sand, trace gravel, trace rock fragments, trace construction SS1: PAHs 168.3 0.8 debris, firm, dark brown, moist CLAYEY SILT, trace sand, trace gravel, light 2 SS 27 - 168 SS2: BTEX, H-Ms, Metals, ORPs, PHCs, VOCs grey silt partings, very stiff to hard, reddish brown, moist (GLACIAL TILL) 3 SS 41 0 SS3: PAHs - 167 ...at 2.3 m, some shale fragments 50 / 4 SS 0 SS4: H-Ms, Metals, ORPs - 166 0 47 41 12 ..at 3.0 m, sand and silt glacial till, some 50 / 5 clay, very dense, below 50mn SS5: BTEX, PHCs, VOCs - 165 50 / SS 6 QUEENSTON FORMATION **4.7m:** split-spoon sampler bouncing (See rock core log for details) RUN 5 -- 164 RUN 2 - 163 - 162 7.3 m (Elev. 161.8 m): RUN 3 - 161 RUN 9 -- 160 10 -- 159 RUN 5 RUN 6 Tech: SN | PM: JAW | Rev: NN Page 1 of 2



Position: E: 604214, N: 4824137 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 101

Client: Trinity Point Developments Project: 2555 Erin Centre, Mississauga

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS

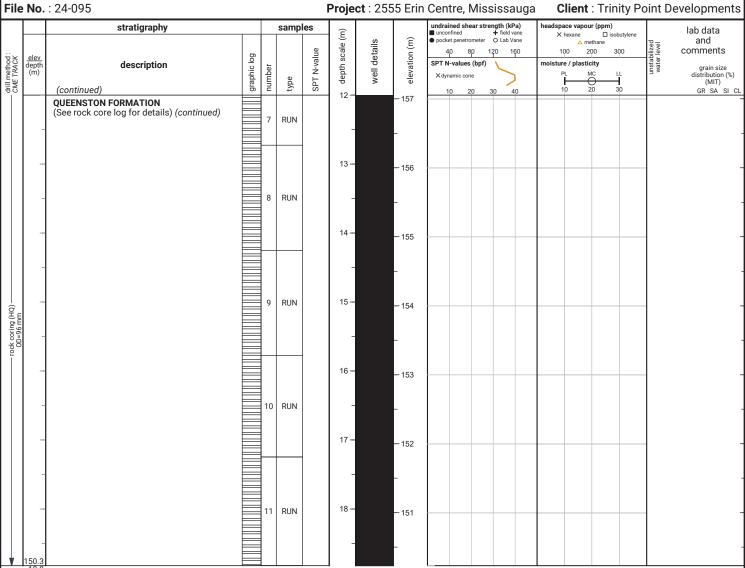
Jul 19, 2024 7.9 161.2 Jul 24, 2024 9.2 159.9	(m
4 10 0004 00	
Aug 12, 2024 8.9 160.2	
Aug 27, 2024 9.5 159.6	
Sep 9, 2024 9.6 159.5	
*latest 6 measurements shown	

Position: E: 604180, N: 4824099 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 102

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga undrained shear strength (kPa)
■ unconfined + field vane headspace vapour (ppm)


X hexane ☐ isobutylene stratigraphy samples $\widehat{\Xi}$ pocket penetrometer
 O Lab Vane $\widehat{\mathbb{E}}$ △ methane details scale 80 120 100 200 comments SPT N-value elevation method SPT N-values (bpf) moisture / plasticity description number depth grain size distribution (%) (MIT) well X dynamic cone type drill n GROUND SURFACE 169.1 GR SA SI CI 40 169 168.9 0.2 100mm ASPHALT 75mm **AGGREGATE** 5 SS ф×О SS1: BTEX, PAHs, PHCs, VOCs FILL, silty sand, some gravel, some rock fragments, trace clay, trace asphalt, loose, brown, moist ф× О ...at 0.8 m, clayey silt, some sand, trace gravel, trace rock fragments, brown, moist, 88 / 2A: H-Ms, Metals, ORPs SS 2B 250mn k O hard CLAYEY SILT, some sand, trace gravel, light grey silt partings, hard, reddish brown, moist 11 36 40 13 (med) (GLACIAL TILL) 3 80 0 SS at 1.5 m, silt and sand glacial till, some SS3: BTEX, PHCs, VOCs clay, some gravel, very dense, below 167 50 / 0 4 SS 50mm SS4: H-Ms, Metals, ORPs 166 5 SS rk O 75mn SS5: PAHs - 165 ф⊗ 50 / SS QUEENSTON FORMATION 75mm (See rock core log for details) 4.6 m (Elev. 164.5 m): transition to sound bedrock RUN - 164 RUN 2 -- 162 3 RUN - 161 RUN - 160 10 -- 159 RUN 5 - 158 6 RUN RUN 7 Tech: BMS | PM: JAW | Rev: NN **Page** 1 of 2

Position: E: 604180, N: 4824099 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 102

Client: Trinity Point Developments Project: 2555 Erin Centre, Mississauga

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

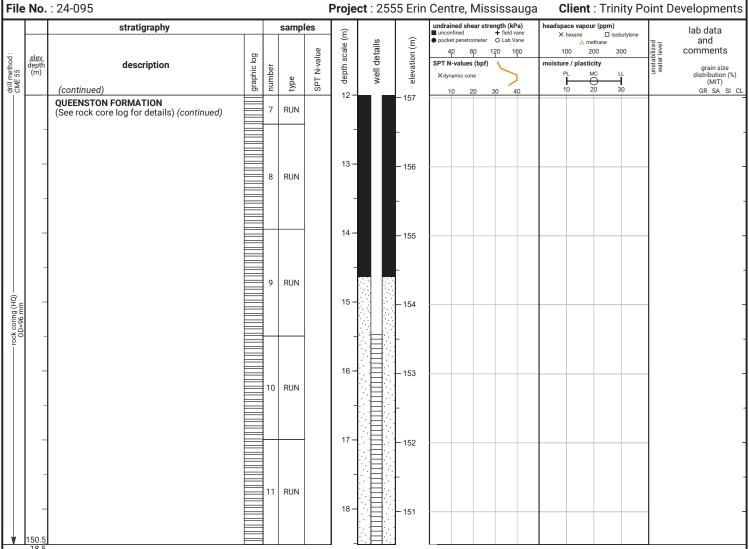
50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS									
<u>date</u>	depth (m)	elevation (m)							
Jul 19, 2024	3.4	165.7							
Jul 24, 2024	3.5	165.6							
Aug 12, 2024	3.9	165.2							
Aug 27, 2024	4.2	164.9							
Sep 9, 2024	4.4	164.7							
*latest 6 measurements shown									

Position: E: 604146, N: 4824065 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 103


File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga undrained shear strength (kPa)
unconfined + field vane
pocket penetrometer O Lab Vane stratigraphy samples headspace vapour (ppm) $\widehat{\Xi}$ X hexane $\widehat{\mathbb{E}}$ △ methane details scale 80 120 100 200 comments SPT N-value drill method: CME 55 elevation SPT N-values (bpf) moisture / plasticity description graphic number depth grain size distribution (%) (MIT) well X dynamic cone type GROUND SURFACE 169.0 GR SA SI CL 40 125mm ASPHALT 168.6 0.4 225mm AGGREGATE 7 1 SS **\$**0 FILL, silty sand, some gravel, trace rock fragments, clayey silt nodules, loose, light ...at 0.8 m, silt, some clay, trace sand, trace 2 - 168 SS 11 gravel, reddish brown, moist, compact SS2: BTEX, H-Ms, Metals, ORPs, PAHs, PHCs, VOCs **CLAYEY SILT**, some sand, trace gravel, light grey silt partings, hard, reddish brown, moist (med) 3 57 0 SS SS3: H-Ms, Metals, ORPs, PAHs (GLACIAL TILL) - 167 50 / 4 SS 0 50mm **–** 166 50 / 5 SS ux o 75mm SS5: BTEX, PHCs, VOCs **-** 165 4.4m: Run 1 recovered caved material (overlapping with SS6); refer to Rock Core Log 103 76 / o 🕸 225mr QUEENSTON FORMATION (See rock core log for details) 5.0 m (Elev. 164.0 m): 5 --- 164 transition to sound bedrock 2 RUN 3 RUN **-** 163 - 162 RUN 4 - 161 RUN 5 9 -- 160 10 --- 159 RUN - 158 RUN Tech: DB | PM: JAW | Rev: NN Page 1 of 2

Position: E: 604146, N: 4824065 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 103

Client: Trinity Point Developments Project: 2555 Erin Centre, Mississauga

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS denth (m) elevation (m)

date	depth (m)	elevation (m)
Jul 19, 2024	7.3	161.7
Jul 24, 2024	7.3	161.7
Aug 12, 2024	7.4	161.6
Aug 27, 2024	7.4	161.6
Sep 9, 2024	7.5	161.5
*latest 6 measur	rements shown	

BOREHOLE LOG 104

Tech: BMS | PM: JAW | Rev: NN

Position: E: 604095, N: 4824092 (UTM 17T) Elev. Datum: Geodetic File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga undrained shear strength (kPa)
■ unconfined + field vane stratigraphy samples headspace vapour (ppm) $\widehat{\Xi}$ X hexane pocket penetrometer
 O Lab Vane $\widehat{\mathbb{E}}$ △ methane details scale 80 120 100 200 comments SPT N-value elevation drill method: SPT N-values (bpf) moisture / plasticity description number depth grain size distribution (%) (MIT) well type **GROUND SURFACE** GR SA SI CI 40 100mm ASPHALT 169.0 169 125mm AGGREGATE SS 31 FILL, clayey silt, trace sand, trace gravel, trace rock fragments, light grey silt partings, hard, reddish brown, moist **0.8m:** split-spoon sampler bouncing CLAYEY SILT, some sand, trace gravel, light 2 SS 63 x O grey silt partings, hard, reddish brown, moist (GLACIAL TILL) - 168 SS2: BTEX, H-Ms, Metals, ORPs, PAHs, PHCs, VOCs ...at 1.5 m, sandy silt, some clay, inferred cobble / rock fragments **1.5m:** split-spoon sampler bouncing 100 / 3 SS ф×О SS3: H-Ms, Metals, ORPs 167 2.3m: split-spoon sampler bouncing 50 / ...at 2.3 m, trace shale fragments dox O ×O 4A SS 4B 4B: PAHs 3.0m: split-spoon sampler bouncing 50 / 5 SS 166 XO 125mn SS5: BTEX, PHCs, VOCs 3.4m: inferred caved material prior to coring Run 1 (overlapping with SS6); core loss was experienced during coring (refer to Rock Core Log 104) to 4.7m RUN - 165 50 / 75mm **4.5m:** split-spoon sampler bouncing ф⊗ 6 QUEENSTON FORMATION (See rock core log for details) 5 -5.0 m (Elev. 164.2 m): transition to sound bedrock - 164 RUN - 163 - 162 RUN - 161 RUN 9 -- 160 10 -- 159 5 RUN **-** 158

Page 1 of 2

RUN 6

Position: E: 604095, N: 4824092 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 104

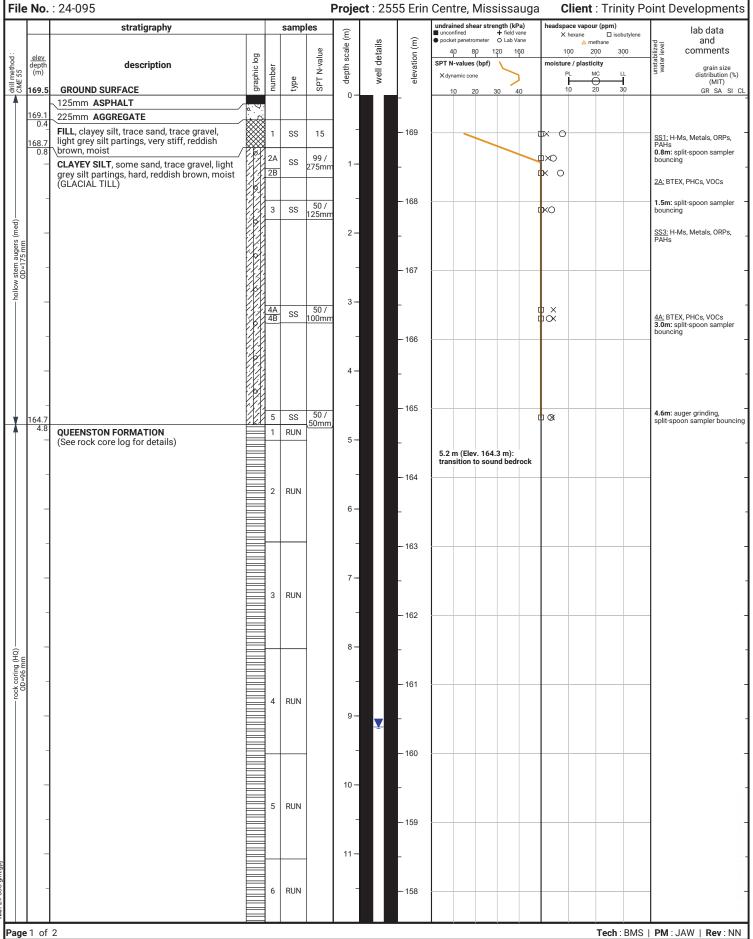
File	No.	: 24-095				Proje	ct : 25	55 Erin	Centre, Mississauga	Client : Trinity Poi	int Developments
		stratigraphy		samp	les	Ē			undrained shear strength (kPa) ■ unconfined + field vane	headspace vapour (ppm) X hexane □ isobutylene	lab data
drill method : CME 55	elev depth (m)	description (continued)	graphic log	number type	SPT N-value	12 depth scale (m)	well details	elevation (m)	● pocket penetrometer O Lab Vane 40 80 120 160 SPT N-values (bpf) X dynamic cone 10 20 30 40		and po and comments grain size distribution (%) (MIT) GR SA SI CL
	-	QUEENSTON FORMATION (See rock core log for details) (continued)		6 RUN		- 12		- 157			
	-			7 RUN		13 -	-	156 			
	-				_	14 -	-	— 155 –			
rock coring (HQ) —— OD=96 mm	-			8 RUN	-	15 -	-	– 154			
	-			9 RUN		16 -	-	- 153			
	-					17 -	-	- 152			
	150.6 18.6			10 RUN		18 -		- 151			

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS									
date	depth (m)	elevation (m)							
Jul 19, 2024	3.2	166.0							
Jul 24, 2024	3.0	166.2							
Aug 12, 2024	3.1	166.1							
Aug 27, 2024	3.0	166.2							
Sep 9, 2024	3.0	166.2							
*latest 6 measurements shown									



Position: E: 604139, N: 4824141 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 105

Elev. Datum : Geodetic

Position: E: 604139, N: 4824141 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 105

File No.: 24-095 Project: 2555 Erin Centre, Mississauga **Client**: Trinity Point Developments undrained shear strength (kPa)
unconfined + field vane
pocket penetrometer O Lab Vane headspace vapour (ppm)

X hexane ☐ isobutylene stratigraphy samples Ξ elevation (m) △ methane well details depth scale comments 80 120 160 100 200 SPT N-value drill method: elev depth (m) SPT N-values (bpf) moisture / plasticity description grain size distribution (%) (MIT) GR SA SI CL number type (continued) 40 12 QUEENSTON FORMATION
(See rock core log for details) (continued) 6 RUN -- 157 13 -RUN - 156 14 -- 155 RUN 8 - 154 16 -RUN 9 - 153 17 152 10 RUN 18 -

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS

date	depth (m)	elevation (m)						
Jul 19, 2024	8.3	161.2						
Jul 24, 2024	8.3	161.2						
Aug 12, 2024	9.0	160.5						
Aug 27, 2024	9.4	160.1						
Sep 9, 2024	9.2	160.3						
*latest 6 measurements shown								

Position: E: 604173, N: 4824170 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 106

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga undrained shear strength (kPa)
■ unconfined + field vane stratigraphy samples headspace vapour (ppm) $\widehat{\Xi}$ Ξ △ methane details scale 80 120 100 200 comments SPT N-value drill method: elevation SPT N-values (bpf) moisture / plasticity description number depth grain size distribution (%) (MIT) well X dynamic cone type **GROUND SURFACE** GR SA SI CI 40 125mm ASPHALT 169.2 0.2 100mm AGGREGATE -169 FILL, clayey silt, trace sand, trace gravel, trace construction debris, firm, brown, moist SS 8 0 SS1: PAHs, PCBs ...at 0.8 m, reddish brown, very stiff 2 SS 17 b SS2: BTEX, H-Ms, Metals, ORPs, PHCs, VOCs - 168 **CLAYEY SILT**, some sand, trace gravel, light grey silt partings, hard, reddish brown, moist 1 14 61 24 3 41 (GLACIAL TILL) SS3: PAHs 2 -2.3m: split-spoon sampler bouncing 50 / 4 SS 0 SS4: H-Ms, Metals, ORPs **3.0m:** split-spoon sampler bouncing 0 15 SS 140mi 166 Ţ hollow 165 **4.6m:** split-spoon sampler bouncing ...at 4.6 m, sandy silt glacial till, some gravel, 50 / 100mr 6 SS 0 some clay, trace shale fragments, very dense 19 29 35 17 SS6: BTEX, PHCs, VOCs 4.9m: inferred caved material prior to coring Run 1 (overlapping with SS7 & SS8); core loss was experienced during coring (refer to Rock Core Log 106) to 5.5m 5 164 RUN to 5.5m 5.5m: Run 1 recovered inferred caved material (refer to Rock Core Log 106) to 6.5m ...at 6.1 m, silty sand glacial till, some clay, 50 / 0 12 46 29 13 6.1m: auger grinding, split-spoon sampler bouncing 125mn 50 / some gravel, trace shale fragments, very 8 SS 0 - 163 162.9 6.5 dense, below 175mm QUEENSTON FORMATION (See rock core log for details) RUN 2 - 162 7.4 m (Elev. 162.0 m): transition to sound bedrock - 161 3 RUN 9 --- 160 10 -RUN - 159 RUN 5 — 158 Page 1 of 2 Tech: BMS | PM: JAW | Rev: NN

File No. : 24-095

Date Started: Jun 24, 2024

Position: E: 604173, N: 4824170 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 106

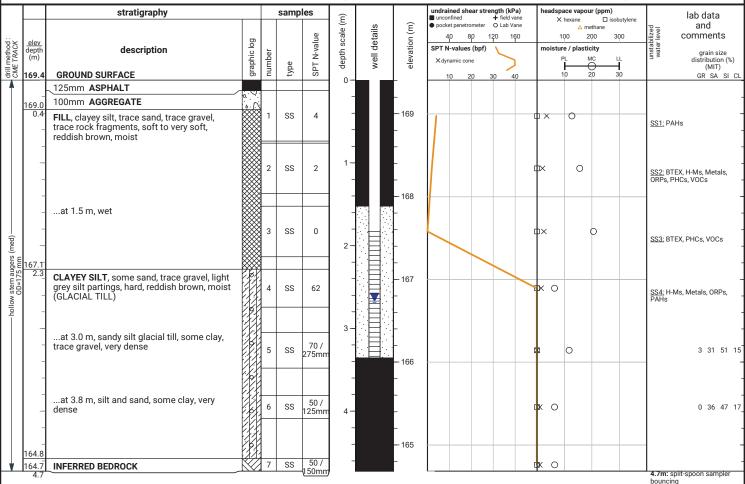
Project: 2555 Erin Centre, Mississauga Client: Trinity Point Developments

		stratigraphy			sampl	es	<u>_</u>			undrai	ned shea	r stren	gth (kPa) + field vane O Lab Vane	he	adspace v				lab data
CME 55	elev depth (m)	description (continued)	graphic log	number	type	SPT N-value	7 depth scale (m)	well details	elevation (m)	SPT N	et penetrom 0 80 -values (I amic cone	12 bpf)	160	\perp	X hexa 100 Disture / p PL 10	△ methar 200	isobutylende 300	unstabilized water level	and comments grain size distribution (MIT) GR SA S
	-	QUEENSTON FORMATION (See rock core log for details) (continued)		6	RUN		13 -		157 										
	-			7	RUN		14 –		- 156 - - 155										
	-						15 -		- 154										
1111110C=DO	-			8	RUN		16 -		- 153 										
	-			9	RUN		17 -		152 										
	-			10	RUN		19 –		151 										
	- 149.5						-		 150										

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen


GROUNDWATER LEVELS								
<u>date</u>	depth (m)	elevation (m)						
Jul 19, 2024	3.2	166.2						
Jul 24, 2024	3.5	165.9						
Aug 12, 2024	4.2	165.2						
Aug 27, 2024	4.2	165.2						
Sep 9, 2024	4.4	165.0						
*latest 6 measurements shown								

Position: E: 604135, N: 4824095 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 107

File No.: 24-095 Project: 2555 Erin Centre, Mississauga Client: Trinity Point Developments

END OF BOREHOLE

Refusal on inferred bedrock

Borehole was dry upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS

<u>date</u>	depth (m)	elevation (m)						
Jul 19, 2024	2.5	166.9						
Jul 24, 2024	2.5	166.9						
Aug 12, 2024	2.5	166.9						
Aug 27, 2024	2.9	166.5						
Sep 9, 2024	2.7	166.7						
*latest 6 measurements shown								

Position: E: 604166, N: 4824123 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 108

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga undrained shear strength (kPa)
■ unconfined + field vane stratigraphy samples headspace vapour (ppm) $\widehat{\Xi}$ X hexane pocket penetrometer
 O Lab Vane $\widehat{\mathbb{E}}$ △ methane details scale 80 120 100 200 comments SPT N-value elevation method SPT N-values (bpf) moisture / plasticity description graphic number depth grain size distribution (%) (MIT) well X dynamic cone type drill n 169.4 **GROUND SURFACE** 20 GR SA SI CI 40 125mm ASPHALT 100mm AGGREGATE 169.0 0.4 - 169 FILL, clayey silt, trace sand, trace gravel, SS 5 0 SS1: PAHs firm, brown, moist 168.6 0.8 **CLAYEY SILT**, some sand, trace gravel, light grey silt partings, hard, reddish brown, moist (GLACIAL TILL) 2 SS 54 0 SS2: BTEX, H-Ms, Metals, ORPs, PHCs, VOCs - 168 3 SS 89 0 SS3: PAHs - 167 4 SS 0 SS4: BTEX, H-Ms, Metals, ORPs, PHCs, VOCs 200mr ...at 3.0 m, sand and silt, some clay, below, 0 SS 0 48 40 12 5 125mr 3.2m: split-spoon sampler bouncing very dense, below 166 (med) 4 165 50 / 125mr 1 6 SS INFERRED BEDROCK 164 6 -SS 50 / ux O 125mn - 163 6.7m: auger grinding - 162

END OF BOREHOLE Refusal on inferred bedrock

Borehole was dry upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen GROUNDWATER LEVELS

0

<u>date</u>	depth (m)	elevation (m)
Jul 19, 2024	3.6	165.8
Jul 24, 2024	3.4	166.0
Aug 12, 2024	3.9	165.5
Aug 27, 2024	4.3	165.1
Sep 9, 2024	4.3	165.1

*latest 6 measurements shown

8 SS 50 /

Position : E: 604222, N: 4824142 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 109

Project: 2555 Erin Centre, Mississauga Client: Trinity Point Developments

		stratigraphy			samples				undrained shear strength (kPa) ■ unconfined + field vane	headspace vapour (ppm) × hexane □ isobutyle		lab data
drill method : Manual methods	elev	alay	D D		lne	cale (m)	etails	ا ب ا	● pocket penetrometer ○ Lab Vane 40 80 120 160	△ methane 100 200 300		and comments
al me	depth description	hic lo	Der	N-val	depth s	ep lle	levatio	SPT N-values (bpf) ×dynamic cone	moisture / plasticity PL MC LL		grain size distribution (%)	
drill n Manu	169.0		graph	type	SPT) 8	>	l e	10 20 30 40	10 20 30		(MIT) GR SA SI CL
l S	168.8		1 1/1			ľ		L				_
- hand auge	0.2- - 168.4 0.6	FILL, sandy silt, some clay, trace gravel, trace rootlets, brown, moist		1 GS				- -		0	<u>GS1</u>	BTEX, PCBs, PHCs

END OF BOREHOLE Auger refusal

File No. : 24-095

Dry and open upon completion of drilling.

ile: 24-095 gint.gpi

 Page 1 of 1
 Tech : DB | PM : JAW | Rev : NN

Page 1 of 2

(continued next page)

Date Started: Jun 27, 2024

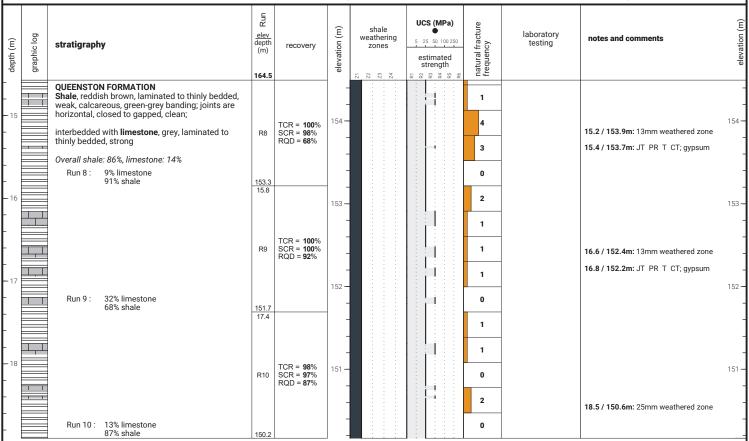
Position: E: 604214, N: 4824137 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 101

Tech: SN | PM: JAW | Rev: NN

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga Run UCS (MPa) natural fracture frequency shale weathering Ξ elev depth (m) laboratory notes and comments 25 50 100 250 testing depth (m) elevation stratigraphy graphic l recovery zones estimated strength Rock coring started at 4.6m below grade QUEENSTON FORMATION 3 Shale, reddish brown, laminated to thinly bedded, 4.9 / 164.2m: 75mm rubbilized zone weak, calcareous, green-grey banding; joints are horizontal, closed to gapped, clean; R1 SCR = 83% RQD = 54% 3+RZ 164 164 interbedded with limestone, grey, laminated to 5.2 thinly bedded, strong 2 5.4 / 163.7m: 100mm FC SV PR S T CN Overall shale: 86%, limestone: 14% 5.5 / 163.6m: 50mm rubbilized zone 2+RZ 5.6 / 163.4m: 13mm FC D PR S GA CN 17% limestone TCR = 100% 83% shale R2 SCR = 90% 2 6.0 / 163.1m: 50mm FC SV PR S GA CN RQD = 37% 163 163 6.1 / 163.0m: 25mm rubbilized zone 6.1 / 163.0 - 6.2 / 162.8m: FC SV PR S T CN 2 6.3 / 162.8m: 50mm FC SV PR S T CN Run 2: 6% limestone 94% shale 6.4 / 162.6m: 13mm weathered zone 162.4 6.7 6.5 / 162.6m: 100mm FC SV PR S T CN 6.6 / 162.5m: 13mm weathered zone 162 -6.6 / 162.4m: 13mm weathered zone 162 4+RZ 6.7 / 162.4m: 88mm FC SV PR S T CN **6.8 / 162.3m:** 13mm rubbilized zone TCR = 100% SCR = 90% RQD = 47% .. at 7.3 m (Elev. 161.8 m), transition to sound 6.9 / 162.2m: 50mm rubbilized zone rock R3 7.0 / 162.1 - 7.1 / 162.0m: FC SV PR S T CN 3 7.1 / 162.0m: 75mm rubbilized zone 161 Run 3: 7% limestone 3 161 93% shale 160.9 8.2 8.2 / 160.8m: 50mm rubbilized zone 3+RZ 2 8.6 / 160.4 - 8.8 / 160.3m: FC SV IR S T CN TCR = 100% SCR = 88% RQD = 45% 8.9 / 160.2m: 25mm rubbilized zone R4 160 **8.8 / 160.2 - 9.4 / 159.6m**: weathered zone 4 Run 4: 18% limestone 1 1 1 159.3 9.7 / 159.3m: 25mm rubbilized zone 9.8 / 159.3m: 50mm rubbilized zone 2 159 159 10.2 / 158.9m: 25mm rubbilized zone 4 TCR = 100% SCR = 95% RQD = 62% R5 3 2 10.9 / 158.2m: 25mm rubbilized zone 158 Run 5: 10% limestone 4 90% shale 2 4+R7 11.8 / 157.3m: 38mm rubbilized zone TCR = 100% SCR = 95% RQD = 80% 3 12.0 / 157.0m: 25mm weathered zone 2 12.4 / 156.7m: 25mm rubbilized zone 10% limestone Run 6: 0 90% shale 12.8 / 156.3m: 25mm weathered zone 2 156 156 0 TCR = 100% R7 SCR = 100% RQD = 90% 0 0 155 155 82% shale 154.8 14.3 R8 1



Position: E: 604214, N: 4824137 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 101

File No.: 24-095 Project: 2555 Erin Centre, Mississauga Client: Trinity Point Developments

END OF COREHOLE

a: 24-095 aint api

Page 2 of 2 Tech: SN | PM: JAW | Rev: NN

Page 1 of 2

(continued next page)

Date Started: Jun 25, 2024

Position: E: 604180, N: 4824099 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 102

Tech: BMS | PM: JAW | Rev: NN

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga Run UCS (MPa) natural fracture frequency shale weathering Ξ elev depth (m) laboratory graphic log notes and comments testing depth (m) elevation stratigraphy recovery zones estimated strength Rock coring started at 4.4m below grade QUEENSTON FORMATION 4.6 / 164.5m: 50mm rubbilized zone Shale, reddish brown, laminated to thinly bedded, TCR = 100% SCR = 93% RQD = 59% weak, calcareous, green-grey banding; joints are horizontal, closed to gapped, clean; 3 5.0 / 164.0m: 13mm rubbilized zone interbedded with limestone, grey, laminated to 164 164 163.9 5.2 thinly bedded, strong Overall shale: 90%, limestone: 10% ... at 4.6 m (Elev. 164.5 m), transition to sound rock 2 5.5 / 163.6m: 25mm rubbilized zone TCR = 100% SCR = 93% RQD = 61% 5.8 / 163.3m: 75mm rubbilized zone 5.8 / 163.2m: 50mm FC SV PR R GA CN 4 **6.0 / 163.0 - 6.2 / 162.8m**: FC SV PR R T 163 - CN 163 -Run 1: 7% limestone 2 14% limestone 86% shale 7.0 / 162.1m: 50mm FC SV PR S T CN 162 162 2 TCR = 100% SCR = 95% RQD = 44% 1 7.6 / 161.4m: FC D CU S GA clay 0 2 Run 3: 7% limestone 161 161 93% shale 1 TCR = 100% SCR = 88% RQD = 49% 8.8 / 160.2m: 50mm rubbilized zone R4 3 9.0 / 160.0m: JT PR S GA clay 160 160 9.1 / 159.9m: 50mm weathered zone 9.3 / 159.7m: 25mm weathered zone **9.5 / 159.5m:** FC SV PR R GA CN; 100mm FC SV PR R GA CN Run 4: 13% limestone Щ 159.4 9.7 3 9.9 / 159.2 - 10.0 / 159.0m: rubbilized zone 159 159 · NA TCR = 25% SCR = 16% RQD = 7% R5 NA 10.0 / 159.0 - 11.1 / 158.0m: lost core NA Run 5: 0% limestone NA 100% shale 158 158 TCR = 0% 0% limestone 100% shale 11.4 / 157.6m: 25mm rubbilized zone 3+R7 11.8 / 157.3 - 11.9 / 157.1m: rubbilized zone TCR = 53% SCR = 38% RQD = 17% R7 3+RZ 12.0 / 157.1m: 50mm rubbilized zone 157 NA 12.0 / 157.0 - 12.7 / 156.3m: lost core Run 7: 3% limestone 97% shale 156.4 12.7 2 13.0 / 156.0m: 38mm weathered zone 156 156 4 TCR = 100% SCR = 100% R8 1 RQD = 88% 0 155 155 Run 8: 11% limestone 89% shale 154.9 14.2 0

Position: E: 604180, N: 4824099 (UTM 17T)

Elev. Datum : Geodetic

ROCK CORE LOG 102

Client: Trinity Point Developments File No.: 24-095 Project: 2555 Erin Centre, Mississauga

	aeptu (m)	graphic log	stratigraphy	elev depth (m)	recovery	elevation (m)	shale weathering zones	es es	CS (MPa) 25 50 100 250 estimated strength 28 28 28 28	natural fracture frequency	laboratory testing	notes and comments	elevation (m)
-	15		QUEENSTON FORMATION Shale, reddish brown, laminated to thinly bedded, weak, calcareous, green-grey banding; joints are horizontal, closed to gapped, clean; interbedded with limestone, grey, laminated to thinly bedded, strong Overall shale: 90%, limestone: 10% Run 9: 10% limestone 90% shale	R9	TCR = 100% SCR = 97% RQD = 90%	154				0 1 0 3 2	E. 154.8m: UCS = 9.1 MPa E = 1.20 GPa γ = 25.4 kN/m ³	15.3 / 153.8m : 38mm rubbilized zone	154 —
-	117		90% snaie Run 10: 16% limestone 84% shale	153.3 15.8 R10	TCR = 100% SCR = 98% RQD = 98%	153 — - - - 152 —				0 2 5 1		16.4 / 152.7m: 25mm weathered zone 16.6 / 152.4m: 25mm weathered zone	153 — - - - 152 —
-	18		Run 11: 19% limestone 81% shale	17.2 R11	TCR = 97% SCR = 92% RQD = 89%	- - - 151 – - -				0 1 0 3 1		18.3 / 150.8m : 38mm rubbilized zone	151 —
ı	_		01 /0 Situle	18.8m		J		1				L	-

END OF COREHOLE

Page 2 of 2 Tech: BMS | PM: JAW | Rev: NN

Page 1 of 2

(continued next page)

Date Started: Jun 28, 2024

Position: E: 604146, N: 4824065 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 103

Tech: DB | PM: JAW | Rev: NN

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga Run UCS (MPa) natural fracture frequency shale weathering Ξ elev depth (m) laboratory graphic log notes and comments 25 50 100 250 depth (m) elevation stratigraphy recovery zones estimated strength Rock coring started at 4.4m below grade 4.4 / 164.6 - 4.7 / 164.4m: Run 1 recovered caved material (overlapping with SS6); refer to Borehole Log 103 CLAYEY SILT, some sand, trace gravel, light grey TCR = 85% SCR = 50% RQD = 0% NA silt partings, hard, reddish brown, moist (GLACIAL TILL) R1 4.7 / 164.4m: observed weathered bedrock 2 QUEENSTON FORMATION **Shale**, reddish brown, laminated to thinly bedded, weak, calcareous, green-grey banding; joints are 4.9 164 3 TCR = 100% SCR = 90% RQD = 52% horizontal, closed to gapped, clean; 5.3 / 163.7m: JT PR S GA CT clay 3 interbedded with limestone, grey, laminated to thinly bedded, strong 3 5.6 / 163.4m: 25mm weathered zone Overall shale: 85%, limestone: 15% ... at 5.0 m (Elev. 164.0 m), transition to sound rock 2 TCR = 100% SCR = 100% RQD = 96% 163 -163 1 Run 1: 0% limestone 162.6 6.4 0 100% shale 2 Run 2: 12% limestone Run 3: 2% limestone 98% shale TCR = 98% SCR = 98% RQD = 54% 162 7.0 / 162.0m: 13mm FC D PR S T CN 162 R4 7.4 / 161.6m: 13mm FC D PR S T CN 7.5 / 161.5m: 13mm FC D PR S T CN 7.6 / 161.4m: 13mm FC D PR S T CN 2% limestone 2 98% shale 161 161 4 2 TCR = 100% SCR = 100% RQD = 68% R5 2 8.7 / 160.3m: 13mm FC D PR S T CN 3 160 -160 Run 5: 8% limestone 1 92% shale 3 9.6 / 159.5m: 75mm FC SV PR S T CN 9.7 / 159.4m: 25mm clay infilled seam 2 10.0 / 159.1m: 75mm FC SV PR S T CN 159 TCR = 100% 10.1 / 159.0m: 25mm weathered zone SCR = 100% RQD = 63% 3 23% limestone 2 77% shale 158 158 0 3 TCR = 100% SCR = 100% RQD = 83% R7 1 11.9 / 157.2m: 25mm FC SV PR R GA CN 4 157 157 Run 7: 19% limestone 0 81% shale 13.1 / 155.9m: 25mm clay infilled seam 3 R8 SCR = 100% RQD = 90% 0 10% limestone Run 8 · 1 13.9 14.0 / 155.0m: FC D PR S T CN 155 155 TCR = 100% 3 SCR = 100% RQD = 89% R9 Run 9 : 18% limestone 0

Position: E: 604146, N: 4824065 (UTM 17T)

Elev. Datum : Geodetic

150.5 18.5m

ROCK CORE LOG 103

File No.: 24-095 Project: 2555 Erin Centre, Mississauga **Client**: Trinity Point Developments Run UCS (MPa) natural fracture frequency shale weathering elevation (m) laboratory elev depth (m) graphic log notes and comments depth (m) stratigraphy recovery zones estimated strength QUEENSTON FORMATION 0 Shale, reddish brown, laminated to thinly bedded, weak, calcareous, green-grey banding; joints are horizontal, closed to gapped, clean; 3 TCR = 100% SCR = 100% RQD = 89% 0 interbedded with **limestone**, grey, laminated to thinly bedded, strong 154 – 154 1 15.3 / 153.7m: 25mm clay infilled seam Overall shale: 85%, limestone: 15% 153.5 15.5 15.6 / 153.4m: FC D IR R T CN 18% limestone 82% shale 3 1 153 -153 TCR = 100% SCR = 98% RQD = 83% R10 0 1 Run 10: 22% limestone 78% shale 0 152 152 0 17.3 / 151.7m: JT PR S GA; gypsum 1 TCR = 100% SCR = 100% RQD = 100% R11 0 151 151

END OF COREHOLE

Run 11: 35% limestone 65% shale

24-095 gint.gpj

Page 1 of 2

(continued next page)

Date Started: Jun 27, 2024

Position: E: 604095, N: 4824092 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 104

Tech: BMS | PM: JAW | Rev: NN

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga Run UCS (MPa) natural fracture frequency shale weathering Ξ elev depth (m) laboratory graphic log notes and comments 25 50 100 250 depth (m) elevation stratigraphy recovery zones estimated strength Rock coring started at 3.4m below grade CLAYEY SILT, some sand, trace gravel, light grey NA silt partings, hard, reddish brown, moist (GLACIAL TILL) 3.4 / 165.8 - 4.7 / 164.5m: inferred caved material prior to coring Run 1 (overlappying with SS6); core loss was experienced during coring (refer to Borehole Log 104) TCR = 16% SCR = 8% RQD = 0% R1 NA 165 -NA **4.7 / 164.5m:** observed weathered bedrock, 100mm rubbilized zone OUFFISTON FORMATION 2 Shale, reddish black, laminated to thinly bedded, weak, calcareous, green-grey banding; joints are 3 horizontal, closed to gapped, clean; 5.2 / 164.0m: FC D PR S GA CN 164 164 interbedded with **limestone**, grey, laminated to thinly bedded, strong 4 5.4 / 163.8m: 25mm rubbilized zone 5.6 / 163.6m: 25mm rubbilized zone TCR = 100% SCR = 95% RQD = 58% Overall shale: 81%, limestone: 19% ... at 5.0 m (Elev. 164.2 m), transition to sound 1 5.9 / 163.3m: 50mm rubbilized zone rock Run 1: 2% limestone 4 98% shale 163 163 Run 2: 14% limestone 3 86% shale 6.7 / 162.5m: 50mm rubbilized zone 1 TCR = **60**% SCR = **43**% RQD = **47**% **7.1 / 162.1 - 7.2 / 162.0m:** rubbilized zone ₁₆₂ 162 R3 1 LC 7.4 / 161.8 - 8.0 / 161.2m; lost core Run 3: 3% limestone LC 97% shale 161.2 8.0 / 161.2m: 25mm rubbilized zone 8.1 / 161.1m: 25mm rubbilized zone 161 161 TCR = 100% R4 SCR = 97% 1 RQD = 81% 0 160 160 15% limestone Run 4: 9.3 / 159.9m: FC SV IR R T CN 3 85% shale 2 9.7 / 159.5m: 75mm weathered zone 9.8 / 159.4m: 100mm clay infilled seam 5+WZ 9.9 / 159.3m: 50mm weathered zone TCR = 100% SCR = 87% RQD = 63% 159 159 4 1 18% limestone Run 5: 1 82% shale 3 158 158 2 TCR = 100% SCR = 100% RQD = 60% R6 11.8 / 157.4m: JT PR S GA; gypsum 2 157 12.3 / 156.9m: JT PR S GA; gypsum 17% limestone 12.3 / 156.9m: JT PR S GA; gypsum 83% shale 2 TCR = 100% SCR = 100% RQD = 85% 156 Run 7: 0% limestone 3 100% shale 1 / 155.8m: 50mm weathered zor

Position: E: 604095, N: 4824092 (UTM 17T)

Elev. Datum : Geodetic

ROCK CORE LOG 104

16.9 / 152.3m: 25mm weathered zone

17.8 / 151.4m: JT PR S GA; gypsum

18.1 / 151.1m: JT PR S GA; gypsum

152

151

File No.: 24-095 Project: 2555 Erin Centre, Mississauga **Client**: Trinity Point Developments Run UCS (MPa) ● natural fracture frequency shale weathering elevation (m) laboratory elev depth (m) graphic log notes and comments depth (m) stratigraphy recovery zones estimated strength QUEENSTON FORMATION TCR = 100% SCR = 100% RQD = 85% 2 Shale, reddish black, laminated to thinly bedded, weak, calcareous, green-grey banding; joints are horizontal, closed to gapped, clean; R7 0 interbedded with limestone, grey, laminated to thinly bedded, strong 155 -1 155 Overall shale: 81%, limestone: 19% El. 154.8m: UCS = 39.5 MPa E = 7.20 GPa Y = 25.8 kN/m³ 0 0% limestone 100% shale TCR = 100% SCR = 100% RQD = 97% R8 0 154 -154 15.3 / 153.9m: 25mm clay infilled seam Run 8: 17% limestone 0 15.4 / 153.7m: 25mm weathered zone 83% shale 3 0 TCR = 100% SCR = 100% RQD = 57% 153 -153

152

151

TCR = 100% SCR = 100% RQD = 93% 3

2

0

1

0

2

Run 10: 47% limestone

53% shale

34% limestone

66% shale

Run 9:

150.6

R10

END OF COREHOLE

e: 24-095 gmr.gpj

Page 1 of 2

(continued next page)

Date Started: Jun 26, 2024

Position: E: 604139, N: 4824141 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 105

Tech: BMS | PM: JAW | Rev: NN

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga Run UCS (MPa) natural fracture frequency shale weathering elevation (m) elev depth (m) laboratory graphic log notes and comments 25 50 100 250 depth (m) stratigraphy recovery zones estimated strength Rock coring started at 4.6m below grade 4.6 / 164.9 - 4.8 / 164.8m: recovered caved 46 CLAYEY SILT, some sand, trace gravel, light grey TCR = 100% SCR = 53% RQD = 0% silt partings, hard, reddish brown, moist (GLACIAL TILL) R1 3 4.8 / 164.8m: observed weathered bedrock QUEENSTON FORMATION 5.0 5.1 / 164.5m; FC D PR S T CN 3 **Shale**, reddish black, laminated to thinly bedded, weak, calcareous, green-grey banding; joints are 5.1 / 164.5m: 25mm weathered zone 5.2 / 164.3m: FC D PR S T CN horizontal, closed to gapped, clean; interbedded with limestone, grey, laminated to TCR = 100% 5.6 / 163.9m: 25mm rubbilized zone SCR = 97% RQD = 69% thinly bedded, strong R2 3 Overall shale: 82%, limestone: 18% ... at 5.2 m (Elev. 164.3 m), transition to sound 2 7% limestone Run 1: 93% shale 6.5 / 163.1m: 50mm rubbilized zone 163 163 3 6.6 / 162.9m: 75mm rubbilized zone Run 2 · 16% limestone 84% shale TCR = 100% SCR = 87% RQD = 38% 7.2 / 162.4m: FC D PR R GA CN 4 7.3 / 162.3m: FC D PR R GA CN 7.5 / 162.0m; FC D PR R GA CN 162 2 162 7.7 / 161.9m: FC D PR R GA CN 7.7 / 161.8m: FC D PR R GA CN 8% limestone 4 Run 3 · 161.5 2 3 161 161 8.6 / 161.0m: FC D PR S GA CN TCR = 100% SCR = 98% RQD = 98% R4 1 1 Run 4: 15% limestone 2 85% shale 160.0 9.5 160 160 9.6 / 159.9m: 25mm weathered zone 1 9.6 / 159.9m: IS clay; 75mm clay infilled 9.7 / 159.8m: 25mm weathered zone 10.1 / 159.5m: 13mm weathered zone TCR = 100% SCR = 90% RQD = 45% 10.1 / 159.4m: 50mm FC SV IR R T CT clay 2 R5 10.5 / 159.1m: 50mm clay infilled seam 159 13% limestone Run 5: 10.9 / 158.6m: JT PR S GA CT clay 87% shale 1 158 0 TCR = 100% SCR = 98% R6 2 RQD = 73% 25% limestone Run 6: 2 157 157 0 TCR = 100% SCR = 95% RQD = 82% 3 13.4 / 156.2m: 75mm clay infilled seam 156 3 Run 7: 12% limestone 88% shale TCR = 100% SCR = 100% RQD = 97% R8 Run 8: 10% limestone 2

Date Started: Jun 26, 2024

Position: E: 604139, N: 4824141 (UTM 17T)

Elev. Datum: Geodetic

150.8 18.7m

ROCK CORE LOG 105

18.3 / 151.3m: 50mm clay infilled seam

151

File No.: 24-095 Project: 2555 Erin Centre, Mississauga **Client**: Trinity Point Developments Run UCS (MPa) natural fracture frequency shale weathering elevation (m) laboratory elev depth (m) graphic log notes and comments depth (m) stratigraphy recovery zones estimated strength QUEENSTON FORMATION Shale, reddish black, laminated to thinly bedded, weak, calcareous, green-grey banding; joints are horizontal, closed to gapped, clean; 0 TCR = 100% SCR = 100% RQD = 97% interbedded with limestone, grey, laminated to thinly bedded, strong 0 154 154 Overall shale: 82%, limestone: 18% 10% limestone Run 8: 2 15.8 / 153.7m: 25mm rubbilized zone 90% shale 2 TCR = 83% SCR = 82% RQD = 67% 0 153 153 1 Run 9 : 14% limestone 1 16.9 / 152.6 - 17.2 / 152.4m: lost core 86% shale 1 152 152 1 TCR = 100% SCR = 97% RQD = 87% R10 3

END OF COREHOLE

Run 10: 55% limestone 45% shale

a: 24-095 gint.gpj

Page 1 of 2

(continued next page)

Date Started: Jun 24, 2024

Position: E: 604173, N: 4824170 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 106

Tech: BMS | PM: JAW | Rev: NN

File No.: 24-095 **Client**: Trinity Point Developments Project: 2555 Erin Centre, Mississauga Run UCS (MPa) natural fracture frequency shale weathering Ξ elev depth (m) laboratory graphic log notes and comments 25 50 100 250 depth (m) elevation stratigraphy recovery zones estimated strength Rock coring started at 4.9m below grade CLAYEY SILT, some sand, trace gravel, light grey 4.9 / 164.5 - 5.5 / 163.9m: inferred caved material prior to coring Run 1 (overlapping with SS7 & SS8); core loss was experienced during coring (refer to Borehole Log 106) NA silt partings, hard, reddish brown, moist (GLACIAL TILL) 164 TCR = 63% SCR = 0% RQD = 0% R1 NA **5.5 / 163.9 - 6.5 / 162.9m:** recovered caved material NA NA 163 163 6.5 / 162.9m; observed weathered bedrock QUEENSTON FORMATION 6.5 / 162.9m: FC D PR R GA CN Shale, reddish brown, laminated to thinly bedded, 6.6 / 162.8m: FC D PR R GA CN weak, calcareous, green-grey banding; joints are horizontal, closed to gapped, clean; 7.0 / 162.4m; FC D PR R GA CN TCR = 100% SCR = 95% RQD = 40% interbedded with limestone, grey, laminated to 2 thinly bedded, strong 162 -162 Overall shale: 82%, limestone: 18% ... at 7.4 m (Elev. 162.0 m), transition to sound rock 2 Run 1: 0% limestone 100% shale 8.1 / 161.3m: 50mm rubbilized zone 161 161 8.4 / 161.0m: 50mm weathered zone Run 2: 8% limestone 2 92% shale TCR = 100% SCR = 95% RQD = 59% R3 2 19% limestone Run 3 · 160 160 3 9.6 / 159.8m: 25mm clay infilled seam 9.7 / 159.7m: 25mm clay infilled seam 2 TCR = 100% SCR = 94% RQD = 45% R4 10.2 / 159.2m: JT PR R GA clay 159 -159 3 22% limestone 78% shale 0 2 158 158 TCR = 100% 2 SCR = 98% RQD = 89% R5 11.7 / 157.7m: 13mm rubbilized zone 2 11.8 / 157.6m: 13mm rubbilized zone Run 5: 19% limestone 2 81% shale 157 157 2 12.7 / 156.7m: 25mm rubbilized zone TCR = 100% R6 SCR = 98% RQD = 82% 2 13.1 / 156.3m: 25mm rubbilized zone 13.2 / 156.2m: 25mm weathered zone 3 156 156 Run 6: 13% limestone 2 87% shale 1 TCR = 100% R7 SCR = 98% 155 – 155 RQD = 74% 0 Run 7: 23% limestone 0

Date Started: Jun 24, 2024

Position: E: 604173, N: 4824170 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 106

150

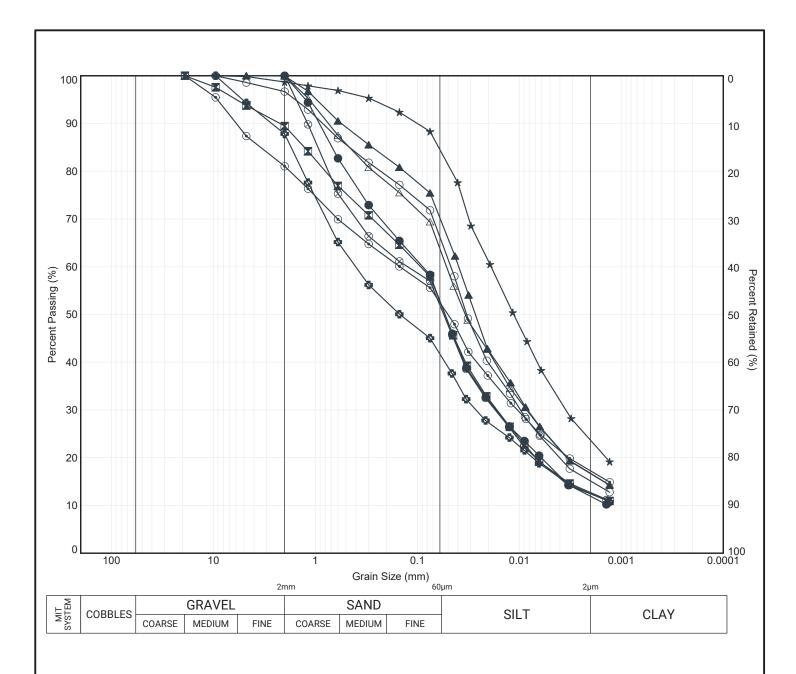
File No.: 24-095 Project: 2555 Erin Centre, Mississauga **Client**: Trinity Point Developments Run UCS (MPa) ● natural fracture frequency shale weathering elevation (m) laboratory elev depth (m) graphic log notes and comments depth (m) stratigraphy recovery zones estimated strength QUEENSTON FORMATION R7 Shale, reddish brown, laminated to thinly bedded, 1 weak, calcareous, green-grey banding; joints are horizontal, closed to gapped, clean; 154 154 2 interbedded with limestone, grey, laminated to El. 153.8m: UCS = 16.5 MPa E = 1.70 GPa Y = 25.6 kN/m³ thinly bedded, strong 1 Overall shale: 82%, limestone: 18% TCR = 100% SCR = 100% RQD = 79% 23% limestone 77% shale Run 7: 2 2 153 -153 2 21% limestone Run 8: 79% shale 1 2 152 152 TCR = 100% SCR = 100% RQD = 91% 1 17% limestone 83% shale Run 9: 0 151.1 18.3 151 151 1 TCR = 100% SCR = 100% RQD = 90% 2 R10

150

149.5 19.9m 0

2

END OF COREHOLE


Run 10: 39% limestone

61% shale

a: 24-095 gint.gpj

APPENDIX D

MIT SYSTEM	1
------------	---

	Location	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	(Fines, %)
•	BH 101	SS5	3.2	165.9	0	47	41	12	(0)
\mathbf{M}	BH 102	SS3	1.8	167.3	11	36	40	13	(0)
	BH 104	SS3	1.7	167.5	0	29	54	17	(0)
*	BH 106	SS3	1.8	167.6	1	14	61	24	(0)
\odot	BH 106	SS6	4.7	164.7	19	29	35	17	(0)
0	BH 106	SS7	6.2	163.2	12	46	29	13	(0)
0	BH 107	SS5	3.3	166.1	3	31	51	15	(0)
\triangle	BH 107	SS6	3.9	165.5	0	36	47	17	(0)
\otimes	BH 108	SS5	3.1	166.2	0	48	40	12	(0)

GROUNDED ENGINEERING

Title:

GRAIN SIZE DISTRIBUTION
GLACIAL TILL

File No.:

24-095

APPENDIX E

Soil Result

CA40206-JUN24 R1

24-095-202, 2555 Erin Centre Blvd

Prepared for

Grounded Engineering Inc.

First Page

CLIENT DETAIL:	S	LABORATORY DETAI	LS
Client	Grounded Engineering Inc.	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	1 Banigan Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Toronto, Ontario		
	M4H 1E9. Canada		
Contact	Jessie Wu	Telephone	705-652-2000
Telephone	647-264-7909	Facsimile	705-652-6365
Facsimile		Email	Maarit.Wolfe@sgs.com
Email	jwu@groundedeng.ca	SGS Reference	CA40206-JUN24
Project	24-095-202, 2555 Erin Centre Blvd	Received	06/28/2024
Order Number		Approved	07/05/2024
Samples	Soil (5)	Report Number	CA40206-JUN24 R1
		Date Reported	07/05/2024

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

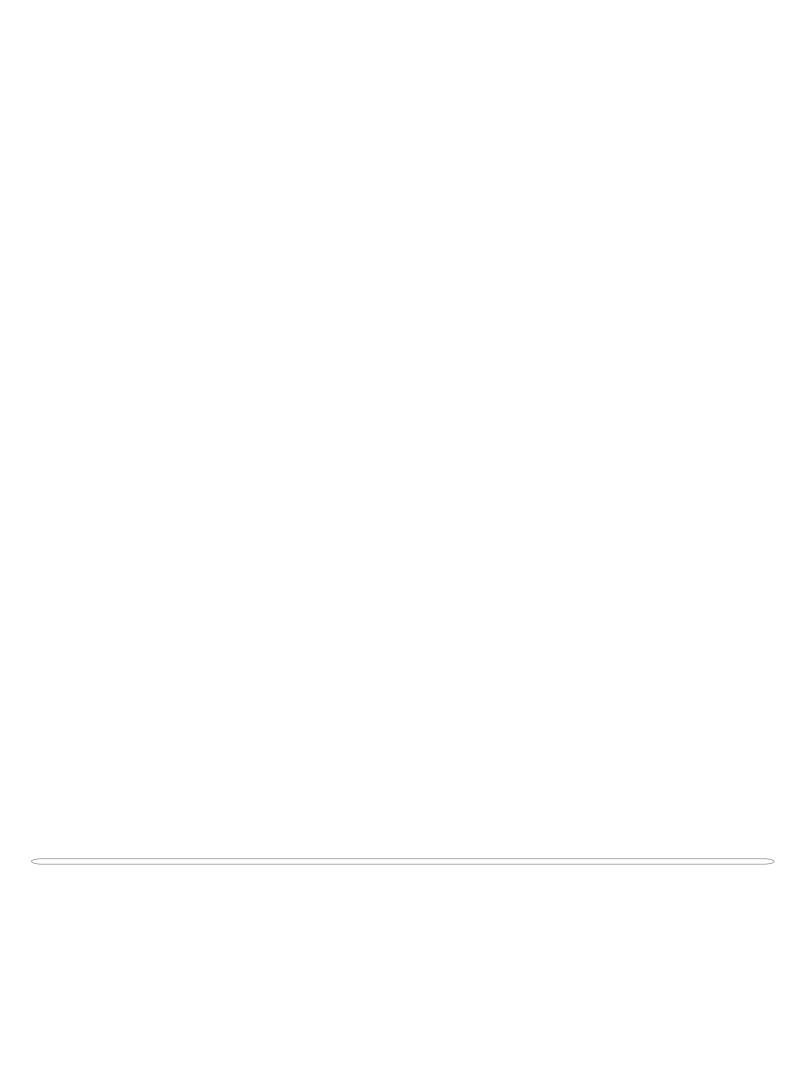
Temperature of Sample upon Receipt: 8 degrees C

Cooling Agent Present: yes Custody Seal Present: yes

Chain of Custody Number: 038528

Trichlorofluoromethane Matrix Spike; Recovery is outside control limits; the overall quality control for this analysis has been assessed and was determined to be acceptable.

SIGNATORIES


Maarit Wolfe, Hon.B.Sc

Luvoye

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2000 f 705-652-6365

1 / 25

Member of the SGS Group (SGS SA)

CA40206-JUN24 R1

FINAL REPORT

TABLE OF CONTENTS

First Page	1-2
Index	3
Results.	4-9
Exceedance Summary	10
Holding Time Summary	11-13
QC Summary	14-22
Legend	23
Annexes	24-25

SGS FINAL REPORT

Client: Grounded Engineering Inc.

Project: 24-095-202, 2555 Erin Centre Blvd

Project Manager: Jessie Wu

==			Sample Number	10	11	12	13	14
MATRIX: SOIL			·					
			Sample Name	BH109 GS1	Dup 191	BH103 SS2	BH103 SS3	BH103 SS5
.1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Park	kland - UNDEFINED		Sample Matrix Sample Date	Soil 28/06/2024	Soil 28/06/2024	Soil 28/06/2024	Soil 28/06/2024	Soil 28/06/2024
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
BTEX	Office	NL.	Li	Result	Result	Result	Nesuit	Result
Benzene	μg/g	0.02	0.21	< 0.02		< 0.02		< 0.02
Ethylbenzene	μg/g	0.05	2	< 0.05		< 0.05		< 0.05
Toluene	μg/g	0.05	2.3	< 0.05		< 0.05		< 0.05
Xylene (total)	μg/g	0.05	3.1	< 0.05		< 0.05		< 0.05
m/p-xylene		0.05	3.1	< 0.05		< 0.05		< 0.05
o-xylene	µg/g	0.05		< 0.05		< 0.05		< 0.05
	µg/g	0.03		V 0.00		< 0.03		< 0.03
Hydrides								
Antimony	μg/g	8.0	7.5			< 0.8	< 0.8	
Arsenic	μg/g	0.5	18			6.4	5.4	
Selenium	μg/g	0.1	2.4			0.3	0.2	
Metals and Inorganics								
Moisture Content	%	no		11.3	11.6	9.3	8.2	6.4
Barium	μg/g	0.1	390			80	50	
Beryllium	μg/g	0.02	4			0.70	0.74	
Boron	μg/g	1	120			11	13	
Cadmium	μg/g	0.05	1.2			0.08	0.06	
Chromium	μg/g	0.5	160			20	22	
Cobalt	μg/g	0.01	22			13	13	
Copper	μg/g	0.1	140			11	9.4	
Lead	μg/g	0.1	120			9.8	11	
Molybdenum	μg/g	0.1	6.9			1.1	1.2	

Client: Grounded Engineering Inc.

Project: 24-095-202, 2555 Erin Centre Blvd

Project Manager: Jessie Wu

				10		40	40	
ATRIX: SOIL			Sample Number	10	11	12	13	14
			Sample Name	BH109 GS1	Dup 191	BH103 SS2	BH103 SS3	BH103 SS5
= REG153 / SOIL / COARSE - TABLE 3 - Residential/Park	kland - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Date	28/06/2024	28/06/2024	28/06/2024	28/06/2024	28/06/2024
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
etals and Inorganics (continued)								
Nickel	μg/g	0.5	100			29	30	
Silver	μg/g	0.05	20			< 0.05	< 0.05	
Thallium	μg/g	0.02	1			0.10	0.10	
Uranium	μg/g	0.002	23			0.64	0.61	
Vanadium	μg/g	3	86			25	27	
Zinc	μg/g	0.7	340			56	58	
Water Soluble Boron	μg/g	0.5	1.5			< 0.5	< 0.5	
her (ORP)								
Mercury	ug/g	0.05	0.27			< 0.05	< 0.05	
Sodium Adsorption Ratio	No unit	0.2	5			4.8	1.8	
SAR Calcium	mg/L	0.2				25.7	34.0	
SAR Magnesium	mg/L	0.3				1.8	2.7	
SAR Sodium	mg/L	0.1				92.9	41.4	
Conductivity	mS/cm	0.002	0.7			0.63	0.43	
рН	pH Units	0.05				7.68	7.78	
Chromium VI	μg/g	0.2	8			< 0.2	< 0.2	
Free Cyanide	μg/g	0.05	0.051			< 0.05	< 0.05	

Client: Grounded Engineering Inc.

Project: 24-095-202, 2555 Erin Centre Blvd

Project Manager: Jessie Wu

MATRIX: SOIL		Sample Number	10	11	12	13	14
		Sample Name	BH109 GS1	Dup 191	BH103 SS2	BH103 SS3	BH103 SS5
= REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil
		Sample Date	28/06/2024	28/06/2024	28/06/2024	28/06/2024	28/06/2024
Parameter Unit	s RL	L1	Result	Result	Result	Result	Result
AHs							
Acenaphthene µg/	g 0.05	7.9			< 0.05	< 0.05	
Acenaphthylene µg/	g 0.05	0.15			< 0.05	< 0.05	
Anthracene µg/	g 0.05	0.67			< 0.05	< 0.05	
Benzo(a)anthracene µg/	g 0.05	0.5			< 0.05	< 0.05	
Benzo(a)pyrene µg/	g 0.05	0.3			< 0.05	< 0.05	
Benzo(b+j)fluoranthene µg/	g 0.05	0.78			< 0.05	< 0.05	
Benzo(ghi)perylene µg/	g 0.1	6.6			< 0.1	< 0.1	
Benzo(k)fluoranthene µg/	g 0.05	0.78			< 0.05	< 0.05	
Chrysene µg/	g 0.05	7			< 0.05	< 0.05	
Dibenzo(a,h)anthracene μg/	g 0.06	0.1			< 0.06	< 0.06	
Fluoranthene µg/	g 0.05	0.69			< 0.05	< 0.05	
Fluorene µg/	g 0.05	62			< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene µg/	g 0.1	0.38			< 0.1	< 0.1	
1-Methylnaphthalene µg/	g 0.05				< 0.05	< 0.05	
2-Methylnaphthalene μg/	g 0.05				< 0.05	< 0.05	
Methylnaphthalene, 2-(1-) μg/	g 0.05	0.99			< 0.05	< 0.05	
Naphthalene µg/	g 0.05	0.6			< 0.05	< 0.05	
Phenanthrene µg/	g 0.05	6.2			< 0.05	< 0.05	
Pyrene µg/	g 0.05	78			< 0.05	< 0.05	

CA40206-JUN24 R1

Client: Grounded Engineering Inc.

Project: 24-095-202, 2555 Erin Centre Blvd

Project Manager: Jessie Wu

MATRIX: SOIL			Sample Number	10	11	12	13	14
			Sample Name	BH109 GS1	Dup 191	BH103 SS2	BH103 SS3	BH103 SS5
S colychlorinated Biphenyls (PCBs) - Total μg/g 0.3			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Date	28/06/2024	28/06/2024	28/06/2024	28/06/2024	28/06/2024
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
CBs								
Polychlorinated Biphenyls (PCBs) - Total	μg/g	0.3	0.35	< 0.3	< 0.3			
HCs								
F1 (C6-C10)	μg/g	10	55	< 10		< 10		< 10
F1-BTEX (C6-C10)	μg/g	10	55	< 10		< 10		< 10
F2 (C10-C16)	μg/g	10	98	< 10		< 10		< 10
F3 (C16-C34)	μg/g	50	300	< 50		< 50		< 50
F4 (C34-C50)	μg/g	50	2800	< 50		< 50		< 50
Chromatogram returned to baseline at nC50	Yes / No	no		YES		YES		YES
VOC Surrogates								
Surr 2-Fluorobiphenyl	Surr Rec %	no				90	77	
Surr 4-Terphenyl-d14	Surr Rec %	no				81	69	
Surr 2-Methylnaphthalene-D10	Surr Rec %	no				84	75	
Surr Fluoranthene-D10	Surr Rec %	no				85	72	

SGS FINAL REPORT

Client: Grounded Engineering Inc.

Project: 24-095-202, 2555 Erin Centre Blvd

Project Manager: Jessie Wu

IATRIX: SOIL			Sample Number	10	11	12	13	14
ATTIX. GOIL			Sample Name	BH109 GS1	Dup 191	BH103 SS2	BH103 SS3	BH103 SS5
= REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkl	and - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Date	28/06/2024	28/06/2024	28/06/2024	28/06/2024	28/06/2024
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
HMs (VOC)								
Bromodichloromethane	μg/g	0.05	13			< 0.05		< 0.05
Bromoform	μg/g	0.05	0.27			< 0.05		< 0.05
Dibromochloromethane	μg/g	0.05	9.4			< 0.05		< 0.05
OC Surrogates								
Surr 1,2-Dichloroethane-d4	Surr Rec %	no				118		119
Surr 4-Bromofluorobenzene	Surr Rec %	no				92		93
Surr 2-Bromo-1-Chloropropane	Surr Rec %	no				89		88
OCs								
Acetone	μg/g	0.5	16			< 0.5		< 0.5
Bromomethane	μg/g	0.05	0.05			< 0.05		< 0.05
Carbon tetrachloride	μg/g	0.05	0.05			< 0.05		< 0.05
Chlorobenzene	μg/g	0.05	2.4			< 0.05		< 0.05
1,2-Dichlorobenzene	μg/g	0.05	3.4			< 0.05		< 0.05
1,3-Dichlorobenzene	μg/g	0.05	4.8			< 0.05		< 0.05
1,4-Dichlorobenzene	μg/g	0.05	0.083			< 0.05		< 0.05
Dichlorodifluoromethane	μg/g	0.05	16			< 0.05		< 0.05
1,1-Dichloroethane	μg/g	0.05	3.5			< 0.05		< 0.05
1,2-Dichloroethane	μg/g	0.05	0.05			< 0.05		< 0.05
1,1-Dichloroethylene	μg/g	0.05	0.05			< 0.05		< 0.05
trans-1,2-Dichloroethylene	μg/g	0.05	0.084			< 0.05		< 0.05
cis-1,2-Dichloroethylene	μg/g	0.05	3.4			< 0.05		< 0.05

Client: Grounded Engineering Inc.

Project: 24-095-202, 2555 Erin Centre Blvd

Project Manager: Jessie Wu

ATRIX: SOIL			Sample Number	10	11	12	13	14
			Sample Name	BH109 GS1	Dup 191	BH103 SS2	BH103 SS3	BH103 SS5
REG153 / SOIL / COARSE - TABLE 3 - Residential/F	Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Date	28/06/2024	28/06/2024	28/06/2024	28/06/2024	28/06/2024
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
OCs (continued)								
1,2-Dichloropropane	μg/g	0.05	0.05			< 0.05		< 0.05
cis-1,3-dichloropropene	μg/g	0.03				< 0.03		< 0.03
trans-1,3-dichloropropene	μg/g	0.03				< 0.03		< 0.03
1,3-dichloropropene (total)	μg/g	0.05	0.05			< 0.05		< 0.05
Ethylenedibromide	μg/g	0.05	0.05			< 0.05		< 0.05
n-Hexane	μg/g	0.05	2.8			< 0.05		< 0.05
Methyl ethyl ketone	μg/g	0.5	16			< 0.5		< 0.5
Methyl isobutyl ketone	μg/g	0.5	1.7			< 0.5		< 0.5
Methyl-t-butyl Ether	μg/g	0.05	0.75			< 0.05		< 0.05
Methylene Chloride	μg/g	0.05	0.1			< 0.05		< 0.05
Styrene	μg/g	0.05	0.7			< 0.05		< 0.05
Tetrachloroethylene	μg/g	0.05	0.28			< 0.05		< 0.05
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.058			< 0.05		< 0.05
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05			< 0.05		< 0.05
1,1,1-Trichloroethane	μg/g	0.05	0.38			< 0.05		< 0.05
1,1,2-Trichloroethane	μg/g	0.05	0.05			< 0.05		< 0.05
Trichloroethylene	μg/g	0.05	0.061			< 0.05		< 0.05
Trichlorofluoromethane	μg/g	0.05	4			< 0.05		< 0.05
Vinyl Chloride	μg/g	0.02	0.02			< 0.02		< 0.02
Chloroform	μg/g	0.05	0.05			< 0.05		< 0.05

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20240705 10 / 25

HOLDING TIME SUMMARY

Sample Name	Reference	Number	Sampled	Received	Prepared	Analysed	Time	Approved
Conductivity Method: EPA 6010/SM 2510 Internal ref.:	ME-CA-[ENV]	EWL-LAK-	AN-006					
BH109 GS1	NA	10	06/28/2024	06/28/2024	07/02/2024	07/03/2024	07/26/2024	07/03/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/02/2024	07/03/2024	07/26/2024	07/03/2024

06/28/2024

06/28/2024

06/28/2024

06/28/2024

06/28/2024

06/28/2024

07/02/2024

07/02/2024

07/02/2024

07/03/2024

07/03/2024

07/03/2024

07/26/2024

07/26/2024

07/26/2024

07/03/2024

07/03/2024

07/03/2024

Cyanide by SFA

BH103 SS2

BH103 SS3

BH103 SS5

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

BH109 GS1	NA	10	06/28/2024	06/28/2024	07/12/2024	07/04/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/12/2024	07/04/2024
BH103 SS2	SKA5006-JUL24	12	06/28/2024	06/28/2024	07/12/2024	07/04/2024
BH103 SS3	SKA5006-JUL24	13	06/28/2024	06/28/2024	07/12/2024	07/04/2024
BH103 SS5	NA	14	06/28/2024	06/28/2024	07/12/2024	07/04/2024

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

EWL0032-JUL24

EWL0032-JUL24

NA

12

13

14

BH109 GS1	NA	10	06/28/2024	06/28/2024	07/02/2024	07/03/2024	07/28/2024	07/04/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/02/2024	07/03/2024	07/28/2024	07/04/2024
BH103 SS2	SKA5005-JUL24	12	06/28/2024	06/28/2024	07/02/2024	07/03/2024	07/28/2024	07/04/2024
BH103 SS3	SKA5005-JUL24	13	06/28/2024	06/28/2024	07/02/2024	07/03/2024	07/28/2024	07/04/2024
BH103 SS5	NA	14	06/28/2024	06/28/2024	07/02/2024	07/03/2024	07/28/2024	07/04/2024

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

BH109 GS1	NA	10	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/26/2024	07/04/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/26/2024	07/04/2024
BH103 SS2	EMS0279-JUN24	12	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/26/2024	07/04/2024
BH103 SS3	EMS0279-JUN24	13	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/26/2024	07/04/2024
BH103 SS5	NA	14	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/26/2024	07/04/2024

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

BH109 GS1	NA	10	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024
BH103 SS2	ESG0005-JUL24	12	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024
BH103 SS3	ESG0005-JUL24	13	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024
BH103 SS5	NA	14	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

BH109 GS1	NA	10	06/28/2024	06/28/2024	07/03/2024	07/03/2024	12/25/2024	07/04/2024
20240705			11 / 25					

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Metals in Soil - Aqua-regia/ICF	P-MS (continued)							
Method: EPA 3050/EPA 200.8	Internal ref.: ME-CA-[ENV	/JSPE-LAK	K-AN-005					
Dup 191	NA	11	06/28/2024	06/28/2024	07/03/2024	07/03/2024	12/25/2024	07/04/2024
BH103 SS2	EMS0279-JUN24	12	06/28/2024	06/28/2024	07/03/2024	07/03/2024	12/25/2024	07/04/2024
BH103 SS3	EMS0279-JUN24	13	06/28/2024	06/28/2024	07/03/2024	07/03/2024	12/25/2024	07/04/2024
BH103 SS5	NA	14	06/28/2024	06/28/2024	07/03/2024	07/03/2024	12/25/2024	07/04/2024

Moisture

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

BH109 GS1	GCM0043-JUL24	10	06/28/2024	06/28/2024	08/27/2024	07/04/2024
Dup 191	GCM0043-JUL24	11	06/28/2024	06/28/2024	08/27/2024	07/04/2024
BH103 SS2	GCM0043-JUL24	12	06/28/2024	06/28/2024	08/27/2024	07/04/2024
BH103 SS3	GCM0043-JUL24	13	06/28/2024	06/28/2024	08/27/2024	07/04/2024
BH103 SS5	GCM0043-JUL24	14	06/28/2024	06/28/2024	08/27/2024	07/04/2024

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

BH109 GS1	GCM0026-JUL24	10	06/28/2024	06/28/2024	07/12/2024	07/04/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/12/2024	07/04/2024
BH103 SS2	GCM0026-JUL24	12	06/28/2024	06/28/2024	07/12/2024	07/04/2024
BH103 SS3	NA	13	06/28/2024	06/28/2024	07/12/2024	07/04/2024
BH103 SS5	GCM0026-JUL24	14	06/28/2024	06/28/2024	07/12/2024	07/04/2024

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

BH109 GS1	GCM0029-JUL24	10	06/28/2024	06/28/2024	07/12/2024	07/05/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/12/2024	07/05/2024
BH103 SS2	GCM0029-JUL24	12	06/28/2024	06/28/2024	08/07/2024	07/05/2024
BH103 SS3	NA	13	06/28/2024	06/28/2024	07/12/2024	07/05/2024
BH103 SS5	GCM0029-JUL24	14	06/28/2024	06/28/2024	07/12/2024	07/05/2024

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-001

BH109 GS1	NA	10	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/28/2024	07/03/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/28/2024	07/03/2024
BH103 SS2	ARD0008-JUL24	12	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/28/2024	07/03/2024
BH103 SS3	ARD0008-JUL24	13	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/28/2024	07/03/2024
BH103 SS5	NA	14	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/28/2024	07/03/2024

Polychlorinated Biphenyls

Method: EPA 3570/8082A/8270C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-001

BH109 GS1	GCM0031-JUL24	10	06/28/2024	06/28/2024	07/03/2024	07/05/2024	08/19/2025	07/05/2024
Dup 191	GCM0031-JUL24	11	06/28/2024	06/28/2024	07/03/2024	07/05/2024	08/19/2025	07/05/2024
			40 / 05					

20240705 12 / 25

HOLDING TIME SUMMARY

Sample Name	QC Batch	Sample	Sampled	Received	Extracted/	Analysed	Holding	Approved
	Reference	Number			Prepared		Time	
Polychlorinated Biphenyls (co	entinued)							
Method: EPA 3570/8082A/82	70C Internal ref.: ME-CA-	[ENV]GC-LA	AK-AN-001					
BH103 SS2	NA	12	06/28/2024	06/28/2024	07/03/2024	07/05/2024	08/19/2025	07/05/2024
BH103 SS3	NA	13	06/28/2024	06/28/2024	07/03/2024	07/05/2024	08/19/2025	07/05/2024

06/28/2024

14

06/28/2024

07/03/2024

07/05/2024

08/19/2025

07/05/2024

Semi-Volatile Organics

BH103 SS5

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

NA

BH109 GS1	NA	10	06/28/2024	06/28/2024	07/12/2024	07/05/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/12/2024	07/05/2024
BH103 SS2	GCM0033-JUL24	12	06/28/2024	06/28/2024	08/27/2024	07/05/2024
BH103 SS3	GCM0033-JUL24	13	06/28/2024	06/28/2024	08/27/2024	07/05/2024
BH103 SS5	NA	14	06/28/2024	06/28/2024	07/12/2024	07/05/2024

Sodium adsorption ratio (SAR)

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-[ENV]ARD-LAK-AN-021

BH109 GS1	10	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024
Dup 191	11	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024
BH103 SS2	12	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024
BH103 SS3	13	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024
BH103 SS5	14	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/03/2024

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

BH109 GS1	GCM0025-JUL24	10	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/12/2024	07/04/2024
Dup 191	NA	11	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/12/2024	07/04/2024
BH103 SS2	GCM0025-JUL24	12	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/12/2024	07/04/2024
BH103 SS3	NA	13	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/12/2024	07/04/2024
BH103 SS5	GCM0025-JUL24	14	06/28/2024	06/28/2024	07/03/2024	07/03/2024	07/12/2024	07/04/2024

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

BH109 GS1		10	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/02/2024
Dup 191		11	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/02/2024
BH103 SS2	ESG0002-JUL24	12	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/02/2024
BH103 SS3	ESG0002-JUL24	13	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/02/2024
BH103 SS5		14	06/28/2024	06/28/2024	07/02/2024	07/02/2024	12/25/2024	07/02/2024

20240705 13 / 25

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0032-JUL24	mS/cm	0.002	<0.002	2	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Free Cyanide	SKA5006-JUL24	μg/g	0.05	<0.05	ND	20	95	80	120	88	75	125

Hexavalent Chromium by SFA

Method: FPA218.6/FPA3060A | Internal ref.: MF-CA-IFNVISKA-I AK-AN-012

Motifod. El 7/2 10.0/El 7/0000/1 Intomario	III WE ON TENVIOR	34(74(4))2										
Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC (0)	Spike	Recover		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5005-JUL24	ug/g	0.2	<0.2	ND	20	84	80	120	84	75	125

20240705 14 / 25

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank		М	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (9)	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0279-JUN24	ug/g	0.05	<0.05	ND	20	103	80	120	106	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike	Recover	•	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0005-JUL24	mg/L	0.2	<0.2	0	20	108	80	120	93	70	130
SAR Magnesium	ESG0005-JUL24	mg/L	0.3	<0.3	1	20	109	80	120	95	70	130
SAR Sodium	ESG0005-JUL24	mg/L	0.1	<0.1	2	20	109	80	120	95	70	130

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
Silver	EMS0279-JUN24	ug/g	0.05	<0.05	ND	20	106	70	130	107	70	130
Arsenic	EMS0279-JUN24	μg/g	0.5	<0.5	6	20	98	70	130	93	70	130
Barium	EMS0279-JUN24	ug/g	0.1	<0.1	14	20	98	70	130	88	70	130
Beryllium	EMS0279-JUN24	μg/g	0.02	<0.02	4	20	94	70	130	109	70	130
Boron	EMS0279-JUN24	μg/g	1	<1	7	20	93	70	130	102	70	130
Cadmium	EMS0279-JUN24	ug/g	0.05	<0.05	ND	20	95	70	130	105	70	130
Cobalt	EMS0279-JUN24	μg/g	0.01	<0.01	0	20	99	70	130	106	70	130
Chromium	EMS0279-JUN24	μg/g	0.5	<0.5	3	20	99	70	130	98	70	130
Copper	EMS0279-JUN24	μg/g	0.1	<0.1	4	20	96	70	130	102	70	130
Molybdenum	EMS0279-JUN24	μg/g	0.1	<0.1	13	20	100	70	130	107	70	130
Nickel	EMS0279-JUN24	ug/g	0.5	<0.5	0	20	102	70	130	103	70	130
Lead	EMS0279-JUN24	μg/g	0.1	<0.1	1	20	98	70	130	109	70	130
Antimony	EMS0279-JUN24	μg/g	0.8	<0.8	ND	20	102	70	130	76	70	130
Selenium	EMS0279-JUN24	ug/g	0.1	<0.1	8	20	101	70	130	97	70	130
Thallium	EMS0279-JUN24	μg/g	0.02	<0.02	7	20	NV	70	130	120	70	130
Uranium	EMS0279-JUN24	μg/g	0.002	<0.002	10	20	98	70	130	98	70	130
Vanadium	EMS0279-JUN24	μg/g	3	<3	14	20	102	70	130	96	70	130
Zinc	EMS0279-JUN24	μg/g	0.7	<0.7	3	20	98	70	130	98	70	130

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (W)	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
F1 (C6-C10)	GCM0026-JUL24	μg/g	10	<10	ND	30	94	80	120	82	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ма	atrix Spike / Ref	:
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0029-JUL24	μg/g	10	<10	ND	30	113	80	120	112	60	140
F3 (C16-C34)	GCM0029-JUL24	μg/g	50	<50	ND	30	113	80	120	112	60	140
F4 (C34-C50)	GCM0029-JUL24	μg/g	50	<50	ND	30	113	80	120	112	60	140

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	CS/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0008-JUL24	pH Units	0.05		0	20	100	80	120			

Polychlorinated Biphenyls

Method: EPA 3570/8082A/8270C | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0031-JUL24	μg/g	0.3	< 0.3	ND	40	79	60	140	75	60	140
Total												

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	105	50	140	63	50	140
2-Methylnaphthalene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	105	50	140	65	50	140
Acenaphthene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	107	50	140	66	50	140
Acenaphthylene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	102	50	140	64	50	140
Anthracene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	102	50	140	64	50	140
Benzo(a)anthracene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	99	50	140	64	50	140
Benzo(a)pyrene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	100	50	140	64	50	140
Benzo(b+j)fluoranthene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	100	50	140	62	50	140
Benzo(ghi)perylene	GCM0033-JUL24	μg/g	0.1	< 0.1	ND	40	93	50	140	58	50	140
Benzo(k)fluoranthene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	100	50	140	64	50	140
Chrysene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	98	50	140	60	50	140
Dibenzo(a,h)anthracene	GCM0033-JUL24	μg/g	0.06	< 0.06	ND	40	98	50	140	64	50	140
Fluoranthene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	104	50	140	64	50	140
Fluorene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	105	50	140	65	50	140
Indeno(1,2,3-cd)pyrene	GCM0033-JUL24	μg/g	0.1	< 0.1	ND	40	100	50	140	64	50	140
Naphthalene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	101	50	140	63	50	140
Phenanthrene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	102	50	140	63	50	140
Pyrene	GCM0033-JUL24	μg/g	0.05	< 0.05	ND	40	98	50	140	60	50	140

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	100	60	130	93	50	140
1,1,1-Trichloroethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	99	60	130	103	50	140
1,1,2,2-Tetrachloroethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	98	60	130	67	50	140
1,1,2-Trichloroethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	100	60	130	89	50	140
1,1-Dichloroethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	100	60	130	93	50	140
1,1-Dichloroethylene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	100	60	130	101	50	140
1,2-Dichlorobenzene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	102	60	130	92	50	140
1,2-Dichloroethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	99	60	130	102	50	140
1,2-Dichloropropane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	100	60	130	85	50	140
1,3-Dichlorobenzene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	101	60	130	92	50	140
1,4-Dichlorobenzene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	101	60	130	92	50	140
Acetone	GCM0025-JUL24	μg/g	0.5	< 0.5	ND	50	101	50	140	100	50	140
Benzene	GCM0025-JUL24	μg/g	0.02	< 0.02	ND	50	100	60	130	90	50	140
Bromodichloromethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	101	60	130	96	50	140
Bromoform	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	101	60	130	91	50	140
Bromomethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	103	50	140	99	50	140
Carbon tetrachloride	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	101	60	130	107	50	140
Chlorobenzene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	99	60	130	89	50	140
Chloroform	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	101	60	130	100	50	140
cis-1,2-Dichloroethylene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	99	60	130	87	50	140

20 / 25

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(1.5)	(%)	Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0025-JUL24	μg/g	0.03	< 0.03	ND	50	104	60	130	88	50	140
Dibromochloromethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	102	60	130	94	50	140
Dichlorodifluoromethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	96	50	140	85	50	140
Ethylbenzene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	100	60	130	91	50	140
Ethylenedibromide	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	99	60	130	88	50	140
n-Hexane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	97	60	130	75	50	140
m/p-xylene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	99	60	130	89	50	140
Methyl ethyl ketone	GCM0025-JUL24	μg/g	0.5	< 0.5	ND	50	102	50	140	89	50	140
Methyl isobutyl ketone	GCM0025-JUL24	μg/g	0.5	< 0.5	ND	50	106	50	140	93	50	140
Methyl-t-butyl Ether	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	103	60	130	105	50	140
Methylene Chloride	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	99	60	130	97	50	140
o-xylene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	97	60	130	87	50	140
Styrene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	101	60	130	89	50	140
Tetrachloroethylene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	100	60	130	90	50	140
Toluene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	99	60	130	89	50	140
trans-1,2-Dichloroethylene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	101	60	130	99	50	140
trans-1,3-dichloropropene	GCM0025-JUL24	μg/g	0.03	< 0.03	ND	50	102	60	130	87	50	140
Trichloroethylene	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	102	60	130	103	50	140
Trichlorofluoromethane	GCM0025-JUL24	μg/g	0.05	< 0.05	ND	50	102	50	140	143	50	140
Vinyl Chloride	GCM0025-JUL24	μg/g	0.02	< 0.02	ND	50	101	50	140	86	50	140

20240705 21 / 25

CA40206-JUN24 R1

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	ſ.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0002-JUL24	μg/g	0.5	<0.5	ND	20	107	80	120	109	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20240705 22 / 25

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte

ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20240705 23 / 25

Request for Laboratory Services and CHAIN OF CUSTODY

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment -London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

No: 038528

Date: 6 / 26 / 24 / mm/dd/yy) Pink Copy - Client Date: 6 / 28 / 24 / mm/dd/yy) Yellow & White Copy - SGs samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in	y) y) s may appear on the	(mm/dd/yy) (mm/dd/yy) of work. Signatures	for completion of	authorization	onsidered a	Date: Date:	nples to	sion of sai	} Submis	imples. {2	ation of sa	transports	edion/fiandling and	33	Signature: Signature:	Signature: Signature: Signature:	C C C C C C C C C C C C C C C C C C C	Sampled By (NAME): SUMMAN N Relinquished by (NAME): SUMMAN STATE OF THE SECOND STATE O	Sampled By (
																		Observations/Comments/Special Instructions	Observa
																			11
																			10
							2.5									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			9
																			8
																		100	7
						- `	×	×				国政		<	S	9:30	<	BH 103885	6
											×		×		3	9:00		34103553	5
				(8	2	1	1		1	1	9	1	1	Q	22	12	popular	4
)	-	×	X)	×	1	×		7	20:05	11	34103552	ω
								-	×					2	1	9.30	23/6/24	Dup 191	2
								×	×					5	4	9:30	23/6/24	Bi-109 (951	1
	OCP B(a)P				Pesticides Organochlorine or spe	all incl BTEX BTEX only	F1-F4 only no BTEX VOCs	F1-F4 + BTE	PCBs Tota	SVOCs all incl PAHs, ABNs, CP	Cr,Co,Cu,Pb,Mo,Ni,Se,A	Full Metals S ICP metals plus B(HWS	Metals & Ino Incl CrVI, CN, Hg pH, (B) (CI, Na-water)	MATRIX	# OF BOTTLES	TIME	DATE	SAMPLE IDENTIFICATION	
	-	Extende			cify oth			X	al 🗸	s	vg,TI,U,V	nly s	rgai HWS),E			NO	NYES [RECORD OF SITE CONDITION (RSC)	
COMMENTS:	-	ed _			ier				(,Zn	b,As,B	nics C,SAR		See note	ODWS Not Reportable *See note	ODWS Not	olume V <350	Soi
	Specify Specify tests Tuestale Trues	Total Service							Aroclor			Seath Land Land	W.C. TANAMATON TO	Sanuary Storm Municipality:		Reg 34//558 (3 Day min 1A1) PWQO MMER CCME Other: MISA	PWQO CCME MISA	le 1	Table 1 Table 2 Table 3
	SPLP TCLP	(please specify)	Other (please	-0	Pest	VOC		PHC	PCB	SVOC	18		M Qo	Sewer By-Law:		ations:	Other Regulations:	153/04	O.Reg
					REQUESTED	REC	SIS	ANALYSIS	A	10000							REGULATIONS	REGU	
*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	N CONSUMPTION OF CUSTODY	WATER CHAIN	S DRINKING	WITH SG	NG (POT	DRINKII	NOTE:	-				ıte:	Specify Due Date:	S			Email:	WHO ground wong.ca	Email:
		SION	WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	PRIOR T	TATIVE	RESEN	SREPF	WITH SGS		ASIBIL	JSH FE	IRM RL	PLEASE CONFIRM RUSH FEASIBILITY	0 2			Phone:		Phone: Fax:
Samples received after 6pm or on weekends: TAT begins next business day	eekends: TAT b	fler 6pm or on w	s received af	Sample		Day		•	Appl	/s)	(5-7da)	lar TAT	Regular TAT (5-7days)				Address:	n 163	100
holidays & weekends)	exclude statuton	hieinaes dave (TURNAROUND TIME (TAT) REQUIRED	E (TAT)	ND TIM	AROU	TURN										Contact:	1 Banisan dr	Address:
(entre Bh.	mit 3	2565	Site Location/ID:	Site Lo					1	201	51	-095	Project #: 24	D C	nation)	Report Inform	Company:	ressie Min Full Diens	Compan Contact:
			*												ORMATION	NVOICE INFORMATION	1	REPORT INFORMATION	
Son Coult	Mo#: Ci II	LAB LI				r	O	OX.	(°C)	Receipt	e Upon	Temperature Upon Receipt ("C)	Te	Yes No	al Intact:	Custody Seal Intact:		Time: 14:00 (hr:min)	Received Time:
CAUNTAL LINE	CAUC				IC	4	Type	3 🗆		ent: Yes	nt Prese	Cooling Agent Present:	Co	Q.	Ħ.	Custody Seal Present:		06 28	Received Date:
					i			oniy	n asn	- Lau	ction	tion of	Laboratory Information Section - Lab use	Laborat	(signature):	Received By (signature		Teimy lad	Received By:

Request for Laboratory Services and CHAIN OF CUSTODY

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-200 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-45

No:

7	- Condon Con Consolidati Court Forder, City 1105 200 1 100	
クキの	Laboratory Information	Laboratory Information Section - Lab use only
eived Time:	Custody Seal Present: Custody Seal Intact:	Cooling Agent Present: Temperature Upon Receipt (°C) 7 Cx 2 LAB LIMS #: 40 206 - JUN 24
REPORT INFORMATION	INVOICE INFORMATION	PROJECT INFORMATION
npany: Grounded Engineering	(same as Report Information)	Quotation 2 ^t P.O. #:
itact: Tessic Wu	Company:	Project # 24-045 Site Location/ID: 2555 Eglington AV. W. Mississuper
1 Banigan	Contact:	TURNAROUND TIME (TAT) REQUIRED
	Address:	Ragular TAT (5-7days) TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day
one: 647-264-7909		RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days
all: IWU @ 9Toundedeng, [a]	Phone:	H SGS REPRESENTATIVE PRIOR TO
	Email:	Specify Due Date: Rush Confirmation ID:
	REGULATIONS	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY
gulation 153/04:	Other Regulations: Sewer By-Law:	ANALYSIS REQUESTED
Table 1 R/P/I Soil Texture: Table 2 I/C/C Coarse Table 3 A/O Medium	Day min TAT) IMER Ither:	SVOC(all) Oclor VOC 1 F2-F4 THM OP C PCB Ignit. Y
RECORD OF SITE CONDIT	YES NO	Arrivation of the control of the con
SAMPLE IDENTIFICATION	DATE TIME # OF SAMPLED SAMPLED BOTTLES MATRIX	Field Filtere Metals & Inc PAH AB PCB Total D PHC F1-F4 BTEX BT VOC B Pesticides TCLP M&I B(a)P AC Water Pkg Sewer Use: Soil Corro
BHIOY ETS!	28/6/24 10:00 1 5	
Typ 191	1816124 10:00 7	
		DE Addition to
servations/Comments/Special Instructions	0131	
mpled By (NAME): MAJUN Bhugat	Signature:	Date: 06 18 8 124 (mm/dd/yy) Pink Copy - Client
E	Signature:	Date: 07/03/24 (mm/dd/yy) Yellow & White Copy - SGS
	,	

e of Issue: 04 April, 2018

CA40201-JUN24 R

24-095-202

Prepared for

Grounded Engineering Inc.

First Pa. e

CLIENT DETAILS	S	LABORATORY DETAIL	S
Client	Grounded En. ineerin. Inc2	Project Specialist	, aarit g olfev Monæ&c
		Laboratory	SGS Canada Inc2
Address	@Bani. an DriKe	Address	@) Concession St2/La8efield ONvk0L 5M0
	TorontovOntario		
	. 4M @E9vCanada		
Contact	Wessie g u	Telephone	H0) -7) 5-5000
Telephone	74H-574-H909	Facsimile	H0) -7) 5-767)
Facsimile		Email	, aarit2g olfe3 s. s2com
Email	jwu3 . roundeden. 2ca	SGS Reference	CA4050@WUN54
Project	54-09) -505	ReceiKed	07/5H/5054
Order Number		ApproKed	0H/04/5054
Samples	Soil (5) J	Report Number	CA4050@WUN54 R
		Date Reported	0H/04/5054

CO, , ENTS

CC, E, ethod Compliance: Analyses were conducted usin. analytical procedures that comply with the Reference, ethod for the Cg S for Petroleum Mydrocarbons in Soil and hake been Kalidated for use at the SGS laboratoryvLa8efieldvON site2

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holdin. times were met2

nC7 and nC@ response factors within 60% of response factor for toluene: YES

nC@vnC@ and nC64 response factors within @% of the aKera. e response for the three compounds: YES

C) 0 response factors within H0% of nC@ + nC@ + nC64 aKera. e: YES

Linearity is within @%: YES

F4G - . rakimetric heakly hydrocarbons cannot be added to the C7 to C) 0 hydrocarbons2

The results for F4 and F4G are both reported and the . reater of the two Kalues is to be used in application to the Cg S PMC2

Mydrocarbon results are expressed on a dry wei. ht basis2

Benzo(b.fluoranthene results for comparison to the standard are reported as benzo(b+j.fluoranthene Benzo(b.fluoranthene and benzo(j.fluoranthene co-elute and cannot be reported indiKidually by the analytical method used2

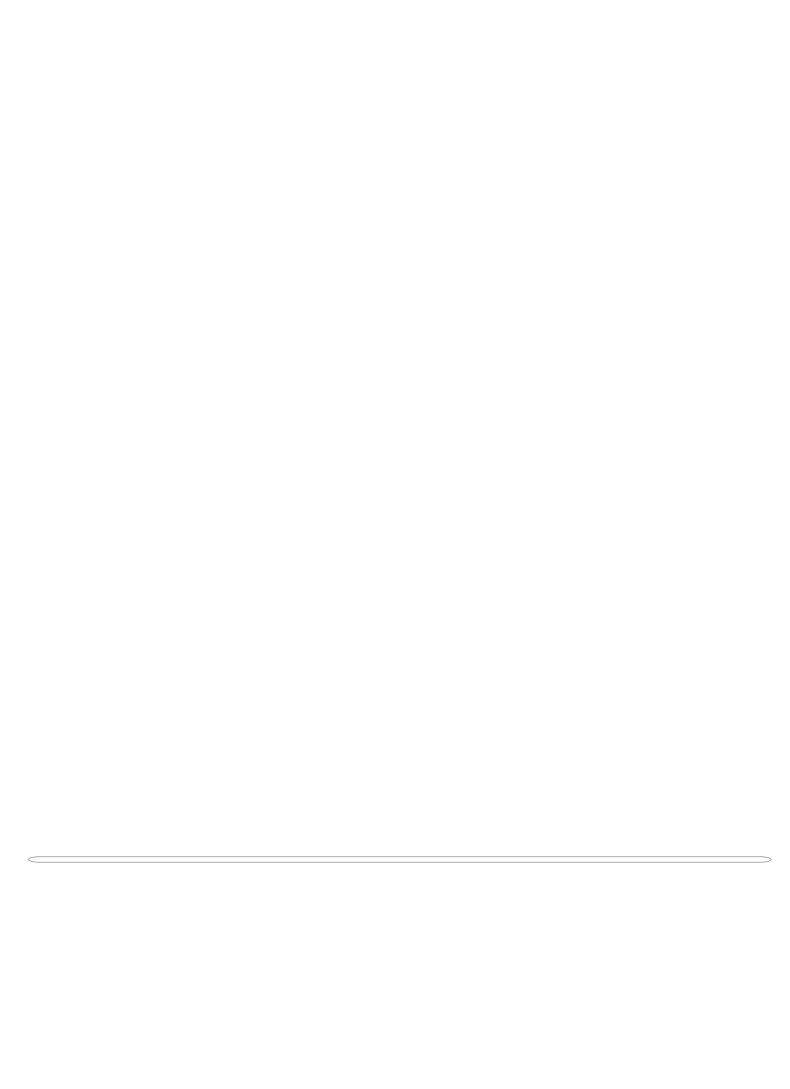
Temperature of Sample upon Receipt: 9 de. rees C

Coolin. A. ent Present:Yes

Custody Seal Present:Yes

Chain of Custody Number:0690H9/061) 54/061) 5)

Trichlorofluoromethane, atrix Spi8e; RecoKery is outside control limits; the oKerall quality control for this analysis has been assessed and was determined to be acceptable2


SIGNATORIES

Maarit Wolfe, Hon.B.Sc

emoye

t H0) -7) 5-5000 f H0) -7) 5-767)

www2s. s2com

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-25
Exceedance Summary	26
Holding Time Summary	27-36
QC Summary	37-47
Legend	48
Annexes	49-51