

HYDROGEOLOGICAL PREPARED FOR: **REVIEW REPORT**

Edenshaw Elizabeth Development Limited 129 Lakeshore Rd. E., Suite 201, 2nd Floor Mississauga, ON L5G1E5

ATTENTION:

Mr. Oscar Piovesan

File No. 20-088

ISSUED July 15, 2020

23 Elizabeth St. N., 42 to 46 Park St. E. | Mississauga, Ontario

EXECUTIVE SUMMARY

Grounded Engineering Inc. (Grounded) was retained by Edenshaw Elizabeth Developments Limited to conduct a Hydrogeological Review for the proposed redevelopment of 23 Elizabeth St. N., 42 to 46 Park St. E. in Toronto, Ontario (Site). The conclusions of the investigation are summarized as follows:

Development Information

Current Development		
Existing Buildings/Features	Above Grade Levels	Use
23 Elizabeth St. N	2	
42 Park St. E.	2	Desidential Duilding
44 Park St. E.	2	Residential Building
46 Park St. E.	2	

Proposed Development					
			Belov	v Grade Levels	
Proposed Buildings/Features	Above Grade Levels		Lowest F	Approximate	
		Level #	Depth (m)	Elevation (masl)	Base of Excavation (masl)
High-Rise Residential Tower	22	6	20±	61±	60.5

Site Conditions

Site Stratigraphy					
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Calculation Method	Hydraulic Conductivity (m/s)
Earth Fill	Aquifer	0 to 1.1	83.5 to 80.3	Published Values*	1 x 10 ⁻⁶
Silty Sand	Aquifer	0.8 to 7.6	82.7 to 75.9	Published Values*	1 x 10 ⁻⁷
Silty Clay (Glacial Till)	Aquitard	3.0 to 7.6	78.2 to 75.7	Slug Test	3.1 x 10 ⁻⁸
Silty Sand to Sandy Silt (Glacial Till)	Aquitard	4.6 to 8.7	76.6 to 72.9	Slug Test	9.39 x 10 ⁻⁸
Georgian Bay Shale (Bedrock)	Aquitard	9.1 and below	74.2 and below	Slug Test	3.20 x 10 ⁻⁷

^{*} Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979) or the Toronto Region Conservation Authority (TRCA)

File No. 20-088 Page i

Maximum Groundwater Elevation						
Consultant	Monitoring Well ID	Depth Below Grade (m)	Elevation (masl)			
	BH1	4.8	76.3			
Grounded Engineering	BH2	4.9	76.5			
Grounded Engineering	BH3	3.3	80.2			
	BH4	2.9	80.5			

NA – Monitoring wells could not be located or monitored

Groundwater Quality			
Sample ID	Sample Date	City of Mississauga Storm Sewer Limits	Region of Peel Sanitary Sewer Limits
SW-UF-BH1	June 12, 2020	Exceeds	Exceeds

Groundwater Control

Stored Groundwater (pre-excavation/dewatering)						
Proposed Development	Volume of Excavation (m³)	Volume of Excavation Below Water Table (m³)	Volume of Storage Groundwater (m³)	Volume of Storage Groundwater (L)		
P6-Underground	36,736	35,840	10,752	46,592		

Short Term (Construction) Groundwater Quantity – Safety Factor of 1.5 Used						
Proposed	Ground Wa	Ground Water Seepage Design Rainfall Event (25mm) Total Daily Wa			ater Takings	
Development	L/day	L/min	L/day	L/min	L/day	L/min
P6-Underground	42,000	29.2	46,000	31.9	88,000	61.1

Long Term (Permanent) Groundwater Quantity – Safety Factor of 1.5 Used						
Proposed Development	Ground Water Seepage		Infiltration Design Rainfall Event (25mm)		Total Daily Water Takings	
Development	L/day	L/min	L/day	L/min	L/day	L/min
P6 – Underground	42,000	29.2	2,000	1.4	44,000	30.6

Zone of Influence				
Zone of Influence (m)	Potential Settlement (mm)			
±7	11 – edge of the excavation			

File No. 20-088 Page ii

Regulatory Requirements	P6-Underground
Environmental Activity and Sector Registry (EASR) Posting	Required
Short Term Permit to Take Water (PTTW)	Not Required
Long Term Permit to Take Water (PTTW)	Not Required
Short Term Discharge Agreement City of Mississauga/Region of Peel	Required
Long Term Discharge Agreement City of Mississauga/Region of Peel	Required

File No. 20-088 Page iii

TABLE OF CONTENTS

1	INTRODUCTION1							
2	STUDY AREA MAP							
3	GEOLOGY A	GEOLOGY AND PHYSICAL HYDROGEOLOGY						
4	MONITORII	NG WELL INFORMATION	4					
5	GROUND W	/ATER ELEVATIONS	4					
6	AQUIFER T	ESTING	4					
	6.1 SING	LE WELL RESPONSE TEST (SLUG TEST)	4					
		GRAIN SIZE DISTRIBUTION						
		RATURE						
7	WATER QU	ALITY	6					
8	PROPOSED	CONSTRUCTION METHOD	6					
9	PRIVATE W	/ATER DRAINAGE SYSTEM (PWDS)	6					
10	GROUNDW	ATER EXTRACTION AND DISCHARGE	7					
11	EVALUATIO	ON OF IMPACT	9					
	11.1	Zone of Influence (ZOI)	9					
	11.2	LAND STABILITY	10					
	11.3	CITY'S SEWAGE WORKS	10					
	11.4	Natural Environment	10					
	11.5	LOCAL DRINKING WATER WELLS	11					
	11.6	CONTAMINATION SOURCE	11					
12	PROPOSED MITIGATION MEASURES AND MONITORING PLAN1							
13	LIMITATIO	NS	11					
	13.1	REPORT USE	12					
14	CLOSURE		12					

FIGURES

Figure 1 - Study Area Map

Figure 2 - Borehole and Monitoring Well Location Plan

Figure 3 - Hydrological Cross-section

APPENDICES

Appendix A – Borehole Logs

Appendix B - Grain Size Analysis and HydrogeoSieve XL Data

Appendix C - Water Level

Appendix D – Aquifer Response Tests

Appendix E – Finite Element Model

Appendix F - Laboratory Certificate of Analysis

File No. 20-088 Page v

1 Introduction

Edenshaw Elizabeth Developments Limited has retained Grounded Engineering Inc. ("Grounded") to provide geotechnical engineering design advice for their proposed development at 23 Elizabeth St. N., 42 to 46 Park St. E., L5G 2Z4, in Mississauga, Ontario.

Property Information	
Location of Property	23 Elizabeth St. N., 42 to 46 Park St. E.
Ownership of Property	Private individuals and Edenshaw Elizabeth Developments Limited
Property Dimensions (m)	Approximately 34 m EW x 53 NS
Property Area (m²)	1,792.1 m ²

Existing Development	
Number of Building Structures	4 residential buildings (with two garages and two sheds)
Number of Above Grade Levels	2 (each building has 2-storey)
Number of Underground Levels	1 (each building has a basement)
Sub-Grade Depth of Development (m)	~3 ±m
Sub-Grade Area (m²)	N/A
Land Use Classification	Residential

Proposed Development				
Number of Building Structures	1			
Number of Above Grade Levels	22 above grade levels			
Number of Underground Levels	Proposed 6 underground levels			
Sub-Grade Depth of Development (m)	P6 - 20± m			
Sub-Grade Area (m²)	~1,792.1 m ²			
Land Use Classification	Residential			
Qualified Person and Hydrogeological	Qualified Person and Hydrogeological Review Information			

File No. 20-088

Proposed Development	
Qualified Person	Mat Bielaski, P.Eng. QP _{RA-ESA}
Consulting Firm	Grounded Engineering Inc.
Date of Hydrogeological Review	July 15, 2020
	Review of MECP Water Well Records for the area
	Review of geological information for the areaReview of topographic information for the area
	 Advancement of 4 borehole to depths ranging from a maximum depth 8.6 - 23.2 m, which were instrumented with monitoring wells
0 (W.)	 Completion of slug tests in all installed monitoring wells
Scope of Work	 Ground water elevation monitoring once after drilling and once at least three months after to capture seasonal fluctuations
	 Ground water sampling and analysis to the City of Mississauga and Region of Peel Sewer Use Limits
	 Assessment of ground water controls and potential impacts
	 Report preparation in accordance with Ontario Water Resources Act, Ontario Regulation 387/04 and Toronto Municipal Code Chapter 681

General Hydrogeological Characterization			
Property Topography	The site has an approximate ground surface elevation of 83 to 81± masl (north to south).		
Local Physiographic Features	The site is composed of silty sand to silty clay till and sandy silt till deposits.		
Regional Physiographic Features	The West St Lawrence Lowland consists of a limestone plain (elevation 200–250 masl) that is separated by a broad, shale lowland from a broader dolomite and limestone plateau west of Lake Ontario. This plateau is bounded by the Niagara Escarpment. From the escarpment the plateau slopes gently southwest to lakes Huron and Erie (elevation 173 masl). Glaciation has mantled this region with several layers of glacial till (i.e., an unsorted mixture of clay, sand, etc.), the youngest forming extensive, undulating till plains, often enclosing rolling drumlin fields.		
Surface Drainage	Surface water is expected to flow to the catch basins on Park Street East located adjacent to the south of the Site.		

File No. 20-088

2 Study Area Map

A map has been enclosed which shows the following information:

- All monitoring wells identified on-site
- All monitoring wells identified off-site within the study area
- All boreholes identified on-site
- All buildings identified on Site and within the study area
- The property boundaries of the Site
- Any watercourses and drainage features within the study area.

3 Geology and Physical Hydrogeology

The Site stratigraphy, including soil materials, composition and texture are presented in detail on the borehole logs provided in Appendix A. A summary of stratigraphic units that were encountered at the Site are as follows:

Site Stratigraphy					
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Calculation Method	Hydraulic Conductivity (m/s)
Earth Fill	Aquifer	0 to 1.1	83.5 to 80.3	Published Values*	1 x 10 ⁻⁶
Silty Sand	Aquifer	0.8 to 7.6	82.7 to 75.9	Published Values*	1 x 10 ⁻⁷
Silty Clay (Glacial Till)	Aquitard	3.0 to 7.6	78.2 to 75.7	Slug Test	3.1 x 10 ⁻⁸
Silty Sand to Sandy Silt (Glacial Till)	Aquitard	4.6 to 8.7	76.6 to 72.9	Slug Test	9.39 x 10 ⁻⁸

^{*} Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979) or the Toronto Region Conservation Authority (TRCA)

Bedrock			
Stratum	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Weathered	9.1 to 10.4	74.2 to 70.8	3.20 x 10 ^{-7**}
Sound	Below 10.4	Below 70.8	3.20 x 10 ^{-7**}

^{**}Indicates conductivity was calculated by pump test/slug test

File No. 20-088 Page iii

Surface Water		
Surface Water Body	Distance from site (m)	Hydraulically Connected to Property (yes/no)
Marry Fix Creek	150 m west	no

4 Monitoring Well Information

Consultant	Well ID	Well Dia (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit
 Grounded	BH1	50.8	81.2	61.0	58.0	Bedrock
	BH2	50.8	81.4	75.9	72.9	Glacial Till (Silty Clay to Sandy Silt)
Engineering	ВН3	50.8	83.5	77.8	74.8	Silty Sand to Glacial Till (Sandy Silt)
	BH4	50.8	83.3	77.7	74.7	Silty Sand to Glacial Till (Silty Clay to Silty Sand)

5 Ground Water Elevations

Groundwater monitoring events were conducted in June, 2020 by Grounded Engineering. A total of four (4) monitoring events were conducted and are presented in Appendix C.

For design purposes, the ground water level at the site is taken at Elev. 80.5± m which accounts for the natural elevation of the water table. Adjacent building drains or dewatering systems and seasonal fluctuations may cause significant changes to the depth of the ground water table over time.

6 Aquifer Testing

6.1 Single Well Response Test (Slug Test)

The hydraulic conductivities from the monitoring wells were determined based on slug tests (single-well response tests). These tests involve rapid removal of water or addition of a "slug" which displaces a known volume of water from a single well, and then monitoring the water level in the well until it recovers. The results of the slug tests were analyzed for all three monitoring wells (BH1 to BH4) using the Hyorslev method (1951).

The hydraulic properties of the strata applicable to the site are as follows:

File No. 20-088 Page iv

Well ID	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)
BH1	61.0-58.0	Bedrock	3.20 x 10 ⁻⁷
BH2	75.9-72.9	Glacial Till (Silty Clay to Sandy Silt)	9.39 x 10 ⁻⁸
BH3	77.8-74.8	Silty Sand to Glacial Till (Sand Silt)	7.21 x 10 ⁻⁹
BH4	77.7-74.7	Glacial Till (Silty Clay to Silty Sand)	3.10 x 10 ⁻⁸

6.2 Soil Grain Size Distribution

The hydraulic conductivities of various soil types can also be estimated from grain size analyses. An assessment of the grain sizes was conducted using the excel-based tool, HydrogeoSieve XL (HydrogeoSieve XL ver.2.2, J.F. Devlin, University of Kansas, 2015). HydrogeoSieve XL compares the results of the grain size analyses against fifteen (15) different analytical methods.

Given our experience in the area as well as published literature, some of the geometric means provided for the soil were biased low by one or more methods. In these instances, the values determined by these methods were excluded from the mean. The table below illustrates the hydraulic conductivity values estimated from the mean of the analytical methods where the soil met the applicable analysis criteria. The result of the analysis is also presented in Appendix B.

Sample ID	Soil Description	Applicable Analysis Methods	Hydraulic Conductivity (m/s)
BH1 SS6	Glacial Till (Silty Sand)	Sauerbrei, Barr, Alyamani and Sen, Krumbein and Monk	1.0 x 10 ⁻⁷
BH2 SS7	Glacial Till (Sandy Silt)	Sauerbrei, Barr, Alyamani and Sen	8.1 x 10 ⁻⁹
BH4 SS8	Glacial Till (Silty Sand)	Sauerbrei, Barr, Alyamani and Sen, Krumbein and Monk	6.5 x 10 ⁻⁸

6.3 Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Stratum/Formation	Hydraulic Conductivity(m/s)	
Earth Fill	10 ⁻⁴ to 10 ⁻⁸	
Silty Sand	10 ⁻³ to 10 ⁻⁷	
Glacial Till (Silty Clay)	10 ⁻⁷ to 10 ⁻¹⁰	
Glacial Till (Silty Sand to Sandy Silt)	10 ⁻⁵ to 10 ⁻¹⁰	
Bedrock (Georgian Bay Formation)	10 ⁻³ to 10 ⁻⁸	

File No. 20-088

7 Water Quality

One (1) unfiltered ground water sample was collected and analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and or Canadian Association for Laboratory Accreditation.

The sample was collected directly from monitoring well BH1 on June 12, 2020. The sample was analyzed for the following parameters:

- City of Mississauga Storm Sewer By-Law 259-05 Limits for Storm Sewers Discharge
- Region of Peel By-Law 53-2010 Table 1 Limits for Sanitary Sewer Discharge

The ground water sample exceeded the Limits for Storm Sewer Discharge for the following parameters:

- Total Suspended Solids (Limit 15 mg/L, Result 261 mg/L)
- Total Kjeldahl Nitrogen (Limit 1 mg/L, Result 22.9 mg/L)
- Aluminum (Limit 1 mg/L, Result 2.1 mg/L)
- Manganese (Limit 0.05 mg/L, Result 5.15 mg/L)
- Phosphorus (Limit 0.4 mg/L, Result 0.5 mg/L)
- Zinc (Limit 0.04 mg/L, Result <0.2 mg/L)

The ground water sample exceed the Limits for Sanitary Sewer Discharge for the following parameters:

Manganese (Limit 5 mg/L, Result 5.15 mg/L)

A true copy of the analysis report, Certificate of Analysis and a chain of custody record for the sample are enclosed.

8 Proposed Construction Method

The proposed shoring at the site is likely consist of conventional soldier piling and lagging.

9 Private Water Drainage System (PWDS)

If the proposed development is not a leak tight structure, then a private water drainage system will be required. The total sub floor drain area will be approximately 1,792 m² based on the drawings which have been provided by IBI Group Architects.

If the development is designed with a private water drainage system, the drainage system is a critical structural element, since it keeps water pressure from acting on the basement walls and floor slab. As such, the sump that ensures the performance of this system must have a duplexed pump arrangement for 100% pumping redundancy and these pumps must be on emergency power. The size of the sump should be adequate to accommodate the estimated groundwater

File No. 20-088 Page vi

seepage. It is anticipated that the groundwater seepage can be controlled with typical, widely available, commercial/residential sump pumps.

If the proposed development is designed as a leak tight structure, then a private water drainage system will not be required. However, the structure must then be designed to resist hydrostatic pressure and uplift forces.

10 Groundwater Extraction and Discharge

Numerical analyses were conducted for both short-term and long-term dewatering scenarios. The modeling was conducted using computer software, which deploys the finite element modelling method. The Finite Element Model (FEM) for groundwater seepage indicates the short-term (construction) and long-term (permanent) dewatering requirements as provided below. The finite element model results are presented in Appendix E.

The groundwater seepage estimates, which have been provided, represent the steady state ground water seepage. There will be an initial drawdown of the groundwater before a steady state condition is reached. The rate of the initial drawdown, and therefore discharge, is dependent on the dewatering contractor and how the groundwater is being dealt with at the site. An estimate initial volume of stored groundwater which will require removal before steady state is reached has been provided below.

Please note that if excavation is exposed to the elements, storm water will have to be managed. The short-term control of groundwater should consider stormwater management from rainfall events. A dewatering system should be designed to consider the removal of rainfall from excavation. A design storm of 25 mm has been used in the quantity estimates.

As required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of storm water from a 100-year storm. The additional volume that will be generated in the occurrence of a 100-year storm event is approximately 170,000 L.

Stored Groundwat	Stored Groundwater (pre-excavation/dewatering)					
Proposed Development	Volume of Excavation (m ³)	Volume of Excavation Below Water Table (m³)	Volume of Storage Groundwater (m³)	Volume of Storage Groundwater (L)		
P6-Underground	36,736	35,840	10,752	46,592		

File No. 20-088 Page vii

Short Term (Construction) Groundwater Quantity - Safety Factor of 1.5 Used							
Proposed	Ground Wa	ter Seepage	Design Rainfall Event (25mm)		Total Daily Water Takings		
Development	L/day	L/min	L/day	L/min	L/day	L/min	
P6 - Underground	42,000	29.2	46,000	31.9	88,000	61.1	

Long Term (Permanent) Groundwater Quantity - Safety Factor of 1.5 Used							
Proposed Development	Ground Wat	er Seepage	Infiltration Des Event (2	•	Total Daily Water Takings		
Development	L/day	L/min	L/day	L/min	L/day	L/min	
P6 - Underground	42,000	29.2	2,000	1.4	44,000	30.6	

Regulatory Requirements	P6-Underground
Environmental Activity and Sector Registry (EASR) Posting	Required
Short Term Permit to Take Water (PTTW)	Not Required
Long Term Permit to Take Water (PTTW)	Not Required
Short Term Discharge Agreement City of Mississauga/ Region of Peel	Required
Long Term Discharge Agreement City of Mississauga/ Region of Peel	Required

Please note:

- As the development will be founded on bedrock, dewatering below the base of the excavation will not be required to preserve the in-situ integrity of the founding elevation.
- Groundwater seepage from fractures in the bedrock must be pumped out of and away from localized protrusions such as excavations for footings, elevator cores, and sump pits.
- It is anticipated that the groundwater will rise to the elevation of the subfloor drainage in the event of a drained structure or the waterproofing in the event of a leak tight structure.
- The proposed pump schedule for short-term construction dewatering has not been completed. As such the actual peak short-term discharge rate is not available at the time

File No. 20-088

of writing this report. The pump schedule must be specified by either the dewatering contractor retained or the mechanical consultant. This is typically calculated at the time of construction.

- The proposed pump schedule for long-term permanent drainage has not been completed. As such the actual peak long-term discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant. This schedule is typically prepared at the time of construction.
- Leak tight structure (structure that has not included a private water drainage system) has not been considered as part of the proposed development at this time.
- On-site containment (infiltration gallery/dry well etc.) has not been considered as part of the proposed development at this time. If this option is considered additional work will have to be conducted (i.e. infiltration testing).

11 Evaluation of Impact

11.1 Zone of Influence (ZOI)

The Zone of Influence (ZOI) with respect to ground water was calculated based on the estimated ground water taking rate and the hydraulic conductivity of the unit which water will be taken at the Property. The ZOI was calculated for approximate drawdown within the overburden soils only. There will be no ZOI generated within the bedrock.

The ZOI was calculated using the Sichart equation below.

Equation: $R_0 = 3000*dH*K^{0.5}$

Where:

dH is the dewatering thickness (m)

K is the hydraulic conductivity (m/s)

Calculation:

The ZOI with respect to groundwater seepage at the Site for the building with P6-Underground is:

 $R_0 = 3000*7.6 \text{ m*}(1 \text{ x } 10^{-7})^{0.5} \text{ m/s}$

 $R_0 = \pm 7 \text{ m}$

File No. 20-088 Page ix

11.2 Land Stability

The impacts to land stability of the proposed short term and long term dewatering at the site on adjacent structures based the proposed on the P6-Underground development are summarized as follows:

- The proposed dewatering at the subject site locally lowers the ground water table within the ZOI by a maximum of 7.6± m. This has the potential imply an increase of effective stress of approximately 76 kPa in the native soils.
- Based on the change in effective stress and the compressibility of the soil subjected to that change, the proposed dewatering activities will induce a maximum 11± mm of additional settlement in the adjacent soils.
- The maximum induced settlement occurs directly adjacent to the proposed excavation and decreases in a nonlinear fashion with distance away from the excavation.
- For the structures within the public realm greater than 2 m from the excavation, the dewatering-induced settlement is calculated to be less than 5± mm, therefore dewateringinduced impacts are not anticipated.
- This settlement will only impact on structures founded above the water table. Structures founded on bedrock will not be impacted.

The estimate of dewatering impacts is made based on preliminary conservative estimates of soil stiffness. On this basis, the impact of the proposed dewatering on the existing adjacent structures is considered by Grounded to be within acceptable limits.

11.3 City's Sewage Works

Negative impacts to City's sewage works may occur in terms of the quantity or quality of the groundwater discharged. This report provided the estimated quantity of the water discharge. However, this report does not speak to the sewer capacities. The sewer capacity analysis is provided under a separate cover by the civil consultant.

The quality of the proposed groundwater discharge is provided in previous Sections. As noted in that section the ground water sample exceeded the Limits for the City of Mississauga's Storm Sewer Discharge and the Limits for Region of Peel's Sanitary Sewer Discharge.

As such additional treatment will be required before the water can be discharge to the Storm Sewer and/or the Sanitary Sewer, to avoid impacts to the City's sewage works cause by ground water quality.

11.4 Natural Environment

There are no natural waterbodies within the ZOI that will be caused by the proposed construction dewatering or permanent drainage. Any groundwater which will be taken from the site will be discharged (if required) into the City's sewer systems and not into any natural water body. As such, there will be no impact to the natural environment caused by the water takings at the site.

File No. 20-088 Page x

11.5 Local Drinking Water Wells

The site is located within the municipal boundaries of the City of Mississauga. The site and surrounding area are provided with municipal piped water and sewer supply. There is no use of the ground water for water supply in this area of Mississauga. As such, there will be no impact to drinking water wells

11.6 Contamination Source

The site and immediately surrounding area currently consist mostly of residential and commercial areas. These land uses are not anticipated to be a source of potential contamination and are not expected to provide an Area of Potential Environmental Concern for the site. As such, the pumping of groundwater at the site is not anticipated to facilitate the movement of contaminants onto the site. Evaluation of the environmental condition of the site has been completed under a separate cover.

12 Proposed Mitigation Measures and Monitoring Plan

The extent of the negative impact identified in pervious sections will be limited to the ZOI caused by the groundwater taking at the site.

As a result of dewatering and draining the soil, changes in ground water level have the potential to cause settlement based on the change in the effective stresses within the ZOI. Given the minor ZOI for the site, anticipated impacts are negligible.

If adjacent buildings or municipal infrastructure are within the ZOI and will undergo settlement that may be considered unacceptable as identified the Land Stability Section, consideration should be given to implement a monitoring and mitigation program during dewatering activities.

Both the temporary construction dewatering system and the permanent building drainage system must be properly installed and screened to ensure sediments and fines will not be removed, which is typically a primary cause of dewatering related settlement.

13 Limitations

Natural occurrences, the passage of time, local construction, and other human activity all have the potential to directly or indirectly alter the subsurface conditions at or near the project site. Contractual obligations related to groundwater or stormwater control must be considered with attention and care as they relate this potential site alteration.

The hydrogeological engineering advice provided in this report is based on the factual observations made from the site investigations as reported. It is intended for use by the owner and their retained design team. If there are changes to the features of the development or to the scope, the interpreted subsurface information, geotechnical engineering design parameters,

File No. 20-088 Page xi

advice, and discussion on construction considerations may not be relevant or complete for the project. Grounded should be retained to review the implications of such changes with respect to the contents of this report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Grounded accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

13.1 Report Use

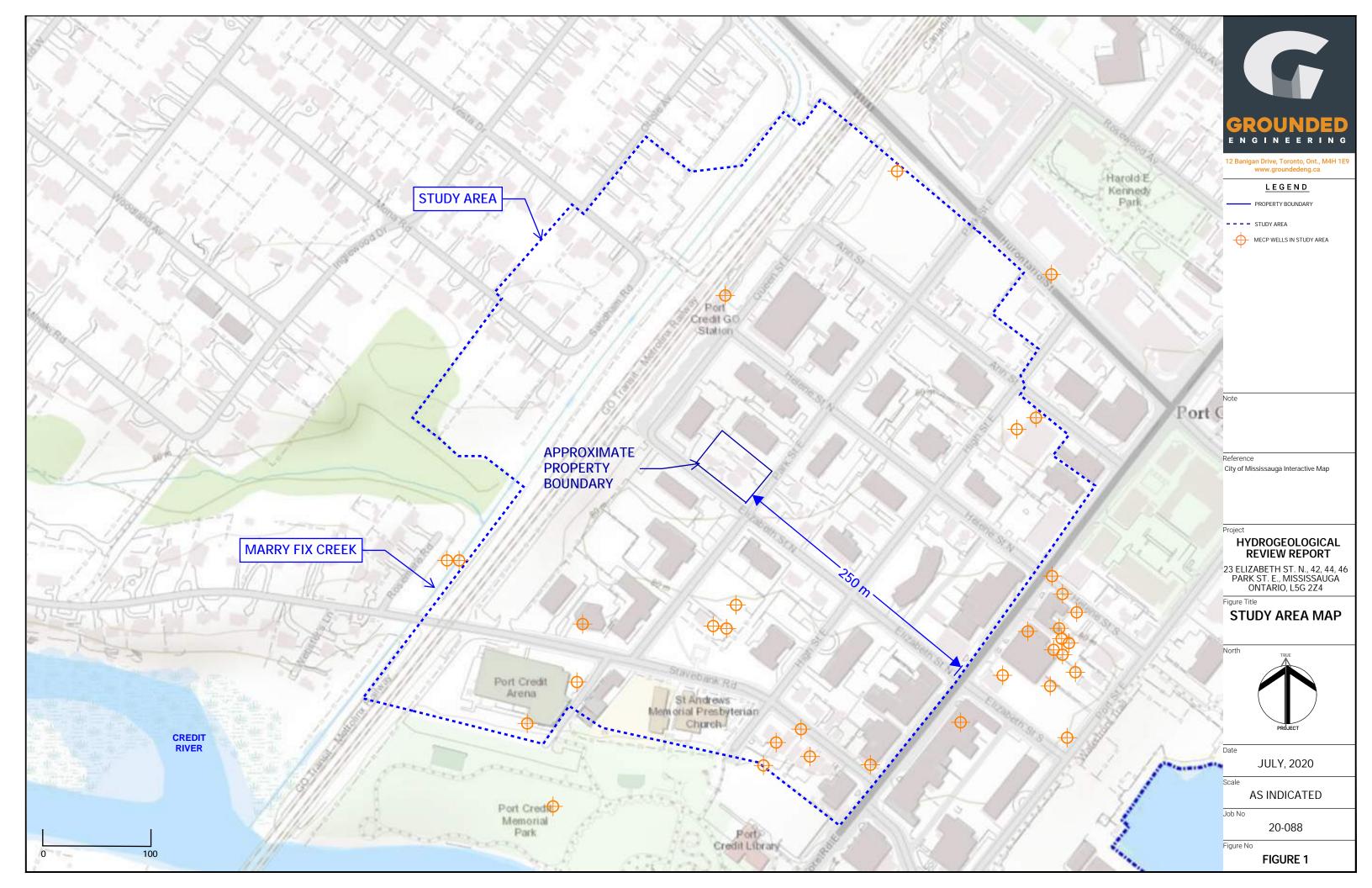
The authorized users of this report are Edenshaw Elizabeth Developments Limited and their design team, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc. The City of Mississauga may also make use of and rely upon this report, subject to the limitations as stated.

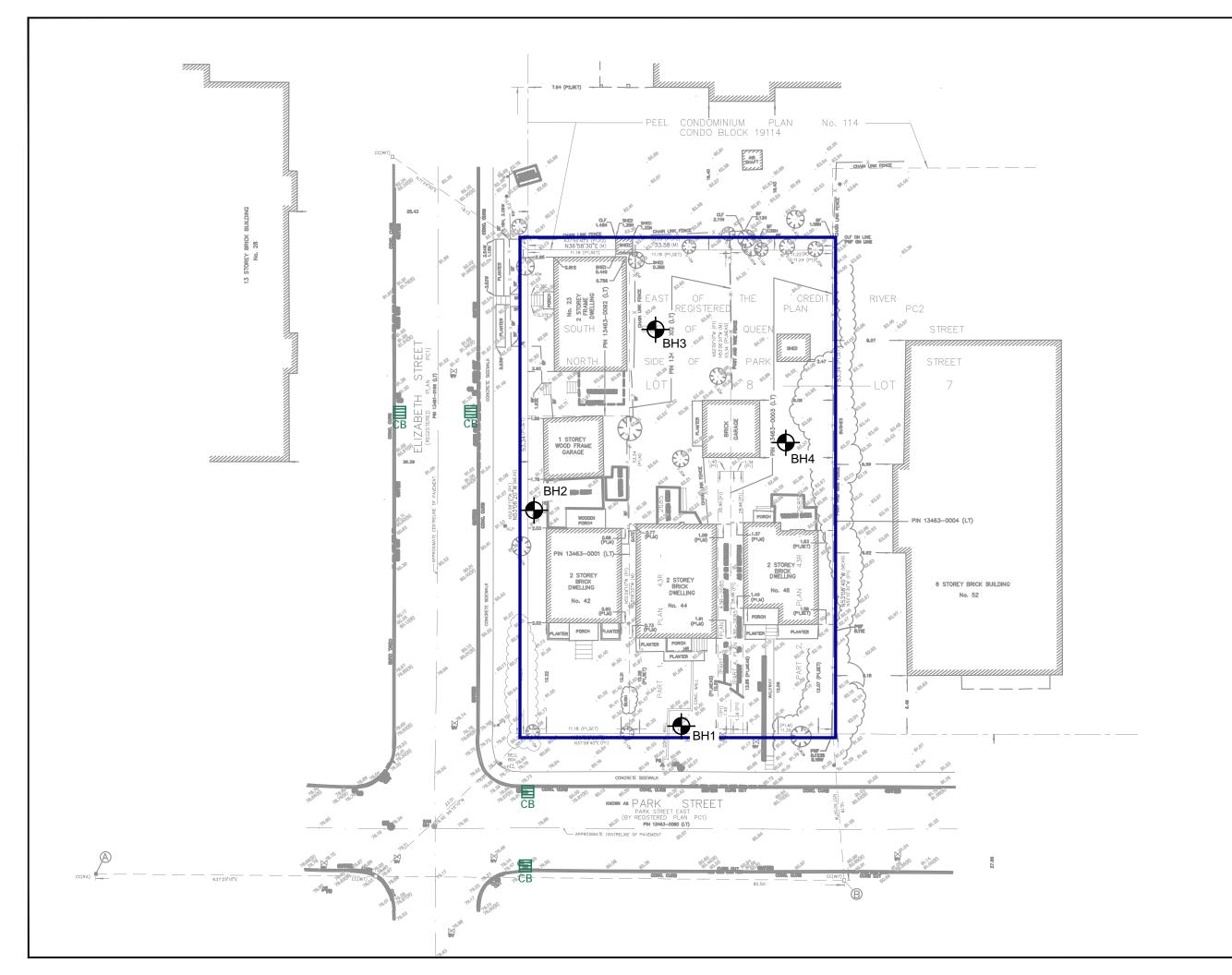
14 Closure

If there are any questions regarding the discussion and advice provided, please do not hesitate to contact our office. We trust that this report meets your requirements at present.

For and on behalf of our team,

Jessie Hui Chung Wu, M.Env.Sc.


M. J. BIELASKI TO NIVCE OF ONTARIO


Matthew Bielaski, P.Eng., QP_{ESA-RA} Principal

File No. 20-088 Page xii

FIGURES

12 Banigan Drive, Toronto, Ont., M4H 1E9 www.groundedeng.ca

LEGEND

PROPERTY BOUNDARY

CATCH BASIN

GROUNDED BOREHOLE WITH

No

Reference

Survey Drawing No. 3296-0T.DWG Project No. 3296-0 Certificate date: July 23, 2019. Prepared by R. Avis Surveying Inc. Received on July 3, 2020 as part of the ROWE package

prepared by IBI Group Architects

Proie

HYDROGEOLOGICAL REVIEW REPORT

23 ELIZABETH ST. N., 42, 44, 46 PARK ST. E., MISSISSAUGA ONTARIO, L5G 2Z4

Figure Title

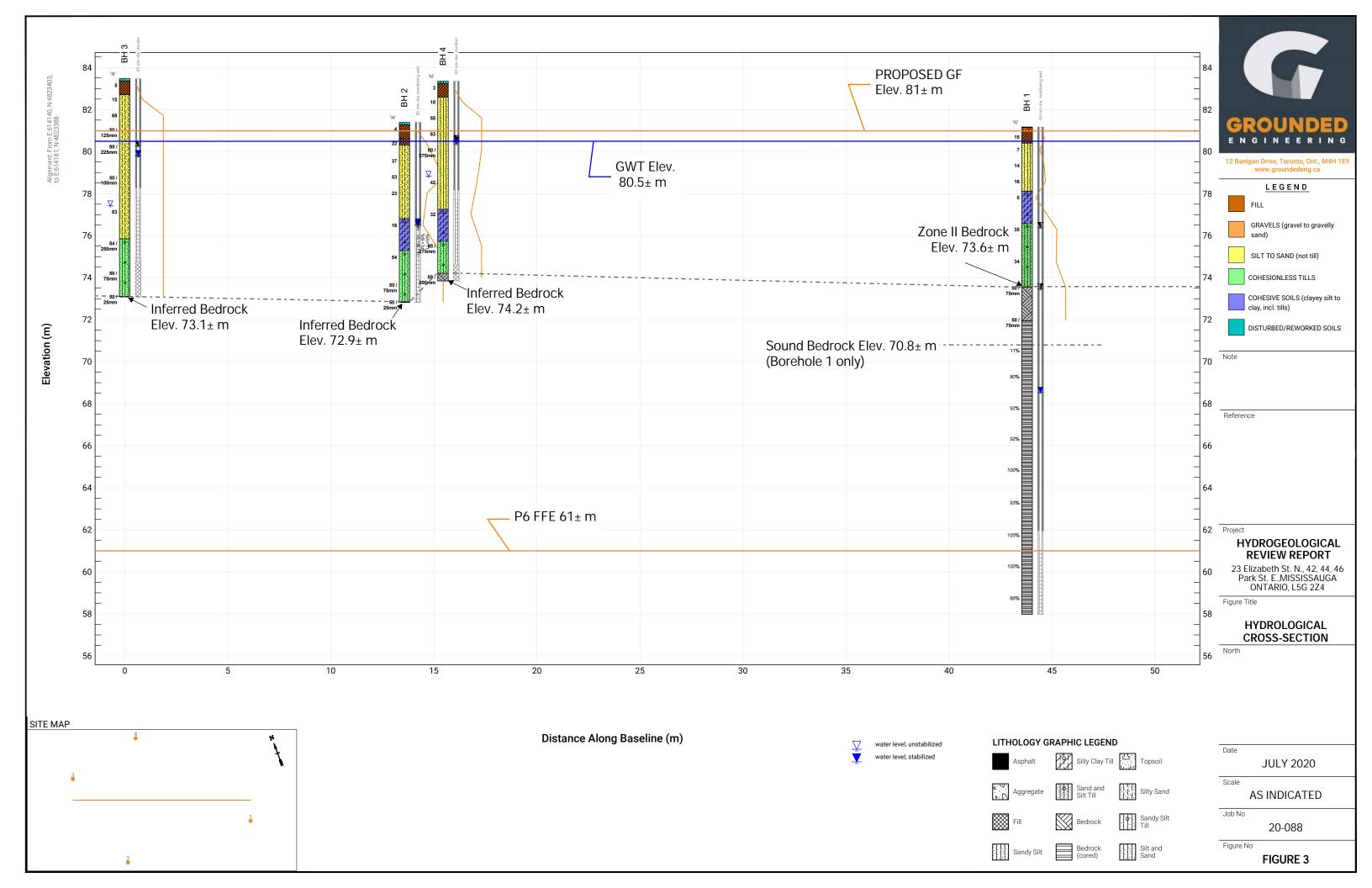
BOREHOLE AND MONITORING WELL LOCATION PLAN

North

Date

JULY, 2020

Scale


1:200

Job No

20-088

Figure No

FIGURE 2

APPENDIX

APPENDIX A

SAMPLING/TESTING METHODS

SS: split spoon sample

AS: auger sample

GS: grab sample

FV: shear vane

DP: direct push

PMT: pressuremeter test

ST: shelby tube CORE: soil coring RUN: rock coring

SYMBOLS & ABBREVIATIONS

MC: moisture content

LL: liquid limit

PL: plastic limit

PI: plasticity index

y: soil unit weight (bulk)

G_s: specific gravity

S_{II}: undrained shear strength

∪ unstabilized water level

1st water level measurement

2nd water level measurement most recent

water level measurement

ENVIRONMENTAL SAMPLES

M&I: metals and inorganic parameters

PAH: polycyclic aromatic hydrocarbon

PCB: polychlorinated biphenyl VOC: volatile organic compound PHC: petroleum hydrocarbon

BTEX: benzene, toluene, ethylbenzene and xylene

PPM: parts per million

FIELD MOISTURE (based on tactile inspection)

MOIST: inferred pore water, not observable (i.e. grey, cool, etc.)

WET: visible pore water

DRY: no observable pore water

COMPOSITION Term % by weight trace silt <10 some silt 10 - 20 silt**y** 20 - 35sand **and** silt

COHESIONLESS							
Relative Density	N-Value						
Very Loose	<4						
Loose	4 - 10						
Compact	10 - 30						
Dense	30 - 50						
Very Dense	>50						

N-Value	Su (kPa)
<2	<12
2 - 4	12 - 25
4 - 8	25 - 50
8 - 15	50 - 100
15 - 30	100 - 200
>30	>200
	<2 2 - 4 4 - 8 8 - 15 15 - 30

ASTM STANDARDS

ASTM D1586 Standard Penetration Test (SPT)

>35

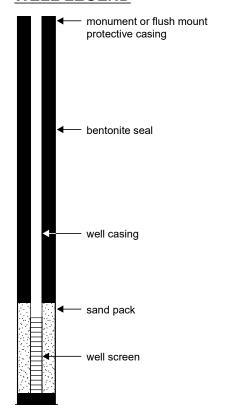
Driving a 51 mm O.D. split-barrel sampler ("split spoon") into soil with a 63.5 kg weight free falling 760 mm. The blows required to drive the split spoon 300 mm ("bpf") after an initial penetration of 150 mm is referred to as the N-Value.

ASTM D3441 Cone Penetration Test (CPT)

Pushing an internal still rod with a outer hollow rod ("sleeve") tipped with a cone with an apex angle of 60° and a cross-sectional area of 1000 mm² into soil. The resistance is measured in the sleeve and at the tip to determine the skin friction and the tip resistance.

ASTM D2573 Field Vane Test (FVT)

Pushing a four blade vane into soil and rotating it from the surface to determine the torque required to shear a cylindrical surface with the vane. The torque is converted to the shear strength of the soil using a limit equilibrium analysis.


ASTM D1587 Shelby Tubes (ST)

Pushing a thin-walled metal tube into the in-situ soil at the bottom of a borehole, removing the tube and sealing the ends to prevent soil movement or changes in moisture content for the purposes of extracting a relatively undisturbed sample.

ASTM D4719 Pressuremeter Test (PMT)

Place an inflatable cylindrical probe into a pre-drilled hole and expanding it while measuring the change in volume and pressure in the probe. It is inflated under either equal pressure increments or equal volume increments. This provides the stress-strain response of the soil.

WELL LEGEND

ROCK CORE TERMINOLOGY (MTO SHALE)

TCR Total Core Recovery the total length of recovery (soil or rock) per run, as a percentage of the drilled length

SCR Solid Core Recovery the total length of sound full-diameter rock core pieces per run, as a percentage of the drilled length

RQD Rock Quality Designation the sum of all pieces of sound rock core in a run which are 10 cm or greater in length, as a percentage of the drilled length

Natural Fracture Frequency (typically per 0.3 m) The number of natural discontinuities (joints, faults, etc.) which are present per 0.3m. Ignores mechanical or drill-induced breaks, and closed discontinuities (e.g. bedding planes).

LOGGING DISCONTINUITIES

Discontinuity Type

BP bedding parting

CL cleavage

CS crushed seam **F7** fracture zone

FZ fracture zoneMB mechanical break

IS infilled seam

JT Joint

SS shear surface

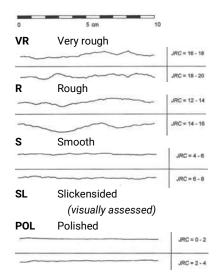
SZ shear zone

VN vein

VO void

Coating

CN CleanSN Stained


OX Oxidized VN Veneer

CT Coating (>1 mm)

Dip Inclination

 $\begin{array}{lll} \textbf{H} & \text{horizontal/flat} & 0 - 20^{\circ} \\ \textbf{D} & \text{dipping} & 20 - 50^{\circ} \\ \textbf{SV} & \text{sub-vertical} & 50 - 90^{\circ} \\ \textbf{V} & \text{vertical} & 90\pm^{\circ} \\ \end{array}$

Roughness (Barton et al.)

Spacing in Discontinuity Sets

(ISRM 1981)

 VC
 very close
 < 60 mm</td>

 C
 close
 60 - 200 mm

 M
 mod. close
 0.2 to 0.6 m

 W
 wide
 0.6 to 2 m

 VW
 very wide
 > 2 m

Aperture Size

 T
 closed / tight
 < 0.5 mm</td>

 GA
 gapped
 0.5 to 10 mm

 OP
 open
 > 10 mm

Bedding Thickness (Q. J. Eng. Geology,

Vol 3, 1970)

Planarity

PR Planar
UN Undulating
ST Stepped
IR Irregular
DIS Discontinuous
CU Curved

GENERAL

Degree of Weathering (after MTO, RR229 Evaluation of Shales for Construction Projects)

Zone	Degree	Description
Z1	unweathered	shale, regular jointing
Z2		angular blocks of unweathered shale, no matrix, with chemically weathered but intact shale
Z3	partially weathered	soil-like matrix with frequent angular shale fragments < 25mm diameter
Z4a		soil-like matrix with occasional shale fragments < 3mm diameter
Z4b	fully weathered	soil-like matrix only

Strength classification (after Marinos and Hoek, 2001; ISRM 1981b)

Grade		(MPa)	Field Estimate (Description)	10.0,1770)	
R6	extremely strong	> 250	can only be chipped by geological hammer	Very thickly bedded	> 2 m
R5	very strong	100 - 250	requires many blows from geological hammer	Thickly bedded	0.6 – 2m
R4	strong	50 - 100	requires more than one blow from geological hammer	Medium bedded	200 – 600mm
R3	medium strong	25 - 50	can't be scraped, breaks under one blow from geological hammer	Thinly bedded Very thinly bedded	60 – 200mm 20 – 60mm
R2	weak	5 - 25	can be peeled / scraped with knife with difficulty	Laminated	6 – 20mm
R1	very weak	1 - 5	easily scraped / peeled, crumbles under firm blow of geo. hammer	Thinly Laminated	< 6mm
R0	extremely weak	< 1	indented by thumbnail		

Date Started: Jun 2, 2020

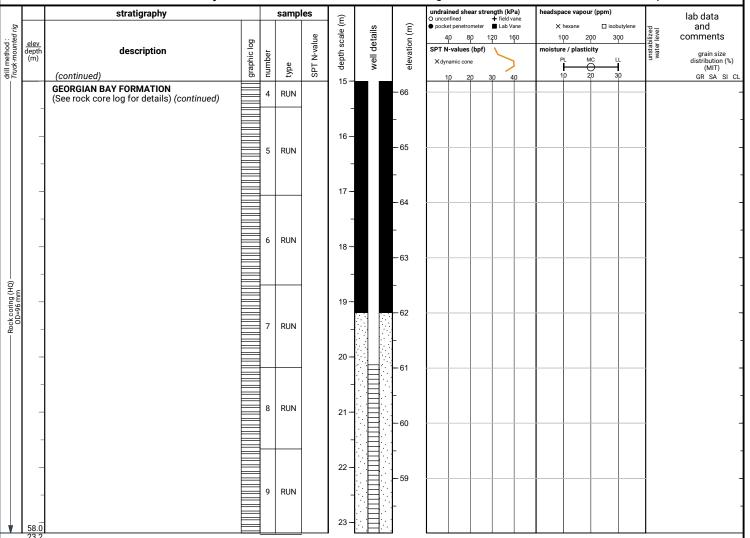
Position: E: 614179, N: 4823383 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 1

File No.: 20-088 Project: 23 Elizabeth Street North, Mississauga **Client:** Edenshaw Elizabeth Developments Limited undrained shear strength (kPa)
O unconfined + field vane stratigraphy samples headspace vapour (ppm) $\widehat{\Xi}$ pocket penetrometer Lab Vane ☐ isobutylene Ξ details depth scale 40 80 120 100 200 300 comments SPT N-value elevation SPT N-values (bpf) moisture / plasticity description grain size distribution (%) (MIT) number type **GROUND SURFACE** GR SA SI CI 25mm ASPHALTIC CONCRETE -81 150mm AGGREGATE SS 15 C FILL, silty sand, trace gravel, trace asphalt, compact, brown, moist SANDY SILT, trace gravel, loose to compact, orangey brown and grey, moist 7 2 0 SS2: M&I, BTEX, PHC ...at 1.5 m, moist to wet s wolloh 3 SS 14 0 SS3: M&I 2 -...at 2.3 m, grey 4 SS 16 0 3 -SILTY CLAY, trace sand, trace gravel, very - 78 5 soft, grey, wet (GLACIAL TILL) SS 0 SS5: BTEX, PHC SILTY SAND, some clay, some gravel, hard, grey, moist to wet (GLACIAL TILL) 6 35 0 17 36 32 15 5 -6 -7 34 SS 7.3m: Grinding 0 50 / INFERRED BEDROCK, shale and limestone 75mm fragments, grey 8 -9 -SS 50 / 75mm 0 **GEORGIAN BAY FORMATION** 10.4m: Transition to sound bedrock (See rock core log for details) RUN RUN 2 12 -- 69 RUN 3 4 RUN **Page** 1 of 2 Tech: JN | PM: JW | Rev: MD

File No.: 20-088


Date Started: Jun 2, 2020

Position: E: 614179, N: 4823383 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 1

Project: 23 Elizabeth Street North, Mississauga Client: Edenshaw Elizabeth Developments Limited

END OF BOREHOLE

Filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed.

GROUNDWATER LEVELS Wider Penth (m) Elevation (m)

vate	water Depth (m)	<u>Elevation (n</u>
Jun 5, 2020	4.8	76.4
Jun 10, 2020	7.7	73.5
Jun 12, 2020	12.7	68.5
Jun 18, 2020	12.7	68.5

Page 1 of 2

(continued next page)

Date Started: Jun 2, 2020

Position: E: 614179, N: 4823383 (UTM 17T)

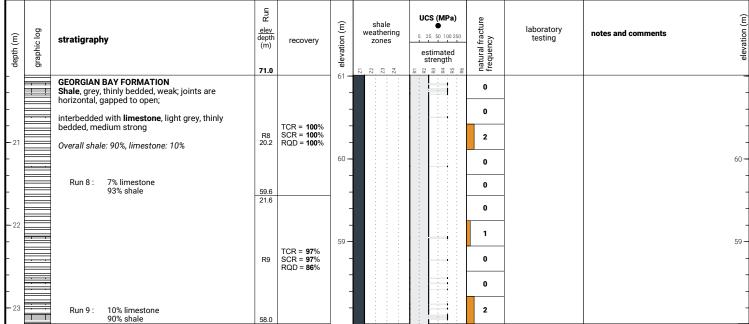
Elev. Datum: Geodetic

ROCK CORE LOG 1

Tech: JN | PM: JW | Rev: MD

File No.: 20-088 Project: 23 Elizabeth Street North, Mississauga **Client:** Edenshaw Elizabeth Developments Limited Run UCS (MPa) ● natural fracture frequency shale weathering elevation (m) laboratory elev depth (m) graphic log notes and comments 25 50 100 250 depth (m) testing stratigraphy recovery zones estimated strength Rock coring started at 10.2m below grade 71 GEORGIAN BAY FORMATION Shale, grey, thinly bedded, weak; joints are horizontal, gapped to open; 10.4 / 70.8m: Transition to sound bedrock TCR = **58**% SCR = **42**% RQD = **11**% 10.7 / 70.5m: 15" lost core at the end of the interbedded with limestone, light grey, thinly bedded, medium strong Overall shale: 90%, limestone: 10% 70 70 12% limestone 88% shale 1 TCR = 95% SCR = 90% RQD = 80% 1 0 69 69 6% limestone 94% shale 2 1 68 TCR = 100% SCR = 92% RQD = 92% R3 1 1 5% limestone n 95% shale 67 1 0 TCR = 100% SCR = 95% R4 1 RQD = **92**% 66 1 7% limestone Run 4: 65.7 15.5 0 0 TCR = 100% SCR = 100% RQD = 100% 65 0 R5 1 Run 5: 11% limestone 0 89% shale 64 1 3 TCR = 100% SCR = 98% RQD = 93% 0 R6 0 63 63 0 19% limestone 81% shale n 0 62 TCR = 100% SCR = 100% RQD = 100% R7 0 0 10% limestone Run 7: 90% shale

Date Started: Jun 2, 2020


Position: E: 614179, N: 4823383 (UTM 17T)

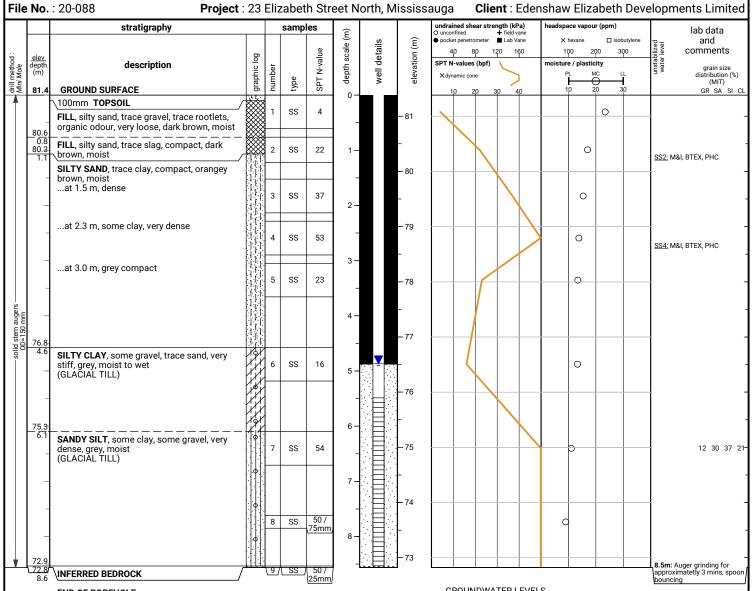
Elev. Datum: Geodetic

23.2m

ROCK CORE LOG 1

File No.: 20-088 Project: 23 Elizabeth Street North, Mississauga **Client**: Edenshaw Elizabeth Developments Limited Run UCS (MPa) ● shale weathering laboratory notes and comments 25 50 100 250

END OF COREHOLE



Date Started: Jun 2, 2020

Position: E: 614147, N: 4823384 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 2

END OF BOREHOLE

Auger refusal

Dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

No. 10 screen

GROUNDWATER LEVELS						
<u>Date</u>	Water Depth (m)	Elevation (m)				
Jun 5, 2020	5.0	76.4				
Jun 10, 2020	5.0	76.4				
Jun 12, 2020	4.9	76.5				
Jun 18, 2020	4.9	76.5				

Date Started: May 25, 2020

Position: E: 614142, N: 4823408 (UTM 17T)

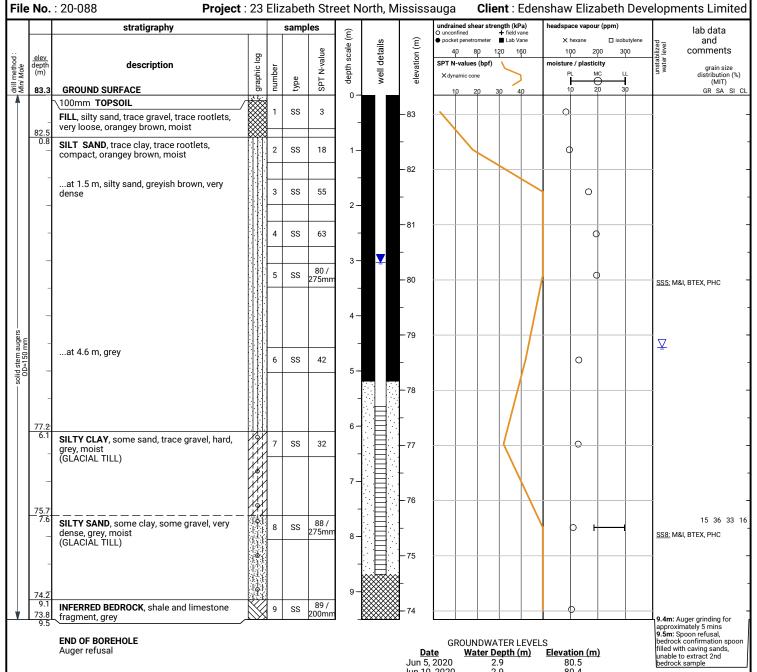
Elev. Datum : Geodetic

BOREHOLE LOG 3

File No.: 20-088 Project: 23 Elizabeth Street North, Mississauga **Client:** Edenshaw Elizabeth Developments Limited stratigraphy samples undrained shear strength (kPa)
O unconfined + field vane headspace vapour (ppm) Œ ☐ isobutylene Ξ details scale 80 120 160 100 200 300 comments SPT N-value elevation drill method Mini Mole SPT N-values (bpf) moisture / plasticity description graphic l depth grain size distribution (%) (MIT) number well type 83.5 **GROUND SURFACE** GR SA SI CI 100mm TOPSOIL 5 0 FILL, silty sand, trace gravel, trace rootlets, -83 organic odour, loose, dark brown, moist 82.7 0.8 SILTY SAND, trace clay, trace rootlets, 2 SS 15 compact, orangey brown, moist -82 ...at 1.5 m, very dense 3 SS 69 0 2 -50 / 4 SS SS4: M&I, BTEX, PHC 3 -...at 3.0 m, greyish brown 98 / 225mn 5 0 SS -80 - 79 ...at 4.6 m, grey 6 SS 0 100mr SS6: M&I, BTEX, PHC 6 - $\overline{\Delta}$ 7 SS 83 - 76 SANDY SILT, some clay, some gravel, very 84/ 8 250mn dense, grey, moist (GLACIAL TILL) 50 / 9 SS 0 75mm 74 10.4m: Auger grinding for approximately 5 mins, spoon bouncing, bedrock confirmation spoon filled with caving sands, unable to extract 2nd bedrock sample 50 / 25mm INFERRED BEDROCK, shale and limestone \fragment, grey **GROUNDWATER LEVELS** <u>Date</u> Water Depth (m) Elevation (m) **END OF BOREHOLE** Jun 5, 2020 Jun 10, 2020 3.3 3.7 80.2 79.7 Auger refusal Jun 12, 2020 4.0 79.4 Unstabilized water level measured at 6.1 m Jun 18, 2020 3.7 79.8 below ground surface; caved to 8.7 m below ground surface upon completion of drilling. 50 mm dia. monitoring well installed. No. 10 screen

ile: 20-088.gp

 Page 1 of 1
 Tech: JN | PM: JW | Rev: MD



Date Started: May 25, 2020

Position: E: 614160, N: 4823412 (UTM 17T)

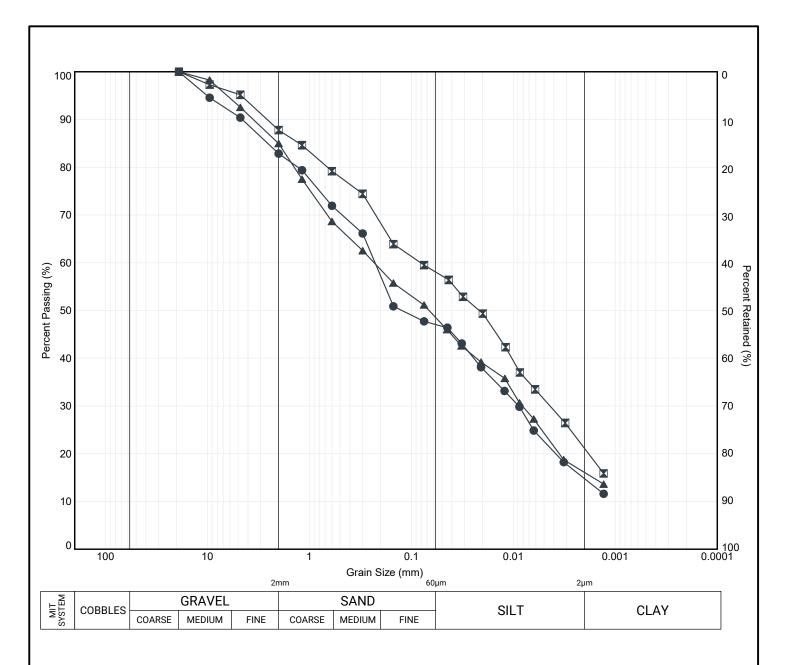
Elev. Datum: Geodetic

BOREHOLE LOG 4

END OF BOREHOLE

Auger refusal

Unstabilized water level measured at 4.6 m below ground surface; caved to 8.7 m below ground surface upon completion of drilling.


50 mm dia. monitoring well installed. No. 10 screen

GROI	INDV	VATFR	I FVFI S	;

<u>Date</u>	Water Depth (m)	Elevation (m
Jun 5, 2020	2.9	80.5
Jun 10, 2020	2.9	80.4
Jun 12, 2020	3.0	80.4
Jun 18, 2020	3.0	80.3

APPENDIX B

MIT SYSTEM

	Borehole	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
•	1	SS6	4.9	76.3	17	36	32	15	
	2	SS7	6.4	75.0	12	30	37	21	
A	4	SS8	7.8	75.5	15	36	33	16	

Title:

GRAIN SIZE DISTRIBUTION
SILT TILL

File No.:

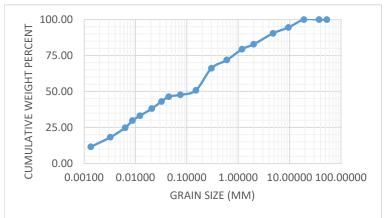
20-088

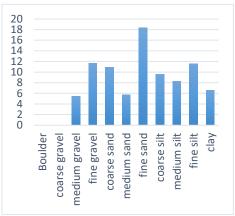
Grain Size Analysis Report

Date:

2020-07-02

Sample Name:


BH1 SS6


Mass Sample (g): 100

T (oC)

20

Poorly sorted gravelly sand with fines

ı	٥.			
	Sieve	Mass of		
	opening	retained	mass	Percent
	(ps)	(mr)	fraction	Passing
	di (mm)	(g)	(mf)	(pp)
	53	0	0	100
	37.5	0	0	100
	19	0	0	100
	9.5	5.440901	0.054409	94.5591
	4.75	4.165103	0.041651	90.394
	2	7.542214	0.075422	82.85178
	1.18	3.479775	0.034798	79.37201
	0.6	7.45666	0.074567	71.91535
	0.3	5.799625	0.057996	66.11572
	0.15	15.24473	0.152447	50.87099
	0.075	3.148368	0.031484	47.72263
	0.044256	1.328722	0.013287	46.3939
	0.032004	3.31385	0.033139	43.08005
	0.020681	4.970776	0.049708	38.10928
	0.012188	4.970776	0.049708	33.1385
	0.008734	3.31385	0.033139	29.82465
	0.006296	4.970776	0.049708	24.85388
	0.003226	6.627701	0.066277	18.22618
	0.001348	6.627701	0.066277	11.59848

Effective Grain	Effective Grain Diameters (mm)		Other Useful Parameters	
d10	0.001	Uniformity Coef.	206.30	
d17	0.003	n computed	0.26	
d20	0.004	g (cm/s²)	980.00	
d50	0.129	ρ (g/cm ³)	0.9981	
d60	0.240	μ (g/cm s)	0.0098	
de (Kruger)	0.017	ρg/ μ (1/cm s)	9.9327E+04	
de (Kozeny)	0.007	tau (Sauerbrei)	1.053	
de (Zunker)	0.007	d _{geometric mean}	0.174	
de (Zamarin)	0.008	$\sigma_{\!\scriptscriptstyle{f \phi}}$	4.604	
Io (Alyameni)	-0.031			
r	mm		% in sample	
	>64			
16	5 - 64	coarse gravel	0	
8	- 16	medium gravel	5.440900563	
2	- 8	fine gravel	11.70731707	
0.	5 - 2	coarse sand	10.93643527	
0.2	5 - 0.5	medium sand	5.799624765	
0.06	3 - 0.25	fine sand	18.39309568	
0.016	5 - 0.063	coarse silt	9.613347542	
0.008	3 - 0.016	medium silt	8.284625891	
0.002	2 - 0.008	fine silt	11.59847625	
<0	0.002	clay	6.627700713	

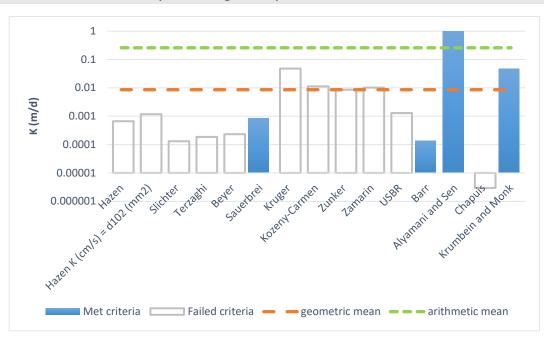
K from Grain Size Analysis Report

Date:

2020-07-02

20

Sample Name:


BH1 SS6

Mass Sample (g):

100

T (oC)

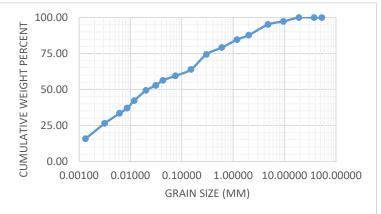
Poorly sorted gravelly sand with fines

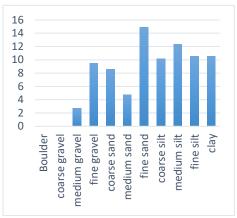
Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	7.7E-07	7.7E-09	0.00	
Hazen K (cm/s) = d_{10} (mm)	1.4E-06	1.4E-08	0.00	
Slichter	1.5E-07	1.5E-09	0.00	
Terzaghi	2.1E-07	2.1E-09	0.00	
Beyer	2.7E-07	2.7E-09	0.00	
Sauerbrei	9.7E-07	9.7E-09	0.00	
Kruger	5.5E-05	5.5E-07	0.05	
Kozeny-Carmen	1.3E-05	1.3E-07	0.01	
Zunker	9.9E-06	9.9E-08	0.01	
Zamarin	1.2E-05	1.2E-07	0.01	
USBR	1.5E-06	1.5E-08	0.00	
Barr	1.6E-07	1.6E-09	0.00	
Alyamani and Sen	1.2E-03	1.2E-05	0.99	
Chapuis	3.4E-09	3.4E-11	0.00	
Krumbein and Monk	5.4E-05	5.4E-07	0.05	
geometric mean	1.0E-05	1.0E-07	0.01	
arithmetic mean	3.0E-04	3.0E-06	0.26	

Grain Size Analysis Report

Date:

2020-07-02


Sample Name:


BH2 SS7

Mass Sample (g): 100

T (oC) 20

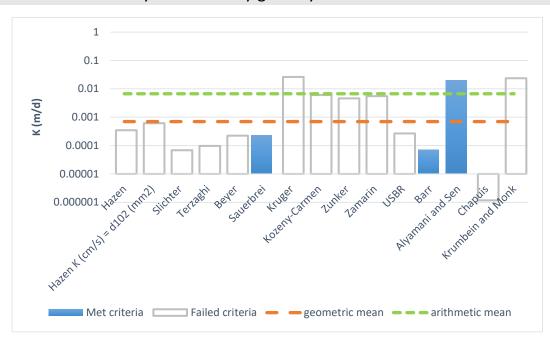
Poorly sorted sandy gravelly silt with fines

Sieve	Mass of		
opening	retained	mass	Percent
(ps)	(mr)	fraction	Passing
di (mm)	(g)	(mf)	(pp)
53	0	0	100
37.5	0	0	100
19	0	0	100
9.5	2.707424	0.027074	97.29258
4.75	2.125182	0.021252	95.16739
2	7.394469	0.073945	87.77293
1.18	3.159825	0.031598	84.6131
0.6	5.441921	0.054419	79.17118
0.3	4.739738	0.047397	74.43144
0.15	10.53275	0.105328	63.89869
0.075	4.388646	0.043886	59.51004
0.042881	3.114283	0.031143	56.39576
0.031054	3.524735	0.035247	52.87103
0.019943	3.524735	0.035247	49.34629
0.011856	7.04947	0.070495	42.29682
0.00856	5.287103	0.052871	37.00972
0.006135	3.524735	0.035247	33.48498
0.003148	7.04947	0.070495	26.43551
0.001333	10.57421	0.105742	15.86131

Effective Grain Diameters (mm)		Other Useful Parameters	
d10	0.001	Uniformity Coef.	99.22
d17	0.002	n computed	0.26
d20	0.002	g (cm/s ²)	980.00
d50	0.022	ρ (g/cm ³)	0.9981
d60	0.083	μ (g/cm s)	0.0098
de (Kruger)	0.012	ρg/ μ (1/cm s)	9.9327E+04
de (Kozeny)	0.005	tau (Sauerbrei)	1.053
de (Zunker)	0.005	d _{geometric mean}	0.112
de (Zamarin)	0.006	$\sigma_{\!\scriptscriptstyle{igophi}}$	4.458
Io (Alyameni)	-0.004		
m	nm	0	% in sample
>	64	Boulder	
16	- 64	coarse gravel	0
8 -	- 16	medium gravel	2.707423581
2	- 8	fine gravel	9.519650655
0.5	5 - 2	coarse sand	8.601746725
0.25	- 0.5	medium sand	4.739737991
0.063	0.063 - 0.25		14.92139738
0.016	- 0.063	coarse silt	10.1637527
0.008	- 0.016	medium silt	12.33657274
0.002	- 0.008	fine silt	10.57420521
<0.	002	clay	10.57420521

K from Grain Size Analysis Report

BH2 SS7


2020-07-02

Date:

Sample Name:

Mass Sample (g): 100 T (oC) 20

Poorly sorted sandy gravelly silt with fines

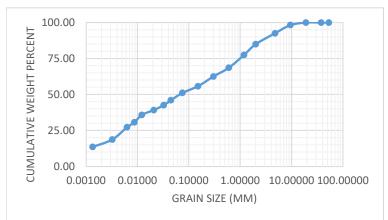
Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	4.0E-07	4.0E-09	0.00	
Hazen K (cm/s) = d_{10} (mm)	7.1E-07	7.1E-09	0.00	
Slichter	7.9E-08	7.9E-10	0.00	
Terzaghi	1.1E-07	1.1E-09	0.00	
Beyer	2.6E-07	2.6E-09	0.00	
Sauerbrei	2.7E-07	2.7E-09	0.00	
Kruger	3.0E-05	3.0E-07	0.03	
Kozeny-Carmen	7.0E-06	7.0E-08	0.01	
Zunker	5.3E-06	5.3E-08	0.00	
Zamarin	6.3E-06	6.3E-08	0.01	
USBR	3.1E-07	3.1E-09	0.00	
Barr	8.4E-08	8.4E-10	0.00	
Alyamani and Sen	2.3E-05	2.3E-07	0.02	
Chapuis	1.4E-09	1.4E-11	0.00	
Krumbein and Monk	2.7E-05	2.7E-07	0.02	
geometric mean	8.1E-07	8.1E-09	0.00	
arithmetic mean	7.8E-06	7.8E-08	0.01	

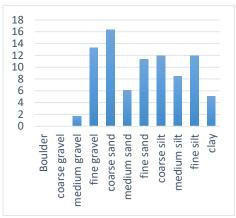
Grain Size Analysis Report

Date:

2020-07-02

Sample Name:


BH4 SS8 100


Mass Sample (g):

T (oC)

20

Poorly sorted gravelly sand with fines

Sieve	Mass of		
opening	retained	mass	Percent
(ps)	(mr)	fraction	Passing
di (mm)	(g)	(mf)	(pp)
53	0	0	100
37.5	0	0	100
19	0	0	100
9.5	1.744186	0.017442	98.25581
4.75	5.711354	0.057114	92.54446
2	7.592339	0.075923	84.95212
1.18	7.475787	0.074758	77.47633
0.6	8.835021	0.08835	68.64131
0.3	6.116553	0.061166	62.52476
0.15	6.79617	0.067962	55.72859
0.075	4.587415	0.045874	51.14118
0.044594	5.147193	0.051472	45.99398
0.032237	3.406962	0.03407	42.58702
0.020681	3.406962	0.03407	39.18006
0.012106	3.406962	0.03407	35.7731
0.008734	5.110443	0.051104	30.66266
0.006256	3.406962	0.03407	27.25569
0.003226	8.517404	0.085174	18.73829
0.001341	5.110443	0.051104	13.62785

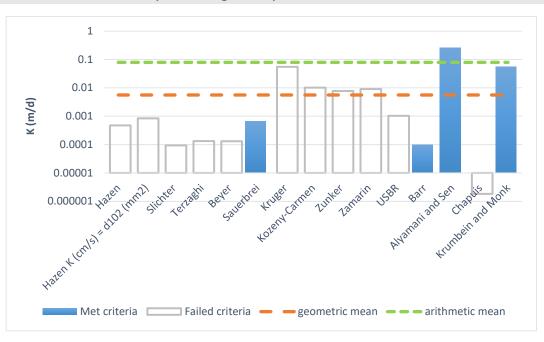
Effective Grain Diameters (mm)		Other Useful Parameters	
d10	0.001	Uniformity Coef.	248.32
d17	0.003	n computed	0.26
d20	0.004	g (cm/s ²)	980.00
d50	0.068	ρ (g/cm ³)	0.9981
d60	0.244	μ (g/cm s)	0.0098
de (Kruger)	0.018	ρg/ μ (1/cm s)	9.9327E+04
de (Kozeny)	0.007	tau (Sauerbrei)	1.053
de (Zunker)	0.007	d _{geometric mean}	0.182
de (Zamarin)	0.007	$\sigma_{\!\scriptscriptstyle{f \phi}}$	4.519
lo (Alyameni)	-0.016		
n	nm	0	% in sample
>	64	Boulder	
16	- 64	coarse gravel	0
8	- 16	medium gravel	1.744186047
2	- 8	fine gravel	13.30369357
0.5	5 - 2	coarse sand	16.31080711
0.25	5 - 0.5	medium sand	6.116552668
0.063	0.063 - 0.25		11.38358413
0.016	- 0.063	coarse silt	11.96111675
0.008	- 0.016	medium silt	8.517404286
0.002	- 0.008	fine silt	11.924366
<0	.002	clay	5.110442572

K from Grain Size Analysis Report

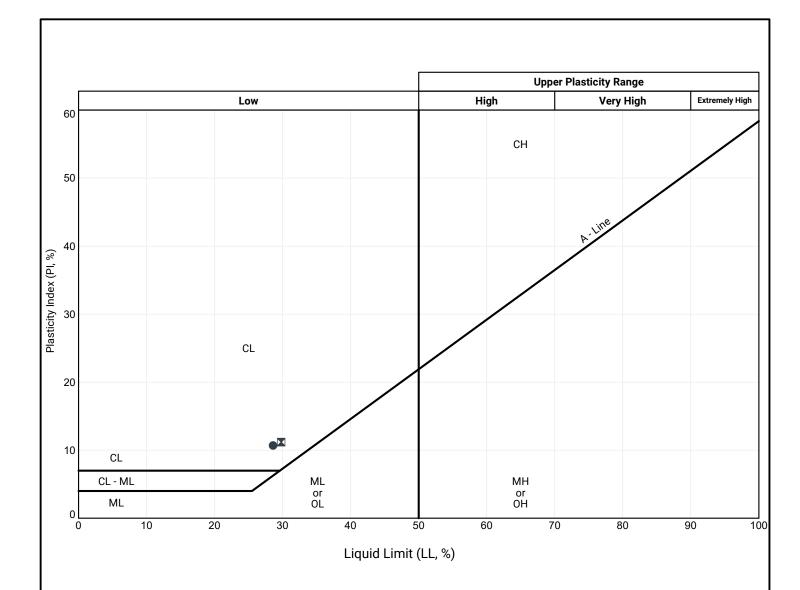
Date:

2020-07-02

Sample Name:


BH4 SS8

Mass Sample (g):


100

T (oC) 20

Poorly sorted gravelly sand with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	5.5E-07	5.5E-09	0.00	
Hazen K (cm/s) = d_{10} (mm)	9.7E-07	9.7E-09	0.00	
Slichter	1.1E-07	1.1E-09	0.00	
Terzaghi	1.5E-07	1.5E-09	0.00	
Beyer	1.5E-07	1.5E-09	0.00	
Sauerbrei	7.8E-07	7.8E-09	0.00	
Kruger	6.3E-05	6.3E-07	0.05	
Kozeny-Carmen	1.2E-05	1.2E-07	0.01	
Zunker	8.9E-06	8.9E-08	0.01	
Zamarin	1.0E-05	1.0E-07	0.01	
USBR	1.2E-06	1.2E-08	0.00	
Barr	1.2E-07	1.2E-09	0.00	
Alyamani and Sen	3.0E-04	3.0E-06	0.26	
Chapuis	2.1E-09	2.1E-11	0.00	
Krumbein and Monk	6.6E-05	6.6E-07	0.06	
geometric mean	6.5E-06	6.5E-08	0.01	
arithmetic mean	9.2E-05	9.2E-07	0.08	

	Borehole	Sample	Depth (m)	Elev. (m)	LL (%)	PL (%)	PI (%)	
•	1	SS6	4.9	76.3	29	18	11	
×	4	SS8	7.8	75.5	30	19	11	

Title:

ATTERBERG LIMITS CHART

File No.:

20-088

APPENDIX C

APPENDIX C: GROUNDWATER ELEVATION

Consultant	Monitoring Well ID	05-Jun-20	10-Jun-20	12-Jun-20	18-Jun-20
Consultant	Worldoning Well ID	GW Elevation (masl)	GW Elevation (masl)	GW Elevation (masl)	GW Elevation (masl)
	BH1	76.3	73.4	68.4	68.5
Grounded	BH2	76.4	76.4	76.5	76.5
Engineering	BH3	80.2	79.7	79.4	79.8
	BH4	80.5	80.4	80.4	80.3

NA – Monitoring wells could not be located or monitored

NM – Not Measured

APPENDIX D

Test Conducted by: KS

Slug Test - Water Level Data

Page 1 of 1

Project: 23 Elizabeth St. N

Number: 20-088

Client: Edenshaw Elizabeth Developments Limited

Location: Mississauga Slug Test: Slug Test 1: BH1 Test Well: BH1

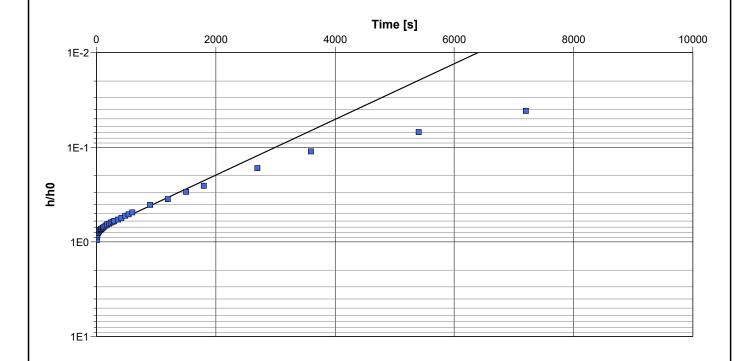
Test Date: 2020-06-18

Water level at t=0 [m]: 14.12 Static Water Level [m]: 12.67

Water level change at t=0 [m]: 1.45

vvalei	ieverat t-0 [iii]. 14.12	Stati	c water Lever [m]. 12.0
	Time	Water Level	WL Change
	[s]	[m]	[m]
1	5	14.06	1.39
2	10	13.95	1.28
3	15	13.90	1.23
4	20	13.83	1.16
5	25	13.83	1.16
6	30	13.82	1.15
7	45	13.79	1.12
8	60	13.76	1.09
9	75	13.74	1.07
10	90	13.72	1.05
11	105	13.70	1.03
12	120	13.68	1.01
13	150	13.65	0.98
14	180	13.62	0.95
15	210	13.60	0.93
16	240	13.58	0.91
17	270	13.56	0.89
18	300	13.54	0.87
19	360	13.51	0.84
20	420	13.48	0.81
21	480	13.44	0.77
22	540	13.41	0.74
23	600	13.38	0.71
24	900	13.26	0.59
25	1200	13.18	0.51
26	1500	13.10	0.43
27	1800	13.04	0.37
28	2700	12.91	0.24
29	3600	12.83	0.16
30	5400	12.77	0.10
31	7200	12.73	0.06

Slug Test Analysis Report


Project: 23 Elizabeth St. N

Number: 20-088

Client: Edenshaw Elizabeth Developments Limited

Location: Mississauga	Slug Test: Slug Test 1: BH1	Test Well: BH1
Test Conducted by: KS		Test Date: 2020-06-18
Analysis Performed by: JW	Rising Head Test 1	Analysis Date: 2020-07-02

Aquifer Thickness: 14.10 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH1	3.20 × 10 ⁻⁷	

Test Conducted by: KS

Slug Test - Water Level Data

Page 1 of 1

Project: 23 Elizabeth St. N

Number: 20-088

Client: Edenshaw Elizabeth Developments Limited

Test Well: BH2

Location: Mississauga Slug Test: Slug Test 2: BH2

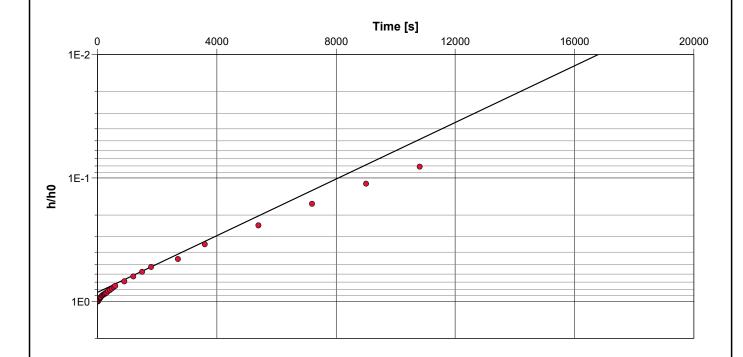
Test Date: 2020-06-18

Water level at t=0 [m]: 5.86 Static Water Level [m]: 4.87

Water level change at t=0 [m]: 0.99

vvalei	ievei at t=0 [iii]. 5.60	36	alic vvaler Lever [m]. 4.67
	Time	Water Level	WL Change
	[s]	[m]	[m]
1	5	5.86	0.99
2	10	5.86	0.99
3	15	5.85	0.98
4	20	5.85	0.98
5	25	5.84	0.97
6	30	5.84	0.97
7	45	5.82	0.95
8	60	5.82	0.95
9	75	5.80	0.93
10	90	5.79	0.92
11	105	5.79	0.92
12	120	5.78	0.91
13	150	5.76	0.89
14	180	5.75	0.88
15	210	5.74	0.87
16	240	5.73	0.86
17	270	5.72	0.85
18	300	5.71	0.84
19	360	5.69	0.82
20	420	5.67	0.80
21	480	5.65	0.78
22	540	5.63	0.76
23	600	5.61	0.74
24	900	5.55	0.68
25	1200	5.49	0.62
26	1500	5.44	0.57
27	1800	5.39	0.52
28	2700	5.32	0.45
29	3600	5.21	0.34
30	5400	5.11	0.24
31	7200	5.03	0.16
32	9000	4.98	0.11
33	10800	4.95	0.08

Slug Test Analysis Report


Project: 23 Elizabeth St. N

Number: 20-088

Client: Edenshaw Elizabeth Developments Limited

Location: Mississauga	Slug Test: Slug Test 2: BH2	Test Well: BH2
Test Conducted by: KS		Test Date: 2020-06-18
Analysis Performed by: JW	Rising Head Test 2	Analysis Date: 2020-07-02

Aquifer Thickness: 14.10 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH2	9.39 × 10 ⁻⁸	

Slug Test - Water Level Data

Page 1 of 1

Project: 23 Elizabeth St. N

Number: 20-088

Client: Edenshaw Elizabeth Developments Limited

Test Well: BH3

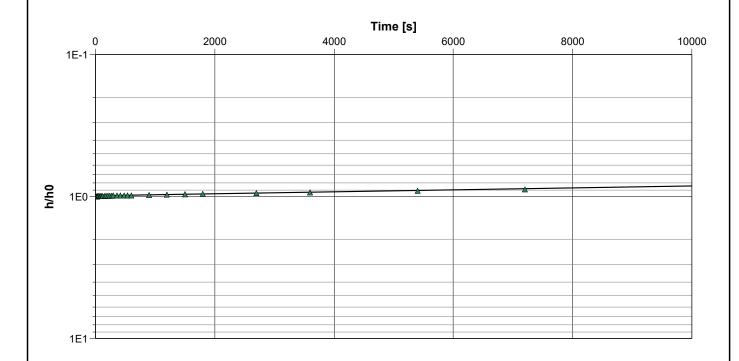
Location: Mississauga Slug Test: Slug Test 3: BH3

Test Conducted by: KS Test Date: 2020-06-18

Water level at t=0 [m]: 5.62 Static Water Level [m]: 3.70 Water level change at t=0 [m]: 1.92

	Time	Water Level	WL Change
	[s]	[m]	[m]
1	5	5.62	1.92
2	10	5.62	1.92
3	15	5.62	1.92
4	20	5.62	1.92
5	25	5.62	1.92
6	30	5.61	1.91
7	45	5.61	1.91
8	60	5.61	1.91
9	75	5.61	1.91
10	90	5.61	1.91
11	105	5.61	1.91
12	120	5.61	1.91
13	150	5.61	1.91
14	180	5.60	1.90
15	210	5.60	1.90
16	240	5.60	1.90
17	270	5.60	1.90
18	300	5.59	1.89
19	360	5.59	1.89
20	420	5.59	1.89
21	480	5.59	1.89
22	540	5.58	1.88
23	600	5.58	1.88
24	900	5.57	1.87
25	1200	5.56	1.86
26	1500	5.55	1.85
27	1800	5.54	1.84
28	2700	5.52	1.82
29	3600	5.50	1.80
30	5400	5.45	1.75
31	7200	5.41	1.71
		-	

Slug Test Analysis Report


Project: 23 Elizabeth St. N

Number: 20-088

Client: Edenshaw Elizabeth Developments Limited

Location: Mississauga	Slug Test: Slug Test 3: BH3	Test Well: BH3
Test Conducted by: KS		Test Date: 2020-06-18
Analysis Performed by: JW	Rising Head Test 3	Analysis Date: 2020-07-02

Aquifer Thickness: 8.80 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH3	7.21 × 10 ⁻⁹	

Slug Test - Water Level Data

Page 1 of 1

Project: 23 Elizabeth St. N

Number: 20-088

Client: Edenshaw Elizabeth Developments Limited

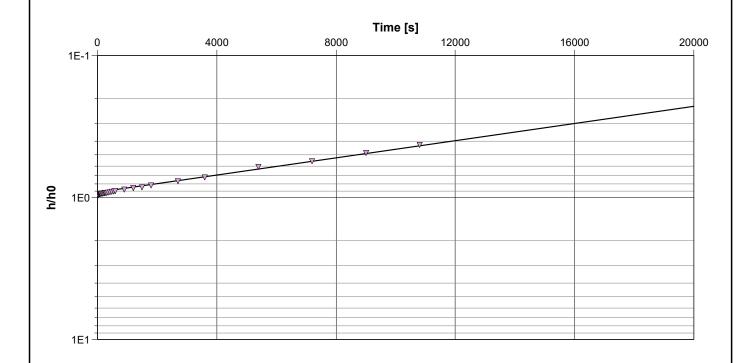
Location: Mississauga Slug Test: Slug Test 4: BH4 Test Well: BH4

Test Conducted by: KS Test Date: 2020-06-18

Water level at t=0 [m]: 4.72 Static Water Level [m]: 3.03 Water level change at t=0 [m]: 1.69

	• []		
	Time [s]	Water Leve [m]	WL Change [m]
1	5	4.69	1.66
2	10	4.66	1.63
3	15	4.64	1.61
4	20	4.64	1.61
5	25	4.64	1.61
6	30	4.64	1.61
7	45	4.63	1.60
8	60	4.63	1.60
9	75	4.63	1.60
10	90	4.63	1.60
11	105	4.62	1.59
12	120	4.62	1.59
13	150	4.62	1.59
14	180	4.61	1.58
15	210	4.61	1.58
16	240	4.60	1.57
17	270	4.60	1.57
18	300	4.60	1.57
19	360	4.59	1.56
20	420	4.58	1.55
21	480	4.57	1.54
22	540	4.56	1.53
23	600	4.55	1.52
24	900	4.52	1.49
25	1200	4.48	1.45
26	1500	4.46	1.43
27	1800	4.42	1.39
28	2700	4.33	1.30
29	3600	4.25	1.22
30	5400	4.06	1.03
31	7200	3.97	0.94
32	9000	3.85	0.82
33	10800	3.75	0.72
I			

Slug Test Analysis Report

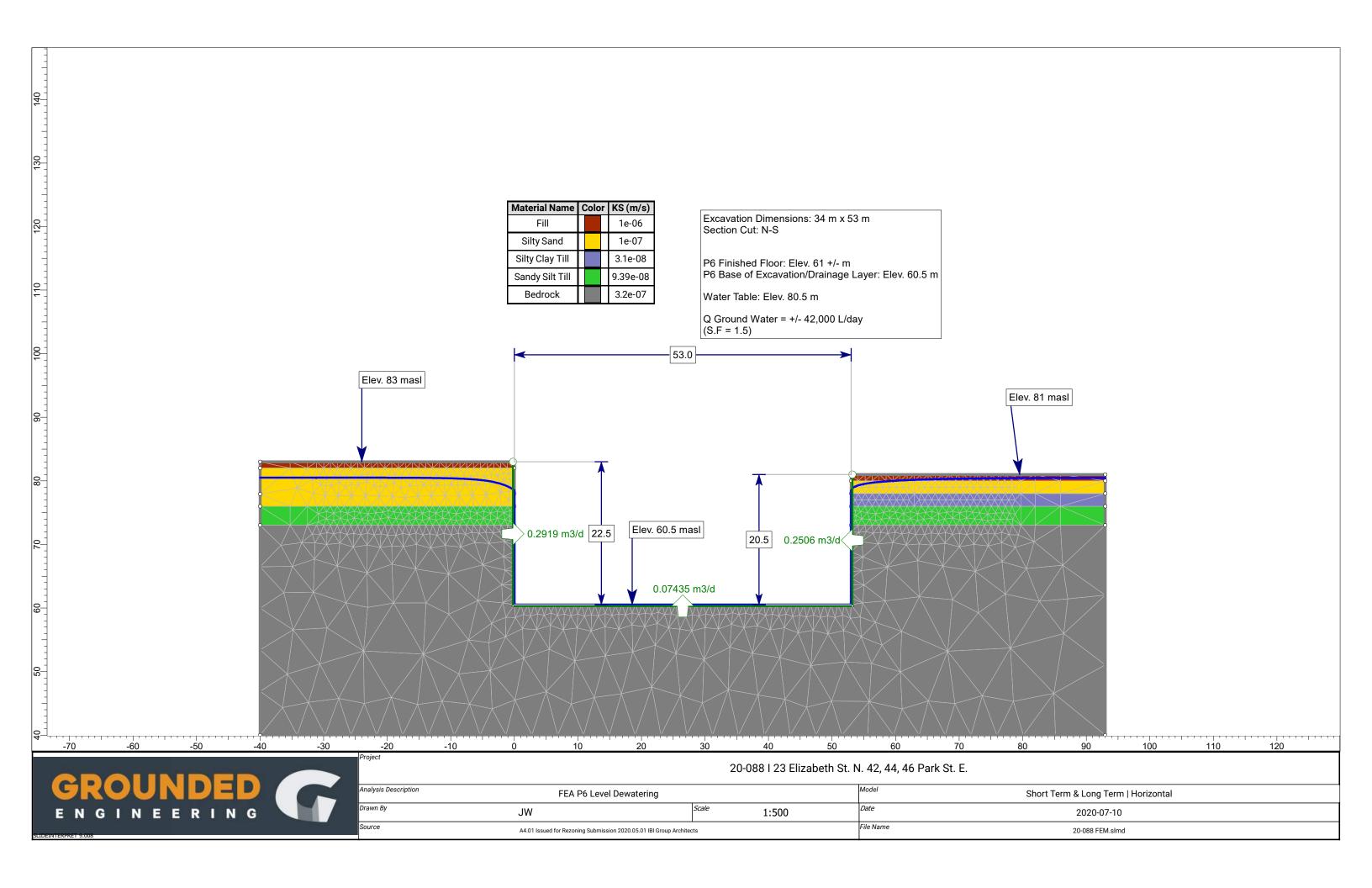

Project: 23 Elizabeth St. N

Number: 20-088

Client: Edenshaw Elizabeth Developments Limited

Location: Mississauga	Slug Test: Slug Test 4: BH4	Test Well: BH4
Test Conducted by: KS		Test Date: 2020-06-18
Analysis Performed by: JW	Rising Head Test 4	Analysis Date: 2020-07-02

Aquifer Thickness: 8.80 m



Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH4	3.10 × 10 ⁻⁸	

APPENDIX E

APPENDIX F

FINAL REPORT

CA14201-JUN20 R1

20-088-206, 23 Elizabeth St N

Prepared for

Grounded Engineering Inc.

First Page

CLIENT DETAIL	.S	LABORATORY DETAIL	LS
Client	Grounded Engineering Inc.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	12 Banigan Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Toronto, Ontario		
	M4H1E9. Canada		
Contact	Jessie Wu	Telephone	705-652-2143
Telephone	647-264-7909	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	jwu@groundedeng.ca	SGS Reference	CA14201-JUN20
Project	20-088-206, 23 Elizabeth St N	Received	06/12/2020
Order Number		Approved	06/22/2020
Samples	Ground Water (1)	Report Number	CA14201-JUN20 R1
		Date Reported	06/22/2020

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present:Yes

Custody Seal Present:Yes

Chain of Custody Number:013956

metals limits raised 100x due to sample matrix

tkn changed to dig due to sample matrix

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mo

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

1/25

Member of the SGS Group (SGS SA)

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-10
Exceedance Summary	11
QC Summary	12-23
Legend	24
Annexes	25

CA14201-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206, 23 Elizabeth St N

Project Manager: Jessie Wu

PACKAGE: SANSEW - General Chem	nistry (WATER)		Saı	mple Number	8
			ક	Sample Name	SW-UF-BH1
L1 = SANSEW / WATER / Mississauga - Storm Sewer - E	BL_259_05		s	Sample Matrix	Ground Water
_2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer	Discharge - BL_53_2010			Sample Date	12/06/2020
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	15	300	< 4↑
Total Suspended Solids	mg/L	2	15	350	261
Total Kjeldahl Nitrogen	as N mg/L	0.5	1	100	22.9
PACKAGE: SANSEW - Metals and Inc	organics		Sar	mple Number	8
(WATER)					
			S	Sample Name	SW-UF-BH1
L1 = SANSEW / WATER / Mississauga - Storm Sewer - E	BL_259_05		s	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer	Discharge - BL_53_2010			Sample Date	12/06/2020
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics					
Residual chlorine	mg/L	0.02			0.08
Residual chlorine Fluoride	mg/L mg/L	0.02		10	0.08 0.27
			0.02	10 2	
Fluoride	mg/L	0.06	0.02		0.27
Fluoride Cyanide (total)	mg/L	0.06 0.01	0.02	2	0.27 < 0.01
Fluoride Cyanide (total) Sulphate	mg/L mg/L mg/L	0.06 0.01 2		2 1500	0.27 < 0.01 1500
Fluoride Cyanide (total) Sulphate Aluminum (total)	mg/L mg/L mg/L mg/L	0.06 0.01 2 0.1		2 1500 50	0.27 < 0.01 1500 2.1
Fluoride Cyanide (total) Sulphate Aluminum (total) Antimony (total)	mg/L mg/L mg/L mg/L mg/L	0.06 0.01 2 0.1 0.09	1	2 1500 50 5	0.27 < 0.01 1500 2.1 < 0.09
Fluoride Cyanide (total) Sulphate Aluminum (total) Antimony (total) Arsenic (total)	mg/L mg/L mg/L mg/L mg/L mg/L	0.06 0.01 2 0.1 0.09 0.02	0.02	2 1500 50 5 1	0.27 < 0.01 1500 2.1 < 0.09 < 0.02
Fluoride Cyanide (total) Sulphate Aluminum (total) Antimony (total) Arsenic (total) Cadmium (total)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.06 0.01 2 0.1 0.09 0.02 0.0003	1 0.02 0.008	2 1500 50 5 1 0.7	0.27 < 0.01 1500 2.1 < 0.09 < 0.02 0.0003
Fluoride Cyanide (total) Sulphate Aluminum (total) Antimony (total) Arsenic (total) Cadmium (total) Chromium (total)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.06 0.01 2 0.1 0.09 0.02 0.0003 0.008	0.02 0.008 0.08	2 1500 50 5 1 0.7 5	0.27 < 0.01 1500 2.1 < 0.09 < 0.02 0.0003 0.009

CA14201-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206, 23 Elizabeth St N

Project Manager: Jessie Wu

Samplers: Matthew Garcia

PACKAGE: SANSEW - Metals and Inorganics	
(WATER)	

Sample Number

8

Sample Name SW-UF-BH1

L1 = SANSEW / WATER / - - Mississauga - Storm Sewer - BL_259_05

Sample Matrix

Ground Water

L2 = SANSEW / WATER / - - Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010

Units

RL

Sample Date

L1

12/06/2020 Result

Metals and Inorganics (continued)

Parameter

Manganese (total)	mg/L	0.001	0.05	5	5.15	
Molybdenum (total)	mg/L	0.004		5	< 0.004	
Nickel (total)	mg/L	0.01	0.08	3	< 0.01	
Phosphorus (total)	mg/L	0.3	0.4	10	0.5	
Selenium (total)	mg/L	0.004	0.02	1	< 0.004	
Silver (total)	mg/L	0.005	0.12	5	< 0.005	
Tin (total)	mg/L	0.006		5	< 0.006	
Titanium (total)	mg/L	0.005		5	0.046	
Zinc (total)	mg/L	0.2	0.04	3	< 0.2	

CA14201-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206, 23 Elizabeth St N

Project Manager: Jessie Wu

PACKAGE: SANSEW - Microbiology (WATER)				
PACKAGE. SANSEW - WICIODIOLOGY (WATER)		Sr	Sample Number	8
			Sample Name	SW-UF-BH1
I = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010			Sample Date	12/06/2020
Parameter Units	RL	L1	L2	Result
Microbiology				
E. Coli cfu/100mL		200		<2↑
E. COII CTU/100mL	-	200		
PACKAGE: SANSEW - Nonylphenol and Ethoxylates Sample Number			8	
(WATER)				
(WATEN)			Sample Name	SW-UF-BH1
		•		
.1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010			Sample Date	12/06/2020
Parameter Units	RL	L1	L2	Result
Nonylphenol and Ethoxylates				
Nonylphenol mg/L	0.001		0.02	< 0.001
Nonylphenol Ethoxylates mg/L	0.01		0.2	< 0.01
Nonylphenol diethoxylate mg/L	0.01			< 0.01
Nonylphenol monoethoxylate mg/L	0.01			< 0.01
Nonylphenol monoethoxylate mg/L	0.01			< 0.01
	0.01	Sa	Sample Number	< 0.01
	0.01		Sample Number	
PACKAGE: SANSEW - Oil and Grease (WATER)	0.01		•	8
PACKAGE: SANSEW - Oil and Grease (WATER) L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05	0.01		Sample Name	8 SW-UF-BH1
PACKAGE: SANSEW - Oil and Grease (WATER) L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05			Sample Name	8 SW-UF-BH1 Ground Water 12/06/2020
PACKAGE: SANSEW - Oil and Grease (WATER) L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05 L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010 Parameter Units	0.01		Sample Name Sample Matrix Sample Date	8 SW-UF-BH1 Ground Water
PACKAGE: SANSEW - Oil and Grease (WATER) L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05 L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010 Parameter Units Oil and Grease	RL		Sample Name Sample Matrix Sample Date	8 SW-UF-BH1 Ground Water 12/06/2020 Result
PACKAGE: SANSEW - Oil and Grease (WATER) L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05 L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010 Parameter Units Oil and Grease Oil & Grease (total) mg/L	RL 2		Sample Name Sample Matrix Sample Date L2	8 SW-UF-BH1 Ground Water 12/06/2020 Result
PACKAGE: SANSEW - Oil and Grease (WATER) L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05 L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010 Parameter Units Oil and Grease	RL		Sample Name Sample Matrix Sample Date	8 SW-UF-BH1 Ground Water 12/06/2020 Result

CA14201-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206, 23 Elizabeth St N

Project Manager: Jessie Wu

PACKAGE: SANSEW - Other (ORP) (WA	TER)		Sar	mple Number	8
			s	ample Name	SW-UF-BH1
L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_25	59_05		s	ample Matrix	Ground Water
.2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010			Sample Date	12/06/2020	
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
Chromium VI	μg/L	0.2	40		< 0.2
pH	no unit	0.05	9	10	6.91
Mercury (total)	mg/L	0.00001	0.0004	0.01	< 0.00001
moreally (total)	9,2	0.00001	0.0001	0.01	
PACKAGE: SANSEW - PAHs (WATER)			Sar	mple Number	8
			s	ample Name	SW-UF-BH1
L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_25	59_05		s	ample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch	narge - BL_53_2010			Sample Date	12/06/2020
Parameter	Units	RL	L1	L2	Result
PAHs					
Benzo(b+j)fluoranthene	mg/L	0.0001			< 0.0001
	<u> </u>				
PACKAGE: SANSEW - PCBs (WATER)			Sar	mple Number	8
			s	ample Name	SW-UF-BH1
L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_25	59_05		s	ample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch			;	Sample Date	12/06/2020
Parameter	Units	RL	L1	L2	Result
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		0.001	< 0.0001
i diyonionilated diphenyis (Fods) - Total	my/L	0.0001		0.001	- 0.0001

CA14201-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206, 23 Elizabeth St N

Project Manager: Jessie Wu

PACKAGE: SANSEW - Phenols (WATER)		Sa	mple Number	8
		8	Sample Name	SW-UF-BH1
L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05		8	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2	010		Sample Date	12/06/2020
Parameter Units	RL	L1	L2	Result
Phenols				
4AAP-Phenolics mg/L	0.002	0.008	1	0.002
Ţ.				
PACKAGE: SANSEW - SVOCs (WATER) Sample Num			mple Number	8
		8	Sample Name	SW-UF-BH1
1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05			Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010			Sample Date	12/06/2020
Parameter Units	RL	L1	L2	Result
SVOCs				
di-n-Butyl Phthalate mg/L	0.002		0.08	< 0.002
Bis(2-ethylhexyl)phthalate mg/L	0.002		0.012	< 0.002
PAHs (Total) mg/L	- 0.002	0.002	0.012	< 0.001
Perylene mg/L	0.0005	0.002		< 0.0005
i eryiene ingr	0.0003			0.0000
PACKAGE: SANSEW - SVOCs - PAHs (WATER)		Sa	mple Number	8
		5	Sample Name	SW-UF-BH1
		_	Samula Matrix	Ground Water
11 = SANSEW / WATER / Mississauga - Storm Sewer - BL 259 05		S	Sample Matrix	Ordana Water
•)10		Sample Date	12/06/2020
L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05 L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2 Parameter Units			Sample Date	12/06/2020
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2 Parameter Units	010 RL		-	
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2 Parameter Units SVOCs - PAHs	RL		Sample Date	12/06/2020 Result
Parameter Units SVOCs - PAHs 7Hdibenzo(c,g)carbazole mg/L	RL 0.0001		Sample Date	12/06/2020 Result < 0.0001
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2 Parameter Units SVOCs - PAHs	RL 0.0001 0.0001		Sample Date	12/06/2020 Result < 0.0001 < 0.0001
Parameter Units SVOCs - PAHs 7Hdibenzo(c,g)carbazole mg/L	RL 0.0001		Sample Date	12/06/2020 Result < 0.0001

CA14201-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206, 23 Elizabeth St N

Project Manager: Jessie Wu

PACKAGE: SANSEW - SVOCs - PAHs (WAT	ΓER)		San	nple Number	8
			Sa	ample Name	SW-UF-BH1
L1 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05	i		Sa	ample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge	- BL_53_2010			Sample Date	12/06/2020
Parameter	Units	RL	L1	L2	Result

Parameter	Units	RL	L1	L2	Result
SVOCs - PAHs (continued)					
Benzo(e)pyrene	mg/L	0.0001			< 0.0001
Benzo(ghi)perylene	mg/L	0.0002			< 0.0002
Benzo(k)fluoranthene	mg/L	0.0001			< 0.0001
Chrysene	mg/L	0.0001			< 0.0001
Dibenzo(a,h)anthracene	mg/L	0.0001			< 0.0001
Dibenzo(a,i)pyrene	mg/L	0.0001			< 0.0001
Dibenzo(a,j)acridine	mg/L	0.0001			< 0.0001
Fluoranthene	mg/L	0.0001			< 0.0001
Indeno(1,2,3-cd)pyrene	mg/L	0.0002			< 0.0002
Phenanthrene	mg/L	0.0001			< 0.0001
Pyrene	mg/L	0.0001			< 0.0001

CA14201-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206, 23 Elizabeth St N

Project Manager: Jessie Wu

Samplers: Matthew Garcia

PACKAGE: SANSEW - VOCs (WATER)

L1 = SANSEW / WATER / - - Mississauga - Storm Sewer - BL_259_05

Sample Number

8

12/06/2020

Sample Name SW-UF-BH1

Sample Matrix

Ground Water

L2 = SANSEW / WATER / - - Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010

Sample Date

RL L1 L2 Units Result Parameter

٠,	$\overline{}$		_
V١	U	U	S

OCs					
Chloroform	mg/L	0.0005	0.04	< 0.0005	
1,2-Dichlorobenzene	mg/L	0.0005	0.05	< 0.0005	
1,4-Dichlorobenzene	mg/L	0.0005	0.08	< 0.0005	
cis-1,2-Dichloroethene	mg/L	0.0005	4	< 0.0005	
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	< 0.0005	
Methylene Chloride	mg/L	0.0005	2	< 0.0005	
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	< 0.0005	
Methyl ethyl ketone	mg/L	0.02	8	< 0.02	
Styrene	mg/L	0.0005	0.2	< 0.0005	
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	< 0.0005	
Trichloroethylene	mg/L	0.0005	0.4	< 0.0005	

CA14201-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206, 23 Elizabeth St N

Project Manager: Jessie Wu

Samplers: Matthew Garcia

Sample Number

Sample Matrix

L2

L1

Sample Name SW-UF-BH1

RL

Units

Ground Water

8

L1 = SANSEW / WATER / - - Mississauga - Storm Sewer - BL_259_05

-

L2 = SANSEW / WATER / - - Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010

Sample Date 12

12/06/2020 Result

Param	neter
1000	DTEV

VOCs - BTEX						
Benzene	mg/L	0.0005	0.002	0.01	0.0007	
Ethylbenzene	mg/L	0.0005	0.002	0.16	< 0.0005	
Toluene	mg/L	0.0005	0.002	0.27	< 0.0005	
Xylene (total)	mg/L	0.0005	0.0044	1.4	< 0.0005	
m-p-xylene	mg/L	0.0005			< 0.0005	
o-xylene	mg/L	0.0005			< 0.0005	

EXCEEDANCE SUMMARY

				SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05	SANSEW / WATE / Peel Table 1 Sanitary Sewer Discharge - BL_53_2010
Parameter	Method	Units	Result	L1	L2
-UF-BH1 Total Suspended Solids	SM 2540D	mg/L	261	15	I
Aluminum	SM 3030/EPA 200.8	mg/L	2.1	1	
Manganese	SM 3030/EPA 200.8	mg/L	5.15	0.05	5
Phosphorus	SM 3030/EPA 200.8	mg/L	0.5	0.4	
Zinc	SM 3030/EPA 200.8	mg/L	< 0.2	0.04	
Total Kjeldahl Nitrogen	SM 4500-N C/4500-NO3- F	mg/L	22.9	1	

20200622 11 / 25

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch Units		RL Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO0384-JUN20	mg/L	2	<2	ND	20	95	80	120	95	75	125
Sulphate	DIO0389-JUN20	mg/L	2	<2	ND	20	95	80	120	103	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.			
	Reference	erence		Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Biochemical Oxygen Demand (BOD5)	BOD0024-JUN20	mg/L	2	< 2	NV	30	86	70	130	NV	70	130	

Chlorine

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Du	plicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD		Spike	Recovery Limits (%)		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Residual chlorine	EWL0259-JUN20	mg/L	0.02	< 0.02	0	20				NA		

20200622 12 / 25

QC SUMMARY

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Cyanide (total)	SKA0146-JUN20	mg/L	0.01	<0.01	ND	10	98	90	110	NV	75	125	

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	plicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	RPD AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0280-JUN20	mg/L	0.06	<0.06	ND	10	107	90	110	103	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch Reference	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
				Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
							Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA0148-JUN20	ug/L	0.2	<0.2	ND	20	103	80	120	82	75	125
Chromium VI	SKA0161-JUN20	ug/L	0.2	<0.2	11	20	103	80	120	NV	75	125

20200622 13 / 25

CA14201-JUN20 R1

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference		Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0011-JUN20	mg/L	0.00001	< 0.00001	ND	20	88	80	120	95	70	130

20200622 14 / 25

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						. ,	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0072-JUN20	mg/L	0.005	<0.00005	ND	20	100	90	110	102	70	130
Aluminum (total)	EMS0072-JUN20	mg/L	0.1	<0.001	0	20	103	90	110	104	70	130
Arsenic (total)	EMS0072-JUN20	mg/L	0.02	<0.0002	3	20	102	90	110	97	70	130
Cadmium (total)	EMS0072-JUN20	mg/L	0.0003	<0.000003	0	20	101	90	110	107	70	130
Cobalt (total)	EMS0072-JUN20	mg/L	0.0004	<0.000004	1	20	101	90	110	98	70	130
Chromium (total)	EMS0072-JUN20	mg/L	0.008	<0.00008	4	20	103	90	110	105	70	130
Copper (total)	EMS0072-JUN20	mg/L	0.02	<0.0002	2	20	101	90	110	98	70	130
Manganese (total)	EMS0072-JUN20	mg/L	0.001	<0.00001	1	20	104	90	110	103	70	130
Molybdenum (total)	EMS0072-JUN20	mg/L	0.004	<0.00004	1	20	105	90	110	104	70	130
Nickel (total)	EMS0072-JUN20	mg/L	0.01	<0.0001	0	20	100	90	110	97	70	130
Lead (total)	EMS0072-JUN20	mg/L	0.001	<0.00001	1	20	99	90	110	103	70	130
Phosphorus (total)	EMS0072-JUN20	mg/L	0.3	<0.003	4	20	96	90	110	NV	70	130
Antimony (total)	EMS0072-JUN20	mg/L	0.09	<0.0009	1	20	105	90	110	119	70	130
Selenium (total)	EMS0072-JUN20	mg/L	0.004	<0.00004	14	20	98	90	110	101	70	130
Tin (total)	EMS0072-JUN20	mg/L	0.006	<0.00006	0	20	101	90	110	NV	70	130
Titanium (total)	EMS0072-JUN20	mg/L	0.005	<0.00005	1	20	106	90	110	NV	70	130
Zinc (total)	EMS0072-JUN20	mg/L	0.2	<0.002	1	20	102	90	110	97	70	130
Silver (total)	EMS9003-JUN20	mg/L	0.005	<0.00005	ND	20	100	90	110	91	70	130
Aluminum (total)	EMS9003-JUN20	mg/L	0.1	<0.001	9	20	95	90	110	100	70	130
Arsenic (total)	EMS9003-JUN20	mg/L	0.02	<0.0002	4	20	102	90	110	101	70	130

20200622

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	•	Spike Recovery		ery Limits %)
						(,	(%)	Low	High	(%)	Low	High
Cadmium (total)	EMS9003-JUN20	mg/L	0.0003	<0.000003	6	20	101	90	110	106	70	130
Cobalt (total)	EMS9003-JUN20	mg/L	0.0004	<0.000004	0	20	99	90	110	100	70	130
Chromium (total)	EMS9003-JUN20	mg/L	0.008	<0.00008	10	20	100	90	110	110	70	130
Copper (total)	EMS9003-JUN20	mg/L	0.02	<0.0002	3	20	101	90	110	105	70	130
Manganese (total)	EMS9003-JUN20	mg/L	0.001	<0.00001	0	20	100	90	110	102	70	130
Molybdenum (total)	EMS9003-JUN20	mg/L	0.004	<0.00004	0	20	98	90	110	100	70	130
Nickel (total)	EMS9003-JUN20	mg/L	0.01	<0.0001	2	20	99	90	110	102	70	130
Lead (total)	EMS9003-JUN20	mg/L	0.001	<0.00001	ND	20	99	90	110	98	70	130
Phosphorus (total)	EMS9003-JUN20	mg/L	0.3	<0.003	18	20	102	90	110	NV	70	130
Antimony (total)	EMS9003-JUN20	mg/L	0.09	<0.0009	2	20	104	90	110	NV	70	130
Selenium (total)	EMS9003-JUN20	mg/L	0.004	<0.00004	5	20	101	90	110	99	70	130
Tin (total)	EMS9003-JUN20	mg/L	0.006	<0.00006	10	20	99	90	110	NV	70	130
Titanium (total)	EMS9003-JUN20	mg/L	0.005	<0.00005	19	20	100	90	110	NV	70	130
Zinc (total)	EMS9003-JUN20	mg/L	0.2	<0.002	4	20	100	90	110	NV	70	130

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9264-JUN20	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0278-JUN20	mg/L	0.01	< 0.01			87	55	120			
Nonylphenol Ethoxylates	GCM0278-JUN20	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0278-JUN20	mg/L	0.01	< 0.01			98	55	120			
Nonylphenol	GCM0278-JUN20	mg/L	0.001	< 0.001			103	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0241-JUN20	mg/L	2	<2	NSS	20	104	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0241-JUN20	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0241-JUN20	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	•
	Reference	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0265-JUN20	no unit	0.05	NA	1		100			NA		

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0162-JUN20	mg/L	0.002	<0.002	ND	10	104	80	120	95	75	125
4AAP-Phenolics	SKA0191-JUN20	mg/L	0.002	<0.002	ND	10	109	80	120	112	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) - Total	GCM0276-JUN20	mg/L	0.0001	<0.0001	ND	30	88	60	140	NSS	60	140

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits %)
						(,	(%)	Low	High	(%)	Low	High
7Hdibenzo(c,g)carbazole	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	106	50	140	NSS	50	140
Anthracene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	81	50	140	NSS	50	140
Benzo(a)anthracene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Benzo(a)pyrene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	94	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	104	50	140	NSS	50	140
Benzo(e)pyrene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	83	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0273-JUN20	mg/L	0.0002	< 0.0002	NSS	30	95	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	91	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0273-JUN20	mg/L	0.002	< 0.002	NSS	30	103	50	140	NSS	50	140
Chrysene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	95	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0273-JUN20	mg/L	0.002	< 0.002	NSS	30	104	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	96	50	140	NSS	50	140
Dibenzo(a,i)pyrene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	96	50	140	NSS	50	140
Dibenzo(a,j)acridine	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Fluoranthene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	89	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0273-JUN20	mg/L	0.0002	< 0.0002	NSS	30	96	50	140	NSS	50	140
Perylene	GCM0273-JUN20	mg/L	0.0005	< 0.0005	NSS	30	85	50	140	NSS	50	140
Phenanthrene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	80	50	140	NSS	50	140
Pyrene	GCM0273-JUN20	mg/L	0.0001	< 0.0001	NSS	30	88	50	140	NSS	50	140

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0263-JUN20	mg/L	2	< 2	2	10	99	90	110	NA		

Total Kjeldahl Nitrogen by SFA

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	f.
Rei	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA5068-JUN20	as N mg/L	0.5	<0.5	1	20	95	80	120	97	75	125

20200622 21 / 25

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	97	60	130	102	50	140
1,2-Dichlorobenzene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
1,4-Dichlorobenzene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
Benzene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	99	60	130	100	50	140
Chloroform	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	98	60	130	97	50	140
cis-1,2-Dichloroethene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	98	60	130	98	50	140
Ethylbenzene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	99	60	130	102	50	140
m-p-xylene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Methyl ethyl ketone	GCM0239-JUN20	mg/L	0.02	<0.02	ND	30	103	50	140	106	50	140
Methylene Chloride	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
o-xylene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	99	60	130	103	50	140
Styrene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Tetrachloroethylene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	101	60	130	101	50	140
(perchloroethylene)												
Toluene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	99	60	130	98	50	140
trans-1,3-Dichloropropene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	103	60	130	95	50	140
Trichloroethylene	GCM0239-JUN20	mg/L	0.0005	<0.0005	ND	30	101	60	130	95	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20200622 23 / 25

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20200622 24 / 25

Request for Laboratory Services and CHAIN OF CUSTODY

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2HO Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

No: 013956

beceived By: Beceived Date: OL / 12 1020 (mm/ddyy) Beceived Time: (1:072 - Artifin) REPORT INFORMATION REPORT INFORMATION Company: Grounds of Englished Jack Contact: Jesse Wu Co	(same as f Company: Contact: Address:	Custody Seal Present: Custody Seal Present: Custody Seal Intact: INVOICE INFORMATION (same as Report Information) pany: act: ress:	tture): t: Yes	1	Cooling Agent Present: Yest No Type: (C P.O. #: Temperature Upon Receipt (C) 4, 2 +, 3 P.O. #: Quotation #: Quotation #: P.O. #: Site Location/ID: 2: Turnaround Time (Tat) Required TAT's are quoted in busine Samples received after 6p RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION NOTE: DRINKING (POTABLE) WATER SAMPLES FO	Cooling Agent Present: Yest Temperature Upon Receipt (°C) #: 20-088-206 Regular TAT (5-7days) AT (Additional Charges May A CONFIRM RUSH FEASIBILITY	ent Prese re Upon F (5-7day	nt: Ye Receipt (A POPULATION A POP	ALL SO	TUR Typ	3 JRNAROU 1 Day PRESEN	Type:	Days PRIOTABL	P.O. #. Site Lo AT) REC TAT's are Samples r Samples r OR TO: D) WATE	P.O. #: Site Location/ID: IT) REQUIRED AT's are quoted in b amples received aft 3 Days	P.O. #: P.O. #: Site Location/ID: 23 Time (TAT) REQUIRED TAT's are quoted in busines Samples received after 6pm 2 Days 3 Days 4 Days TVE PRIOR TO SUBMISSION (POTABLE) WATER SAMPLES FOR	23 23 23 Noness	LAB LIMS #:_ Ell_sobet4 sdays (exclude or on weekends	S#:	SJ. SJ.	P.O. #: Site Location/ID: 23 El/2066/4 St. N Site Location/ID: 23 El/2066/4 St. N TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business days IOR TO SUBMISSION E) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED
	FIIOIR.				Specify Due Date:	Date:					NOTE	DRIN	KING (P	OTABL	E) WAT	ER SA	MPLES	FOR H	UMAN	CONSI OF CUS	MPTIO	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY
REG	REGULATIONS								A		VALYSIS REQUESTED	RE	QUE	STE	D							
Regulation 153/04:	Other Regulations:	ns:	Sewer	Sewer By-Law:	M	90	SI	SVOC	РСВ	PHC		VOC	Pest	7		Othe	(plear	Other (please specify)			TCLP	
Table 1	Reg 347/558 (3 Day min PWQO MMER CCME Other:	(3 Day min TAT) MMER Other:	Municipality:	anitary orm lity: Sauge /Rel			Mo,NI,		roclor 🗌	Marka Sa				BF.	8 1 1	Barrier .			nbined	tended	Specify TCLP tests	
RECORD OF SITE CONDITION (RSC)	□ YES □	NO				s-soil only	o,Cu,Pb,I	28] A	Х		U.B.		ecity dini	ga.					Ext	Uvoc	COMMENTS:
SAMPLE IDENTIFICATION	DATE	TIME	# OF	MATRIX	Field Filtered Metals & Ino Incl CrVI, CN,Hg pH,(B(H (CI, Ne-winter)	Full Metals S ICP metals plus B(HWS- ICP Metals or	ICP Metals or Sb,As,Ba,Ba,Bc,Cd,Cr,Co Sa,Ag,Ti,U,V,Zn PAHs only	SVOCs all ind PAHs, ABNs, CPr	PCBs Total	F1-F4 + BTE	F1-F4 only	VOCS all incl BTEX BTEX only	Pesticides	Organochlorine or spe					Sewer Use: Specify pkg: Water Chara	General	Day Day	
SW-UF-BHI	02/21/90	12:15	20	GW	2										3 2				×			
																		18				
		2	W Color Control									100			1	133						
																				18		
		1000 Tal								A K										2 2		
														92								
												A.S.			8,	1	1					
									13			100	100	10	191	19				1		
									1							F				7 6		
Observations/Comments/Special Instructions																						
Sampled By (NAME): Matthew Carola			Signature:	monte	1					34	-	De	Date:	19	2	20	0	(mm	(mm/dd/yy)			Pink Copy - Client
0	atha on		Signature	moto		To Take						Da	Date: (8	12	120	0	(min	(mm/dd/yy)			Date: 06 / 12 / 20 (mm/dd/yy) Yellow & White Copy - SGS

CA14502-JUN20 R1

20-088-206

Prepared for

Grounded Engineering Inc.

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	Grounded Engineering Inc.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	12 Banigan Drive, Toronto	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, M4H1E9		
	Phone: 647-264-7909. Fax:		
Contact	Jessie Wu	Telephone	705-652-2143
Telephone	647-264-7909	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	jwu@groundedeng.ca	SGS Reference	CA14502-JUN20
Project	20-088-206	Received	06/23/2020
Order Number		Approved	06/29/2020
Samples	Ground Water (1)	Report Number	CA14502-JUN20 R1
		Date Reported	06/29/2020

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:013956

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

1/6

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

Member of the SGS Group (SGS SA)

CA14502-JUN20 R1

FINAL REPORT

TABLE OF CONTENTS

First Page	1
Index	2
Results	3
Exceedance Summary	4
QC Summary	5
Legend	6

Manganese (total)

FINAL REPORT

CA14502-JUN20 R1

Client: Grounded Engineering Inc.

Project: 20-088-206

Project Manager: Jessie Wu

Samplers: Matthew Garcia

PACKAGE: SANSEW - Metals and I	norganics		Sa	mple Number	8
(WATER)					
			5	Sample Name	SW-UF-BH1
L1 = SANSEW / WATER / Mississauga - Storm Sewer	- BL_259_05			•	
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sew	rer Discharge - BL_53_2010			Sample Date	12/06/2020
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics					

0.00001

mg/L

0.05

EXCEEDANCE SUMMARY

					SANSEW / WATER / Mississauga - Storm Sewer - BL_259_05	SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge -
SW	Parameter -UF-BH1	Method	Units	Result	L1	BL_53_2010 L2
	Manganese	SM 3030/EPA 200.8	mg/L	5.35	0.05	5

20200629 4 / 6

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	I
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Manganese (total)	EMS0121-JUN20	mg/L	0.00001	<0.00001	5	20	99	90	110	101	70	130
Manganese (total)	EMS0151-JUN20	mg/L	0.00001	<0.00001	1	20	99	90	110	99	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20200629 5 / 6

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20200629 6 / 6