

nextrans.ca

Transportation Impact Study Update

PROPOSED MIXED-USE DEVELOPMENT

3115 Hurontario Street, MISSISSAUGA, ONTARIO

July 2025

Project No: NT-21-262

520 Industrial Parkway South, Suite 201 Aurora ON L4G 6W8

Phone: 905-503-2563 www.nextrans.ca

NextEng Consulting Group Inc.

July 28, 2025

Attention: Aiden Sweeny, President

The Six Real Estate Developments Inc. 134 Peter Street, Suite 1601 Toronto, ON M5V 2H2

Re: Transportation Impact Study Update

Proposed Mixed-use Development (Residential, Retail and Charity Centre)

3115 Hurontario Street, City of Mississauga

Our Project No. NT-21-262

NexTrans Consulting Engineers (a Division of NextEng Consulting Group Inc.) is pleased to present the enclosed Transportation Impact Study Update for the above noted site in support Official Plan Amendment and Zoning By-law Amendment Applications for a proposed mixed-use development that includes residential, charity centre and retail uses. The subject site is located at 3115 Hurontario Street, southeast quadrant of Hurontario Street and Kirwin Avenue, in the City of Mississauga. The purposes of this Study Update are to address the City's comments on the second submission and provide updated assessment based on the latest site plan and statistics.

The subject site is located adjacent to the future Hurontario LRT (Hazel McCallion Line) and approximately 350 m (or less than 5-minute walk) to the future Dundas Station and only 250 m (or about 3-minute walk) to the intermodal LRT Stop at Cooksville GO Station. The subject site will be re-developed as a sustainable mixed-use transit-oriented development which will support the future transit improvements by Metrolinx, the Region and the City. These major transit improvements include the future Hurontario LRT, Dundas Street BRT, Cooksville GO Train Station improvements and GO Expansion Project, as well as Major Transit Station Areas at the Dundas Street/Hurontario Street and Cooksville GO Station. The proposed development is planned with great emphasis on a sustainable non-automobile-oriented mobility plan promoted by the Official Plans, City of Mississauga Council and Provincial initiatives.

The Transportation Impact Study Update concludes that the proposed development can adequately be accommodated by the existing transportation network, existing and future transit services, as well as the Transportation Demand Management measures and incentives recommended in this Study.

We trust the enclosed sufficiently addresses your needs. Should you have any questions, please do not hesitate to contact the undersigned.

Yours truly,

Nextrans Consulting Engineers

A Division of NextEng Consulting Group Inc.

Prepared by:

Sam Nguyen, Dipl. Transportation Analyst Reviewed by:

John Nhan, P.Eng. Project Engineer

J. NHAN 100531407 Reviewed and Approved by:

Richard Pernicky, MITE

Principal

Report Submission Record

Identification	Date	Description of issued and/or revision
Final Report	July 28, 2025	For Final Submission

COMMENTS RECEIVED FROM THE CITY OF MISSISSAUGA

The following comments were received from the City of Mississauga. Appropriate responses are provided with the additional analysis to support these responses are provided in this Study Update.

A. GENERAL

i. The site plan will require additional revisions, please see traffic comment #228. Once revised, the TIS should be updated accordingly.

Response: Noted. The site plan has been revised and the latest design and statistics have been included in this Study Update.

B. SITE TRAFFIC

i. The location/setting selected for LUC 222 should be General Urban/Suburban, and should be indicated as such in the report. Please revise accordingly.

Response: Noted and this comment has been included in the report and analysis in this Study Update.

ii. The trip generation for the retail/shopping centre does not seem appropriate. Please provide additional technical justification for why this assumption is appropriate. During AM peak, 1 trip in/out would likely not cover employees, let alone retail users. Clarification is required.

Response: It should be noted that the trip generation rates for the retail/shopping centre were obtained directly from the ITE Trip Generation Manual 11th Edition (LUC 820 General Urban/Suburban). Another category can be used such as the High-Rise Residential with Ground-Floor Commercial LUC 232 (1-25k GFA). However, through the terms of reference, the City staff has indicated that this LUC is not appropriate and cannot be used for analysis.

One of the reasons the morning trip rates are low for the ITE Trip Generation Manual 11th Edition (LUC 820 General Urban/Suburban) is because the majority of the retail/commercial uses are not opened during the morning peak hours. The one trip noted by staff could be related to delivery or just one employee such as manager come to the store to open the shop and prepare for the day. However, it may not be opened to the public.

To be conservative and to address the City's comment, a slightly more conservative LUC 822 (Strip Retail Plaza General Urban/Suburban <40K) will be utilized in the analysis. This land use is expected to generate slightly more trips than the Shopping Centre LUC 820. Therefore, the analysis is conservative. The revised analysis is provided in Section 3 of this Study Update.

C. FUTURE BACKGROUND CONDITIONS

i. Background developments 45 Agnes (OZ 13-17) has not been included. Please revise accordingly.

Response: Noted. 45 Agnes Street background development has been included in the analysis.

ii. The background development of 3085 Hurontario is continuing to be updated. The consultant should contact the Traffic Reviewer for the latest updates pertaining to the site and any information that can be shared.

Response: Noted. We have contacted the City and obtained the latest information on the City's website. As the website application is formally circulated, it is considered the official information at this time.

D. FUTURE TOTAL CONDITIONS

i. The technical justification provided in the responses should be provided within the body of the report; Why it would or wouldn't be appropriate for the proposed development to proceed. As per previous comment, the onus is on the applicant to justify the appropriateness of the scale of the proposed development.

Response: Noted. We have provided the following statement in this Study Update under Section 6.7:

Based on the analysis provided in this Study Update, the proposed development is expected to have negligible impacts on the surrounding boundary roadway intersections. The proposed development is expected to generate only 7% and 8% of the overall forecast traffic on Hurontario Street during the morning and afternoon, respectively.

The proposed development only provides a total of 193 parking spaces, which is less than 50% of the total numbers of unit. The analysis indicates that the proposed development is only expected to generate 157 total two-way auto trips (60 inbound and 97 outbound) and 195 total two-way auto trips (106 inbound and 89 outbound) during the morning and afternoon peak hours, respectively, for all three types of proposed land uses such as residential, retail and community centre.

With the completion and opening of the Hurontario LRT that is currently under construction, it is expected that there will be a decrease in auto trips along Hurontario Street corridor and the area road network as drivers will be converted to taking transit and diverted to other routes. Furthermore, in order to help reduce the auto trip impacts in the area transportation network, the proposed development will also provide robust TDM measures and incentives in Section 10 of this Study Update to minimize the numbers of single-occupant-vehicle trips to and from the proposed development.

E. ADDITIONAL COMMENTS

i. The AutoTurn Swept-Path Analysis is insufficient. As per approved TOR, turning movement diagrams should be provided for approved vehicles. Loading vehicles will not be front loading, therefore the requirement for loading vehicle diagrams remains outstanding. On separate plans, illustrate loading truck turning movements with one continuous path with AutoTURN and insert the design vehicles on the plan. Additionally, evaluation of the parking areas and rams using the PTAC design vehicle is required.

Response: Noted. The vehicle turning movements have been provided in this Study Update, as per the comments noted above.

ii. A dedicated section for community impacts shall be included within the TIS report. Any and all potential concerns for the community should be listed within this section. This should be updated as comments or concerns through public meetings/engagements with all related traffic concerns.

Response: Noted. A dedicated section for community impacts have been included in Section 11 of this Study Update.

iii. Evaluation of the parking areas and rams using the PTAC design vehicle is required.

Response: Noted. The evaluation of the parking areas and rams are provided in this Study Update.

iv. The applicant will be required to provide the appropriate legal documentation, to the satisfaction of Legal Services and the Transportation and Works confirming mutual right of way/servicing easements and maintenance agreements between these lands and the lands located [North/East/West/South]. The City will require that acceptable easements over these "mutual use" areas be maintained on title in perpetuity.

Response: Noted. This legal agreement will be provided at the appropriate stage of the proposed development, as per the City's requirements and satisfaction.

EXECUTIVE SUMMARY

Overview

NexTrans Consulting Engineers (A Division of NextEng Consulting Group Inc.) was retained by The Six Real Estate Developments Inc. (the 'Client') to undertake a Transportation Impact Study Update in support of Official Plan Amendment and Zoning By-law Amendment Applications for a proposed a Mixed-Use Development project that includes residential, retail and charity centre. The subject site is located at 3115 Hurontario Street, southeast quadrant of Hurontario Street and Kirwin Avenue, in the City of Mississauga.

NexTrans has prepared a Transportation Impact Study dated September 2022 and a Study Update dated July, 2024 in support of the previous development proposals. The purposes of this Study Update are to address the City's comments on the second submission and provide updated assessment based on the latest site plan and statistics.

The subject site is located adjacent to the future Hurontario LRT (Hazel McCallion Line) and approximately 350 m (or less than 5-minute walk) to the future Dundas Station and only 250 m (or about 3-minute walk) to the intermodal LRT Stop at Cooksville GO Station.

Therefore, the subject site will be re-developed as a sustainable mixed-use transit-oriented development which will support the future transit improvements by Metrolinx, the Region and the City. These major transit improvements include the future Hurontario LRT, Dundas Street BRT, Cooksville GO Train Station improvements and GO Expansion Project, as well as the future proposed Major Transit Station Areas at the Dundas Street/Hurontario Street.

Proposed Development

Currently, the subject site consists of a stone facade building which is operated by Dam Youth Drop-in Community Service. The existing land uses are under-utilized given the major transit improvements for the area. The proposed redevelopment of the site consists of a 39-storey mixed-use building with the following breakdown:

- Total of 484 residential dwelling units
 - 36 bachelor units;
 - 284 one-bedroom units;
 - 132 two-bedroom units: and
 - o 32 three-bedroom units
- 291.61 m² (or 3,129 ft²) ground related retail gross floor area;
- 926.62 m² (or 9.974 ft²) charity gross floor area;
- Total of 193 parking spaces
- Total of 316 bicycle parking spaces
 - 290 Type A (long-term)
 - o 26 Type B (short-term)

Development Access Arrangement

For the purpose of this assessment, the following access management scenario will be assessed:

- Option 1 Proposed full moves access onto the shared driveway with 3085 Hurontario Street
- Option 2 Proposed right-in/right-out access onto Hurontario Street

The purpose of the second option is to provide flexibility for the proposed development to move forward if the proposed access onto 3085 Hurontario Street is not achievable, in the event of emergency or continued construction of the 3085 Hurontario Street Private Road.

The analysis indicates that the proposed access arrangement under both option is expected to operate at acceptable levels of service with minimum queue or delay. Therefore, it is concluded that the proposed site access arrangement is appropriate for both options. The lane configurations for the proposed development include:

Access Option 1

- one inbound and one outbound lane (3.5 m width per lane) for the proposed access at 3085 Hurontario Street access
- one inbound and one outbound lane (3.5 m width per lane), eastbound shared through/right and westbound shared through/left on Kirwin Avenue

Access Option 2

one inbound and one outbound lane (3.5 m width per lane), northbound shared through/right curb lane on Hurontario Street

NexTrans recommends that the proposed development move forward with the proposed right-in/right-out access onto Hurontario Street because this access arrangement option provides flexibility for the proposed development to move forward in the future without reliance on the connection to 3085 Hurontario Street Private Road.

Site Trip Generation

Based on the analysis provided in this Study, the proposed development is expected to generate:

- 230 total two-way trips (99 inbound and 131 outbound) and 229 total two-way trips (125 inbound and 104 outbound) during the morning and afternoon peak hours, respectively;
- 157 total two-way auto trips (60 inbound and 97 outbound) and 195 total two-way auto trips (106 inbound and 89 outbound) during the morning and afternoon peak hours, respectively; and
- 73 total two-way transit trips (39 inbound and 34 outbound) and 34 total two-way transit trips (19 inbound and 15 outbound) during the morning and afternoon peak hours, respectively.

Auto Mode Assessment

The analysis indicates that under the future background and future total conditions, all intersections are expected to operate at acceptable levels of service during the morning peak hour and afternoon peak hour, with the exception of the Hurontario Street/Dundas Street W intersection during the afternoon peak hour. With the recommended lane configurations for the Dundas Street westbound, the intersection is expected to have higher delay. As the area will have significant transit capacity in the future, no further improvements are required. However, for sensitivity analysis, NexTrans has tested the lane configuration on Dundas Street with a shared through/right lane instead of an exclusive right turn lane. The assessment indicated that this proposed lane configuration will improve the intersection levels of service.

Potential mitigation measures may include but not limited to: reduce vehicle parking to minimize single-occupant-vehicle trips, TDM measures and incentives, support active transportation and sufficient bicycle parking spaces.

Walking Mode Assessment

As indicated in the previous section of this Study, the area is currently well-serviced by a sufficient network of sidewalks, with sidewalks are available on both sides of Hurontario Street, Kirwin Avenue, Hillcrest Avenue, Jaguar Valley Drive, John Street and Agnes Street in the study area. In addition, sidewalks are reasonably maintained therefore no improvement are required at this time. The sidewalk along Hurontario Street may be impacted by the LRT construction activities, however, this is a temporary condition and sidewalk will be reinstated and enhanced as part of the LRT project.

The proposed development will provide direct pedestrian access onto Hurontario Street and internal shared roadway. Sidewalk will be provided along the internal shared roadway to accommodate pedestrian access. Based on the

assessment provided in this Study Update, the proposed development and the area will maintain at least level of service B for the existing and future sidewalk network.

Cycling Mode Assessment

Under the existing conditions, there are dedicated bicycle lanes on Kirwin Avenue/Camila Road, Confederation Parkway, King Street E. There are also some signed routes on Hillcrest Avenue, Paisley Boulevard and Fairview Road W in the study are. It is our understanding that cycling network will be improved in the City and in this general area through the City of Mississauga Cycling Master Plan, and through the LRT and BRT projects to install more bicycle facilities such as bicycle lanes or signed routes along Hurontario Street and Dundas Street. This will encourage existing and future residents to use these facilities instead of driving single-occupant-vehicles.

The proposed development will provide a total of 316 bicycle parking spaces on-site to encourage residents to use active modes of transportation and to support vehicle parking rate reduction. Based on this assessment provided in this Study Update, a minimum of level of service C is reasonable for the area given that there is no major north-south spine in the area. With the future improvements along Hurontario Street corridor, levels of service B or A is possible and justified.

Transit Mode Assessment

The proposed development is expected to generate 78 total two-way transit trips (41 inbound and 37 outbound) and 36 total two-way transit trips (21 inbound and 15 outbound) during the morning and afternoon peak hours, respectively. For the purposed of this assessment, it is assumed that all these trips are related to transit trips. The subject site is located adjacent to the future Hurontario LRT (Hazel McCallion Line) and approximately 350 m (or less than 5-minute walk) to the future Dundas Station and only 250 m (or about 3-minute walk) to the intermodal LRT Stop at Cooksville GO Station. For these reasons, the proposed development transit riders will have many ways to access transit and these trips will be spread out to different transit routes. Therefore, the proposed development site generated transit trips can be accommodated by the proposed transit improvements in this area. No additional improvements are required beyond the proposed transit improvements to accommodate the proposed development. Based on this assessment provided in this Study Update, it is indicated that a minimum of level of service B is reasonable for the area. With the completion of the Hurontario LRT service, level of service A is possible and justified.

Vehicle Parking Review

Based on the information provided on the Province website, Bill 185, the Cutting Red Tape to Build More Homes Act, 2024, will limit municipalities' ability to require parking facilities in certain areas, specifically near major transit stations. Municipalities can no longer mandate parking minimums in Protected Major Transit Station Areas (PMTSA) or areas designated for higher-order transit with minimum densities. The goal is to encourage more efficient land use, reduce reliance on cars, and promote public transit use. The proposed change would let homebuyers and homebuilders decide parking spaces for new residential development near higher order transit, based on market needs. This could remove construction costs of between \$2,000-\$100,000 per parking space per project, helping to make more projects viable. Under existing requirements in some municipalities, this could save up to \$50 million for a 500-unit development and make it cheaper to build and purchase new homes near transit.

As the proposed development is located within 800m radius of the future Major Transit Station Areas at the Dundas Street/Hurontario Street and Cooksville GO Station, the proposed development is subject to Bill 185 definition with no minimum vehicle parking requirements. However, based on the recommendations provided in this Study and the need for the proposed development, the proposed development will provide a total of 193 vehicle parking spaces, including 120 residential and 73 visitor/non-residential spaces.

Bicycle Parking Review

Based on the applicable Zoning By-law, a total of 315 bicycle parking spaces, with 25 spaces for Class A and 290 spaces for Class B are required for the proposed development. The proposed development will provide a total of 316 bicycle parking spaces, including 26 Class A and 290 Class B spaces, which exceeds the Zoning By-law requirements.

Transportation Demand Management

The TDM measures and incentives related to the proposed development have been assessed and recommended in Section 10 of this report to support active transportation and transit, to meet the objectives and requirements of the City of Mississauga and Region of Peel sustainable transportation objectives.

Loading Requirement

Under the City's By-Law Zoning By-law 0225-2007, one loading space is required for residential component. The minimum loading space dimensions are: 3.5 m width and 9.0 m Length, with 7.3 m vertical clearance. The proposed development meets this requirement and has been reflected in the proposed site plan.

AutoTURN software was used to generate vehicular turning templates to confirm and demonstrate the accessibility for the Type "G" loading space. The vehicle turning templates are provided in **Figures 23** and **24** of this Study.

Study Conclusions and Recommendations

Based on the Study assessment and findings, the following recommendations are provided:

- Reduce parking rates for the proposed developments to encourage alternative modes of transportation such as walking, cycling and public transit;
- The proposed development provides 316 bicycle parking spaces to encourage active modes of transportation and support vehicle parking reduction;
- The proposed development provides direct sidewalk connection onto Hurontario Street and Kirwin Avenue;
- Proposed development provides TDM measures and incentives to encourage alternative mode of transportation in the area; and
- Proposed access configuration:
 - Access Option 1
 - one inbound and one outbound lane (3.5 m width per lane) for the proposed access at 3085 Hurontario Street access
 - > one inbound and one outbound lane (3.5 m width per lane), eastbound shared through/right and westbound shared through/left on Kirwin Avenue
 - Access Option 2
 - one inbound and one outbound lane (3.5 m width per lane), northbound shared through/right curb lane on Hurontario Street

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	STUDY AREA OVERVIEW AND CONTEXT	2
	2.1. Site Walk Score	2
	2.2. Hurontario Light-Rail-Transit (LRT) - Expected Completion 2024	2
	2.3. Future Dundas BRT	2
	2.4. Dundas Street Major Transit Station Area (MTSA)	4
3.0	PROPOSED DEVELOPMENT	5
	3.1. Strategic Location of the Proposed Development	5
	3.2. Existing Mode Share in the Area	5
	3.3. Proposed Development Statistics	6
	3.4. Site Trip Generation	8
	3.5. Existing Land Use Generation	9
	3.6. Site Trip Distribution and Assignment	9
4.0	EXISTING CONDITION ASSESSMENT	13
	4.1. Setting Targets	13
	4.2. Existing Road Network Assessment	16
	4.2.1. Walking Mode Assessment	16
	4.2.2. Cycling Mode Assessment	16
	4.3. Transit Mode Assessment	17
	4.3. Auto Mode Assessment	19
	4.3.1. Existing Traffic Volumes	19
	4.3.2. Intersection Capacity Analysis	
5.0	FUTURE BACKGROUND CONDITION ASSESSMENT	
	5.1. Analysis Horizon	
	5.1.1. Walking Mode Assessment	20
	5.1.2. Cycling Mode Assessment	
	5.2. Transit Mode Assessment	
	5.3. Auto Mode Assessment	
	5.4. Future Background Corridor Through Traffic Growth	
	5.5. Background Development Applications	
	5.6. Future Lane Configurations	
	5.7. Typical Cross-Sections for LRT and BRT	
	5.8. Auto Mode Assessment	
	5.9. Signal Timing Optimization	
6.0	FUTURE TOTAL CONDITION ASSESSMENT	
	6.1. Walking Mode Assessment	
	6.2. Cycling Mode Assessment	29

	6.3. Transit Mode Assessment	29
	6.4. Auto Mode Assessment	29
	6.4.1. Access Option 1	32
	6.4.2. Access Option 2	33
	6.5. Potential Mitigation Measure to Improve Intersection Operation	34
	6.6. Signal Timing Optimization	34
	6.7. Why The Proposed Development Should be Approved	35
7.0	SITE PLAN REVIEW	36
	7.1. Waste Management Plan	36
	7.2. Loading Space Requirement	36
	7.3. Waste Management Operation	37
	7.4. Proposed Development Access	37
	7.5. Safety Review	37
	7.5.1. Sightlines	37
	7.5.2. Weaving	38
	7.5.3. Pedestrian and Cycling Safety	38
	7.6. Corner Clearance	39
	7.6.1. Clear Throat Length	39
	7.6.2. Pavement Marking and Signage Plan	40
8.0	VEHICLE PARKING ASSESSMENT	41
	8.1. Zoning By-law Vehicle Parking Requirement	41
	8.2. Appropriate Parking Management is the best TDM Measure	41
	8.3. Available Sustainable Modes of Transportation in the Area	41
	8.4. Recommended Vehicle Parking Requirement for the Proposed Develo	pment42
	8.5. Vehicle Parking Justification	42
	8.5.1. Subject Site Strategic Location	42
	8.5.2. Existing Mode Share	43
	8.5.3. Future Conditions	43
	8.5.4. Region of Peel Sustainable Transportation Strategy	43
	8.5.5. City of Mississauga Official Plan	44
	8.5.6. City of Mississauga Cycling Master Plan Update	44
9.0	BICYCLE PARKING ASSESSMENT	45
10.0	TRANSPORTATION DEMAND MANAGEMENT	45
11.0	COMMUNITY IMPACTS	45
12.0	CONCLUSIONS / FINDINGS	46
	12.1. Study Conclusions	46
	12.2. Study Recommendations	47

LIST OF FIGURES

- Figure 1 Proposed Development Location
- Figure 2 Hurontario LRT
- Figure 3 Dundas BRT Alignment
- Figure 4 Potential MTSA by Transit Line in the City of Mississauga
- Figure 5A Proposed Site Plan for Access Option 1
- Figure 5B Proposed Site Plan for Access Option 2
- Figure 6 Site Traffic Volumes for Residential Component Access Option 1
- Figure 7 Site Traffic Volumes for Residential Component Access Option 2
- Figure 8 Site Traffic Volumes for Non-Residential Component Access Option 1
- Figure 9 Site Traffic Volumes for Non-Residential Component Access Option 2
- Figure 10 Existing Lane Configuration and Traffic Control (Pre-LRT Construction)
- Figure 11 Existing Cycling Network in the Study Area
- Figure 12 Existing Transit Network in the Study Area
- Figure 13 Existing Traffic Volumes (Based on Previous Assessment)
- Figure 14 2029 Estimated Background Growth
- Figure 15 Background Development Traffic Volumes
- Figure 16 2029 Future Background Traffic Volumes
- Figure 17 Future Lane Configuration and Traffic Control with Hurontario LRT
- Figure 18 Hurontario LRT Typical Cross-Section at Cooksville Station
- Figure 19 Hurontario LRT Typical Cross-Section at Cooksville Station
- Figure 20 2029 Future Total Traffic Volumes Access Option 1
- Figure 21 2029 Future Total Traffic Volumes Access Option 2
- Figure 22 Waste Collection Schedule
- Figure 23 Proposed Access Sightlines (Access Option 1)
- Figure 24 Proposed Access Sightlines (Access Option 2)
- Figure 25 Pedestrian Connections and Facilities
- Figure 26A Proposed Pavement Marking and Signage Plan for Access Option 1
- Figure 26B Proposed Pavement Marking and Signage Plan for Access Option 2
- Figure 27 AutoTURN Analysis for Servicing Vehicles (Access Option 1)
- Figure 28 AutoTURN Analysis of Servicing Vehicles (Access Option 2)
- Figure 29 AutoTURN Analysis for Passenger Vehicles (Access Option 1)
- Figure 30 AutoTURN Analysis ofr Passenger Vehicles (Access Option 2)

LIST OF TABLES

- Table 1 Walk Score for 3115 Hurontario Street
- Table 2 Modes of Travel based on 2016 TTS Data for Traffic Zones
- Table 3 Site Trip Generation
- Table 4 Site General Trip Distribution
- Table 5 Site Trip Assignment for Auto Mode (Residential)
- Table 6 Site Trip Assignment for Transit Mode (Residential)
- Table 7 Site Trip Assignment for Auto Mode (Non-Residential)
- Table 8 Recommended Multimodal Level of Service Targets (OTC MMLOS)
- Table 9 Level of Service Criteria (OTC MMLOS)
- Table 10 Recommended Growth Rates for the Study Area Corridors
- Table 11 Background Development Information in the Study Area
- Table 12 2029 Future Background Levels of Service
- Table 13 2029 Future Total Levels of Service for Access Option 1
- Table 14 2029 Future Total Levels of Service for Access Option 2
- Table 15 City of Mississauga Zoning By-law Loading Requirements
- Table 16 Zoning By-law No. 0225-2007 (As Amended) Maximum Vehicle Parking Requirements
- Table 17 Recommended Vehicle Parking Rates for the Proposed Development
- Table 18 Accessible Parking Space Requirement
- Table 19 Electric Vehicle Ready Parking Space Requirement
- Table 20 Modes of Travel based on 2016 TTS Data for Traffic Zones
- Table 21 Bicycle Parking Space Requirements

APPENDICES

- Appendix A Study Terms of Reference
- Appendix B 2016 Transportation Tomorrow Survey (TTS) Data Analysis
- Appendix C Traffic Data
- Appendix D Growth Rate Recommendations
- Appendix E Background Developments
- Appendix F Hurontario LRT Environmental Project Report
- Appendix G Future Background Traffic Level of Service Calculations
- Appendix H Future Total Traffic Level of Service Calculations
- Appendix I Future Total Traffic Level of Service Calculations Sensitivity Analysis

1.0 INTRODUCTION

NexTrans Consulting Engineers (A Division of NextEng Consulting Group Inc.) was retained by The Six Real Estate Developments Inc. (the 'Client') to undertake a Transportation Impact Study in support of Official Plan Amendment and Zoning By-law Amendment Applications for a proposed a Mixed-Use Development project that includes residential, retail and charity centre.

NexTrans has prepared a Transportation Impact Study dated September 2022 in support of the previous development proposal. It should be noted that this Transportation Impact Study Update is consistent with the previous Study and has been prepared based on the City of Mississauga and Peel Region Traffic Impact Study Guidelines.

The subject site is located at 3115 Hurontario Street, southeast quadrant of Hurontario Street and Kirwin Avenue, in the City of Mississauga. The location of the proposed development is illustrated in **Figure 1**.

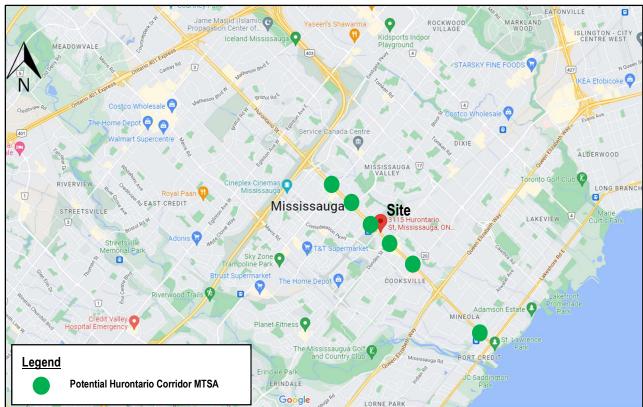


Figure 1 – Proposed Development Location

Source: Google Map

Currently, the subject site consists of a stone facade building which is operated by Dam Youth Drop-in Community Service. The existing land uses are under-utilized given the major transit improvements for the area.

The subject site is located adjacent to the future Hurontario LRT (Hazel McCallion Line) and approximately 350 m (or less than 5-minute walk) to the future Dundas Station and only 250 m (or about 3-minute walk) to the intermodal LRT Stop at Cooksville GO Station.

For these reasons, the subject site will be re-developed as a sustainable mixed-use transit-oriented development which will support the future transit improvements by Metrolinx, the Region and the City. These major transit improvements include but not limited to, the future Hurontario LRT, Dundas Street BRT, Cooksville GO Train Station improvements and GO Expansion Project, as well as Major Transit Station Areas at the Dundas Street/Hurontario Street.

2.0 STUDY AREA OVERVIEW AND CONTEXT

2.1. Site Walk Score

NexTrans has reviewed the walk score for the subject site using the information in www.walkscore.com website. **Table**1 below summarizes the walk score for the subject site.

ModeScoreDescriptionWalking94Walker's Paradise – Daily errands do not require a carPublic Transit65Good Transit – Many nearby public transportation optionsCycling64Bikeable – Some bike infrastructure

Table 1 – Walk Score for 3115 Hurontario Street

As indicated in the table above, the subject site has excellent access to sidewalk network, good transit and active transportation network (mostly sidewalk) options. The cycling facilities still needs improvements, however, the new cycling facilities along Hurontario Street corridor will significantly improve cycling activities in the area.

2.2. Hurontario Light-Rail-Transit (LRT) - Expected Completion 2024

It is NexTrans' understanding that Metrolinx is partnered with the City of Mississauga and the City of Brampton to build the new 18-km Hurontario LRT (19 stations) that services Mississauga and Brampton with better and more convenient way of travel. Based on the project website information (http://www.metrolinx.com/en/greaterregion/projects/hurontario-lrt.aspx) Metrolinx and Infrastructure Ontario (IO) have officially announced the winning bidder for the Hurontario Light Rail Transit project. Mobilinx, the winning team, will design, build, finance, operate and maintain the new transit project for a 30-year term. Figure 2 illustrates the Hurontario LRT alignment.

Metrolinx has announced the naming the Hurontario light-rail-transit (LRT) project as the Hazel McCallion Line, to commemorate the former Mississauga mayor. The project will continue to be referred to as the Hurontario LRT project while construction is underway, but will adopt the name once the line opens.

Once in service, the 18-kilometre Hazel McCallion Line will bring a new, environmentally friendly and reliable method of transportation to a rapidly growing region. The new transit system will feature 19 stations, travel through two urban growth centres and connect to major transit systems including GO Transit (Milton and Lakeshore West lines), the Mississauga Transitway, Brampton Transit, ZUM and MiWay. The Hazel McCallion Line will operate in its own dedicated lane ensuring a smooth, reliable and convenient ride along the region's busiest street.

As Mississauga and Brampton expands with new residents, businesses and amenities, sustainable and reliable transit becomes vital. The Hazel McCallion Line will operate with clean, electrically powered light rail vehicles, producing near zero emissions. So, not only does the LRT line get cars off the road, but it's a more sustainable, environmentally conscious way to travel!

The future residents in the proposed development can connect with the future Hurontario LRT by taking a few minutes walk to the Dundas Station or Cooksville Station. It is NexTrans' opinion that this project will further encourage existing and future residents to take more convenient and sustainable mode of transportation in transit, instead of driving single-occupant-vehicles.

2.3. Future Dundas BRT

The Minster of Environment has given the notice to proceed with Dundas Bus Rapid Transit Mississauga East on April 27th, 2022. Based on the information provided in the project website, Metrolinx has initiated the Dundas Bus-Rapid-Transit (BRT) Project. The purpose of this project is to evaluate the proposed transit corridor along a 48 kilometre stretch of Dundas Street from Highway 6 in the City of Hamilton through to the Kipling Transit Hub in the City of Toronto, linking Etobicoke and Mississauga City Centres. More than 20 kilometres, of the 48 kilometre BRT, will operate in bus lanes or

in a dedicated right-of-way, separate from other traffic, allowing faster and more reliable transit connections. Identified in Metrolinx's 2041 Regional Transportation Plan (RTP) for the Greater Toronto and Hamilton Area (GTHA), the BRT aims to improve the overall transportation network in one of Canada's fastest growing regions. Metrolinx's Dundas BRT Initial Business Case, released in 2020, indicates prior to COVID-19, the population of the GTHA is forecasted to grow to approximately 10 million by 2041. The BRT is part of a suite of public transportation alternatives that will address potential future constraints and contribute to the overall livability and economic development of the region. Figure illustrates the potential Dundas BRT alignment. This project will provide a tremendous connectivity and capacity to the City of Mississauga, especially it will compliment and support the Hurontario LRT, which is currently under construction.

Figure 2 - Hurontario LRT

Source: https://www.mississauga.ca/projects-and-strategies/city-projects/hurontario-light-rail-transit/

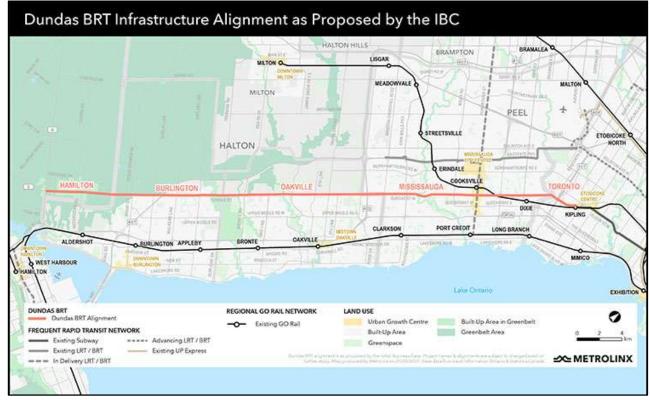


Figure 3 - Dundas BRT Alignment

Source: Metrolinx Website

2.4. Dundas Street Major Transit Station Area (MTSA)

The Provincial Growth Plan, 2019, introduced new direction for upper-tier municipalities to work collaboratively with lower-tier municipalities to align transit investment and land use planning by directing transit-supportive densities to MTSAs along priority transit corridors.

Major Transit Station Areas are lands located within an approximate 500-800 metre radius of a transit station or stop, primarily along existing or planned transit corridors. MTSAs are intended to be developed as high density, mixed-use, transit-supportive neighbourhoods that provide access to local amenities, jobs, housing, and recreation opportunities.

As part of the Peel 2051 Official Plan and Municipal Comprehensive Review, the Region developed a strategy and policies to guide how growth is accommodated within Major Transit Station Areas across the Region. This work was undertaken in collaboration with Brampton, Caledon, and Mississauga.

As the proposed development is located within 800 m radius of the potential Dundas/Hurontario MTSA, the proposed development is considered as part this potential MTSA.

Once theses potential MTSA locations are approved by the Regional Council, it will be included in the Mississauga Official Plan Update and relevant policies.

Figure 4 illustrates the potential/proposed MTSA in the City of Mississauga by transit line.

Figure 4 - Potential MTSA by Transit Line in the City of Mississauga

Source: Region of Peel Website

3.0 PROPOSED DEVELOPMENT

3.1. Strategic Location of the Proposed Development

The subject site is located adjacent to the future Hurontario LRT (Hazel McCallion Line) and approximately 350 m (or less than 5-minute walk) to the future Dundas Station and only 250 m (or about 3-minute walk) to the intermodal LRT Stop at Cooksville GO Station. The subject site will be re-developed as a sustainable mixed-use transit-oriented development which will support the future transit improvements by Metrolinx, the Region and the City.

These major transit improvements include but not limited to, the future Hurontario LRT, Dundas Street BRT, Cooksville GO Train Station improvements and GO Expansion Project, as well as Major Transit Station Areas at the Dundas Street/Hurontario Street.

The re-development of the subject site will bring additional housing supply to the area and the City of Mississauga. In addition to the inclusion of some charity components, the proposed re-development also recognizes, understands and builds on the value and importance of the extraordinary transit and road infrastructure improvements coming to the area and is therefore planned with great emphasis on a sustainable non-automobile-oriented mobility plan promoted by the Official Plans, City Council and Provincial initiatives.

3.2. Existing Mode Share in the Area

Table 1 summarizes the travel mode information, based on the review of the 2016 Transportation Tomorrow Survey data for several representative Traffic Zones (3632, 3653, 3657 and 3659) in the area. The detailed analysis is included in **Appendix B**.

Table 2 – Modes of Travel based on 2016 TTS Data for Traffic Zones

Time Period	Auto Driver	Auto Passenger	Taxi/Paid Ride Share	Transit	Cycle	Walk
AM Peak Period (6:00-9:00 AM)	60%	10%	0%	24%	0%	6%
PM Peak Period (3:00-6:00 PM)	64%	7%	0%	26%	0%	3%

Based on the information outlined in the table above, the existing non-auto modal split in the area is approximately 30% and 29% during the morning and afternoon peak periods, respectively. This assessment suggests that there are viable alternative modes of transportation other than driving private automobiles.

It is expected that with the future Hurontario LRT, based on our review of other High Order Transit corridors in the GTA, the modal split along this corridor and this area will be much higher (i.e. could be up to 50% for all modal split).

3.3. Proposed Development Statistics

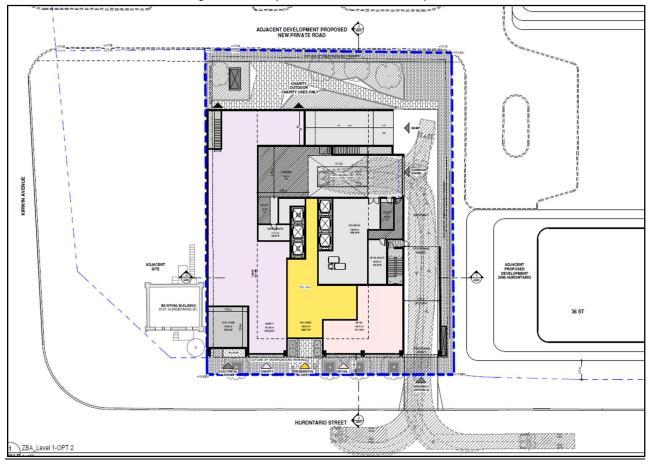
As indicated, the subject site consists of a stone facade building which is operated by Dam Youth Drop-in Community Service. The existing land uses are under-utilized given the major transit improvements for the area. The proposed redevelopment of the site consists of a 39-storey mixed-use building with the following breakdown:

- Total of 484 residential dwelling units
 - 36 bachelor units;
 - o 284 one-bedroom units:
 - o 132 two-bedroom units; and
 - 32 three-bedroom units
- 291.61 m² (or 3,129 ft²) ground related retail gross floor area;
- 926.62 m² (or 9.974 ft²) charity gross floor area;
- Total of 193 parking spaces
- Total of 316 bicycle parking spaces
 - 290 Type A (long-term)
 - o 26 Type B (short-term)

The proposed development is providing two access options:

- Access Option 1 Proposed full moves access onto the shared driveway with 3085 Hurontario Street
- Access Option 2 Proposed right-in/right-out access onto Hurontario Street

The purpose of the second option is to provide flexibility for the proposed development to move forward if the proposed access onto 3085 Hurontario Street is not achievable, in the event of emergency or continued construction of the 3085 Hurontario Street Private Road.


Figure 5A illustrates the proposed development site plan with Access Option 1 and Figure 5B with Access Option 2.

ADMINITIONAL DESCRIPTIONS OF THE PARTY OF TH

Figure 5A - Proposed Site Plan Access Option 1

3.4. Site Trip Generation

For the purposes of this assessment and to be consistent with the previous assessment, trip generation forecasts for the proposed development is estimated using the information outlined in the Trip Generation Manual, 11th Edition, published by the Institute of Transportation Engineers (ITE). To address the City's comments, the ITE Land Use Code (LUC) 222 "Multifamily Housing (High-Rise) Not Close to Rail Transit General Urban/Suburban" and LUC 822 "Strip Retail Plaza <40K General Urban/Suburban" average rates have been utilized for the proposed development.

The City has requested the proposed charity component of the proposed development to be included in the analysis. However, it should be noted that the potential site trip generated for the charity component of the proposed development may not coincide with the peak hour of adjacent street traffic. Therefore, this proposed charity land use may not have any impacts on the surrounding roadway intersections. With the future Hurontario LRT next to the site, it is anticipated that the users of this proposed charity facility will use public transit instead of driving private vehicles. The ITE Trip Generation Manual 11th Edition does not include a stand-alone land use category for charity land use as this is not a typical use or is expected to have a significant impact on the adjacent transportation network. For these reasons, the trip generation for the proposed charity use is expected to be negligible and therefore was not included in the previous analysis.

In order to address the City's comment, given that the ITE Trip Generation Manual 11th Edition does not include a charity land use and the charity land use trip generation may not necessarily coincide with the adjacent roadway peak hour traffic, it is assumed that the charity trip generation will be equal to 50% of the amount of the visitor parking spaces provided on site. A comparison indicates that the assumed charity land use trip rates utilized in this Study is higher than the average rates of a Recreational Community Centre (ITE Land Use Code 495) during the morning peak hour and just slightly lower during the afternoon peak hour (1.91 trips/1000 ft² and 2.50 trips/1000 ft² of GFA, for an average of 2.20 trips/1000 ft² of GFA). The estimated trip generation calculations are provided in **Tables 2**.

Magnitude **Morning Peak Hour** Afternoon Peak Hour **ITE Land Use Parameters** (units/GFA) Out ln Out Total ln Total Trip Rates AM Peak T = 0.22*(X) + 18.85Vehicle 0.09 0.17 0.26 0.17 0.14 0.31 Multifamily Housing PM Peak T = 0.26*(X) + 23.12(High-Rise) Trips 43 125 83 66 LUC 222 Not Close to 82 149 484 **Total Trips** Rail Transit General Trip Rates (use average as no 80.0 0.07 0.04 0.03 0.07 Transit 0.15 Urban/Suburban equations were given) Trips **Total Trips** 39 34 73 19 15 34 Trip Rates (GFA out of Strip Retail Plaza 2.36 3.30 3.29 1.42 0.94 6.59 (<40K) Vehicle range/low R² value) 3,139 LUC (822) - General Trips **Total Trips** 4 3 7 10 11 21 Urban/Suburban Use available visitor parking as 1.26 1.25 2.51 1.26 1.25 2.51 Charity Centre Land Vehicle 9,974 trip generation Use Trips 13 12 25 13 12 **Total Trips** 25 Total New Trips 99 131 230 125 104 229 New Transit Trips 39 34 19 15 34 73 New Auto Trips 89 195

Table 3 – Site Trip Generation

Based on the analysis indicated above, the proposed development is expected to generate:

- 230 total two-way trips (99 inbound and 131 outbound) and 229 total two-way trips (125 inbound and 104 outbound) during the morning and afternoon peak hours, respectively;
- 157 total two-way auto trips (60 inbound and 97 outbound) and 195 total two-way auto trips (106 inbound and 89 outbound) during the morning and afternoon peak hours, respectively; and

• 73 total two-way transit trips (39 inbound and 34 outbound) and 34 total two-way transit trips (19 inbound and 15 outbound) during the morning and afternoon peak hours, respectively.

3.5. Existing Land Use Generation

As indicated, currently, the subject site consists of a stone facade building which is operated by Dam Youth Drop-in Community Service. However, it should be noted that the potential site trip generated for the charity component of the proposed development may not coincide with the peak hour of adjacent street traffic. Therefore, this proposed charity land use may not have any impacts on the surrounding roadway intersections. To be conservative and for the purpose of this assessment, the existing trips from the proposed development will not be removed from the existing intersection counts in the study area. Therefore, the analysis is conservative.

3.6. Site Trip Distribution and Assignment

The 2016 Transportation Tomorrow Survey (TTS) data was reviewed for Traffic Zones (3632, 3653, 3657 and 3659) in order to estimate the general trip distribution for the proposed development. **Table 3** summarizes the planning district/traffic zones distribution based on the 2016 TTS data, with **Table 4** summarizing the site trip assignment based on the 2016 TTS data detailed and existing transportation network in the area.

Mode of Travel Mississauga Brampton **Toronto** York Region **Halton Region** Total 100% Outbound 71% 4% 14% 3% 8% Auto Inbound 76% 4% 18% 1% 1% 100% Outbound 65% 0% 32% 1% 2% 100% Transit Inbound 81% 0% 13% 0% 5% 100% Outbound 46% 12% 36% 2% 3% 100% Non-Residential Auto Inbound 46% 12% 36% 2% 3% 100%

Table 4 – Site General Trip Distribution

Residential)
(6

General Direction	AM		PM	
General Direction	In	Out	ln	Out
North (Hurontario St, Cawthra Rd, Confederation Pkwy, Mavis Rd)	18%	28%	28%	28%
South (Hurontario St, Cawthra Rd, Confederation Pkwy, Mavis Rd)	23%	21%	21%	23%
East (Dundas St, The Queensway, Central Pkwy, Burnhamthorpe Rd, Hwy 403)	44%	27%	27%	44%
West (Dundas Street, The Queensway, Central Pkwy, Burnhamthorpe Road, Hwy 403)	15%	24%	24%	15%

Table 6 – Site Trip Assignment for Transit Mode (Residential)

Transit Routes	Α	AM		PM	
Transit Noutes	ln	Out	ln	Out	
North (Hurontario)	18%	24%	24%	18%	
South (Hurontario)	25%	15%	15%	25%	
East (Dundas, Burnhamthorpe, Milton GO Line)	32%	42%	42%	32%	
East (Dundas, Burnhamthorpe, Milton GO Line)	25%	19%	19%	25%	

Table 7 – Site Trip Assignment for Auto Mode (Non-Residential)

	General Direction	Α	AM		M
ı	General Direction	In	Out	ln	Out
ſ	North (Hurontario St, Cawthra Rd, Confederation Pkwy, Mavis Rd)	25%	25%	25%	25%
	South (Hurontario St, Cawthra Rd, Confederation Pkwy, Mavis Rd)	12%	12%	12%	12%
Ī	East (Dundas St, The Queensway, Central Pkwy, Burnhamthorpe Rd, Hwy 403)	48%	48%	48%	48%
	West (Dundas Street, The Queensway, Central Pkwy, Burnhamthorpe Road, Hwy 403)	15%	15%	15%	15%

It should be noted that the auto site trip distribution and assignment have been taken into consideration the 2016 TTS information, the future access configurations and area routing options. The proposed development site traffic volumes are illustrated in the following figures:

- Figure 6 Access Option 1 site traffic volumes for residential component
- Figure 7 Access Option 1 site traffic volumes for non-residential component
- Figure 8 Access Option 2 site traffic volumes for residential component
- Figure 9 Access Option 2 site traffic volumes for non-residential component

Figure 6 – Site Traffic Volumes for Residential Component Access Option 1

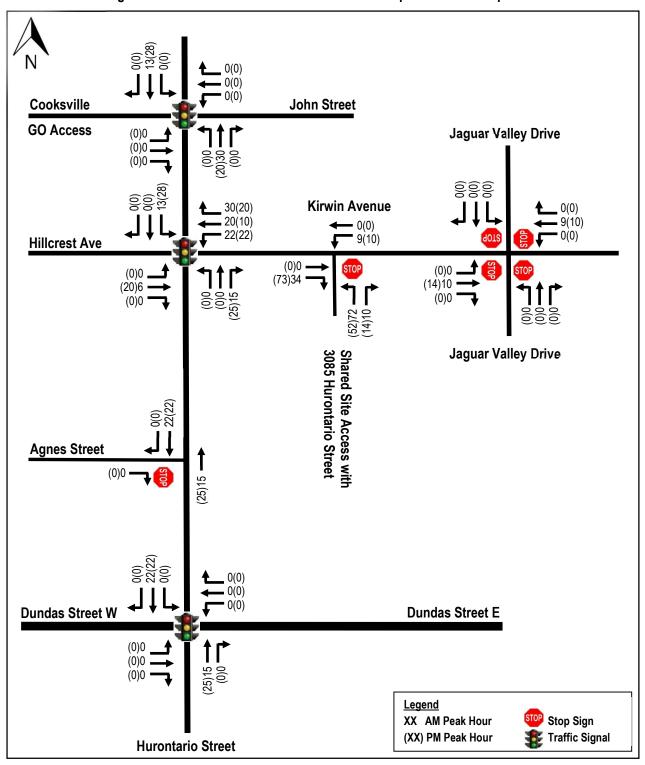


Figure 7 – Site Traffic Volumes for Residential Component Access Option 2

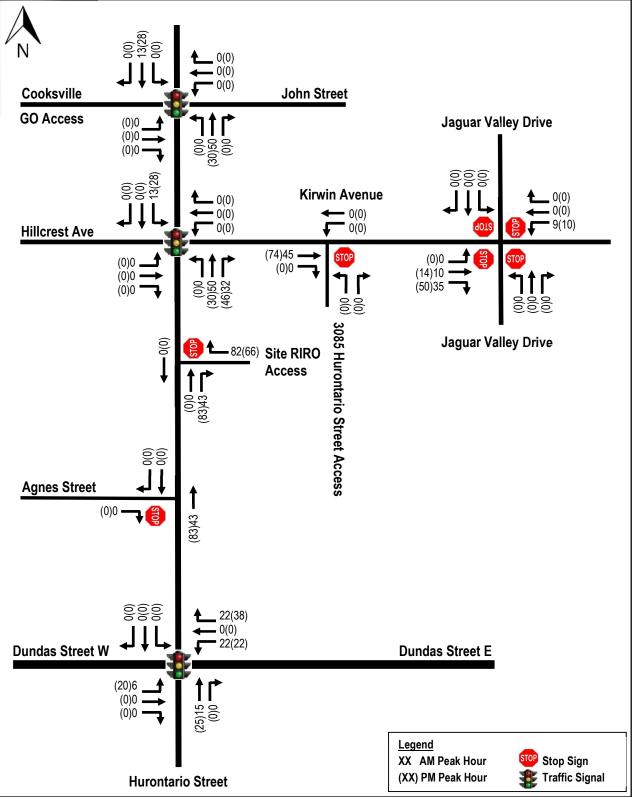
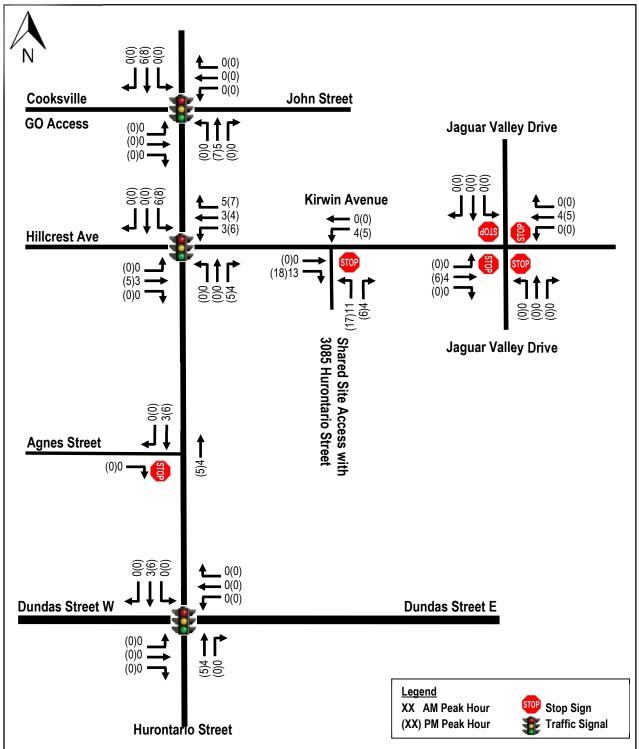



Figure 8 – Site Traffic Volumes for Non-Residential Component Access Option 1

Cooksville John Street **GO Access Jaguar Valley Drive** 000 Kirwin Avenue 0(0)0(0)0(0) **Hillcrest Ave** 0(0) 0(0) (0)0(0)03085 Hurontario Street Access 00 **Jaguar Valley Drive** 15(23) Site RIRO Access **Agnes Street** 23)17 — 10(13) **Dundas Street W Dundas Street E** (0)0Legend XX AM Peak Hour Stop Sign (XX) PM Peak Hour **Traffic Signal Hurontario Street**

Figure 9 – Site Traffic Volumes for Non-Residential Component Access Option 2

4.0 EXISTING CONDITION ASSESSMENT

4.1. Setting Targets

It is our understanding that the Ontario Traffic Council Multimodal Level of Service (MMLOS) Guidelines provide a framework for practitioners to consider and document the context in which transportation projects occur, including, but

not limited to, considerations of land-use, public realm, equity, climate change and other environmental considerations. However, these targets are often determined by the community needs and constrains, as well as engineering judgement as one size does not fit all.

It is also our understanding that Ontario Traffic Council Multimodal Level of Service (MMLOS) Guidelines also provide flexible tools so that majority of scenarios should result in scores approaching the middle of the range for each gradation as the maximum target is not always achievable due to many reasons, and life-cycle cost is one of the most important considerations. As such, the targets and scores of LOS of A and F should be infrequent due to the reasons noted above as LOS A is not always achievable and LOS F is not acceptable.

Similarly, it is our understanding of the City of Mississauga Draft Complete Streets Guide (March 2022) is that the Complete Streets approach recognizes that there is no one-size-fits-all solution to street design, as different streets have different priorities, depending on the street's location, context, and role within the transportation system. Complete Streets takes an overall street typology approach that considers the needs of all road users and recognizes the importance of streets not only as conduits to move from one place to another, but also as public spaces and an integral component of the public realm.

The target for each mode of transportation will be discussed and established in **Section 6** of this Study that provides recommendations for the proposed secondary plan area and provides guidance for the proposed development. **Tables 8** and **9** summarize the recommended MMLOS and criteria, respectively.

Table 8 – Recommended Multimodal Level of Service Targets (OTC MMLOS)

LOS Grade	LOS A	LOS B	LOS C	LOS D	LOS E	LOS F
Transportation Mode	Provides the highest quality experience for a given mode	Provides a high-quality experience for a given mode	Provides a good-quality experience for a given mode	Provides a moderate- quality experience for a given mode	Provides just above the minimal targeted standard for a given mode	Provides the minimal targeted standard for a given mode
Pedestrians	Pedestrians always have sufficient space to walk or roll in a social manner that is removed from traffic nuisance Crossing distance and delay at intersections is always optimized for pedestrians Crossing locations are	to walk or roll in a social manner that is removed from traffic nuisance Crossing distance and delay at intersections is very often optimized for pedestrians	Pedestrians often have sufficient space to walk or roll in a social manner that is removed from traffic nuisance Crossing distance and delay at intersections is often optimized for pedestrians	Pedestrians occasionally have sufficient space to walk or roll in a social manner that is removed from traffic nuisance Crossing distance and delay at intersections is occasionally optimized for pedestrians	Pedestrians rarely have sufficient space to walk or roll in a social manner that is removed from traffic nuisance Crossing distance and delay at intersections is rarely optimized for pedestrians	to walk or roll in a social manner that is removed from traffic nuisance Crossing distance and delay at
	Crossing locations are always located with sufficient frequency to minimize detour	Crossing locations are very often located with sufficient frequency to minimize detour	Crossing locations are often located with sufficient frequency to minimize detour	Crossing locations are occasionally located with sufficient frequency to minimize detour	Crossing locations are rarely located with sufficient frequency to minimize detour	Crossing locations are not located with sufficient frequency to minimize detour
	Cyclists always have sufficient space to ride in a social manner that is removed from traffic nuisance	Cyclists very often have sufficient space to ride in a social manner that is removed from traffic nuisance	Cyclists often have sufficient space to ride in a social manner that is removed from traffic nuisance	Cyclists occasionally have sufficient space to ride in a social manner that is removed from traffic nuisance	Cyclists rarely have sufficient space to ride in a social manner that is removed from traffic nuisance	Cyclists do not have sufficient space to ride in a social manner that is removed from traffic nuisance
Cyclists	Delay at intersections is always optimized for cyclists	Delay at intersections is very often optimized for cyclists	Delay at intersections is often optimized for cyclists	Delay at intersections is occasionally optimized for cyclists	Delay at intersections is rarely optimized for cyclists	Delay at intersections is not optimized for cyclists
	Exposure to conflict at intersections is always minimized	Exposure to conflict at intersections is very often minimized	Exposure to conflict at intersections is often minimized	Exposure to conflict at intersections is occasionally minimized	Exposure to conflict at intersections is rarely minimized	Exposure to conflict at intersections is not minimized
- "	Transit riders' experience is always seamless and attractive	Transit riders' experience is very often seamless and attractive	Transit riders' experience is often seamless and attractive	Transit riders' experience is occasionally seamless and attractive	Transit riders' experience is rarely seamless and attractive	 Transit riders' experience is not seamless or attractive
Transit	Transit vehicles are never impeded by other traffic	Transit vehicles are rarely impeded by other traffic	Transit vehicles are occasionally impeded by other traffic	Transit vehicles are often impeded by other traffic	Transit vehicles are very often impeded by other traffic	 Transit vehicles are almost always impeded by other traffic

	The pedestrian environment leading to transit stops provides the highest quality experience	The pedestrian environment leading to transit stops provides a high- quality experience	The pedestrian environment leading to transit stops provides a medium- quality experience	The pedestrian environment leading to transit stops provides a low-quality experience	The pedestrian environment leading to transit stops provides the minimal acceptable experience	The pedestrian environment leading to transit stops is non-existent
Trucks	Driver is always able to navigate turns with minimal concern for infringing on other lanes or facilities	Driver is very often able to navigate turns with minimal concern for infringing on other lanes or facilities	Driver is often able to navigate turns with minimal concern for infringing on other lanes or facilities	Driver is occasionally able to navigate turns with minimal concern for infringing on other lanes or facilities	Driver is rarely able to navigate turns with minimal concern for infringing on other lanes or facilities	Driver is not able to navigate turns with minimal concern for infringing on other lanes or facilities
	Drivers never experience delay due to congestion	Drivers rarely experience delay due to congestion	Drivers occasionally experience delay due to congestion	Drivers often experience delay due to congestion	Drivers very often experience delay due to congestion	Drivers almost always experience delay due to congestion
	Drivers never experience delay due to congestion	Drivers rarely experience delay due to congestion	Drivers occasionally experience delay due to congestion	Drivers often experience delay due to congestion	Drivers very often experience delay due to congestion	Drivers almost always experience delay due to congestion
Cars	 Parking and loading options are always available where appropriate 	 Parking and loading options are very often available where appropriate 	Parking and loading options are often available where appropriate	 Parking and loading options are occasionally available where appropriate 	Parking and loading options are rarely available where appropriate	Parking and loading options are not available
	Dedicated turn lanes are always provided when warranted	 Dedicated turn lanes are very often provided when warranted 	Dedicated turn lanes are often provided when warranted	Dedicated turn lanes are occasionally provided when warranted	Dedicated turn lanes are rarely provided when warranted	Dedicated turn lanes are not provided when warranted

Table 9 – Level of Service Criteria (OTC MMLOS)

LOS Grade	Measure	Weight	LOS A	LOS B	LOS C	LOS D	LOS E	LOS F
	Pedestrian Facility Width (m)	33%	> 3.0	2.6 - 3.0	2.1 - 2.5	1.8 - 2.0	1.5 - 1.7	< 1.5
Pedestrians	Pedestrian Buffer Width (m)	33%	> 2.5	2.1 - 2.5	1.6 - 2.0	1.3 - 1.5	1.0 - 1.2	< 1.0
Pedestrians	Max Distance between Controlled Crossings (m)	33%	2003	201 - 230	231 - 260	261 - 290	291 - 320	> 320
	Bike Facility Width per Direction (m)	33%	> 2.4	2.2 - 2.4	1.9 - 2.1	1.6 - 1.8	1.2 - 1.5	< 1.2
Cyclists	Bike Buffer Width (m)	33%	Has physical measures and buffer width > 1.0	Has physical measure and buffer width is 0.50 - 1.0	n/a¹	Has physical measures and buffer width is 0.30 - 0.49 OR Has no physical measures and width is ≥ 0.50	n/a¹	No physical measures and buffer width is < 0.50
	Conflicts with Other Modes (In-lane conflicts and crossing point conflicts)	33%	Two "Low" conflict indicators	One "Low" conflict indicator and one "Moderate" conflict indicator	Two "Moderate" conflict indicators	One "Low" conflict indicator and one "High" conflict indicator	One "Moderate" conflict indicator and one "High" conflict indicator	Two "High" conflict indicators
	Transit Facility Type	33%	Dedicated lanes	Intersection priority measures	n/a¹	Mixed traffic with >1 lane/ direction	n/a¹	Mixed traffic with 1 lane
Buses	Transit Passenger Amenities	33%	Abundance of passenger amenities such as shelters, seating, shade trees, etc.	Moderate presence of passenger amenities such as shelters, seating, shade trees, etc.	n/a¹	Low presence of passenger amenities such as shelters, seating, shade trees, etc.	n/a¹	No presence of passenger amenities such as shelters, seating, shade trees, etc.
	Pedestrian Level of Service	33%	Α	В	С	D	E	F
Trucks	Width of the Curb Lane (m)	50%	> 4.0	3.9 - 4.0	3.7 - 3.8	3.4 - 3.6	n/a¹	< 3.4
Trucks	Car Level of Service	50%	Α	В	С	D	E	F
	Mid-Block V/C ratio	50%	< 0.60	0.60 - 0.69	0.70 - 0.79	0.80 - 0.89	0.90 - 0.99	> 1.0
Cars	Curb Lane Conflicts (conflicts/km)	50%	None	1 - 2	3 - 4	5 - 6	7 - 8	9+

Notes:

^{1.} For some measures, only a limited number of LOS scores are possible. The ones that cannot be obtained for that metric are marked as "n/a."

- 2. For mixed AT facilities where pedestrians and cyclists share the operating space (e.g. multi-use paths, etc.) the facility should be scored based on the PED and BIKE metrics independently and the resulting scores discounted by one grade (ex: B -> C). This reflects the negative impact to the pedestrian and cycling experience that results from sharing the same operating space. It is noted that in areas of high pedestrian and bicycle activity that mixed-facilities should be avoided when possible.
- 3. Note there are also disadvantages to controlled crossings that are too close to one another which can result in collisions between vehicles and pedestrians. Refer to OTM Book 15 for further information on this.

4.2. Existing Road Network Assessment

The existing road network, lane configuration and existing traffic control for the study area are shown in **Figure 10** (Existing Lane Configurations). The characteristics of the main road network are described below.

- Hurontario Street: is a north-south arterial road under the jurisdiction of the City of Mississauga. It currently
 has six-lane cross-section through the study area and maintains a posted speed limit of 50 km/h to 60 km/h
 at various sections of the road. The LRT construction has started and anticipated completion is 2024.
- **Dundas Street**: is an east-west arterial road under the jurisdiction of the City of Mississauga. It has a four-lane cross-section with turning lanes at major intersections. It maintains a posted speed limit of 50 km/h near the subject site. Dundas Street is identified as a BRT corridor.
- **Kirwin Avenue:** is an east-west major collector under the jurisdiction of the City of Mississauga. It generally has a two-lane cross-section with turning lanes at the major intersections. It maintains a posted speed limit of 50 km/h near the subject site.
- Hillcrest Avenue: is an east-west major collector under the jurisdiction of the City of Mississauga. It generally
 has a four-lane cross-section with turning lanes at the major intersections. It maintains a posted speed limit
 of 50 km/h near the subject site.
- **John Street**: is an east-west local road under the jurisdiction of the City of Mississauga. It generally has a two-lane cross-section with turning lanes at the major intersections. It maintains a posted speed limit of 50 km/h near the subject site.
- Agnes Street: is an east-west local road under the jurisdiction of the City of Mississauga. It generally has a two-lane cross-section.
- **Jaguar Valley Drive**: is north-south local road under the jurisdiction of the City of Mississauga. It generally has a two-lane cross-section.

4.2.1. Walking Mode Assessment

The area is currently well-serviced by a sufficient network of sidewalks, with sidewalks are available on both sides of Hurontario Street, Kirwin Avenue, Hillcrest Avenue, Jaguar Valley Drive, John Street and Agnes Street in the study area. In addition, sidewalks are reasonably maintained therefore no improvement are required at this time. The sidewalk along Hurontario Street may be impacted by the LRT construction activities, however, this is a temporary condition and sidewalk will be reinstated and enhanced as part of the LRT project. Based on this assessment and criteria outlined in **Table 8**, a minimum of level of service B is reasonable for the area given that some of the existing sidewalks do not have buffered such as streetscaping or planters.

4.2.2. Cycling Mode Assessment

Under the existing conditions, there are dedicated bicycle lanes on Kirwin Avenue/Camila Road, Confederation Parkway, King Street E. There are also some signed routes on Hillcrest Avenue, Paisley Boulevard and Fairview Road W in the study are. **Figure 11** illustrates the existing active transportation network in the study area. Based on our review and assessment, the existing cycling network can be improved in the future as part of the City of Mississauga Cycling Master Plan, and through the LRT and BRT projects to install more bicycle facilities such as bicycle lanes or signed routes along Hurontario Street and Dundas Street. This will encourage existing and future residents to use these facilities instead of driving single-occupant-vehicles. Based on this assessment and criteria outlined in **Table 8**, a minimum of level of service C is reasonable for the area given that there is no major north-south spine in the area. With the future improvements along Hurontario Street corridor, levels of service B or A is possible and justified.

4.3. Transit Mode Assessment

Under the existing conditions, the proposed development is located adjacent to Mississauga Transit Bus Routes 2 and 53 Hurontario, only 250 m (or about 3-minute walk) to the Cooksville GO Station and approximately 350 m (or less than 5-minute walk) to Bus Route 1 and 101 Dundas. The existing transit network in the area is illustrated in **Figure 12**. Based on NexTrans review of the existing Mississauga Transit schedule, as well as the context of the study area, it is concluded that the area is currently has excellent transit service, especially the proposed development is located within a few minutes walking distance to the Cooksville GO Train Station and Bus Terminal. There are no anticipated capacity issues at this time. Based on this assessment and criteria outlined in **Table 8**, at the minimum, level of service B is reasonable for the area. With the completion of the Hurontario LRT service, level of service A is possible and justified.

Hurontario Street John Street Cooksville **Jaguar Valley Drive GO Access Hillcrest Ave** Kirwin Avenue **Jaguar Valley Drive Agnes Street Dundas Street W Dundas Street E** Legend Existing Lane Configuration STOP Existing Stop Sign **Hurontario Street** Existing Traffic Signal

Figure 10 – Existing Lane Configuration and Traffic Control (Pre-LRT Construction)

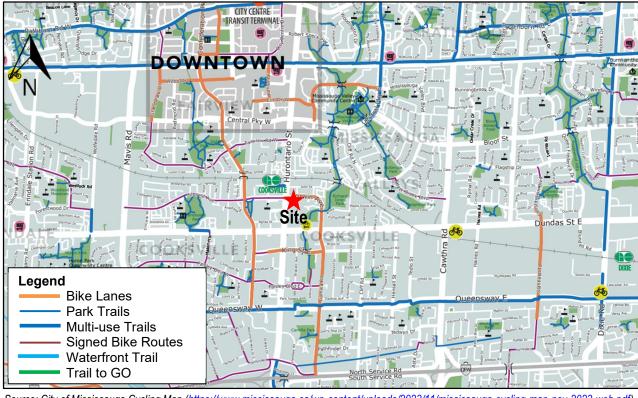


Figure 11 – Existing Cycling Network in the Study Area

Source: City of Mississauga Cycling Map (https://www.mississauga.ca/wp-content/uploads/2023/11/mississauga-cycling-map-nov-2023-web.pdf)



Figure 12 – Existing Transit Network in the Study Area

Source: City of Mississauga Transit Service Map (June, 2024)

4.3. Auto Mode Assessment

4.3.1. Existing Traffic Volumes

Given the on-going construction of the Hurontario LRT in the vicinity of the proposed development, the existing traffic volumes used in the previous assessment dated September 2022 were utilized in this Study. The existing traffic volumes are illustrated in **Figure 13**.

176(322) 5(5) 16(23) **John Street** Cooksville **GO Access** (70)55**Jaguar Valley Drive** (5)3(18)16 14(17) 13(22) 63(122) 164(354) 92(263) 7(16) 19(41) Kirwin Avenue **Hillcrest Ave** (84)18 (57)247(269)291 -(158)169 (72)36(89)74 **Jaguar Valley Drive Agnes Street** 66(131) 437(915) **Dundas Street W Dundas Street E** (144)83(727)1,101(124)118Legend XX AM Peak Hour **Existing Stop Sign** (XX) PM Peak Hour **Existing Traffic Signal Hurontario Street**

Figure 13 – Existing Traffic Volumes (Based on Previous Assessment)

4.3.2. Intersection Capacity Analysis

As indicated, the area will be going through a major change in both traffic pattern and transit pattern with the implementation of the Hurontario LRT, Dundas Street BRT and the GO Expansion project along the Milton GO Line. Therefore, it is expected that the existing traffic conditions will change dramatically with the lane reduction on Hurontario Street and other streets in the area.

Given these changes, it is not appropriate to assess the existing traffic conditions and make recommendations as these recommendations would be thrown away costs for both the City and the developers. However, NexTrans has assessed the existing traffic conditions through site observations. The analysis indicated that with the on-going construction, there are some expected delays and queues during the peak hours. A review of the through traffic data on both Hurontario Street and Dundas Street indicates that the through traffic volumes have been reduced at this time compared to the prepandemic conditions. This is also an indication of how the future lane reduction on Hurontario Street and Dundas Street with the LRT and BRT projects will affect the auto volumes.

5.0 FUTURE BACKGROUND CONDITION ASSESSMENT

5.1. Analysis Horizon

For the purposes of this assessment and requirement from the City through the terms of reference, a five-year horizon (2029) has been carried out for the study analysis. This is consistent with the City of Mississauga Traffic Impact Study Guidelines and background studies conducted in the area.

5.1.1. Walking Mode Assessment

The area is currently well-serviced by a sufficient network of sidewalks, with sidewalks are available on both sides of Hurontario Street, Kirwin Avenue, Hillcrest Avenue, Jaguar Valley Drive, John Street and Agnes Street in the study area. In addition, sidewalks are reasonably maintained therefore no improvement are required at this time. The sidewalk along Hurontario Street may be impacted by the LRT construction activities, however, this is a temporary condition and sidewalk will be reinstated and enhanced as part of the LRT project.

Based on this assessment and criteria outlined in **Table 8**, a minimum of level of service B is reasonable for the area given that some of the existing sidewalks do not have buffered such as streetscaping or planters.

5.1.2. Cycling Mode Assessment

Under the existing conditions, there are dedicated bicycle lanes on Kirwin Avenue/Camila Road, Confederation Parkway, King Street E. There are also some signed routes on Hillcrest Avenue, Paisley Boulevard and Fairview Road W in the study are. **Figure 9** illustrates the existing active transportation network in the study area.

Based on our review and assessment, the existing cycling network can be improved in the future as part of the City of Mississauga Cycling Master Plan, and through the LRT and BRT projects to install more bicycle facilities such as bicycle lanes or signed routes along Hurontario Street and Dundas Street. This will encourage existing and future residents to use these facilities instead of driving single-occupant-vehicles.

Based on this assessment and criteria outlined in **Table 8**, a minimum of level of service C is reasonable for the area given that there is no major north-south spine in the area. With the future improvements along Hurontario Street corridor, levels of service B or A is possible and justified.

5.2. Transit Mode Assessment

Under the existing conditions, the proposed development is located adjacent to Mississauga Transit Bus Routes 2 and 53 Hurontario, only 250 m (or about 3-minute walk) to the Cooksville GO Station and approximately 350 m (or less than

5-minute walk) to Bus Route 1 and 101 Dundas. The existing transit network in the area is illustrated in **Figure 10**. Based on NexTrans review of the existing Mississauga Transit schedule, as well as the context of the study area, it is concluded that the area is currently has excellent transit service, especially the proposed development is located within a few minutes walking distance to the Cooksville GO Train Station and Bus Terminal. There is no anticipated capacity issues at this time.

Based on this assessment and criteria outlined in **Table 8**, it is indicated that a minimum of level of service B is reasonable for the area. With the completion of the Hurontario LRT service, level of service A is possible and justified.

5.3. Auto Mode Assessment

5.4. Future Background Corridor Through Traffic Growth

NexTrans has received the corridor growth rate recommendations from the City of Mississauga (**Appendix D**). These growth rate recommendations are based on the modelling effort, in combination with historical data analysis, as well as the informative changes through these corridors in the future. **Table 10** summarizes the recommended growth rates provided by the City of Mississauga.

Corridor	Direction	Existing	g to 2026	2026 - 2029	
Corridor	Direction	AM Peak	PM Peak	AM Peak	PM Peak
Hurontario Street	NB	-20.0%	-20.5%	1.0%	0.5%
	SB	-23.5%	-18.5%	0.5%	0.5%
Dundon Ctroot	EB	0.0%	0.5%	0.0%	0.0%
Dundas Street	WB	1.0%	0.0%	0.0%	0.0%
Kirwin Avenue/	EB	0.5%	0.5%	0.0%	0.5%
Hillcrest Avenue	WB	0.5%	0.5%	0.5%	0.0%

Table 10 – Recommended Growth Rates for the Study Area Corridors

On this basis, NexTrans has estimated the future background traffic volumes as follows:

- The existing traffic volumes illustrated in **Figure 11** of this Study;
- Using the growth above to estimate the existing to 2026 traffic volumes (**Appendix D**);
- Using the growth above to estimate the 2026-2029 traffic volumes (**Appendix D**);

Figure 14 illustrates the 2029 corridor background through traffic growth based on the methodology and steps noted above, for the morning and afternoon peak hours, respectively.

5.5. Background Development Applications

A full review of active developments within the study area was conducted based on the information extracted from the City of Mississauga development website. **Table 11** below summarizes the background developments in the area along with the associated traffic impact study. It should be noted that the background development traffic volumes are obtained from the respective traffic studies. The background development traffic volumes are obtained from the respective traffic studies and summarized in **Figure 15** (**Appendix E**). **Figure 16** illustrates the 2029 future background traffic volumes, which were derived from the 2029 background corridor growth estimates adding the background development traffic volumes.

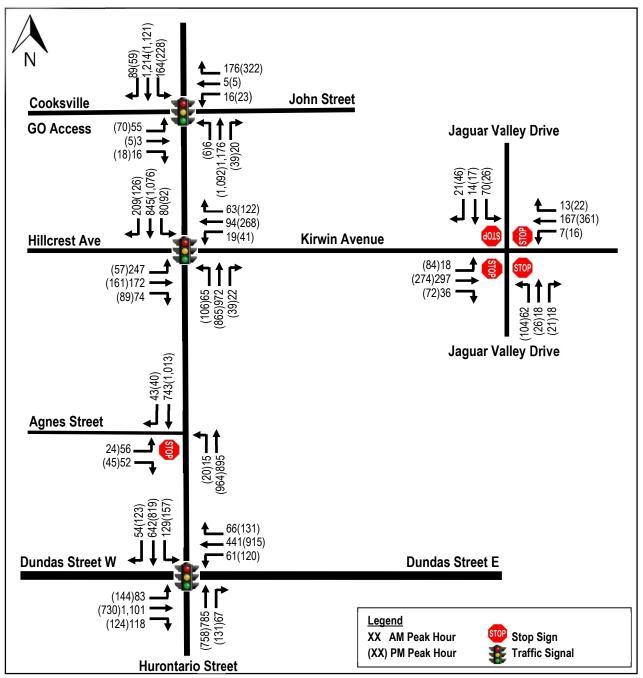
5.6. Future Lane Configurations

As indicated in various sections of this Study, the future Hurontario LRT will alter the lane configurations for the existing intersections in the study area. NexTrans has reviewed the Preliminary Design/TPAP Environmental Project Report dated June, 2014 prepared by Metrolinx. The intersection lane configurations were obtained from the ERP design templates and illustrated in **Figure 17** (**Appendix F**).

Table 11 – Background Development Information in the Study Area

Address	Description	TIS Information
45 Agnes Street	268 residential units and 8,460 ft ² of retail	GHD TIS, 2022
3016-3032 Kirwin Avenue	148 residential units	LEA Consulting TIS, 2022
65 & 71 Agnes Street	379 residential units and 6 townhouse units	Urbantrans TIS, 2022
3085 Hurontario Street	1,081 residential units and 11,044 ft ² of retail	CGH TIS, 2021
3420-3442 Hurontario Street	680 residential units and 2,000 m ² of retail	Crozier TIS, 2020
1 Fairview East	485 residential units and 270 m ² of retail	LEA Consulting TIS, 2020
3575 Kaneff Crescent	282 residential units	Nextrans TIS, 2020
86-90 Dundas Street E	334 residential units and 324 m ² of retail	GHD TIS, 2019
86-95 Dundas Street W	405 residential units and 5,490 m ² of retail	GHD TIS, 2020
2512,2522 and 2532 Argyle Road	101 residential units	Nextrans TIS, 2019
2570-2590 Argyle Road	253 residential units	BA Group TIS, 2020

Figure 14 – 2029 Estimated Background Growth



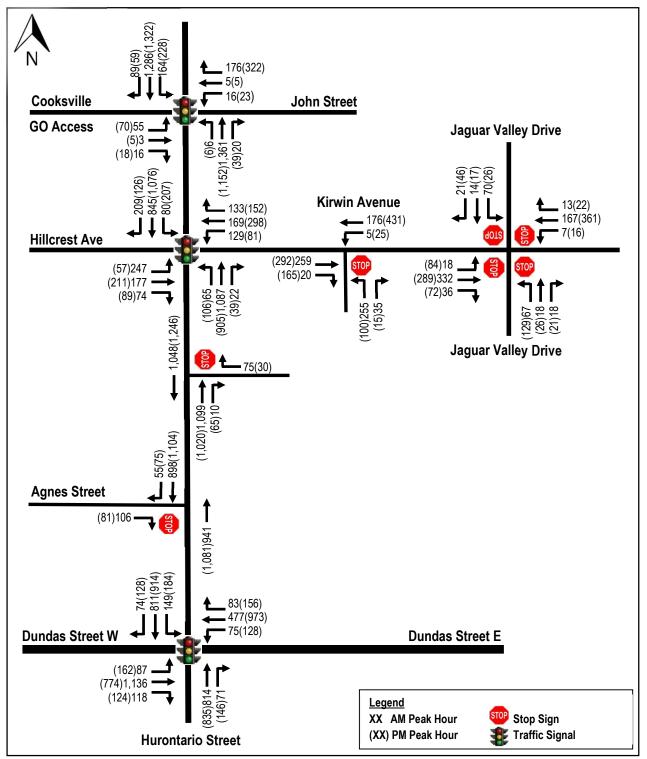


Figure 15 – Background Development Traffic Volumes

Figure 16 – 2029 Future Background Traffic Volumes

Hurontario Street Cooksville John Street **Jaguar Valley Drive GO Access** Kirwin Avenue **Hillcrest Ave** Access **Jaguar Valley Drive RIRO Access Agnes Street Dundas Street W Dundas Street E** <u>Legend</u> **Future Lane Configuration** Stop Sign Traffic Signal **Hurontario Street**

Figure 17 – Future Lane Configuration and Traffic Control with Hurontario LRT

5.7. Typical Cross-Sections for LRT and BRT

Hurontario LRT

The proposed development is located adjacent to the future Hurontario LRT. This project not just increase the user experience for transit, but also enhance the experience for pedestrians and cyclists along Hurontario Street. The

completion of the LRT is expected in 2024. The proposed development is located within walk a few minutes walking distance to the Cooksville Station and Dundas Station. **Figures 18** and **19** illustrate the proposed Hurontario Street cross-sections at Cooksville and Dundas Street, based on the excerpts from Hurontario LRT Preliminary Design Environmental Project Report dated June. 2014.

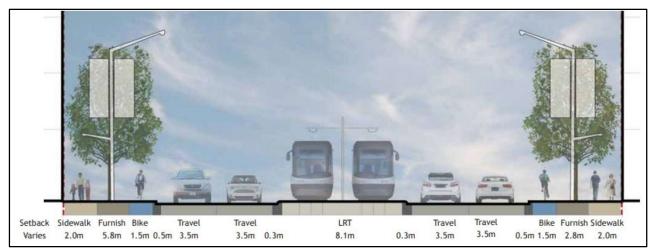
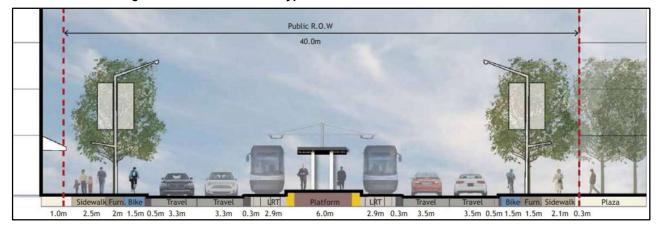



Figure 18 – Hurontario LRT Typical Cross-Section at Cooksville Station

Figure 19 – Hurontario LRT Typical Cross-Section at Cooksville Station

Dundas BRT

As indicated, Metrolinx has initiated the Dundas BRT project. Based on the information provided in the project website, Metrolinx has initiated the Dundas Bus-Rapid-Transit (BRT) Project. The purpose of this project is to evaluate the proposed transit corridor along a 48 kilometre stretch of Dundas Street from Highway 6 in the City of Hamilton through to the Kipling Transit Hub in the City of Toronto, linking Etobicoke and Mississauga City Centres. More than 20 kilometres, of the 48 kilometre BRT, will operate in bus lanes or in a dedicated right-of-way, separate from other traffic, allowing faster and more reliable transit connections. At this time, no cross-section has been identified for the Dundas Street in this area. However, the Region of Halton and other Regions have a typical cross-section with the BRT design. Typically, the cross-section of the BRT would be similar to the LRT, with the exception that there will be a physical separation between the general-purpose lane and the dedicated centre lane.

5.8. Auto Mode Assessment

The estimated 2029 future background traffic volumes are illustrated in **Figure 16** (background corridor growth + background development traffic), and were analyzed using Synchro Version 11 software. The detailed calculations are provided in **Appendix G** and summarized in **Table 12**.

Table 12 – 2029 Future Background Levels of Service

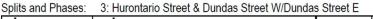
		Wee	kday AM Pea	k Hour	Wee	kday PM Pea	k Hour	Available/
Intersection	Key			95th Queue			95th Queue	Assumed
	Movement	LOS (v/c)	Delay (s)	(m)	LOS (v/c)	Delay (s)	(m)	Storage (m)
	Overall	D (0.95)	52	, ,	F (1.60)	114		
	EB – L	C (0.42)	30	30	F (1.06)	124	101	~40
	EB – T	E (0.95)	64	255	D (0.67)	46	149	~180
	EB – R	B (0.23)	17	29	B (0.25)	19	33	~25
Hurontario Street/	WB – L	E (0.73)	61	39	C (0.56)	33	41	~25
Dundas Street	WB – T	D (0.77)	53	199	F (1.60)	312	590	~440
(Signalized)	WB – R	B (0.17)	11	18	C (0.32)	23	45	~25
	NB – TR	E (0.85)	58	201	F (1.01)	82	240	~150
	SB – L	F (0.82)	114	77	F (0.99)	137	127	~50
	SB – TR	C (0.61)	29	118	D (0.75)	38	163	~130
	Overall	D (0.95)	51		E (1.04)	64		
	EB – L	C (0.31)	27	30	F (1.00)	108	98	~40
Hurontario Street/	EB – T	E (0.95)	64	255	D (0.70)	49	155	~180
Dundas Street with Potential two	EB – R	B (0.23)	17	29	C (0.26)	20	34	~25
shared WB through/right	WB – L	E (0.73)	61	39	C (0.55)	33	41	~25
(Signalized)	WB – TR	D (0.48)	39	98	F (1.03)	82	274	~350
(Signalized)	NB – TR	E (0.85)	58	201	E (0.97)	72	232	~25
	SB – L	F (0.82)	114	77	F (1.04)	149	130	~150
	SB – TR	C (0.61)	29	118	D (0.74)	36	158	~130
	Overall	E (0.95)	56	444	D (0.80)	42		20
	EB – L	F (0.95)	91	114	D (0.41)	52	28	~30
Ulumantaria Otra atl	EB – TR	D (0.49)	53	51	E (0.58)	57	61	~215
Hurontario Street/	WB – L	D (0.56)	55	55	D (0.37)	50	33	~45
Hillcrest Avenue/Kirwin Avenue	WB – TR NB – L	D (0.76)	54	52	E (0.80)	66	92	~80
(signalized)	NB – L NB – TR	E (0.57)	79	34	E (0.68)	74	43	~50
	SB – IK	E (0.67)	81 95	153 57	D (0.67)	35 98	96 109	~300 ~50
	SB – TR	F (0.66) C (0.77)	24	109	F (0.70) C (0.71)	20	93	~135
	Overall	D (0.82)	44	109	C (0.71)	30	95	-133
	EB – L	E (0.52)	72	31	E (0.66)	73	32	~100
	EB – TR	C (0.32)	29	10	C (0.09)	23	10	~150
Hurontario Street/	WB – L	D (0.09)	54	12	D (0.09)	44	14	~40
John Street/Cooksville GO Train	WB – TR	D (0.03)	44	48	D (0.00)	53	88	~150
Station Access	NB – L	F (0.11)	104	4	F (0.11)	100	5	~25
(signalized)	NB – TR	E (0.82)	74	261	C (0.80)	28	215	~140
(6.9.12.12.2)	SB-L	E (0.52)	64	90	E (0.76)	76	165	~40
	SB – T	B (0.55)	10	164	B (0.62)	17	225	~170
	SB – R	A (0.09)	3	10	A (0.07)	2	6	~25
Hurontario Street/	EB – R	A (0.13)	10	4	B (0.11)	10	3	~185
Agnes Street	NB – T	A (0.30)	0	0	A (0.35)	0	0	~130
(unsignalized)	SB – TR	A (0.38)	0	0	A (0.47)	0	0	~200
	EB – L	B (0.03)	8	-	C (0.17)	10	-	~20
Kirwin Avenue/	EB – TR	A (0.61)	15	-	A (0.67)	19	-	~80
Jaguar Valley Drive	WB – L	A (0.01)	8	-	C (0.03)	9	-	`15
(unsignalized)	WB – TR	A (0.31)	10	-	A (0.73)	23	-	~180
(* - 5	NB – LTR	B (0.18)	10	-	B (0.36)	13	-	~115
Hurontario Street/	SB – LTR WB – R	B (0.18)	10 10	3	B (0.18) A (0.04)	11 10	1	~75 ~80
3085 Hurontario RIRO Access	NB – R	A (0.10) A (0.47)	0	0	A (0.04) A (0.43)	0	0	~80
(unsignalized)	SB – T	A (0.47) A (0.34)	0	0	A (0.43) A (0.40)	0	0	~100
Kirwin Avenue/ Proposed	EB – TR	A (0.18)	0	0	A (0.29)	0	0	~80
Shared Full Moves Access	WB – TL	A (0.00)	0	0	A (0.03)	1	1	~80
(unsignalized)	NB – LR	C (0.55)	19	27	C (0.41)	25	15	~100

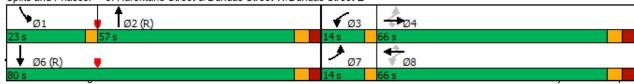
The analysis indicates that under the future background conditions, all intersections are expected to operate at acceptable levels of service during the morning peak hour and afternoon peak hour, with the exception of the Hurontario Street/Dundas Street W intersection during the afternoon peak hour. This is due lane conversion in the westbound direction from a through lane to exclusive right turn lane.

With the recommended lane configurations for the Dundas Street westbound as part of the Hurontario LRT design, the intersection is expected to have higher delay. It is NexTrans' opinion that given the area will have significant transit capacity in the future, no further improvements are required. However, for sensitivity analysis, NexTrans has tested the lane configuration on Dundas Street with a shared through/right lane instead of an exclusive right turn lane.

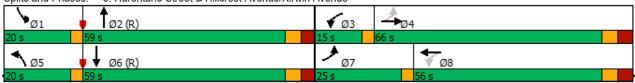
5.9. **Signal Timing Optimization**

The following are the potential signal timing for the signalized intersections considered in the analysis:

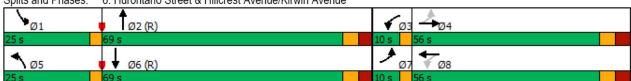

Hurontario Street and Dundas Street


AM Peak Hour

PM Peak Hour



Hurontario Street and Kirwin Avenue/Hillcrest Avenue


AM Peak Hour

PM Peak Hour

Hurontario Street and GO Station/John Street

AM Peak Hour

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

PM Peak Hour

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

6.0 FUTURE TOTAL CONDITION ASSESSMENT

6.1. Walking Mode Assessment

As indicated in the previous section of this Study, the area is currently well-serviced by a sufficient network of sidewalks, with sidewalks are available on both sides of Hurontario Street, Kirwin Avenue, Hillcrest Avenue, Jaguar Valley Drive, John Street and Agnes Street in the study area. In addition, sidewalks are reasonably maintained therefore no improvement are required at this time. The sidewalk along Hurontario Street may be impacted by the LRT construction activities, however, this is a temporary condition and sidewalk will be reinstated and enhanced as part of the LRT project. The proposed development will provide direct pedestrian access onto Hurontario Street and internal shared roadway. Sidewalk will be provided along the internal shared roadway to accommodate pedestrian access.

Therefore, based on this assessment and criteria outlined in **Table 9**, the proposed development and the area will maintain at least level of service B for the existing and future sidewalk network and facilities.

6.2. Cycling Mode Assessment

Under the existing conditions, there are dedicated bicycle lanes on Kirwin Avenue/Camila Road, Confederation Parkway, King Street E. There are also some signed routes on Hillcrest Avenue, Paisley Boulevard and Fairview Road W in the study are. It is our understanding that cycling network will be improved in the City and in this general area through the City of Mississauga Cycling Master Plan, and through the LRT and BRT projects to install more bicycle facilities such as bicycle lanes or signed routes along Hurontario Street and Dundas Street. This will encourage existing and future residents to use these facilities instead of driving single-occupant-vehicles.

The proposed development will provide a total of 316 bicycle parking spaces on-site to encourage residents to use active modes of transportation and to support vehicle parking rate reduction. Therefore, based on this assessment and criteria outlined in **Table 9**, the proposed development and the area will maintain at least level of service B for the existing and future cycling network and facilities.

6.3. Transit Mode Assessment

As indicated, the proposed development is expected to generate 78 total two-way transit trips (41 inbound and 37 outbound) and 36 total two-way transit trips (21 inbound and 15 outbound) during the morning and afternoon peak hours, respectively. For the purposed of this assessment, it is assumed that all these trips are related to transit trips. The subject site is located adjacent to the future Hurontario LRT (Hazel McCallion Line) and approximately 350 m (or less than 5-minute walk) to the future Dundas Station and only 250 m (or about 3-minute walk) to the intermodal LRT Stop at Cooksville GO Station.

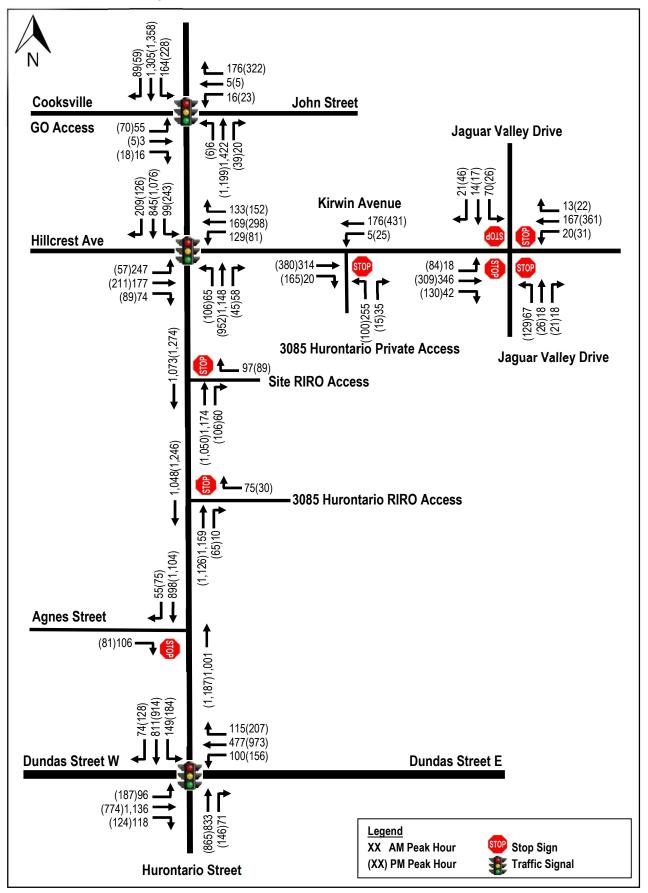
For these reasons, the proposed development transit riders will have many ways to access transit and these trips will be spread out to different transit routes. Therefore, the proposed development site generated transit trips can be accommodated by the proposed transit improvements in this area. No additional improvements are required beyond the proposed transit improvements to accommodate the proposed development.

Therefore, based on this assessment and criteria outlined in **Table 9**, the proposed development and the area will maintain at least level of service B or better for the existing and future transit network and facilities.

6.4. Auto Mode Assessment

The estimated 2029 future total traffic volumes are illustrated in **Figure 20** for site access Option 1 and **Figure 21** for site access Option 2 (future background traffic + site), for the morning and afternoon peak hours, respectively, and were analyzed using Synchro Version 11 software. The detailed calculations are provided in **Appendix H**. For the purpose of this assessment, the following access management scenarios will be assessed:

- Access Option 1 Proposed full moves access onto the shared driveway with 3085 Hurontario Street
- Access Option 2 Proposed right-in/right-out access onto Hurontario Street


The purpose of the second option is to provide flexibility for the proposed development in the event of emergency or continued construction of the 3085 Hurontario Street Private Road. The detailed analysis is provided below.

164(228) 176(322) 5(5) 16(23) John Street Cooksville **GO Access** (70)55**Jaguar Valley Drive** (5)3(18)1699(243) Kirwin Avenue 13(22) 168(179) 180(376) 176(431) 192(312) 18(40) 7(16) 154(109) **Hillcrest Ave** (292)259(84)18(57)247(256)67(309)346 (236)186 (72)36(89)74 **—** 1,073(1,274) **Jaguar Valley Drive Shared Site Access** 75(30) 3085 Hurontario RIRO Access (65)10(1,050)1,118 **Agnes Street** (81)106(1,111)96083(156) 477(973) 75(128) **Dundas Street W Dundas Street E** (162)87(774)1,136 Legend (124)118XX AM Peak Hour Stop Sign Traffic Signal (XX) PM Peak Hour **Hurontario Street**

Figure 20 - 2029 Future Total Traffic Volumes Access Option 1

Figure 21 – 2029 Future Total Traffic Volumes Access Option 2

6.4.1. Access Option 1

The intersection performance analysis is summarized in **Table 13** for Access Option 1. The analysis indicates that under the future total conditions, similar to the future background conditions, all intersections are expected to operate at acceptable levels of service during the morning peak hour and afternoon peak hour, with the exception of the Hurontario Street/Dundas Street W intersection during the afternoon peak hour. For sensitivity analysis (**Appendix I**), NexTrans has tested the lane configuration on Dundas Street with a shared through/right lane instead of an exclusive right turn lane and a through lane. The sensitivity analysis indicates that with this proposed lane configuration, the intersection is expected to operate at better levels of service. Therefore, the City may consider this configuration in the future when appropriate.

Table 13 – 2029 Future Total Levels of Service for Access Option 1

	Vau	Weekday AM Peak Hour			Wee	kday PM Pea	k Hour	Available/
Intersection	Key Movement	LOS (v/c)	Delay (s)	95 th Queue	LOS (v/c)	Delay (s)	95 th Queue	Assumed
				(m)			(m)	Storage (m)
	Overall	D (0.95)	52	20	F (1.60)	115	404	40
	EB – L	C (0.42)	30	30	F (1.06)	124	101	~40
	EB – T	E (0.95)	64	255	D (0.67)	46	149	~180
Hurontario Street/	EB – R	B (0.23)	17	29	B (0.25)	19	33	~25
Dundas Street	WB – L	E (0.73)	61	39	C (0.56)	33	41	~25
(Signalized)	WB – T	D (0.77)	53	199	F (1.60)	312	590	~440
(0.9.14.11204)	WB – R	B (0.17)	11	18	C (0.32)	23	45	~25
	NB – TR	E (0.87)	59	208	F (1.04)	90	252	~150
	SB – L	F (0.82)	112	87	F (0.99)	135	124	~50
	SB – TR	C (0.63)	28	125	D (0.77)	40	175	~130
	Overall	D (0.95)	50		E (1.04)	66		
	EB – L	C (0.31)	27	30	F (1.00)	108	98	~40
Hurontario Street/	EB – T	E (0.95)	64	255	D (0.70)	49	155	~180
Dundas Street with Potential	EB – R	B (0.23)	17	29	C (0.26)	20	34	~25
shared WB through/right	WB – L	E (0.73)	61	39	C (0.55)	33	41	~25
(Signalized)	WB – TR	D (0.48)	39	98	F (1.03)	82	274	~350
(Gighalized)	NB – TR	E (0.87)	59	208	E (1.00)	79	244	~25
	SB – L	F (0.82)	112	87	F (1.04)	147	127	~150
	SB – TR	C (0.63)	28	125	D (0.76)	38	169	~130
	Overall	D (0.97)	60		D (0.81)	46		
	EB – L	F (0.97)	94	120	D (0.42)	51	27	~30
Hurontario Street/	EB – TR	D (0.46)	52	51	E (0.59)	58	66	~215
Hillcrest Avenue/Kirwin	WB – L	E (0.63)	56	62	E (0.56)	57	47	~45
Avenue	WB – TR	D (0.79)	55	61	E (0.81)	64	97	~80
(signalized)	NB – L	F (0.57)	81	33	E (0.68)	74	42	~50
(Signalized)	NB – TR	F (0.72)	86	157	D (0.79)	49	95	~300
	SB – L	F (0.68)	98	60	F (0.67)	82	133	~50
	SB – TR	C (0.65)	22	89	C (0.73)	22	126	~135
	Overall	D (0.84)	44		C (0.90)	32		
	EB – L	E (0.53)	72	30	E (0.66)	72	32	~100
	EB – TR	C (0.11)	29	10	C (0.09)	23	10	~150
Hurontario Street/	WB – L	D (0.08)	54	12	D (0.09)	43	14	~40
John Street/Cooksville GO	WB – TR	D (0.78)	45	49	D (0.90)	53	88	~150
Train Station Access	NB – L	F (0.11)	104	4	F (0.11)	96	4	~25
(signalized)	NB – TR	E (0.84)	75	270	C (0.82)	33	239	~140
	SB – L	E (0.53)	65	91	E (0.77)	76	166	~40
	SB – T	B (0.56)	10	168	B (0.64)	18	236	~170
	SB – R	A (0.10)	3	10	A (0.07)	2	6	~25
Hurontario Street/	EB – R	A (0.13)	10	4	B (0.11)	10	3	~185
Agnes Street	NB – T	A (0.31)	0	0	A (0.36)	0	0	~130
(unsignalized)	SB – TR	A (0.39)	0	0	A (0.48)	0	0	~200
	EB – L	C (0.03)	8	-	C (0.17)	10	-	~20
Kirwin Avenue/	EB – TR	A (0.63)	16	-	A (0.71)	22	-	~80
Jaguar Valley Drive	WB – L	B (0.01)	8	-	D (0.03)	9	-	~15
	WB – TR	A (0.34)	10	-	A (0.76)	26	-	~180
(unsignalized)	NB – LTR	B (0.19)	10	-	B (0.36)	14	-	~115
	SB – LTR	B (0.19)	10	-	B (0.18)	11	-	~75
Hurontario Street/	WB – R	A (0.10)	10	3	A (0.04)	10	1	~80
3085 Hurontario RIRO Access	NB – TR	A (0.48)	0	0	A (0.45)	0	0	~200
(unsignalized)	SB – T	A (0.34)	0	0	A (0.41)	0	0	~100
Kirwin Avenue/ Proposed	EB – TR	A (0.21)	0	0	A (0.33)	0	0	~80
Shared Full Moves Access	WB – TL	A (0.02)	1	0	A (0.04)	1	1	~80
(unsignalized)	NB – LR	E (0.80)	34	60	E (0.69)	40	38	~100

The analysis indicates that the proposed shared access onto Kirwin Avenue is expected to operate at acceptable levels of service from delay and v/c capacity perspective. The queue is expected to be accommodated within the proposed storage length.

6.4.2. Access Option 2

The intersection performance analysis is summarized in **Table 14** for Access Option 2. The analysis indicates that under the future total conditions, similar to the future background conditions and Access Option 1, all intersections are expected to operate at acceptable levels of service during the morning peak hour and afternoon peak hour, with the exception of the Hurontario Street/Dundas Street W intersection during the afternoon peak hour. For sensitivity analysis (**Appendix I**), NexTrans has tested the lane configuration on Dundas Street with a shared through/right lane instead of an exclusive right turn lane and a through lane. The sensitivity analysis indicates that with this proposed lane configuration, the intersection is expected to operate at better levels of service. Therefore, the City could consider this configuration in the future when appropriate.

The analysis indicates that the proposed right-in/right-out access onto Hurontario Street is expected to operate at acceptable levels of service from delay and v/c capacity perspective. The queue is expected to be accommodated within the proposed storage length.

Therefore, the analysis indicates that both access options are acceptable for the proposed development. However, NexTrans recommends that the proposed development move forward with the proposed right-in/right-out access onto Hurontario Street because this access arrangement option provides flexibility for the proposed development to move forward without dependent on the development of 3085 Hurontario Street and its Private Road.

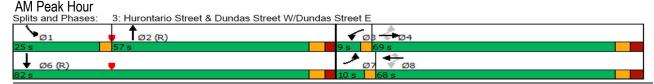
Table 14 – 2029 Future Total Levels of Service for Access Option 2

	V	Wee	kday AM Pea	k Hour	Wee	kday PM Pea	k Hour	Available/
Intersection	Key Movement	LOS (v/c)	Delay (s)	95 th Queue (m)	LOS (v/c)	Delay (s)	95 th Queue (m)	Assumed Storage (m)
	Overall	D (0.97)	53		F (1.60)	116	,	, , , , , , , , , , , , , , , , , , ,
	EB – L	C (0.46)	32	32	F (1.22)	177	123	~40
	EB – T	E (0.95)	64	255	D (0.67)	46	149	~180
Hurontario Street/	EB – R	B (0.23)	17	29	B (0.25)	19	33	~25
Dundas Street	WB – L	F (0.97)	108	62	D (0.68)	39	49	~25
	WB – T	D (0.77)	53	199	F (1.60)	312	590	~440
(Signalized)	WB – R	B (0.23)	17	29	C (0.42)	29	65	~25
	NB – TR	E (0.87)	59	208	F (1.04)	90	252	~150
	SB – L	F (0.82)	115	88	F (0.99)	137	126	~50
	SB – TR	C (0.61)	27	120	D (0.75)	38	164	~130
	Overall	D (0.95)	50		E (1.04)	66		
	EB – L	C (0.31)	27	30	F (1.00)	108	98	~40
Hurontario Street/	EB – T	E (0.95)	64	255	D (0.70)	49	155	~180
Dundas Street with Potential	EB – R	B (0.23)	17	29	C (0.26)	20	34	~25
shared WB through/right	WB – L	E (0.73)	61	39	C (0.55)	33	41	~25
(Signalized)	WB – TR	D (0.48)	39	98	F (1.03)	82	274	~350
(Signalized)	NB – TR	E (0.87)	59	208	E (1.00)	79	244	~25
	SB – L	F (0.82)	112	87	F (1.04)	147	128	~150
	SB – TR	C (0.63)	28	125	D (0.76)	37	168	~130
	Overall	E (0.95)	59		D (0.80)	46		
	EB – L	F (0.95)	91	114	D (0.41)	52	28	~30
Hurontario Street/	EB – TR	D (0.49)	53	51	E (0.58)	57	61	~215
Hillcrest Avenue/Kirwin	WB – L	D (0.56)	55	55	D (0.42)	52	37	~45
Avenue	WB – TR	D (0.76)	54	52	E (0.80)	66	92	~80
(signalized)	NB – L	E (0.57)	79	34	E (0.68)	74	43	~50
(Signalizad)	NB – TR	F (0.74)	85	173	D (0.79)	50	108	~300
	SB – L	F (0.68)	95	60	F (0.66)	83	125	~50
	SB – TR	C (0.63)	21	90	C (0.71)	20	98	~135
	Overall	C (0.86)	45		C (0.90)	32		
	EB – L	E (0.53)	72	30	E (0.66)	72	32	~100
Hurontario Street/	EB – TR	C (0.11)	29	10	C (0.09)	23	10	~150
John Street/Cooksville GO	WB – L	D (0.08)	53	12	D (0.09)	43	14	~40
Train Station Access	WB – TR	D (0.79)	46	49	D (0.90)	54	89	~150
(signalized)	NB – L	F (0.11)	106	4	F (0.11)	100	4	~25
	NB – TR	E (0.86)	76	272	C (0.84)	33	244	~140
	SB – L	E (0.53)	65	91	E (0.77)	77	167	~40

	SB – T	B (0.56)	11	168	B (0.64)	18	236	~170
	SB – R	A (0.10)	3	10	A (0.07)	2	6	~25
Hurontario Street/	EB – R	A (0.13)	10	4	B (0.11)	10	3	~185
Agnes Street	NB – T	A (0.32)	0	0	A (0.38)	0	0	~130
(unsignalized)	SB – TR	A (0.38)	0	0	A (0.47)	0	0	~200
	EB – L	C (0.03)	8	-	D (0.17)	10	-	~20
Kirwin Avenue/	EB – TR	A (0.64)	17	-	A (0.81)	29	-	~80
	WB – L	A (0.04)	8	-	C (0.07)	9	-	~15
Jaguar Valley Drive (unsignalized)	WB – TR	A (0.31)	10	-	A (0.75)	25	-	~180
(urisigrializeu)	NB – LTR	B (0.19)	10	-	B (0.37)	14	-	~115
	SB – LTR	B (0.19)	10	-	B (0.19)	12	-	~75
Hurontario Street/	WB – R	A (0.10)	10	3	A (0.04)	10	1	~80
3085 Hurontario RIRO Access	NB – TR	A (0.49)	0	0	A (0.48)	0	0	~200
(unsignalized)	SB – T	A (0.34)	0	0	A (0.40)	0	0	~100
Kirwin Avenue/ 3085	EB – TR	A (0.21)	0	0	A (0.33)	0	0	~80
Hurontario Site Access	WB – TL	A (0.00)	0	0	A (0.03)	1	1	~80
(unsignalized)	NB – LR	C (0.60)	22	31	D (0.40)	26	15	~100
Hurontario Street/	WB – R	B (0.13)	10	4	B (0.13)	10	4	~80
Proposed Site RIRO Access	NB – TR	A (0.50)	0	0	A (0.45)	0	0	~200
(unsignalized)	SB – T	A (0.34)	0	0	A (0.41)	0	0	~100

6.5. Potential Mitigation Measure to Improve Intersection Operation

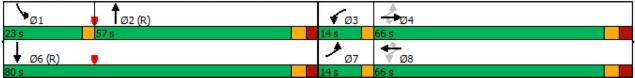
With the future transit improvements in the area, the existing traffic pattern will be altered and reduced due to the diversion of auto mode to the transit mode, as well as the reduction of the lane on Hurontario Street. Any additional improvements to accommodate the auto mode will impact other modes such as walking, cycling and transit.


To address the current climate change crisis, pollution and congestion in the City, more sustainable directions and objectives are included within the Official Plans, Transportation Master Plans and the Provincial Growth Plan to minimize the climate change and impact on human lives, it is no longer desirable to widen existing roads in the City and the Region for the sole purpose of encouraging more single-occupant-vehicle trips within and throughout the Region. It is more supportable to effectively utilize the existing and future infrastructures to encourage the residents to use alternative modes of transportation such as public transit, cycling and walking. Therefore, the following mitigation measures are recommended for all new developments in the area:

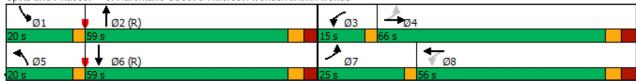
- The City and the Region to review the existing signal timing plans for the area and optimize them as appropriate to optimize the intersection operations:
- Reduce parking rates as per Bill 185 for all proposed developments to encourage alternative modes of transportation such as walking, cycling and public transit;
- The Region and the City to work with Metrolinx and York Region to implement the future BRT upgrades and enhancements along Dundas Street;
- New proposed developments in the area provide adequate bicycle parking spaces to encourage active modes of transportation;
- New proposed developments provide enhanced sidewalk and pedestrian connections through-out the site that connect with the surrounding network; and
- Where appropriate, new proposed developments provide TDM measures and incentives to encourage alternative mode of transportation in the area

6.6. Signal Timing Optimization

The following are the potential signal timing for the signalized intersections considered in the analysis:


Hurontario Street and Dundas Street

PM Peak Hour

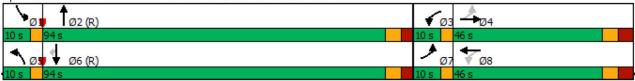

Splits and Phases: 3: Hurontario Street & Dundas Street W/Dundas Street E

Hurontario Street and Kirwin Avenue/Hillcrest Avenue

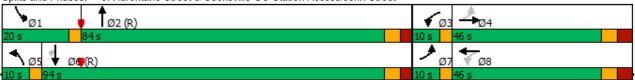

AM Peak Hour

Splits and Phases: 6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

PM Peak Hour


Splits and Phases: 6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

Hurontario Street and GO Station/John Street


AM Peak Hour

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

PM Peak Hour

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

6.7. Why The Proposed Development Should be Approved

Based on the analysis noted above, the proposed development is expected to have negligible impacts on the surrounding boundary roadway intersections. The proposed development is expected to generate only 7% and 8% of the overall forecast traffic on Hurontario Street during the morning and afternoon, respectively.

The proposed development only provides a total of 193 parking spaces, which is less than 50% of the total numbers of unit. The analysis indicates that the proposed development is only expected to generate 157 total two-way auto trips (60 inbound and 97 outbound) and 195 total two-way auto trips (106 inbound and 89 outbound) during the morning and afternoon peak hours, respectively, for all three types of proposed land uses such as residential, retail and community centre.

With the completion and opening of the Hurontario LRT that is currently under construction, it is expected that there will be a decrease in auto trips along Hurontario Street corridor and the area road network as drivers will be converted to taking transit and diverted to other routes. Furthermore, in order to help reduce the auto trip impacts in the area transportation network, the proposed development will also provide robust TDM measures and incentives in Section 10 of this Study Update to minimize the numbers of single-occupant-vehicle trips to and from the proposed development.

7.0 SITE PLAN REVIEW

7.1. **Waste Management Plan**

NexTrans has reviewed the existing garbage pick up schedule for the existing development, as well as the Waste Management Plan for Official Plan Amendment/Rezoning Applications guidelines from Region of Peel website (https://www.peelregion.ca/waste/calendar/). Figure 22 summarizes the current waste pick-up schedule for the area. Based on the current solid waste pick-up schedule, garbage and recycling pick-up occurs on alternate Wednesday of the weeks. Organics waste will be picked up every Wednesday of the week.

Tue Thu Fri Sun Mon Wed Sat 27 28 26 29 30 1 2 Garbage Canada Day Organics 3 4 5 6 7 8 9 Recycling Organics Yard Waste 10 12 11 13 14 15 16 Garbage Organics 17 18 19 20 21 22 23 Recycling Organics Yard Waste 24 25 26 27 28 29 30 Garbage Organics 5 31 2 3 4 6 Civic Holiday Recycling Organics Yard Waste

Figure 22 – Waste Collection Schedule

Loading Space Requirement 7.2.

Retail

The City of Mississauga Zoning By-law 0225-2007 was reviewed to determine the loading requirement for the proposed development. Table 15 summarizes the loading requirement based on the current Zoning By-law.

Land Use Magnitude **Loading Rates Spaces Required** Residential 484 units Minimum of 30 dwelling units

Table 15 – City of Mississauga Zoning By-law Loading Requirements

Under the City's By-Law Zoning By-law 0225-2007, one loading space is required for residential component and one for non-residential component. However, given that both uses are located in the same building, only one loading space will be required to accommodate all uses. The minimum loading space dimensions are: 3.5 m width and 9.0 m Length, with

More than 250 m² but less than or equal to 2,350 m²

291.61 m²

1 space

1 space

7.3 m vertical clearance. The proposed development meets this requirement and has been reflected in the proposed site plan. AutoTURN software was used to generate vehicular turning templates to confirm and demonstrate the accessibility for the Type "G" loading space and proposed underground ramp. The vehicle turning templates are provided in **Figures 27** and **30** of this Study.

7.3. Waste Management Operation

On the garbage pick-up day, garbage bins will be moved from the garbage storage area to the garbage staging area. Garbage truck with front-end loader will make a right turn or left turn from the laneway into the site designated loading area. Once garbage has been picked up, garbage truck will be backing into the designed hammerhead area and then exit the site in forward motion. For recycling and regular garbage pick up, garbage truck will back into the designated site loading area from the laneway and using the designated hammerhead. When the operation is completed, garbage truck will exit the site in a forward motion directly from the loading area to the laneway. Waste operations shall be further refined as part of detailed design at the Site Plan Approval stage.

7.4. Proposed Development Access

A full moves access will be provided onto Kirwin Avenue to service the proposed development. It should be noted that this access will be shared with the adjacent development, 3085 Hurontario Street. The analysis indicates that the proposed access is expected to operate at acceptable levels of service with minimum queue or delay. Therefore, it is concluded that the proposed site access arrangement is appropriate. The lane configurations for the proposed development include: one inbound and one outbound lane (3.5 m width per lane), eastbound shared through/right and westbound shared through/left on Kirwin Avenue.

7.5. Safety Review

7.5.1. Sightlines

Based on NexTrans' review of the area context, site observation and review of the survey plan, Hurontario Street and Kirwin Avenue are relatively flat and straight with no significant horizon curves or vertical curves in the vicinity of the proposed 3085 Hurontario Street site access. The proposed 3085 Hurontario Street site access conditions are relatively similar to the existing conditions. Based on Table 9.9.4 of the 2017 Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads, a stopping sight distance of 85m is required for a 60km design speed. This is the design speed for Kirwin Avenue (posted plus 10km/h). Our analysis indicates that the proposed 3085 Hurontario Street site access onto Kirwin Avenue can achieve or exceed the required stopping sight distance of 85m, as illustrated in Figure 23 below.

Figure 23 – Proposed Access Sightlines (Access Option 1)

Similarly, based on NexTrans' review of the area context, site observation and review of the survey plan, Hurontario Street is relatively flat and straight with no significant horizon curves or vertical curves in the vicinity of the proposed site right-in/right-out access. The proposed access conditions are relatively similar to the existing conditions. Based on Table 9.9.4 of the 2017 Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads, a stopping sight distance of 105m is required for a 70km design speed. This is the design speed for Hurontario Street (posted plus 10km/h). Our analysis indicates that the proposed right-in/right-out access onto Hurontario Street can achieve or exceed the required stopping sight distance of 105m, as illustrated in **Figure 24** below.

Figure 24 – Proposed Access Sightlines (Access Option 2)

Source: Google Map

7.5.2. Weaving

As indicated, the proposed development has two access options, one full moves access onto the private laneway proposed by 3085 Hurontario Street to Kirwin Avenue, and the second access option with only a right-in/right-out onto Hurontario Street. Based on the first access arrangement option, it is anticipated that there will be no weaving issue with the proposed full moves access onto Kirwin Avenue.

With regards to Access Option 2, given that there will be no exclusive northbound right turn lane from Hurontario Street to Kirwin Avenue, the proposed right-in/right-out access onto Hurontario Street will not interfere or cause any weaving in the vicinity of this intersection. Therefore, there will no potential weaving issues anticipated at this location.

7.5.3. Pedestrian and Cycling Safety

Based on NexTrans' review of the Hurontario LRT cross-section, a minimum of 2.1 m sidewalk will be provided on both sides of Hurontario Street. In addition, a 1.5 m bicycle lane will be provided on both sides of Hurontario Street with 0.5 m buffer. For these reasons, that the pedestrian and cycling safety will be improved along this corridor.

The existing sidewalk on the south side of Kirwin Avenue along the frontage of the site will be maintained and enhanced through both proposed site accesses to ensure pedestrian safety. In addition, internal sidewalks will be proposed as illustrated in **Figure 24** below.

A potential ladder crossing treatment along the frontage of the proposed site full moves access onto Kirwin Avenue. This potential crossing is illustrated in **Figure 25** below.

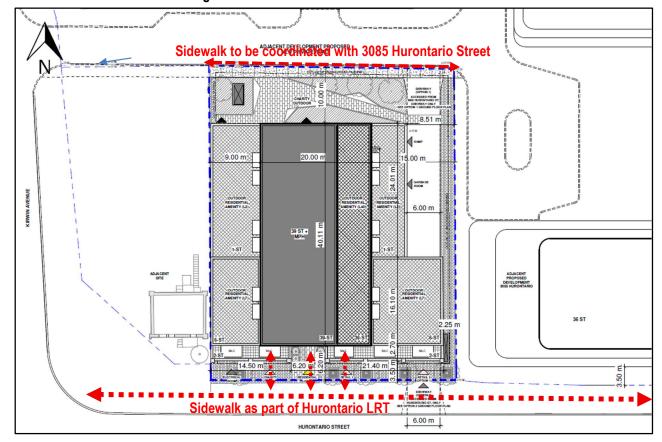
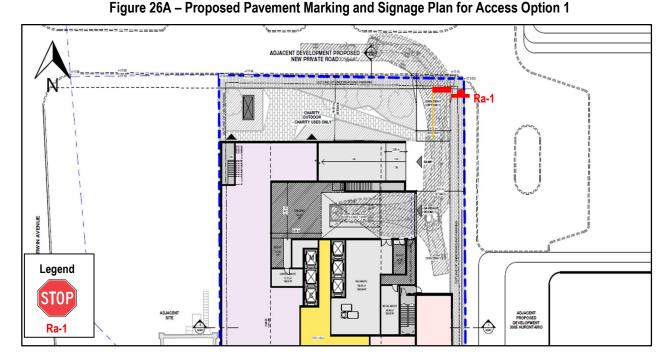


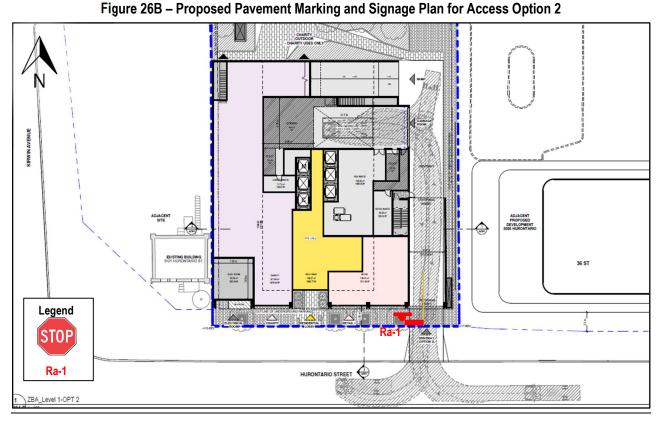
Figure 25 – Pedestrian Connections and Facilities

7.6. Corner Clearance

In accordance with Section 8.8.1 and Figure 8.8.2 of the TAC 2017, the minimum corner clearance at an intersection is 15m. The Corner Clearance between the proposed 3085 Hurontario Street access to Hurontario Street is approximately 78m and 56 m to Jaguar Valley Drive. Therefore, the proposed site access corner clearances exceed the minimum TAC 2017 <u>suggested</u> corner clearance guideline of 15m.

Similarly, the Corner Clearance between the proposed site right-in/right-out access onto Hurontario Street to Kirwin Avenue is approximately 60 m. Therefore, the proposed site access corner clearances exceed the minimum TAC 2017 suggested corner clearance guideline of 15m.


7.6.1. Clear Throat Length


As for Access Option 1, the proposed development provides a full moves access onto the proposed 3085 Hurontario Street private road, therefore, the clear throat length is not applicable as the private access will have very low speed limit. For the proposed right-in/right-out access onto Hurontario Street, there is no conflict movement or access immediately to the east of Hurontario Street. The load area and underground parking accesses are located to the easterly limit of the site, which is very far from Hurontario Street. Therefore, there will be not issue with the clear throat length for this proposed right-in/right-out access.

7.6.2. Pavement Marking and Signage Plan

Below is a proposed preliminary pavement marking and signage plan for the proposed development site plan. A more detailed pavement marking and signage plan will be provided at the subsequent stage of the proposed development, depending on which access option will be approved by the City. **Figures 26A** and **26B** illustrate the preliminary pavement marking and signage plan for both proposed access options as presented in this Study Update.

8.0 VEHICLE PARKING ASSESSMENT

8.1. Zoning By-law Vehicle Parking Requirement

Based on the information provided on the Province website, Bill 185, the Cutting Red Tape to Build More Homes Act, 2024, will limit municipalities' ability to require parking facilities in certain areas, specifically near major transit stations. Municipalities can no longer mandate parking minimums in Protected Major Transit Station Areas (PMTSA) or areas designated for higher-order transit with minimum densities. The goal is to encourage more efficient land use, reduce reliance on cars, and promote public transit use. The proposed change would let homebuyers and homebuilders decide parking spaces for new residential development near higher order transit, based on market needs. This could remove construction costs of between \$2,000-\$100,000 per parking space per project, helping to make more projects viable. Under existing requirements in some municipalities, this could save up to \$50 million for a 500-unit development and make it cheaper to build and purchase new homes near transit.

As the proposed development is located within 800m radius of the future Major Transit Station Areas at the Dundas Street/Hurontario Street and Cooksville GO Station, therefore, the proposed development is subject to Bill 185 definition with no minimum vehicle parking requirements.

Table 16 below summarizes the vehicle parking requirements for the City of Mississauga Zoning By-law No. 0225-2007 as amended. This is considered maximum parking requirement for the proposed development as there is no minimum parking requirement.

Unit Type No. of Unit **Parking Rates Parking Requirement** 484 units Residential 0.80 spaces/unit 387 484 units 0.20 spaces/unit for visitor 97 Visitor 291.61 m² To be shared with visitor 0 Retail Total 484 spaces

Table 16 – Zoning By-law No. 0225-2007 (As Amended) Maximum Vehicle Parking Requirements

Based on the Zoning By-law No. 0225-2007 as amended, the proposed development is allowed to provide a maximum of 484 vehicle parking spaces, inclusive of residential, visitor and retail uses. This is a significant amount of parking spaces, it is excessive and do not support the Hurontario LRT investment by Metrolinx and the City of Mississauga. Therefore, a more appropriate parking requirement will be recommended based on the context and requirement of the proposed development.

8.2. Appropriate Parking Management is the best TDM Measure

Appropriate parking demand management is the best transportation demand management measure at this time because:

- Limited available parking spaces will encourage resident not to own a car; and
- It encourages residents to take other sustainable modes of transportation available in the area such as walking, cycling and public transit:

8.3. Available Sustainable Modes of Transportation in the Area

Public Transit is an important mode of transportation for both short and longer distance trips to and from the proposed development. Based on NexTrans review of the overall transportation network in the area, it is evident that the transportation network will be significantly transformed in the future with the following improvements:

- Hurontario Light-Rail-Transit (LRT);
- Dundas Bus-Rapid-Transit (BRT);
- Milton GO Line Expansion with all day two-way and 15-minute service frequency;

- Aggressive active transportation network by the City and the Region; and
- Aggressive Transportation Demand Management plan

As indicated in previous sections of this Study, the proposed development is located adjacent to the Hurontario LRT and only a few minutes walking distance to the Cooksville Intermodal Station and future Dundas BRT Station, there are many efficient, quick and sustainable way to travel instead of owning and driving private vehicles. With the recent gas price increases and capital cost of owning a vehicle (new vehicle shortage due to supply chain problem), more residents will choose to use more convenient and effective mode of transportation such as public transit, walking and cycling.

8.4. Recommended Vehicle Parking Requirement for the Proposed Development

As this area will be transformed into a major transportation mobility hub for all modes of transportation including excellent transit and active transportation, these modes of transportation are more sustainable and cheaper than owning a private vehicle. The alternative modes of transportation will also help reducing congestion and pollution in the area.

The following are recommended parking rates (**Table 17**) for the proposed development, based on the parking justification provided in subsequent sections of this Study. Based on the recommended vehicle parking rates, the proposed development will provide a total of 193 vehicle parking spaces, including 121 residential and 73 visitor/non-residential spaces. The proposed development also requires to provide 4 accessible spaces and 31 EV ready spaces, as indicated in **Tables 18** and **19**. The recommended vehicle parking rates justifications for the proposed development are outlined below. The justifications are based on current policies, directions and best practices in the Greater Toronto Area and in the City of Mississauga.

Table 17 – Recommended Vehicle Parking Rates for the Proposed Development

Unit Type	No. of Unit	Parking Rates	Parking Requirement
Residential	484 units	0.25 spaces/unit	120
Visitor	484 units	0.15 spaces/unit for visitor	73
Retail	291.61 m ²	To be shared with visitor	0
	Total		193 spaces

Table 18 – Accessible Parking Space Requirement

Total no. of Required non- residential parking spaces	Total no. of Required visitor parking spaces	Minimum no. of required accessible spaces	Parking Requirement
1-12	1-12	1.0 space	1
13-100	13-100	4% of the total	3
Tota	l Required Accessible Spaces	}	4

Table 19 – Electric Vehicle Ready Parking Space Requirement

Condominiu	m and Rental Apartment,	Condominium and Rental Apartment,	Non-residential Uses with 10	EV Space
resident parking		visitor parking	or more spaces	Requirement
	tal required parking spaces ce, whichever is greater	10% of the total required parking spaces or 1.0 space, whichever is greater	10% of the total required parking spaces or 1.0 space, whichever is greater	31 spaces
	24	7	0	

8.5. Vehicle Parking Justification

8.5.1. Subject Site Strategic Location

The subject site is located adjacent to the future Hurontario LRT (Hazel McCallion Line) and approximately 350 m (or less than 5-minute walk) to the future Dundas Station and only 250 m (or about 3-minute walk) to the intermodal LRT Stop at Cooksville GO Station. The subject site will be re-developed as a sustainable mixed-use transit-oriented development which will support the future transit improvements by Metrolinx, the Region and the City. These major transit improvements include but not limited to, the future Hurontario LRT, Dundas Street BRT, Cooksville GO Train Station improvements and GO Expansion Project, as well as Major Transit Station Areas at the Dundas Street/Hurontario Street.

The re-development of the subject site will also bring a transformative change to a more compact and sustainable land uses that will address the housing shortage, affordability and climate change. In addition to the inclusion of some charity components such as the Dam Youth Community Service, the proposed re-development also recognizes, understands and builds on the value and importance of the extraordinary transit and road infrastructure improvements coming to the area and is therefore planned with great emphasis on a sustainable non-automobile-oriented mobility plan promoted by the Official Plans, City Council and Provincial initiatives.

8.5.2. Existing Mode Share

Table 20 summarizes the travel mode information, based on the review of the 2016 Transportation Tomorrow Survey data for several representative Traffic Zones (3632, 3653, 3657 and 3659) in the area. The detailed analysis is included in **Appendix F**.

Time Period	Auto Driver	Auto Passenger	Taxi/Paid Ride Share	Transit	Cycle	Walk
AM Peak Period (6:00-9:00 AM)	60%	10%	0%	24%	0%	6%
PM Peak Period (3:00 6:00 PM)	64%	7%	0%	26%	0%	3%

Table 20 – Modes of Travel based on 2016 TTS Data for Traffic Zones

Based on the information outlined in the table above, the existing non-auto modal split in the area is approximately 30% and 29% during the morning and afternoon peak periods, respectively. This assessment suggests that there are viable alternative modes of transportation other than driving private automobiles. It is expected that with the future Hurontario LRT, the modal split along this corridor and this area will be much higher (i.e. 50% for all modal split).

As parking management is the best Transportation Demand Management measure and the best incentive to promote transit usage, less parking shall be provided by new developments in the area in order to increase the mode share targets set out by various policies and objectives in the City and the Region Official Plans, Transportation Master Plans and Provincial Growth Statement.

Given that the majority of the residents will move into the proposed condo development are young professionals, new family or empty nester downsizing their properties will not own a car and accept the life style adjacent to major transit mobility hub. In addition, with no car ownership, it will help keep the housing and cost of living more affordable.

8.5.3. Future Conditions

The Region of Peel is planning for more than 500,000 new residents and 250,000 new jobs in the Region by 2041. For this reason, as part of the Region of Peel Official Plan Review (Peel 2051), the Region is conducting Major Transit Station Areas Study along higher order transit corridors such as GO Train line, Light Trail Transit and Bus Rapid Transit.

A MTSA is identified at the Dundas Street/Hurontario Street and Cooksville Intermodal Station. MTSAs are lands generally located within 800 metre radius (or about 10-minute walk) of a transit station or stop along higher order transit lines. MTSAs are intended to encourage intensification, transit-oriented development mixed-use development that will utilize the future transit investments and support sustainable objectives in the Region's Official Plan.

In addition to higher order transit along Hurontario Street and Dundas Street, other active transportation facilities such as complete network of sidewalk and bicycle facilities will be constructed in the area to compliment the MTSA and encourage future residents to walk and cycle to the MTSA.

8.5.4. Region of Peel Sustainable Transportation Strategy

It is NexTrans' understanding that in February 2018, the Regional Council approved the goal of a 50% modal split by 2041. The Sustainable Transportation Strategy Report (February 2018) provides the following framework for the Region to meet its goals by:

- increase the current 37% share of trips by walking, cycling, transit, carpooling and telework in Peel Region, to achieve a 50% sustainable mode share by 2041,
- accommodate growth in a way that prioritizes environmental, societal and economic sustainability, and
- contribute to a Regional transportation system that is safe, convenient, efficient, multi-modal, well-integrated and sustainable.

The Strategy focused on building complete street to provide sidewalks and cycling facilities, expand carpool lot and promote more carpooling, telework and parking management. Our analysis indicates that parking management is the best measure to support this Strategy given that reduce parking in new development will encourage new residents to consider other sustainable modes of transportation such as walking, cycling and public transit.

8.5.5. City of Mississauga Official Plan

Based on the City of Mississauga Official Plan Chapter 4 (Vision), "the City will plan for a strong, diversified economy supported by a range of mobility options and a variety of housing and community infrastructure to create distinct, complete communities".

One of the Guiding Principles (Section 4.4) states that "Mississauga will provide a range of mobility options (e.g., walking, cycling, transit, vehicular) for people of all ages and abilities by connecting people with places through coordinated land use, urban design and transportation planning efforts".

Furthermore, Policies 8.1.1 and 8.1.8 state that "Through the creation of a multi-modal transportation system, Mississauga will provide transportation choices that encourage a shift in lifestyle toward more sustainable transportation modes, such as transit and active transportation" and "To better utilize existing infrastructure, Mississauga will encourage the application of transportation demand management (TDM) techniques, such as car-pooling, alternative work arrangements and shared parking". It is NexTrans' opinion that TDM techniques such as parking management is one of the best and most effective TDM measures that could help the City achieves those visions and policies.

8.5.6. City of Mississauga Cycling Master Plan Update

It is NexTrans' understanding that the City of Mississauga has recently completed the Cycling Master Plan Update the final document has been approved by Mississauga City Council. The Cycling Master Plan Update includes recommendations for the City's cycling network which includes 897 kilometres of infrastructure to be built over 27 years. The updated Cycling Master Plan focuses on a few key areas:

- Cycling infrastructure planning and design best practices have changed significantly and updates are required to achieve best practices
- The cycling network must be safe, connected, convenient and comfortable for residents, and visitors of all ages and riding ability to try cycling Implementation of new cycling infrastructure will be coordinated with road rehabilitation and major road construction projects, where possible
- Cycle tracks where a bicycle lane is physically separated from the road by a curb and is either at sidewalk level
 or slightly lower, reserved for bicycles only
- Bicycle lanes separated from traffic lanes by flexible posts, planters, parking stalls, curbs or other barriers, reserved for bicycles only
- Bicycle lanes where cyclists travel in a lane beside regular traffic lanes, reserved for bicycles only
- Multi-use trails along boulevards and also through parks
- Shared routes between cyclists and motorists on roads with lower speeds

As the proposed development provides a significant amount of bicycle parking spaces to support the City's Cycling initiatives, therefore, the proposed development vehicle parking supply should be reduced to support cycling initiatives, otherwise residents will continue to own private vehicles and drive single-occupant-vehicles.

9.0 BICYCLE PARKING ASSESSMENT

Table 21 summarizes the City of Mississauga Zoning By-law bicycle parking requirement for the proposed development to support TDM and active transportation.

Table 21 - Bicycle Parking Space Requirements

Land Haa M	No. of Unit / GFA	Short Term – Class	Long Term – Cla	Total			
	Land Use	No. of Unit / GFA	Rates	Spaces	Rates	Spaces	Total
	Residential	484 units	0.05 spaces/unit	25	0.60 spaces/unit	290	315

Based on the assessment indicated above, a total of 315 bicycle parking spaces, with 26 spaces for Class A (short-term) and 311 spaces for Class B (long-term) are required for the proposed development. The proposed development will provide a total of 316 bicycle parking spaces with 26 Class A (short-term) and 290 Class B (long-term) spaces. Therefore, the proposed development meets the Zoning By-law requirement and this provision will support the recommended vehicle parking rates.

10.0 TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management (TDM) is a co-ordinated series of actions aimed at maximizing the people moving capability of the transportation system. Intended to reduce single-occupant auto use, potential TDM measures include: TDM supportive land use, bicycle and pedestrian programs and facilities, public transit improvements, preferential treatments for buses and ridesharing, where appropriate. The following TDM incentives are recommended for the proposed residential development, based on NexTrans' review of the City of Mississauga Cycling Master Plan, Official Plan and Region of Peel TDM Strategy:

- Given that parking management is the best TDM measures, the proposed development should implement the recommended parking rates provided in this Study based on the comprehensive parking justifications to support TDM and minimize the numbers of single-occupant-vehicle trips:
- The proposed development provides the recommended vehicle parking rates outlined in this Study;
- Provide direct shared pedestrian/bicycle connections from the proposed development to Hurontario Street;
- Consider providing 316 bicycle parking spaces on-site;
- Provide information package for new residents. The information package will include Mississauga Transit schedules, GO Transit schedules, and community and cycling maps. The Information Package can be an email or an electronic letter

11.0 COMMUNITY IMPACTS

It is our understanding that community meetings were held for the proposed development throughout the application process. There were some positive aspects of the proposed development such as:

- The proposed development will be designed to integrate with the Hurontario LRT and the surrounding community;
- The proposed development design will aim to improve the pedestrian experience along Hurontario Street, particularly with a mixed-use podium:
- The development incorporates design elements to interface and transition appropriately with the existing community; and
- Integrated shared loading spaces are provided within the podium to shield noise and make it more aesthetically pleasant for the area

It is NexTrans understanding that the following main concerns were raised at the community meeting for this project. Appropriate responses are provided to address these concerns.

Community Comments:

1. Lack of Family-Sized Units – The development's proposed unit mix (primarily one-bedroom units) was criticized for not adequately addressing the need for family-sized housing

Response: Based on the latest site plan proposal, the proposed development is providing a total of 34% number of units with two bedrooms or more. In addition, there is also a total of 7% for bachelor units and 59% for one-bedroom units. Therefore, the proposed development provides a wide range of mixed unit types.

2. A resident mentioned existing sewage problems in a nearby townhouse complex, raising concerns about the potential impact of a large new development.

<u>Response</u>: This comment will be addressed through proposed development servicing plan and it will meet the City's requirements.

3. Concerns were raised about increased traffic volume and its potential impact on the area.

Response: As indicated in Section 6.7 of this Study Update, based on the analysis noted above, the proposed development is expected to have negligible impacts on the surrounding boundary roadway intersections. The proposed development is expected to generate only 7% and 8% of the overall forecast traffic on Hurontario Street during the morning and afternoon, respectively. In addition, with the completion of the Hurontario LRT, the traffic volumes along Hurontario and the area are expected to decrease due to diversion of the traffic and conversion of auto drivers to taking transit.

4. Residents expressed worry about the potential for the new tower to cast shadows on surrounding properties.

Response: This comment will be addressed through site design and City's requirements.

5. The proposed 12-storey podium was also noted as unusually large, especially for an area outside of the city centre.

Response: This comment will be addressed through site design and the City's requirements.

6. Inadequate parking was also a concern raised by the community.

<u>Response</u>: It should be noted that in accordance with Bill 185, the proposed development is not required to provide any vehicle parking spaces. However, the proposed will provide a total of 193 vehicle parking spaces, which include 120 residential spaces and 73 visitor/non-residential spaces. Based on the assessment provided in this Study Update, the number of parking spaces provided will meet the demands and requirements for the proposed development.

12.0 CONCLUSIONS / FINDINGS

12.1. Study Conclusions

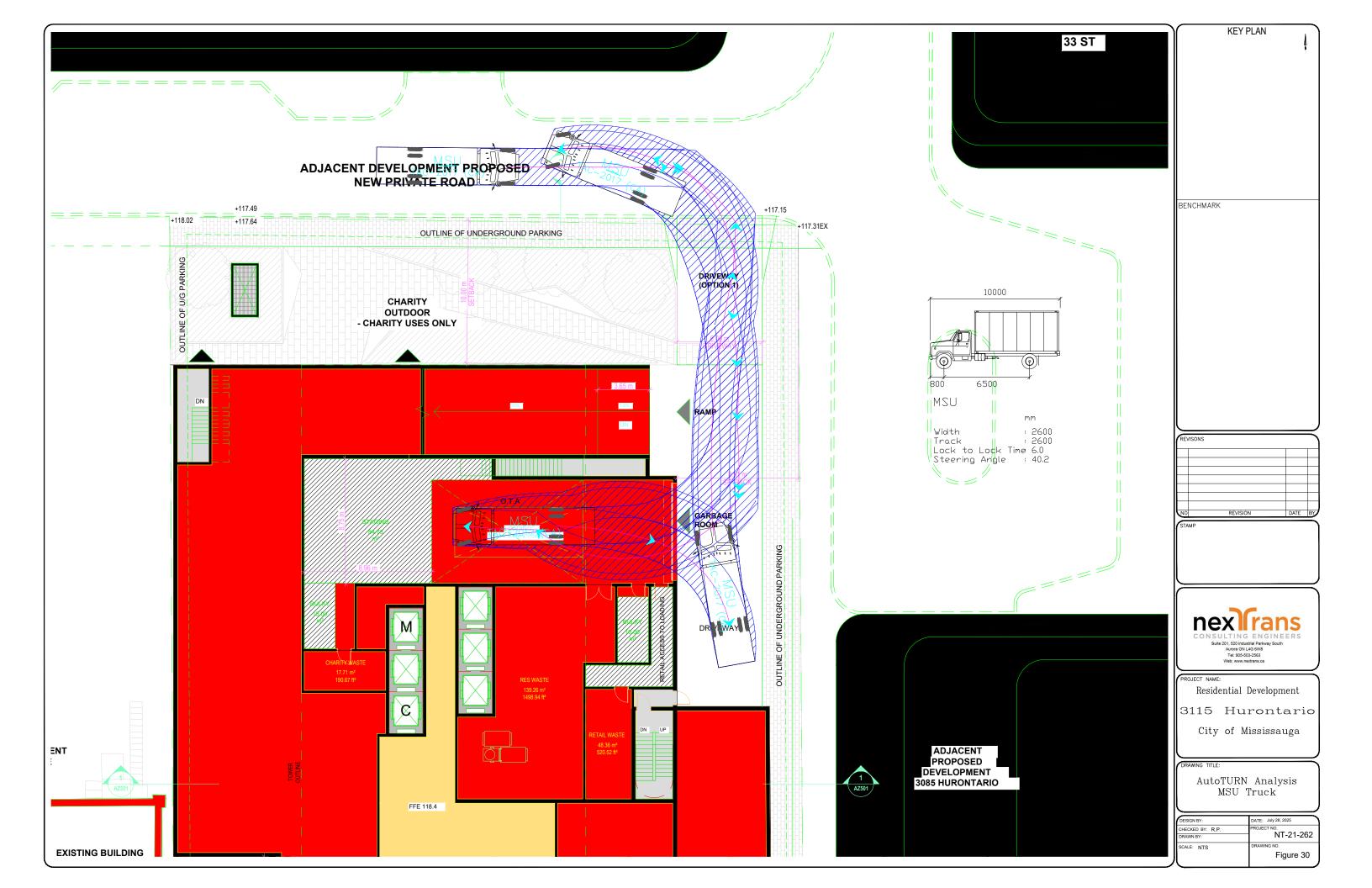
The findings and conclusions of the analysis are as follows:

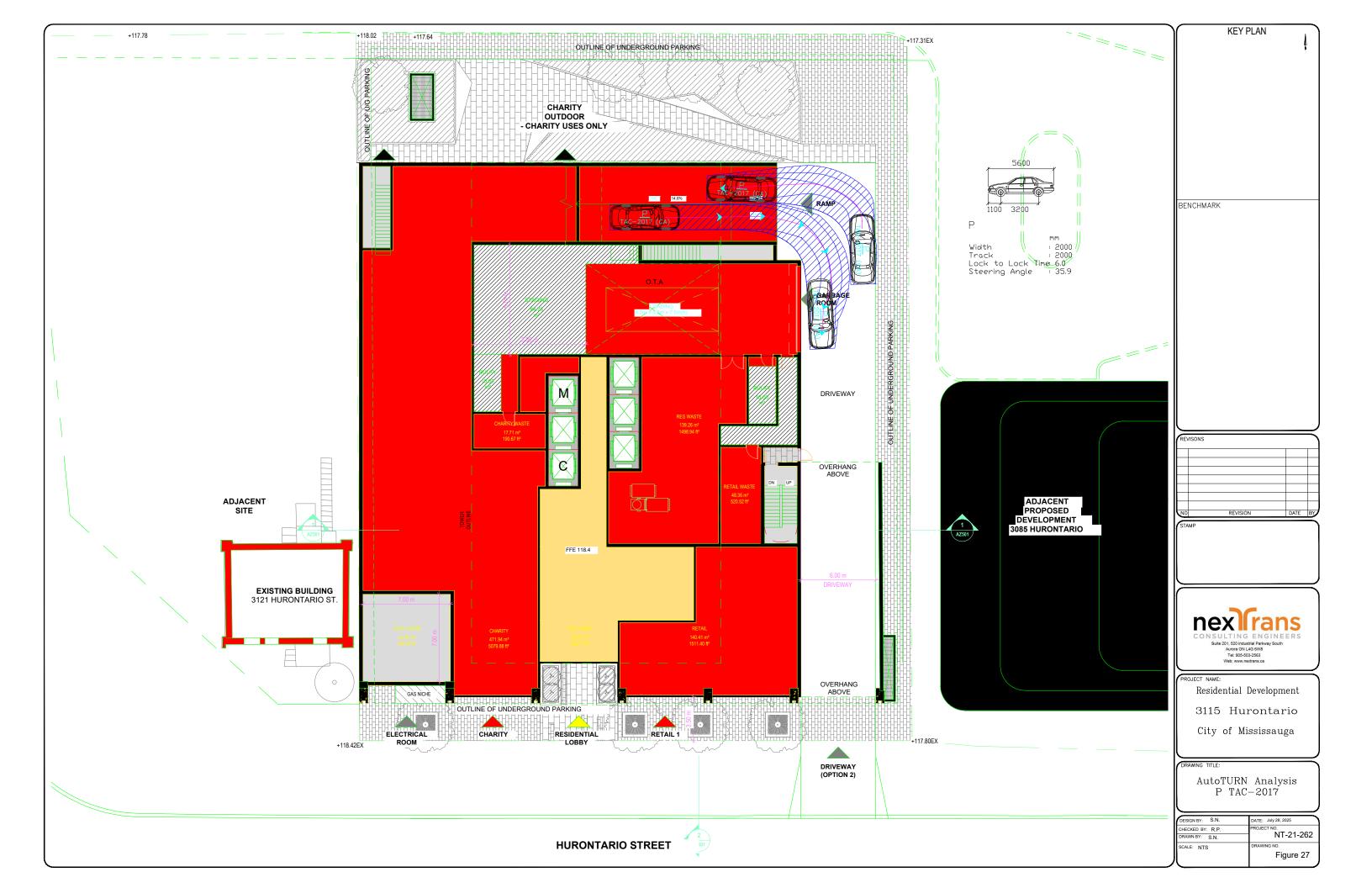
- Based on the analysis provided in this Study, the proposed development is expected to generate:
 - 230 total two-way trips (99 inbound and 131 outbound) and 229 total two-way trips (125 inbound and 104 outbound) during the morning and afternoon peak hours, respectively;

- 157 total two-way auto trips (60 inbound and 97 outbound) and 195 total two-way auto trips (106 inbound and 89 outbound) during the morning and afternoon peak hours, respectively; and
- o 73 total two-way transit trips (39 inbound and 34 outbound) and 34 total two-way transit trips (19 inbound and 15 outbound) during the morning and afternoon peak hours, respectively.
- The analysis indicates that under the future background and future total conditions, all intersections are expected to operate at acceptable levels of service during the morning peak hour and afternoon peak hour, with the exception of the Hurontario Street/Dundas Street W intersection during the afternoon peak hour. With the recommended lane configurations for the Dundas Street westbound, the intersection is expected to have higher delay. As the area will have significant transit capacity in the future, no further improvements are required. However, for sensitivity analysis, NexTrans has tested the lane configuration on Dundas Street with a shared through/right lane instead of an exclusive right turn lane. The assessment indicated that this proposed lane configuration will improve the intersection levels of service.
- Potential mitigation measures may include but not limited to: reduce vehicle parking to minimize single-occupantvehicle trips, TDM measures and incentives, support active transportation and sufficient bicycle parking spaces.
- The analysis indicates that the transit passenger demands generated by the proposed development can be accommodated by the existing and major future transit improvements for the area, including Hurontario LRT, Milton GO Line expansion and Dundas BRT.
- Based on the recommendations provided in this Study and the need for the proposed development, the proposed development will provide a total of 193 vehicle parking spaces, including 120 residential and 73 visitor/nonresidential spaces.
- Based on the applicable Zoning By-law, a total of 315 bicycle parking spaces, with 25 spaces for Class A and 290 spaces for Class B are required for the proposed development. The proposed development will provide a total of 316 bicycle parking spaces, including 26 Class A and 290 Class B spaces, which exceeds the Zoning By-law requirements.
- Under the City's By-Law Zoning By-law 0225-2007, one loading space is required for residential component and
 one for non-residential component. However, given that both uses are located in the same building, only one
 loading space will be required to accommodate all uses. The minimum loading space dimensions are: 3.5 m
 width and 9.0 m Length, with 7.3 m vertical clearance. The proposed development meets this requirement and
 has been reflected in the proposed site plan. AutoTURN software was used to generate vehicular turning
 templates to confirm and demonstrate the accessibility for the Type "G" loading space.
- The analysis indicates that the proposed right-in/right-out onto Hurontario Street and a full moves access onto
 the proposed shared access onto Kirwin Avenue are expected to operate at acceptable levels of service from
 delay and v/c capacity perspective. The queue is expected to be accommodated within the proposed storage
 length.

Therefore, the analysis indicates that both access options are acceptable for the proposed development. However, NexTrans recommends that the proposed development move forward with the additional proposed right-in/right-out access onto Hurontario Street because this access arrangement option provides flexibility for the proposed development in the event of emergency or continued construction of the 3085 Hurontario Street Private Road.

12.2. Study Recommendations


Based on the Study assessment and findings, the following recommendations are provided:


• Reduce parking rates for the proposed developments to encourage alternative modes of transportation such as walking, cycling and public transit;

- The proposed development provides 316 bicycle parking spaces to encourage active modes of transportation and support vehicle parking reduction;
- The proposed development provides direct sidewalk connection onto Hurontario Street and Kirwin Avenue;
- Proposed development provides TDM measures and incentives to encourage alternative mode of transportation in the area; and
- Proposed access configuration:
 - Access Option 1
 - one inbound and one outbound lane (3.5 m width per lane) for the proposed access at 3085 Hurontario Street access
 - > one inbound and one outbound lane (3.5 m width per lane), eastbound shared through/right and westbound shared through/left on Kirwin Avenue
 - Access Option 2
 - one inbound and one outbound lane (3.5 m width per lane), northbound shared through/right curb lane on Hurontario Street

Appendix AStudy Terms of Reference

From: Michael Turco < Michael. Turco@mississauga.ca >

Sent: Sunday, February 6, 2022 9:41 AM To: Sam Nguyen < sam@nextrans.ca>

Cc: Trans Projects < Trans. Projects@mississauga.ca >

Subject: RE: Term of Reference for 3115 Hurontario Street

Hello Sam,

Thank you for providing a TIS Terms of Reference for the proposed development at 3115 Hurontario Street. Please see my comments below in green. Please be advised that all comments shall be considered preliminary and subject to change until after the formal pre-consultation / DARC meeting.

Should you have any questions, please feel free to contact me.

Thank you,

Michael Turco, C.E.T., CPT, MITE

Traffic Planning Technologist T 905-615-3200 ext. 3597 michael.turco@mississauga.ca

City of Mississauga | Transportation & Works Department 201 City Centre Drive, Suite 800 | Mississauga ON | L5B 2T4

Please consider the environment before printing.

From: Ryan Au < Ryan.Au@mississauga.ca > Sent: Friday, January 28, 2022 12:33 PM

To: Michael Turco < Michael. Turco@mississauga.ca >

Cc: Lin Rogers < Lin.Rogers@mississauga.ca>

Subject: FW: Term of Reference for 3115 Hurontario Street

From: Sam Nguyen <<u>sam@nextrans.ca</u>>
Sent: Friday, January 28, 2022 10:11 AM
To: Ryan Au <Ryan.Au@mississauga.ca>

Subject: Term of Reference for 3115 Hurontario Street

Hi Ryan,

It's me again.

We are currently working on a TIS to support the proposed development located at 3115 Hurontario Street, in the City of Mississauga. The proposed scope of work is provided below. If possible, please provide us with your comments at your earliest convenient.

- 1. Study Area intersection (depending on available counts, given the COVID-19 situation). We would like to use the available City counts as much as possible for the following intersection:
 - Kirwin Avenue / Hurontario Street (signalized);
 - Dundas Street / Hurontario Street (signalized);
 - Huontario Street / John Street (signalized);
 - Hurontario Street / Agnes Street (unsignalized);
 - Kirwin Avenue / Jaguar Valley Drive (unsignalized); and
 - Proposed site accesses Please be advised that the subject site will be required to share mutual accesses
 with the adjacent property to the south/east (3085 Hurontario Street), including one proposed RIRO access
 to Hurontario Street and one proposed full moves access to Kirwin Avenue;
 - Due to the ongoing pandemic, new traffic counts will not be accepted at this time. If traffic counts are older than two (2) years old, they will be required to be grown to existing baseline conditions. In order to grow traffic volumes to existing 2022 levels, please obtain historical traffic data counts and utilize regression analysis to determine appropriate growth rates. The report must thoroughly justify all proposed growth rates and the methodology utilized to calculate them. Furthermore, all background work to calculate the growth rates must be appended to the report in a format that is easily verifiable to the reviewer;
 - Please contact Tyler Xuereb from Transportation Planning Section (tyler.xuereb@mississauga.ca, Ext. 4783) for historical AADT data and Turning Movement Counts.
 - Signal timing plans for signalized intersections can be obtained from Jim Kartsomanis (Jim.Kartsomanis@mississauga.ca, Ext. 3964).
- 2. Horizon Year
 - a. Project completion by 2025
 - b. Analysis horizon year 2030 (5 year horizon)
- The horizon year shall be 5 years from the date of the report
- 2. Background Developments and Growth Rate
 - a. Obtain growth rate from the City/Region Please contact Tyler Xuereb from Transportation Planning Section (tyler.xuereb@mississauga.ca, Ext. 4783) for growth rates
 - b. Background developments:
 - 3085 Hurontario Street
 - 3420 and 3442 Hurontario Street
 - All in-stream and recently approved background developments within approximately 1km from the subject site must be included
 - Please use the following link to gather information on any developments proposed in the area for background traffic: http://www.mississauga.ca/portal/residents/developmentinformation
- 4. Trip Generation
 - a. ITE Trip Generation Manual 10th 11th Edition
 - b. Multimodal trip generation using 2016 TTS modal split data
- 5. Trip Distribution
 - a. Extract 2016 TTS data based on the surrounding traffic zones where appropriate
- 5. Future Total Assessment
 - The following tasks will be conducted for the future total conditions:
 - Future Total Traffic Assessment for Auto Mode
 - Future Transit Mode Assessment
 - Future Active Transportation Mode Assessment
 - Proposed Access and Operation/Safety Assessment
 - Loading Requirement and Assessment
 - Vehicular and Bicycle Parking Assessment
 - Internal Site Circulation (if necessary)

- On-Site Circulation & Garbage Loading
 - Truck Access and Circulation (AutoTurn Swept-Path Analysis) ensure that truck traffic (garbage/loading/fire) can enter and exit the site in a forward motion and access to the garbage, loading, and fire route areas are functional. On separate plans, illustrate truck turning movements with one continuous path with AutoTURN and insert the design vehicles on the plan. The site must be able to accommodate the largest design vehicles which will be accessing the property. An evaluation of the parking areas and ramps using a PTAC design vehicle should also be included.
- 7. Transit, Active Transportation and TDM
 - a. Conduct a review of the existing and proposed future transit network in the area. Based on these findings, appropriate recommendations will be provided to ensure adequate walking distances to/from the proposed development to transit stations/stops.
 - b. Review the existing and proposed future active transportation network in the area. Based on these findings, Nextrans will identify missing gaps and additional interconnections and connections from the proposed development to adjacent land uses, the City and the Region's facilities, as well as to transition stations/stops.
 - c. A Transportation Demand Management (TDM) assessment will be undertaken to identify specific measures and programs to reduce single-occupant-vehicle trips to/from the proposed development. These TDM measures and programs may include but not limited to, Carpooling, Auto Share, Bike racks, Parking management strategies, etc. The TDM report will be completed and included as part of this Study for submission purposes submitted in accordance with the City and the Region requirements. The TDM Plan shall be comprehensive and support the City's vision for the Hurontario Corridor.
- 8. Parking Justification Study Please be advised that this Section does not review Parking Studies. Please contact the Planning Section (Parking Study.Review@mississauga.ca) to confirm the terms of reference for the Parking Study.
- 9. Community Impacts: Any transportation related impacts on the existing community and comments from the public through the planning approvals process shall be addressed in the report.
- 10. Detailed Recommendations regarding on-site/off-site roadway improvements, site access, site circulation, and TDM measures shall be made.
- HURONTARIO LRT Please be advised that Infrastructure Ontario and Metrolinx have awarded a contract for the
 Hurontario LRT. Design work will begin immediately with construction to follow. The anticipated completion
 date of the Hurontario LRT is scheduled for late 2024. Please review project details as there will be impacts to
 this site. Project details can be found at: https://www.mississauga.ca/projects-and-strategies/city-projects/hurontario-light-rail-transit/
- DUNDAS BRT Please be advised that Dundas Street is a major east-west arterial road in Mississauga and is
 identified in the City's Official Plan as an intensification corridor. The City of Mississauga has completed a master
 plan study of Dundas Street through the Dundas Connects project. This study explores ways to incorporate
 higher order transit on Dundas Street and investigate opportunities for associated transit-orientated
 development. Please review project details as there may be impacts to this site. Project details can be found at:
 https://www.mississauga.ca/projects-and-strategies/city-projects/dundas-connects/

Thanks,

Sam (Trang) Nguyen

Transportation Analyst

o: 905-503-2563 ext. 207 e: sam@nextrans.ca w: www.nextrans.ca

NexTrans Consulting Engineers
A Division of NextEng Consulting Group Inc.
520 Industrial Parkway South, Suite 201

3

Appendix B

2016 Transportation Tomorrow Survey Data Analysis

Mode of Transportation - AM Peak Period

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: Primary travel mode of trip - mode_prime Column: 2006 GTA zone of household - gta06_hhld

Filters:

Primary travel mode of trip - mode_prime $\ln B$ C D G J M P T U W

and

2006 GTA zone of household - gta06_hhld In 3632 3653 3657 3659

and

Start time of trip - start_time In 600-900 and

Type of dwelling unit - dwell_type In 2

Trip 2016 Table:

Mode of Transportation/Traffic Zones	3632	3653	3657	3659	Total	Percentage
Transit excluding GO rail	0	541	783	148	1472	19%
Cycle	0	35	0	0	35	0%
Auto driver	58	2400	1931	284	4673	60%
GO rail only	0	52	58	0	110	1%
Joint GO rail and local transit	0	85	122	0	207	3%
Auto passenger	0	509	195	92	796	10%
Taxi passenger	0	20	0	0	20	0%
Walk	0	142	292	66	500	6%
Total	58	3784	3381	590	7813	100%

Mode of Transportation - PM Peak Period

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: Primary travel mode of trip - mode_prime Column: 2006 GTA zone of household - gta06_hhld

Filters:

Primary travel mode of trip - mode_prime In B $\hspace{1.5cm}$ C $\hspace{1.5cm}$ D $\hspace{1.5cm}$ G $\hspace{1.5cm}$ J $\hspace{1.5cm}$ M $\hspace{1.5cm}$ P $\hspace{1.5cm}$ T $\hspace{1.5cm}$ W

and

2006 GTA zone of household - gta06_hhld In 3632 3653 3657 3659

and

Start time of trip - start_time In 1600-1900

and

Type of dwelling unit - dwell_type In 2

Trip 2016 Table:

Mode of Transportation/Traffic Zones	3632	3653	3657	3659	Total	Percentage
Transit excluding GO rail	14	450	703	215	1382	20.3%
Auto driver	58	2366	1770	171	4365	64.0%
GO rail only	0	33	58	0	91	1.3%
Joint GO rail and local transit	0	160	117	29	306	4.5%
Auto passenger	10	224	225	37	496	7.3%
Taxi passenger	0	0	13	0	13	0.2%
Walk	0	12	113	37	162	2.4%
Total	82	3245	2999	489	6815	100%

Auto Distribution

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Planning district of destination - pd_dest

Filters:

 Primary travel mode of trip - mode_prime In D
 M
 P

 and
 2006 GTA zone of origin - gta06_orig In 3632
 3653

M P T U

Start time of trip - start_time In 600-900

and

Type of dwelling unit - dwell_type In 2

Trip 2016 Table:

	PD 1 of Toronto	PD 3 of Toronto	PD 4 of Toronto	PD 5 of Toronto	PD 6 of Toronto	PD 7 of Toronto	PD 8 of Toronto	PD 9 of Toronto	PD 10 of Toronto	PD 13 of Toronto	Markham	Vaughan	Brampton	Mississauga	Milton	Oakville	Burlington	External	
3632	0	0	0	0	0	0	0	0	0	0	9	0	0	189	0	0	0	0	
3653	62	18	0	12	23	0	149	107	25	16	0	57	97	1858	25	33	76	12	
3657	20	0	65	0	0	92	86	0	0	0	28	71	93	1205	0	34	164	0	
3659	15	0	0	0	0	0	0	0	0	0	0	0	0	328	0	67	0	0	
	97	18	65	12	23	92	235	107	25	16	37	128	190	3580	25	134	240	12	5036
	2%	0%	1%	0%	0%	2%	5%	2%	0%	0%	1%	3%	4%	71%	0%	3%	5%	0%	100%

 Mississauga
 71%

 Toronto
 14%

 York Region
 3%

 Brampton
 4%

 Halton
 8%

 Durham
 0%

 100%
 100%

Transit Distribution

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Ward number of destination - ward_dest

Filters:

Primary travel mode of trip - mode_prime In D M P T T and and 2006 GTA zone of origin - gta06_orig In 3632 3653 3657 3659

and

Start time of trip - start_time In 600-900

Type of dwelling unit - dwell_type In 2

Ward number of destination - ward_dest In 136-146

Trip 2016 Table:

	Ward 1	Ward 2	Ward 3	Ward 4	Ward 5	Ward 6	Ward 7	Ward 8	Ward 9	Ward 11	
	136	137	138	139	140	141	142	143	144	146	
3632	59	0	0	19	0	0	75	0	0	36	
3653	328	24	27	70	214	0	833	247	91	26	
3657	150	216	0	94	182	71	357	111	0	24	
3659	45	10	0	0	64	11	198	0	0	0	
	718	387	165	322	600	223	1605	501	235	232	4988
		00/	201								

% of toal 71%

21%

21%

13%

16%

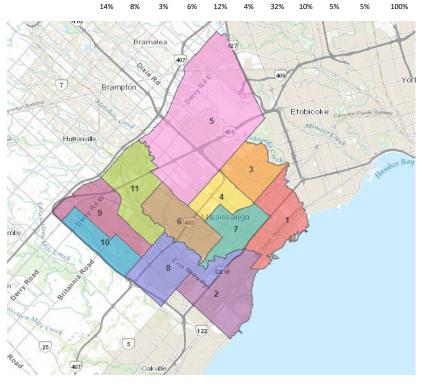
71%

North

South

East

West


29%

30%

18%

23%

100%

Auto Distribution

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Planning district of destination - pd_dest

Filters:

Primary travel mode of trip - mode_prime In B

2006 GTA zone of origin - gta06_orig In 3632

and

Start time of trip - start_time In 600-900

and

Type of dwelling unit - dwell_type In 2

Trip 2016 Table:

> PD 1 of Toronto PD 2 of Toronto PD 6 of Toronto PD 7 of Toronto PD 8 of Toronto PD 9 of Toronto PD 1 of Toronto Richmond Hill Mississauga Oakville 65% 100% 13% 4% 1% 1% 5% 7% 1% 1% 2%

Mississauga 65%
Toronto 32%
York Region 1%
Oakville 2%
100%

G

W

1488 100%

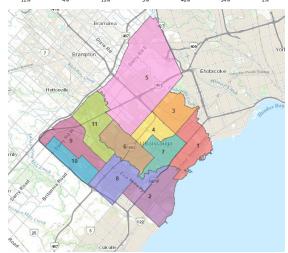
North South East West

35% 23% 15% 26% 100%

% of total 65% 23% 15% 10% 17% 65%

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Ward number of destination - ward_dest


Filters:

Primary travel mode of trip - mode_prime In B
and
2006 GTA zone of origin - glad6, orig In 3632
and
Start time of trip - start_time In 600-900
and
Type of dwelling unit - dwell_type In 2
and
Ward number of destination - ward_dest In 136-146

Trip 2016 Table:

	Ward 1	Ward 4	Ward 5	Ward 6	Ward 7	Ward 8	Ward 11
	136	139	140	141	142	143	146
3632	0	14	0	0	0	0	Ō
3653	72	0	98	25	240	102	Ō
3657	68	46	153	19	326	92	31
3659	37	0	32	0	114	19	0
	177	60	283	44	680	213	31
	17%	4%	19%	3%	46%	14%	2%

C G J

Auto Distribution External - Outbound

Cross Tabulation Query Form - Trip - 2016

Row: 2006 GTA zone of destination - gta06_dest Column: Planning district of origin - pd_orig

Primary travel mode of trip - mode_prime In D Т U 3653 3657 3659

2006 GTA zone of destination - gta06_dest In 3632 and

Start time of trip - start_time In 600-900

Type of dwelling unit - dwell_type In 2

Trip 2016 Table:

	PD 1 of Toronto	PD 2 of Toronto	PD 4 of Toronto	PD 5 of Toronto	PD 7 of Toronto	PD 8 of Toronto	Newmarket	Brampton	Mississauga	Burlington	
3632	0	0	0	24	13	66	0	104	413	0	
3653	0	31	0	0	0	194	0	0	905	27	
3657	0	0	30	0	36	0	0	0	355	0	
3659	18	0	15	0	27	20	19	0	274	0	
	18	31	45	24	76	280	19	104	1947	27	2571
	1%	1%	2%	1%	3%	11%	1%	4%	76%	1%	100%

Mississauga 76% 18% Toronto York Region 1% 4% Brampton Halton 1% Durham 0% 100%

Auto Distribution Outbound/Inbound - Non-Residen

Cross Tabulation Query Form - Trip - 2016

Row: 2006 GTA zone of destination - gta06_dest Column: Planning district of origin - pd_orig

Filters:

Primary trav $\,M\,$ P $\,$ T $\,$ U

and

2006 GTA z₁ 3653 3657 3659

and

Start time of trip - start_time In 600-900

and

Type of dwelling unit - dwell_type In 2

and

Trip purpose W M

Trip 2016

Table:

	PD 1 of Toronto	PD 2 of Toronto	PD 4 of Toronto	PD 7 of Toronto	PD 8 of Toronto
3632	0	0	0	0	66
3653	0	31	0	0	119
3657	0	0	30	0	0
3659	18	0	0	27	20
	18	31	30	27	205
	2%	4%	4%	3%	24%

Toronto 36%
Mississauga 46%
Brampton 12%
York Region 2%
Halton 3%
100%

Newmarket	Brampton	Mississauga	Burlington	
0	104	176	0	
0	0	110	27	
0	0	43	0	
19	0	64	0	
19	104	393	27	854
2%	12%	46%	3%	100%

Auto Internal Mississauga Distribution - Outbound

3653 3657 3659

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Ward number of destination - ward_dest

Filters:

Primary travel mode of trip - mode_prime In D

and

2006 GTA zone of origin - gta06_orig In 3632

and

Start time of trip - start_time In 600-900

and Type of dwelling unit - dwell_type In 2

and

Ward number of destination - ward_dest In 136-146

Trip 2016 Table:

	Ward 1	Ward 2	Ward 3	Ward 4	Ward 5	Ward 6	Ward 7	Ward 8	Ward 9	Ward 11	
	136	137	138	139	140	141	142	143	144	146	
3632	59	0	0	19	0	0	75	0	0	36	
3653	328	24	27	70	214	0	833	247	91	26	
3657	150	216	0	94	182	71	357	111	0	24	
3659	45	10	0	0	64	11	198	0	0	0	
	718	387	165	322	600	223	1605	501	235	232	4988
	14%	8%	3%	6%	12%	4%	32%	10%	5%	5%	100%

% of toal 71%

21%

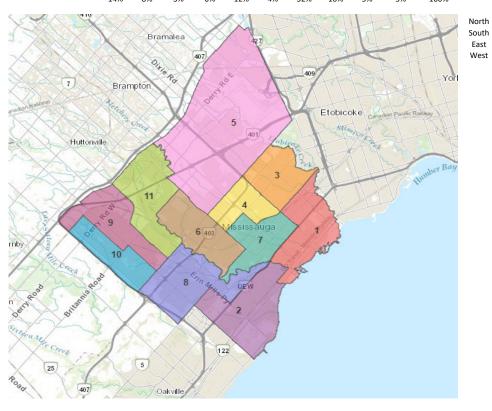
21%

13%

16%

71%

29%


30%

18%

23%

100%

East

Auto Internal Mississauga Distribution - Inbound

Cross Tabulation Query Form - Trip - 2016

Row: 2006 GTA zone of destination - gta06_dest Column: Ward number of origin - ward_orig

Filters:

Primary travel mode of trip - mode_prime In D $\,$ M $\,$ P $\,$ T $\,$ U

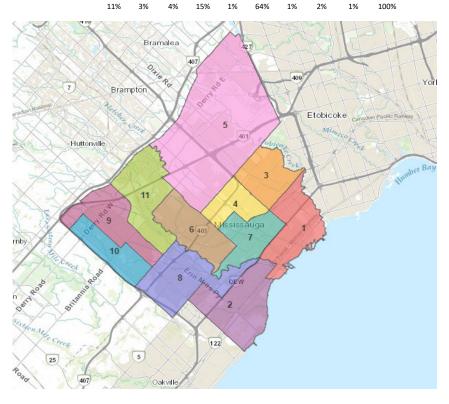
and

2006 GTA zone of destination - gta06_dest In 3632 3653 3657 3659

and

Start time of trip - start_time In 600-900

and


Type of dwelling unit - dwell_type In 2

. , , ,

Ward number of origin - ward_orig In 136-146

Trip 2016 Table:

	Ward 1	Ward 2	Ward 3	Ward 4	Ward 5	Ward 7	Ward 8	Ward 9	Ward 11	
	136	137	138	139	140	142	143	144	146	
3632	19	0	0	200	18	176	0	0	0	
3653	123	46	69	56	0	578	0	33	0	
3657	70	10	0	9	0	254	12	0	0	
3659	0	0	0	28	0	234	0	0	11	
	212	56	69	293	18	1242	12	33	11	1946

		% of toal 76%
North	17%	13%
outh	30%	23%
East	35%	26%
West	18%	14%
	100%	76%

Transit Distribution External - Outbound

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Planning district of destination - pd_dest

Filters:

Primary travel mode of trip - mode_prime In B and

and 2006 GTA zone of origin - gta06_orig In 3632 С

G J 3653 3657 3659

W

and

Start time of trip - start_time In 600-900

and

Type of dwelling unit - dwell_type In 2

Trip 2016 Table:

	PD 1 of Toronto	PD 2 of Toronto	PD 6 of Toronto	PD 7 of Toronto	PD 8 of Toronto	PD 9 of Toronto	PD 11 of Toronto	Richmond Hill	Mississauga	Oakville	
3632	0	0	0	0	0	0	0	0	14	0	
3653	69	85	32	0	40	0	20	15	537	11	
3657	218	0	0	31	75	155	0	0	735	40	
3659	0	0	0	0	0	0	0	0	203	0	
	287	85	32	31	115	155	20	15	1489	51	2280
	13%	4%	1%	1%	5%	7%	1%	1%	65%	2%	100%

 Mississauga
 65%

 Toronto
 32%

 York Region
 1%

 Oakville
 2%

 100%

Transit Distribution External - Inbound

Cross Tabulation Query Form - Trip - 2016

Row: 2006 GTA zone of destination - gta06_dest Column: Planning district of origin - pd_orig

Filters:

Primary travel mode of trip - mode_prime In B C G J V and

3653

3657

2006 GTA zone of destination - gta06_dest In 3632

and

Start time of trip - start_time In 600-900

Start time of trip - start_time in 600-90

and

Type of dwelling unit - dwell_type In 2

Trip 2016 Table:

	PD 1 of Toronto	PD 7 of Toronto	PD 8 of Toronto	PD 10 of Toronto	Mississauga	Hamilton	
3632	20	28	0	0	87	30	
3653	0	0	0	0	109	0	
3657	0	0	0	0	201	0	
3659	0	0	13	11	47	0	
	20	28	13	11	444	30	546
	4%	5%	2%	2%	81%	5%	100%

3659

 Mississauga
 81%

 Toronto
 13%

 York Region
 0%

 Hamilton
 5%

 100%

Transit Distribution Internal Mississauga - Outbound

1488 100%

North South East West

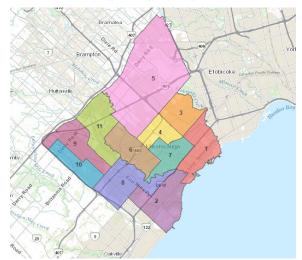
35% 23% 15% 26% 100%

% of total 65% 23% 15% 10% 17% 65%

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Ward number of destination - ward_dest

Filters:
Primary travel mode of trip - mode_prime In B and 2006 GTA zone of origin - gta06_orig In 3632 and Start time of trip - start_time in 600-900 and Type of dwelling unit - dwell_type in 2 and


and
Ward number of destination - ward_dest In 136-146

Trip 2016 Table:

rig In 3632	3653	3657	3659
-900			

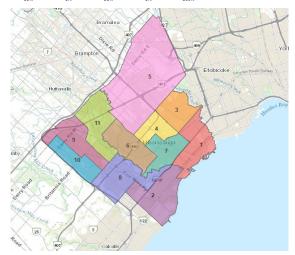
G J W

	Ward 1	Ward 4	Ward 5	Ward 6	Ward 7	Ward 8	Ward 11
	136	139	140	141	142	143	146
3632	0	14	0	0	0	0	0
3653	72	0	98	25	240	102	0
3657	68	46	153	19	326	92	31
3659	37	0	32	0	114	19	0
	177	60	283	44	680	213	31
	12%	4%	19%	3%	46%	14%	2%

% of total 65% 17% 25% 18% 20% 82%

North South East West

21% 31% 23% 25% 100%


Cross Tabulation Query Form - Trip - 2016

Row: 2006 GTA zone of destination - gta06_dest Column: Ward number of origin - ward_orig

Filters:				
Primary travel mode of trip - mode_prime In B	C	G	J	W
and				
2006 GTA zone of destination - gta06_dest In 3632		3653	3657	3659
and				
Start time of trip - start_time In 600-900				
and				
Type of dwelling unit - dwell_type In 2				
and				
Ward number of origin - ward_orig In 136-146				

Trip 2016 Table:

	Ward 1	Ward 5	Ward 7	Ward 11	
	136	140	142	146	
3632	30	5	52	0	
3653	14	0	82	14	
3657	0	0	201	0	
3659	0	0	47	0	
	44	5	382	14	445
	10%	1%	86%	3%	100%

Appendix CTraffic Data

Signal Timing Report

Runtime: 2021-04-04 9:05

	Dev	vice: 1401						nullillie. 2	:021-04-04 9.03
Region: Mississ	auga	Signal ID:	1401	Loc	cation: HURC	ONTARIO STRE	ET N at Dundas	s Street E	
Phase	Units	1	2	3	4	5	6	7	8
Walk	Sec	0	14	0	16	0	14	0	16
Ped Clear	Sec	0	20	0	22	0	20	0	22
Min Green	Sec	5	8	5	8	5	8	5	8
Passage	Sec	2.0	3.0	2.0	3.0	2.0	3.0	2.0	3.0
Maximum 1	Sec	10	15	10	40	10	15	10	40
Maximum 2 Yellow Change	Sec Sec	10 3.0	15 4.0	10 3.0	40 4.0	10 3.0	15 4.0	10 3.0	40 4.0
Red Clearance	Sec	0.0	3.0	0.0	3.5	0.0	3.0	0.0	3.5
Red Revert	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before	Veh	0	0	0	0	0	0	0	0
Time To Reduce Reduce By	Sec Sec	0 0.0	0.0	0	0	0 0.0	0	0.0	0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[P2] Start Up	Enum	phaseNotOn	redClear	phaseNotOn	phaseNotOn	phaseNotOn	redClear	phaseNotOn	phaseNotOn
[P2] Options	Bit	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	Enabled Non Lock Det	Enabled Ped Recall Dual Entry	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	Enabled Non Lock Det	Enabled Ped Recall Dual Entry
[P2] Ring	Ring	1	1	1	1	2	2	2	2
[P2] Concurrency	Phase (,)	(5,6)	(5,6)	(7,8)	(7,8)	(1,2)	(1,2)	(3,4)	(3,4)
Coord Pattern	Units	1	2	3	4	5	6	7	8
Cycle Time	Sec	160	160	160	0	0	0	0	0
Offset	Sec	72	88	130	0	0	0	0	0
Split	Split	1	2	3	4	5	6	7	8
Sequence	Sequence	1	1	1	1	1	1	1	1
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode Split 1 - Time	Enum Sec	none 14	none 66	none 14	none 66	none 14	none 66	none 14	none 66
Split 1 - Coord	Enum	false	true	false	false	false	true	false	false
Split 2 - Mode	Enum	none	none	none	none	none	none	none	none
Split 2 - Time	Sec	18	61	16	65	18	61	16	65
Split 2 - Coord	Enum	false	true	false	false	false	true	false	false
Split 3 - Mode	Enum	none	none	none	none	none	none	none	none
Split 3 - Time	Sec	14	61	14	71	14	61	14	71
Split 3 - Coord	Enum	false	true	false	false	false	true	false	false
TB Schedule	Units Bit	1 JFMAMJJASOND	2 JFMAMJJASOND	3	4 J	5 -F	6 J	7 -F	8
Day of Week	Bit	-MTWTF-	S	JFMAMJJASOND S	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	A SMTWTFS
Day of Month	Bit		1234567890123456						4
		678901234567890 1	789012345678901	678901234567890 1					
Day Plan	Number	1	3	2	3	3	3	3	3
TB Schedule	Units	9	10	11	12	13	14	15	16
Month	Bit	M	J	A	S	O	D	D	D
Day of Week Day of Month	Bit Bit	SMTWTFS2	SMTWTFS 3	SMTWTFS 7	SMTWTFS	SMTWTFS 9	SMTWTFS	SMTWTFS	SMTWTFS 6
buy or month	Dit .			'			5		7
Day Plan	Number	3	3	3	3	3	3	3	3
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	6	9	15	19	3	0	0
Plan 1 Minute	Min	0	0	30	0	30	0	0	0
Plan 1 Action Plan 2 Hour	Number Hour	8	1 7	2	3	2	7 0	0	0
Plan 2 Minute	Min	0	0	0	0	0	0	0	0
Plan 2 Action	Number	8	2	7	0	0	0	0	0
Plan 3 Hour	Hour	0	8	23	3	0	0	0	0
Plan 3 Minute	Min	0	0	0	0	0	0	0	0
Plan 3 Action	Number	8	2	8	7	0	0	0	0
TB Action	Units	1	2	3	4	5	6	7	8
Pattern	Enum	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Free
Aux. Functions Spec. Functions	Bit Bit	0	0	0	0	0	0	0	0
opeo. i unionono	Dit	•	J	·	5	v	J	5	J

District: Mississ	auga	ID: 2	2115	Loc	ation: HURC	NTARIO STREI	ET N @ Hillcres	st Avenue / Kirv	vin Avenue
Phase	Units	1	2	3	4	5	6	7	8
Walk	Sec	0	14	0	15	0	14	0	15
Ped Clear	Sec	0	30	0	33	0	30	0	33
Min Green	Sec	7	8	5	8	5	8	0	8
Passage	Sec	2.0	3.0	2.0	3.0	2.0	3.0	0.0	3.0
Maximum 1	Sec	15	35	15	25	15	35	0	25
Maximum 2	Sec	15	35	15	25	15	35	0	25
Yellow Change Red Clearance	Sec Sec	3.0 0.0	4.0 3.5	3.0 0.0	4.0 4.0	3.0 0.0	4.0 3.5	3.0 0.0	4.0 4.0
Red Clearance Red Revert	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before	Veh	0	0	0	0	0	0	0	0
Time To Reduce	Sec	0	0	0	0	0	0	0	0
Reduce By	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec Sec	0	0	0.0	0	0	0	0	0.0
Dynamic Max Step [P2] Start Up	Enum	phaseNotOn	redClear	phaseNotOn	phaseNotOn	phaseNotOn	redClear	other	phaseNotOn
[P2] Options	Bit	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	Enabled Non Lock Det	Enabled Non Lock Det Dual Entry	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	Enabled Non Lock Det	Enabled Non Lock Det Dual Entry
[P2] Ring	Ring	1	1	1	1	2	2	0	2
[P2] Concurrency	Phase (,)	(5,6)	(5,6)	(8)	(8)	(1,2)	(1,2)	0	(3,4)
Coord Pattern	Units	1	2	3	4	5	6	7	8
Cycle Time	Sec	160	160	160	160	160	0	0	0
Offset	Sec	99	93	107	62	104 5	0 6	0 7	0
Split Sequence	Split Sequence	1	1	3	1	1	1	1	8 1
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode	Enum	none	none	none	none	none	none	none	none
Split 1 - Time	Sec	13	62	21	64	13	62	0	85
Split 1 - Coord	Enum	false	true	false	false	false	true	false	false
Split 2 - Mode	Enum	none	none	none	none	none	none	none	none
Split 2 - Time	Sec	13	78	13	56	13	78	0	69
Split 2 - Coord	Enum	false	true	false	false	false	true	false	false
Split 3 - Mode	Enum	none	none	none	none	none	none	none	none
Split 3 - Time	Sec	16	54	26	64	16	54	0	90
Split 3 - Coord	Enum	false	true	false	false	false	true	false	false
Split 4 - Mode Split 4 - Time	Enum Sec	none 13	none 62	none 21	pedRecall 64	none 13	none 62	none 0	pedRecall 85
Split 4 - Coord	Enum	false	true	false	false	false	true	false	false
Split 5 - Mode	Enum	none	none	none	none	none	none	none	none
Split 5 - Time	Sec	13	78	13	56	13	78	0	69
Split 5 - Coord	Enum	false	true	false	false	false	true	false	false
TB Schedule	Units	1	2	3	4	5	6	7	8
Month	Bit	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	J	-F	A	M	J
Day of Week	Bit	-MTWTF-	S	S	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	123456789012345 678901234567890 1	123456789012345 678901234567890 1	123456789012345 678901234567890 1	1	55	-2	4	
Day Plan	Number	1	3	2	3	3	3	3	3
TB Schedule	Units	9	10	11	12	13	14	15	16
Month	Bit	A	S	O	D	D	D	0	0
Day of Week Day of Month	Bit Bit	SMTWTFS -2	SMTWTFS6	SMTWTFS1	SMTWTFS7	SMTWTFS 	SMTWTFS 	SMTWTFS 4 0	SMTWTFS 0
Day Plan	Number	3	3	3	3	3	3	0	0
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	6	7	9	9	15	3	16
Plan 1 Minute	Min	0	0	0	0	30	0	0	0
Plan 1 Action	Number	8	1	4	1	2	5	7	3
Plan 2 Hour	Hour	0	7	0	0	0	0	3	0
Plan 2 Minute	Min Number	8	0	0	0	0	0	0 7	0
Plan 2 Action Plan 3 Hour	Hour	0	8	23	0	0	0	3	0
Plan 3 Minute	Min	0	0	0	0	0	0	0	0
Plan 3 Action	Number	8	2	8	0	0	0	7	0
TB Action	Units	1	2	3	4	5	6	7	8
Pattern	Enum	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Free	Free
Aux. Functions	Bit	0	0	0	0	0	0	0	0
Spec. Functions	Bit	0	0	0	0	0	0	0	0

Signal Timing Report

Runtime: 2022-04-04 15:38

	Dev	vice: 2117						riunino. 2	.022 04 04 13.00
Region: Mississ	auga	Signal ID: 2	2117	Loc	cation: HUR	ONTARIO STREI	ET N at John St	reet	
Phase	Units	1	2	3	4	5	6	7	8
Walk	Sec	0	10	0	12	0	10	0	12
Ped Clear	Sec	0	21	0	26	0	21	0	26
Min Green Passage	Sec Sec	5 2.0	3.0	5 2.0	3.0	5 2.0	8 3.0	0	8 3.0
Maximum 1	Sec	15	30	15	35	15	30	0	35
Maximum 2	Sec	15	30	15	35	15	30	0	35
Yellow Change	Sec	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0
Red Clearance	Sec	0.0	3.0	0.0	4.0	0.0	3.0	0.0	4.0
Red Revert Added Initial	Sec Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before	Veh	0	0	0	0	0	0	0	0
Time To Reduce Reduce By	Sec Sec	0.0	0	0	0	0	0	0	0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[P2] Start Up	Enum	phaseNotOn	redClear	phaseNotOn	phaseNotOn	phaseNotOn	redClear	other	phaseNotOn
[P2] Options	Bit	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	Enabled Non Lock Det	Enabled Non Lock Det Dual Entry	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	0	Enabled Non Lock Det Dual Entry
[P2] Ring	Ring	1	1	1	1	2	2	0	2
[P2] Concurrency	Phase (,)	(5,6)	(5,6)	(8)	(8)	(1,2)	(1,2)	0	(3,4)
Coord Pattern	Units	1	2	3	4	5	6 0	7 0	8
Cycle Time Offset	Sec Sec	160 107	160 102	160 115	160 107	160 115	0	0	0
Split	Split	1	2	3	4	5	6	7	8
Sequence	Sequence	1	1	1	1	1	1	1	1
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode Split 1 - Time	Enum Sec	none 20	none 79	none 15	none 46	none 20	none 79	none 0	none 61
Split 1 - Coord	Enum	false	true	false	false	false	true	false	false
Split 2 - Mode	Enum	none	none	none	none	none	none	none	none
Split 2 - Time	Sec	20	79	15	46	20	79	0	61
Split 2 - Coord Split 3 - Mode	Enum Enum	false	true	false	false	false	true	false	false
Split 3 - Mode Split 3 - Time	Sec	none 20	none 74	none 20	none 46	none 20	none 74	none 0	none 66
Split 3 - Coord	Enum	false	true	false	false	false	true	false	false
Split 4 - Mode	Enum	none	none	none	pedRecall	none	none	none	pedRecall
Split 4 - Time	Sec	20	79	15	46	20	79	0	61
Split 4 - Coord Split 5 - Mode	Enum Enum	false none	true none	false none	false pedRecall	false none	true none	false none	false pedRecall
Split 5 - Time	Sec	20	74	20	46	20	74	0	66
Split 5 - Coord	Enum	false	true	false	false	false	true	false	false
TB Schedule	Units	1	2	3	4	5	6	7	8
Month	Bit	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	J	-F	A	M	J
Day of Week Day of Month	Bit Bit	-MTWTF- 12345678901234	S 123456789012345	S 123456789012345	SMTWTFS 1	SMTWTFS 5	SMTWTFS 2	SMTWTFS	SMTWTFS 1
		56789012345678 901	678901234567890 1	678901234567890 1					
Day Plan TB Schedule	Number Units	1 9	3 10	2 11	3 12	3 13	3 14	3 15	3 16
Month	Bit	A	S	O	D	D	D	0	0
Day of Week Day of Month	Bit Bit	SMTWTFS -2	SMTWTFS6	SMTWTFS 1	SMTWTFS 	SMTWTFS 	SMTWTFS	SMTWTFS 0	SMTWTFS 0
Day Plan	Number	3	3	3	3	3	3	0	0
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	6	7	9	9	15	16	18
Plan 1 Minute	Min	0	0	0	0	30	0	30	30
Plan 1 Action Plan 2 Hour	Number Hour	8	1 7	4 0	1	2	3	5	3
Plan 2 Minute	Min	0	0	0	0	0	0	0	0
Plan 2 Action	Number	8	2	0	0	0	0	0	0
Plan 3 Hour	Hour	0	8	23	0	0	0	0	0
Plan 3 Minute Plan 3 Action	Min Number	0 8	0	0	0	0	0	0	0
TB Action	Units	1	2	3	4	5	6	7	8
Pattern	Enum	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Free
Aux. Functions	Bit	0	0	0	0	0	0	0	0
Spec. Functions	Bit	0	0	0	0	0	0	0	0

Α Jaguar Valley Drive £ 63(122) Hurontario Street 13(22) ← 164(354) → 7(16) 92(263) 19(41) 61(157) 1382(1114) 113(115) ← 174(426) Hillcrest Avenue 1 1 1 18(84) 1 291(269) 3 36(72) 1 ኅ ሰ ሶ Kirwin Avenue 116(69) 271(289) → 363(555) → 277(267) 22(39) 1179(1072) 65(106) 18(21) 18(26) 62(104) Central Parkway 1 1 ሰ 145(101) 466(438) 70(49) 50(89) 1353(1371) 51(86) Site Access #1 385(19) 1564(1354) 164(228) 176(322) ← 5(5) 16(23) 1180(1431) Cooksville GO John Station Street 37(104) 20(39) 1426(1354) 3(1) Site Access #2 1266(1217) Α Α 17(49) 53(96) 225(181) 25(39) 1(6) 14(12) £ 63(139) 14(37) ↑ 74(332) ← 495(1214) 472(1001) 74(142) ← 575(1270) 32(89) F 2(22) Dundas 12(24) <u>†</u> 1161(764) <u>†</u> 51(41) <u>†</u> Street 102(91) 11(46) 1031(696) 95(155) 1265(812) 96(101) 992(948) 106(158) 11(21) 0(6) 2(6) 43(51) 42(116) 20(53) 2(12) Camilla Road 60 Dundas Plaza Access Note: the figure is not to scale and is for illustration purposes only Hurontario Street

Figure 4: Existing Traffic Volumes

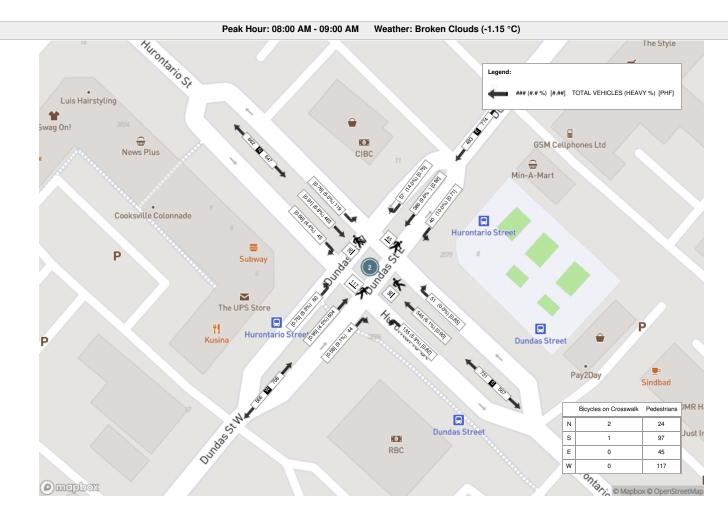
										Turr	ning Mo	ovement Count	(2 . DU	NDAS S	T & HU	RONTA	RIO ST	Γ)								
Start Time				N Approac						E Approa	ch ST				Н	S Approad	ch O ST					W Approac	h T		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
07:00:00	6	98	16	0	8	120	5	59	6	0	5	70	5	86	22	0	22	113	4	91	5	0	13	100	403	
07:15:00	8	106	13	0	9	127	5	50	3	0	9	58	4	104	25	0	12	133	11	107	9	0	20	127	445	
07:30:00	6	117	23	0	9	146	13	76	8	0	20	97	9	111	28	0	24	148	9	112	4	0	36	125	516	
07:45:00	9	147	25	0	3	181	12	63	10	0	6	85	6	148	33	0	26	187	13	144	15	0	26	172	625	1989
08:00:00	10	132	33	0	5	175	14	105	5	0	12	124	13	126	32	0	26	171	7	157	9	0	33	173	643	2229
08:15:00	10	112	39	0	5	161	19	95	12	0	7	126	13	127	33	0	29	173	9	145	20	0	32	174	634	2418
08:30:00	8	127	26	0	6	161	12	91	9	0	12	112	15	140	41	0	21	196	9	143	14	0	30	166	635	2537
08:45:00	17	112	21	0	10	150	12	95	14	0	14	121	10	152	29	0	22	191	19	159	17	0	22	195	657	2569
09:00:00	17	119	18	0	4	154	12	84	11	0	6	107	23	116	14	0	19	153	15	140	19	0	21	174	588	2514
09:15:00	12	102	31	0	9	145	17	58	11	0	14	86	14	141	37	0	32	192	17	114	13	0	26	144	567	2447
09:30:00	12	110	23	0	10	145	20	88	8	0	12	116	12	119	23	0	27	154	18	130	17	0	18	165	580	2392
09:45:00	17	142	32	0	13	191	27	70	19	0	20	116	22	137	30	0	31	189	19	123	22	0	23	164	660	2395
***BREAK	**												-						-						-	
16:00:00	21	147	30	0	31	198	32	184	24	0	28	240	15	180	30	0	62	225	21	149	27	0	41	197	860	
16:15:00	29	176	41	0	32	246	28	160	25	0	46	213	27	167	42	0	47	236	22	140	30	0	45	192	887	
16:30:00	25	159	34	0	28	218	28	188	26	0	27	242	15	154	30	0	51	199	16	159	21	0	81	196	855	
16:45:00	26	158	26	0	27	210	32	213	31	0	26	276	16	146	30	0	79	192	26	176	23	0	47	225	903	3505
17:00:00	31	169	38	0	23	238	28	154	15	0	38	197	25	186	40	0	35	251	22	133	19	0	47	174	860	3505
17:15:00	23	157	42	0	22	222	25	223	20	0	30	268	23	155	32	0	28	210	22	164	29	0	51	215	915	3533
17:30:00	25	169	33	0	19	227	40	185	22	0	26	247	22	167	33	0	52	222	31	142	26	0	50	199	895	3573
17:45:00	34	159	30	0	19	223	43	167	21	0	27	231	20	177	37	0	24	234	30	120	28	0	53	178	866	3536
18:00:00	27	137	41	0	22	205	46	187	18	0	16	251	24	144	49	0	30	217	27	129	23	1	34	180	853	3529
18:15:00	17	186	39	0	5	242	43	157	19	0	21	219	32	180	25	0	43	237	20	123	23	0	58	166	864	3478
18:30:00	23	151	38	0	12	212	35	164	21	0	26	220	16	152	37	0	30	205	13	113	21	1	21	148	785	3368
18:45:00	23	168	39	0	18	230	30	154	27	0	34	211	25	146	44	0	34	215	26	125	25	0	32	176	832	3334
Grand Total	436	3360	731	0	349	4527	578	3070	385	0	482	4033	406	3461	776	0	806	4643	426	3238	459	2	860	4125	17328	-
Approach%	9.6%	74.2%	16.1%	0%		-	14.3%	76.1%	9.5%	0%		-	8.7%	74.5%	16.7%	0%		-	10.3%	78.5%	11.1%	0%		-	-	-
Totals %	2.5%	19.4%	4.2%	0%		26.1%	3.3%	17.7%	2.2%	0%		23.3%	2.3%	20%	4.5%	0%		26.8%	2.5%	18.7%	2.6%	0%		23.8%	-	-
Heavy	9	138	20	0		-	22	136	9	0		-	7	135	24	0		-	9	130	9	0		-	-	-
Heavy %	2.1%	4.1%	2.7%	0%		-	3.8%	4.4%	2.3%	0%		-	1.7%	3.9%	3.1%	0%		-	2.1%	4%	2%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		÷	-	-	-	-		÷	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

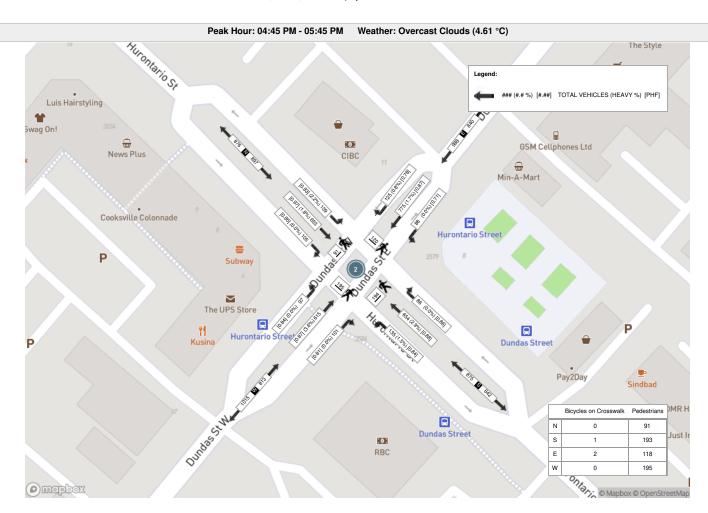
Bicycles on Crosswalk%

- 0.7%

Turning Movement Count Location Name: DUNDAS ST & HURONTARIO ST Date: Tue, Mar 22, 2022 Deployment Lead: Tasos Issaaakidis

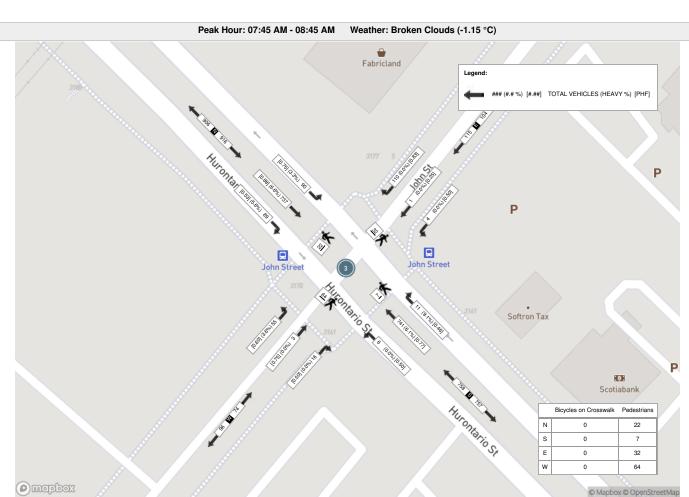
NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA


Peak Hour: 08:00 AM - 09:00 AM Weather: Broken Clouds (-1.15 °C) N Approach HURONTARIO ST SApproach HURONTARIO ST BUNDAS ST HURONTARIO ST BUNDAS ST (15 min)																									
Start Time			Н	N Approac	ch O ST					E Approa	ch ST				F	S Approa	ch O ST					W Approac	:h ST		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:00:00	10	132	33	0	5	175	14	105	5	0	12	124	13	126	32	0	26	171	7	157	9	0	33	173	643
08:15:00	10	112	39	0	5	161	19	95	12	0	7	126	13	127	33	0	29	173	9	145	20	0	32	174	634
08:30:00	8	127	26	0	6	161	12	91	9	0	12	112	15	140	41	0	21	196	9	143	14	0	30	166	635
08:45:00	17	112	21	0	10	150	12	95	14	0	14	121	10	152	29	0	22	191	19	159	17	0	22	195	657
Grand Total	45	483	119	0	26	647	57	386	40	0	45	483	51	545	135	0	98	731	44	604	60	0	117	708	2569
Approach%	7%	74.7%	18.4%	0%		-	11.8%	79.9%	8.3%	0%		-	7%	74.6%	18.5%	0%		-	6.2%	85.3%	8.5%	0%		-	-
Totals %	1.8%	18.8%	4.6%	0%		25.2%	2.2%	15%	1.6%	0%		18.8%	2%	21.2%	5.3%	0%		28.5%	1.7%	23.5%	2.3%	0%		27.6%	-
PHF	0.66	0.91	0.76	0		0.92	0.75	0.92	0.71	0		0.96	0.85	0.9	0.82	0		0.93	0.58	0.95	0.75	0		0.91	-
Heavy	2	33	6	0		41	8	37	4	0		49	0	33	8	0		41	4	27	5	0		36	
Heavy %	4.4%	6.8%	5%	0%		6.3%	14%	9.6%	10%	0%		10.1%	0%	6.1%	5.9%	0%		5.6%	9.1%	4.5%	8.3%	0%		5.1%	.
Lights	43	450	113	0		606	49	349	36	0		434	51	512	127	0		690	40	577	55	0		672	-
Lights %	95.6%	93.2%	95%	0%		93.7%	86%	90.4%	90%	0%		89.9%	100%	93.9%	94.1%	0%		94.4%	90.9%	95.5%	91.7%	0%		94.9%	-
Single-Unit Trucks	2	9	2	0		13	2	17	1	0		20	0	11	5	0		16	3	10	1	0		14	-
Single-Unit Trucks %	4.4%	1.9%	1.7%	0%		2%	3.5%	4.4%	2.5%	0%		4.1%	0%	2%	3.7%	0%		2.2%	6.8%	1.7%	1.7%	0%		2%	-
Buses	0	24	2	0		26	6	19	0	0		25	0	21	3	0		24	1	15	4	0		20	-
Buses %	0%	5%	1.7%	0%		4%	10.5%	4.9%	0%	0%		5.2%	0%	3.9%	2.2%	0%		3.3%	2.3%	2.5%	6.7%	0%		2.8%	-
Articulated Trucks	0	0	2	0		2	0	1	3	0		4	0	1	0	0		1	0	2	0	0		2	-
Articulated Trucks %	0%	0%	1.7%	0%		0.3%	0%	0.3%	7.5%	0%		0.8%	0%	0.2%	0%	0%		0.1%	0%	0.3%	0%	0%		0.3%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	24	-	-	-	-	-	45	-	-	-	-	-	97	-	-	-	-	-	117	-	-
Pedestrians%	-	-	-	-	8.4%		-	-	-	-	15.7%		-	-	-	-	33.9%		-	-	-	-	40.9%		-
Bicycles on Crosswalk	-	-	-	-	2	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-


0.3%

NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA

Peak Hour: 04:45 PM - 05:45 PM Weather: Overcast Clouds (4.61 °C) Start Time NApproach HURONTARIO ST E Approach DUNDAS ST Start Time Start Time DUNDAS ST START S																									
Start Time			н	N Approa	ch O ST					E Approa	ch ST				ŀ	S Approa	ch IO ST					W Approac	ch ST		Int. Tota (15 min
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
16:45:00	26	158	26	0	27	210	32	213	31	0	26	276	16	146	30	0	79	192	26	176	23	0	47	225	903
17:00:00	31	169	38	0	23	238	28	154	15	0	38	197	25	186	40	0	35	251	22	133	19	0	47	174	860
17:15:00	23	157	42	0	22	222	25	223	20	0	30	268	23	155	32	0	28	210	22	164	29	0	51	215	915
17:30:00	25	169	33	0	19	227	40	185	22	0	26	247	22	167	33	0	52	222	31	142	26	0	50	199	895
Grand Total	105	653	139	0	91	897	125	775	88	0	120	988	86	654	135	0	194	875	101	615	97	0	195	813	3573
Approach%	11.7%	72.8%	15.5%	0%		-	12.7%	78.4%	8.9%	0%		-	9.8%	74.7%	15.4%	0%		-	12.4%	75.6%	11.9%	0%		-	-
Totals %	2.9%	18.3%	3.9%	0%		25.1%	3.5%	21.7%	2.5%	0%		27.7%	2.4%	18.3%	3.8%	0%		24.5%	2.8%	17.2%	2.7%	0%		22.8%	-
PHF	0.85	0.97	0.83	0		0.94	0.78	0.87	0.71	0		0.89	0.86	0.88	0.84	0		0.87	0.81	0.87	0.84	0		0.9	-
Heavy		12	3	0		15	1	13	0	0		14	0	19	2	0		21	0	22	0	0		22	
Heavy %	0%	1.8%	2.2%	0%		1.7%	0.8%	1.7%	0%	0%		1.4%	0%	2.9%	1.5%	0%		2.4%	0%	3.6%	0%	0%		2.7%	-
Lights	105	641	136	0		882	124	762	88	0		974	86	635	133	0		854	101	593	97	0		791	
Lights %	100%	98.2%	97.8%	0%		98.3%	99.2%	98.3%	100%	0%		98.6%	100%	97.1%	98.5%	0%		97.6%	100%	96.4%	100%	0%		97.3%	-
Single-Unit Trucks	0	2	2	0		4	1	1	0	0		2	0	6	2	0		8	0	11	0	0		11	-
Single-Unit Trucks %	0%	0.3%	1.4%	0%		0.4%	0.8%	0.1%	0%	0%		0.2%	0%	0.9%	1.5%	0%		0.9%	0%	1.8%	0%	0%		1.4%	-
Buses	0	10	1	0		11	0	11	0	0		11	0	12	0	0		12	0	10	0	0		10	-
Buses %	0%	1.5%	0.7%	0%		1.2%	0%	1.4%	0%	0%		1.1%	0%	1.8%	0%	0%		1.4%	0%	1.6%	0%	0%		1.2%	-
Articulated Trucks	0	0	0	0		0	0	1	0	0		1	0	1	0	0		1	0	1	0	0		1	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.1%	0%	0%		0.1%	0%	0.2%	0%	0%		0.1%	0%	0.2%	0%	0%		0.1%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	91	-	-	-	-	-	118	=	-	-	-	-	193	-	-	-	-	-	195	-	-
Pedestrians%	-	-	-	-	15.2%		-	-	-	-	19.7%		-	-	-	-	32.2%		-	-	-	-	32.5%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	2	-	-	-	-	-	1	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0.3%		-	-	-	-	0.2%		-	-	-	-	0%		-



										Tu	rning N	Movement Coun	t (3 . HI	JONTA	RIO ST	& JOH	N ST)									
			Н	N Approac	c h O ST					E Approa	ch T				Н	S Approad	ch O ST					W Approad	ch		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
07:00:00	31	120	11	1	0	163	19	0	2	0	0	21	3	113	4	0	2	120	2	1	12	0	1	15	319	
07:15:00	11	114	8	0	4	133	21	0	0	0	2	21	1	123	0	0	3	124	3	0	7	0	4	10	288	
07:30:00	36	151	14	1	4	202	28	0	3	0	3	31	2	140	1	0	2	143	2	0	24	0	10	26	402	
07:45:00	18	184	12	1	2	215	25	0	2	0	3	27	3	183	0	0	1	186	3	1	13	0	9	17	445	1454
08:00:00	42	209	30	1	13	282	22	0	1	0	11	23	1	150	2	0	1	153	8	1	23	0	21	32	490	1625
08:15:00	17	168	20	0	5	205	33	1	1	0	11	35	1	240	3	0	3	244	5	0	9	0	26	14	498	1835
08:30:00	12	176	28	0	2	216	30	0	0	0	7	30	6	168	1	0	2	175	0	1	10	0	8	11	432	1865
08:45:00	19	167	29	1	0	216	27	4	1	0	4	32	4	174	2	0	6	180	3	1	12	0	8	16	444	1864
09:00:00	6	167	28	0	0	201	23	0	1	0	3	24	5	158	1	0	3	164	2	2	7	0	5	11	400	1774
09:15:00	3	168	23	0	1	194	25	0	2	0	4	27	3	177	0	1	0	181	2	0	4	0	4	6	408	1684
09:30:00	6	165	19	0	1	190	20	3	2	0	3	25	6	165	0	0	1	171	0	0	6	0	3	6	392	1644
09:45:00	6	197	32	0	1	235	35	0	1	0	5	36	5	191	0	1	0	197	3	0	5	0	3	8	476	1676
BREAK	***	************************************																								
16:00:00	8	205	34	0	12	247	37	4	4	0	24	45	5	247	1	0	7	253	1	1	14	0	18	16	561	
16:15:00	11	270	30	1	3	312	37	0	3	0	16	40	10	233	1	0	7	244	0	0	11	0	8	11	607	
16:30:00	13	238	27	0	10	278	40	0	7	0	10	47	4	251	2	0	3	257	5	0	6	0	6	11	593	
16:45:00	21	194	43	1	6	259	35	0	5	0	6	40	8	218	0	0	10	226	2	1	29	0	15	32	557	2318
17:00:00	17	240	31	1	4	289	32	1	3	0	7	36	9	239	2	0	3	250	3	1	23	0	4	27	602	2359
17:15:00	12	267	22	0	6	301	48	2	3	0	7	53	6	266	1	0	5	273	4	1	4	0	12	9	636	2388
17:30:00	16	229	38	0	8	283	33	0	3	0	6	36	7	228	0	0	19	235	8	3	24	0	17	35	589	2384
17:45:00	14	226	24	0	3	264	35	1	2	0	2	38	6	265	3	0	1	274	3	0	19	0	6	22	598	2425
18:00:00	10	218	37	0	3	265	47	1	2	0	6	50	8	216	2	0	4	226	0	1	4	0	8	5	546	2369
18:15:00	25	217	19	3	9	264	38	1	7	0	12	46	3	249	2	0	7	254	6	2	23	0	12	31	595	2328
18:30:00	14	231	22	0	4	267	38	2	2	0	3	42	6	220	0	0	2	226	1	1	17	0	15	19	554	2293
18:45:00	5	236	29	0	1	270	24	1	5	0	8	30	1	234	1	0	3	236	3	1	7	0	9	11	547	2242
Grand Total	373	4757	610	11	102	5751	752	21	62	0	163	835	113	4848	29	2	95	4992	69	19	313	0	232	401	11979	-
Approach%	6.5%	82.7%	10.6%	0.2%		-	90.1%	2.5%	7.4%	0%		-	2.3%	97.1%	0.6%	0%		-	17.2%	4.7%	78.1%	0%		-	-	-
Totals %	3.1%	39.7%	5.1%	0.1%		48%	6.3%	0.2%	0.5%	0%		7%	0.9%	40.5%	0.2%	0%		41.7%	0.6%	0.2%	2.6%	0%		3.3%	-	-
Heavy	28	165	8	0		-	8	0	1	0		-	2	194	1	0		-	7	0	8	0		-	-	-
Heavy %	7.5%	3.5%	1.3%	0%		-	1.1%	0%	1.6%	0%		-	1.8%	4%	3.4%	0%		-	10.1%	0%	2.6%	0%		-	-	=
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Peak Hour: 07:45 AM - 08:45 AM Weather: Broken Clouds (-1.15 °C) **N Approach HURONTARIO ST Start Time Purchase Start Time Start Time Start Time Peak Hour: 07:45 AM - 08:45 AM Weather: Broken Clouds (-1.15 °C) **S Approach HURONTARIO ST SApproach HURONTARIO ST JOHN ST (15 min)																									
Start Time			н	N Approac	h O ST					E Approa	i ch T				Н	S Approac	:h O ST					W Approa	ch T		Int. To (15 mi
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
07:45:00	18	184	12	1	2	215	25	0	2	0	3	27	3	183	0	0	1	186	3	1	13	0	9	17	44
08:00:00	42	209	30	1	13	282	22	0	1	0	11	23	1	150	2	0	1	153	8	1	23	0	21	32	49
08:15:00	17	168	20	0	5	205	33	1	1	0	11	35	1	240	3	0	3	244	5	0	9	0	26	14	49
08:30:00	12	176	28	0	2	216	30	0	0	0	7	30	6	168	1	0	2	175	0	1	10	0	8	11	43
Grand Total	89	737	90	2	22	918	110	1	4	0	32	115	11	741	6	0	7	758	16	3	55	0	64	74	180
Approach%	9.7%	80.3%	9.8%	0.2%		-	95.7%	0.9%	3.5%	0%		-	1.5%	97.8%	0.8%	0%		-	21.6%	4.1%	74.3%	0%		-	
Totals %	4.8%	39.5%	4.8%	0.1%		49.2%	5.9%	0.1%	0.2%	0%		6.2%	0.6%	39.7%	0.3%	0%		40.6%	0.9%	0.2%	2.9%	0%		4%	
PHF	0.53	0.88	0.75	0.5		0.81	0.83	0.25	0.5	0		0.82	0.46	0.77	0.5	0		0.78	0.5	0.75	0.6	0		0.58	
Heavy	5	49	3	0		57	0	0	0	0		0	1	45	0	0		46	0	0	2	0		2	
Heavy %	5.6%	6.6%	3.3%	0%		6.2%	0%	0%	0%	0%		0%	9.1%	6.1%	0%	0%		6.1%	0%	0%	3.6%	0%		2.7%	
Lights	84	688	87	2		861	110	1	4	0		115	10	696	6	0		712	16	3	53	0		72	
Lights %	94.4%	93.4%	96.7%	100%		93.8%	100%	100%	100%	0%		100%	90.9%	93.9%	100%	0%		93.9%	100%	100%	96.4%	0%		97.3%	
Single-Unit Trucks	0	13	1	0		14	0	0	0	0		0	0	13	0	0		13	0	0	0	0		0	
Single-Unit Trucks %	0%	1.8%	1.1%	0%		1.5%	0%	0%	0%	0%		0%	0%	1.8%	0%	0%		1.7%	0%	0%	0%	0%		0%	
Buses	5	34	2	0		41	0	0	0	0		0	1	32	0	0		33	0	0	2	0		2	
Buses %	5.6%	4.6%	2.2%	0%		4.5%	0%	0%	0%	0%		0%	9.1%	4.3%	0%	0%		4.4%	0%	0%	3.6%	0%		2.7%	
Articulated Trucks	0	2	0	0		2	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	
Articulated Trucks %	0%	0.3%	0%	0%		0.2%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	
Pedestrians	-	-	-	-	22	-	-	-	-	-	32	-	-	-	-	-	7	-	-	-	-	-	64	-	
Pedestrians%	-	-	-	-	17.6%		-	-	-	-	25.6%		-	-	-	-	5.6%		-	-	-	-	51.2%		
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		

								Peak	(Hour:	05:00 I	PM - 06:	00 PM Weath	ner: Ove	rcast C	louds	(4.61 °C	;)								
Start Time			F	N Approa	ch IO ST					E Approa	ach ST				н	S Approac	ch O ST					W Approa	ch T		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
17:00:00	17	240	31	1	4	289	32	1	3	0	7	36	9	239	2	0	3	250	3	1	23	0	4	27	602
17:15:00	12	267	22	0	6	301	48	2	3	0	7	53	6	266	1	0	5	273	4	1	4	0	12	9	636
17:30:00	16	229	38	0	8	283	33	0	3	0	6	36	7	228	0	0	19	235	8	3	24	0	17	35	589
17:45:00	14	226	24	0	3	264	35	1	2	0	2	38	6	265	3	0	1	274	3	0	19	0	6	22	598
Grand Total	59	962	115	1	21	1137	148	4	11	0	22	163	28	998	6	0	28	1032	18	5	70	0	39	93	2425
Approach%	5.2%	84.6%	10.1%	0.1%		-	90.8%	2.5%	6.7%	0%		-	2.7%	96.7%	0.6%	0%		-	19.4%	5.4%	75.3%	0%		-	-
Totals %	2.4%	39.7%	4.7%	0%		46.9%	6.1%	0.2%	0.5%	0%		6.7%	1.2%	41.2%	0.2%	0%		42.6%	0.7%	0.2%	2.9%	0%		3.8%	-
PHF	0.87	0.9	0.76	0.25		0.94	0.77	0.5	0.92	0		0.77	0.78	0.94	0.5	0		0.94	0.56	0.42	0.73	0		0.66	-
Heavy	5	17	0	0		22	1					1	0	22	0	0		22	2	0	0	0		2	
Heavy %	8.5%	1.8%	0%	0%		1.9%	0.7%	0%	0%	0%		0.6%	0%	2.2%	0%	0%		2.1%	11.1%	0%	0%	0%		2.2%	-
Lights	54	945	115	1		1115	147	4	11			162	27	976	6	0		1009	16	5	70	0		91	
Lights %	91.5%	98.2%	100%	100%		98.1%	99.3%	100%	100%	0%		99.4%	96.4%	97.8%	100%	0%		97.8%	88.9%	100%	100%	0%		97.8%	-
Single-Unit Trucks	0	6	0	0		6	0	0	0	0		0	0	6	0	0		6	0	0	0	0		0	-
Single-Unit Trucks %	0%	0.6%	0%	0%		0.5%	0%	0%	0%	0%		0%	0%	0.6%	0%	0%		0.6%	0%	0%	0%	0%		0%	-
Buses	5	11	0	0		16	1	0	0	0		1	0	15	0	0		15	2	0	0	0		2	-
Buses %	8.5%	1.1%	0%	0%		1.4%	0.7%	0%	0%	0%		0.6%	0%	1.5%	0%	0%		1.5%	11.1%	0%	0%	0%		2.2%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	1	0	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	3.6%	0%	0%	0%		0.1%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	21	-	-	-	-	-	21	-	-	-	-	-	28	-	-	-	-	-	38	-	-
Pedestrians%	-		-	-	19.1%		-	-	-	-	19.1%		-		-	-	25.5%		-	-	-	-	34.5%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	1	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0.9%		-	-	-	-	0%		-	-	-	-	0.9%		-

NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA

Peak Hour: 05:00 PM - 06:00 PM Weather: Overcast Clouds (4.61 °C) Lagend: ### (#.# %) [#.##] TOTAL VEHICLES (HEAVY %) [PHF] John Street John Street

NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA

Turning Movement Count (4 . HURONTARIO ST & AGNES ST)

Ohant Times	N Approach HURONTARIO ST			· 3		S An	proach NTARIO S	T		,	W Ap		Int. Total (15 min)	Int. Total (1 hr)			
Start Time					Approach Total	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Left W:N	UTurn W:W	Peds W:	Approach Total		
07:00:00	2	116	0	0	118	102	0	0	0	102	5	4	0	0	9	229	
07:15:00	4	127	1	0	132	119	0	0	0	119	3	4	0	3	7	258	
07:30:00	3	151	0	0	154	123	3	0	0	126	3	10	0	3	13	293	
07:45:00	9	161	0	1	170	172	3	0	1	175	12	2	0	2	14	359	1139
08:00:00	7	172	0	3	179	145	1	0	0	146	15	16	0	10	31	356	1266
08:15:00	7	139	2	0	148	177	4	0	0	181	21	28	0	15	49	378	1386
08:30:00	10	155	0	1	165	164	2	0	0	166	7	7	0	4	14	345	1438
08:45:00	19	153	0	0	172	166	8	0	0	174	9	5	0	4	14	360	1439
09:00:00	14	154	1	0	169	145	9	1	0	155	3	6	0	2	9	333	1416
09:15:00	17	139	1	0	157	167	3	0	0	170	9	5	0	2	14	341	1379
09:30:00	9	151	2	0	162	153	5	1	0	159	9	7	0	2	16	337	1371
09:45:00	14	173	0	1	187	179	8	0	0	187	11	5	0	2	16	390	1401
***BREAK*	***																
16:00:00	9	185	4	1	198	251	3	0	1	254	16	6	0	10	22	474	
16:15:00	17	232	2	4	251	225	5	0	0	230	9	4	0	13	13	494	
16:30:00	13	211	3	0	227	200	4	0	0	204	10	9	0	7	19	450	
16:45:00	16	189	1	1	206	198	2	0	0	200	22	13	0	8	35	441	1859
17:00:00	9	225	1	1	235	222	2	0	0	224	11	12	0	12	23	482	1867
17:15:00	15	218	0	2	233	212	3	0	1	215	10	10	0	9	20	468	1841
17:30:00	7	230	2	3	239	234	6	0	0	240	5	8	0	11	13	492	1883
17:45:00	12	204	0	0	216	248	3	0	0	251	17	6	1	7	24	491	1933
18:00:00	11	200	1	2	212	219	5	1	0	225	10	7	0	13	17	454	1905
18:15:00	10	220	1	2	231	246	6	1	0	253	13	3	0	14	16	500	1937
18:30:00	12	195	0	1	207	195	5	0	0	200	13	4	0	4	17	424	1869
18:45:00	13	226	1	1	240	214	2	0	0	216	15	5	0	12	20	476	1854
Grand Total	259	4326	23	24	4608	4476	92	4	3	4572	258	186	1	169	445	9625	-
Approach%	5.6%	93.9%	0.5%		-	97.9%	2%	0.1%		-	58%	41.8%	0.2%		-	-	-
Totals %	2.7%	44.9%	0.2%		47.9%	46.5%	1%	0%		47.5%	2.7%	1.9%	0%		4.6%	-	-
Heavy	8	159	0		-	166	2	0		-	8	7	0		-	-	-
Heavy %	3.1%	3.7%	0%		-	3.7%	2.2%	0%		-	3.1%	3.8%	0%		-	-	-
Bicycles	-	-	-		-	-	-	-		-	-	-	-		-	-	-
Bicycle %	-	-	-		-	-	-	-		-	-	-	-		-	-	-

Bicycles on Crosswalk%

0%

Turning Movement Count Location Name: HURONTARIO ST & AGNES ST Date: Tue, Mar 22, 2022 Deployment Lead: Tasos Issaaakidis

NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA

2.7%

				F	Peak Hour: 08:00	AM - 09:	00 AM	Weathe	r: Broke	en Clouds (-1.15 °C	C)									
Start Time				proach ITARIO ST					roach TARIO ST	-		W Approach AGNES ST								
	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total					
08:00:00	7	172	0	3	179	145	1	0	0	146	15	16	0	10	31	356				
08:15:00	7	139	2	0	148	177	4	0	0	181	21	28	0	15	49	378				
08:30:00	10	155	0	1	165	164	2	0	0	166	7	7	0	4	14	345				
08:45:00	19	153	0	0	172	166	8	0	0	174	9	5	0	4	14	360				
Grand Total	43	619	2	4	664	652	15	0	0	667	52	56	0	33	108	1439				
Approach%	6.5%	93.2%	0.3%		-	97.8%	2.2%	0%		-	48.1%	51.9%	0%		-	-				
Totals %	3%	43%	0.1%		46.1%	45.3%	1%	0%		46.4%	3.6%	3.9%	0%		7.5%	-				
PHF	0.57	0.9	0.25		0.93	0.92	0.47	0		0.92	0.62	0.5	0		0.55	-				
Heavy	4	38	0		42	44	1	0		45	3	2	0		5					
Heavy %	9.3%	6.1%	0%		6.3%	6.7%	6.7%	0%		6.7%	5.8%	3.6%	0%		4.6%	-				
Lights	39	581	2		622	608	14	0		622	49	54	0		103					
Lights %	90.7%	93.9%	100%		93.7%	93.3%	93.3%	0%		93.3%	94.2%	96.4%	0%		95.4%	-				
Single-Unit Trucks	0	13	0		13	14	0	0		14	0	0	0		0	-				
Single-Unit Trucks %	0%	2.1%	0%		2%	2.1%	0%	0%		2.1%	0%	0%	0%		0%	-				
Buses	4	23	0		27	29	1	0		30	3	2	0		5	-				
Buses %	9.3%	3.7%	0%		4.1%	4.4%	6.7%	0%		4.5%	5.8%	3.6%	0%		4.6%	-				
Articulated Trucks	0	2	0		2	1	0	0		1	0	0	0		0	-				
Articulated Trucks %	0%	0.3%	0%		0.3%	0.2%	0%	0%		0.1%	0%	0%	0%		0%	-				
Pedestrians	-	-	-	4	-	-	-	-	0	-	-	-	-	32	-	-				
Pedestrians%	-	-	-	10.8%		-	-	-	0%		-	-	-	86.5%		-				
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-				

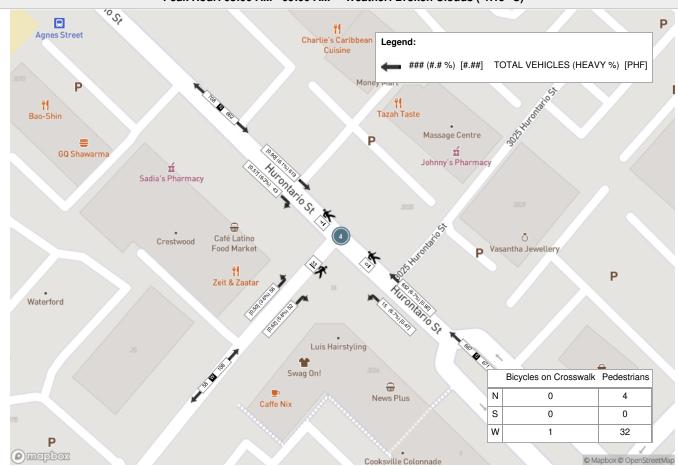
0%

Bicycles on Crosswalk%

0%

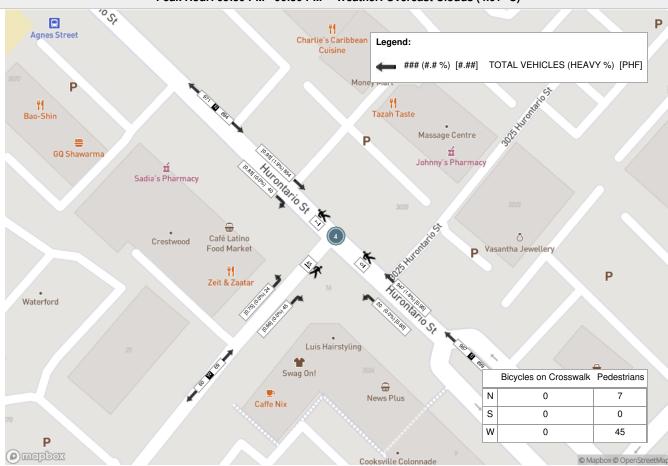
Turning Movement Count Location Name: HURONTARIO ST & AGNES ST Date: Tue, Mar 22, 2022 Deployment Lead: Tasos Issaaakidis

NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA


0%

				F	Peak Hour: 05:30	PM - 06:	30 PM	Weather	: Overc	ast Clouds (4.61 °	C)					
Start Time				pproach NTARIO ST					oroach TARIO ST	-				proach NES ST		Int. Total (15 min)
	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	
17:30:00	7	230	2	3	239	234	6	0	0	240	5	8	0	11	13	492
17:45:00	12	204	0	0	216	248	3	0	0	251	17	6	1	7	24	491
18:00:00	11	200	1	2	212	219	5	1	0	225	10	7	0	13	17	454
18:15:00	10	220	1	2	231	246	6	1	0	253	13	3	0	14	16	500
Grand Total	40	854	4	7	898	947	20	2	0	969	45	24	1	45	70	1937
Approach%	4.5%	95.1%	0.4%		-	97.7%	2.1%	0.2%		-	64.3%	34.3%	1.4%		-	-
Totals %	2.1%	44.1%	0.2%		46.4%	48.9%	1%	0.1%		50%	2.3%	1.2%	0.1%		3.6%	-
PHF	0.83	0.93	0.5		0.94	0.95	0.83	0.5		0.96	0.66	0.75	0.25		0.73	-
Heavy	0	16	0		16	17	0	0		17	0	0	0		0	
Heavy %	0%	1.9%	0%		1.8%	1.8%	0%	0%		1.8%	0%	0%	0%		0%	-
Lights	40	838	4		882	930	20	2		952	45	24	1		70	·
Lights %	100%	98.1%	100%		98.2%	98.2%	100%	100%		98.2%	100%	100%	100%		100%	-
Single-Unit Trucks	0	2	0		2	5	0	0		5	0	0	0		0	-
Single-Unit Trucks %	0%	0.2%	0%		0.2%	0.5%	0%	0%		0.5%	0%	0%	0%		0%	-
Buses	0	13	0		13	11	0	0		11	0	0	0		0	-
Buses %	0%	1.5%	0%		1.4%	1.2%	0%	0%		1.1%	0%	0%	0%		0%	-
Articulated Trucks	0	1	0		1	1	0	0		1	0	0	0		0	-
Articulated Trucks %	0%	0.1%	0%		0.1%	0.1%	0%	0%		0.1%	0%	0%	0%		0%	-
Pedestrians	-	-	-	7	-	-	-	-	0	-	-	-	-	45	-	-
Pedestrians%	-	-	-	13.5%		-	-	-	0%		-	-	-	86.5%		-
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-

0%


NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA

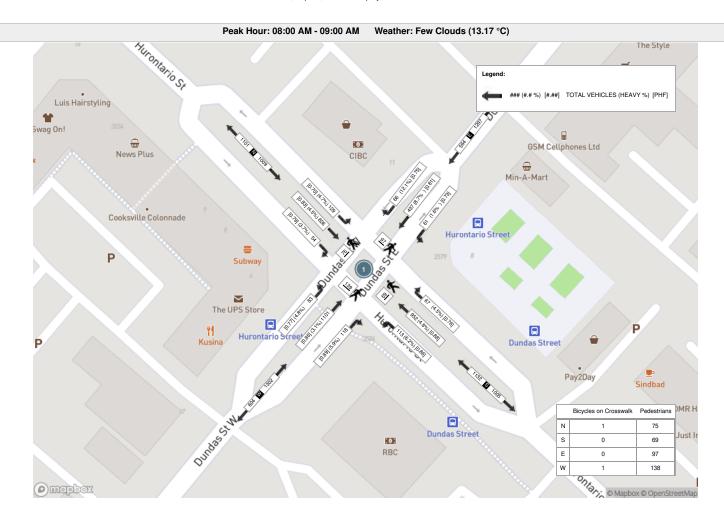
Peak Hour: 08:00 AM - 09:00 AM Weather: Broken Clouds (-1.15 °C)

NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA

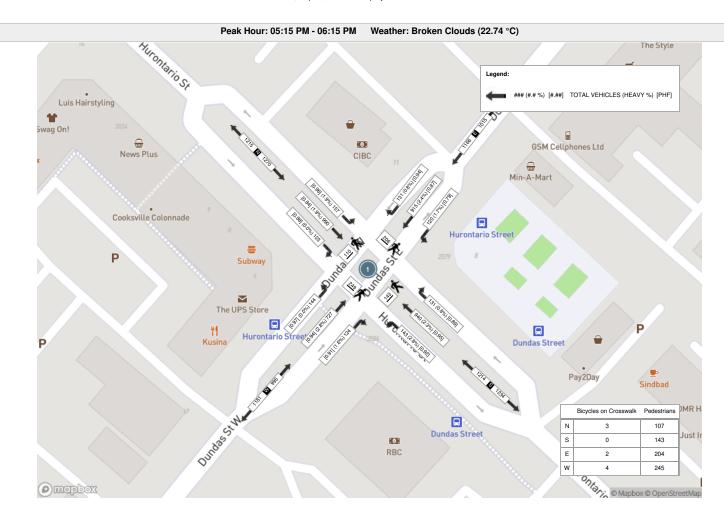
Peak Hour: 05:30 PM - 06:30 PM Weather: Overcast Clouds (4.61 °C)

Turning Movement Count Location Name: HURONTARIO ST & DUNDAS ST Date: Thu, Sep 19, 2019 Deployment Lead: David Chu

										Turn	ing Mo	vement Count (1 . HUF	RONTAR	RIO ST	& DUND	AS ST)								
				N Approad						E Approac	h ST				н	S Approac						W Approac			Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	U-Turn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	U-Turn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	U-Turn W:W	Peds W:	Approach Total		
07:00:00	9	158	21	0	12	188	10	55	6	0	13	71	12	130	16	0	7	158	15	204	11	0	11	230	647	
07:15:00	9	175	20	0	12	204	7	69	7	0	15	83	16	170	27	0	19	213	20	227	14	0	36	261	761	
07:30:00	7	186	26	0	9	219	8	95	16	0	19	119	21	212	26	0	14	259	16	278	16	0	21	310	907	
07:45:00	14	219	33	1	8	267	8	85	18	0	17	111	13	212	31	0	17	256	23	274	13	0	26	310	944	3259
08:00:00	17	194	46	0	19	257	15	91	15	0	23	121	17	231	22	0	23	270	26	270	16	0	43	312	960	3572
08:15:00	6	248	31	0	22	285	15	105	21	0	23	141	13	235	29	0	14	277	30	319	22	0	33	371	1074	3885
08:30:00	14	202	30	0	13	246	14	106	12	0	23	132	15	217	29	0	15	261	33	285	18	0	32	336	975	3953
08:45:00	17	182	22	0	22	221	22	135	13	0	28	170	22	269	33	0	17	324	29	227	27	0	31	283	998	4007
09:00:00	17	168	30	0	22	215	17	102	21	0	39	140	9	232	30	0	21	271	27	260	25	0	43	312	938	3985
09:15:00	17	166	27	0	19	210	17	102	19	0	45	138	18	203	33	0	25	254	22	236	42	0	34	300	902	3813
09:30:00	22	168	25	1	24	216	19	116	18	0	38	153	27	217	26	0	27	270	23	192	25	0	38	240	879	3717
09:45:00	17	194	38	0	14	249	17	122	25	0	34	164	19	207	32	0	31	258	26	186	29	0	51	241	912	3631
***BREAK*	**																									
16:00:00	26	197	43	1	32	267	36	237	25	0	40	298	25	202	28	0	41	255	32	156	21	0	45	209	1029	
16:15:00	24	251	36	1	22	312	35	187	27	1	48	250	24	278	42	0	36	344	37	171	33	0	67	241	1147	
16:30:00	33	209	30	0	44	272	32	258	24	1	48	316	29	216	43	0	48	288	33	186	36	0	82	255	1131	
16:45:00	25	266	31	1	35	323	21	260	22	0	41	303	20	194	40	1	44	255	28	218	29	0	52	275	1156	4463
17:00:00	40	254	29	0	33	323	38	214	23	0	68	275	28	230	34	0	43	292	29	159	32	0	77	220	1110	4544
17:15:00	28	262	38	0	32	328	35	262	38	0	65	335	24	248	36	1	34	309	34	173	36	0	54	243	1215	4612
17:30:00	25	294	40	0	37	359	31	185	31	0	42	247	37	217	39	0	46	293	29	193	36	1	81	259	1158	4639
17:45:00	35	238	41	0	23	314	31	245	26	0	56	302	37	227	34	0	37	298	28	184	37	0	69	249	1163	4646
18:00:00	35	196	38	0	18	269	34	223	25	0	43	282	33	248	34	0	26	315	33	177	35	0	45	245	1111	4647
18:15:00	31	252	48	2	32	333	31	187	40	0	49	258	21	216	44	0	36	281	28	188	43	0	78	259	1131	4563
18:30:00	32	219	49	0	31	300	41	207	38	0	44	286	20	240	32	0	36	292	36	146	29	0	59	211	1089	4494
18:45:00	25	214	46	1	28	286	41	183	32	0	51	256	19	250	42	0	43	311	42	164	32	0	59	238	1091	4422
Grand Total	525	5112	818	8	563	6463	575	3831	542	2	913	4951	519	5301	782	2	700	6604	679	5073	657	1	1167	6410	24428	-
Approach%	8.1%	79.1%	12.7%	0.1%		-	11.6%	77.4%	10.9%	0%		-	7.9%	80.3%	11.8%	0%		-	10.6%	79.1%	10.2%	0%		-	-	-
Totals %	2.1%	20.9%	3.3%	0%		26.5%	2.4%	15.7%	2.2%	0%		20.3%	2.1%	21.7%	3.2%	0%		27%	2.8%	20.8%	2.7%	0%		26.2%	-	-
Heavy	15	182	19	0		-	28	168	9	0		-	14	189	34	0		-	20	175	13	0		-	-	-
Heavy %	2.9%	3.6%	2.3%	0%		-	4.9%	4.4%	1.7%	0%		-	2.7%	3.6%	4.3%	0%		-	2.9%	3.4%	2%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-


Turning Movement Count Location Name: HURONTARIO ST & DUNDAS ST Date: Thu, Sep 19, 2019 Deployment Lead: David Chu

								Pe	ak Hou	ır: 08:00) AM - 0	9:00 AM We	ather: F	ew Clo	uds (1	3.17 °C)									
Start Time			Н	N Approac	e h O ST					E Approa	ch ST				H	S Approad	ch IO ST					W Approac	e h ST		Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
08:00:00	17	194	46	0	19	257	15	91	15	0	23	121	17	231	22	0	23	270	26	270	16	0	43	312	960
08:15:00	6	248	31	0	22	285	15	105	21	0	23	141	13	235	29	0	14	277	30	319	22	0	33	371	1074
08:30:00	14	202	30	0	13	246	14	106	12	0	23	132	15	217	29	0	15	261	33	285	18	0	32	336	975
08:45:00	17	182	22	0	22	221	22	135	13	0	28	170	22	269	33	0	17	324	29	227	27	0	31	283	998
Grand Total	54	826	129	0	76	1009	66	437	61	0	97	564	67	952	113	0	69	1132	118	1101	83	0	139	1302	4007
Approach%	5.4%	81.9%	12.8%	0%		-	11.7%	77.5%	10.8%	0%		-	5.9%	84.1%	10%	0%		-	9.1%	84.6%	6.4%	0%		-	-
Totals %	1.3%	20.6%	3.2%	0%		25.2%	1.6%	10.9%	1.5%	0%		14.1%	1.7%	23.8%	2.8%	0%		28.3%	2.9%	27.5%	2.1%	0%		32.5%	
PHF	0.79	0.83	0.7	0		0.89	0.75	0.81	0.73	0		0.83	0.76	0.88	0.86	0		0.87	0.89	0.86	0.77	0		0.88	-
Heavy	2	37	6	0		45	8	38	1	0		47	3	46	7	0		56	7	34	4	0		45	
Heavy %	3.7%	4.5%	4.7%	0%		4.5%	12.1%	8.7%	1.6%	0%		8.3%	4.5%	4.8%	6.2%	0%		4.9%	5.9%	3.1%	4.8%	0%		3.5%	-
Lights	52	789	123	0		964	58	399	60	0		517	64	906	106	0		1076	111	1067	79	0		1257	
Lights %	96.3%	95.5%	95.3%	0%		95.5%	87.9%	91.3%	98.4%	0%		91.7%	95.5%	95.2%	93.8%	0%		95.1%	94.1%	96.9%	95.2%	0%		96.5%	-
Single-Unit Trucks	0	9	3	0		12	0	12	1	0		13	2	10	5	0		17	3	14	2	0		19	-
Single-Unit Trucks %	0%	1.1%	2.3%	0%		1.2%	0%	2.7%	1.6%	0%		2.3%	3%	1.1%	4.4%	0%		1.5%	2.5%	1.3%	2.4%	0%		1.5%	-
Buses	2	26	2	0		30	7	22	0	0		29	1	34	1	0		36	3	16	2	0		21	-
Buses %	3.7%	3.1%	1.6%	0%		3%	10.6%	5%	0%	0%		5.1%	1.5%	3.6%	0.9%	0%		3.2%	2.5%	1.5%	2.4%	0%		1.6%	-
Articulated Trucks	0	2	1	0		3	1	4	0	0		5	0	2	1	0		3	1	4	0	0		5	-
Articulated Trucks %	0%	0.2%	0.8%	0%		0.3%	1.5%	0.9%	0%	0%		0.9%	0%	0.2%	0.9%	0%		0.3%	0.8%	0.4%	0%	0%		0.4%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	75	-	-	-	-	-	97	-	-	-	-	-	69	-	-	-	-	-	138	-	-
Pedestrians%	-	-	-	-	19.7%		-	-	-	-	25.5%		-	-	-	-	18.1%		-	-	-	-	36.2%		-
Bicycles on Crosswalk	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-
Bicycles on Crosswalk%	-	-	-	-	0.3%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0.3%		-


Turning Movement Count Location Name: HURONTARIO ST & DUNDAS ST Date: Thu, Sep 19, 2019 Deployment Lead: David Chu

								Pea	k Hour	: 05:15	PM - 06	:15 PM Wea	ther: Br	oken C	louds (22.74 °C	:)								
Start Time			н	N Approad	ch O ST					E Approac	e h ST				F	S Approac	ch O ST					W Approac	h T		Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
17:15:00	28	262	38	0	32	328	35	262	38	0	65	335	24	248	36	1	34	309	34	173	36	0	54	243	1215
17:30:00	25	294	40	0	37	359	31	185	31	0	42	247	37	217	39	0	46	293	29	193	36	1	81	259	1158
17:45:00	35	238	41	0	23	314	31	245	26	0	56	302	37	227	34	0	37	298	28	184	37	0	69	249	1163
18:00:00	35	196	38	0	18	269	34	223	25	0	43	282	33	248	34	0	26	315	33	177	35	0	45	245	1111
Grand Total	123	990	157	0	110	1270	131	915	120	0	206	1166	131	940	143	1	143	1215	124	727	144	1	249	996	4647
Approach%	9.7%	78%	12.4%	0%		-	11.2%	78.5%	10.3%	0%		-	10.8%	77.4%	11.8%	0.1%		-	12.4%	73%	14.5%	0.1%		-	-
Totals %	2.6%	21.3%	3.4%	0%		27.3%	2.8%	19.7%	2.6%	0%		25.1%	2.8%	20.2%	3.1%	0%		26.1%	2.7%	15.6%	3.1%	0%		21.4%	-
PHF	0.88	0.84	0.96	0		0.88	0.94	0.87	0.79	0		0.87	0.89	0.95	0.92	0.25		0.96	0.91	0.94	0.97	0.25		0.96	-
Heavy	0	19	3	0		22	1	22	2	0		25	1	22	4	0		27	2	20	0	0		22	
Heavy %	0%	1.9%	1.9%	0%		1.7%	0.8%	2.4%	1.7%	0%		2.1%	0.8%	2.3%	2.8%	0%		2.2%	1.6%	2.8%	0%	0%		2.2%	-
Lights	123	971	154	0		1248	129	893	118	0		1140	130	918	139	1		1188	122	707	144	1		974	
Lights %	100%	98.1%	98.1%	0%		98.3%	98.5%	97.6%	98.3%	0%		97.8%	99.2%	97.7%	97.2%	100%		97.8%	98.4%	97.2%	100%	100%		97.8%	-
Single-Unit Trucks	0	3	1	0		4	1	10	1	0		12	0	5	4	0		9	2	5	0	0		7	-
Single-Unit Trucks %	0%	0.3%	0.6%	0%		0.3%	0.8%	1.1%	0.8%	0%		1%	0%	0.5%	2.8%	0%		0.7%	1.6%	0.7%	0%	0%		0.7%	-
Buses	0	16	2	0		18	0	11	0	0		11	0	16	0	0		16	0	11	0	0		11	-
Buses %	0%	1.6%	1.3%	0%		1.4%	0%	1.2%	0%	0%		0.9%	0%	1.7%	0%	0%		1.3%	0%	1.5%	0%	0%		1.1%	-
Articulated Trucks	0	0	0	0		0	0	1	1	0		2	1	1	0	0		2	0	4	0	0		4	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.1%	0.8%	0%		0.2%	0.8%	0.1%	0%	0%		0.2%	0%	0.6%	0%	0%		0.4%	-
Bicycles on Road	0	0	0	0		0	1	0	0	0		1	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0.8%	0%	0%	0%		0.1%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	107	-	-	-	-	-	204	-	-	-	-	-	143	=	-	-	-	-	245	-	-
Pedestrians%	-	-	-	-	15.1%		-	-	-	-	28.8%		-	-	-	-	20.2%		-	-	-	-	34.6%		-
Bicycles on Crosswalk	-	-	-	-	3	-	-	-	-	-	2	-	-	-	-	-	0	=	-	-	-	-	4	-	-
Bicycles on Crosswalk%	-	-	-	-	0.4%		-	-	-	-	0.3%		-	-	-	-	0%		-	-	-	-	0.6%		-

										Turr	ing Mo	ovement Count	(1 . KIR	WIN A	/E & HI	JRONT	ARIO S	ST)								
			Н	N Approa						E Approac	:h /E				F	S Approa IURONTAR	ch IO ST				н	W Approac	h AVE		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
07:00:00	8	100	3	1	1	112	11	9	6	0	0	26	2	92	8	0	2	102	14	10	10	0	2	34	274	
07:15:00	7	121	3	1	1	132	9	6	0	0	1	15	4	111	10	0	3	125	20	17	8	0	5	45	317	
07:30:00	8	140	7	0	1	155	18	10	4	0	4	32	2	129	3	0	2	134	15	19	14	0	4	48	369	
07:45:00	14	153	11	1	7	179	12	18	2	0	3	32	3	132	11	0	6	146	19	24	17	0	6	60	417	1377
08:00:00	10	210	8	0	2	228	8	17	4	0	13	29	3	146	9	0	19	158	20	35	20	0	22	75	490	1593
08:15:00	9	152	8	0	1	169	25	15	7	0	5	47	5	168	19	1	14	193	20	23	27	0	35	70	479	1755
08:30:00	12	160	6	0	1	178	13	23	9	0	7	45	6	149	17	0	11	172	8	36	18	0	8	62	457	1843
08:45:00	17	148	10	0	1	175	14	21	6	0	5	41	5	156	10	0	2	171	20	23	18	0	8	61	448	1874
09:00:00	11	142	10	0	1	163	11	22	8	0	3	41	4	127	5	0	0	136	18	29	13	0	2	60	400	1784
09:15:00	10	151	13	0	0	174	12	22	4	0	2	38	8	160	8	0	1	176	11	15	11	0	3	37	425	1730
09:30:00	12	142	13	0	2	167	10	13	7	0	4	30	3	140	6	1	2	150	19	30	19	0	4	68	415	1688
09:45:00	15	173	11	1	3	200	20	20	4	0	8	44	6	165	12	0	13	183	13	16	12	0	4	41	468	1708
***BREAK	**	·····										-	-					-								
16:00:00	28	166	11	0	4	205	32	47	4	0	23	83	9	218	27	1	3	255	16	26	17	0	6	59	602	
16:15:00	15	222	20	0	4	257	19	47	9	0	17	75	11	183	13	0	11	207	9	33	22	0	12	64	603	
16:30:00	21	211	19	0	6	251	27	54	6	0	7	87	9	208	22	0	4	239	20	28	18	0	5	66	643	
16:45:00	16	176	11	1	4	204	24	56	8	0	15	88	7	187	22	0	3	216	16	40	23	0	7	79	587	2435
17:00:00	25	189	21	0	5	235	23	51	7	0	9	81	5	181	19	1	7	206	21	30	27	0	8	78	600	2433
17:15:00	23	223	21	0	16	267	26	69	6	0	20	101	8	224	10	3	6	245	10	36	20	0	12	66	679	2509
17:30:00	28	186	15	0	6	229	17	64	10	0	10	91	6	192	33	0	14	231	24	29	26	0	7	79	630	2496
17:45:00	24	202	15	0	4	241	25	56	3	0	8	84	12	220	28	1	4	261	26	33	22	0	9	81	667	2576
18:00:00	23	177	9	0	14	209	25	57	6	0	13	88	6	189	22	0	4	217	18	42	20	0	8	80	594	2570
18:15:00	19	188	8	0	13	215	26	44	8	0	18	78	7	193	21	0	11	221	19	23	20	0	7	62	576	2467
18:30:00	23	209	11	0	8	243	18	42	5	0	14	65	7	182	24	0	4	213	17	29	24	0	6	70	591	2428
18:45:00	25	184	21	0	7	230	19	45	9	1	21	74	7	182	23	0	7	212	16	14	27	0	12	57	573	2334
Grand Total	403	4125	285	5	112	4818	444	828	142	1	230	1415	145	4034	382	8	153	4569	409	640	453	0	202	1502	12304	-
Approach%	8.4%	85.6%	5.9%	0.1%		-	31.4%	58.5%	10%	0.1%		-	3.2%	88.3%	8.4%	0.2%		-	27.2%	42.6%	30.2%	0%		-	-	-
Totals %	3.3%	33.5%	2.3%	0%		39.2%	3.6%	6.7%	1.2%	0%		11.5%	1.2%	32.8%	3.1%	0.1%		37.1%	3.3%	5.2%	3.7%	0%		12.2%	-	-
Heavy	14	152	5	0		-	13	10	3	0		-	4	146	21	0		-	15	3	34	0		-	-	-
Heavy %	3.5%	3.7%	1.8%	0%		-	2.9%	1.2%	2.1%	0%		-	2.8%	3.6%	5.5%	0%		-	3.7%	0.5%	7.5%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Bicycles on Crosswalk%

Turning Movement Count Location Name: KIRWIN AVE & HURONTARIO ST Date: Tue, Mar 22, 2022 Deployment Lead: Tasos Issaaakidis

								Pea	k Hour	: 08:00	AM - 09	:00 AM Weat	her: Bro	oken Cl	ouds (-	1.15 °C)									
Start Time			Н	N Approac	h O ST					E Approa	ch VE				Н	S Approac	h D ST				ı	W Approad	ch AVE		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:00:00	10	210	8	0	2	228	8	17	4	0	13	29	3	146	9	0	19	158	20	35	20	0	22	75	490
08:15:00	9	152	8	0	1	169	25	15	7	0	5	47	5	168	19	1	14	193	20	23	27	0	35	70	479
08:30:00	12	160	6	0	1	178	13	23	9	0	7	45	6	149	17	0	11	172	8	36	18	0	8	62	457
08:45:00	17	148	10	0	1	175	14	21	6	0	5	41	5	156	10	0	2	171	20	23	18	0	8	61	448
Grand Total	48	670	32	0	5	750	60	76	26	0	30	162	19	619	55	1	46	694	68	117	83	0	73	268	1874
Approach%	6.4%	89.3%	4.3%	0%		-	37%	46.9%	16%	0%		-	2.7%	89.2%	7.9%	0.1%		-	25.4%	43.7%	31%	0%		-	-
Totals %	2.6%	35.8%	1.7%	0%		40%	3.2%	4.1%	1.4%	0%		8.6%	1%	33%	2.9%	0.1%		37%	3.6%	6.2%	4.4%	0%		14.3%	-
PHF	0.71	0.8	0.8	0		0.82	0.6	0.83	0.72	0		0.86	0.79	0.92	0.72	0.25		0.9	0.85	0.81	0.77	0		0.89	-
Heavy	2	38	1	0		41	3	5	2	0		10	1	34	10	0		45	5	0	10	0		15	
Heavy %	4.2%	5.7%	3.1%	0%		5.5%	5%	6.6%	7.7%	0%		6.2%	5.3%	5.5%	18.2%	0%		6.5%	7.4%	0%	12%	0%		5.6%	-
Lights	46	632	31	0		709	57	71	24	0		152	18	585	45	1		649	63	117	73	0		253	-
Lights %	95.8%	94.3%	96.9%	0%		94.5%	95%	93.4%	92.3%	0%		93.8%	94.7%	94.5%	81.8%	100%		93.5%	92.6%	100%	88%	0%		94.4%	-
Single-Unit Trucks	0	11	1	0		12	2	1	0	0		3	0	15	0	0		15	2	0	0	0		2	-
Single-Unit Trucks %	0%	1.6%	3.1%	0%		1.6%	3.3%	1.3%	0%	0%		1.9%	0%	2.4%	0%	0%		2.2%	2.9%	0%	0%	0%		0.7%	-
Buses	2	25	0	0		27	1	4	2	0		7	1	18	10	0		29	3	0	10	0		13	-
Buses %	4.2%	3.7%	0%	0%		3.6%	1.7%	5.3%	7.7%	0%		4.3%	5.3%	2.9%	18.2%	0%		4.2%	4.4%	0%	12%	0%		4.9%	-
Articulated Trucks	0	2	0	0		2	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Articulated Trucks %	0%	0.3%	0%	0%		0.3%	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.1%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	5	-	-	-	-	-	30	-	-	-	-	-	46	-	-	-	-	-	73	-	-
Pedestrians%	-	-	-	-	3.2%		-	-	-	-	19.5%		-	-	-	-	29.9%		-	-	-	-	47.4%		-
Bicycles on Crosswalk	-	-	-	-	0	=	-	-	-	-	0	=	-	-	-	-	0	=	-	-	-	-	0	-	-

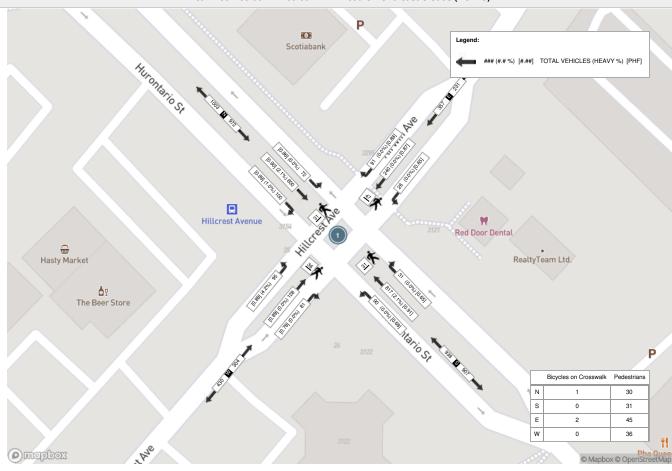
Bicycles on Crosswalk%

- - 0.7%

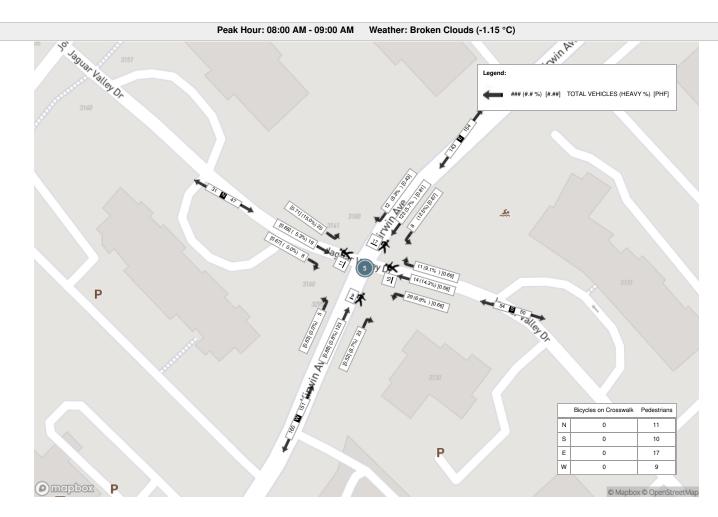
Turning Movement Count Location Name: KIRWIN AVE & HURONTARIO ST Date: Tue, Mar 22, 2022 Deployment Lead: Tasos Issaaakidis

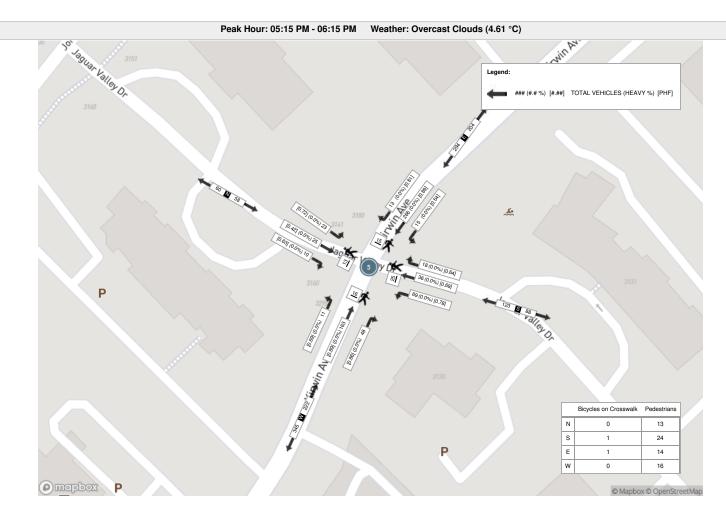
NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA

								Peak	Hour: (05:00 P	M - 06:	00 PM Weath	ner: Ov	ercast (Clouds	(4.61 °C	C)								
Start Time			F	N Approa	ach RIO ST					E Approac	:h /E				ı	S Approa	ch IO ST				ŀ	W Approad	ch AVE		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
17:00:00	25	189	21	0	5	235	23	51	7	0	9	81	5	181	19	1	7	206	21	30	27	0	8	78	600
17:15:00	23	223	21	0	16	267	26	69	6	0	20	101	8	224	10	3	6	245	10	36	20	0	12	66	679
17:30:00	28	186	15	0	6	229	17	64	10	0	10	91	6	192	33	0	14	231	24	29	26	0	7	79	630
17:45:00	24	202	15	0	4	241	25	56	3	0	8	84	12	220	28	1	4	261	26	33	22	0	9	81	667
Grand Total	100	800	72	0	31	972	91	240	26	0	47	357	31	817	90	5	31	943	81	128	95	0	36	304	2576
Approach%	10.3%	82.3%	7.4%	0%		-	25.5%	67.2%	7.3%	0%		-	3.3%	86.6%	9.5%	0.5%		-	26.6%	42.1%	31.3%	0%		-	-
Totals %	3.9%	31.1%	2.8%	0%		37.7%	3.5%	9.3%	1%	0%		13.9%	1.2%	31.7%	3.5%	0.2%		36.6%	3.1%	5%	3.7%	0%		11.8%	-
PHF	0.89	0.9	0.86	0		0.91	0.88	0.87	0.65	0		0.88	0.65	0.91	0.68	0.42		0.9	0.78	0.89	0.88	0		0.94	-
Heavy	1	17	0	0		18	0	0	0	0		0	0	17	0	0		17	0	0	4	0		4	
Heavy %	1%	2.1%	0%	0%		1.9%	0%	0%	0%	0%		0%	0%	2.1%	0%	0%		1.8%	0%	0%	4.2%	0%		1.3%	-
Lights	99	783	72	0		954	91	240	26	0		357	31	800	90	5		926	81	128	91	0		300	
Lights %	99%	97.9%	100%	0%		98.1%	100%	100%	100%	0%		100%	100%	97.9%	100%	100%		98.2%	100%	100%	95.8%	0%		98.7%	-
Single-Unit Trucks	1	5	0	0		6	0	0	0	0		0	0	5	0	0		5	0	0	1	0		1	-
Single-Unit Trucks %	1%	0.6%	0%	0%		0.6%	0%	0%	0%	0%		0%	0%	0.6%	0%	0%		0.5%	0%	0%	1.1%	0%		0.3%	-
Buses	0	12	0	0		12	0	0	0	0		0	0	11	0	0		11	0	0	3	0		3	-
Buses %	0%	1.5%	0%	0%		1.2%	0%	0%	0%	0%		0%	0%	1.3%	0%	0%		1.2%	0%	0%	3.2%	0%		1%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	30	-	-	-	-	-	45	-	-	-	-	-	31	-	-	-	-	-	36	-	-
Pedestrians%	-	-	-	-	20.7%		-	-	-	-	31%		-	-	-	-	21.4%		-	-	-	-	24.8%		-
Bicycles on Crosswalk	-	-	-	-	1	-	-	-	-	-	2	-	-	-	-	-	0	-	-	-	-	-	0	-	-


1.4%

NexTrans SUITE 204 15260 YONGE ST AURORA ONTARIO, L4G 1N4 CANADA

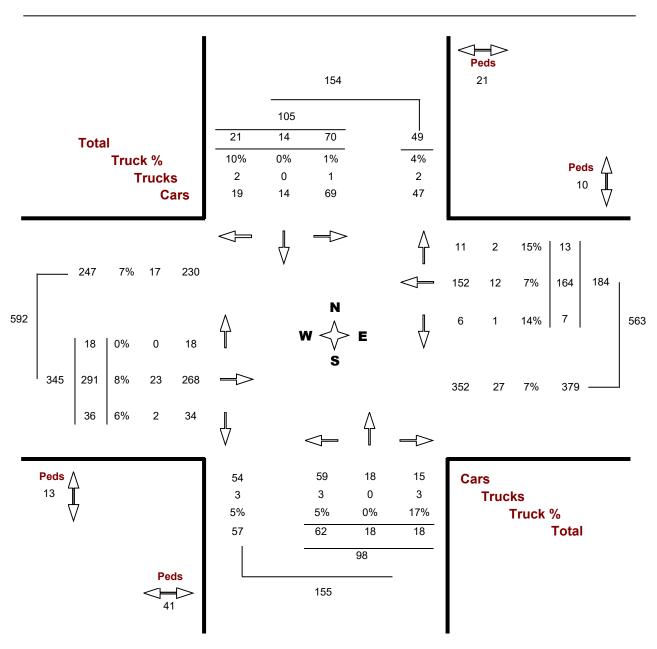

Peak Hour: 05:00 PM - 06:00 PM Weather: Overcast Clouds (4.61 °C)



										Turnin	g Move	ement Count (5	. KIRWII	N AVE 8	JAGL	JAR VA	LLEY C	OR)								
			JAG	N Approac	h EY DR					E Approa	ch VE				JAC	S Approac	h EY DR					W Approac	ch VE		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
07:00:00	0	3	3	0	2	6	0	15	0	0	0	15	1	1	7	0	2	9	1	10	1	0	2	12	42	
07:15:00	1	4	1	0	0	6	1	8	5	0	0	14	0	4	4	0	4	8	6	15	2	0	2	23	51	
07:30:00	2	1	2	0	2	5	5	18	2	0	0	25	3	3	11	0	1	17	6	23	0	0	1	29	76	
07:45:00	1	3	1	0	6	5	0	18	0	0	3	18	5	4	12	0	5	21	1	34	0	0	2	35	79	248
08:00:00	0	5	6	0	3	11	2	21	2	0	3	25	4	3	9	0	5	16	11	35	1	0	5	47	99	305
08:15:00	3	2	7	0	3	12	3	26	3	0	8	32	2	3	11	0	4	16	4	26	2	0	1	32	92	346
08:30:00	2	7	1	0	3	10	7	38	2	0	4	47	2	2	6	0	1	10	2	30	1	0	3	33	100	370
08:45:00	3	5	6	0	2	14	0	38	1	0	2	39	3	6	3	0	0	12	6	32	1	0	0	39	104	395
09:00:00	5	6	1	0	1	12	2	29	0	0	1	31	2	6	5	0	4	13	8	30	0	0	5	38	94	390
09:15:00	4	4	6	0	0	14	1	26	1	0	1	28	2	4	7	0	1	13	5	22	1	0	1	28	83	381
09:30:00	3	6	1	0	4	10	1	18	1	0	0	20	4	4	4	0	3	12	6	25	2	0	1	33	75	356
09:45:00	5	9	7	0	1	21	4	31	0	0	1	35	1	4	9	1	4	15	5	25	3	0	4	33	104	356
***BREAK	***					-	-											-	-						-	
16:00:00	2	11	6	0	3	19	4	57	4	0	5	65	4	4	15	0	3	23	10	32	0	0	3	42	149	
16:15:00	1	6	4	0	5	11	2	49	4	0	2	55	6	6	11	0	4	23	10	41	2	0	3	53	142	
16:30:00	4	4	7	0	1	15	0	68	1	0	3	69	5	7	15	0	6	27	11	45	2	0	1	58	169	
16:45:00	7	7	7	0	5	21	3	68	3	0	1	74	8	4	14	0	4	26	15	39	4	0	2	58	179	639
17:00:00	4	7	2	0	7	13	6	65	5	0	2	76	5	7	14	0	6	26	9	38	4	0	1	51	166	656
17:15:00	2	1	3	0	2	6	1	75	2	0	1	78	3	13	22	0	7	38	12	38	4	0	6	54	176	690
17:30:00	4	3	7	0	4	14	4	68	7	0	2	79	7	5	9	0	6	21	12	36	0	0	4	48	162	683
17:45:00	1	6	8	0	3	15	4	65	4	0	2	73	5	10	18	0	5	33	14	43	4	0	2	61	182	686
18:00:00	3	15	5	0	4	23	4	58	2	0	10	64	3	8	20	0	7	31	10	46	3	0	4	59	177	697
18:15:00	2	3	3	0	3	8	5	50	2	0	1	57	5	13	8	0	4	26	6	29	3	0	3	38	129	650
18:30:00	4	7	3	0	2	14	5	40	2	0	4	47	4	10	19	0	3	33	10	32	2	0	8	44	138	626
18:45:00	7	10	6	0	3	23	3	46	1	0	4	50	2	8	12	0	3	22	10	27	1	0	4	38	133	577
Grand Total	70	135	103	0	69	308	67	995	54	0	60	1116	86	139	265	1	92	491	190	753	43	0	68	986	2901	-
Approach%	22.7%	43.8%	33.4%	0%		-	6%	89.2%	4.8%	0%		-	17.5%	28.3%	54%	0.2%		-	19.3%	76.4%	4.4%	0%		-	-	-
Totals %	2.4%	4.7%	3.6%	0%		10.6%	2.3%	34.3%	1.9%	0%		38.5%	3%	4.8%	9.1%	0%		16.9%	6.5%	26%	1.5%	0%		34%	-	-
Heavy	2	2	3	0		-	1	18	2	0		-	2	2	6	0		-	3	6	2	0		-	-	-
Heavy %	2.9%	1.5%	2.9%	0%		-	1.5%	1.8%	3.7%	0%		-	2.3%	1.4%	2.3%	0%		-	1.6%	0.8%	4.7%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

								Pea	k Hour	: 08:00	AM - 09	:00 AM Weat	ther: Br	oken Cl	ouds (-	1.15 °C)									
Start Time			JA	N Approa GUAR VAL	ich LEY DR					E Approa	ch VE				JAG	S Approac GUAR VALLE	h EY DR					W Approa KIRWIN A	ch VE		Int. To (15 m
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:00:00	0	5	6	0	3	11	2	21	2	0	3	25	4	3	9	0	5	16	11	35	1	0	5	47	99
08:15:00	3	2	7	0	3	12	3	26	3	0	8	32	2	3	11	0	4	16	4	26	2	0	1	32	9:
08:30:00	2	7	1	0	3	10	7	38	2	0	4	47	2	2	6	0	1	10	2	30	1	0	3	33	10
08:45:00	3	5	6	0	2	14	0	38	1	0	2	39	3	6	3	0	0	12	6	32	1	0	0	39	10
Grand Total	8	19	20	0	11	47	12	123	8	0	17	143	11	14	29	0	10	54	23	123	5	0	9	151	39
Approach%	17%	40.4%	42.6%	0%		-	8.4%	86%	5.6%	0%		-	20.4%	25.9%	53.7%	0%		-	15.2%	81.5%	3.3%	0%		-	
Totals %	2%	4.8%	5.1%	0%		11.9%	3%	31.1%	2%	0%		36.2%	2.8%	3.5%	7.3%	0%		13.7%	5.8%	31.1%	1.3%	0%		38.2%	
PHF	0.67	0.68	0.71	0		0.84	0.43	0.81	0.67	0		0.76	0.69	0.58	0.66	0		0.84	0.52	0.88	0.63	0		0.8	
Heavy		1	3	0		4	1	7	1	0		9	1	2	2	0		5	2	1	0			3	
Heavy %	0%	5.3%	15%	0%		8.5%	8.3%	5.7%	12.5%	0%		6.3%	9.1%	14.3%	6.9%	0%		9.3%	8.7%	0.8%	0%	0%		2%	
Lights	8	18	17	0		43	11	116	7	0		134	10	12	27	0		49	21	122	5	0		148	
Lights %	100%	94.7%	85%	0%		91.5%	91.7%	94.3%	87.5%	0%		93.7%	90.9%	85.7%	93.1%	0%		90.7%	91.3%	99.2%	100%	0%		98%	
Single-Unit Trucks	0	0	0	0		0	0	2	0	0		2	0	0	1	0		1	1	0	0	0		1	
Single-Unit Trucks %	0%	0%	0%	0%		0%	0%	1.6%	0%	0%		1.4%	0%	0%	3.4%	0%		1.9%	4.3%	0%	0%	0%		0.7%	
Buses	0	1	3	0		4	1	5	1	0		7	1	2	1	0		4	1	1	0	0		2	
Buses %	0%	5.3%	15%	0%		8.5%	8.3%	4.1%	12.5%	0%		4.9%	9.1%	14.3%	3.4%	0%		7.4%	4.3%	0.8%	0%	0%		1.3%	
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	
Pedestrians	-	-	-	-	11	-	-	-	-	-	17	-	-	-	-	-	10	-	-	-	-	-	9	-	
Pedestrians%	-	-	-	-	23.4%		-	-	-	-	36.2%		-	-	-	-	21.3%		-	-	-	-	19.1%		
icycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	
loveles on Crosswalk®/					00/						00/						00/						00/		

								Peal	(Hour	05:15	PM - 06	:15 PM Weat	her: Ove	ercast C	Clouds ((4.61 °C)								
Start Time			JA	N Approa	ch LEY DR					E Approa	ch VE				JAG	S Approac	h EY DR					W Approa	ch /E		Int. Tota (15 min
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
17:15:00	2	1	3	0	2	6	1	75	2	0	1	78	3	13	22	0	7	38	12	38	4	0	6	54	176
17:30:00	4	3	7	0	4	14	4	68	7	0	2	79	7	5	9	0	6	21	12	36	0	0	4	48	162
17:45:00	1	6	8	0	3	15	4	65	4	0	2	73	5	10	18	0	5	33	14	43	4	0	2	61	182
18:00:00	3	15	5	0	4	23	4	58	2	0	10	64	3	8	20	0	7	31	10	46	3	0	4	59	177
Grand Total	10	25	23	0	13	58	13	266	15	0	15	294	18	36	69	0	25	123	48	163	11	0	16	222	697
Approach%	17.2%	43.1%	39.7%	0%		-	4.4%	90.5%	5.1%	0%		-	14.6%	29.3%	56.1%	0%		-	21.6%	73.4%	5%	0%		-	-
Totals %	1.4%	3.6%	3.3%	0%		8.3%	1.9%	38.2%	2.2%	0%		42.2%	2.6%	5.2%	9.9%	0%		17.6%	6.9%	23.4%	1.6%	0%		31.9%	-
PHF	0.63	0.42	0.72	0		0.63	0.81	0.89	0.54	0		0.93	0.64	0.69	0.78	0		0.81	0.86	0.89	0.69	0		0.91	-
Heavy		0	0	0		0		0	0	0		0	0	0	0	0		0	0	0	0			0	
Heavy %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Lights	10	25	23	0		58	12	266	15	0		293	18	36	69	0		123	48	163	11	0		222	
Lights %	100%	100%	100%	0%		100%	92.3%	100%	100%	0%		99.7%	100%	100%	100%	0%		100%	100%	100%	100%	0%		100%	-
Single-Unit Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Single-Unit Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Buses	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Buses %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	1	0	0	0		1	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	7.7%	0%	0%	0%		0.3%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	13	-	-	-	-	-	14	-	-	-	-	-	24	-	-	-	-	-	16	-	-
Pedestrians%	-	-	-	-	18.8%		-	-	-	-	20.3%		-	-	-	-	34.8%		-	-	-	-	23.2%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	1.4%		-	-	-	-	1.4%		-	-	-	-	0%		-

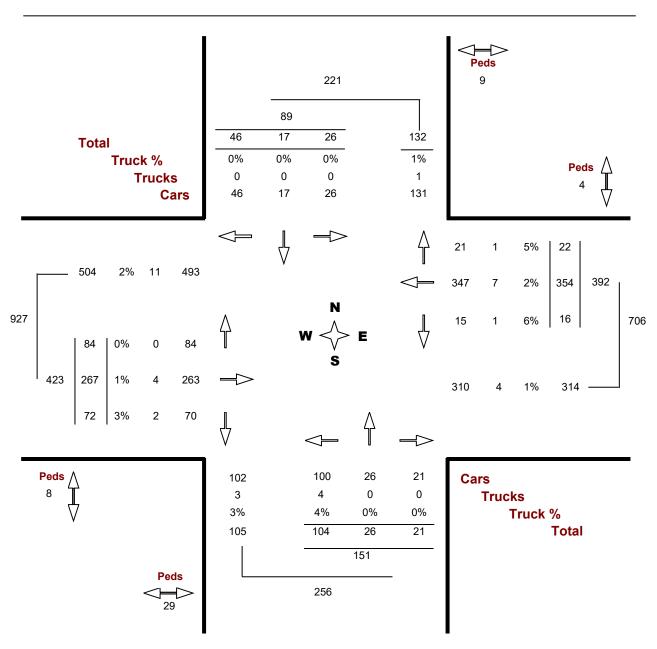

Turning Movements Report - AM Period

Location........... JAGUAR VALLEY DR @ KIRWIN AVE

Municipality...... Mississauga GeolD...... 349562

Count Date...... Monday, 06 June, 2005 **Peak Hour.....** 07:45 AM ____ 08:45 AM

Road 1 JAGUAR VALLEY DR Road 2 KIRWIN AVE


Turning Movements Report - PM Period

Location........... JAGUAR VALLEY DR @ KIRWIN AVE

Municipality...... Mississauga GeolD...... 349562

Count Date...... Monday, 06 June, 2005 **Peak Hour.....** 05:00 PM ___ 06:00 PM

Road 1 JAGUAR VALLEY DR Road 2 KIRWIN AVE

Appendix DGrowth Rate Recommendations

From: Tyler Xuereb < Tyler.Xuereb@mississauga.ca > Sent: Wednesday, February 9, 2022 12:01 PM

To: Sam Nguyen < sam@nextrans.ca>

Subject: RE: Term of Reference for 3115 Hurontario Street

Good Morning Sam,

Below are the recommended growth rates along Hurontario Street and Dundas Street.

Hurontario Street.

	Growth fro	J
	NB	SB
AM Peak Hour	-20.0%	-23.5%
PM Peak Hour	-20.5%	-18.5%

	Compound Growth fro 20	om 2026 to
	NB	SB
AM Peak Hour	1.0%	0.5%
PM Peak Hour	0.5%	0.5%

Dundas Street

	Compo Annual from Ex 20	Growth isting to
	EB	WB
AM Peak	0.0%	1.0%
PM Peak	0.5%	0.0%

	Compo Annual from 202	Growth
	EB	WB
AM Peak	0.0%	0.0%
PM Peak	0.0%	0.0%

Kirwin/Hillcrest

	Compo Annual from Ex 20	Growth isting to
	EB	WB
AM Peak	0.5%	0.5%
PM Peak	0.5%	0.5%

	Compo Annual from 202	Growth
	EB	WB
AM Peak	0.0%	0.5%
		·
PM Peak	0.5%	0.0%

-Rates along Hurontario Street from existing to 2026 represent a one-time total change; this reflects the lane reductions along Hurontario Street due to LRT implementation.

Regards,

Tyler Xuereb

Transportation Planning Analyst T 905-615-3200 ext.4783
Tyler.xuereb@mississauga.ca

<u>City of Mississauga</u> | Transportation and Works Department, Infrastructure Planning and Engineering Services Division

Please consider the environment before printing.

From: Sam Nguyen < sent: Monday, February 7, 2022 10:21 AM
To: Tyler Xuereb Tyler.Xuereb@mississauga.ca

Subject: FW: Term of Reference for 3115 Hurontario Street

Figure 1 – Corridor Growth from Existing to 2026 (Based on City's Recommended Growth Rates)

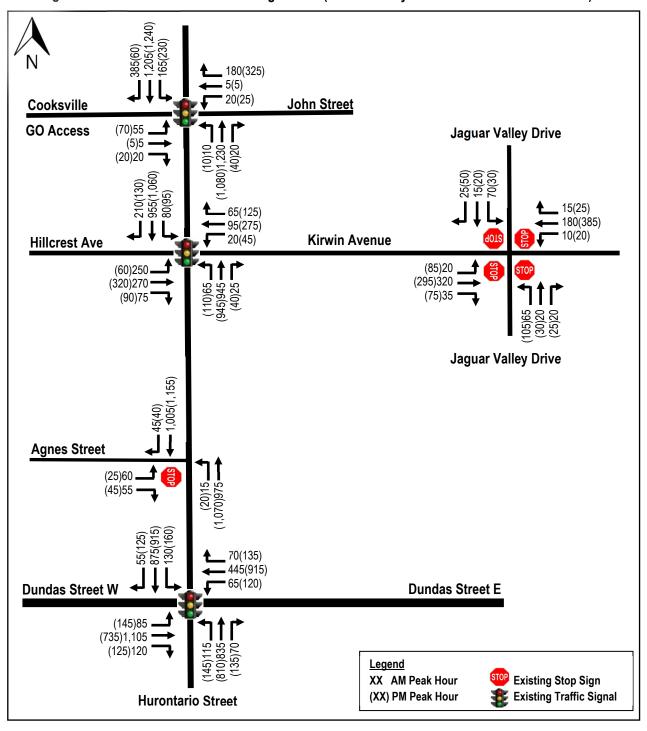
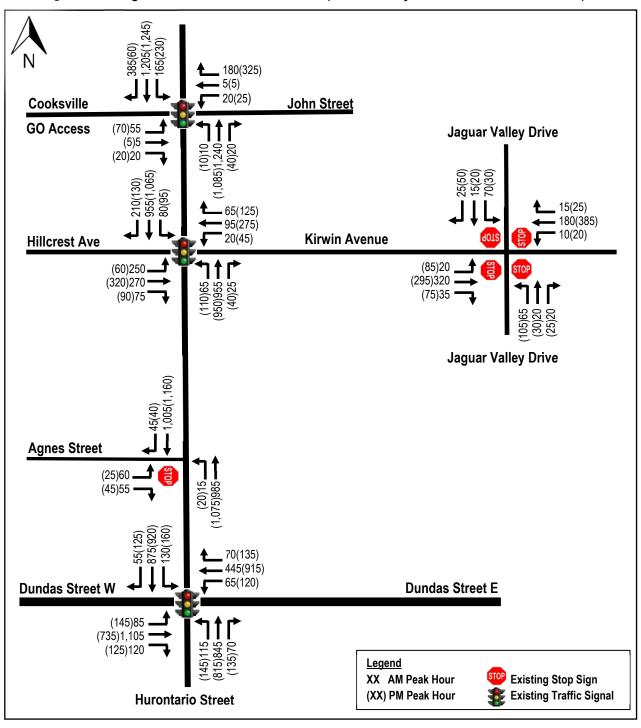
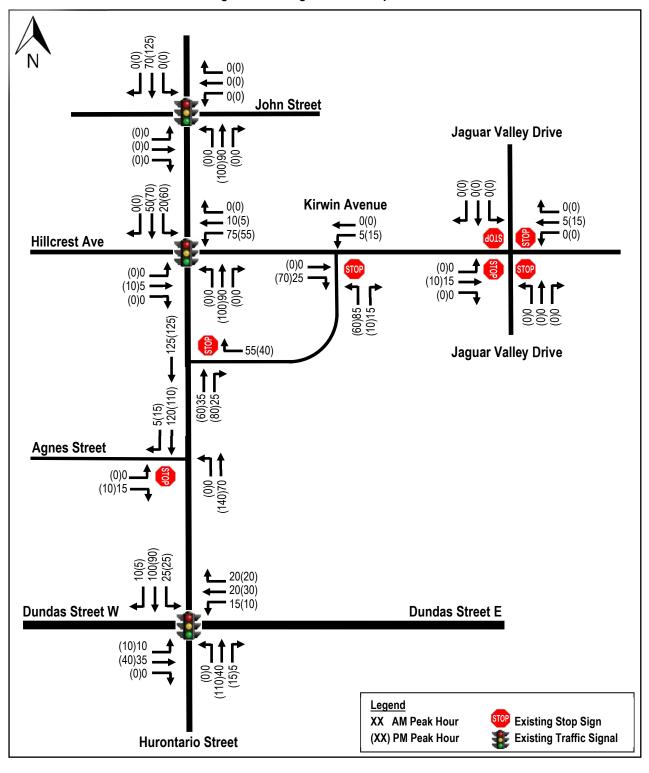
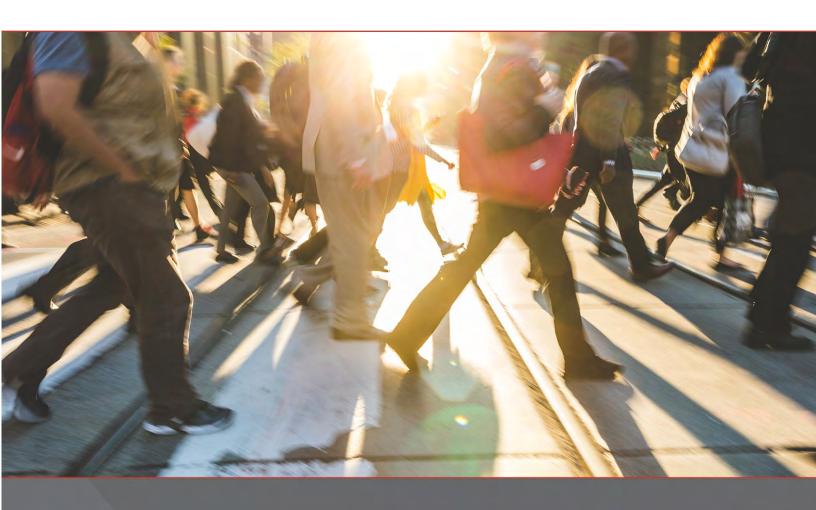


Figure 2 – Background Growth from 2026 to 2027 (Based on City Recommended Growth Rates)


Figure 3 – Background Developments

Appendix EBackground Developments

3085 HURONTARIO STREET CITY OF MISSISSAUGA

Mixed Use Development Urban Transportation Considerations

Prepared For: Equity Three Holdings Inc.
September 2024

Figure 1 – 86-90 Dundas Street E

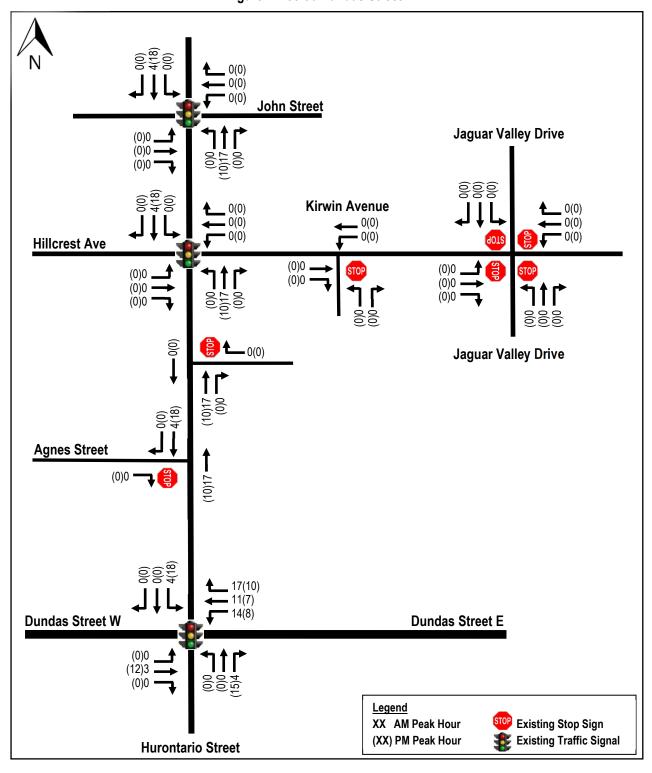


Figure 2 – 3085 Hurontario Street

Figure 3 – 3016-3022 Kirwin Avenue and 3031 Little John Lane

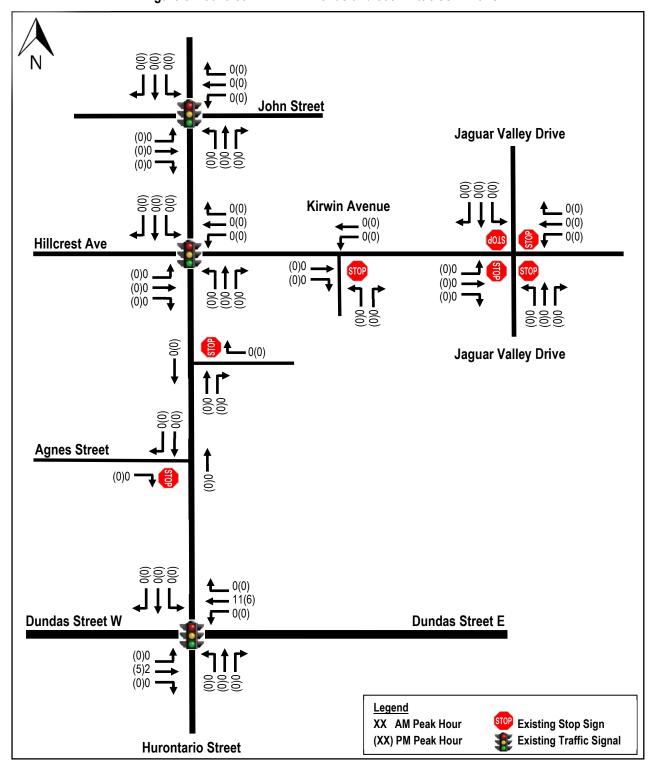


Figure 4 – 65-79 Agnes Street

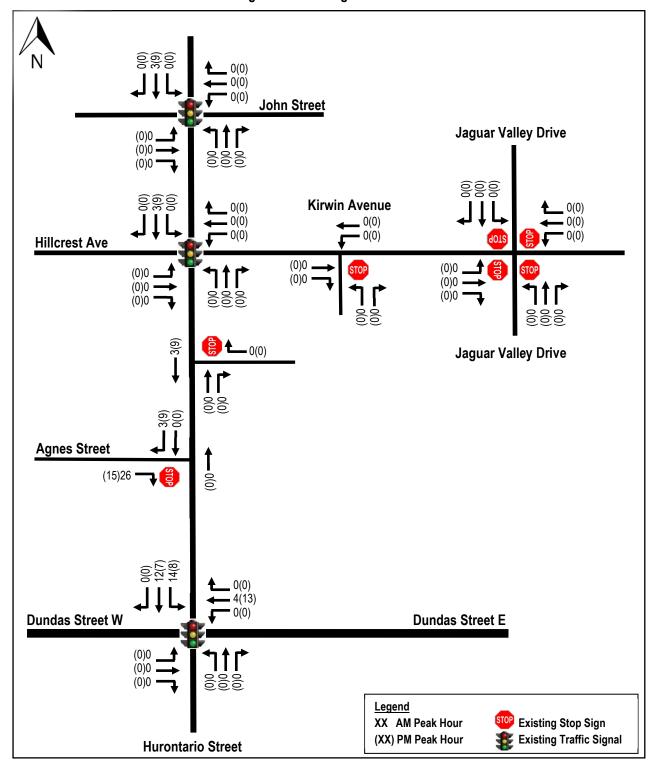


Figure 5 – 1 Fairview Road E

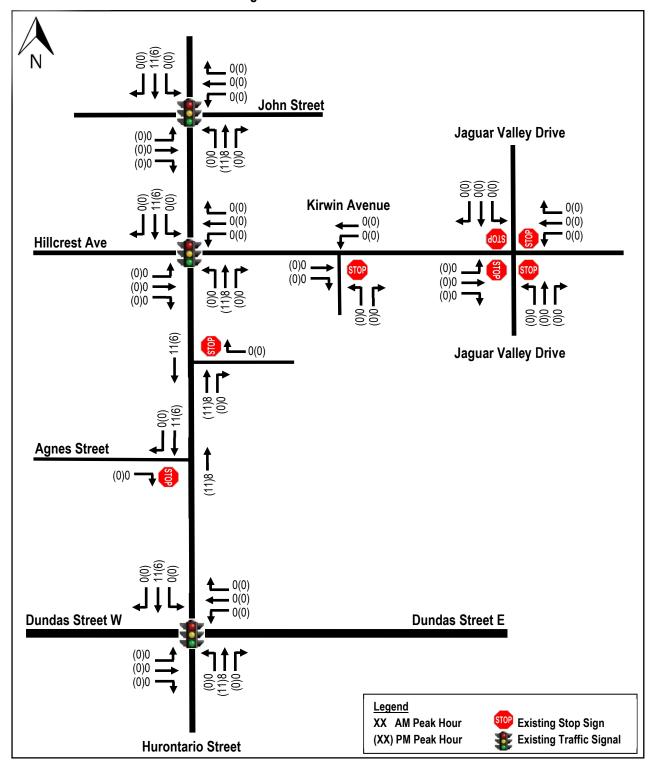


Figure 6 - 2512-2532 Argyle Road

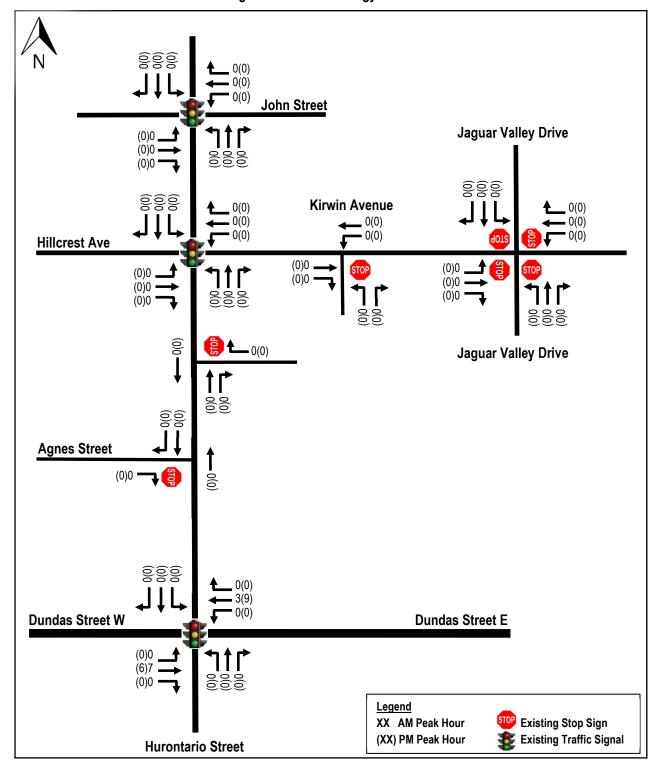


Figure 7 - 2570-2590 Argyle Road

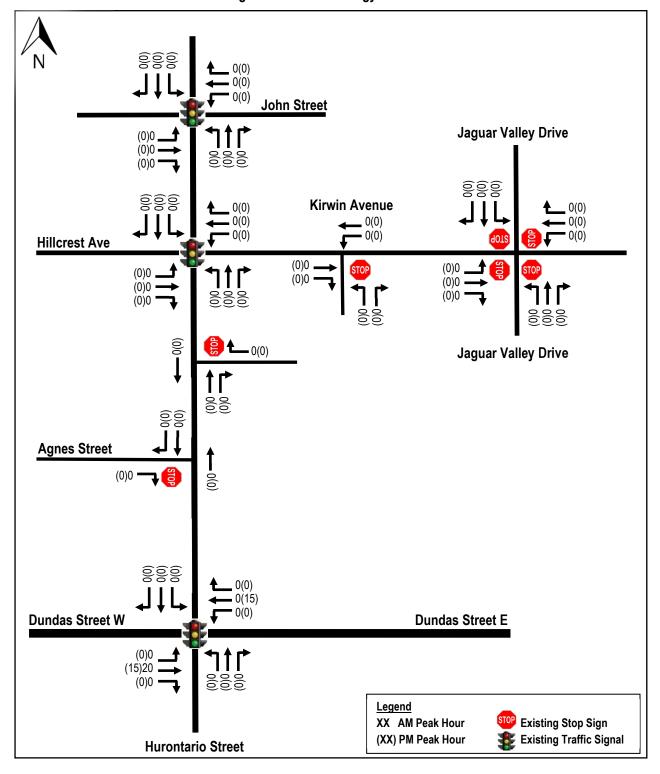


Figure 8 – 3420-3442 Hurontario Street

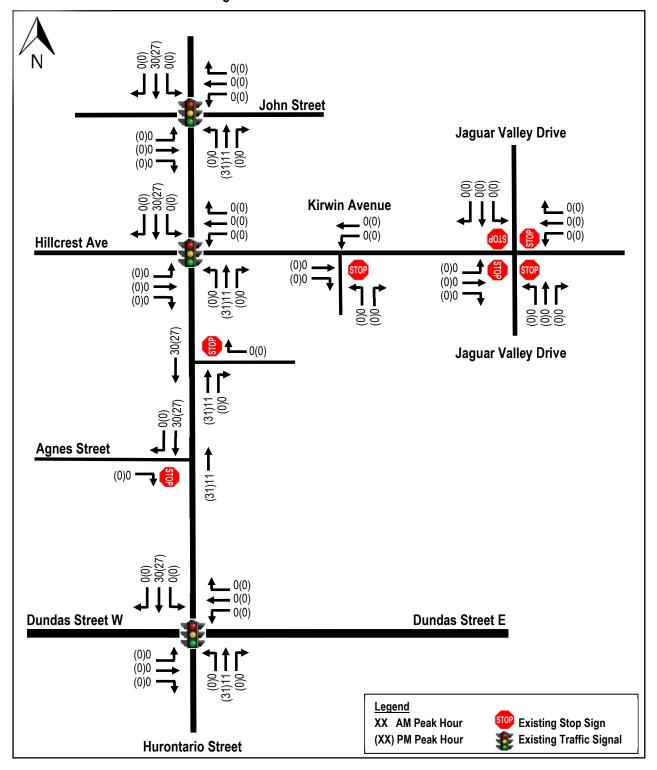


Figure 9 – 45 Agnes Street

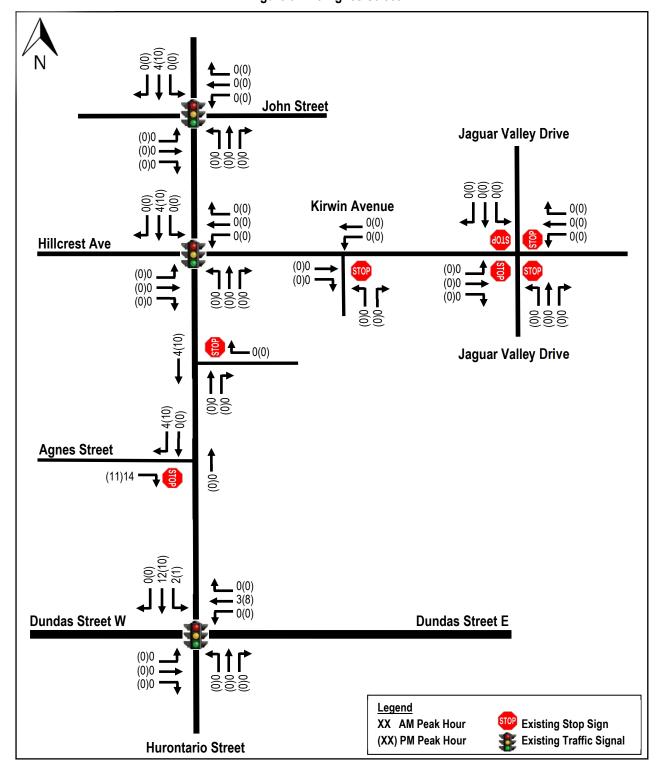
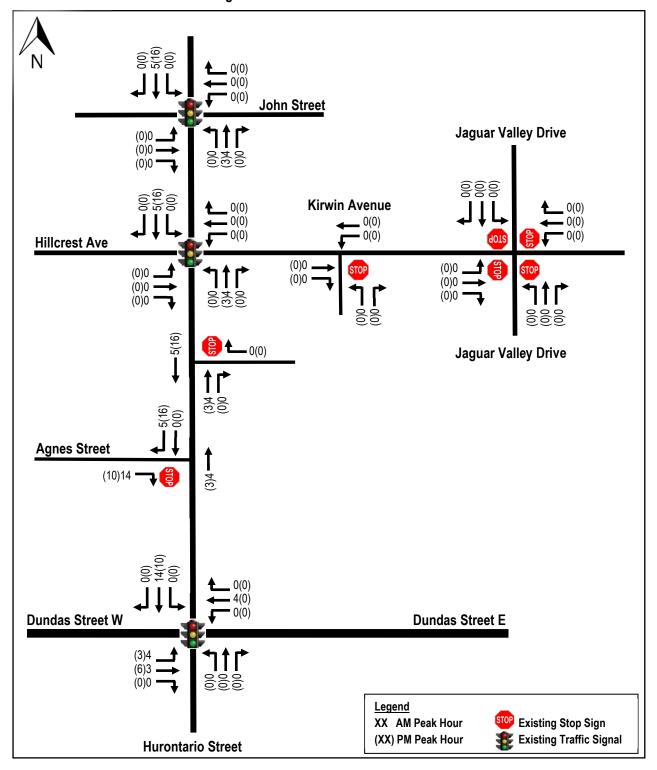
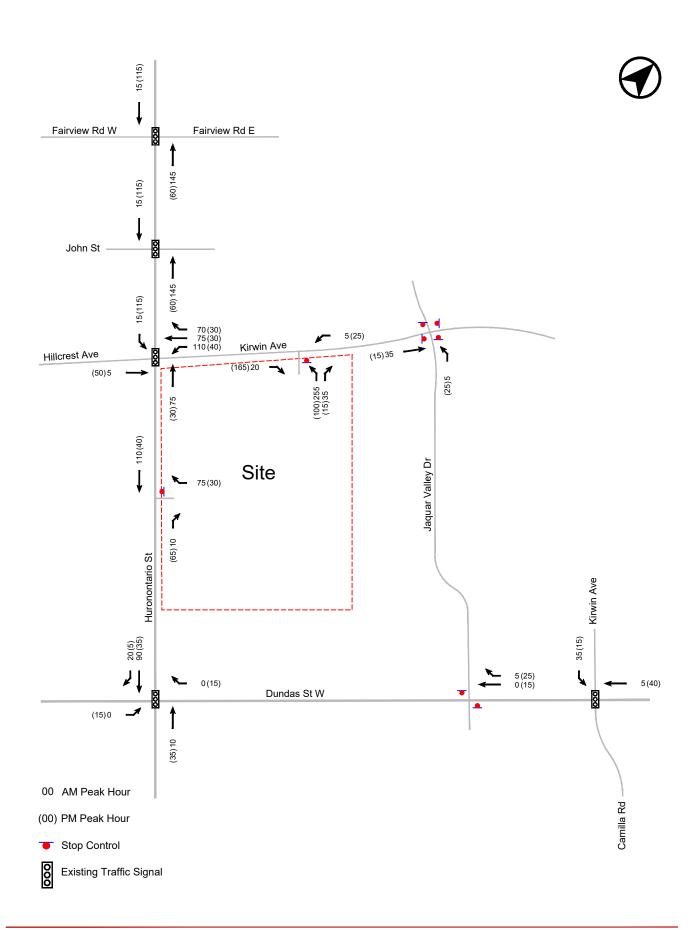
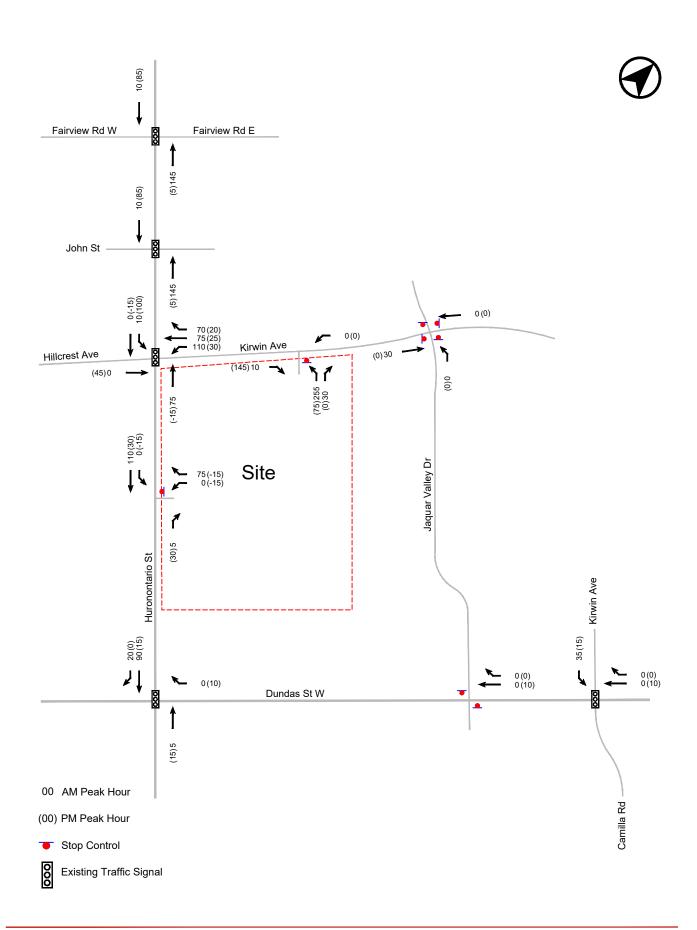
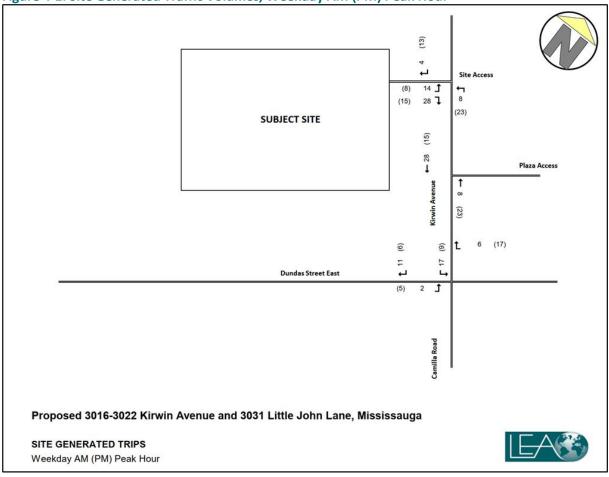





Figure 10 – 89-95 Dundas Street West


site. Therefore, the trip distribution for the residential trips was calculated based on TTS data for home-based work trips.

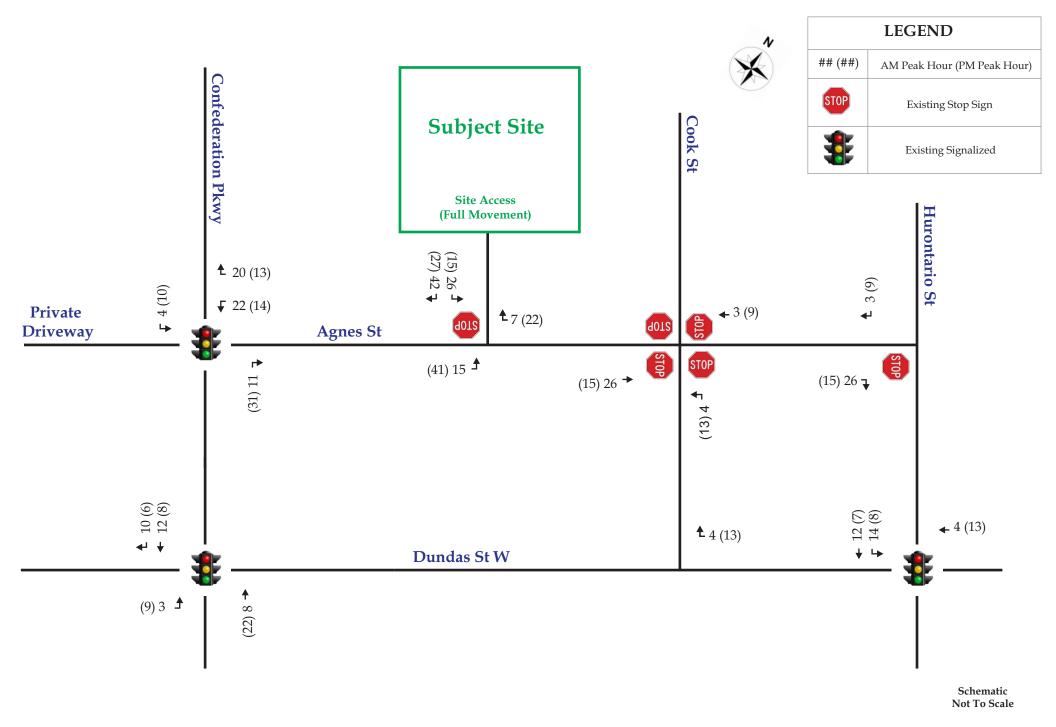

Results of the TTS data extraction indicate that the general distribution of residential site traffic will be similar for the weekday AM and PM peak hours. **Table 4-2** below summarizes the general directional distribution of the site traffic with traffic shown in **Figure 4-1**.

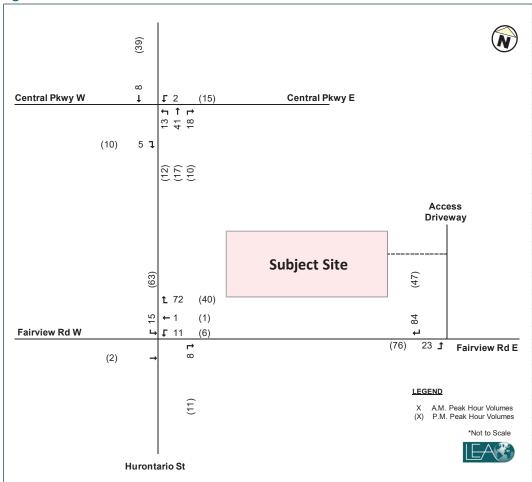
Table 4-2: Site Trip Generation

To/From	Inbound Distribution	Outbound Distribution
10/ F10111	Inbound Distribution	Outbound Distribution
North	68%	57%
South	4%	5%
East	14%	12%
West	14%	26%
Total	100%	100%

Figure 4-1: Site Generated Traffic Volumes, Weekday AM (PM) Peak Hour

4.3 TRIP DISTRIBUTION AND ASSIGNMENT

Directional trip distribution of site traffic was derived using Transportation Tomorrow Survey (TTS) 2016 data. The estimated auto trip distribution is outlined in **Table 4-3**.


Table 4-3: Auto Trip Distribution

Gateway	Locations	AM Pea	ak Hour	PM Pea	ak Hour
No.	Locations	In	Out	In	Out
1	Hurontario St (N of Central Pkway)	33%	49%	51%	37%
2	Hurontario St (S of Fairview Rd)	34%	13%	14%	13%
3	Central Pkwy W	22%	15%	13%	26%
4	Central Pkwy E	11%	21%	20%	22%
5	Fairview Rd W	1%	2%	3%	2%
	Total	100%	100%	100%	100%

Note - Trip distribution of respective peak hour direction was adopted.

The site traffic was assigned to the road network based on trip patterns in the study area, location and configuration of the site accesses, and logical routing. As mentioned in Section 1, the site will be accessed from Fairview Rd E. Site traffic volumes are illustrated in **Figure 4.1**.

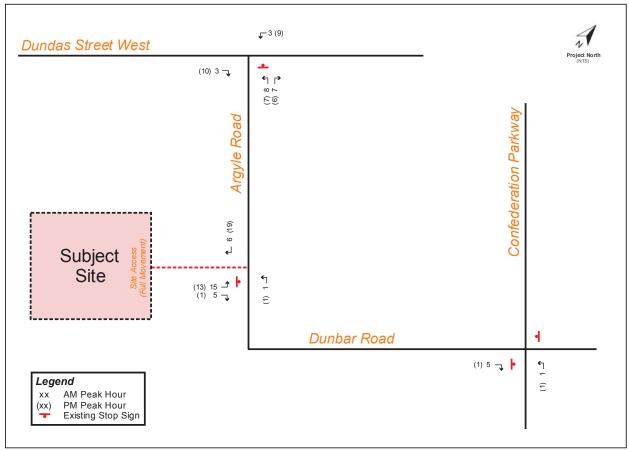

Figure 4.1: Site Traffic Volumes

Table 4.2 – Site Traffic Trip Distribution

Direction	Via	AM Pe	ak Hour	PM Pe	eak Hour
Direction	Via	Inbound	Outbound	Inbound	Outbound
South	Confederation Parkway	24%	24%	4%	4%
East	Dundas Street West	37%	37%	47%	47%
West	Dundas Street West	39%	39%	49%	49%
	Total	100%	100%	100%	100%

Figure 4-1 – Site Generated Traffic Volumes

5.0 FUTURE TOTAL TRAFFIC CONDITIONS

The forecasted 2023 future total traffic volumes (future background traffic volumes plus site generated traffic volumes) are illustrated in **Figure 5-1** and were analyzed using Synchro 10 software SimTraffic simulations for queue analysis. The detailed calculations are provided in **Appendix H** and summarized in **Table 5.1**.

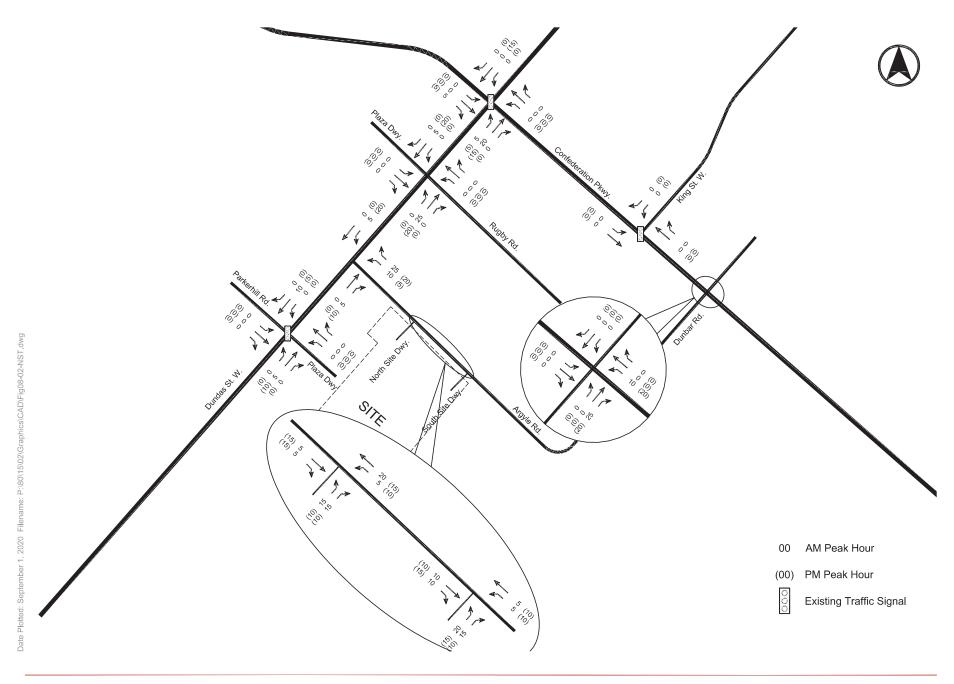
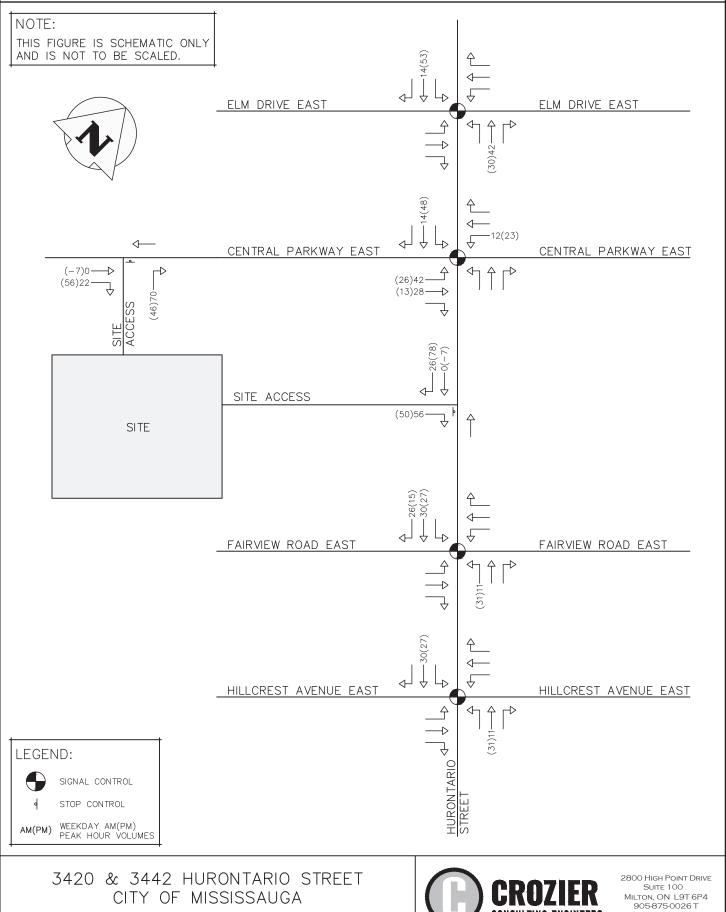
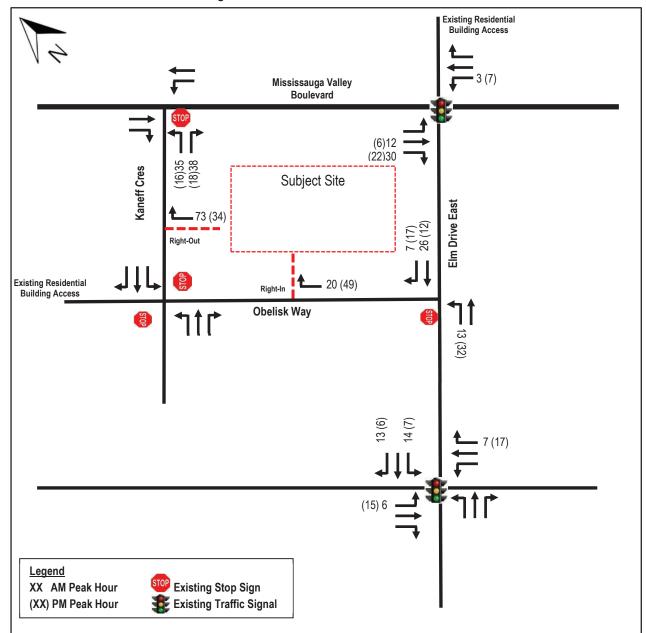



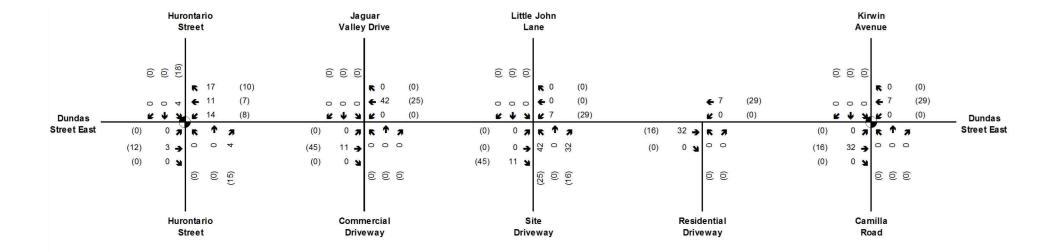
FIGURE 8 NEW SITE TRAFFIC VOLUMES

SITE TRAFFIC-ASSIGNMENT

905-875-4915 F WWW.CFCROZIER.CA

Drawn	T.D.S.	Design K.S	Project No.	932-5666
Check	T.D.S.	Check K.S	Scale N.T.S	FIG. 05




Figure 9 – Site Generated Traffic Volumes

6.0 FUTURE TOTAL TRAFFIC CONDITIONS

6.1. Future Total Traffic Assessment for Auto Mode

The estimated future total traffic volumes (future background traffic volumes plus site generated traffic volumes) are illustrated in **Figure 10**, and were analyzed using Synchro Version 9 software. The detailed calculations are provided in **Appendix G** and summarized in **Table 7**.

The future total traffic volumes are illustrated in Figure 10, based on the layering of Figure 9 and Figure 8.

Legend

XX AM Peak Hour Volumes

(XX) PM Peak Hour Volumes Signalized Intersection

Higher Living Inc. Proposed Residential Condominium 86-90 Dundas Street East Job Number | 12431 Revision A Date | Sept 2018

Combined Site Trips

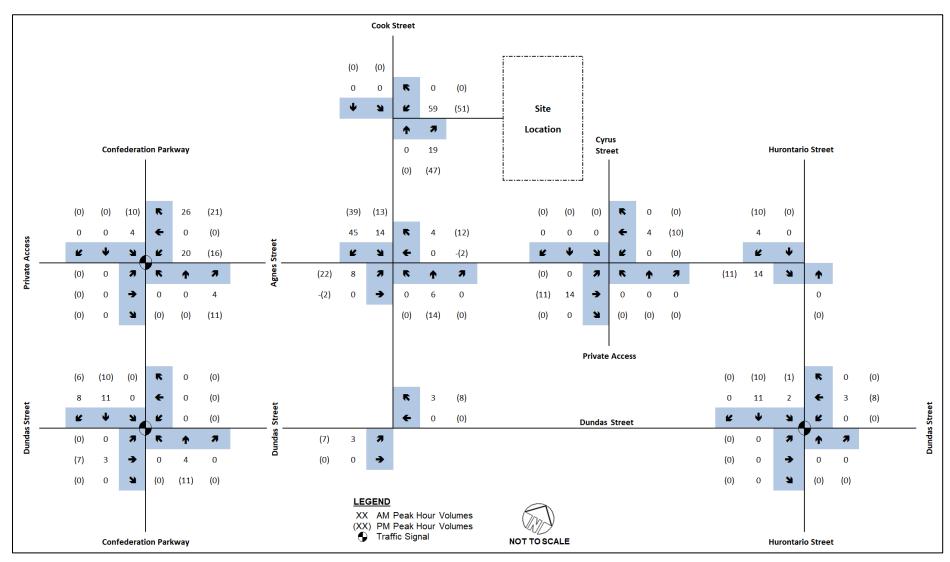
Figure 9

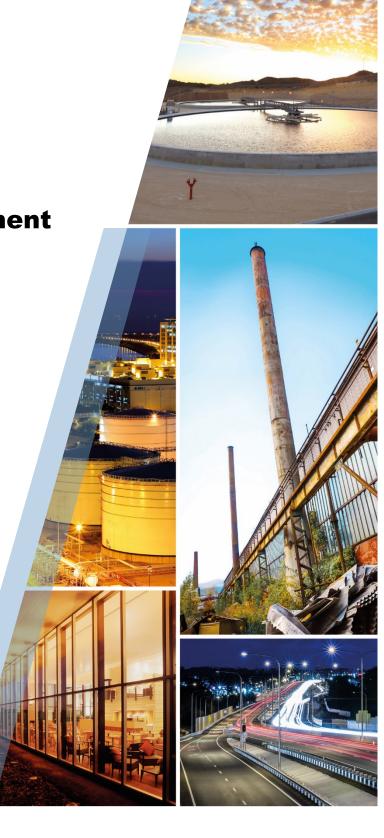
The Sernas Group Inc. (A GHD Company)

Traffic Impact Study

Proposed Residential Development 45 Agnes Street City of Mississauga

Client: 45 Agnes GP Corp.

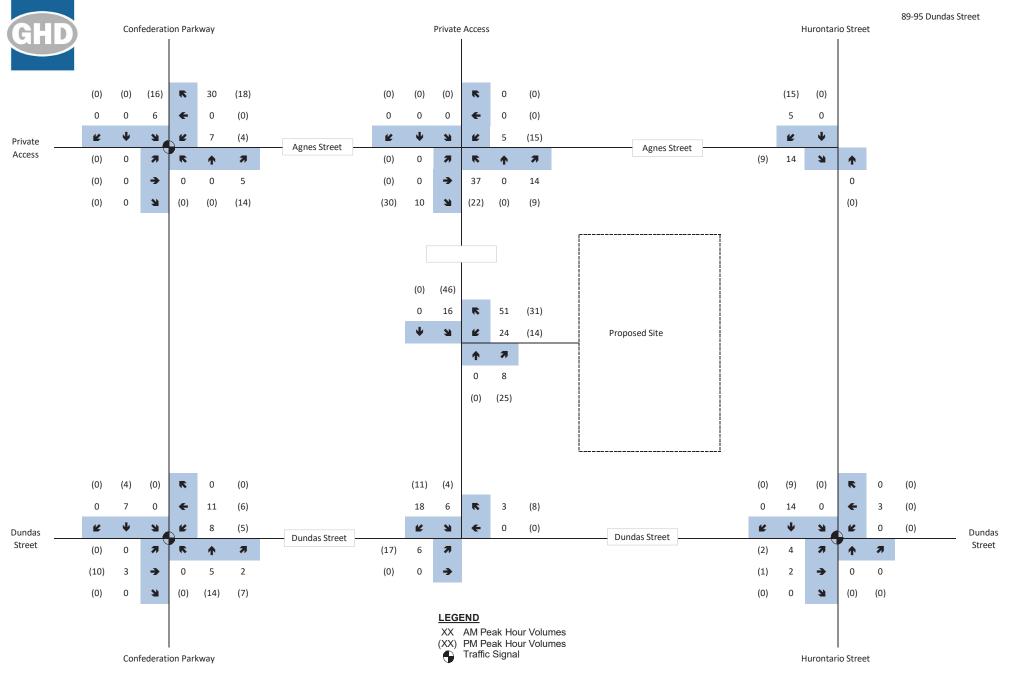
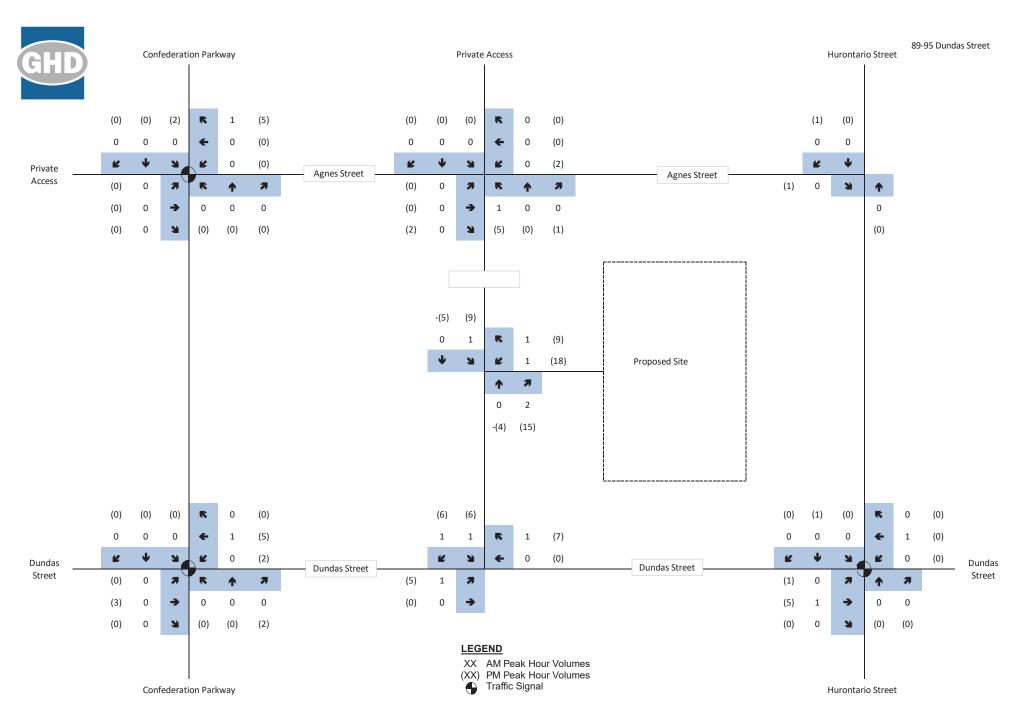



Figure 8: Total Site Trips

Proposed Mixed-Use Residential Development

Traffic Impact Study 89-95 Dundas Street West Mississauga, Ontario

On behalf of Mississauga II LP

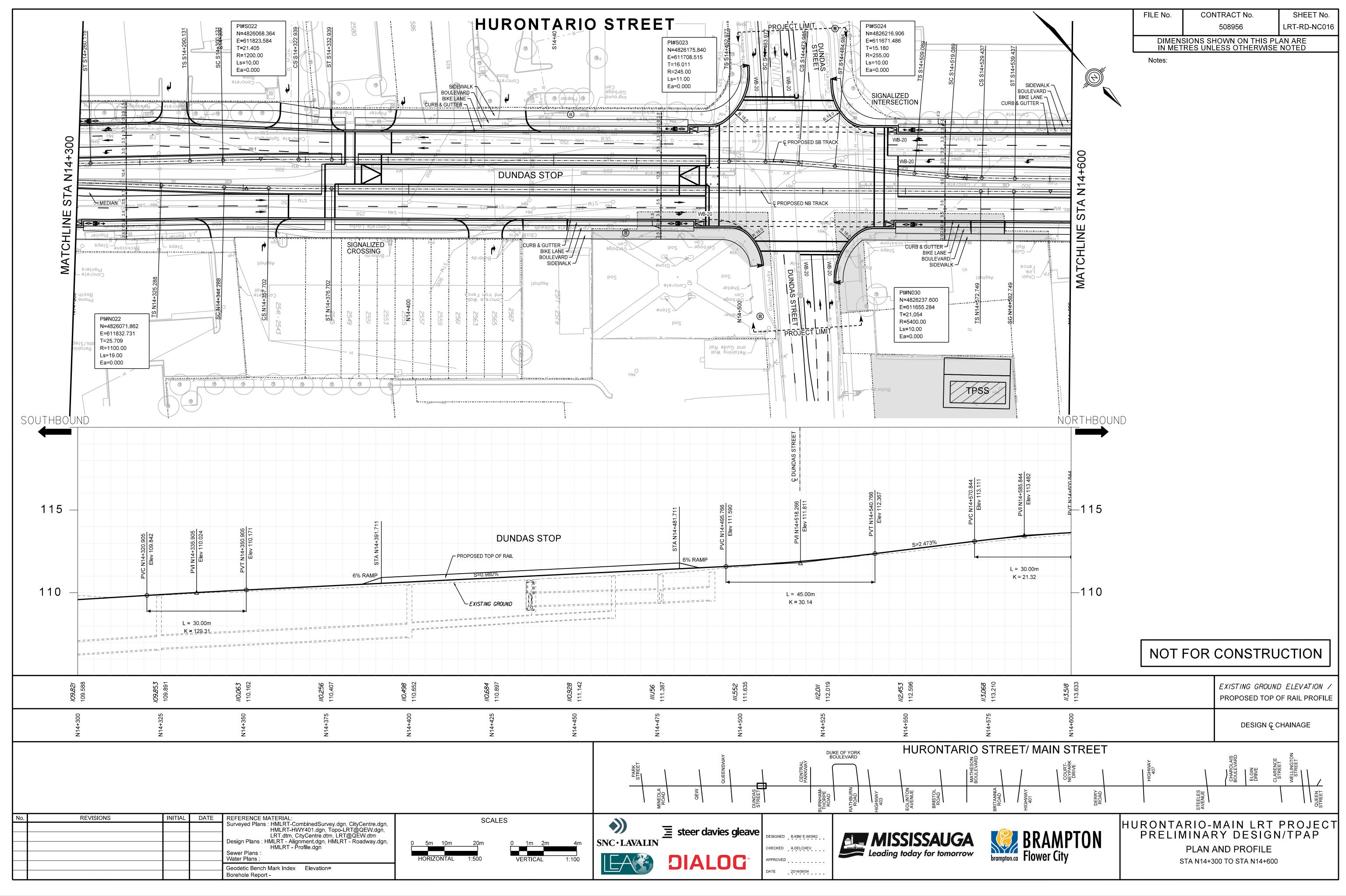

Figure 9 Estimated Residential Site Trips

Figure 10 Estimated Commercial Trips

Appendix F

Hurontario LRT Environmental Project Report

DATE 2014/06/04

Geodetic Bench Mark Index Elevation=

Borehole Report -

Borehole Report -

Appendix G

Future Background Traffic Level of Service Calculations

Lanes, Volumes, Timings 3: Hurontario Street & Dundas Street W/Dundas Street E

	ၨ	→	•	•	←	•	•	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	†	7		↑ ↑		*	∱ ∱	
Traffic Volume (vph)	87	1136	118	75	477	83	0	814	71	149	811	74
Future Volume (vph)	87	1136	118	75	477	83	0	814	71	149	811	74
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		1	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	1807	1351	0	3397	0	1617	3320	0
Flt Permitted	0.206			0.067						0.950		
Satd. Flow (perm)	371	3433	1351	121	1807	1351	0	3397	0	1617	3320	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68			68		6			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	95	1235	128	82	518	90	0	962	0	162	962	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm		NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4		4	8		8						
Detector Phase	7	4	4	3	8	8		2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5	45.5		41.0		9.0	41.0	
Total Split (s)	10.0	69.0	69.0	9.0	68.0	68.0		57.0		25.0	82.0	
Total Split (%)	6.3%	43.1%	43.1%	5.6%	42.5%	42.5%		35.6%		15.6%	51.3%	
Maximum Green (s)	7.0	61.5	61.5	6.0	60.5	60.5		50.0		22.0	75.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0	4.0		4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5	3.5		3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5	7.5		7.0		3.0	7.0	

3: Hurontario Street & Dundas Street W/Dundas Street E

	۶	-	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Recall Mode	None	None	None	None	None	None		C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0	16.0		14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0	22.0		20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	72.0	60.5	60.5	70.0	59.5	59.5		53.3		19.6	76.0	
Actuated g/C Ratio	0.45	0.38	0.38	0.44	0.37	0.37		0.33		0.12	0.48	
v/c Ratio	0.42	0.95	0.23	0.73	0.77	0.17		0.85		0.82	0.61	
Control Delay	30.3	63.8	16.8	60.5	53.1	11.3		58.0		113.8	28.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	30.3	63.8	16.8	60.5	53.1	11.3		58.0		113.8	28.7	
LOS	С	Е	В	Е	D	В		Е		F	С	
Approach Delay		57.5			48.5			58.0			40.9	
Approach LOS		Е			D			Е			D	
Queue Length 50th (m)	17.7	208.7	12.9	15.1	150.9	4.6		161.5		56.8	72.9	
Queue Length 95th (m)	29.7	#254.8	29.2	#39.1	199.0	17.7		#200.5		m77.0	118.3	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0		25.0				50.0		
Base Capacity (vph)	225	1319	561	112	683	553		1135		222	1580	
Starvation Cap Reductn	0	0	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0	0	0		0		0	0	
Reduced v/c Ratio	0.42	0.94	0.23	0.73	0.76	0.16		0.85		0.73	0.61	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95 Intersection Signal Delay: 51.7

Intersection Signal Delay: 51.7 Intersection LOS: D
Intersection Capacity Utilization 87.6% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	+	•	1	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ř	∱ }		ř	∱ }		ň	↑ ↑		7	∱ }	
Traffic Volume (vph)	247	177	74	129	169	133	65	1087	22	92	1076	209
Future Volume (vph)	247	177	74	129	169	133	65	1087	22	92	1076	209
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	30.0		0.0	45.0		0.0	50.0		0.0	50.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	3226	0	1617	3161	0	1617	3347	0	1617	3285	0
Flt Permitted	0.252			0.584			0.950			0.950		
Satd. Flow (perm)	429	3226	0	994	3161	0	1617	3347	0	1617	3285	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		45			129			1			15	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		218.5			80.6			104.7			136.8	
Travel Time (s)		19.7			7.3			7.5			9.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)										•		
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)		• • • • • • • • • • • • • • • • • • • •			• 70			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
Lane Group Flow (vph)	268	272	0	140	329	0	71	1206	0	100	1397	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8						•		
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase								_		•		
Minimum Initial (s)	4.5	5.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.0	56.0		9.0	56.0		9.0	51.5		9.5	51.5	
Total Split (s)	25.0	66.0		15.0	56.0		20.0	59.0		20.0	59.0	
Total Split (%)	15.6%	41.3%		9.4%	35.0%		12.5%	36.9%		12.5%	36.9%	
Maximum Green (s)	22.0	58.0		12.0	48.0		17.0	51.5		17.0	51.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.5		0.0	3.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.5		3.0	7.5	
Total Lost Tille (3)	5.0	0.0		5.0	0.0		5.0	1.5		5.0	1.5	

6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

	•	→	\rightarrow	•	←	•	•	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		15.0			15.0			14.0			14.0	
Flash Dont Walk (s)		33.0			33.0			30.0			30.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	45.7	25.9		32.8	16.0		12.4	85.7		15.1	88.5	
Actuated g/C Ratio	0.29	0.16		0.20	0.10		0.08	0.54		0.09	0.55	
v/c Ratio	0.95	0.49		0.56	0.76		0.57	0.67		0.66	0.77	
Control Delay	90.5	52.9		54.7	53.8		79.3	33.3		95.2	24.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	47.3		0.0	0.1	
Total Delay	90.5	52.9		54.7	53.8		79.3	80.7		95.2	24.4	
LOS	F	D		D	D		Е	F		F	С	
Approach Delay		71.6			54.1			80.6			29.1	
Approach LOS		Е			D			F			С	
Queue Length 50th (m)	77.2	36.7		36.8	35.0		24.8	120.1		34.8	123.5	
Queue Length 95th (m)	#113.7	50.5		54.5	51.6		m33.5	152.8		56.6	108.6	
Internal Link Dist (m)		194.5			56.6			80.7			112.8	
Turn Bay Length (m)	30.0			45.0			50.0			50.0		
Base Capacity (vph)	285	1198		251	1038		172	1792		180	1822	
Starvation Cap Reductn	0	0		0	0		0	0		0	30	
Spillback Cap Reductn	0	0		0	13		0	691		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.94	0.23		0.56	0.32		0.41	1.10		0.56	0.78	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

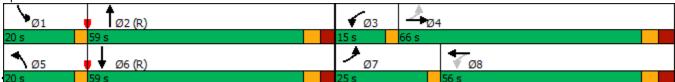
Offset: 93 (58%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95

Intersection Signal Delay: 55.6 Intersection LOS: E
Intersection Capacity Utilization 83.1% ICU Level of Service E


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

Lanes, Volumes, Timings 9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	→	•	•	←	•	4	†	/	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		7	∱ }		ሻ	^	7
Traffic Volume (vph)	55	3	16	16	5	176	6	1361	20	164	1286	89
Future Volume (vph)	55	3	16	16	5	176	6	1361	20	164	1286	89
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	100.0		0.0	40.0		0.0	25.0		0.0	40.0		25.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	1566	0	1617	1537	0	1617	3350	0	1617	3355	1321
Flt Permitted	0.233			0.744			0.950			0.950		
Satd. Flow (perm)	397	1566	0	1266	1537	0	1617	3350	0	1617	3355	1321
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		17			137			1				75
Link Speed (k/h)		20			40			50			50	
Link Distance (m)		154.5			149.3			136.8			171.7	
Travel Time (s)		27.8			13.4			9.8			12.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)						•			•			
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •			• 70			0,0	
Lane Group Flow (vph)	60	20	0	17	196	0	7	1501	0	178	1398	97
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	. •	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8				_		•		6
Detector Phase	7	4		3	8		5	2		1	6	6
Switch Phase	•							_		•		J
Minimum Initial (s)	5.0	10.0		6.0	10.0		5.0	10.0		5.0	10.0	10.0
Minimum Split (s)	9.0	46.0		9.0	46.0		9.0	38.0		9.0	38.0	38.0
Total Split (s)	10.0	46.0		10.0	46.0		10.0	94.0		10.0	94.0	94.0
Total Split (%)	6.3%	28.8%		6.3%	28.8%		6.3%	58.8%		6.3%	58.8%	58.8%
Maximum Green (s)	7.0	38.0		7.0	38.0		7.0	87.0		7.0	87.0	87.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.0		0.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)				3.0	8.0		3.0			3.0	7.0	7.0
TOTAL LOST TIME (S)	3.0	8.0		3.0	0.0		ა.0	7.0		3.0	1.0	1.0

9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	→	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		12.0			12.0			10.0			10.0	10.0
Flash Dont Walk (s)		26.0			26.0			21.0			21.0	21.0
Pedestrian Calls (#/hr)		0			0			0			0	0
Act Effct Green (s)	25.0	17.2		23.6	13.2		6.3	87.2		33.7	121.7	121.7
Actuated g/C Ratio	0.16	0.11		0.15	0.08		0.04	0.54		0.21	0.76	0.76
v/c Ratio	0.52	0.11		0.09	0.78		0.11	0.82		0.52	0.55	0.09
Control Delay	72.3	29.0		53.7	43.6		104.3	26.2		64.4	10.2	2.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	47.8		0.0	0.0	0.0
Total Delay	72.3	29.0		53.7	43.6		104.3	74.0		64.4	10.3	2.7
LOS	Е	С		D	D		F	Е		Е	В	Α
Approach Delay		61.5			44.4			74.1			15.6	
Approach LOS		Е			D			Е			В	
Queue Length 50th (m)	17.8	0.9		4.9	19.6		2.3	234.0		53.6	83.4	1.5
Queue Length 95th (m)	30.5	10.0		11.9	47.6		m3.7	m260.5		#90.3	163.5	9.8
Internal Link Dist (m)		130.5			125.3			112.8			147.7	
Turn Bay Length (m)	100.0			40.0			25.0			40.0		25.0
Base Capacity (vph)	115	384		203	469		71	1825		340	2551	1022
Starvation Cap Reductn	0	0		0	0		0	520		0	0	0
Spillback Cap Reductn	0	17		0	0		0	0		0	100	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.52	0.05		0.08	0.42		0.10	1.15		0.52	0.57	0.09

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

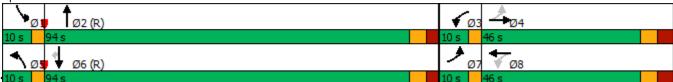
Offset: 102 (64%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 43.8 Intersection LOS: D
Intersection Capacity Utilization 82.0% ICU Level of Service E


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	∱ %	
Traffic Volume (veh/h)	0	106	0	941	898	55
Future Volume (Veh/h)	0	106	0	941	898	55
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	115	0	1023	976	60
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110	110110	
Upstream signal (m)				126	313	
pX, platoon unblocked	0.84	0.81	0.81	120	010	
vC, conflicting volume	1518	518	1036			
vC1, stage 1 conf vol	1310	310	1030			
vC2, stage 2 conf vol						
vCu, unblocked vol	232	0	586			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)	0.0	0.9	4.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	87	100			
•	617	882	801			
cM capacity (veh/h)	017	002	001			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	115	512	512	651	385	
Volume Left	0	0	0	0	0	
Volume Right	115	0	0	0	60	
cSH	882	1700	1700	1700	1700	
Volume to Capacity	0.13	0.30	0.30	0.38	0.23	
Queue Length 95th (m)	3.6	0.0	0.0	0.0	0.0	
Control Delay (s)	9.7	0.0	0.0	0.0	0.0	
Lane LOS	А					
Approach Delay (s)	9.7	0.0		0.0		
Approach LOS	Α					
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utilization	ation		40.8%	ıc	III evel d	of Service
Analysis Period (min)	G(1011		15	10	.5 25001 (001 1100

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1>		ሻ	ĵ∍			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	18	332	36	7	167	13	67	18	18	70	14	21
Future Volume (vph)	18	332	36	7	167	13	67	18	18	70	14	21
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	20	361	39	8	182	14	73	20	20	76	15	23
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	20	400	8	196	113	114						
Volume Left (vph)	20	0	8	0	73	76						
Volume Right (vph)	0	39	0	14	20	23						
Hadj (s)	0.53	0.00	0.53	0.02	0.06	0.05						
Departure Headway (s)	6.0	5.4	6.2	5.7	5.8	5.8						
Degree Utilization, x	0.03	0.61	0.01	0.31	0.18	0.18						
Capacity (veh/h)	584	645	546	598	547	552						
Control Delay (s)	8.0	15.2	8.1	10.1	10.1	10.1						
Approach Delay (s)	14.9		10.0		10.1	10.1						
Approach LOS	В		Α		В	В						
Intersection Summary												
Delay			12.4									
Level of Service			В									
Intersection Capacity Utiliza	ation		33.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	4	†	~	/	 	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	∱ β			† †	
Traffic Volume (veh/h)	0	75	1099	10	0	1048	
Future Volume (Veh/h)	0	75	1099	10	0	1048	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	82	1195	11	0	1139	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			335			105	
pX, platoon unblocked	0.82	0.76			0.76		
vC, conflicting volume	1770	603			1206		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	168	0			632		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	90			100		
cM capacity (veh/h)	661	821			717		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	82	797	409	570	570		
Volume Left	0	0	0	0	0		
Volume Right	82	0	11	0	0		
cSH	821	1700	1700	1700	1700		
Volume to Capacity	0.10	0.47	0.24	0.34	0.34		
Queue Length 95th (m)	2.7	0.0	0.0	0.0	0.0		
Control Delay (s)	9.9	0.0	0.0	0.0	0.0		
Lane LOS	А						
Approach Delay (s)	9.9	0.0		0.0			
Approach LOS	Α						
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilizat	ion		42.7%	IC	U Level	of Service	
Analysis Period (min)			15				
Analysis Period (min)			15				

	-	•	•	•	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f ə			4	W		
Traffic Volume (veh/h)	259	20	5	176	255	35	
Future Volume (Veh/h)	259	20	5	176	255	35	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	282	22	5	191	277	38	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	80						
pX, platoon unblocked			0.92		0.92	0.92	
vC, conflicting volume			304		494	293	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			198		405	186	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		50	95	
cM capacity (veh/h)			1263		551	787	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	304	196	315				
Volume Left	0	5	277				
Volume Right	22	0	38				
cSH	1700	1263	571				
Volume to Capacity	0.18	0.00	0.55				
Queue Length 95th (m)	0.0	0.1	26.7				
Control Delay (s)	0.0	0.2	18.8				
Lane LOS		Α	С				
Approach Delay (s)	0.0	0.2	18.8				
Approach LOS			С				
Intersection Summary							
Average Delay			7.3				
Intersection Capacity Utiliza	tion		38.1%	IC	U Level o	f Service	
Analysis Period (min)			15				

Lanes, Volumes, Timings 3: Hurontario Street & Dundas Street W/Dundas Street E

	۶	→	•	•	←	•	1	†	/	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	† †	7	ች	^	7		↑ ↑		ች	ተ ኈ	
Traffic Volume (vph)	87	1136	118	75	477	83	0	814	71	149	811	74
Future Volume (vph)	87	1136	118	75	477	83	0	814	71	149	811	74
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		1	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	3433	1351	0	3397	0	1617	3320	0
Flt Permitted	0.373			0.067						0.950		
Satd. Flow (perm)	673	3433	1351	121	3433	1351	0	3397	0	1617	3320	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68			68		6			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	95	1235	128	82	518	90	0	962	0	162	962	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm		NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4		4	8		8						
Detector Phase	7	4	4	3	8	8		2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5	45.5		41.0		9.0	41.0	
Total Split (s)	10.0	69.0	69.0	9.0	68.0	68.0		57.0		25.0	82.0	
Total Split (%)	6.3%	43.1%	43.1%	5.6%	42.5%	42.5%		35.6%		15.6%	51.3%	
Maximum Green (s)	7.0	61.5	61.5	6.0	60.5	60.5		50.0		22.0	75.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0	4.0		4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5	3.5		3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5	7.5		7.0		3.0	7.0	

3: Hurontario Street & Dundas Street W/Dundas Street E

	•	-	•	•	•	•	1	†	_	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Recall Mode	None	None	None	None	None	None	C-	-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0	16.0		14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0	22.0		20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	72.0	60.5	60.5	70.0	59.5	59.5		53.3		19.6	76.0	
Actuated g/C Ratio	0.45	0.38	0.38	0.44	0.37	0.37		0.33		0.12	0.48	
v/c Ratio	0.27	0.95	0.23	0.73	0.41	0.17		0.85		0.82	0.61	
Control Delay	26.4	63.8	16.8	60.5	38.1	11.3		58.0		113.8	28.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	26.4	63.8	16.8	60.5	38.1	11.3		58.0		113.8	28.7	
LOS	С	Е	В	Е	D	В		Ε		F	С	
Approach Delay		57.3			37.3			58.0			40.9	
Approach LOS		Е			D			Е			D	
Queue Length 50th (m)	17.7	208.7	12.9	15.1	66.6	4.6		61.5		56.8	72.9	
Queue Length 95th (m)	29.7	#254.8	29.2	#39.1	83.7	17.7		200.5		m77.0	118.3	
Internal Link Dist (m)		161.1			343.5		1	17.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0		25.0				50.0		
Base Capacity (vph)	348	1319	561	112	1298	553		1135		222	1580	
Starvation Cap Reductn	0	0	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0	0	0		0		0	0	
Reduced v/c Ratio	0.27	0.94	0.23	0.73	0.40	0.16		0.85		0.73	0.61	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95 Intersection Signal Delay: 49.8 Intersection Capacity Utilization 87.6%

Intersection LOS: D
ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Hurontario Street & Dundas Street W/Dundas Street E

Lanes, Volumes, Timings 3: Hurontario Street & Dundas Street W/Dundas Street E

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT S Lane Configurations 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SBR
Lane Configurations & AA # A #	
Lane Configurations 7 TT F 7 T F TP 7 TP	
	128
	128
	1640
	3.3
Grade (%) 0% 0% 0%	
	0.0
Storage Lanes 1 1 1 1 0 0 1	0
Taper Length (m) 7.5 7.5 7.5 7.5	
Satd. Flow (prot) 1713 3433 1351 1713 1807 1351 0 3367 0 1617 3303	0
Flt Permitted 0.068 0.192 0.950	
Satd. Flow (perm) 123 3433 1351 346 1807 1351 0 3367 0 1617 3303	0
\mathcal{M}	Yes
Satd. Flow (RTOR) 68 68 13 13	
Link Speed (k/h) 50 50 50	
Link Distance (m) 185.1 367.5 141.9 126.5	
Travel Time (s) 13.3 26.5 10.2 9.1	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
	0.92
	00%
	2%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0	0
Parking (#/hr)	
Mid-Block Traffic (%) 0% 0% 0%	
Shared Lane Traffic (%)	
Lane Group Flow (vph) 176 841 135 139 1058 170 0 1067 0 200 1132	0
Enter Blocked Intersection No No No No No No No No No	No
	Right
Median Width(m) 3.5 3.5 3.0 3.0	
Link Offset(m) 0.0 0.0 0.0 0.0	
Crosswalk Width(m) 4.8 4.8 4.8 4.8	
Two way Left Turn Lane	
Headway Factor 1.04 1.01 1.22 1.04 1.01 1.22 1.04 1.01 1.22 1.12 1.04 1	1.26
Turning Speed (k/h) 25 15 25 15 25	15
Turn Type pm+pt NA Perm pm+pt NA Perm NA Prot NA	
Protected Phases 7 4 3 8 2 1 6	
Permitted Phases 4 4 8 8	
Detector Phase 7 4 4 3 8 8 2 1 6	
Switch Phase	
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Minimum Split (s) 9.0 45.5 45.5 9.0 45.5 45.5 41.0 9.0 41.0	
Total Split (s) 14.0 66.0 66.0 14.0 66.0 57.0 23.0 80.0	
Total Split (%) 8.8% 41.3% 41.3% 8.8% 41.3% 41.3% 35.6% 14.4% 50.0%	
Maximum Green (s) 11.0 58.5 58.5 11.0 58.5 58.5 50.0 20.0 73.0	
Yellow Time (s) 3.0 4.0 4.0 3.0 4.0 4.0 4.0 3.0 4.0	
All-Red Time (s) 0.0 3.5 3.5 0.0 3.5 3.5 3.0 0.0 3.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Total Lost Time (s) 3.0 7.5 7.5 3.0 7.5 7.5 7.0 3.0 7.0	

3: Hurontario Street & Dundas Street W/Dundas Street E

	•	→	\rightarrow	•	←	•	~	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL N	IBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		∟ag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		⁄es		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Recall Mode	None	None	None	None	None	None		/lax		None	C-Max	
Walk Time (s)		16.0	16.0		16.0	16.0		4.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0	22.0	2	0.0			20.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	74.4	58.9	58.9	73.6	58.5	58.5		0.0		20.0	73.0	
Actuated g/C Ratio	0.46	0.37	0.37	0.46	0.37	0.37		.31		0.12	0.46	
v/c Ratio	1.06	0.67	0.25	0.56	1.60	0.32		.01		0.99	0.75	
Control Delay	124.1	45.5	18.7	32.6	312.2	23.1		2.3		137.2	37.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	124.1	45.5	18.7	32.6	312.2	23.1	8	2.3		137.2	37.6	
LOS	F	D	В	С	F	С		F		F	D	
Approach Delay		54.4			247.8		8	2.3			52.5	
Approach LOS		D			F			F			D	
Queue Length 50th (m)	~47.3	124.4	15.0	25.9	~504.7	23.8	~18			70.9	100.2	
Queue Length 95th (m)	#100.7	148.9	32.7	40.5	#590.0	44.8	#23			#126.5	162.8	
Internal Link Dist (m)		161.1			343.5		11	7.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0		25.0				50.0		
Base Capacity (vph)	166	1264	540	254	660	537	10	061		202	1514	
Starvation Cap Reductn	0	0	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0	0	0		0		0	0	
Reduced v/c Ratio	1.06	0.67	0.25	0.55	1.60	0.32	1	.01		0.99	0.75	

Intersection Summary

Area Type: Other

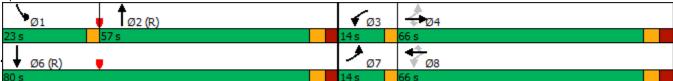
Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.60 Intersection Signal Delay: 113.7 Intersection Capacity Utilization 117.3%


Intersection LOS: F
ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	ၨ	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	∱ }		ሻ	∱ }		ሻ	↑ Ъ	
Traffic Volume (vph)	57	211	89	71	298	152	106	905	39	207	1076	126
Future Volume (vph)	57	211	89	71	298	152	106	905	39	207	1076	126
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	30.0		0.0	45.0		0.0	50.0		0.0	50.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	3223	0	1617	3205	0	1617	3338	0	1617	3308	0
Flt Permitted	0.251			0.408			0.950			0.950		
Satd. Flow (perm)	427	3223	0	694	3205	0	1617	3338	0	1617	3308	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		42			58			3			9	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		218.5			80.6			104.7			136.8	
Travel Time (s)		19.7			7.3			7.5			9.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	62	326	0	77	489	0	115	1026	0	225	1307	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0	, i		3.0	, i		3.0			3.0	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.5	5.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.0	56.0		9.0	56.0		9.0	51.5		9.5	51.5	
Total Split (s)	10.0	56.0		10.0	56.0		25.0	69.0		25.0	69.0	
Total Split (%)	6.3%	35.0%		6.3%	35.0%		15.6%	43.1%		15.6%	43.1%	
Maximum Green (s)	7.0	48.0		7.0	48.0		22.0	61.5		22.0	61.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.5		0.0	3.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.5		3.0	7.5	

6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

	۶	→	\rightarrow	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		15.0			15.0			14.0			14.0	
Flash Dont Walk (s)		33.0			33.0			30.0			30.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	38.1	26.2		38.8	28.2		16.6	73.6		31.7	88.7	
Actuated g/C Ratio	0.24	0.16		0.24	0.18		0.10	0.46		0.20	0.55	
v/c Ratio	0.41	0.58		0.37	0.80		0.68	0.67		0.70	0.71	
Control Delay	51.8	56.8		49.9	65.7		73.8	33.2		97.9	19.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	2.2		0.0	0.3	
Total Delay	51.8	56.8		49.9	65.7		73.8	35.4		97.9	20.2	
LOS	D	Е		D	Е		Е	D		F	С	
Approach Delay		56.0			63.5			39.2			31.6	
Approach LOS		Е			Е			D			С	
Queue Length 50th (m)	16.0	46.4		20.0	74.7		40.2	92.8		76.5	58.7	
Queue Length 95th (m)	27.7	60.5		33.2	92.0		m42.8	m95.7		108.9	93.1	
Internal Link Dist (m)		194.5			56.6			80.7			112.8	
Turn Bay Length (m)	30.0			45.0			50.0			50.0		
Base Capacity (vph)	153	996		208	1002		224	1537		320	1837	
Starvation Cap Reductn	0	0		0	0		0	0		0	129	
Spillback Cap Reductn	0	0		0	2		0	358		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.41	0.33		0.37	0.49		0.51	0.87		0.70	0.77	

Intersection Summary

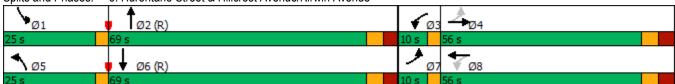
Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 93 (58%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.80

Intersection Signal Delay: 41.6 Intersection LOS: D
Intersection Capacity Utilization 76.2% ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Lanes, Volumes, Timings 9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	→	•	•	←	•	4	†	/	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		7	∱ }		ኻ	^	7
Traffic Volume (vph)	70	5	18	23	5	322	6	1152	39	228	1322	59
Future Volume (vph)	70	5	18	23	5	322	6	1152	39	228	1322	59
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	100.0		0.0	40.0		0.0	25.0		0.0	40.0		25.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	1578	0	1617	1534	0	1617	3341	0	1617	3355	1321
Flt Permitted	0.149			0.741			0.950			0.950		
Satd. Flow (perm)	254	1578	0	1261	1534	0	1617	3341	0	1617	3355	1321
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			206			3				75
Link Speed (k/h)		20			40			50			50	
Link Distance (m)		154.5			149.3			136.8			171.7	
Travel Time (s)		27.8			13.4			9.8			12.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	76	25	0	25	355	0	7	1294	0	248	1437	64
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA		Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8								6
Detector Phase	7	4		3	8		5	2		1	6	6
Switch Phase												
Minimum Initial (s)	5.0	10.0		6.0	10.0		5.0	10.0		5.0	10.0	10.0
Minimum Split (s)	9.0	46.0		9.0	46.0		9.0	38.0		9.0	38.0	38.0
Total Split (s)	10.0	46.0		10.0	46.0		10.0	84.0		20.0	94.0	94.0
Total Split (%)	6.3%	28.8%		6.3%	28.8%		6.3%	52.5%		12.5%	58.8%	58.8%
Maximum Green (s)	7.0	38.0		7.0	38.0		7.0	77.0		17.0	87.0	87.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.0		0.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.0		3.0	7.0	7.0

9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	→	•	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		12.0			12.0			10.0			10.0	10.0
Flash Dont Walk (s)		26.0			26.0			21.0			21.0	21.0
Pedestrian Calls (#/hr)		0			0			0			0	0
Act Effct Green (s)	36.0	26.8		34.5	22.8		6.3	77.0		32.2	110.1	110.1
Actuated g/C Ratio	0.22	0.17		0.22	0.14		0.04	0.48		0.20	0.69	0.69
v/c Ratio	0.66	0.09		0.09	0.90		0.11	0.80		0.76	0.62	0.07
Control Delay	72.7	23.3		43.6	52.8		100.2	22.7		75.6	17.4	2.4
Queue Delay	0.0	0.0		0.0	0.0		0.0	5.5		0.0	0.1	0.0
Total Delay	72.7	23.3		43.6	52.8		100.2	28.2		75.6	17.4	2.4
LOS	Е	С		D	D		F	С		Е	В	Α
Approach Delay		60.5			52.2			28.6			25.1	
Approach LOS		Е			D			С			С	
Queue Length 50th (m)	20.6	1.5		6.6	53.0		2.2	144.8		79.2	122.2	0.0
Queue Length 95th (m)	32.4	10.2		13.8	87.5		m4.6	215.1		#165.4	224.6	5.7
Internal Link Dist (m)		130.5			125.3			112.8			147.7	
Turn Bay Length (m)	100.0			40.0			25.0			40.0		25.0
Base Capacity (vph)	116	390		289	521		71	1609		325	2308	932
Starvation Cap Reductn	0	0		0	0		0	260		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	86	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.66	0.06		0.09	0.68		0.10	0.96		0.76	0.65	0.07

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

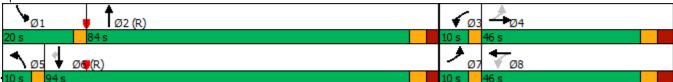
Offset: 102 (64%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90 Intersection Signal Delay: 30.3 Intersection Capacity Utilization 89.5%

Intersection LOS: C
ICU Level of Service E


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	•	4	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7		^	↑ ⊅		Ī
Traffic Volume (veh/h)	0	81	0	1081	1104	75	
Future Volume (Veh/h)	0	81	0	1081	1104	75	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	88	0	1175	1200	82	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)				126	313		
pX, platoon unblocked	0.84	0.73	0.73	5	0.0		
vC, conflicting volume	1828	641	1282				
vC1, stage 1 conf vol	1020	011	1202				
vC2, stage 2 conf vol							
vCu, unblocked vol	162	0	648				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	89	100				
cM capacity (veh/h)	683	792	682				
				07.4			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	88	588	588	800	482		
Volume Left	0	0	0	0	0		
Volume Right	88	0	0	0	82		
cSH	792	1700	1700	1700	1700		
Volume to Capacity	0.11	0.35	0.35	0.47	0.28		
Queue Length 95th (m)	3.0	0.0	0.0	0.0	0.0		
Control Delay (s)	10.1	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	10.1	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utiliza	ntion		45.4%	IC	CU Level c	of Service	
Analysis Period (min)			15.176		2 23.07 0		

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	ĵ.		¥	f)			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	84	289	72	16	361	22	129	26	21	26	17	46
Future Volume (vph)	84	289	72	16	361	22	129	26	21	26	17	46
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	91	314	78	17	392	24	140	28	23	28	18	50
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	91	392	17	416	191	96						
Volume Left (vph)	91	0	17	0	140	28						
Volume Right (vph)	0	78	0	24	23	50						
Hadj (s)	0.53	-0.08	0.53	0.03	0.11	-0.21						
Departure Headway (s)	6.7	6.1	6.8	6.3	6.7	6.7						
Degree Utilization, x	0.17	0.67	0.03	0.73	0.36	0.18						
Capacity (veh/h)	508	565	507	554	479	454						
Control Delay (s)	9.9	19.3	8.8	22.9	13.4	11.2						
Approach Delay (s)	17.5		22.3		13.4	11.2						
Approach LOS	С		С		В	В						
Intersection Summary												
Delay			18.1									
Level of Service			С									
Intersection Capacity Utilizat	ion		51.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	†	/	/		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	ħβ			^	
Traffic Volume (veh/h)	0	30	1020	65	0	1246	
Future Volume (Veh/h)	0	30	1020	65	0	1246	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	33	1109	71	0	1354	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			335			105	
pX, platoon unblocked	0.85	0.73			0.73		
vC, conflicting volume	1822	590			1180		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	175	0			508		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	96			100		
cM capacity (veh/h)	676	792			769		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	33	739	441	677	677		
Volume Left	0	0	0	0//	0//		
Volume Right	33	0	71	0	0		
cSH	792	1700	1700	1700	1700		
Volume to Capacity	0.04	0.43	0.26	0.40	0.40		
Queue Length 95th (m)	1.0	0.43	0.20	0.40	0.40		
Control Delay (s)	9.7	0.0	0.0	0.0	0.0		
Lane LOS	9.7 A	0.0	0.0	0.0	0.0		
Approach Delay (s)	9.7	0.0		0.0			
Approach LOS	9.1 A	0.0		0.0			
• •	A						
Intersection Summary			0.4				
Average Delay			0.1				
Intersection Capacity Utiliza	ation		40.3%	IC	U Level	of Service	
Analysis Period (min)			15				

	-	\rightarrow	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	W		
Traffic Volume (veh/h)	292	165	25	431	100	15	
Future Volume (Veh/h)	292	165	25	431	100	15	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	317	179	27	468	109	16	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	80						
pX, platoon unblocked			0.90		0.90	0.90	
vC, conflicting volume			496		928	406	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			385		865	285	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			97		62	98	
cM capacity (veh/h)			1057		284	679	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	496	495	125				
Volume Left	0	27	109				
Volume Right	179	0	16				
cSH	1700	1057	307				
Volume to Capacity	0.29	0.03	0.41				
Queue Length 95th (m)	0.0	0.6	15.2				
Control Delay (s)	0.0	0.7	24.5				
Lane LOS		Α	С				
Approach Delay (s)	0.0	0.7	24.5				
Approach LOS			С				
Intersection Summary							
Average Delay			3.1				
Intersection Capacity Utiliza	ition		56.4%	IC	U Level o	f Service	
Analysis Period (min)			15				

Lanes, Volumes, Timings 3: Hurontario Street & Dundas Street W/Dundas Street E

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT S Lane Configurations 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SBR
Lane Configurations 5 AA 7 AA AA	•
Euro Coringurationo I I I I I I I I I I I I I I I I I I	
	128
	128
	1640
	3.3
Grade (%) 0% 0% 0%	
	0.0
Storage Lanes 1 1 1 1 0 0 1	0
Taper Length (m) 7.5 7.5 7.5 7.5	
Satd. Flow (prot) 1713 3433 1351 1713 3433 1351 0 3367 0 1617 3303	0
Flt Permitted 0.071 0.187 0.950	
Satd. Flow (perm) 128 3433 1351 337 3433 1351 0 3367 0 1617 3303	0
\mathcal{M}	Yes
Satd. Flow (RTOR) 68 68 13 13	
Link Speed (k/h) 50 50 50	
Link Distance (m) 185.1 367.5 141.9 126.5	
Travel Time (s) 13.3 26.5 10.2 9.1	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
	0.92
	100%
	2%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0	0
Parking (#/hr)	
Mid-Block Traffic (%) 0% 0% 0%	
Shared Lane Traffic (%)	
Lane Group Flow (vph) 176 841 135 139 1058 170 0 1067 0 200 1132	0
	No
	Right
Median Width(m) 3.5 3.5 3.0 3.0	
Link Offset(m) 0.0 0.0 0.0 0.0	
Crosswalk Width(m) 4.8 4.8 4.8 4.8	
Two way Left Turn Lane	
Headway Factor 1.04 1.01 1.22 1.04 1.01 1.22 1.04 1.01 1.22 1.12 1.04 1	1.26
Turning Speed (k/h) 25 15 25 15 25	15
Turn Type pm+pt NA Perm pm+pt NA Perm NA Prot NA	
Protected Phases 7 4 3 8 2 1 6	
Permitted Phases 4 4 8 8	
Detector Phase 7 4 4 3 8 8 2 1 6	
Switch Phase	
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Minimum Split (s) 9.0 45.5 45.5 9.0 45.5 45.5 41.0 9.0 41.0	
Total Split (s) 16.0 66.0 66.0 14.0 64.0 57.0 23.0 80.0	
Total Split (%) 10.0% 41.3% 41.3% 8.8% 40.0% 40.0% 35.6% 14.4% 50.0%	
Maximum Green (s) 13.0 58.5 58.5 11.0 56.5 56.5 50.0 20.0 73.0	
Yellow Time (s) 3.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 3.0 4.0	
All-Red Time (s) 0.0 3.5 3.5 0.0 3.5 3.5 3.0 0.0 3.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Total Lost Time (s) 3.0 7.5 7.5 3.0 7.5 7.5 7.0 3.0 7.0	

	۶	→	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Recall Mode	None	None	None	None	None	None		C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0	16.0		14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0	22.0		20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	73.7	56.4	56.4	69.2	54.0	54.0		50.9		21.6	75.5	
Actuated g/C Ratio	0.46	0.35	0.35	0.43	0.34	0.34		0.32		0.14	0.47	
v/c Ratio	0.94	0.70	0.26	0.59	0.91	0.34		0.99		0.92	0.72	
Control Delay	91.2	47.8	18.9	35.0	63.0	24.6		77.7		119.7	36.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	91.2	47.8	18.9	35.0	63.0	24.6		77.7		119.7	36.2	
LOS	F	D	В	С	Е	С		Е		F	D	
Approach Delay		51.0			55.3			77.7			48.8	
Approach LOS		D			Е			Е			D	
Queue Length 50th (m)	41.5	124.4	15.0	25.9	174.5	24.3		~189.3		70.9	100.2	
Queue Length 95th (m)	#91.7	148.9	32.7	40.5	205.3	45.8		#239.6		#126.5	162.8	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0		25.0				50.0		
Base Capacity (vph)	187	1255	537	241	1212	521		1079		218	1564	
Starvation Cap Reductn	0	0	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0	0	0		0		0	0	
Reduced v/c Ratio	0.94	0.67	0.25	0.58	0.87	0.33		0.99		0.92	0.72	

Intersection Summary

Area Type: Other

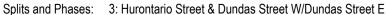
Cycle Length: 160
Actuated Cycle Length: 160

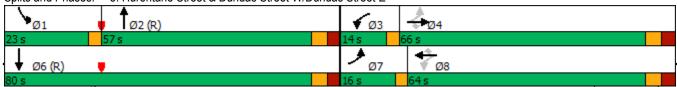
Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.99 Intersection Signal Delay: 57.4 Intersection Capacity Utilization 93.0%


Intersection LOS: E
ICU Level of Service F


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Appendix HFuture Total Level of Service Calculations

	۶	→	•	•	←	•	•	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ች	†	7		↑ ↑		*	† }	
Traffic Volume (vph)	87	1136	118	75	477	83	0	833	71	149	836	74
Future Volume (vph)	87	1136	118	75	477	83	0	833	71	149	836	74
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		1	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	1807	1351	0	3397	0	1617	3320	0
Flt Permitted	0.206			0.067						0.950		
Satd. Flow (perm)	371	3433	1351	121	1807	1351	0	3397	0	1617	3320	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68			68		6			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	95	1235	128	82	518	90	0	982	0	162	989	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm		NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4		4	8		8						
Detector Phase	7	4	4	3	8	8		2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5	45.5		41.0		9.0	41.0	
Total Split (s)	10.0	69.0	69.0	9.0	68.0	68.0		57.0		25.0	82.0	
Total Split (%)	6.3%	43.1%	43.1%	5.6%	42.5%	42.5%		35.6%		15.6%	51.3%	
Maximum Green (s)	7.0	61.5	61.5	6.0	60.5	60.5		50.0		22.0	75.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0	4.0		4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5	3.5		3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5	7.5		7.0		3.0	7.0	

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Recall Mode	None	None	None	None	None	None	(C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0	16.0		14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0	22.0		20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	72.0	60.5	60.5	70.0	59.5	59.5		53.3		19.6	76.0	
Actuated g/C Ratio	0.45	0.38	0.38	0.44	0.37	0.37		0.33		0.12	0.48	
v/c Ratio	0.42	0.95	0.23	0.73	0.77	0.17		0.87		0.82	0.63	
Control Delay	30.3	63.8	16.8	60.5	53.1	11.3		59.2		112.0	27.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	30.3	63.8	16.8	60.5	53.1	11.3		59.2		112.0	27.7	
LOS	С	Е	В	Е	D	В		Е		F	С	
Approach Delay		57.5			48.5			59.2			39.6	
Approach LOS		Е			D			Е			D	
Queue Length 50th (m)	17.7	208.7	12.9	15.1	150.9	4.6		166.3		56.9	78.4	
Queue Length 95th (m)	29.7	#254.8	29.2	#39.1	199.0	17.7	#	207.8		#87.0	124.6	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0		25.0				50.0		
Base Capacity (vph)	225	1319	561	112	683	553		1135		222	1580	
Starvation Cap Reductn	0	0	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0	0	0		0		0	0	
Reduced v/c Ratio	0.42	0.94	0.23	0.73	0.76	0.16		0.87		0.73	0.63	

Intersection Summary

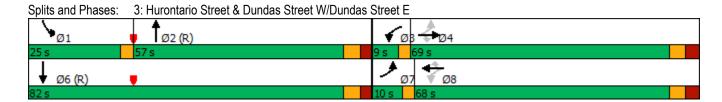
Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.95

Intersection Signal Delay: 51.6 Intersection LOS: D
Intersection Capacity Utilization 88.1% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ች	∱ ∱		ሻ	ተ ኈ		ች	↑ Ъ	
Traffic Volume (vph)	247	186	74	154	192	168	65	1087	41	99	845	209
Future Volume (vph)	247	186	74	154	192	168	65	1087	41	99	845	209
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	30.0		0.0	45.0		0.0	50.0		0.0	50.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	3229	0	1617	3149	0	1617	3338	0	1617	3267	0
Flt Permitted	0.202			0.579			0.950			0.950		
Satd. Flow (perm)	344	3229	0	985	3149	0	1617	3338	0	1617	3267	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		42			143			2			20	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		218.5			80.6			104.7			136.8	
Travel Time (s)		19.7			7.3			7.5			9.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	268	282	0	167	392	0	71	1227	0	108	1145	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.5	5.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.0	56.0		9.0	56.0		9.0	51.5		9.5	51.5	
Total Split (s)	25.0	66.0		15.0	56.0		20.0	59.0		20.0	59.0	
Total Split (%)	15.6%	41.3%		9.4%	35.0%		12.5%	36.9%		12.5%	36.9%	
Maximum Green (s)	22.0	58.0		12.0	48.0		17.0	51.5		17.0	51.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.5		0.0	3.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.5		3.0	7.5	

	۶	→	\rightarrow	•	←	•	•	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		15.0			15.0			14.0			14.0	
Flash Dont Walk (s)		33.0			33.0			30.0			30.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	48.4	28.4		35.7	18.7		12.4	82.2		15.9	85.8	
Actuated g/C Ratio	0.30	0.18		0.22	0.12		0.08	0.51		0.10	0.54	
v/c Ratio	0.97	0.46		0.63	0.79		0.57	0.72		0.68	0.65	
Control Delay	94.3	51.6		56.1	55.0		80.9	36.3		98.3	22.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	49.2		0.0	0.4	
Total Delay	94.3	51.6		56.1	55.0		80.9	85.5		98.3	22.4	
LOS	F	D		Е	Е		F	F		F	С	
Approach Delay		72.4			55.4			85.2			29.0	
Approach LOS		Е			Е			F			С	
Queue Length 50th (m)	75.2	38.2		43.6	43.8		24.6	125.8		38.4	73.4	
Queue Length 95th (m)	#120.2	51.4		62.2	60.9		m33.2	156.7		60.4	89.4	
Internal Link Dist (m)		194.5			56.6			80.7			112.8	
Turn Bay Length (m)	30.0			45.0			50.0			50.0		
Base Capacity (vph)	279	1197		267	1044		172	1715		184	1760	
Starvation Cap Reductn	0	0		0	0		0	0		0	193	
Spillback Cap Reductn	0	0		0	13		0	643		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.96	0.24		0.63	0.38		0.41	1.14		0.59	0.73	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

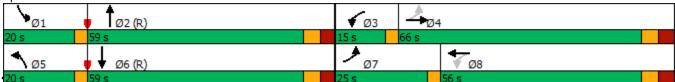
Offset: 93 (58%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 59.5 Intersection LOS: E
Intersection Capacity Utilization 81.2% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

2029 Future Total AM Peak Scenario 1 (Shared Access on Kirwin Ave) 8:19 pm 07/06/2025 With LRT

	۶	→	•	•	←	•	•	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		ሻ	∱ }		ሻ	^	7
Traffic Volume (vph)	55	3	16	16	5	176	6	1396	20	164	1305	89
Future Volume (vph)	55	3	16	16	5	176	6	1396	20	164	1305	89
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	100.0		0.0	40.0		0.0	25.0		0.0	40.0		25.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	1566	0	1617	1537	0	1617	3350	0	1617	3355	1321
Flt Permitted	0.231			0.744			0.950			0.950		
Satd. Flow (perm)	393	1566	0	1266	1537	0	1617	3350	0	1617	3355	1321
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		17			134			1				75
Link Speed (k/h)		20			40			50			50	
Link Distance (m)		154.5			149.3			136.8			171.7	
Travel Time (s)		27.8			13.4			9.8			12.4	
Confl. Peds. (#/hr)								0.0				
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)		• • • • • • • • • • • • • • • • • • • •			• , ,			• , ,			0,0	
Lane Group Flow (vph)	60	20	0	17	196	0	7	1539	0	178	1418	97
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26
Turning Speed (k/h)	25	1.01	15	25	1.01	15	25	1.01	15	25	1.01	15
Turn Type	pm+pt	NA	10	pm+pt	NA		Prot	NA	10	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	1 01111
Permitted Phases	4			8						'		6
Detector Phase	7	4		3	8		5	2		1	6	6
Switch Phase	'			<u> </u>			<u> </u>			'	0	J
Minimum Initial (s)	5.0	10.0		6.0	10.0		5.0	10.0		5.0	10.0	10.0
Minimum Split (s)	9.0	46.0		9.0	46.0		9.0	38.0		9.0	38.0	38.0
Total Split (s)	10.0	46.0		10.0	46.0		10.0	94.0		10.0	94.0	94.0
Total Split (%)	6.3%	28.8%		6.3%	28.8%		6.3%	58.8%		6.3%	58.8%	58.8%
Maximum Green (s)	7.0	38.0		7.0	38.0		7.0	87.0		7.0	87.0	87.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.0		0.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.0		3.0	7.0	7.0
TOTAL LUST TILLE (2)	3.0	0.0		3.0	0.0		3.0	1.0		3.0	1.0	1.0

	۶	→	•	•	←	•	\blacktriangleleft	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		12.0			12.0			10.0			10.0	10.0
Flash Dont Walk (s)		26.0			26.0			21.0			21.0	21.0
Pedestrian Calls (#/hr)		0			0			0			0	0
Act Effct Green (s)	25.1	17.3		23.7	13.3		6.3	87.1		33.6	121.6	121.6
Actuated g/C Ratio	0.16	0.11		0.15	0.08		0.04	0.54		0.21	0.76	0.76
v/c Ratio	0.53	0.11		0.08	0.78		0.11	0.84		0.53	0.56	0.10
Control Delay	72.3	28.9		53.6	45.1		104.2	27.1		64.5	10.4	2.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	47.6		0.0	0.0	0.0
Total Delay	72.3	28.9		53.6	45.1		104.2	74.7		64.5	10.4	2.7
LOS	Е	С		D	D		F	Е		Е	В	Α
Approach Delay		61.4			45.8			74.9			15.7	
Approach LOS		Е			D			Е			В	
Queue Length 50th (m)	17.8	0.9		4.9	20.5		2.4	241.2		53.6	86.0	1.5
Queue Length 95th (m)	30.4	10.0		11.9	48.7		m3.5	m269.9		#91.0	168.0	9.8
Internal Link Dist (m)		130.5			125.3			112.8			147.7	
Turn Bay Length (m)	100.0			40.0			25.0			40.0		25.0
Base Capacity (vph)	115	384		204	467		71	1824		339	2549	1021
Starvation Cap Reductn	0	0		0	0		0	526		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	13	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.52	0.05		80.0	0.42		0.10	1.19		0.53	0.56	0.10

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

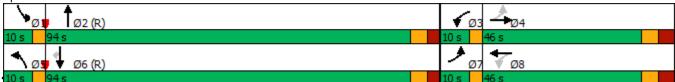
Offset: 102 (64%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 44.4 Intersection LOS: D
Intersection Capacity Utilization 83.0% ICU Level of Service E


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

2029 Future Total AM Peak Scenario 1 (Shared Access on Kirwin Ave) 8:19 pm 07/06/2025 With LRT

	۶	•	1	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		† †	∱ ⊅	
Traffic Volume (veh/h)	0	106	0	960	923	55
Future Volume (Veh/h)	0	106	0	960	923	55
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	115	0	1043	1003	60
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				22		
Upstream signal (m)				126	313	
pX, platoon unblocked	0.83	0.81	0.81			
vC, conflicting volume	1554	532	1063			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	236	0	609			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	87	100			
cM capacity (veh/h)	609	878	782			
				OD 4	00.0	
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	115	522	522	669	394	
Volume Left	0	0	0	0	0	
Volume Right	115	0	0	0	60	
cSH	878	1700	1700	1700	1700	
Volume to Capacity	0.13	0.31	0.31	0.39	0.23	
Queue Length 95th (m)	3.6	0.0	0.0	0.0	0.0	
Control Delay (s)	9.7	0.0	0.0	0.0	0.0	
Lane LOS	A					
Approach Delay (s)	9.7	0.0		0.0		
Approach LOS	Α					
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utiliza	tion		41.5%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	→	\rightarrow	•	←	•	4	†	<i>></i>	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		ሻ	ĵ∍			- ↔			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	18	346	36	7	180	13	67	18	18	70	14	21
Future Volume (vph)	18	346	36	7	180	13	67	18	18	70	14	21
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	20	376	39	8	196	14	73	20	20	76	15	23
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	20	415	8	210	113	114						
Volume Left (vph)	20	0	8	0	73	76						
Volume Right (vph)	0	39	0	14	20	23						
Hadj (s)	0.53	0.00	0.53	0.02	0.06	0.05						
Departure Headway (s)	6.0	5.5	6.3	5.7	5.9	5.9						
Degree Utilization, x	0.03	0.63	0.01	0.34	0.19	0.19						
Capacity (veh/h)	581	642	542	595	535	541						
Control Delay (s)	8.0	16.2	8.2	10.4	10.2	10.2						
Approach Delay (s)	15.8		10.3		10.2	10.2						
Approach LOS	С		В		В	В						
Intersection Summary												
Delay			13.0									
Level of Service			В									
Intersection Capacity Utiliza	ition		34.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	•	†	/	/	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	∱ β			^	
Traffic Volume (veh/h)	0	75	1118	10	0	1073	
Future Volume (Veh/h)	0	75	1118	10	0	1073	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	82	1215	11	0	1166	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			335			105	
pX, platoon unblocked	0.87	0.75			0.75		
vC, conflicting volume	1804	613			1226		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	396	0			632		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	90			100		
cM capacity (veh/h)	504	812			709		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	82	810	416	583	583		
Volume Left	0	0	0	0	0		
Volume Right	82	0	11	0	0		
cSH	812	1700	1700	1700	1700		
Volume to Capacity	0.10	0.48	0.24	0.34	0.34		
Queue Length 95th (m)	2.7	0.0	0.0	0.0	0.0		
Control Delay (s)	9.9	0.0	0.0	0.0	0.0		
Lane LOS	A			,,,	,,,		
Approach Delay (s)	9.9	0.0		0.0			
Approach LOS	A			, .			
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilization	on		43.3%	IC	U Level	of Service	
Analysis Period (min)			15				

	-	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ĵ.			4	W		
Traffic Volume (veh/h)	259	67	18	176	336	49	
Future Volume (Veh/h)	259	67	18	176	336	49	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	282	73	20	191	365	53	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	80						
pX, platoon unblocked			0.91		0.91	0.91	
vC, conflicting volume			355		550	318	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			249		461	209	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			98		27	93	
cM capacity (veh/h)			1205		503	761	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	355	211	418				
Volume Left	0	20	365				
Volume Right	73	0	53				
cSH	1700	1205	525				
Volume to Capacity	0.21	0.02	0.80				
Queue Length 95th (m)	0.0	0.4	60.0				
Control Delay (s)	0.0	0.9	33.5				
Lane LOS		Α	D				
Approach Delay (s)	0.0	0.9	33.5				
Approach LOS			D				
Intersection Summary							
Average Delay			14.4				
Intersection Capacity Utiliza	tion		53.0%	IC	U Level o	f Service	
Analysis Period (min)			15				

	۶	→	•	•	←	•	•	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	†	7		∱ ∱		7	∱ }	
Traffic Volume (vph)	96	1136	118	100	477	115	0	833	71	149	811	74
Future Volume (vph)	96	1136	118	100	477	115	0	833	71	149	811	74
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		1	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	1807	1351	0	3397	0	1617	3320	0
Flt Permitted	0.206			0.067						0.950		
Satd. Flow (perm)	371	3433	1351	121	1807	1351	0	3397	0	1617	3320	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68			68		6			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	104	1235	128	109	518	125	0	982	0	162	962	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	, i		3.5			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm		NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4		4	8		8						
Detector Phase	7	4	4	3	8	8		2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5	45.5		41.0		9.0	41.0	
Total Split (s)	10.0	69.0	69.0	9.0	68.0	68.0		57.0		25.0	82.0	
Total Split (%)	6.3%	43.1%	43.1%	5.6%	42.5%	42.5%		35.6%		15.6%	51.3%	
Maximum Green (s)	7.0	61.5	61.5	6.0	60.5	60.5		50.0		22.0	75.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0	4.0		4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5	3.5		3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5	7.5		7.0		3.0	7.0	

	۶	-	\rightarrow	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Recall Mode	None	None	None	None	None	None		C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0	16.0		14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0	22.0		20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	72.0	60.5	60.5	70.0	59.5	59.5		53.3		19.6	76.0	
Actuated g/C Ratio	0.45	0.38	0.38	0.44	0.37	0.37		0.33		0.12	0.48	
v/c Ratio	0.46	0.95	0.23	0.97	0.77	0.23		0.87		0.82	0.61	
Control Delay	31.7	63.8	16.8	107.6	53.1	16.8		59.2		114.7	27.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	31.7	63.8	16.8	107.6	53.1	16.8		59.2		114.7	27.4	
LOS	С	Е	В	F	D	В		Е		F	С	
Approach Delay		57.4			54.9			59.2			40.0	
Approach LOS		Е			D			Е			D	
Queue Length 50th (m)	19.4	208.7	12.9	20.4	150.9	12.4		166.3		57.1	74.7	
Queue Length 95th (m)	32.3	#254.8	29.2	#62.3	199.0	28.7		#207.8		#88.0	120.1	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0		25.0				50.0		
Base Capacity (vph)	225	1319	561	112	683	553		1135		222	1580	
Starvation Cap Reductn	0	0	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0	0	0		0		0	0	
Reduced v/c Ratio	0.46	0.94	0.23	0.97	0.76	0.23		0.87		0.73	0.61	

Intersection Summary

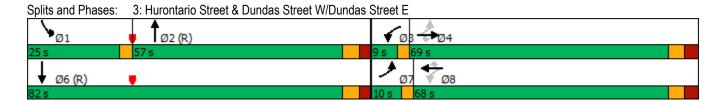
Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.97

Intersection Signal Delay: 52.9 Intersection LOS: D
Intersection Capacity Utilization 89.5% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	1	†	/	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ř	∱ }		ř	↑ ↑		¥	∱ }		7	∱ }	
Traffic Volume (vph)	247	177	74	129	169	133	65	1148	58	99	845	209
Future Volume (vph)	247	177	74	129	169	133	65	1148	58	99	845	209
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	30.0		0.0	45.0		0.0	50.0		0.0	50.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	3226	0	1617	3161	0	1617	3335	0	1617	3267	0
Flt Permitted	0.252			0.584			0.950			0.950		
Satd. Flow (perm)	429	3226	0	994	3161	0	1617	3335	0	1617	3267	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		45			129			3			20	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		218.5			80.6			63.0			136.8	
Travel Time (s)		19.7			7.3			4.5			9.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)										•		
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
Lane Group Flow (vph)	268	272	0	140	329	0	71	1311	0	108	1145	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	2010	3.0	, agair	2010	3.0	ı uğılı	2010	3.0	, agaic	20.0	3.0	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25	1.01	15	25	1.01	15	25	1.01	15	25	1.01	15
Turn Type	pm+pt	NA	10	pm+pt	NA	10	Prot	NA	10	Prot	NA	10
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8						'		
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase	'			<u> </u>			<u> </u>			'	0	
Minimum Initial (s)	4.5	5.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.0	56.0		9.0	56.0		9.0	51.5		9.5	51.5	
Total Split (s)	25.0	66.0		15.0	56.0		20.0	59.0		20.0	59.0	
Total Split (%)	15.6%	41.3%		9.4%	35.0%		12.5%	36.9%		12.5%	36.9%	
Maximum Green (s)	22.0	58.0		12.0	48.0		17.0	51.5		17.0	51.5	
Yellow Time (s)	3.0	4.0		3.0	40.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.5		0.0	3.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.5		3.0	7.5	

6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

	۶	→	\rightarrow	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		15.0			15.0			14.0			14.0	
Flash Dont Walk (s)		33.0			33.0			30.0			30.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	45.7	25.9		32.8	16.0		12.4	84.9		15.9	88.5	
Actuated g/C Ratio	0.29	0.16		0.20	0.10		0.08	0.53		0.10	0.55	
v/c Ratio	0.95	0.49		0.56	0.76		0.57	0.74		0.68	0.63	
Control Delay	90.5	52.9		54.7	53.8		79.3	35.6		95.4	20.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	49.0		0.0	0.3	
Total Delay	90.5	52.9		54.7	53.8		79.3	84.6		95.4	21.0	
LOS	F	D		D	D		Е	F		F	С	
Approach Delay		71.6			54.1			84.3			27.4	
Approach LOS		Е			D			F			С	
Queue Length 50th (m)	77.2	36.7		36.8	35.0		24.4	140.0		38.0	73.3	
Queue Length 95th (m)	#113.7	50.5		54.5	51.6		m34.1	173.0		60.3	90.1	
Internal Link Dist (m)		194.5			56.6			39.0			112.8	
Turn Bay Length (m)	30.0			45.0			50.0			50.0		
Base Capacity (vph)	285	1198		251	1038		172	1770		184	1815	
Starvation Cap Reductn	0	0		0	0		0	0		0	204	
Spillback Cap Reductn	0	0		0	12		0	666		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.94	0.23		0.56	0.32		0.41	1.19		0.59	0.71	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

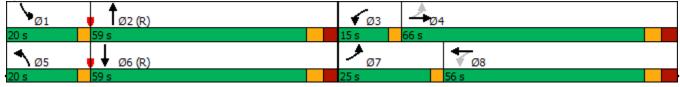
Offset: 93 (58%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95

Intersection Signal Delay: 59.0 Intersection LOS: E
Intersection Capacity Utilization 81.7% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

	۶	→	•	•	←	•	4	†	/	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		7	∱ }		ኻ	^	7
Traffic Volume (vph)	55	3	16	16	5	176	6	1422	20	164	1305	89
Future Volume (vph)	55	3	16	16	5	176	6	1422	20	164	1305	89
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	100.0		0.0	40.0		0.0	25.0		0.0	40.0		25.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	1566	0	1617	1537	0	1617	3350	0	1617	3355	1321
Flt Permitted	0.230			0.744			0.950			0.950		
Satd. Flow (perm)	391	1566	0	1266	1537	0	1617	3350	0	1617	3355	1321
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		17			132			1				75
Link Speed (k/h)		20			40			50			50	
Link Distance (m)		154.5			149.3			136.8			171.7	
Travel Time (s)		27.8			13.4			9.8			12.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)						•			•			
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •			• 70			0,0	
Lane Group Flow (vph)	60	20	0	17	196	0	7	1568	0	178	1418	97
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	. •	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8				_		•		6
Detector Phase	7	4		3	8		5	2		1	6	6
Switch Phase	•							_		•		J
Minimum Initial (s)	5.0	10.0		6.0	10.0		5.0	10.0		5.0	10.0	10.0
Minimum Split (s)	9.0	46.0		9.0	46.0		9.0	38.0		9.0	38.0	38.0
Total Split (s)	10.0	46.0		10.0	46.0		10.0	94.0		10.0	94.0	94.0
Total Split (%)	6.3%	28.8%		6.3%	28.8%		6.3%	58.8%		6.3%	58.8%	58.8%
Maximum Green (s)	7.0	38.0		7.0	38.0		7.0	87.0		7.0	87.0	87.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.0		0.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)				3.0	8.0		3.0			3.0	7.0	7.0
TOTAL LOST TIME (S)	3.0	8.0		3.0	0.0		ა.0	7.0		3.0	1.0	1.0

	۶	→	•	•	←	•	\blacktriangleleft	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		12.0			12.0			10.0			10.0	10.0
Flash Dont Walk (s)		26.0			26.0			21.0			21.0	21.0
Pedestrian Calls (#/hr)		0			0			0			0	0
Act Effct Green (s)	25.2	17.4		23.8	13.4		6.3	87.1		33.5	121.4	121.4
Actuated g/C Ratio	0.16	0.11		0.15	0.08		0.04	0.54		0.21	0.76	0.76
v/c Ratio	0.53	0.11		0.08	0.79		0.11	0.86		0.53	0.56	0.10
Control Delay	72.1	28.8		53.4	46.0		105.7	28.3		64.6	10.5	2.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	47.4		0.0	0.0	0.0
Total Delay	72.1	28.8		53.4	46.0		105.7	75.7		64.6	10.5	2.7
LOS	Е	С		D	D		F	Е		Е	В	Α
Approach Delay		61.3			46.6			75.8			15.7	
Approach LOS		Е			D			Е			В	
Queue Length 50th (m)	17.7	0.9		4.9	21.3		2.3	246.4		53.6	86.6	1.5
Queue Length 95th (m)	30.4	10.0		11.9	49.4		m3.5	m283.2		#91.7	168.6	9.9
Internal Link Dist (m)		130.5			125.3			112.8			147.7	
Turn Bay Length (m)	100.0			40.0			25.0			40.0		25.0
Base Capacity (vph)	115	384		205	465		71	1824		338	2546	1020
Starvation Cap Reductn	0	0		0	0		0	531		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.52	0.05		0.08	0.42		0.10	1.21		0.53	0.56	0.10

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

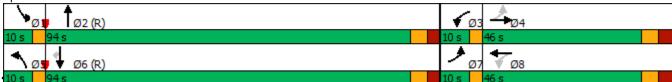
Offset: 102 (64%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 45.2 Intersection LOS: D
Intersection Capacity Utilization 83.7% ICU Level of Service E


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	•	•	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		† †	∱ 1≽	
Traffic Volume (veh/h)	0	106	0	1001	898	55
Future Volume (Veh/h)	0	106	0	1001	898	55
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	115	0	1088	976	60
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				126	313	
pX, platoon unblocked	0.82	0.83	0.83			
vC, conflicting volume	1550	518	1036			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	293	0	624			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	87	100			
cM capacity (veh/h)	556	896	788			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	115	544	544	651	385	
Volume Left	0	0	0	0	0	
Volume Right	115	0	0	0	60	
cSH	896	1700	1700	1700	1700	
Volume to Capacity	0.13	0.32	0.32	0.38	0.23	
Queue Length 95th (m)	3.5	0.0	0.0	0.0	0.0	
Control Delay (s)	9.6	0.0	0.0	0.0	0.0	
Lane LOS	Α					
Approach Delay (s)	9.6	0.0		0.0		
Approach LOS	А					
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utiliza	ition		40.8%	IC	U Level	of Service
Analysis Period (min)			15			

	۶	→	•	•	←	•	4	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1>		ሻ	ĵ∍			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	18	346	42	20	167	13	67	18	18	70	14	21
Future Volume (vph)	18	346	42	20	167	13	67	18	18	70	14	21
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	20	376	46	22	182	14	73	20	20	76	15	23
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	20	422	22	196	113	114						
Volume Left (vph)	20	0	22	0	73	76						
Volume Right (vph)	0	46	0	14	20	23						
Hadj (s)	0.53	-0.01	0.53	0.02	0.06	0.05						
Departure Headway (s)	6.0	5.5	6.3	5.8	5.9	5.9						
Degree Utilization, x	0.03	0.64	0.04	0.31	0.19	0.19						
Capacity (veh/h)	581	634	541	594	535	541						
Control Delay (s)	8.0	16.5	8.3	10.2	10.2	10.2						
Approach Delay (s)	16.1		10.0		10.2	10.2						
Approach LOS	С		Α		В	В						
Intersection Summary												
Delay			13.1									
Level of Service			В									
Intersection Capacity Utiliza	ation		34.4%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	•	†	<i>></i>	>	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	∱ 1≽			^
Traffic Volume (veh/h)	0	75	1159	10	0	1048
Future Volume (Veh/h)	0	75	1159	10	0	1048
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	82	1260	11	0	1139
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			335			105
pX, platoon unblocked	0.86	0.75			0.75	
vC, conflicting volume	1835	636			1271	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	472	0			690	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	90			100	
cM capacity (veh/h)	448	812			674	
			NDO	05.4		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	82	840	431	570	570	
Volume Left	0	0	0	0	0	
Volume Right	82	0	11	0	0	
cSH	812	1700	1700	1700	1700	
Volume to Capacity	0.10	0.49	0.25	0.34	0.34	
Queue Length 95th (m)	2.7	0.0	0.0	0.0	0.0	
Control Delay (s)	9.9	0.0	0.0	0.0	0.0	
Lane LOS	А					
Approach Delay (s)	9.9	0.0		0.0		
Approach LOS	Α					
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliz	zation		44.4%	IC	U Level	of Service
Analysis Period (min)			15			

	•	•	†	/	>	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	↑ ↑			^
Traffic Volume (veh/h)	0	97	1174	60	0	1073
Future Volume (Veh/h)	0	97	1174	60	0	1073
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	105	1276	65	0	1166
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			377			63
pX, platoon unblocked	0.87	0.75			0.75	
vC, conflicting volume	1892	670			1341	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	524	0			796	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	87			100	
cM capacity (veh/h)	419	816			618	
			NDO	05.4		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	105	851	490	583	583	
Volume Left	0	0	0	0	0	
Volume Right	105	0	65	0	0	
cSH	816	1700	1700	1700	1700	
Volume to Capacity	0.13	0.50	0.29	0.34	0.34	
Queue Length 95th (m)	3.5	0.0	0.0	0.0	0.0	
Control Delay (s)	10.1	0.0	0.0	0.0	0.0	
Lane LOS	В					
Approach Delay (s)	10.1	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utiliz	zation		47.0%	IC	U Level	of Service
Analysis Period (min)			15			

	-	•	•	←	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	¥#		
Traffic Volume (veh/h)	314	20	5	176	255	35	
Future Volume (Veh/h)	314	20	5	176	255	35	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	341	22	5	191	277	38	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	80						
pX, platoon unblocked			0.92		0.92	0.92	
vC, conflicting volume			363		553	352	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			260		467	248	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		45	95	
cM capacity (veh/h)			1196		506	725	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	363	196	315				
Volume Left	0	5	277				
Volume Right	22	0	38				
cSH	1700	1196	525				
Volume to Capacity	0.21	0.00	0.60				
Queue Length 95th (m)	0.0	0.1	31.3				
Control Delay (s)	0.0	0.2	21.6				
Lane LOS	0.0	Α.Δ	C C				
Approach Delay (s)	0.0	0.2	21.6				
Approach LOS	0.0	0.2	C C				
••							
Intersection Summary							
Average Delay			7.8				
Intersection Capacity Utiliza	ation		41.0%	IC	U Level c	t Service	
Analysis Period (min)			15				

	SBR
Lane Configurations \$\dagger\d	
	128
	128
	1640
Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.0 3.3	3.3
Grade (%) 0% 0% 0%	
Storage Length (m) 40.0 25.0 25.0 25.0 0.0 0.0 50.0	0.0
Storage Lanes 1 1 1 1 0 0 1	0
Taper Length (m) 7.5 7.5 7.5	
Satd. Flow (prot) 1713 3433 1351 1713 1807 1351 0 3366 0 1617 3303	0
Flt Permitted 0.068 0.192 0.950	
Satd. Flow (perm) 123 3433 1351 346 1807 1351 0 3366 0 1617 3303	0
	Yes
Satd. Flow (RTOR) 68 68 12 12	
Link Speed (k/h) 50 50 50	
Link Distance (m) 185.1 367.5 141.9 126.5	
Travel Time (s) 13.3 26.5 10.2 9.1	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
	0.92
	100%
Heavy Vehicles (%) 2% 4% 2% 2% 4% 2% 2% 4% 2% 4%	2%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0	0
Parking (#/hr)	
Mid-Block Traffic (%) 0% 0% 0%	
Shared Lane Traffic (%)	
Lane Group Flow (vph) 176 841 135 139 1058 170 0 1099 0 200 1163	0
Enter Blocked Intersection No	No
	Right
Median Width(m) 3.5 3.5 3.0 3.0	J
Link Offset(m) 0.0 0.0 0.0 0.0	
Crosswalk Width(m) 4.8 4.8 4.8 4.8	
Two way Left Turn Lane	
Headway Factor 1.04 1.01 1.22 1.04 1.01 1.22 1.04 1.01 1.22 1.12 1.04	1.26
Turning Speed (k/h) 25 15 25 15 25	15
Turn Type pm+pt NA Perm pm+pt NA Perm NA Prot NA	
Protected Phases 7 4 3 8 2 1 6	
Permitted Phases 4 4 8 8	
Detector Phase 7 4 4 3 8 8 2 1 6	
Switch Phase	
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Minimum Split (s) 9.0 45.5 45.5 9.0 45.5 45.5 41.0 9.0 41.0	
Total Split (s) 14.0 66.0 66.0 14.0 66.0 57.0 23.0 80.0	
Total Split (%) 8.8% 41.3% 41.3% 8.8% 41.3% 41.3% 35.6% 14.4% 50.0%	
Maximum Green (s) 11.0 58.5 58.5 11.0 58.5 58.5 50.0 20.0 73.0	
Yellow Time (s) 3.0 4.0 4.0 3.0 4.0 4.0 4.0 3.0 4.0	
All-Red Time (s) 0.0 3.5 3.5 0.0 3.5 3.5 3.0 0.0 3.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Total Lost Time (s) 3.0 7.5 7.5 3.0 7.5 7.5 7.0 3.0 7.0	

	۶	→	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Recall Mode	None	None	None	None	None	None		C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0	16.0		14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0	22.0		20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	74.4	58.9	58.9	73.6	58.5	58.5		50.0		20.0	73.0	
Actuated g/C Ratio	0.46	0.37	0.37	0.46	0.37	0.37		0.31		0.12	0.46	
v/c Ratio	1.06	0.67	0.25	0.56	1.60	0.32		1.04		0.99	0.77	
Control Delay	124.1	45.5	18.7	32.6	312.2	23.1		89.7		134.5	39.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	124.1	45.5	18.7	32.6	312.2	23.1		89.7		134.5	39.5	
LOS	F	D	В	С	F	С		F		F	D	
Approach Delay		54.4			247.8			89.7			53.4	
Approach LOS		D			F			F			D	
Queue Length 50th (m)	~47.3	124.4	15.0	25.9	~504.7	23.8		~206.3		71.0	111.0	
Queue Length 95th (m)	#100.7	148.9	32.7	40.5	#590.0	44.8		#251.7	n	n#123.8	174.6	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0		25.0				50.0		
Base Capacity (vph)	166	1264	540	254	660	537		1060		202	1513	
Starvation Cap Reductn	0	0	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0	0	0		0		0	0	
Reduced v/c Ratio	1.06	0.67	0.25	0.55	1.60	0.32		1.04		0.99	0.77	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 145

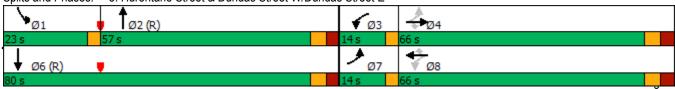
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.60 Intersection Signal Delay: 115.0 Intersection Capacity Utilization 118.1%

Intersection LOS: F
ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Hurontario Street & Dundas Street W/Dundas Street E

	ၨ	→	•	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	∱ }		ሻ	∱ }		ሻ	↑ Ъ	
Traffic Volume (vph)	57	236	89	109	312	179	106	905	69	243	1076	126
Future Volume (vph)	57	236	89	109	312	179	106	905	69	243	1076	126
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	30.0		0.0	45.0		0.0	50.0		0.0	50.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	3235	0	1617	3193	0	1617	3323	0	1617	3308	0
Flt Permitted	0.222			0.386			0.950			0.950		
Satd. Flow (perm)	378	3235	0	657	3193	0	1617	3323	0	1617	3308	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		35			73			6			9	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		218.5			80.6			104.7			136.8	
Travel Time (s)		19.7			7.3			7.5			9.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	62	354	0	118	534	0	115	1059	0	264	1307	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0	, i		3.0	, i		3.0			3.0	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.5	5.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.0	56.0		9.0	56.0		9.0	51.5		9.5	51.5	
Total Split (s)	10.0	56.0		10.0	56.0		25.0	69.0		25.0	69.0	
Total Split (%)	6.3%	35.0%		6.3%	35.0%		15.6%	43.1%		15.6%	43.1%	
Maximum Green (s)	7.0	48.0		7.0	48.0		22.0	61.5		22.0	61.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.5		0.0	3.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.5		3.0	7.5	

	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		15.0			15.0			14.0			14.0	
Flash Dont Walk (s)		33.0			33.0			30.0			30.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	40.0	28.1		40.7	30.1		16.6	64.3		39.1	86.8	
Actuated g/C Ratio	0.25	0.18		0.25	0.19		0.10	0.40		0.24	0.54	
v/c Ratio	0.42	0.59		0.56	0.81		0.68	0.79		0.67	0.73	
Control Delay	50.9	57.7		57.0	63.5		74.4	38.2		81.7	21.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	10.8		0.0	0.4	
Total Delay	50.9	57.7		57.0	63.5		74.4	49.0		81.7	22.2	
LOS	D	Е		Е	Е		Е	D		F	С	
Approach Delay		56.7			62.3			51.5			32.2	
Approach LOS		Е			Е			D			С	
Queue Length 50th (m)	15.7	52.0		31.1	80.1		40.3	95.5		80.1	93.2	
Queue Length 95th (m)	27.0	65.7		46.7	96.8		m42.2	m95.3		#132.6	125.6	
Internal Link Dist (m)		194.5			56.6			80.7			112.8	
Turn Bay Length (m)	30.0			45.0			50.0			50.0		
Base Capacity (vph)	148	995		209	1009		224	1338		395	1797	
Starvation Cap Reductn	0	0		0	0		0	0		0	146	
Spillback Cap Reductn	0	0		0	2		0	265		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.42	0.36		0.56	0.53		0.51	0.99		0.67	0.79	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

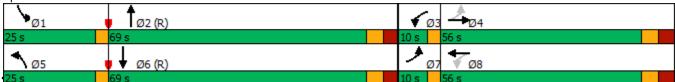
Offset: 93 (58%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.81

Intersection Signal Delay: 45.9 Intersection LOS: D
Intersection Capacity Utilization 78.7% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

2029 Future Total PM Peak Scenario 1 (with Kirwin Ave Shared Access) 8:23 pm 07/06/2025 With LRT

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		ሻ	∱ }		ሻ	^	7
Traffic Volume (vph)	70	5	18	23	5	322	6	1179	39	228	1358	59
Future Volume (vph)	70	5	18	23	5	322	6	1179	39	228	1358	59
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	100.0		0.0	40.0		0.0	25.0		0.0	40.0		25.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1617	1578	0	1617	1534	0	1617	3341	0	1617	3355	1321
Flt Permitted	0.149		•	0.741	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.950			0.950		
Satd. Flow (perm)	254	1578	0	1261	1534	0	1617	3341	0	1617	3355	1321
Right Turn on Red	201	1010	Yes	1201	1001	Yes	1011	0011	Yes	1011	0000	Yes
Satd. Flow (RTOR)		20			204	. 00		3				75
Link Speed (k/h)		20			40			50			50	10
Link Distance (m)		154.5			149.3			136.8			171.7	
Travel Time (s)		27.8			13.4			9.8			12.4	
Confl. Peds. (#/hr)		21.0			10.4			3.0			12.7	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	U	U	U	U	U	U	U	U	U	U	U	U
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)		0 70			0 70			0 70			0 70	
Lane Group Flow (vph)	76	25	0	25	355	0	7	1324	0	248	1476	64
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	3.0	rtigrit	Lon	3.0	rtigiit	Loit	3.0	ragiit	LOIL	3.0	rtigrit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		4.0			4.0			4.0			7.0	
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26
Turning Speed (k/h)	25	1.04	1.20	25	1.04	1.20	25	1.04	1.20	25	1.04	1.20
Turn Type	pm+pt	NA	10	pm+pt	NA	13	Prot	NA	13	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	I CIIII
Permitted Phases	4	4		8	O		5			ı	U	6
Detector Phase	7	4		3	8		5	2		1	6	6
Switch Phase	, <u>, , , , , , , , , , , , , , , , , , </u>	4		3	0		ິນ			ı	U	U
Minimum Initial (s)	5.0	10.0		6.0	10.0		5.0	10.0		5.0	10.0	10.0
. ,	9.0	46.0		9.0	46.0		9.0	38.0		9.0	38.0	38.0
Minimum Split (s)												
Total Split (s)	10.0	46.0		10.0	46.0		10.0	84.0		20.0	94.0	94.0
Total Split (%)	6.3%	28.8%		6.3%	28.8%		6.3%	52.5%		12.5%	58.8%	58.8%
Maximum Green (s)	7.0	38.0		7.0	38.0		7.0	77.0		17.0	87.0	87.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.0		0.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.0		3.0	7.0	7.0

	•	→	\rightarrow	•	•	•	•	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		12.0			12.0			10.0			10.0	10.0
Flash Dont Walk (s)		26.0			26.0			21.0			21.0	21.0
Pedestrian Calls (#/hr)		0			0			0			0	0
Act Effct Green (s)	36.1	26.9		34.6	22.9		6.3	77.0		32.1	109.9	109.9
Actuated g/C Ratio	0.23	0.17		0.22	0.14		0.04	0.48		0.20	0.69	0.69
v/c Ratio	0.66	0.09		0.09	0.90		0.11	0.82		0.77	0.64	0.07
Control Delay	72.4	23.2		43.4	53.3		96.3	21.7		76.1	17.9	2.4
Queue Delay	0.0	0.0		0.0	0.0		0.0	10.8		0.0	0.1	0.0
Total Delay	72.4	23.2		43.4	53.3		96.3	32.5		76.1	18.0	2.4
LOS	Е	С		D	D		F	С		Е	В	Α
Approach Delay		60.2			52.7			32.8			25.5	
Approach LOS		E			D			С			С	
Queue Length 50th (m)	20.6	1.5		6.6	53.7		2.2	159.8		79.3	129.0	0.0
Queue Length 95th (m)	32.3	10.2		13.7	88.1		m4.2	238.6		#166.1	235.5	5.7
Internal Link Dist (m)		130.5			125.3			112.8			147.7	
Turn Bay Length (m)	100.0			40.0			25.0			40.0		25.0
Base Capacity (vph)	116	390		290	519		71	1609		324	2305	931
Starvation Cap Reductn	0	0		0	0		0	278		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	130	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.66	0.06		0.09	0.68		0.10	0.99		0.77	0.68	0.07

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 102 (64%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90
Intersection Signal Delay: 3

Intersection Signal Delay: 32.1 Intersection LOS: C
Intersection Capacity Utilization 90.3% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

2029 Future Total PM Peak Scenario 1 (with Kirwin Ave Shared Access) 8:23 pm 07/06/2025 With LRT

	٠	*	4	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	∱ }	
Traffic Volume (veh/h)	0	81	0	1111	1132	75
Future Volume (Veh/h)	0	81	0	1111	1132	75
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	88	0	1208	1230	82
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				126	313	
pX, platoon unblocked	0.84	0.72	0.72	0	3.3	
vC, conflicting volume	1875	656	1312			
vC1, stage 1 conf vol	1070	000	1012			
vC2, stage 2 conf vol						
vCu, unblocked vol	181	0	664			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)	0.0	3.0	1.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	89	100			
cM capacity (veh/h)	666	784	665			
				00.4	25.0	
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	88	604	604	820	492	
Volume Left	0	0	0	0	0	
Volume Right	88	0	0	0	82	
cSH	784	1700	1700	1700	1700	
Volume to Capacity	0.11	0.36	0.36	0.48	0.29	
Queue Length 95th (m)	3.0	0.0	0.0	0.0	0.0	
Control Delay (s)	10.2	0.0	0.0	0.0	0.0	
Lane LOS	В					
Approach Delay (s)	10.2	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliza	ation		46.2%	IC	CU Level o	of Service
Analysis Period (min)			15			

	٠	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	£		ሻ	ĵ∍			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	84	309	72	16	376	22	129	26	21	26	17	46
Future Volume (vph)	84	309	72	16	376	22	129	26	21	26	17	46
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	91	336	78	17	409	24	140	28	23	28	18	50
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	91	414	17	433	191	96						
Volume Left (vph)	91	0	17	0	140	28						
Volume Right (vph)	0	78	0	24	23	50						
Hadj (s)	0.53	-0.07	0.53	0.03	0.11	-0.21						
Departure Headway (s)	6.8	6.2	6.9	6.3	6.8	6.9						
Degree Utilization, x	0.17	0.71	0.03	0.76	0.36	0.18						
Capacity (veh/h)	504	562	503	550	468	450						
Control Delay (s)	10.0	21.7	8.9	25.7	13.7	11.4						
Approach Delay (s)	19.6		25.0		13.7	11.4						
Approach LOS	С		D		В	В						
Intersection Summary												
Delay			20.0									
Level of Service			С									
Intersection Capacity Utiliza	ation		52.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	4	†	~	/	 	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	∱ 1≽			^	
Traffic Volume (veh/h)	0	30	1050	65	0	1274	
Future Volume (Veh/h)	0	30	1050	65	0	1274	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	33	1141	71	0	1385	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			335			105	
pX, platoon unblocked	0.84	0.72			0.72		
vC, conflicting volume	1869	606			1212		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	185	0			533		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	96			100		
cM capacity (veh/h)	662	786			747		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	33	761	451	692	692		
Volume Left	0	0	0	032	032		
Volume Right	33	0	71	0	0		
cSH	786	1700	1700	1700	1700		
Volume to Capacity	0.04	0.45	0.27	0.41	0.41		
Queue Length 95th (m)	1.1	0.43	0.27	0.0	0.0		
Control Delay (s)	9.8	0.0	0.0	0.0	0.0		
Lane LOS	9.0 A	0.0	0.0	0.0	0.0		
Approach Delay (s)	9.8	0.0		0.0			
Approach LOS	9.0 A	0.0		0.0			
•	А						
Intersection Summary							
Average Delay			0.1				
Intersection Capacity Utiliza	ation		41.1%	IC	U Level of	of Service	:
Analysis Period (min)			15				

	-	•	•	•	•	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	W		
Traffic Volume (veh/h)	292	256	40	431	169	35	
Future Volume (Veh/h)	292	256	40	431	169	35	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	
Hourly flow rate (vph)	298	261	41	440	172	36	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	80						
pX, platoon unblocked			0.89		0.89	0.89	
vC, conflicting volume			559		950	428	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			447		885	301	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			96		36	95	
cM capacity (veh/h)			995		270	660	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	559	481	208				
Volume Left	0	41	172				
Volume Right	261	0	36				
cSH	1700	995	301				
Volume to Capacity	0.33	0.04	0.69				
Queue Length 95th (m)	0.0	1.0	38.1				
Control Delay (s)	0.0	1.2	39.9				
Lane LOS		Α	Е				
Approach Delay (s)	0.0	1.2	39.9				
Approach LOS			Е				
Intersection Summary							
Average Delay			7.1				
Intersection Capacity Utilizat	ion		74.3%	IC	U Level c	f Service	D
Analysis Period (min)			15				

	۶	→	•	•	←	•	•	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	†	7		↑ ↑		7	∱ }	
Traffic Volume (vph)	187	774	124	156	973	207	0	865	146	184	914	128
Future Volume (vph)	187	774	124	156	973	207	0	865	146	184	914	128
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		1	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	1807	1351	0	3366	0	1617	3303	0
Flt Permitted	0.068			0.190						0.950		
Satd. Flow (perm)	123	3433	1351	343	1807	1351	0	3366	0	1617	3303	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68			68		12			13	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	203	841	135	170	1058	225	0	1099	0	200	1132	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm		NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4		4	8		8						
Detector Phase	7	4	4	3	8	8		2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5	45.5		41.0		9.0	41.0	
Total Split (s)	14.0	66.0	66.0	14.0	66.0	66.0		57.0		23.0	80.0	
Total Split (%)	8.8%	41.3%	41.3%	8.8%	41.3%	41.3%		35.6%		14.4%	50.0%	
Maximum Green (s)	11.0	58.5	58.5	11.0	58.5	58.5		50.0		20.0	73.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0	4.0		4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5	3.5		3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5	7.5		7.0		3.0	7.0	

	۶	→	\rightarrow	•	—	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Recall Mode	None	None	None	None	None	None	C	C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0	16.0		14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0	22.0		20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	74.2	58.7	58.7	73.8	58.5	58.5		50.0		20.0	73.0	
Actuated g/C Ratio	0.46	0.37	0.37	0.46	0.37	0.37		0.31		0.12	0.46	
v/c Ratio	1.22	0.67	0.25	0.68	1.60	0.42		1.04		0.99	0.75	
Control Delay	176.9	45.7	18.7	39.3	312.2	28.6		89.7		136.8	37.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	176.9	45.7	18.7	39.3	312.2	28.6		89.7		136.8	37.6	
LOS	F	D	В	D	F	С		F		F	D	
Approach Delay		65.2			236.4			89.7			52.5	
Approach LOS		Е			F			F			D	
Queue Length 50th (m)	~66.3	124.4	15.0	32.3	~504.7	38.9		206.3		71.1	101.6	
Queue Length 95th (m)	#122.5	148.9	32.7	48.9	#590.0	64.9		251.7		#126.4	163.7	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0		25.0				50.0		
Base Capacity (vph)	166	1259	538	252	660	537		1060		202	1514	
Starvation Cap Reductn	0	0	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0	0	0		0		0	0	
Reduced v/c Ratio	1.22	0.67	0.25	0.67	1.60	0.42		1.04		0.99	0.75	

Intersection Summary

Area Type: Other

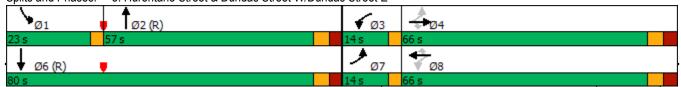
Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.60 Intersection Signal Delay: 116.3 Intersection Capacity Utilization 119.5%


Intersection LOS: F
ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	•	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	↑ Ъ		ች	∱ Ъ		*	∱ ⊅		*	↑ Ъ	
Traffic Volume (vph)	57	211	89	81	298	152	106	952	45	243	1076	126
Future Volume (vph)	57	211	89	81	298	152	106	952	45	243	1076	126
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.5	3.0	3.3	3.3
Grade (%)	0.0	0%	0.0	0.0	0%	0.0	0.0	0%	0.0	0.0	0%	0.0
Storage Length (m)	30.0	070	0.0	45.0	070	0.0	50.0	070	0.0	50.0	070	0.0
Storage Lanes	1		0.0	10.0		0.0	1		0.0	1		0.0
Taper Length (m)	7.5		•	7.5		J	7.5		•	7.5		J
Satd. Flow (prot)	1617	3223	0	1617	3205	0	1617	3335	0	1617	3308	0
Flt Permitted	0.251	OLLO	•	0.408	0200	•	0.950	0000	•	0.950	0000	J
Satd. Flow (perm)	427	3223	0	694	3205	0	1617	3335	0	1617	3308	0
Right Turn on Red	721	0220	Yes	034	0200	Yes	1017	0000	Yes	1017	0000	Yes
Satd. Flow (RTOR)		42	103		58	103		3	103		9	103
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		218.5			80.6			62.7			136.8	
Travel Time (s)		19.7			7.3			4.5			9.8	
Confl. Peds. (#/hr)		13.7			1.5			4.5			9.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
			2%		4%		2%	4%			4%	
Heavy Vehicles (%)	2%	4%		2%		2%			2%	2%		2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		00/			00/			00/			00/	
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)	CO	200	0	00	400	^	445	4004	^	004	4207	
Lane Group Flow (vph)	62 No.	326	0	88 Na	489	0	115	1084	0	264	1307	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.40	4.04	4.00	4.40	4.04	4.00	4.40	4.04	4.00	4.40	4.04	4.00
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8			_					
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.5	5.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.0	56.0		9.0	56.0		9.0	51.5		9.5	51.5	
Total Split (s)	10.0	56.0		10.0	56.0		25.0	69.0		25.0	69.0	
Total Split (%)	6.3%	35.0%		6.3%	35.0%		15.6%	43.1%		15.6%	43.1%	
Maximum Green (s)	7.0	48.0		7.0	48.0		22.0	61.5		22.0	61.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.5		0.0	3.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.5		3.0	7.5	

6: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

	۶	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		15.0			15.0			14.0			14.0	
Flash Dont Walk (s)		33.0			33.0			30.0			30.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	38.1	26.2		38.8	28.2		16.6	65.6		39.7	88.7	
Actuated g/C Ratio	0.24	0.16		0.24	0.18		0.10	0.41		0.25	0.55	
v/c Ratio	0.41	0.58		0.42	0.80		0.68	0.79		0.66	0.71	
Control Delay	51.8	56.8		51.9	65.7		73.5	40.4		83.2	20.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	10.0		0.0	0.4	
Total Delay	51.8	56.8		51.9	65.7		73.5	50.4		83.2	20.4	
LOS	D	Е		D	Е		Е	D		F	С	
Approach Delay		56.0			63.6			52.6			31.0	
Approach LOS		Е			Е			D			С	
Queue Length 50th (m)	16.0	46.4		23.1	74.7		39.8	108.0		82.5	58.4	
Queue Length 95th (m)	27.7	60.5		37.1	92.0		m43.1	m107.6		125.0	98.3	
Internal Link Dist (m)		194.5			56.6			38.7			112.8	
Turn Bay Length (m)	30.0			45.0			50.0			50.0		
Base Capacity (vph)	153	996		208	1002		224	1369		401	1837	
Starvation Cap Reductn	0	0		0	0		0	0		0	152	
Spillback Cap Reductn	0	0		0	2		0	267		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.41	0.33		0.42	0.49		0.51	0.98		0.66	0.78	

Intersection Summary

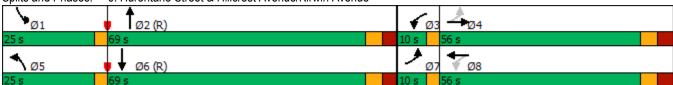
Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 93 (58%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.80

Intersection Signal Delay: 45.6 Intersection LOS: D
Intersection Capacity Utilization 77.9% ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	→	•	•	+	•	•	†	~	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	f)		ች	f)		ሻ	ተ ኈ		ች	^	7
Traffic Volume (vph)	70	5	18	23	5	322	6	1199	39	228	1358	59
Future Volume (vph)	70	5	18	23	5	322	6	1199	39	228	1358	59
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3	3.0	3.3	3.3
Grade (%)	0.0	0%	0.0	0.0	0%	0.0	0.0	0%	0.0	0.0	0%	0.0
Storage Length (m)	100.0	070	0.0	40.0	070	0.0	25.0	070	0.0	40.0	070	25.0
Storage Lanes	1		0.0	1		0	1		0.0	1		1
Taper Length (m)	7.5		•	7.5			7.5		•	7.5		•
Satd. Flow (prot)	1617	1578	0	1617	1534	0	1617	3341	0	1617	3355	1321
Flt Permitted	0.148	1070	U	0.741	1004	· ·	0.950	00+1	U	0.950	0000	1021
Satd. Flow (perm)	252	1578	0	1261	1534	0	1617	3341	0	1617	3355	1321
Right Turn on Red	202	1070	Yes	1201	1004	Yes	1017	00+1	Yes	1017	0000	Yes
Satd. Flow (RTOR)		20	163		202	163		3	163			75
Link Speed (k/h)		20			40			50			50	75
Link Distance (m)		154.5			149.3			136.8			171.7	
		27.8			13.4			9.8			12.4	
Travel Time (s)		21.0			13.4			9.0			12.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		201			201			201			•	
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)			_				_					
Lane Group Flow (vph)	76	25	0	25	355	0	7	1345	0	248	1476	64
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA		Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8								6
Detector Phase	7	4		3	8		5	2		1	6	6
Switch Phase												
Minimum Initial (s)	5.0	10.0		6.0	10.0		5.0	10.0		5.0	10.0	10.0
Minimum Split (s)	9.0	46.0		9.0	46.0		9.0	38.0		9.0	38.0	38.0
Total Split (s)	10.0	46.0		10.0	46.0		10.0	84.0		20.0	94.0	94.0
Total Split (%)	6.3%	28.8%		6.3%	28.8%		6.3%	52.5%		12.5%	58.8%	58.8%
Maximum Green (s)	7.0	38.0		7.0	38.0		7.0	77.0		17.0	87.0	87.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	4.0		0.0	4.0		0.0	3.0		0.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	8.0		3.0	8.0		3.0	7.0		3.0	7.0	7.0

9: Hurontario Street & Cooksville GO Station Access/John Street

	۶	→	•	•	←	•	\blacktriangleleft	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		12.0			12.0			10.0			10.0	10.0
Flash Dont Walk (s)		26.0			26.0			21.0			21.0	21.0
Pedestrian Calls (#/hr)		0			0			0			0	0
Act Effct Green (s)	36.3	27.1		34.8	23.1		6.3	77.0		31.9	109.8	109.8
Actuated g/C Ratio	0.23	0.17		0.22	0.14		0.04	0.48		0.20	0.69	0.69
v/c Ratio	0.66	0.09		0.09	0.90		0.11	0.84		0.77	0.64	0.07
Control Delay	72.3	23.1		43.3	53.8		99.5	21.3		76.5	18.0	2.4
Queue Delay	0.0	0.0		0.0	0.0		0.0	11.6		0.0	0.1	0.0
Total Delay	72.3	23.1		43.3	53.8		99.5	32.9		76.5	18.1	2.4
LOS	Е	С		D	D		F	С		Е	В	Α
Approach Delay		60.1			53.1			33.3			25.6	
Approach LOS		Е			D			С			С	
Queue Length 50th (m)	20.6	1.5		6.5	54.4		2.2	185.7		79.4	129.7	0.0
Queue Length 95th (m)	32.2	10.2		13.7	88.8		m4.3	244.2		#166.8	236.3	5.8
Internal Link Dist (m)		130.5			125.3			112.8			147.7	
Turn Bay Length (m)	100.0			40.0			25.0			40.0		25.0
Base Capacity (vph)	116	390		291	518		71	1609		322	2302	929
Starvation Cap Reductn	0	0		0	0		0	263		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	83	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.66	0.06		0.09	0.69		0.10	1.00		0.77	0.67	0.07

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 102 (64%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.3 Intersection Capacity Utilization 90.8%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: Hurontario Street & Cooksville GO Station Access/John Street

2029 Future Total PM Peak Scenario 2 with RIRO Access to Hurontario 8:23 pm 07/06/2025 With LRT

	٠	•	4	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7		^	† ‡		
Traffic Volume (veh/h)	0	81	0	1187	1104	75	
Future Volume (Veh/h)	0	81	0	1187	1104	75	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	88	0	1290	1200	82	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)				126	313		
pX, platoon unblocked	0.84	0.73	0.73				
vC, conflicting volume	1886	641	1282				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	238	0	662				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	89	100				
cM capacity (veh/h)	609	797	678				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	88	645	645	800	482		
Volume Left	00	045	045	000	462		
	88	0	0	0	82		
Volume Right cSH				1700			
	797	1700	1700		1700		
Volume to Capacity	0.11	0.38	0.38	0.47	0.28		
Queue Length 95th (m)	3.0	0.0	0.0	0.0	0.0		
Control Delay (s)	10.1	0.0	0.0	0.0	0.0		
Lane LOS	B	0.0		0.0			
Approach LOS	10.1	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utiliza	ation		45.4%	IC	CU Level o	of Service	
Analysis Period (min)			15				

	۶	→	\rightarrow	•	←	•	4	†	<i>></i>	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	₽			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	84	309	130	31	361	22	129	26	21	26	17	46
Future Volume (vph)	84	309	130	31	361	22	129	26	21	26	17	46
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	91	336	141	34	392	24	140	28	23	28	18	50
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	91	477	34	416	191	96						
Volume Left (vph)	91	0	34	0	140	28						
Volume Right (vph)	0	141	0	24	23	50						
Hadj (s)	0.53	-0.15	0.53	0.03	0.11	-0.21						
Departure Headway (s)	6.8	6.1	7.0	6.5	7.0	7.0						
Degree Utilization, x	0.17	0.81	0.07	0.75	0.37	0.19						
Capacity (veh/h)	504	573	494	539	469	448						
Control Delay (s)	10.1	29.2	9.3	24.8	14.0	11.6						
Approach Delay (s)	26.2		23.6		14.0	11.6						
Approach LOS	D		С		В	В						
Intersection Summary												
Delay			22.4									
Level of Service			С									
Intersection Capacity Utiliza	ition		54.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	4	†	~	/	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	∱ β			^	
Traffic Volume (veh/h)	0	30	1126	65	0	1246	
Future Volume (Veh/h)	0	30	1126	65	0	1246	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	33	1224	71	0	1354	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			335			105	
pX, platoon unblocked	0.85	0.72			0.72		
vC, conflicting volume	1936	648			1295		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	293	0			646		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	96			100		
cM capacity (veh/h)	574	785			678		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	33	816	479	677	677		
Volume Left	0	0	0	0	0		
Volume Right	33	0	71	0	0		
cSH	785	1700	1700	1700	1700		
Volume to Capacity	0.04	0.48	0.28	0.40	0.40		
Queue Length 95th (m)	1.1	0.0	0.0	0.0	0.0		
Control Delay (s)	9.8	0.0	0.0	0.0	0.0		
Lane LOS	Α						
Approach Delay (s)	9.8	0.0		0.0			
Approach LOS	Α						
Intersection Summary							
Average Delay			0.1				
Intersection Capacity Utilization	on		43.2%	IC	U Level	of Service	
Analysis Period (min)			15				

	•	†	~	-	↓
/BL	WBR	NBT	NBR	SBL	SBT
	7	† \$			^
0	97	1050	106	0	1274
0	97	1050	106	0	1274
top		Free			Free
0%		0%			0%
.92	0.92	0.92	0.92	0.92	0.92
0	105	1141	115	0	1385
		None			None
		377			63
.84	0.74			0.74	
391					
281	0			638	
6.8					
3.5	3.3			2.2	
100					
577					
		ND 0	05.4		
0.2	0.0	0.0	0.0	0.0	
0.2	0.0		0.0		
В					
		0.4			
			IC	U Level	of Service
					, , , , , , ,
t C	0 0 0 0 0 0 0 0 92 0 0 84 91 81 3.8 3.5 00 77 77 3 1 05 0 0 05 0 0 13 3.6 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 97 0 97 0 97 0 97 0 97 0 99 0 105 84 0.74 91 628 81 0 6.8 6.8 6.9 3.5 3.3 00 87 77 801 81 NB 1 05 761 0 0 0 05 0 01 1700 13 0.45 3.6 0.0 0.2 0.0 B	0 97 1050 0 97 1050 0 97 1050 0 97 1050 0 0% 92 0.92 0.92 0 105 1141 None 377 84 0.74 91 628 81 0 6.8 6.9 3.5 3.3 00 87 77 801 81 NB 1 NB 2 05 761 495 0 0 0 05 0 115 01 1700 1700 13 0.45 0.29 3.6 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0	0 97 1050 106 0 97 1050 106 0 97 1050 106 0 97 1050 106 0 97 1050 106 0 97 1050 106 0 97 1050 106 0 97 1050 106 0 97 1050 106 0 97 1050 106 0 105 0 115 0 105 0 115 0 1700 1700 1700 13 0.45 0.29 0.41 3.6 0.0 0.0 0.0 0.2 0.0 0.0 0.0	None Streen None None None None None None None Streen None None None None Streen None None None Streen None None None None None Streen None None None Streen None None None Streen None None None Streen None None None None Streen None None None Streen None None None Streen None Streen None None None None Streen None None None Streen None Streen None None Streen None None Streen None None Streen None Streen None None Streen None None Streen None Streen None None Streen None None None Streen None None Streen None None Streen None None Streen None None None Streen None None

	→	•	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			4	W	
Traffic Volume (veh/h)	380	165	25	431	100	15
Future Volume (Veh/h)	380	165	25	431	100	15
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	388	168	26	440	102	15
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)	80					
pX, platoon unblocked			0.90		0.90	0.90
vC, conflicting volume			556		964	472
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			451		905	358
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			97		62	98
cM capacity (veh/h)			998		269	618
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	556	466	117			
Volume Left	0	26	102			
Volume Right	168	0	102			
cSH	1700	998	290			
Volume to Capacity	0.33	0.03	0.40			
	0.33	0.03	14.9			
Queue Length 95th (m)	0.0	0.8	25.5			
Control Delay (s)	0.0	_	_			
Lane LOS	0.0	Α	D 25.5			
Approach LOS	0.0	0.8	25.5 D			
Approach LOS			U			
Intersection Summary						
Average Delay			2.9			
Intersection Capacity Utiliza	ation		56.4%	IC	U Level c	f Service
Analysis Period (min)			15			

Appendix I

Future Total Level of Service Calculations (Sensitivity Analysis)

Lanes, Volumes, Timings 3: Hurontario Street & Dundas Street W/Dundas Street E

	ၨ	→	•	•	←	•	•	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	∱ }			∱ }		ሻ	∱ }	
Traffic Volume (vph)	87	1136	118	75	477	83	0	814	71	149	811	74
Future Volume (vph)	87	1136	118	75	477	83	0	814	71	149	811	74
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	3367	0	0	3397	0	1617	3320	0
Flt Permitted	0.316			0.067						0.950		
Satd. Flow (perm)	570	3433	1351	121	3367	0	0	3397	0	1617	3320	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68		14			6			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	95	1235	128	82	608	0	0	962	0	162	962	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA			NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4		4	8								
Detector Phase	7	4	4	3	8			2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5			41.0		9.0	41.0	
Total Split (s)	10.0	69.0	69.0	9.0	68.0			57.0		25.0	82.0	
Total Split (%)	6.3%	43.1%	43.1%	5.6%	42.5%			35.6%		15.6%	51.3%	
Maximum Green (s)	7.0	61.5	61.5	6.0	60.5			50.0		22.0	75.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0			4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5			3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5			7.0		3.0	7.0	

	•	→	\rightarrow	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag			Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Recall Mode	None	None	None	None	None			C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0			14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0			20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0			0			0	
Act Effct Green (s)	72.0	60.5	60.5	70.0	59.5			53.3		19.6	76.0	
Actuated g/C Ratio	0.45	0.38	0.38	0.44	0.37			0.33		0.12	0.48	
v/c Ratio	0.31	0.95	0.23	0.73	0.48			0.85		0.82	0.61	
Control Delay	27.1	63.8	16.8	60.5	38.8			58.0		113.8	28.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Delay	27.1	63.8	16.8	60.5	38.8			58.0		113.8	28.7	
LOS	С	Е	В	Е	D			Е		F	С	
Approach Delay		57.3			41.4			58.0			40.9	
Approach LOS		Е			D			Е			D	
Queue Length 50th (m)	17.7	208.7	12.9	15.1	79.2			161.5		56.8	72.9	
Queue Length 95th (m)	29.7	#254.8	29.2	#39.1	98.1			#200.5		m77.0	118.3	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0						50.0		
Base Capacity (vph)	306	1319	561	112	1281			1135		222	1580	
Starvation Cap Reductn	0	0	0	0	0			0		0	0	
Spillback Cap Reductn	0	0	0	0	0			0		0	0	
Storage Cap Reductn	0	0	0	0	0			0		0	0	
Reduced v/c Ratio	0.31	0.94	0.23	0.73	0.47			0.85		0.73	0.61	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95

Intersection Signal Delay: 50.5 Intersection LOS: D
Intersection Capacity Utilization 87.6% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Lanes, Volumes, Timings 3: Hurontario Street & Dundas Street W/Dundas Street E

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR Lane Configurations 1 <t< th=""></t<>
Traffic Volume (vph) 162 774 124 128 973 156 0 835 146 184 914 128 Future Volume (vph) 162 774 124 128 973 156 0 835 146 184 914 128 Ideal Flow (vphpl) 1860 1900 1640 1860 1900 1640 1860 1900 1640 Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Traffic Volume (vph) 162 774 124 128 973 156 0 835 146 184 914 128 Future Volume (vph) 162 774 124 128 973 156 0 835 146 184 914 128 Ideal Flow (vphpl) 1860 1900 1640 1860 1900 1640 1860 1900 1640 1860 1900 1640 Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Future Volume (vph) 162 774 124 128 973 156 0 835 146 184 914 128 Ideal Flow (vphpl) 1860 1900 1640 1860 1900 1640 1860 1900 1640 1860 1900 1640 Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Ideal Flow (vphpl) 1860 1900 1640 1900 1640 1860 1900 1640 1860 1900 1640 Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.3 3.3 3.3
Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.0 3.3 3.3
$\sqrt{-1}$
Grade (%) 0% 0% 0%
Storage Length (m) 40.0 25.0 25.0 25.0 0.0 0.0 50.0 0.0
Storage Lanes 1 1 1 0 0 0 1 0
Taper Length (m) 7.5 7.5 7.5 7.5
Satd. Flow (prot) 1713 3433 1351 1713 3369 0 0 3367 0 1617 3303 0
Flt Permitted 0.071 0.178 0.950
Satd. Flow (perm) 128 3433 1351 321 3369 0 0 3367 0 1617 3303 0
Right Turn on Red Yes Yes Yes Yes
Satd. Flow (RTOR) 68 12 13 13
Link Speed (k/h) 50 50 50
Link Distance (m) 185.1 367.5 141.9 126.5
Travel Time (s) 13.3 26.5 10.2 9.1
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Growth Factor 100% 100% 100% 100% 100% 100% 100% 100
Heavy Vehicles (%) 2% 4% 2% 2% 4% 2% 2% 4% 2% 2% 4% 2%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0
Parking (#/hr)
Mid-Block Traffic (%) 0% 0% 0%
Shared Lane Traffic (%)
Lane Group Flow (vph) 176 841 135 139 1228 0 0 1067 0 200 1132 0
Enter Blocked Intersection No
Lane Alignment Left Left Right Left Right Left Right Left Right
Median Width(m) 3.5 3.5 3.0 3.0
Link Offset(m) 0.0 0.0 0.0 0.0
Crosswalk Width(m) 4.8 4.8 4.8 4.8
Two way Left Turn Lane
Headway Factor 1.04 1.01 1.22 1.04 1.01 1.22 1.04 1.01 1.22 1.12 1.04 1.26
Turning Speed (k/h) 25 15 25 15 25 15 25 15
Turn Type pm+pt NA Perm pm+pt NA NA Prot NA
Protected Phases 7 4 3 8 2 1 6
Permitted Phases 4 4 8
Detector Phase 7 4 4 3 8 2 1 6
Switch Phase
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Minimum Split (s) 9.0 45.5 45.5 9.0 45.5 41.0 9.0 41.0
Total Split (s) 15.0 62.0 62.0 17.0 64.0 59.0 22.0 81.0
Total Split (%) 9.4% 38.8% 38.8% 10.6% 40.0% 36.9% 13.8% 50.6%
Maximum Green (s) 12.0 54.5 54.5 14.0 56.5 52.0 19.0 74.0
Yellow Time (s) 3.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0
All-Red Time (s) 0.0 3.5 3.5 0.0 3.5 3.0 0.0 3.0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total Lost Time (s) 3.0 7.5 7.5 3.0 7.5 7.0 3.0 7.0

	•	-	•	•	←	•	1	†		/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag			Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Recall Mode	None	None	None	None	None			C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0			14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0			20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0			0			0	
Act Effct Green (s)	72.8	56.3	56.3	73.2	56.5			52.0		19.0	74.0	
Actuated g/C Ratio	0.46	0.35	0.35	0.46	0.35			0.32		0.12	0.46	
v/c Ratio	1.00	0.70	0.26	0.55	1.03			0.97		1.04	0.74	
Control Delay	107.5	48.5	20.0	32.7	82.4			72.4		149.1	35.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Delay	107.5	48.5	20.0	32.7	82.4			72.4		149.1	35.6	
LOS	F	D	С	С	F			Е		F	D	
Approach Delay		54.2			77.3			72.4			52.7	
Approach LOS		D			Е			Е			D	
Queue Length 50th (m)	42.8	128.2	15.4	26.3	~228.3			184.0		~73.9	94.6	
Queue Length 95th (m)	#97.8	155.1	34.1	41.1	#273.8			#231.8		#130.1	157.5	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0						50.0		
Base Capacity (vph)	176	1207	519	272	1197			1103		192	1534	
Starvation Cap Reductn	0	0	0	0	0			0		0	0	
Spillback Cap Reductn	0	0	0	0	0			0		0	0	
Storage Cap Reductn	0	0	0	0	0			0		0	0	
Reduced v/c Ratio	1.00	0.70	0.26	0.51	1.03			0.97		1.04	0.74	

Intersection Summary

Area Type: Other

Cycle Length: 160 Actuated Cycle Length: 160

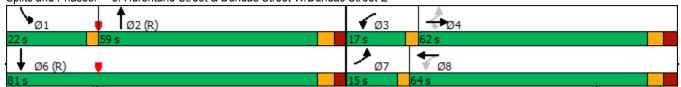
Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.04 Intersection Signal Delay: 64.2 Intersection Capacity Utilization 97.9%

Intersection LOS: E ICU Level of Service F


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	+	•	•	†	~	\	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	∱ Ъ			↑ ↑		ች	ħβ	
Traffic Volume (vph)	87	1136	118	75	477	83	0	833	71	149	836	74
Future Volume (vph)	87	1136	118	75	477	83	0	833	71	149	836	74
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)	0.0	0%	0.0	0.0	0%	0.0	0.0	0%	0.0	0.0	0%	0.0
Storage Length (m)	40.0	0 70	25.0	25.0	070	25.0	0.0	0 70	0.0	50.0	070	0.0
Storage Lanes	1		1	1		0	0.0		0.0	1		0.0
Taper Length (m)	7.5		•	7.5			7.5		•	7.5		J
Satd. Flow (prot)	1713	3433	1351	1713	3367	0	0	3397	0	1617	3320	0
Flt Permitted	0.316	0-100	1001	0.067	0001	U	U	0001	U	0.950	0020	J
Satd. Flow (perm)	570	3433	1351	121	3367	0	0	3397	0	1617	3320	0
Right Turn on Red	370	0700	Yes	121	0001	Yes	U	0001	Yes	1017	0020	Yes
Satd. Flow (RTOR)			68		14	163		6	163		8	163
Link Speed (k/h)		50	00		50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)		13.3			20.5			10.2			9.1	
Confl. Bikes (#/hr)												
. ,	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor												
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		00/			00/			00/			00/	
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)	٥٦	4005	400	00	000	0	_	000		400	000	
Lane Group Flow (vph)	95	1235	128	82	608	0	0	982	0	162	989	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.04	4.04	4.00	4.04	4.04	4.00	4.04	4.04	4.00	4.40	4.04	4.00
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA			NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4	_	4	8				_				
Detector Phase	7	4	4	3	8			2		1	6	
Switch Phase	_	_	_	_	_			_		_	_	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5			41.0		9.0	41.0	
Total Split (s)	10.0	69.0	69.0	9.0	68.0			57.0		25.0	82.0	
Total Split (%)	6.3%	43.1%	43.1%	5.6%	42.5%			35.6%		15.6%	51.3%	
Maximum Green (s)	7.0	61.5	61.5	6.0	60.5			50.0		22.0	75.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0			4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5			3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5			7.0		3.0	7.0	

	•	→	\rightarrow	•	←	•	•	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag			Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Recall Mode	None	None	None	None	None			C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0			14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0			20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0			0			0	
Act Effct Green (s)	72.0	60.5	60.5	70.0	59.5			53.3		19.6	76.0	
Actuated g/C Ratio	0.45	0.38	0.38	0.44	0.37			0.33		0.12	0.48	
v/c Ratio	0.31	0.95	0.23	0.73	0.48			0.87		0.82	0.63	
Control Delay	27.1	63.8	16.8	60.5	38.8			59.2		112.0	27.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Delay	27.1	63.8	16.8	60.5	38.8			59.2		112.0	27.7	
LOS	С	Е	В	Е	D			Е		F	С	
Approach Delay		57.3			41.4			59.2			39.6	
Approach LOS		Е			D			Е			D	
Queue Length 50th (m)	17.7	208.7	12.9	15.1	79.2			166.3		56.9	78.4	
Queue Length 95th (m)	29.7	#254.8	29.2	#39.1	98.1			#207.8		#87.0	124.6	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0						50.0		
Base Capacity (vph)	306	1319	561	112	1281			1135		222	1580	
Starvation Cap Reductn	0	0	0	0	0			0		0	0	
Spillback Cap Reductn	0	0	0	0	0			0		0	0	
Storage Cap Reductn	0	0	0	0	0			0		0	0	
Reduced v/c Ratio	0.31	0.94	0.23	0.73	0.47			0.87		0.73	0.63	

Intersection Summary

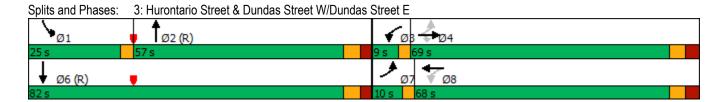
Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.95

Intersection Signal Delay: 50.4 Intersection LOS: D
Intersection Capacity Utilization 88.1% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	•	1	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	∱ ∱			∱ ∱		7	∱ ∱	
Traffic Volume (vph)	162	774	124	128	973	156	0	865	146	184	942	128
Future Volume (vph)	162	774	124	128	973	156	0	865	146	184	942	128
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	3369	0	0	3366	0	1617	3303	0
Flt Permitted	0.071			0.178						0.950		
Satd. Flow (perm)	128	3433	1351	321	3369	0	0	3366	0	1617	3303	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68		12			13			12	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	176	841	135	139	1228	0	0	1099	0	200	1163	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5	19.11		3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA			NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4	•	4	8				_		•		
Detector Phase	7	4	4	3	8			2		1	6	
Switch Phase	,	•	•					_		•		
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5			41.0		9.0	41.0	
Total Split (s)	15.0	62.0	62.0	17.0	64.0			59.0		22.0	81.0	
Total Split (%)	9.4%	38.8%	38.8%	10.6%	40.0%			36.9%		13.8%	50.6%	
Maximum Green (s)	12.0	54.5	54.5	14.0	56.5			52.0		19.0	74.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0			4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5			3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)		7.5	7.5	3.0	7.5			7.0		3.0	7.0	
Total Lost Time (S)	3.0	1.5	1.5	3.0	1.5			1.0		ა.0	1.0	

2029 Future Total PM Peak Scenario 1 (with Kirwin Ave Shared Access) 8:23 pm 07/06/2025 With LRT with WB Thru Synchro 11 Report Page 1

	۶	→	•	•	←	•		†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag			Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Recall Mode	None	None	None	None	None			C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0			14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0			20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0			0			0	
Act Effct Green (s)	72.8	56.3	56.3	73.2	56.5			52.0		19.0	74.0	
Actuated g/C Ratio	0.46	0.35	0.35	0.46	0.35			0.32		0.12	0.46	
v/c Ratio	1.00	0.70	0.26	0.55	1.03			1.00		1.04	0.76	
Control Delay	107.5	48.5	20.0	32.7	82.4			79.0		146.5	37.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Delay	107.5	48.5	20.0	32.7	82.4			79.0		146.5	37.5	
LOS	F	D	С	С	F			Е		F	D	
Approach Delay		54.2			77.3			79.0			53.5	
Approach LOS		D			Е			Е			D	
Queue Length 50th (m)	42.8	128.2	15.4	26.3	~228.3			192.2		~74.2	105.4	
Queue Length 95th (m)	#97.8	155.1	34.1	41.1	#273.8			#243.7	m	#127.4	169.2	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0						50.0		
Base Capacity (vph)	176	1207	519	272	1197			1102		192	1534	
Starvation Cap Reductn	0	0	0	0	0			0		0	0	
Spillback Cap Reductn	0	0	0	0	0			0		0	0	
Storage Cap Reductn	0	0	0	0	0			0		0	0	
Reduced v/c Ratio	1.00	0.70	0.26	0.51	1.03			1.00		1.04	0.76	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

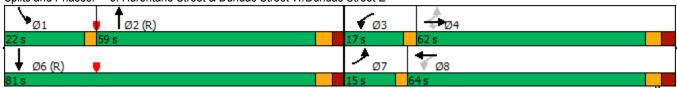
Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.04 Intersection Signal Delay: 65.8 Intersection Capacity Utilization 98.8%

Intersection LOS: E
ICU Level of Service F

Analysis Period (min) 15


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	←	•	•	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	∱ }			∱ }		ሻ	∱ }	
Traffic Volume (vph)	96	1136	118	100	477	115	0	833	71	149	811	74
Future Volume (vph)	96	1136	118	100	477	115	0	833	71	149	811	74
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	3346	0	0	3397	0	1617	3320	0
Flt Permitted	0.295			0.067						0.950		
Satd. Flow (perm)	532	3433	1351	121	3346	0	0	3397	0	1617	3320	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68		21			6			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	104	1235	128	109	643	0	0	982	0	162	962	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5	Ţ.		3.0			3.0	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA			NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4		4	8								
Detector Phase	7	4	4	3	8			2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5			41.0		9.0	41.0	
Total Split (s)	10.0	69.0	69.0	9.0	68.0			57.0		25.0	82.0	
Total Split (%)	6.3%	43.1%	43.1%	5.6%	42.5%			35.6%		15.6%	51.3%	
Maximum Green (s)	7.0	61.5	61.5	6.0	60.5			50.0		22.0	75.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0			4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5			3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5			7.0		3.0	7.0	

	۶	-	\rightarrow	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag			Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Recall Mode	None	None	None	None	None			C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0			14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0			20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0			0			0	
Act Effct Green (s)	72.0	60.5	60.5	70.0	59.5			53.3		19.6	76.0	
Actuated g/C Ratio	0.45	0.38	0.38	0.44	0.37			0.33		0.12	0.48	
v/c Ratio	0.36	0.95	0.23	0.97	0.51			0.87		0.82	0.61	
Control Delay	28.2	63.8	16.8	107.6	39.1			59.2		114.7	27.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Delay	28.2	63.8	16.8	107.6	39.1			59.2		114.7	27.4	
LOS	С	Е	В	F	D			Е		F	С	
Approach Delay		57.2			49.0			59.2			40.0	
Approach LOS		Е			D			Е			D	
Queue Length 50th (m)	19.4	208.7	12.9	20.4	84.0			166.3		57.1	74.7	
Queue Length 95th (m)	32.3	#254.8	29.2	#62.3	103.8			#207.8		#88.0	120.1	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0						50.0		
Base Capacity (vph)	291	1319	561	112	1278			1135		222	1580	
Starvation Cap Reductn	0	0	0	0	0			0		0	0	
Spillback Cap Reductn	0	0	0	0	0			0		0	0	
Storage Cap Reductn	0	0	0	0	0			0		0	0	
Reduced v/c Ratio	0.36	0.94	0.23	0.97	0.50			0.87		0.73	0.61	

Intersection Summary

Area Type: Other

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 51.8 Intersection LOS: D
Intersection Capacity Utilization 89.5% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	1	1	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† †	7	7	∱ ∱			∱ ∱		7	∱ ∱	
Traffic Volume (vph)	187	774	124	156	973	207	0	865	146	184	914	128
Future Volume (vph)	187	774	124	156	973	207	0	865	146	184	914	128
Ideal Flow (vphpl)	1860	1900	1640	1860	1900	1640	1860	1900	1640	1860	1900	1640
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.3	3.3
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	40.0		25.0	25.0		25.0	0.0		0.0	50.0		0.0
Storage Lanes	1		1	1		0	0		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	1713	3433	1351	1713	3355	0	0	3366	0	1617	3303	0
Flt Permitted	0.069			0.189						0.950		
Satd. Flow (perm)	124	3433	1351	341	3355	0	0	3366	0	1617	3303	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			68		18			12			12	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		185.1			367.5			141.9			126.5	
Travel Time (s)		13.3			26.5			10.2			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	4%	2%	2%	4%	2%	2%	4%	2%	2%	4%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	203	841	135	170	1283	0	0	1099	0	200	1132	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.04	1.01	1.22	1.04	1.01	1.22	1.04	1.01	1.22	1.12	1.04	1.26
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Turn Type	pm+pt	NA	Perm	pm+pt	NA			NA		Prot	NA	
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4		4	8								
Detector Phase	7	4	4	3	8			2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	9.0	45.5	45.5	9.0	45.5			41.0		9.0	41.0	
Total Split (s)	17.0	64.0	64.0	18.0	65.0			56.0		22.0	78.0	
Total Split (%)	10.6%	40.0%	40.0%	11.3%	40.6%			35.0%		13.8%	48.8%	
Maximum Green (s)	14.0	56.5	56.5	15.0	57.5			49.0		19.0	71.0	
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0			4.0		3.0	4.0	
All-Red Time (s)	0.0	3.5	3.5	0.0	3.5			3.0		0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	3.0	7.5	7.5	3.0	7.5			7.0		3.0	7.0	

	•	-	•	•	•	•	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag	Lead	Lag	Lag	Lead	Lag			Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0			3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Recall Mode	None	None	None	None	None			C-Max		None	C-Max	
Walk Time (s)		16.0	16.0		16.0			14.0			14.0	
Flash Dont Walk (s)		22.0	22.0		22.0			20.0			20.0	
Pedestrian Calls (#/hr)		0	0		0			0			0	
Act Effct Green (s)	76.4	58.1	58.1	75.4	57.5			49.0		19.0	71.0	
Actuated g/C Ratio	0.48	0.36	0.36	0.47	0.36			0.31		0.12	0.44	
v/c Ratio	1.03	0.67	0.25	0.62	1.05			1.06		1.04	0.77	
Control Delay	112.4	46.5	19.3	33.1	89.3			96.2		148.7	39.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0.0	
Total Delay	112.4	46.5	19.3	33.1	89.3			96.2		148.7	39.8	
LOS	F	D	В	С	F			F		F	D	
Approach Delay		54.8			82.7			96.2			56.2	
Approach LOS		D			F			F			Е	
Queue Length 50th (m)	~55.3	126.2	15.2	31.5	~244.3			~210.2		~74.4	104.7	
Queue Length 95th (m)	#111.9	151.9	33.4	47.7	#289.7			#255.6		#130.0	166.7	
Internal Link Dist (m)		161.1			343.5			117.9			102.5	
Turn Bay Length (m)	40.0		25.0	25.0						50.0		
Base Capacity (vph)	198	1247	534	292	1217			1039		192	1472	
Starvation Cap Reductn	0	0	0	0	0			0		0	0	
Spillback Cap Reductn	0	0	0	0	0			0		0	0	
Storage Cap Reductn	0	0	0	0	0			0		0	0	
Reduced v/c Ratio	1.03	0.67	0.25	0.58	1.05			1.06		1.04	0.77	

Intersection Summary

Area Type: Other

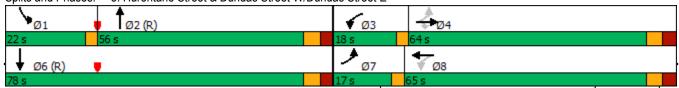
Cycle Length: 160
Actuated Cycle Length: 160

Offset: 88 (55%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.06 Intersection Signal Delay: 72.1 Intersection Capacity Utilization 101.8%


Intersection LOS: E ICU Level of Service G

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

