AUGUST 19, 2025

PROJECT NO: 2378-6557

SENT VIA: EMAIL

City of Mississauga 300 City Centre Drive Mississauga, ON L5B 3C1

Attn: Yousef Hereich, C.E.T.

Traffic Planning Technologist, City of Mississauga

RE: TRANSPORTATION UPDATE LETTER

69 & 117 JOHN STREET, CITY OF MISSISSAUGA, REGION OF PEEL

Dear Yousef.

Centracondos de la Montagne retained C.F. Crozier & Associates Inc. (Crozier) to complete a Transportation Study to support the proposed mixed-use residential commercial development located at 69 & 117 John Street in the City of Mississauga.

The following reports were previously prepared in support of the Subject Development:

- Transportation Impact, and Parking and Loading Justification Study (Crozier, April 2024)
- Transportation Impact, and Parking and Loading Justification Study Update (Crozier, October 2024)

The Transportation Update Letter accompanies the previous submissions. The letter herein addresses the City of Mississauga's comments as well as summarizes the most recent Site Plan changes, and reviews the following:

- Development Proposal
- Study Purpose and Scope
- Site Circulation Review
- Site Access Review
- Parking Review
- Loading Review
- Community Impacts
- Functional Design

1.0 Development Proposal

The Site Plan, prepared by Tregebov Cogan Architecture, proposes a mixed-use residential commercial development. The Subject Development is comprised of a total of 1,335 residential units and 300 m² of commercial space, with 825 vehicle parking spaces and 875 bicycle parking spaces.

Table 1 outlines the proposed site statistics.

July 2025 Site Plan October 2024 1,342 units 1,335 units Residential (+41 units) (-7 units) 600 m² 300 m² Commercial (-100 m^2) (-300 m²) **Parking Supply** 822 spaces 825 spaces Vehicle Parking (-66 spaces) (+3 spaces) 875 spaces Bicycle Parking 860 spaces (+15 spaces)

Table 1: Development Proposal (Comparison)

In comparison to the previous submission (Crozier, October 2024), the updated Development Proposal includes a decrease of 7 residential units and 300 m² commercial space. As a reduced development yield is proposed, the transportation operations analysis and findings outlined in the previously submitted Transportation Impact, and Parking and Loading Justification Study Update (Crozier, October 2024) remain valid and are not updated herein.

The most recent Site Plan outlines an updated access configuration, in comparison to the previous submission, to address City comments. **Table 2** outlines the updated access configuration.

A	Divo eti e e	Spacing from John Street & Little John Lane ¹		
Access	Direction	October 2024	July 2025	
East Site Access	One-Way Inbound	23 m (west)	24 m (west)	
West Site Access	Two-Way ²	85 m (west)	85 m (west)	

Table 2: Access Configuration (Comparison)

Attachment 1 outlines the most recent Site Plan, dated August 15, 2025.

Note 1: Distance from centreline to centerline.

Note 2: One-way outbound for passenger vehicles and two-way for trucks, such as waste collection vehicles.

2.0 Study Purpose and Scope

The Transportation Update Letter as well as the previously submitted studies have been prepared in accordance with the City of Mississauga's Transportation Impact Study Guidelines (December 2022) as well as the agreed upon Terms of Reference with the City of Mississauga staff.

In addition, the Transportation Update Letter herein addresses the City's comments, dated February 24, 2025, and May 7, 2025.

Attachment 2 includes the approved Terms of Reference with City staff as well as the comment response matrix outlining the City's comments and the associated responses.

3.0 Site Circulation Review

The proposed Site Plan was reviewed from a circulation perspective. The section herein reviews both the vehicle maneuverability and pedestrian circulation.

3.1.1 Vehicle Maneuverability

The Vehicle Turning Diagrams illustrate that the typical Region of Peel waste collection vehicle, typical Region of Peel/City of Mississauga fire truck, delivery vehicles and passenger vehicles can safety enter and exit as well as circulate through the Proposed Development. Therefore, the Site Plan is supportable from a vehicle circulation perspective.

Attachment 3 includes the Vehicle Turning Diagrams.

3.1.2 Pedestrian Circulation

The Site Plan proposes pedestrian facilities to support safe pedestrian circulation throughout the Subject Site. Pedestrian facilities are provided along all the buildings' frontages. These pedestrian facilities provide safe and convenient access to all the proposed building entrances. The internal pedestrian facilities are proposed to connect to the existing sidewalks fronting the Subject Site along John Street. Furthermore, north-south, and east-west crosswalks are proposed throughout the Subject Development, where applicable, to facilitate safe pedestrian crossings.

Attachment 4 includes the Pedestrian Circulation Plan.

4.0 Site Access Review

The development proposal includes two site accesses off John Street that will provide transportation servicing to and from the site. This section evaluates the suitability of the site accesses from a transportation safety perspective and recommends mitigation measures, if warranted.

4.1 Intersection Sight Distance

The available sightlines at the proposed site accesses were measured and compared to the standards set out in the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDGCR) (June 2017). Sight distance was measured from the proposed site access using the following assumptions:

• A standard drive eye height of 1.08 m for a passenger car.

- An object height of 0.6 m.
- A 4.4 m setback from the approximate extension of the outer curb (or edge of pavement) to represent a vehicle waiting to exit the site.

Intersection sight distance is calculated using Equation 9.9.1 from the TAC GDGCR as outlined below:

$$ISD = 0.278 * V_{major} * t_{g}$$

Where:

ISD = Intersection Sight Distance V_{major} = design speed of roadway (km/h) t_g = assumed time gap for vehicles to turn from stop onto roadway (s)

The design speed of a roadway is typically 10 km/h greater than the posted speed for posted speeds of 50 km/h or less. As the posted speed limit on John Street is 40 km/h, a design speed of 50 km/h was assumed for sight distance analysis.

It is noted that the East Site Access is a one-way inbound access and thus vehicles will not exit using this access. As such, the sight distance requirements were not reviewed for the East Site Access herein.

Table 3 outlines the sight distance requirements for the proposed site accesses and compares them to the available sight distance.

Table 3: Intersection Sight Distance Assessment

Access	West Site	Access	
Maneuver	Left-Turn	Right-Turn	
Access Type	Full N	Noves	
Intersection Control	Case B: Stop Con	trol on Minor Road	
Posted Speed Limit of Roadway	40 km/h (Posted)		
Assumed Design Speed	50 km/h		
Grade of Roadway	Assumed less than 3%		
Horizontal Alignment of Roadway	Straight		
Base Time Gap	7.5 s	6.5 s	
Additional Time Gap	None	None	
Sight Distance Required	105 m	91 m	
Measured Sight Distance ¹	110+ m	95+ m	

Note 1: Measured using aerial imagery.

John Street is straight, with minimal grade changes, and no visual obstructions are noted. Based on the most recent Site Plan, adequate sight distance is expected to be achieved at the West Site Access.

Given the cul-de-sac located at the eastern terminus of John Street, approximately 160 metres east of the Western Site Access, oncoming cars from the east are expected to be traversing the roadway either from a stopped position or at a significantly lower speed than the posted speed limit. Therefore, the sight distance required can be considered conservative as it assumes oncoming vehicles are travelling at faster speeds than are expected to occur due to the physical constraints.

Overall, there are no sight distance concerns at the proposed West Site Access; thus, the West Site Access is supportable from an intersection sight distance perspective.

Attachment 5 contains relevant TAC GDGCR excerpts.

4.2 Access Spacing and Corner Clearance

Access spacing was reviewed against the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDGCR) (June 2017) requirements for local roadways and commercial accesses. Additionally, TAC GDGCR was used to review corner

clearance spacing for the proposed site accesses. The assessment was based upon the TAC GDGCR Figure 8.9.2 and Figure 8.8.2 for access spacing and corner clearance, respectively.

Table 4 summarizes the required and proposed access spacing and corner clearance.

Table 4: Access Spacing and Corner Clearance Review

Site	Divoction	Access	Access Spacing		Corner Clearance	
Access	Direction	Required	Provided	Required	Provided	Satisfied?
\\/oat	West		43 m		57 m	Yes
West	East	2	25	1.5	F.4 mg	Yes
Faul	West	3 m	35 m	15 m	54 m	Yes
East	East		80 m ¹	1	15 m ²	Yes

Note 1: Access spacing provided with east terminus of John Street, east of Little John Lane.

Note 2: Corner clearance provided with Little John Lane, located on the opposite side of John Street.

As outlined in **Section 1.0**, the most recent Site Plan proposes the East Site Access be shifted west, further offset from the John Street & Little John Lane intersection. This shift was implemented to address City comments, meeting the corner clearance requirements per TAC GDGCR, as requested by City Transportation staff.

Overall, there access spacing and corner clearance requirements per TAC GDGCR are no access spacing or corner clearance concerns associated with the proposed site accesses. Thus, the proposed site accesses are supportable.

Attachment 6 includes the Access Spacing and Corner Clearance Diagrams, which outline the proposed access spacing and corner clearance. **Attachment 2** include the correspondence with City staff. **Attachment 5** contains relevant TAC GDGCR excerpts.

4.3 East Site Access Justification

City staff indicated that the East Site Access is supportable, given that the corner clearance meets the applicable requirements, as outlined in **Section 4.2**. Nevertheless, for the purpose of a complete assessment, additional justifications in support of the East Site Access are outlined herein.

4.3.1 Proposed One-Way Operations

The East Site Access is proposed to be one-way inbound, with all outbound traffic as well as inbound waste collection traffic to be via the West Site Access. Thus, improved safety is expected at the East Site Access due to the removal of additional conflicts associated with outbound traffic. Furthermore, westbound traffic from the intersection of John Street & Little John Lane are expected to traverse the roadway from a stopped position, at reduced operating speeds, due to the all-way stop control proposed at John Street & Little John Lane. These reduced operating speeds will improve roadway safety as well as result in reduced stopping distances.

To support the proposed one-way operation, relevant one-way signage and pavement markings will be provided at the East Site Access. Further details will be included in a subsequent submission.

4.3.2 Fire Considerations

In comparison to the initial submission, where the East Site Access was aligned with the John Street & Little John Lane intersection, the updated Development Proposal features the East Site Access offset to the west. This shift was implemented to address comments received from City Fire staff, which required the fire trucks to avoid travelling under any portion of the proposed buildings. Nevertheless, as outlined in **Section 4.2**, the East Site Access meets the applicable access spacing and corner clearance requirements.

5.0 Parking Review

The following section reviews the adequacy of the parking supply of the Proposed Development, located in Precinct 1. The Subject Development proposes a total of 825 vehicle parking spaces and 875 bicycle parking spaces.

5.1 Planning Policy Context

The Province of Ontario's Bill 185 received Royal Assent on June 6, 2024, with the bill removing the minimum vehicle parking requirements for all new developments, except for Universities, located within a protected major transit station area (PMTSA). While the City's Zoning By-Law 0225-2007 does not reflect the parking requirements outlined in Bill 185, we understand these requirements are in effect, though the Zoning By-Law has not yet been amended to reflect this change.

However, City of Mississauga staff has recognized the impact of the change in parking requirements per the City's Planning and Development Committee's Recommendation Report, dated September 18, 2024. Through this recommendation report, staff have proposed amendments to the Zoning By-Law for properties located within PMTSAs to promote consistency between the Zoning By-Law and Bill 185. Accordingly, it is proposed that sites within Precinct 1 reflect a minimum requirement of 0 parking spaces.

As the Subject Development is located 550 m from the Cooksville GO station, within the Cooksville GO PMTSA and Precinct 1, the vehicle parking requirements outlined in Bill 185 and the recent recommendations report are applicable to the Proposed Development. Accordingly, the minimum vehicle parking requirement is 0 spaces.

It is noted that the bicycle parking requirements outlined in Zoning By-Law 0225-2007 are still in force and applicable to the Subject Site.

Attachment 7 contains the relevant parking requirement excerpts and Planning and Development Committee's Recommendation Report (September 18, 2024).

5.2 Vehicle Parking

The Province's Bill 185 has been reviewed to determine the minimum vehicle parking requirements. **Table 5** outlines the parking requirements per Bill 185 and the City's Planning and Development Committee's Recommendation Report (September 18, 2024).

Table 5: City of Mississauga Recommendation Report Vehicle Parking Requirements

Land Use	Statistic	Parking Rate	Required Parking	Proposed Parking	
Condominium Apartment	1,335 units	0 space/unit	0 spaces	825 spaces	
Retail ¹	300 m ²	0 space/100 m ²	0 spaces	(+825 spaces)	
	Total		0 spaces	825 spaces (+825 spaces)	

As outlined in **Table 5**, the Subject Development exceeds the parking requirements per the Province's Bill 185 and the City's Planning and Development Committee's Recommendation Report (September 18, 2024). Thus, the proposed parking supply is supportable.

Attachment 7 contains the relevant parking requirement excerpts.

5.3 Barrier-Free Parking

As Bill 185 removes the minimum parking requirements within protected major transit station areas, there are no accessible parking spaces technically required for the Subject Development. However, 18 accessible parking spaces are proposed, which exceeds the applicable requirements.

Attachment 7 contains the relevant parking requirements excerpts.

5.4 Bicycle Parking

The City of Mississauga Zoning By-Law 0225-2007 has been reviewed to determine the minimum bicycle parking requirements. **Table 6** outlines the minimum bicycle parking requirements.

Table 6: City of Mississauga Zoning By-Law 0225-2007 Bicycle Parking Requirements

Land Use	Туре	Statistic	Parking Rate	Required Parking	Proposed Parking
Condominium	Class A	1 225 upits	0.60 space/unit	801 spaces	804 spaces (+3 spaces)
Apartment	Class B	1,335 units	0.05 space/unit ¹	67 spaces	69 spaces (+2 spaces)
Dotail	Class A	200 m²	0.15 space/100 m ²	1 space	1 space (+0 spaces)
Retail	Class B	300 m ²	0.2 space/100 m ²	1 space	1 space (+0 spaces)
	T	otal Bicycle		870 spaces	875 spaces (+5 spaces)

Note 1: The required bicycle parking rate is the greater of 0.05 spaces/unit or 6 spaces.

As outlined in **Table 6**, to support the Proposed Development, a total of 802 Class A and 68 Class B bicycle parking spaces are required. The Site Plan proposes 875 bicycle parking spaces,

comprised of 805 Class A and 70 Class B spaces, thus, the Zoning By-Law requirements are exceeded.

Attachment 7 contains the relevant parking requirement excerpts.

6.0 Loading Review

6.1 Loading Requirements

The City of Mississauga Zoning By-Law 0225-2007 was reviewed to determine the loading requirements of the Proposed Development.

Minimum Loading Land Use Statistic Minimum Loading Requirement Required 1 loading space/apartment building **Apartment** 3 buildings 3 spaces (minimum of 30 dwelling units) 1 loading space Retail 300 m² 1 space (between 250 m² and 2,350 m²) **Total Required Loading Spaces** 4 spaces 1 space **Total Proposed Loading Spaces** (-3 spaces)

Table 7: City of Mississauga Zoning By-Law Loading Requirements

Per the City of Mississauga Zoning By-Law 0225-2007, one loading space must be provided for an apartment building containing a minimum of 30 units. Further, one loading space must be provided for retail with a gross floor area greater than 250 m² but less than or equal to 2,350 m². As 1 loading space is provided per the Site Plan, the proposed loading supply is deficient by 3 loading spaces.

Attachment 7 contains the relevant loading requirement excerpts.

6.2 Loading Operations

1 loading space is provided while the Zoning By-law requires 4 loading spaces; thus, the Subject Development is technically deficient to the loading requirements by 3 loading spaces. However, the proposed loading operations are such that additional areas within the Subject Site are proposed to support loading, delivery and move-in/move-out operations in a safe manner.

In addition to the loading space, a pick-up/drop-off (PUDO)/loading zone is also proposed on the north end of the drive aisle, immediately south of Building B. This PUDO/loading zone is centrally located, near the holding rooms in each of the residential buildings and can be utilized for move-ins or deliveries, if needed. Under typical operation, this zone would facilitate pick-ups and drop-offs, and short term deliveries (e.g., UberEats, etc.). When booked, this area can facilitate loading for up to 2 delivery trucks. While this occurs, PUDO can still continue to operate within the remaining lay-by parking spaces south and west of the drive aisle.

Similar to moving or cargo elevators, a booking system will be utilized to manage the loading space and PUDO/loading zone utility. Residential and commercial tenants will be able to book timeslots for the loading space and PUDO/loading zone to ensure that space is available when

required for move-ins and/or deliveries on a first-come, first-serve basis. Thus, waste collection vehicles can utilize the loading space, as typical, on waste collection days. This strategy will ensure that conflicts between waste collection, move-ins and deliveries will not occur. While the PUDO/loading zone does not meet the City's loading space dimension requirements, it can sufficiently accommodate 2 medium single unit trucks or 4 passenger cars. Furthermore, despite the PUDO/loading zone's dimensions technically being deficient compared to the Zoning By-Law loading space requirements, functionally the PUDO/loading zone is sufficient to address the Subject Development's needs. **Attachment 3** includes the Vehicle Turning Diagrams of medium single unit trucks for the PUDO/loading zone.

Lastly, smaller delivery vehicles, such as package, food, or grocery delivery, typically do not use a loading space and are expected to utilize the 7 lay-by parking spaces provided on-site.

Overall, given that the loading space demand will be managed via a booking system and a PUDO/loading zone is provided in addition to lay-parking parking spaces, the proposed loading supply and operations is sufficient and supportable.

7.0 Community Impacts

The Transportation Update Letter herein as well as the previous submissions have evaluated and addressed the traffic related community impacts as a result of the Subject Development. The operational impact of the Proposed Development is outlined in the previously submitted Transportation Impact, and Parking and Loading Justification Study Update (Crozier, October 2024).

A public consultation was held on May 26, 2025, and the transportation related comments can be summarized as follows:

- Reduced Parking Supply Concerns and Impacts to On-Street Parking
- Impact to Traffic Operations

Crozier's responses to these public comments are outlined in the sections below.

7.1 Reduced Parking Supply Concerns and Impacts to On-Street Parking

It is noted that a parking rate of 0.61 space/unit is proposed. However, as outlined in **Section 5.2**, the parking supply is supportable based on the applicable requirements per Bill 185 and the City's Planning and Development Committee's Recommendation Report (September 2024). Nevertheless, further review of the proposed parking supply and expected impact to on-street parking is reviewed herein.

Parking Proposal Trends

A review of proposed development applications within the surrounding area as well as those with similar transportation contexts to the Subject Site was conducted to evaluate the adequacy of the proposed parking supply. This review contains developments within Mississauga's Ward 1, Ward 4 and Ward 7 that provide similar access to local surface transit and regional transit services.

Table 8 summarizes the proposed parking rates for residential developments in these areas, respectively, as well as a comparison to the proposed parking supply.

Table 8: Parking Proposal Trends in the City of Mississauga

Site Location	Parking Rate	Status
88 Park Street E	0.44 space/unit	Appealed
49 South Service Road	0.39 space/unit	Under Review
42-46 Park Street E & 23 Elizabeth Street N	0.33 space/unit	Under Review
3085 Hurontario Street	0.47 space/unit	Under Review
3115 Hurontario Street	0.38 space/unit	Under Review
	Summary	
Average	0.40 space/unit	n/a
69 & 117 John Street	0.62 space/unit	Subject Development

The proposed developments within similar transportation contexts in the City propose an average parking supply rate of 0.40 space/unit. Thus, the proposed parking rate of 0.62 space/unit is supportable when considering the parking rates proposed at similar sites, especially given the investment in higher order transit within the study area as well as the proposed Transportation Demand Management strategies, as further outlined below.

Attachment 8 includes the parking proposal trends excerpts.

Reduced Automobile Use

The planned Hazel McCallion Light Rail Transit (LRT) will improve transit connectivity within the Subject Lands and is expected to result in a 25% reduction in automobile mode share. **Table 9** summarizes the existing and expected future mode split, as outlined in the previous submission.

Table 9: Existing and Expected Future Mode Split

Travel Mode	Existing Mode Split ¹	Expected Future Mode Split ²
Auto	78%	53%
Transit	17%	42%
Walking	4%	4%
Cycling	1%	1%
Total	100%	100%

Note 1: Based on 2016 Transportation Tomorrow Survey data for inbound and outbound trips during the weekday a.m. and p.m. peak hour.

Note 2: Based on existing mode split and the increase in transit mode share due to the Hazel McCallion LRT as outlined in the Hurontario LRT Benefits Case Analysis.

It is noted that the above mode split does not include expected automobile mode share reductions associated with other transit improvements, such as the Dundas Bus Rapid Transit or GO Transit Expansion, as well as improvements to the active transportation network like the planned cycle tracks along Hurontario Street and Dundas Street. As such, the actual mode split expected will likely represent a greater reduction in automobile mode share than outlined in the previous submissions.

Furthermore, to support the external sustainable transportation network and the future mode split trends, site-specific Transportation Demand Management (TDM) measures are recommended for the Proposed Development. These TDM measures will contribute to reduced automobile use on-site. The following TDM measures are recommended:

- TDM Information Package for New Tenants
- Wayfinding Signage
- Flex Workspace Amenity Spaces
- Pick-Up/Drop-Off Areas
- Subsidized Transit Pass
- Real-Time Information Screens
- Secure & Excess Bicycle Parking Spaces
- Bicycle Repair Station
- Reduced Parking Supply
- Unbundled Parking
- Carshare Spaces

Given the Subject Site's proximity to transit, the planned improvements for the sustainable transportation network, and the recommended TDM measures, there are attractive alternative transportation modes, reducing the Subject Development's reliance on automobiles. Thus, the proposed parking supply is supportable from this perspective.

Attachment 9 includes the previous submission excerpts.

Impact to On-Street Parking Supply

It is also noted that no pavement or lane widening to support elements such as auxiliary turnlanes are proposed at either of the proposed Site Accesses, which may typically impact onstreet parking supply. As the removal of the on-street parking along John Street would be required to support an auxiliary turn-lane, the Subject Development is not expected to impact the on-street parking supply. Moreover, as the site proposes a parking supply at a rate that exceeds other proposals in a similar transportation context, on-site parking is adequate such that use of existing on-street parking is not required. Accordingly, no notable impacts to on-street parking supply are expected.

Summary

The proposed parking supply is supportable given the parking proposal trends and reduced automobile use expected near the Subject Lands as well as along the Hazel McCallion LRT corridor. Thus, residents and visitors to the Subject Site are not expected to utilize the existing onstreet parking and instead will use the provided on-site parking or access the Subject Site via sustainable transportation. Furthermore, the on-street parking supply and conditions for existing residents are expected to remain unchanged following the build out of the Proposed Development.

7.2 Impact to Traffic Operations

The intersection operations outlined in the previously submitted Transportation Impact, and Parking and Loading Study Update (October 2024) illustrate that the Subject Development does not materially impact the traffic operations in comparison to future background conditions.

Table 10 outlines the intersection operation comparison between 2029 future background and future total conditions.

Table 10: Intersection Operations Comparison

Intersection	Peak	LC	OS Delay		ıy (s)	v/c	ratio
Intersection	Hour	2029 FB1	2029 FT ²	2029 FB1	2029 FT ²	2029 FB1	2029 FT ²
Hurontario Street &	A.M.	Е	Е	57	64	1.03	1.07
John Street/Cooksville GO ³	P.M.	D	Е	47	61	0.93	1.01
Hurontario Street &	A.M.	F	F	123	142	1.12	1.17
Hillcrest Avenue/Kirwin Avenue	P.M.	Е	Е	58	56	0.46	0.48
Dundas Street East &	A.M.	С	С	29	34	0.67	0.73
Kirwin Avenue/Camilla Road ⁴	P.M.	С	С	30	33	0.68	0.72
Hillcrest Avenue &	A.M.	Α	Α	8	8	0.34	0.34
Cooksville GO	P.M.	В	В	12	12	0.26	0.26
John Street & Jaguar	A.M.	В	В	11	14	0.09	0.14
Valley Drive	P.M.	В	В	11	14	0.12	0.20
Kirwin Avenue &	A.M.	Α	Α	9	10	0.32	0.33
Jaguar Valley Drive	P.M.	В	В	11	11	0.48	0.48
John Street & Little	A.M.	Α	В	10	11	0.16	0.22
John Lane⁵	P.M.	В	В	10	11	0.18	0.33
Kirwin Avenue & Little	A.M.	Α	В	9	10	0.35	0.38
John Lane	P.M.	В	В	10	11	0.46	0.49
John Street & West Site	A.M.	-	В	-	13	-	0.46
Access	P.M.	-	В	-	12	-	0.26
John Street & East Site	A.M.	-	Α	-	3	-	0.11
Access	P.M.	-	Α	-	4	-	0.17

Note 1: 2029 Future Background.

Note 2: 2029 Future Total.

Note 3: With an exclusive westbound right-turn lane.

Note 4: Signal optimized #1 for 2029 future background as well as the 2029 future total p.m. peak hour. Signal optimized #2 for the 2029 future total a.m. peak hour.

Note 5: All-way stop control for 2029 future total conditions.

Some of the study intersections are expected to operate at or above capacity with volume-to-capacity ratios above 1.0 and/or LOS "F". However, these operations are consistent with future background conditions, with most increases in control delay and v/c ratio being minimal. Furthermore, these conditions are typical in high volume urban areas during the peak periods within the GTHA as well as along transit corridors with protected left-turn phases, such as Hurontario Street.

Overall, the Subject Development does not materially impact the traffic operations at the signalized study intersections. The operational issues observed under future total conditions are

consistent with future background conditions. As such, the Subject Development is supportable from a transportation operations perspective, with the recommended improvements identified below.

Table 11 outlines the recommendations outlined in the previous submission to support future background and future total conditions.

Table 11: Recommended Improvements Summary

Intersection	Improvement	Responsibility			
2029 Future Background					
	Consider implementing an exclusive westbound right-turn movement, instead of a shared westbound through-right-turn movement.				
Hurontario Street & John Street/Cooksville GO	Optimize signal timing plan.	City			
	Consider updating the Hazel McCallion LRT design drawings and revise the planned pavement markings to extend the southbound left-turn lane storage length to at least 65 metres.				
	Optimize signal timing plan.				
Hurontario Street & Hillcrest Avenue/Kirwin Avenue	Consider updating the Hazel McCallion LRT design drawings and revise the planned pavement markings to maximize the southbound left-turn lane storage length.	City			
Dundas Street East & Kirwin Avenue/Camilla Road	Optimize signal timing plan. Monitor traffic volumes post- Hazel McCallion LRT and post-Dundas BRT to determine if improvements are required, including: • Adjust pavement markings, including the start of on-street parking on the east side, to extend the southbound left-turn lane storage.	City			
2029 Future Total					
Hurontario Street & John Street/Cooksville GO	Consider revising the planned pavement markings to maximize the southbound left-turn lane storage length.	City/Developer			
	Consider providing westbound left-turn lane storage length of at least 65 metres.				

Intersection	Improvement	Responsibility
Dundas Street East & Kirwin Avenue/Camilla Road	Continue to monitor traffic volumes post- Hazel McCallion LRT and post-Dundas BRT to determine improvements are required, including: • Adjust pavement markings, including the start of on-street parking on the east side, to extend the southbound left-turn lane storage. • Adjust the signal timing plans (Signal Optimized #2) for the weekday a.m. peak period to increase the green time for the southbound left-turn and/or minor approach movements,	City
John Street & Little John Lane	Implement AWSC.	Developer
Proposed Development	Implement the following site safety measures:	Developer
	 Reduced Parking Supply Unbundled Parking Carshare Spaces 	

Attachment 9 includes the previous submission excerpts.

8.0 Functional Design

It is noted that City staff requested Functional Designs be provided for the proposed road network improvements. The Functional Designs will be prepared in a subsequent submission as part of the Site Plan Application.

9.0 Conclusions

The mixed-use residential commercial development at 69-117 John Street, in the City of Mississauga, proposes 1,335 residential units and 300 m² of commercial space. The most recent Site Plan proposes a reduction of 7 residential units and 300 m² of commercial space, in comparison to the previous submission (Crozier, October 2024). Thus, the transportation operations analysis and findings remain valid and are not updated herein.

The Vehicle Turning Diagrams demonstrate that waste collection vehicles, fire trucks, delivery vehicles and passenger vehicles can safety enter and exit the site accesses safely as well as maneuver around the site. The pedestrian facilities proposed also support safe pedestrian circulation throughout the Subject Site. As such, the Subject Development is supportable from a site circulation perspective.

The proposed site accesses meet the sight distance, access spacing and corner clearance requirements per the Transportation Association of Canada Geometric Design Guide for Canadian Roads (June 2017). While the East Site Access is offset from John Street & Little John Lane, the proposed one-way operations, with the access being inbound only, provides improved safety in comparison to a two-way inbound/outbound access.

Per the Province's Bill 185 and the City's Planning and Development Committee's Recommendation Report (September 2024), no vehicle parking for the Subject Development is required, as it is located in the Cooksville protected major transit station area (PMSTA). With 825 parking spaces provided, the proposed parking supply is sufficient and exceeds the minimum requirement.

Furthermore, with the removal of minimum vehicle parking requirements per Bill 185, the accessible parking requirements for the Proposed Development. Nevertheless, 18 accessible parking spaces are provided.

The Proposed Development also exceeds the bicycle parking requirements outlined in the City of Mississauga Zoning By-Law 0225-2007.

The Site Plan provides 1 official loading space, which is deficient the Zoning By-Law requirements. Nevertheless, a pick-up/drop-off (PUDO)/loading zone is proposed which will be used for move-ins and deliveries. This PUDO/loading zone can accommodate 2 medium-single unit trucks or 4 passenger cars at one time. The loading space and PUDO/loading zone demand can be managed via a booking system with concierge on a first-come, first-service basis. Furthermore, smaller delivery vehicles that do not typically use a loading space are expected to use the additional lay-by parking spaces provided on-site.

In conclusion, the Proposed Development can be supported from a site circulation, safety, and parking and loading perspective.

We trust that this review addresses any transportation-related concerns with the project. Should you have any questions or require any further information, please do not hesitate to contact the undersigned.

Respectfully submitted by,

C.F. CROZIER & ASSOCIATES INC.

C.F. CROZIER & ASSOCIATES INC.

My-LinkYee, EIT

Engineering Intern, Transportation

Michael A. Linion, MASc., P.Eng., Associate Senior Project Manager, Transportation

Enclosed

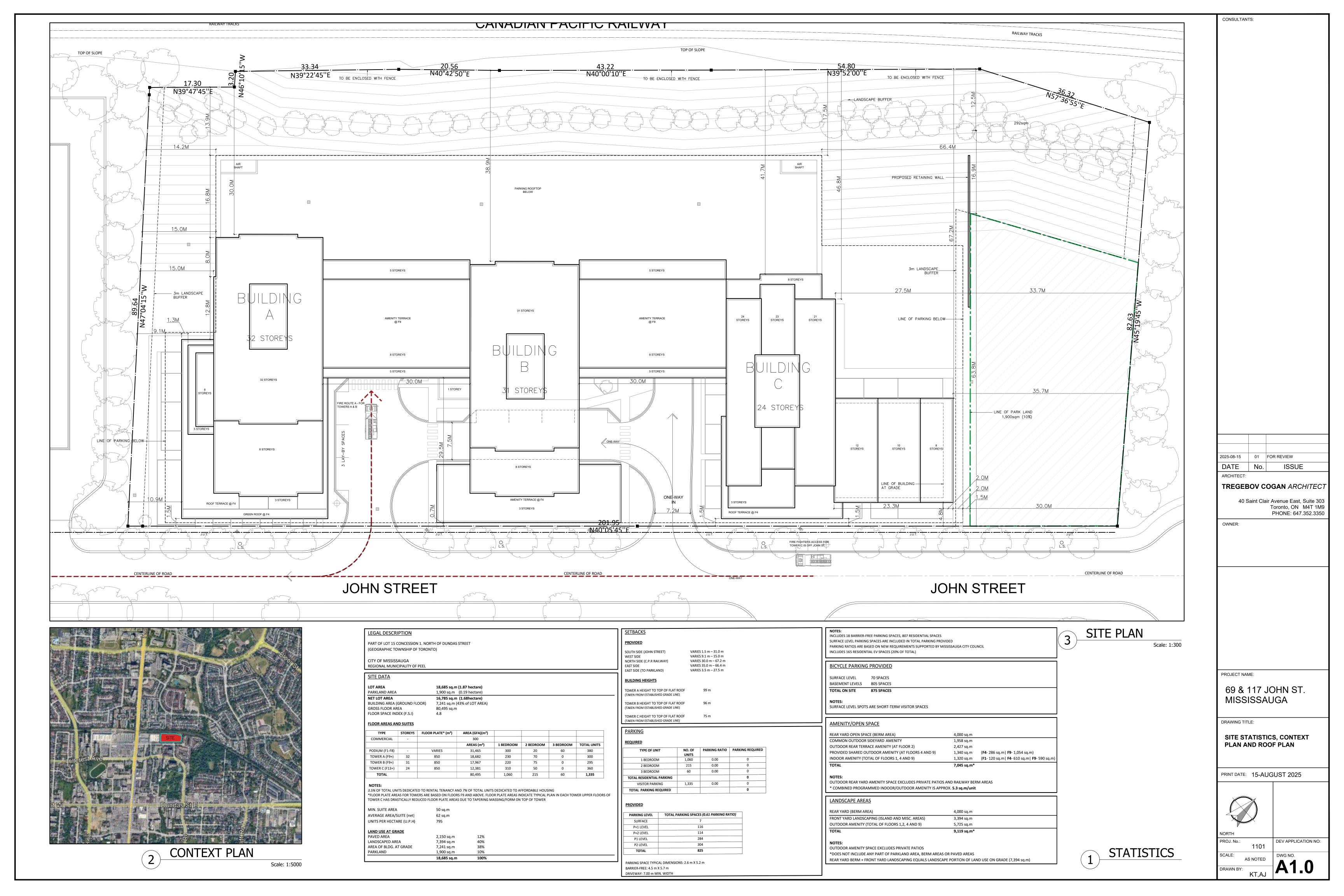
Attachment 1: Site Plan

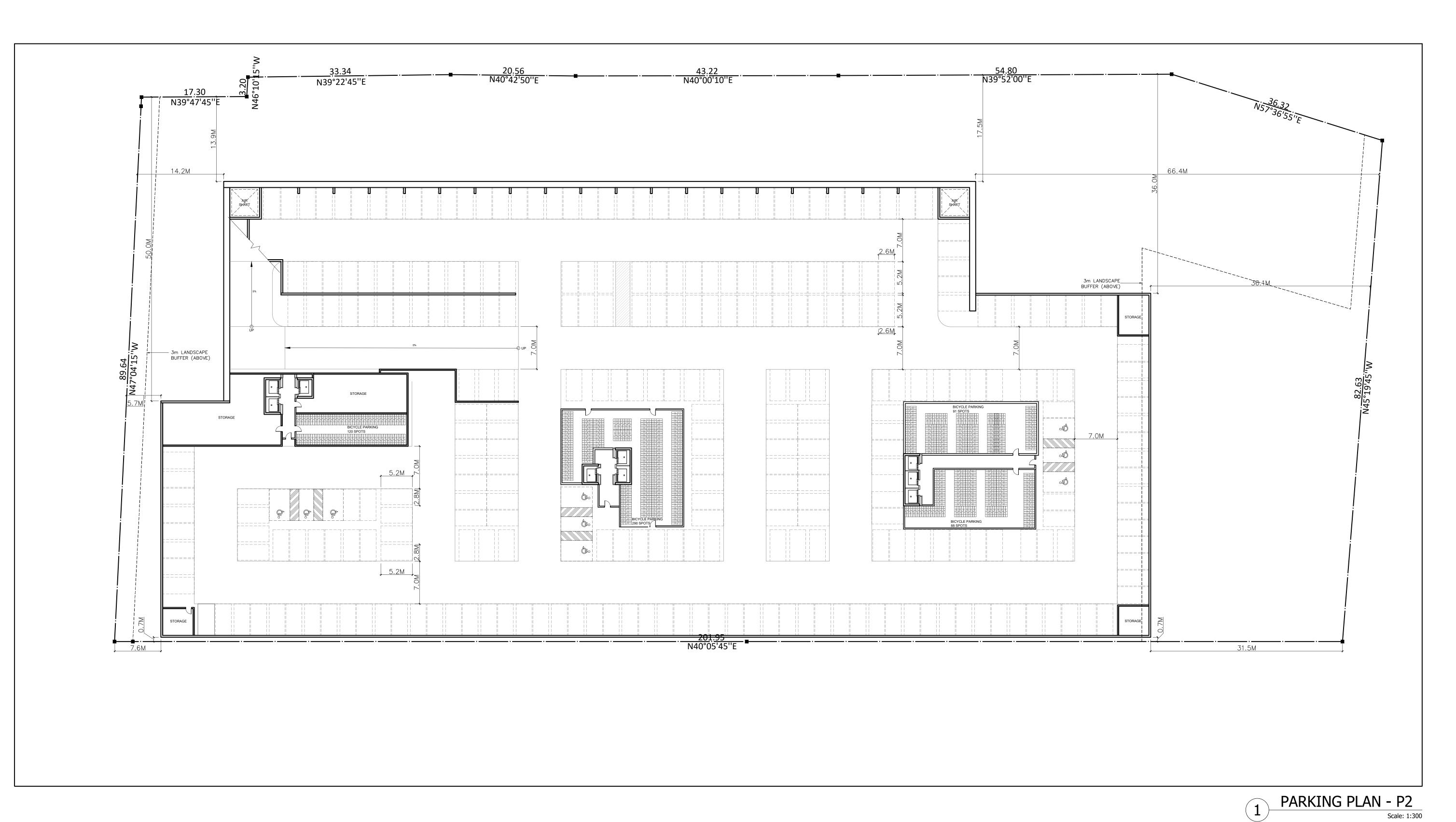
Attachment 2: Correspondence

Attachment 3: Vehicle Turning Diagrams Attachment 4: Pedestrian Circulation Plan

Attachment 5: Transportation Association of Canada Geometric Design Guide for Canadian Roads Excerpts

Attachment 6: Access Spacing and Corner Clearance Diagrams


Attachment 7: Zoning By-Law Excerpts


Attachment 8: Parking Proposal Trends Excerpts Attachment 9: Previous Submission Excerpts

/MY

 $J:\2300\2378 - Centracondos de la Montagne \6557 - 69 \& 117 John Street, Mississauga \Reports \Transportation \2025.07.19 Third Submission TUL \2025.08.19_69 \& 117 John St Transportation Update Letter.docx$

ATTACHMENT 1: Site Plan

2025-08-15 01 FOR REVIEW DATE No. ISSUE

ARCHITECT: TREGEBOV COGAN ARCHITECT

40 Saint Clair Avenue East, Suite 303 Toronto, ON M4T 1M9 PHONE: 647.352.3350

OWNER:

CONSULTANTS:

PROJECT NAME:

69 & 117 JOHN ST. MISSISSAUGA

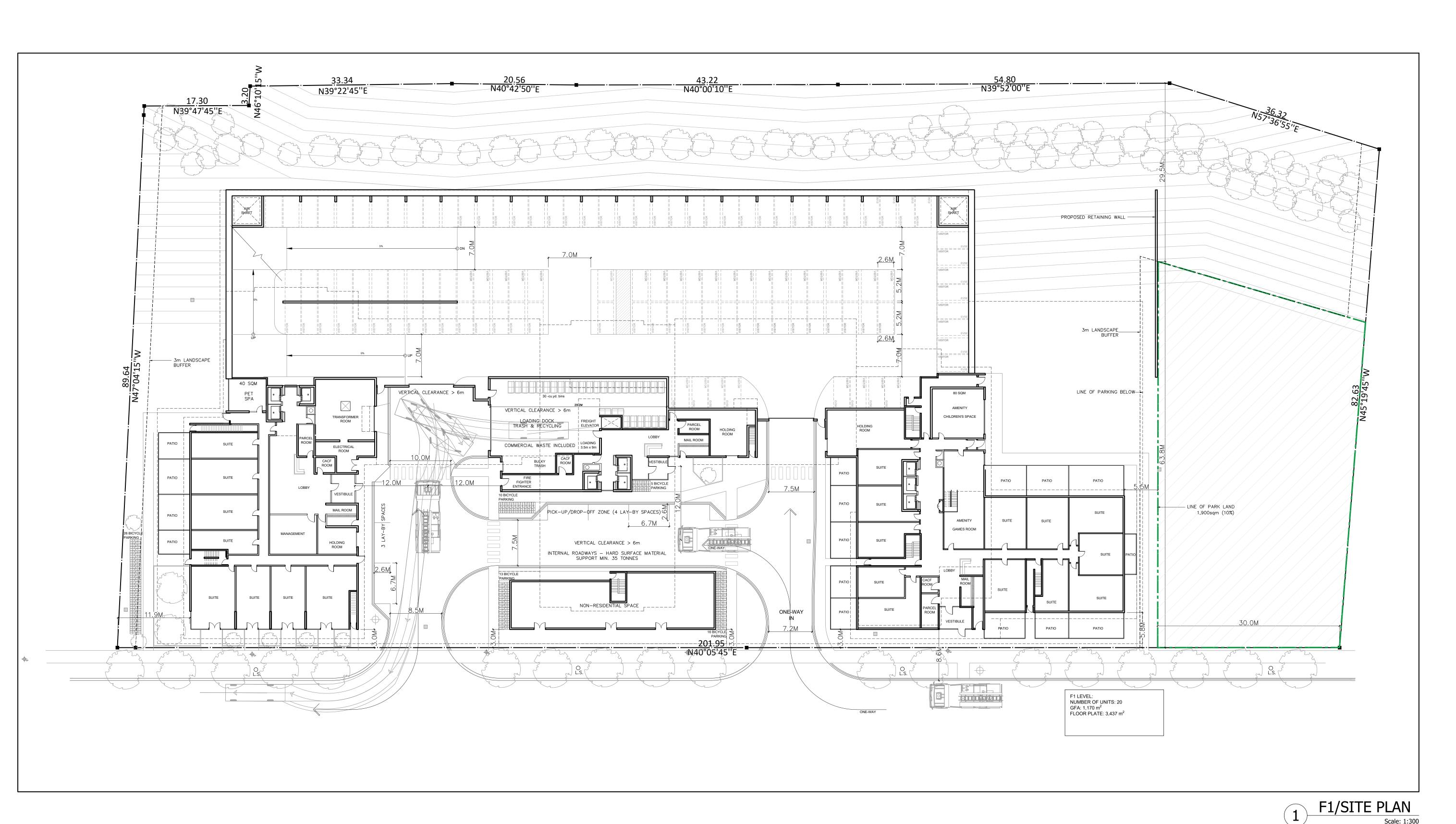
DRAWING TITLE:


P2 PARKING PLAN

PRINT DATE: 15-AUGUST 2025

PROJ. No.: DEV APPLICATION NO: 1101 SCALE: AS NOTED DRAWN BY:

KT,AJ



TREGEBOV COGAN ARCHITECT

CONSULTANTS:

SCALE: AS NOTED DRAWN BY:

KT,AJ

2025-08-15 01 FOR REVIEW

DATE No. ISSUE

ARCHITECT:

TREGEBOV COGAN ARCHITECT

40 Saint Clair Avenue East, Suite 303 Toronto, ON M4T 1M9 PHONE: 647.352.3350

OWNER:

CONSULTANTS:

PROJECT NAME:

69 & 117 JOHN ST. MISSISSAUGA

DRAWING TITLE:

F1/SITE PLAN

PRINT DATE: 15-AUGUST 2025

DRAWN BY:

NORTH

PROJ. No.:

1101

SCALE:

AS NOTED

DEV APPLICATION NO:

DWG NO.

AS NOTED DWG NO.

KT,AJ

ATTACHMENT 2: Correspondence

My-Linh Yee

From: Michael Turco < Michael. Turco@mississauga.ca>

Sent: February 13, 2024 10:19 AM

To: My-Linh Yee

Cc:Michael Linton; Kierra Harper; Cyrus HiranandaniSubject:RE: 69 & 117 John Street - Terms of Reference

Hi My-Linh,

The proposal at 3065 Jaguar Valley Drive is to convert an existing apartment building site into a standard condominium. Thus, only a change in tenure is proposed and there is no need to consider this site as a background development.

Thank you,

Michael Turco, C.E.T., CPT, MITE

Traffic Planning Coordinator T 905-615-3200 ext. 3597 michael.turco@mississauga.ca

<u>City of Mississauga</u> | Transportation & Works Department 300 City Centre Drive | Mississauga ON | L5B 3C1

Please consider the environment before printing.

From: My-Linh Yee <myee@cfcrozier.ca>
Sent: Tuesday, February 13, 2024 10:15 AM

To: Michael Turco < Michael. Turco@mississauga.ca >

Cc: Michael Linton <mlinton@cfcrozier.ca>; Kierra Harper <kharper@cfcrozier.ca>; Cyrus Hiranandani

<Cyrus.Hiranandani@mississauga.ca>

Subject: FW: 69 & 117 John Street - Terms of Reference

Hi Michael,

I tried to reach out to Cyrus but got his out of office email. Are you able to provide us the transportation reports for 3065 Jaguar Valley Drive?

Thanks, My-Linh

My-Linh Yee, EIT

Engineering Intern, Transportation

Office: 905.876.7159

Collingwood | Milton | Toronto | Bradford | Guelph

Read about how our story began 20 years ago here.

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

From: My-Linh Yee < myee@cfcrozier.ca Sent: Tuesday, February 13, 2024 10:10 AM

To: Cyrus Hiranandani < Cyrus.Hiranandani@mississauga.ca

Cc: Michael Linton <mlinton@cfcrozier.ca>; Kierra Harper <kharper@cfcrozier.ca>; Trans Projects

<<u>Trans.Projects@mississauga.ca</u>>

Subject: RE: 69 & 117 John Street - Terms of Reference

Hi Cyrus,

I hope you are doing well. Can you provide the Transportation Impact Study for 3065 Jaguar Valley Drive background development, as we have not been able to find it on the City's website.

Thanks, My-Linh

My-Linh Yee, EIT

Engineering Intern, Transportation

Office: 905.876.7159

Collingwood | Milton | Toronto | Bradford | Guelph

Read about how our story began 20 years ago here.

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

From: Cyrus Hiranandani < Cyrus. Hiranandani @mississauga.ca>

Sent: Tuesday, January 23, 2024 11:36 AM To: My-Linh Yee <myee@cfcrozier.ca>

Cc: Michael Linton <mlinton@cfcrozier.ca>; Kierra Harper <kharper@cfcrozier.ca>; Trans Projects

<Trans.Projects@mississauga.ca>

Subject: RE: 69 & 117 John Street - Terms of Reference

Good Morning My-Linh,

Please find attached stamped and approved ToR for the proposed development, which encompasses City comments. Other items to note:

- Certification Form The Transportation Consultant must complete, sign, and seal (if appropriate) the attached Certification Form from the City's TIS Guidelines (2022) and submit the document with the application/report to ensure compliance with qualification requirements. The TIS Guidelines can be found at https://www.mississauga.ca/wp-content/uploads/2023/03/CMississauga-TIS-Guidelines-Version-5.1-Dec-2022.pdf . It must be ensured that the report conforms to the City's TIS Guidelines.
- Growth Rates/Traffic Data Please contact Tyler Xuereb from the City's Transportation Planning Section (tyler.xuereb@mississauga.ca, Ext. 4783) to confirm growth rates and/or obtain traffic data for the study area roadways.
- Signal Timing Plans Signal timing plans for signalized intersections under the City's jurisdiction can be obtained from Jim Kartsomanis (Jim.Kartsomanis@mississauga.ca, Ext. 3964).

Let me know if you have any questions.

Thank you,

Cyrus Hiranandani, E.I.T.

Traffic Planning Technologist T 905-615-3200 ext. 4363 cyrus.hiranandani@mississauga.ca

City of Mississauga | Transportation & Works Department 300 City Centre Drive | Mississauga ON | L5B 3C1

Please consider the environment before printing.

From: My-Linh Yee < myee@cfcrozier.ca > Sent: Monday, January 8, 2024 5:06 PM

To: Kate Vassilyev < Kate.Vassilyev@mississauga.ca

Cc: Michael Linton <mlinton@cfcrozier.ca>; Kierra Harper <kharper@cfcrozier.ca>; Michael Turco

< Michael. Turco@mississauga.ca >

Subject: RE: 69 & 117 John Street - Terms of Reference

Hi Kate,

I hope you are doing well. Crozier is retained to prepare a Transportation Study in support of the Official Plan Amendment and Zoning By-Law Amendment for the proposed mixed-use residential commercial development at 69 & 117 John Street. The most recent concept plan (see attached) proposes 1,309 residential units and 700 m² of retail space. It is noted the concept plan is subject to change.

Based on the updated DARC (DARC 23-146 W7) conducted in September 2023 and discussions with the City in December 2023, we are proposing the following updated Terms of Reference for the Transportation Study. Please note, the completed Pre-Study Consultation Checklist is also attached in addition to the below Terms of Reference.

Study Intersections

- Hurontario Street & John Street
- Hurontario Street & Kirwin Avenue
- John Street & Little John Lane
- Kirwin Avenue & Little John Lane
- John Street & Jaguar Valley Drive
- Dundas Street & Kirwin Avenue
- Kirwin Avenue & Jaguar Valley Drive
- Hillcrest Avenue & GO Access Road
- Site Access(es)

Existing Conditions

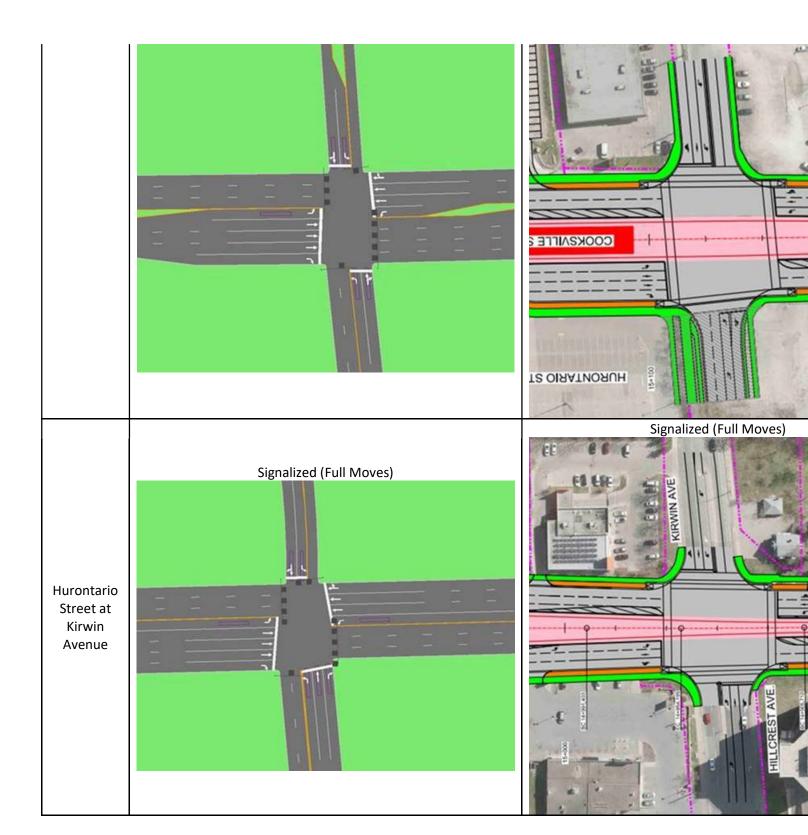
- Analyze the existing automobile conditions based on peak hour traffic counts using Synchro Version 11.0, LOS (based on control delays), maximum volume-to-capacity ratios and queue length will be evaluated based on HCM 2000 standards.
- Weekday a.m. and p.m. peak periods; 7:00 a.m. to 10:00 a.m. & 4:00 p.m. to 7:00 p.m.; reflective of the typical commuter peak period.
- We have reached out to tyler.xuereb@mississauga.ca regarding Turning Movement Counts (TMCs) and have been informed the following TMCs are available:
 - Hurontario Street at John Street 2015
 - Hurontario at Kirwin Avenue 2016
 - Hillcrest Avenue & GO Access Road 2015
- In addition, TMCs have been previously conducted in 2023 for the following intersections:
 - O Dundas Street & Kirwin Avenue
 - John Street & Jaguar Valley Drive
 - Kirwin Avenue & Jaguar Valley Drive
 - o Kirwin Avenue at Little John Lane
 - John Street at Little John Lane
- Many of the above TMCs from the City are quite outdated and we would like to propose conducting new counts
 at the study intersections where possible. However, we do note that there has been construction activity which
 may impact travel patterns and as such the study may have to rely on the use of this historical data instead of
 new counts.
- We have reached out to Steve.Gee@mississauga.ca for signal timing data.

Study Horizon

 We propose a 2023 existing base year and a 2028 study horizon, consistent with the City's Traffic Impact Study Guidelines.

Growth Rates

• We will reach out to Tyler Xuereb from Transportation Planning (<u>tyler.xuereb@mississauga.ca</u>) to confirm the appropriate growth rates for the study road network.


Background Developments

- We will include the following background developments in our analysis:
 - o O Kings Street E, O Camilla Road & 2487 Camilla Road
 - 25 & 33 Hillcrest Avenue, 3146 & 3154 & 3168 Hurontario Street
 - 60 Dundas Street East
 - 65-71 Agnes Street
 - o 3016 & 3020 & 3026 & 3032 Kirwin Avenue, 3031 Little John Lane
 - o 3085 Hurontario Street
 - o 3420 & 3442 Hurontario Street

Hurontario LRT

• The existing (pre-LRT construction) and future intersection lane configurations that we have currently assumed based on a desktop review and the LRT Rollout Map (June 2017), respectively, are summarized below:

Intersection	Intersection (Configuration
intersection	Existing – Pre LRT (Desktop Review)	Future – Post LRT (LRT Rollout Map – J
Hurontario		
Street at	Signalized (Full Moves)	Signalized (Full Moves)
John Street		

Background Traffic Volumes

- We will forecast the 2027 future background volumes based on the above growth rate and background developments.
- Future background volumes will be analyzed based on Synchro Version 11.0, LOS (based on control delays), maximum volume-to-capacity ratios and queue length will be evaluated based on HCM 2000 standards.

Future Conditions

- Trip Generation will be based on ITE Trip Generation Manual, 11th edition and First Principles (via existing or forecasted mode split data).
 - We will also review the multi-modal trip generation as well as the anticipated number of GO, LRT, and local bus passengers from the Proposed Development.
- Trip Distribution will be based on Transportation Tomorrow Survey (TTS) data and/or forecasted travel patterns.
- Future background and future total automobile conditions will be compared to identify if capacity and queuing issues are forecasted and if mitigation measures are required.

Traffic Safety

- The available site distance at the proposed site access will be compared to standards set out by the Transportation Associates of Canada (TAC) Geometric Design Guide for Canadian Roads (GDGCR).
- The site access will also be reviewed to confirm it conforms to TAC standards.
- The supportability of site access locations and restrictions will be reviewed based on traffic operations and expected queue lengths, as well as applicable access spacing guidelines.
- A Pedestrian Circulation Plan will be prepared per the City of Mississauga's Transportation Impact Study Guidelines.
- Conflicts will be reviewed between vehicles, pedestrians, cyclists, and recommendations made to maintain multimodal safety.

TDM Review

Transportation Demand Management (TDM) opportunities will be assessed, and site-specific measures for the
development will be recommended to reduce single-occupancy vehicle (SOV) trips and promote sustainable
transportation in line with the City and Region's mode share targets and vision for the Hurontario Street
Corridor.

Parking

 As part of the TIA submission, a Parking Justification Study will also be included. The Parking Study Terms of Reference will be confirmed with <u>parkingstudy.review@mississauga.ca</u>

Loading

• Loading requirements will be reviewed per City of Mississauga Zoning By-Law 0174-2017. Any deviations will be supported with appropriate justification, if required.

Ot<u>her</u>

- Vehicle Turning Diagrams will be provided for the following design vehicles:
 - o TAC p-car
 - Medium Single Unit Truck
 - o Pumper Fire Truck
 - Region of Peel Typical Waste Collection Vehicle

Thanks, My-Linh

My-Linh Yee, EIT

Engineering Intern, Transportation

Office: 905.876.7159

Collingwood | Milton | Toronto | Bradford | Guelph

Learn how we help our communities thrive **here.** LINKEDIN |INSTAGRAM |FACEBOOK|TWITTER

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

From: Michael Turco < Michael. Turco@mississauga.ca > On Behalf Of Trans Projects

Sent: Thursday, December 21, 2023 8:46 AM **To:** Kierra Harper < <u>kharper@cfcrozier.ca</u>>

Cc: Michael Linton < mlinton@cfcrozier.ca >; My-Linh Yee < myee@cfcrozier.ca >

Subject: RE: 69 & 117 John Street - Terms of Reference

Good morning Kierra,

Thank you for your email. The TIS will be required to conform to the City's new TIS Guidelines, including the new process for Terms of References. Please complete and submit the Pre-Study Consultation Checklist (attached). The City will review and comment on the assumptions once the document is submitted.

Regards,

Michael Turco, C.E.T., CPT, MITE

Traffic Planning Coordinator T 905-615-3200 ext. 3597 michael.turco@mississauga.ca

<u>City of Mississauga</u> | Transportation & Works Department 300 City Centre Drive | Mississauga ON | L5B 3C1

Please consider the environment before printing.

From: Kate Vassilyev < Kate. Vassilyev@mississauga.ca > Sent: Wednesday, December 20, 2023 5:45 PM
To: Trans Projects < Trans. Projects@mississauga.ca > Subject: FW: 69 & 117 John Street - Terms of Reference

From: Kierra Harper < kharper@cfcrozier.ca Sent: Wednesday, December 20, 2023 10:16 AM To: Kate Vassilyev Kate.Vassilyev@mississauga.ca

Cc: Michael Linton < mlinton@cfcrozier.ca >; My-Linh Yee < myee@cfcrozier.ca >

Subject: 69 & 117 John Street - Terms of Reference

Good morning Kate,

I hope you are doing well. Crozier is retained to prepare a Transportation Impact Study for the proposed development at 69 & 117 John Street. An initial DARC (DARC 22-225 W7) was conducted in 2022, with an updated DARC (DARC 23-146 W7) conducted in September 2023. A Terms of Reference was previously circulated and confirmed with the City in February 2023 (see attached). We wanted to confirm if the City requires us to submit a new Terms of Reference or if the initial Terms of Reference will suffice. Can you also confirm if the study will now be required to conform to the City's updated TIS Guidelines which were released around March 2023? Note that the guidelines were released after the initial TOR coordination and would not have been referenced in the attached correspondence.

Should the initial Terms of Reference suffice, we will also include the following in our report based on the most recent DARC comments:

 Review the anticipated number of GO, LRT, and local bus (using street and/or Cooksville GO) passengers from the Proposed Development

- Include Hillcrest Avenue & GO Access Road as a study intersection.
- Access justification, if the proposed site access is not aligned with Little John Lane.

We will follow up with formal terms pending your response to the above.

Thank you,

Kierra

Reminder: Crozier offices will be closed for the Holidays beginning Friday, December 22 *nd* at 5:00pm, and re-opening Tuesday, January 2*nd* at 8:30am. All the best during the Holiday season!

Kierra Harper, EIT

Engineering Intern, Transportation

Office: 905.693.4713

Collingwood | Milton | Toronto | Bradford | Guelph

Learn all about our latest awards & recognition **here**. LINKEDIN |INSTAGRAM |FACEBOOK|TWITTER

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

Appendix B

APPROVED

By Cyrus Hiranandani at 11:30 am, Jan 23, 2024

Pre-Study Consultation Checklist

Description	Information	Section Reference
Development Information		
Development Description (land use, size, and number of phases of development)	 High Rise Apartment: 1,309 units (including 4 live/work units) Retail: 700 m² 	2.3.6
Transportation Impact Assessme	ent	
Step 1 – Screening		
Type of Application (attach a drawing)	 ☑ Official Plan Amendment ☑ Zoning Amendment ☐ Site Plan Control Application ☐ Plan of Subdivision ☐ Other 	2.3.5
Screening Criteria	☑ Trip Generation Trigger Satisfied☑ Location Trigger Satisfied☐ Operational/Safety Trigger Satisfied	2.2.1
Type of Study	☑ Transportation Impact Study☑ Access Review☐ No Additional Study Required	2.2.1
Step 2 – Scoping		
Study Area (intersections to be analyzed) Note: The Transportation Consultant is responsible to identify any further intersections impacted as the study progresses.	 Hurontario Street & John Street Hurontario Street & Kirwin Avenue John Street & Little John Lane Kirwin Avenue & Little John Lane John Street & Jaguar Valley Drive Dundas Street & Kirwin Avenue 	2.3.8
	Kirwin Avenue & Jaguar Valley DriveHillcrest Avenue & GO Access RoadSite Access(es)	
Horizon Years		2.3.9

Description	Information	Section Reference
Analysis Periods	 ☑ AM weekday peak hour of adjacent roadway ☑ PM weekday peak hour of adjacent roadway ☐ Saturday peak hour of adjacent roadway ☐ AM weekday peak hour of development ☐ PM weekday peak hour of development ☐ Saturday peak hour of development ☐ Other 	2.3.10
Input Parameters and Assumptions (potential deviations)	Existing Lane Configurations: Pre LRT construction per a desktop review of historical imagery. Historic Circle Timing Plane: Received from City of	2.3.13
	 Historic Signal Timing Plans: Received from City of Mississauga (<u>Steve.Gee@mississauga.ca</u>) 	
	 Future Lane Configurations: Post LRT conditions per the LRT Rollout Map (June 2017) received from the City of Mississauga. 	
Existing Transportation Conditions	⊠ City data sources New data collection □ Other	2.3.14
Planned Network Improvements (with timing)	 Hurontario Light Rail Transit (LRT) and Associated Lane Configurations: 2024 	2.3.16
Other Planned Developments	0 Kings Street E, 0 Camilla Road & 2487 Camilla Road	2.3.17
(per <u>City's Website</u>)	 25 & 33 Hillcrest Avenue, 3146 & 3154 & 3168 Hurontario Road 	
	60 Dundas Street E	
	65-71 Agnes Street	
	 3016 & 3020 & 3026 & 3032 Kirwin Avenue, 3031 Little John Lane 	
	3085 Hurontario Street	
	3420 & 3442 Hurontario Street	
	3115 Hurontario Street	
	3065 Jaguar Valley Drive	
	 Any other in-stream or recently approved development within approximately 1km from the subject site. Refer to the City's website for further information 	
Identification of Mitigation Improvement Measures	☐ Neighbourhood Traffic Management Plan ☐ Other	2.3.23

Description	Information	Section Reference	
Safety Analysis (any special issues)	 Corner Clearance Sight Distance Vehicle-pedestrian/cyclist conflicts Access conflicts Pedestrian and cyclist movements 	2.3.25	
Site Access and Circulation (design vehicles)	 ☑ Passenger Car (P) ☐ Light Single Unit Truck (LSU) ☑ Medium Single Unit Truck (MSU) ☐ Heavy Single Unit Truck (HSU) ☑ Pumper Fire Truck ☐ WB-20 Tractor Semi-Trailer Truck ☑ Other Region of Peel Typical Waste Collection Vehicle 	2.3.26	
Impacts During Construction (any special issues)	• N/A	2.3.27	
Step 3 – Forecasting			
Growth Rate	 ☑ Obtained from City ☐ Historical traffic counts ☐ Travel demand forecasts ☐ Proposed Growth Rate: 	2.3.15	
Site Trip Generation	 ☑ ITE Trip Generation Manual ☑ "First Principles" ☐ Observed rates for similar developments in area ☐ Other 	2.3.19	
Trip Reductions	 ☑ Internal capture reductions for mixed-use developments ☑ Pass-by reductions ☐ Other 	2.3.19	
Trip Distribution	Local traffic patterns ☐ TTS ☐ Travel demand model ☐ Population and employment distribution ☐ Market analysis of catchment area ☐ Other	2.3.20	
Trip Assignment	 ☑ Local traffic patterns ☑ Shortest distance ☑ Site layout, access design and logical routing ☐ Existing turning movements ☐ Other 	2.3.21	
Transportation Demand Management Plan			

Description	Information	Section Reference
Format	☑ Within a TIA Report☐ Standalone	3.2.1
Type of Transportation Demand Management Plan	□ TDM Statement図 TDM Scheme	3.2.2
Pedestrian Circulation Plan		
Format	☑ Within a TIA Report☐ Standalone	4.2.1

Additional Comments

- **Community Impacts**: Any transportation related impacts on the existing community and comments from the public through the planning approvals process shall be addressed in the report.
- **Access Review**: Ensure that the site access(es) conforms to all TAC standards (e.g. corner clearances, clear throat lengths, veh & ped sight line distances for ingress/egress, proximity/alignment to other driveways/roads, etc.); Provide confirmation and technical justification of whether the site access location(s) and design(s) are safe for all roadway users and why.
- **Traffic Control Warrants**: (e.g. all-way stop, traffic control signals) are to be provided, where applicable, for all three scenarios (existing, future background, future total)
- **Detailed Recommendations**: regarding on-site/off-site roadway improvements, site access, site circulation, and TDM measures shall be made.

Department/Agency	Comment	Crozier Response		
Second Submission Comments				
	The proposed easterly access shall be	Noted. As discussed with City staff, the East Site Access is located west of John Street & Little John Lane to accommodate previously received Fire comments.		
	relocated to align centreline to centreline with Little John Lane.	Nevertheless, the East Site Access provides sufficient corner clearance from the John Street & Little John Lane intersection.		
		Further details are outlined in Section 4.0 .		
Traffic Review City of Mississauga	The Owner shall ensure the proposed access provides sufficient sight lines such that views are not obstructed at the intersection (street trees, retaining walls, noise walls etc.).	Noted. As outlined in Section 4.1 , no sight distance issues are expected at the proposed site accesses.		
	The Owner shall provide for a sufficient clear throat length within the driveway access to ensure the roadway and internal driveway	Noted. The Vehicle Turning Diagrams demonstrate that the proposed site accesses and internal driveway can operate efficiently.		
	can operate efficiently.	The Vehicle Turning Diagrams are included in Attachment 3 .		
	The Owner shall provide for a sufficient corner clearance from the roadway to the access point.	Noted. As outlined in Section 4.2 , the proposed site accesses meet the applicable corner clearance requirements.		
	Please attach the approved ToR (Appendix B) to the report to confirm alignment with City expectations.	Noted. The approved Terms of Reference is included in Attachment 2 .		

Department/Agency	Comment	Crozier Response
	Based on the data and per table 34, it confirms that projected vehicle and	
	pedestrian volumes meet the criteria for an	
	all-way stop control (AWSC) at the	
	intersection of John St & Little John St. Implementation of AWSC will enhance	
	safety for both vehicles and pedestrians	Noted. As discussed with City staff, the East Site Access is
	accessing the site. The AWSC aligns with	located west of John Street & Little John Lane to
	best practices outlined in TAC guidelines for	accommodate previously received Fire comments.
	intersection control at urban developments with increased pedestrian activity. We	Nevertheless, the East Site Access provides sufficient corner
	request that you proceed with incorporating	clearance from the John Street & Little John Lane
	an all-way stop control at the intersection of	intersection.
	John Street & Little John Lane into the site	Fruith or distails are quitting dis Continu 4.0
	design. Furthermore, please revise the site plan to reflect the relocation of the	Further details are outlined in Section 4.0 .
	proposed easterly driveway to align with	
	Little John Street. Kindly update the relevant	
	drawings and documentation accordingly	
	and ensure to maintain current sight distance provisions.	

Department/Agency	Comment	Crozier Response
		The intersection operations outlined in the previously submitted Transportation Impact, and Parking and Loading Study Update (October 2024) illustrate that the Subject Development does not materially impact the traffic operations in comparison to future background conditions.
	The study forecasts LOS "F" conditions at key intersections (e.g., Hurontario St @ John St). Clearly define the Developer responsibility for any required improvements as existing conditions operated at a LOS "C" condition.	The LOS F observed at key intersections, including Hurontario Street & John Street, is also observed during future background conditions, due to the background traffic expected.
		As identified in the previous submission, the developer driven improvements are the implementation of all-way stop control at John Street & Little John Lane as well as the consideration for an increased westbound and southbound left-turn lane storage at Hurontario Street & John Street/Cooksville GO.
		Further details are included in Section 7.2 and Attachment 7 .
	The TIS shall include a section in the report to address Community Impacts. This section shall include summary statements outlining the resulting traffic increases to the critical streets, movements and intersections. Comments or concerns from the community through future public meetings and engagements that are related to traffic shall also be addressed in this section.	Noted. Section 7.0 addresses the Community Impacts based on the comments received during the public consultation on May 26, 2025.
	The study is generally compliant with the Mississauga TIS Guidelines; however, the above items must be addressed for final City approval. Please submit a revised report incorporating the requested clarifications and additional justifications.	Noted.

Department/Agency	Comment	Crozier Response		
Public Meeting Recommendation Report Comments				
	Provide an updated Traffic Impact Study addressing all staff comments.	Noted.		
	Provide turning movement diagrams to evaluate the internal site circulation and	Noted. The Vehicle Turning Diagrams evaluate the site circulation, and no conflicts are expected.		
	access points.	Attachment 3 includes the Vehicle Turning Diagrams.		
Traffic City of Mississauga	Review the easterly driveway access to ensure alignment with Little John Lane and the internal driveway can operate efficiently.	Noted. As confirmed with City staff, the East Site Access is supportable, given that the corner clearance requirements with John Street & Little John Lane are met, and the access can operate efficiently.		
	Address any traffic concerns from the	Further details are included in Section 4.2 and Section 4.3 .		
	Address any traffic concerns from the Community related to the proposed development.	Noted. Section 7.0 addresses the Community Impacts based on the comments received during the public consultation on May 26, 2025.		
	Provide functional designs showing how the	Noted. As discussed in Section 8.0 , functional designs for		
	proposed road network improvements can	the proposed road network improvements will be		
	be implemented.	prepared as part of the Site Plan Application.		

My-Linh Yee

From: My-Linh Yee

Sent: July 2, 2025 4:14 PM **To:** Yousef Hereich

Cc: Michael Linton; Sarah Clark; Maurice Luchich; Adam Lucas; Shea Laventure; James

Emerson

Subject: RE: (OZ/OPA 24-16 W7) 69 & 177 John Street - Access Comments

Hi Yousef,

Thanks for prompt response, I greatly appreciate it! I just wanted to confirm there is nothing further you need from us for an updated recommendation report.

As part of the formal resubmission (following the updated recommendation report) we will provide the access justification, including the requested pavement markings and signage, as well as address any other outstanding traffic comments.

Cheers,

My-Linh [me/lin]

My-Linh Yee, EIT

Engineering Intern, Transportation

Office: 905.876.7159

Collingwood | Milton | Toronto | Bradford | Guelph

We've marked another milestone in our vision for growth. Learn how, here.

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

From: Yousef Hereich < Yousef. Hereich@mississauga.ca>

Sent: July 2, 2025 4:01 PM

To: My-Linh Yee <myee@cfcrozier.ca>

Cc: Michael Linton <mlinton@cfcrozier.ca>; Sarah Clark <sarahc@gsai.ca>; Maurice Luchich <mauricel@gsai.ca>; Adam

Lucas <Adam.Lucas@mississauga.ca>; Shea Laventure <Shea.Laventure@mississauga.ca>; James Emerson

<James.Emerson@mississauga.ca>

Subject: RE: (OZ/OPA 24-16 W7) 69 & 177 John Street - Access Comments

Hi My-Linh,

Thank you for the follow-up and for providing the updated drawing. Yes, the proposed access location is acceptable as it satisfies the TAC corner clearance requirements. However, please ensure that the internal site design includes pavement markings and signage to reinforce the one-way inbound operation at the easterly driveway. This will help restrict traffic flow appropriately and ensure that delivery trucks utilize this access rather than the secondary driveway, thereby avoiding the need to reverse on-site.

Additionally, please update the written access justification as part of the re-submission to reflect this configuration, including sight distance, corner clearance, and one-way operations. Please also address any other traffic-related comments identified in ePlans.

Let me know if you have any questions.

Kind regards,

Yousef Hereich, C.E.T. Traffic Planning Technologist T 905-615-3200 ext.8363 yousef.hereich@mississauga.ca

<u>City of Mississauga</u> | Transportation & Works Department, Infrastructure Planning & Engineering Services Division

Please consider the environment before printing.

From: My-Linh Yee < myee@cfcrozier.ca >

Sent: June 27, 2025 1:56 PM

To: Yousef Hereich < Yousef. Hereich@mississauga.ca >; James Emerson < James. Emerson@mississauga.ca >

Cc: Michael Linton <<u>mlinton@cfcrozier.ca</u>>; Ryan Au <<u>Ryan.Au@mississauga.ca</u>>; Natalie Fan <Natalie.Fan@mississauga.ca>; Sarah Clark <sarahc@gsai.ca>; Maurice Luchich <mauricel@gsai.ca>

Subject: [EXTERNAL] RE: (OZ/OPA 24-16 W7) 69 & 177 John Street - Access Comments

[CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.]

Hi Yousef and James.

I just wanted to follow up regarding the proposed adjustments to the east site access (see attached). I understand next week is a short week with the Canada Day holiday, but we're hoping to get a response sooner rather than later given our timelines for the updated recommendation report and to get the updated materials to you for review.

Have a great weekend, My-Linh [me/lin]

Please note that our offices will be closed on Monday, June 30 and Tuesday, July 1. We will resume regular office hours on Wednesday, July 1.

My-Linh Yee, EIT

Engineering Intern, Transportation

Office: 905.876.7159

Collingwood | Milton | Toronto | Bradford | Guelph

We've marked another milestone in our vision for growth. <u>Learn how, here</u>.

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended r have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is stri

From: My-Linh Yee < myee@cfcrozier.ca >

Sent: June 25, 2025 3:42 PM

To: Yousef Hereich < Yousef. Hereich@mississauga.ca >; james.emerson@mississauga.ca Cc: Michael Linton < mlinton@cfcrozier.ca >; Ryan Au < Ryan. Au@mississauga.ca >; Natalie Fan < Natalie. Fan@mississauga.ca >; Sarah Clark < sarahc@gsai.ca >; Maurice Luchich < mauricel@gsai.ca >

Subject: RE: (OZ/OPA 24-16 W7) 69 & 177 John Street - Access Comments

Hi Yousef and James,

Thanks for taking the time to meet with us earlier this month. We have confirmed with the Architect that we can make a minor adjustment to the eastern site access to provide a 15 m corner clearance as requested (per TAC requirements). I have attached a high-level sketch of what this would look like for your review.

We just wanted to confirm that this updated access configuration is acceptable to the City. Furthermore, for the purpose of getting an updated recommendation report, do you require the requisite written access justification (including sight distance, corner clearance, one-way inbound operations, etc.) to be provided now or is it sufficient to provide these details as part of a comprehensive re-submission following the updated recommendation report.

Cheers, My-Linh [me/lin]

My-Linh Yee, EIT

Engineering Intern, Transportation

Office: 905.876.7159

Collingwood | Milton | Toronto | Bradford | Guelph

We've marked another milestone in our vision for growth. <u>Learn how, here</u>.

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

From: Yousef Hereich < Yousef. Hereich@mississauga.ca >

Sent: June 3, 2025 7:40 PM

To: My-Linh Yee <myee@cfcrozier.ca>

Cc: Ryan Au <Ryan.Au@mississauga.ca>; Michael Linton <mlinton@cfcrozier.ca>; Natalie Fan

<Natalie.Fan@mississauga.ca>

Subject: RE: (OZ/OPA 24-16 W7) 69 & 177 John Street - Access Comments

Hi My-Linh,

Can you please schedule a meeting for next Friday June 13th from 10:30am to 11:30am.

Thanks,

Yousef Hereich, C.E.T.

Traffic Planning Technologist T 905-615-3200 ext.8363 yousef.hereich@mississauga.ca

<u>City of Mississauga</u> | Transportation & Works Department, Infrastructure Planning & Engineering Services Division

Please consider the environment before printing.

From: My-Linh Yee < myee@cfcrozier.ca >

Sent: June 3, 2025 5:37 PM

To: Yousef Hereich < Yousef. Hereich@mississauga.ca>

Cc: Ryan Au < Ryan.Au@mississauga.ca >; Michael Linton < mlinton@cfcrozier.ca > Subject: [EXTERNAL] (OZ/OPA 24-16 W7) 69 & 177 John Street - Access Comments

[CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.]

Good afternoon Yousef,

I hope you are doing well. Crozier is the transportation consultants for the proposed mixed-use residential-commercial development located at 69 & 117 John Street (File Number OZ/OPA 24-16 W7). Are you available to meet to discuss the City's comments regarding the east site access proposed offset with Little John Lane?

Crozier is available at the following times:

- Friday June 6: 3:00 pm to 5:00 pm
- Monday June 9: 2:00 pm to 5:00 pm
- Tuesday June: 11:00 am to 2:00 pm
- Wednesday June 11: 2:30 pm to 5:00 pm
- Thursday June 12: 12:00 pm to 3:00 pm
- Friday June 13: 10:30 am to 12:00 pm; 3:00 pm to 5:00 pm

Cheers,

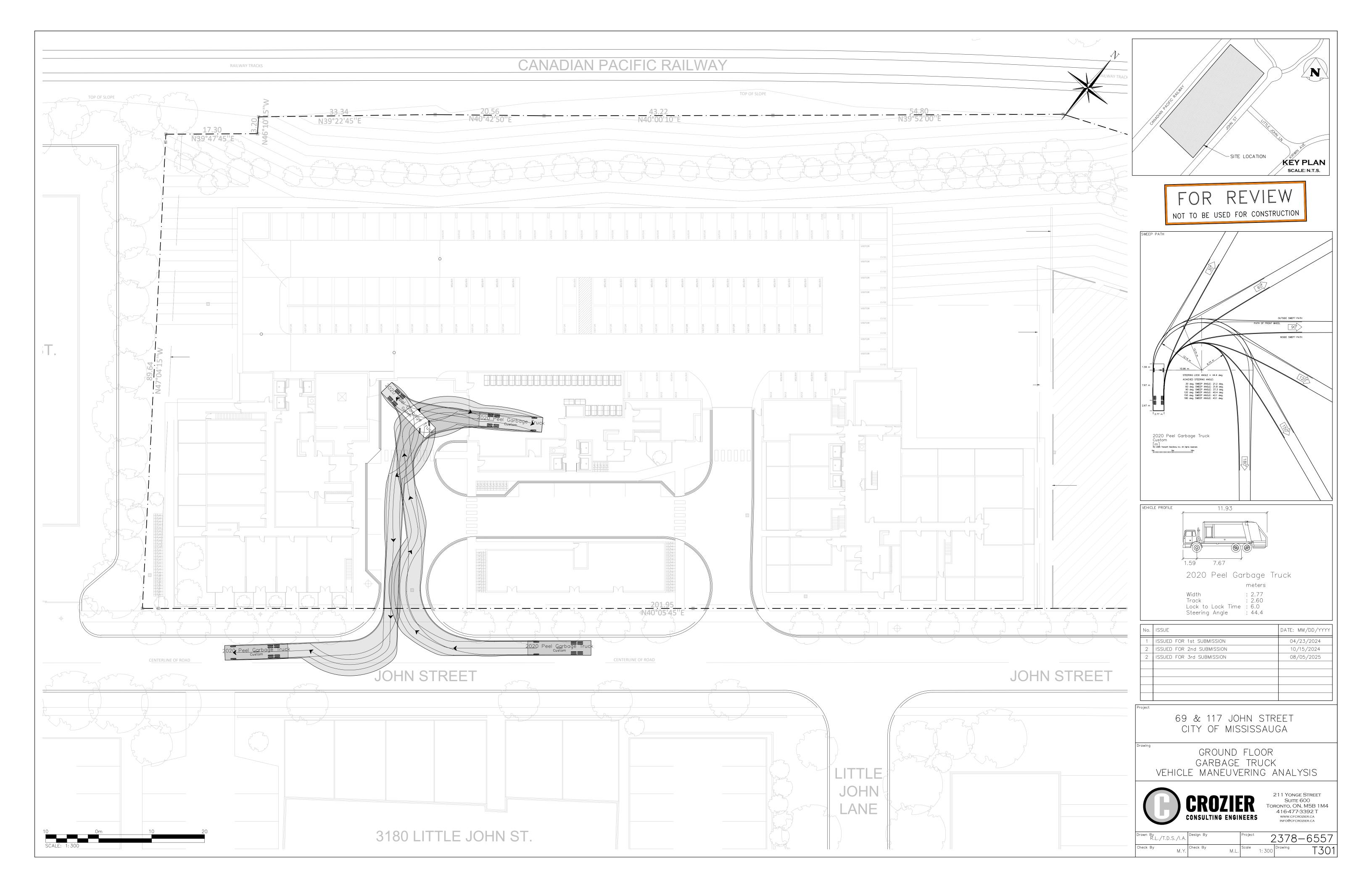
My-Linh [Me/Lin]

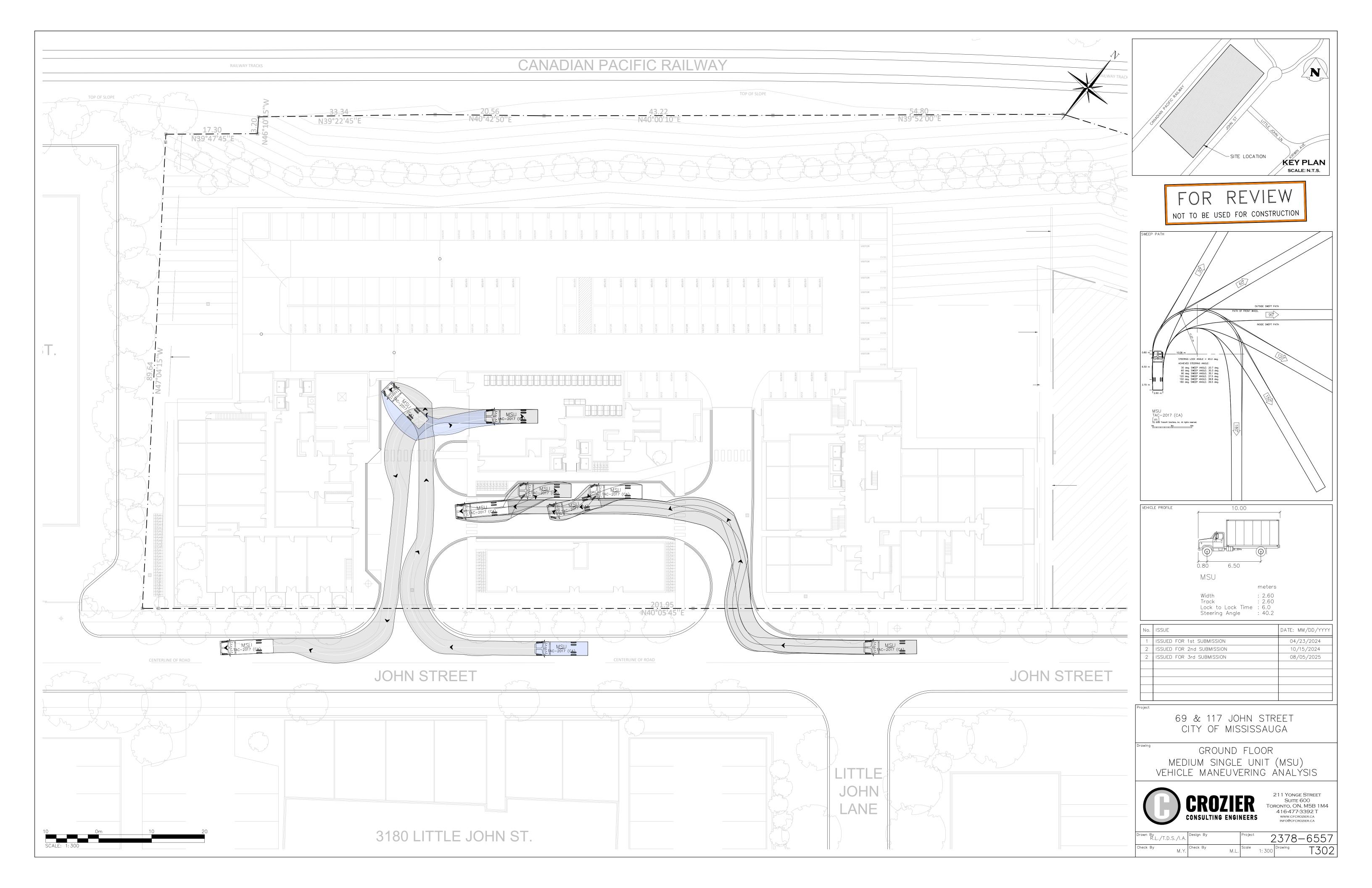
My-Linh Yee, EIT

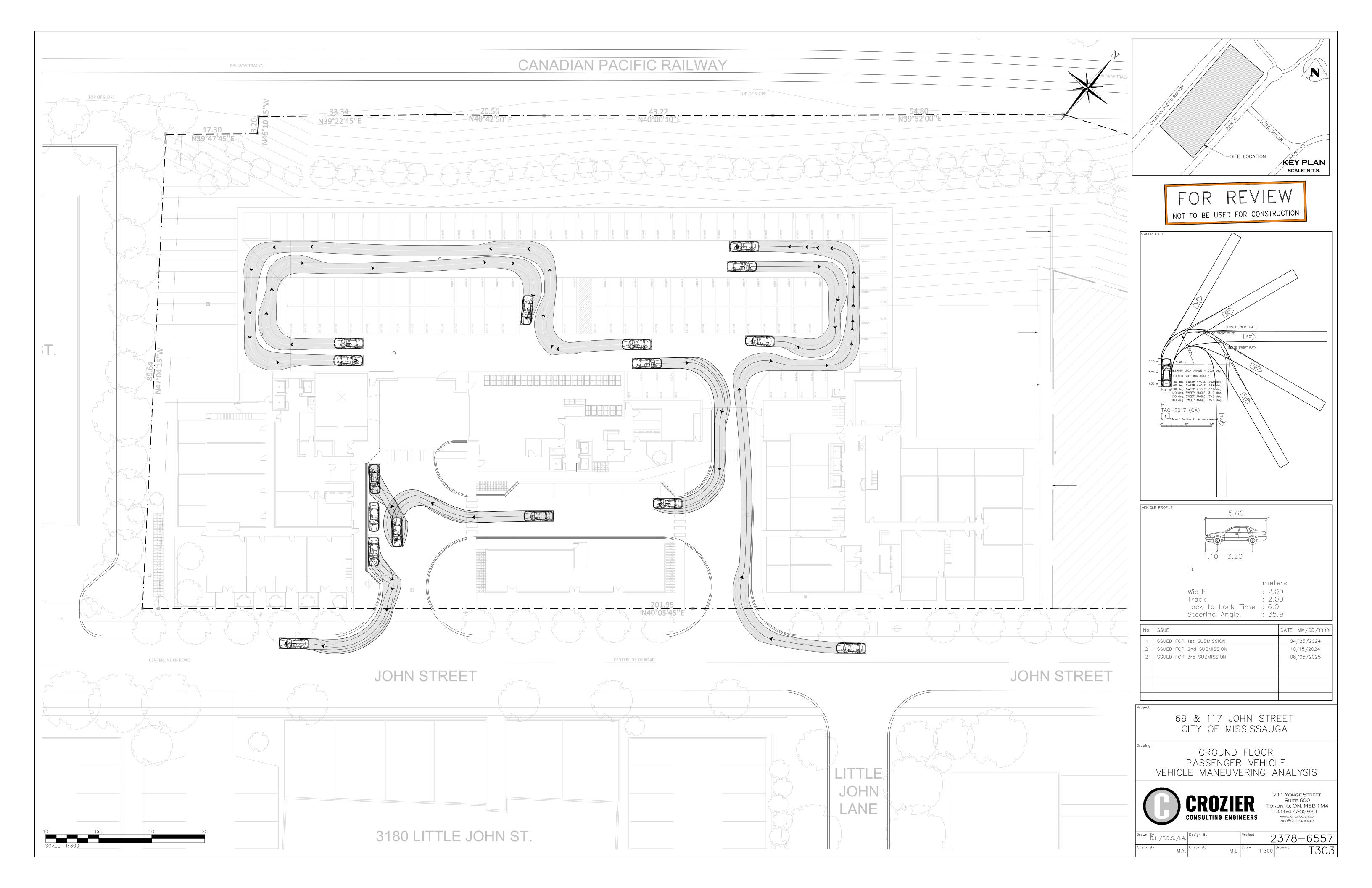
Engineering Intern, Transportation

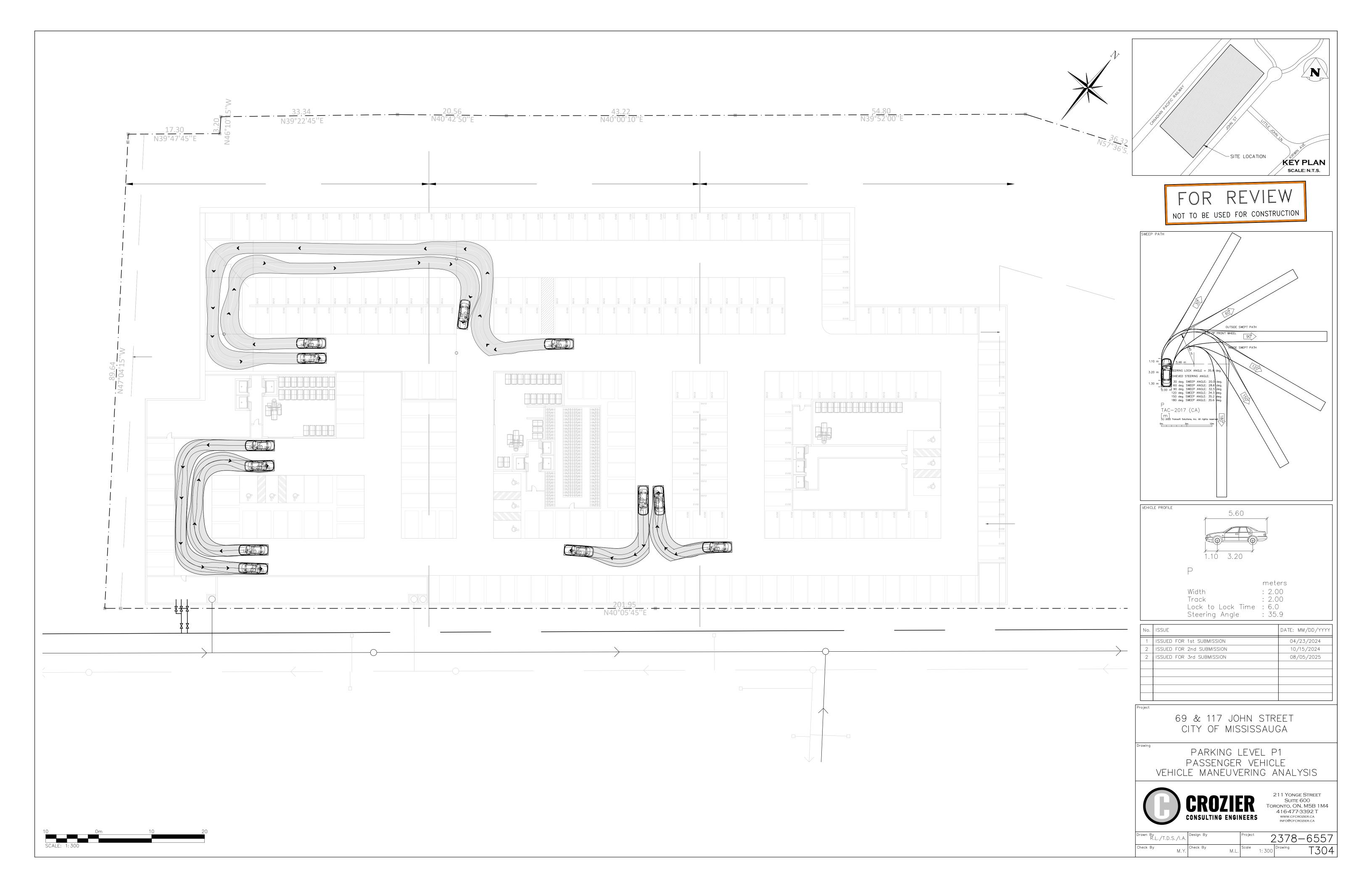
Office: 905.876.7159

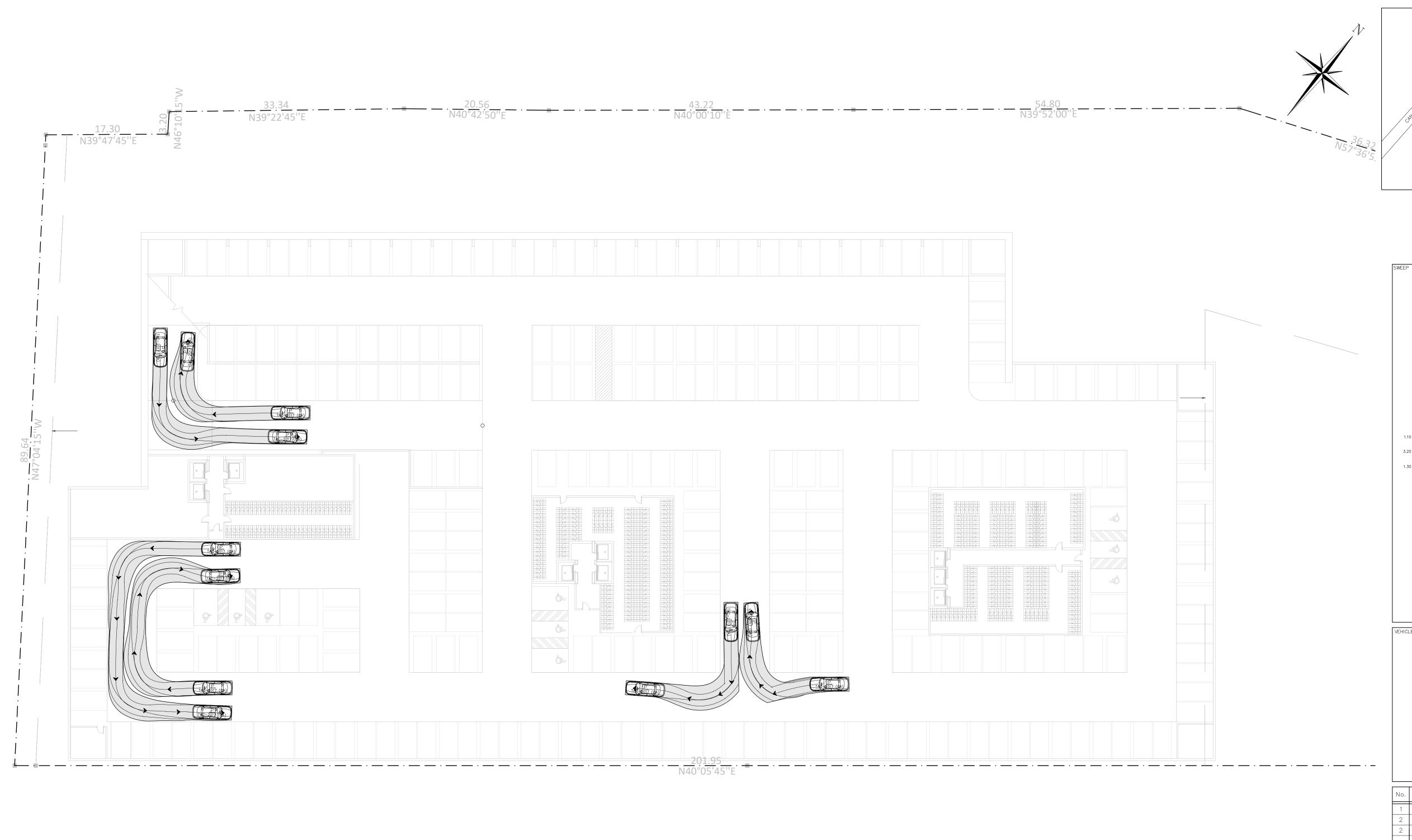
Collingwood | Milton | Toronto | Bradford | Guelph

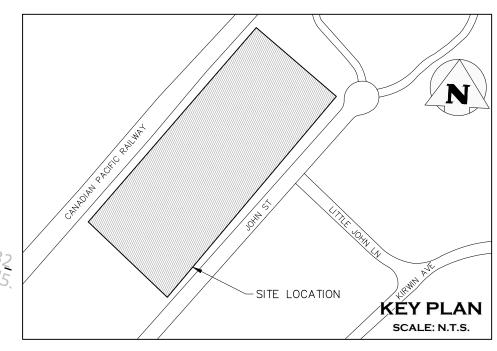

We've marked another milestone in our vision for growth. <u>Learn how, here</u>.

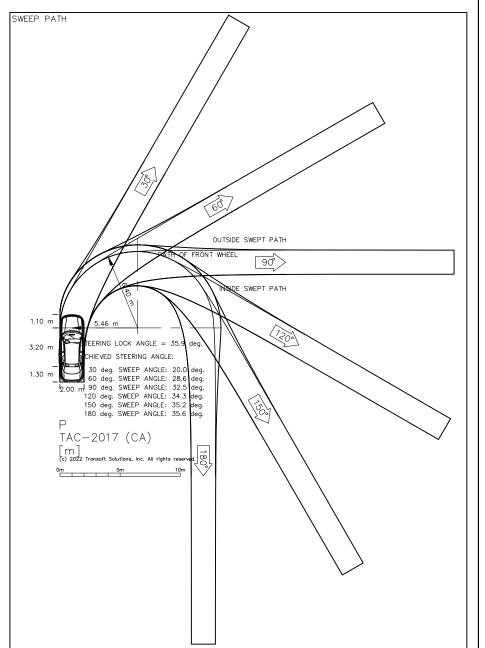


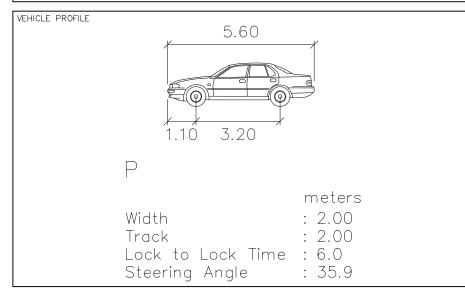

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.


ATTACHMENT 3: Vehicle Turning Diagrams







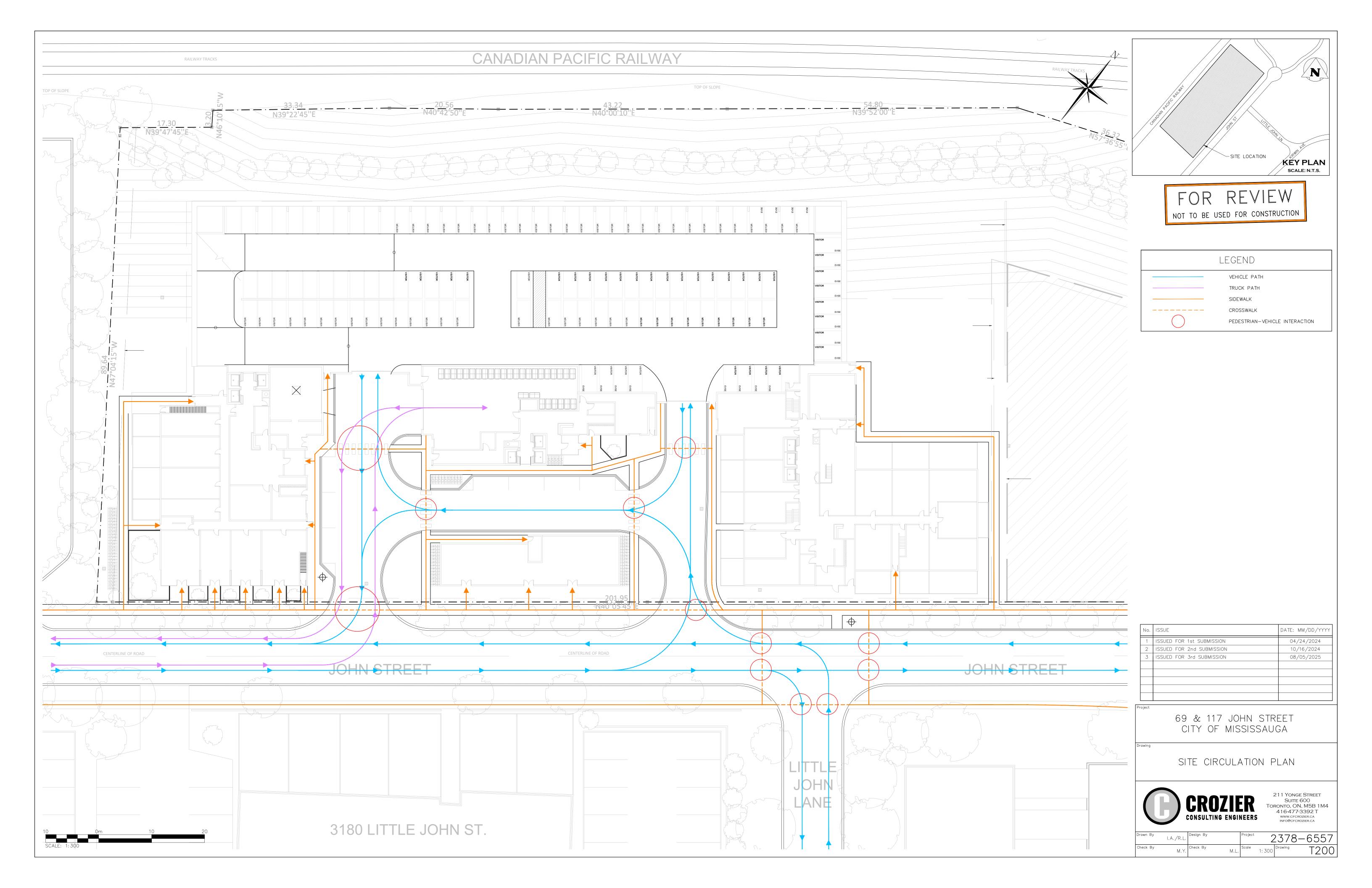


FOR REVIEW
NOT TO BE USED FOR CONSTRUCTION

No.	ISSUE	DATE: MM/DD/YYYY
1	ISSUED FOR 1st SUBMISSION	04/23/2024
2	ISSUED FOR 2nd SUBMISSION	10/15/2024
2	ISSUED FOR 3rd SUBMISSION	08/05/2025

Projec

69 & 117 JOHN STREET CITY OF MISSISSAUGA


PARKING LEVEL P2
PASSENGER VEHICLE
VEHICLE MANEUVERING ANALYSIS

211 YONGE STREET
SUITE 600
TORONTO, ON, M5B 1M4
416-477-3392 T
www.cfcrozier.ca
info@cfcrozier.ca

| Drawn By R.L. /T.D.S. /I.A. | Design By | Project | 2378-6557 | Check By | M.Y. | Check By | M.L. | Scale | 1:300 | Drawing | T.305

ATTACHMENT 4: Pedestrian Circulation Plan

ATTACHMENT 5:

Transportation Association of Canada Geometric Design Guide for Canadian Roads Excerpts

collector roadways, while a 3.0 m minimum is the suggested dimension for both commercial and industrial land uses. If there is a need to provide parallel parking between driveways along the roadway, a spacing of 6.0 to 7.5 m is suitable. If the spacing provided is in the range of 3.0 to 5.0 m, the space may appear inviting to a driver wishing to park, but if used, severely hampers the operation of the driveways by reducing sight lines and interfering with the turning paths of the vehicles.

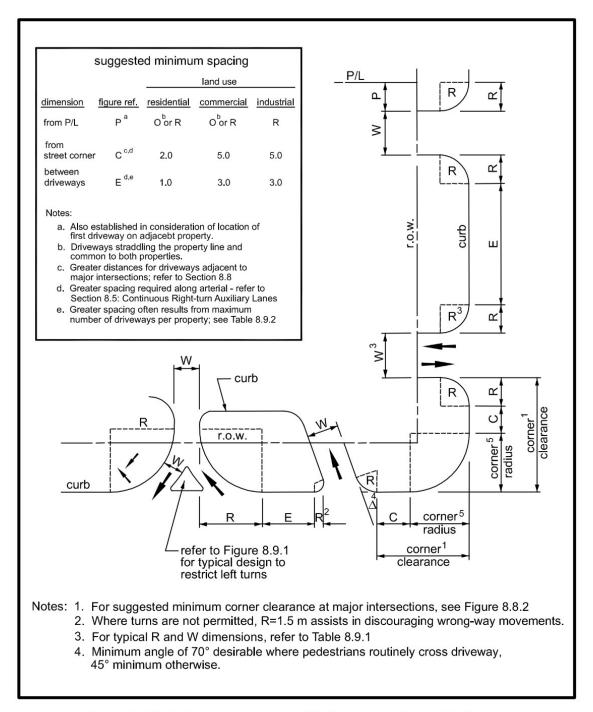
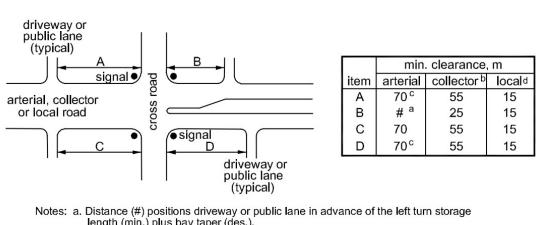
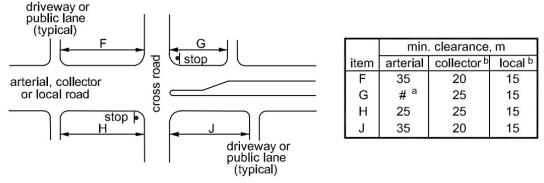



Figure 8.9.2: Driveway Spacing Guidelines – Locals and Collectors

52 June 2017



length (min.) plus bay taper (des.).

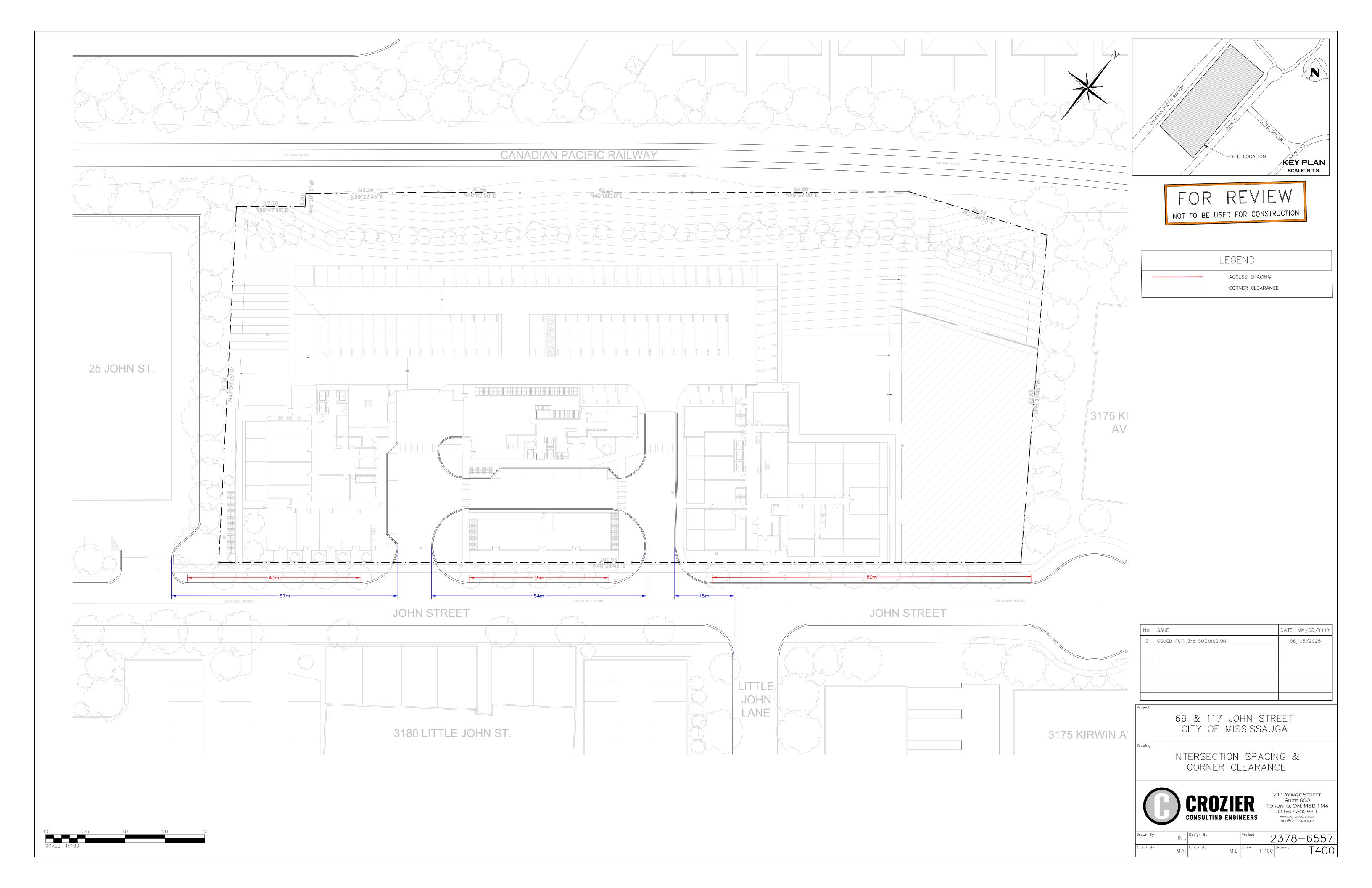
- b. Lesser values reflect lower volumes and reduces level of service on collectors and locals.
- c. Reduced distances feasible if auxiliary lane implemented, see Section 8.5
- d. Values based on operating speed of 50km/h, higher values desirable for higher speeds or may be warranted by traffic conditions.

signals at the cross road

Notes: a. Distance (#) positions driveway or public lane in advance of the left turn storage length (min.) plus bay taper (des.).

b. Lesser values reflect lower volumes and reduces level of service on collectors and locals.

stop control at the cross road


Figure 8.8.2: Suggested Minimum Corner Clearances to Accesses or **Public Lanes at Major Intersections**

Inadequate corner clearance between accesses and signalized intersections along a major road, such as a major arterial, can create serious operational problems including:

June 2017 44

ATTACHMENT 6:

Access Spacing and Corner Clearance Diagrams

ATTACHMENT 7: Zoning By-Law Excerpts

City of Mississauga

Corporate Report

Date: September 18, 2024

To: Chair and Members of Planning and Development

Committee

From: Andrew Whittemore, M.U.R.P., Commissioner of

Planning & Building

Originator's file: BL.01-PAR

Meeting date: October 7, 2024

Subject

PUBLIC MEETING INFORMATION/RECOMMENDATION REPORT (ALL WARDS)
Proposed Amendments to Zoning By-law for Parking in Protected Major Transit Station
Areas (PMTSA) and City-wide Accessible Parking Requirements

Recommendation

That the proposed amendments to Zoning By-law 0225-2007, as detailed in Appendix 1 of the Report dated September 18, 2024 from the Commissioner of Planning and Building, be approved in accordance with the following:

- 1. That the implementing zoning by-law amendment be enacted at a future City Council meeting.
- That notwithstanding planning protocol, that this report regarding the proposed amendments to Zoning Bylaw 0225-2007, be considered both the public meeting and a combined information/recommendation report.
- 3. That Recommendation PDC-0012-2024 to the report titled "Zoning By-law Amendment to Reduce Residential Parking Requirements along the Hazel McCallion Line (north of the QEW)", which was approved by the Planning and Development Committee on April 8, 2024, be considered null and void.

Executive Summary

 The City's Planning and Building Department is committed to continuous improvement of our service portfolio so that landowners, businesses, residents, and other parties can help us deliver on our commitment to facilitate housing and the development of land.

Originator's file: BL.01-PAR (All Wards)

- On April 8, 2024, staff presented a corporate report (Appendix 3) to the Planning and Development Committee, including proposed amendments to reduce minimum parking requirements along the Hazel McCallion Line (north of the Queen Elizabeth Way). The recommendation was approved, but shortly thereafter, Bill 185 was released for public consultation. Consequently, staff have not brought forward an implementing by-law.
- On June 6, 2024, <u>Bill 185, Cutting Red Tape to Build More Homes Act, 2024</u> received Royal Assent and amended the *Planning Act*. Bill 185 prohibits official plans and zoning by-laws from requiring an owner or occupant of a building or structure to provide and maintain parking facilities within a Protected Major Transit Station Area (PMTSA).
- Bill 185 changed how many accessibility parking spaces (a requirement of the
 Accessibility for Ontarians with Disabilities Act (AODA)) to provide for all new
 development in the PMTSA. Further consultation with the City's Accessibility Office,
 Zoning Administration, and the Accessibility Advisory Committee will be required prior to
 recommending changes to the Accessibility Parking regulations in the Zoning By-law.

Background

As part of the City's strategy to improve housing affordability and encourage transit usage, on June 28, 2023, Council directed staff to investigate the feasibility of reducing parking standards along the Hazel McCallion Line (north of the Queen Elizabeth Way). On April 8, 2024, staff presented a corporate report to the Planning and Development Committee, which approved recommendations to reduce minimum resident parking requirements and update the Parking Study Terms of Reference to consider further parking rate reduction requests from developers.

Following that approval and prior to bringing an implementing zoning by-law to Council, Bill 185 received Royal Assent on June 6, 2024, and amended the *Planning Act* so that no official plan or zoning by-law may require an "...owner or occupant of a building or structure to provide and maintain parking facilities, other than parking facilities for bicycles..." within a Protected Major Transit Station Area (PMTSA). In other words, parking is no longer required for any land use on lands located in a PMTSA but property owners can choose to provide as many spaces as needed.

The eliminated parking requirements in PMTSAs have been in effect since June 6, 2024, regardless of whether municipalities have updated their zoning by-laws to reflect these changes. Staff are proposing amendments to Mississauga's Zoning By-law to provide consistency and align with the legislation.

In addition, the Zoning By-law also regulates accessible parking requirements in the City. They were originally introduced into the Zoning By-law to align with requirements under the *Accessibility for Ontarians with Disabilities Act* (AODA). However, it has come to the attention of staff that there is a minor inconsistency in how accessible parking requirements are calculated in the Zoning By-law. Therefore, staff are proposing amendments to align with AODA requirements.

Originator's file: BL.01-PAR (All Wards)

Comments

As noted in the April 8, 2024 <u>Recommendation Report</u>, the reduction in parking requirements along higher order transit lines:

- Enable the City to leverage investments made to the Hazel McCallion Line and accelerate the shift to non-vehicular modes;
- Help lower housing construction costs while reducing construction timelines;
- Advance the goals of the City's Climate Change Action Plan, Downtown Movement Plan, Cycling Master Plan, and the Transportation Master Plan amongst others; and,
- Improve overall site design and opportunities for further intensification.

Although Planning and Development Committee approved a planned gradual reduction in parking rates, Bill 185 effectively eliminates any possible transition to re-evaluate parking demands in PMTSAs. Therefore, staff acknowledge the need to proactively address future concerns such as overflow parking and lack of resident parking in residential buildings by:

- Considering on-street parking permit program as part of Parking Matters 2.0
- Commencing a review of the Cycling Master Plan
- Implementing the micro-mobility pilot project (e-bikes and e-scooters)
- Exploring other approaches such as warning clauses in rental and purchaser agreements to inform future residents of a potential lack of on-site parking

The following comments are specific to the proposed amendments to the Zoning By-law.

1. PROPOSED ZONING BY-LAW AMENDMENTS

The following discussion provides an overview of the recommendations and rationale of the proposed amendments. For a detailed explanation of all proposed amendments, see Appendix 1.

a) Amended Parking Precinct Map

The in-effect Parking Precinct Map includes four parking precincts that are based on Character Areas in Mississauga Official Plan (e.g. Downtown, Major Node, etc.), with Precinct 1 having the lowest parking requirements, and Precinct 4 having the highest.

The proposed amendment to the parking precincts includes the expansion of Parking Precinct 1 to include all lands within a PMTSA, i.e. the entire length of the Hazel McCallion Line, stations along the Dundas bus rapid transit (BRT) and the Lakeshore BRT, Mississauga Transitway, and two GO Stations in Malton and Clarkson which currently receive all day weekday and weekend service. Consequently, the total land area located in Precincts 2 to 4 would be reduced. The majority of the City will not see revisions to the parking precincts. Please see Figure 1 for a map of the proposed Parking Precinct 1.

4

Originator's file: BL.01-PAR (All Wards)

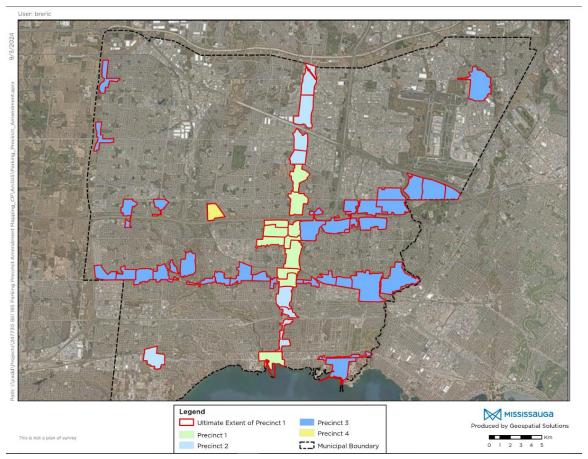


Figure 1 - Conceptual Map of Parking Precinct 1

b) Elimination of Parking Requirements for all Uses in Precinct 1

The amendments to the Zoning By-law include eliminating the minimum number of residential and non-residential parking spaces in Precinct 1, including visitor parking requirements for apartments and townhouses. Existing landowners can continue to retain their parking supply, but now have the option to intensify their property without having to provide additional parking spaces. Vehicular parking requirements for amended Precincts 2-4 remain unaffected, as well as city-wide bicycle parking requirements, including PMTSAs.

To further create consistency and clarity in the Zoning By-law, existing exceptions for properties located in Precinct 1 where parking requirements were previously modified will also be deleted. For development where parking relief was granted through a minor variance application, the Zoning By-law states that off-street parking requirements shall be calculated based on the lesser parking rate of the minor variance or the regulations of the Zoning By-law.

c) Accessible Parking Requirements for Provided Parking Spaces

Currently, the Zoning By-law calculates a minimum number of accessible parking spaces based on the number of required (residential) visitor or required non-residential parking spaces and are

Originator's file: BL.01-PAR (All Wards)

based on Section 80.36 (1) of the *Ontario Regulation 191/11: Integrated Accessibility Standards* (O. Reg 191/11). O. Reg 191/11 bases minimum accessible parking spaces on "provided" parking spaces on a site, as opposed to "required" parking spaces as the Zoning By-law currently requires.

However, the impact Bill 185 has on accessible parking spaces is that since developers have the flexibility to build as many parking spaces as needed in a PMTSA, and O. Reg 191/11 bases accessible parking space requirements on "provided" parking spaces, there may be an insufficient number of accessible parking spaces to meet the demands of visitors or patrons.

Further research and consultation with internal staff, as well as attending the Accessibility Advisory Committee will be required prior to recommending proposed changes to the Zoning By-law. In addition, informing the province on the consequences that Bill 185 has on providing sufficient of accessible parking spaces will be necessary to avoid an undersupply of such parking spaces in the future.

2. FUTURE CONSIDERATIONS FOR PARKING IN BUSINESS IMPROVEMENT AREAS (BIAs)

Mississauga has five BIAs where commercial, residential, or mixed-use buildings are built on small lots with a mainstreet character. These commercial streets are vibrant, walkable, and established prior to the automobile era of the 1950s. However, this context has not been historically factored into parking requirements in BIAs. This has necessitated small businesses to seek variances or payment in lieu of off-street parking (PIL), resulting in reduced viability and attractiveness of setting up businesses in BIAs. In extreme cases, buildings or units can remain vacant for an extended period of time.

Bill 185's elimination of parking requirements somewhat addresses the above issue in BIAs as many of them are located within a PMTSA. However, the boundaries of PMTSAs are generally smaller than those of the BIAs, such that only a portion of the BIA's parking requirements have been eliminated. A future parking study to analyze the matter has commenced and will report back in early 2025.

PLANNING ANALYSIS SUMMARY

The Provincial Policy Statement (PPS) establishes the overall policy directions on matters of provincial interest related to land use planning and development within Ontario. It sets out province-wide direction on matters related to the efficient use and management of land and infrastructure; the provision of housing; the protection of the environment, resources and water; and economic development. The Growth Plan for the Greater Golden Horseshoe (Growth Plan) builds upon the policy framework established by the PPS and provides more specific land use planning policies, which support the achievement of complete communities, a thriving economy, a clean and healthy environment and social equity. The Growth Plan establishes minimum

Originator's file: BL.01-PAR (All Wards)

intensification targets and requires municipalities to direct growth to existing built-up areas and strategic growth areas to make efficient use of land, infrastructure and transit.

The Province released the Provincial Planning Statement (PPS), 2024, which streamlines their policy framework by replacing both the Provincial Policy Statement, 2020 and the Growth Plan. The new PPS 2024 will be in effect as of October 20, 2024. Until such time, the previous policy instruments remain in effect; however, staff have reviewed the proposed amendments with consideration of the new PPS.

The *Planning Act* requires that municipalities' decisions regarding planning matters be consistent with the Provincial Policy Statement (PPS) and conform with the applicable provincial plans. Mississauga Official Plan is generally consistent with the PPS and conforms with the Growth Plan, the Greenbelt Plan, and the Parkway Belt West Plan.

The proposed amendments are consistent with the Provincial Policy Statement and conforms to the Growth Plan for the Greater Golden Horseshoe, and Mississauga Official Plan. A detailed planning policy analysis can be found in Appendix 2.

Financial Impact

There are no financial impacts resulting from the recommendations in this report.

Conclusion

Bill 185 has amended the *Planning Act*, which has eliminated minimum parking requirements for land uses within a PMTSA. The proposed zoning by-law amendments are acceptable from a planning perspective and should be approved as they will promote the development of housing near transit stations, leverage existing and future higher order transit and cycling infrastructure and contribute to overall city building especially in the City's downtown and along key intensification corridors.

Attachments

A Whitemore

Appendix 1: Proposed Zoning By-law Amendments

Appendix 2: Detailed Planning Analysis Appendix 3: Recommendation Report

Andrew Whittemore, M.U.R.P., Commissioner of Planning & Building

Prepared by: Timothy Lee, Planner

You are printing a partial view of the Mississauga Interactive Zoning By-law 0225-2007 on 2025-08-19, 12:25:58 p.m. based on your selection(s). This information is provided for convenience purposes only as it may not reflect recently approved amendments. To view the entire Interactive Zoning By-law, visit www.mississauga.ca/zoningbylaw.

3.1.4.3 Required Number of Loading Spaces

Where required, <u>loading spaces</u> for <u>uses</u> other than <u>office</u> and/or <u>medical office</u> <u>uses</u>, shall be provided in accordance with <u>Table</u> <u>3.1.4.3</u> - Required Number of Loading Spaces.

Table 3.1.4.3 - Required Number of Loading Spaces

(0297-2013)

ColumnA		В
Line 1.0	GROSS FLOOR AREA - NON-RESIDENTIAL OF BUILDING	MINIMUM NUMBER OF OFF-STREET LOADING SPACES
2.0	Less than or equal to 250 m²	None required
3.0	Greater than 250 m² but less than or equal to 2 350 m²	1.0 space
4.0	Greater than 2 350 m² but less than or equal to 7 500 m²	2.0 spaces
5.0	Greater than 7 500 m² but less than or equal to 14 000 m²	3.0 spaces
6.0	Greater than 14 000 m²	3.0 spaces plus 1.0 additional space for each 9 300 m² GFA - non- residential or portion thereof

3.1.6.5.1 Required Number of Bicycle Parking Spaces for Residential Uses

Off- street bicycle parking spaces for residential uses shall be provided in accordance with Table 3.1.6.5.1 - Required Number of Bicycle Parking Spaces for Residential Uses

Table 3.1.6.5.1 - Required Number of Bicycle Parking Spaces for Residential Uses

Colu	mn A	В	С
Line 1.0	TYPE OF USE	BICYCLE PARKING - CLASS A	BICYCLE PARKING - CLASS B
2.0	Apartment and stacked townhouse without exclusive garages	0.6 spaces per unit	The greater of 0.05 spaces per unit or 6.0 spaces
3.0	Apartment and stacked townhouse without exclusive garages (within CC1 to CC4 and CCO zones)	0.8 spaces per unit	The greater of 0.1 spaces per unit or 6.0 spaces
4.0	Long-Term Care Building	0.2 spaces per 100 m ² <u>GFA -</u> <u>residential</u>	0.2 spaces per 100 m ² <u>GFA</u> - <u>residential</u>
5.0	Long-Term Care Building (within CC1 to CC4 and CCO zones)	0.3 spaces per 100 m ² GFA - residential	0.3 spaces per 100 m ² GFA - residential
6.0	Retirement Building	0.3 spaces per unit	The greater of 0.03 spaces per unit or 6.0 spaces
7.0	Retirement Building (within CC1 to CC4 and CCO zones)	0.4 spaces per unit	The greater of 0.05 spaces per unit or 6.0 spaces

3.1.6.6 Required Number of Bicycle Parking Spaces for Non-Residential Uses

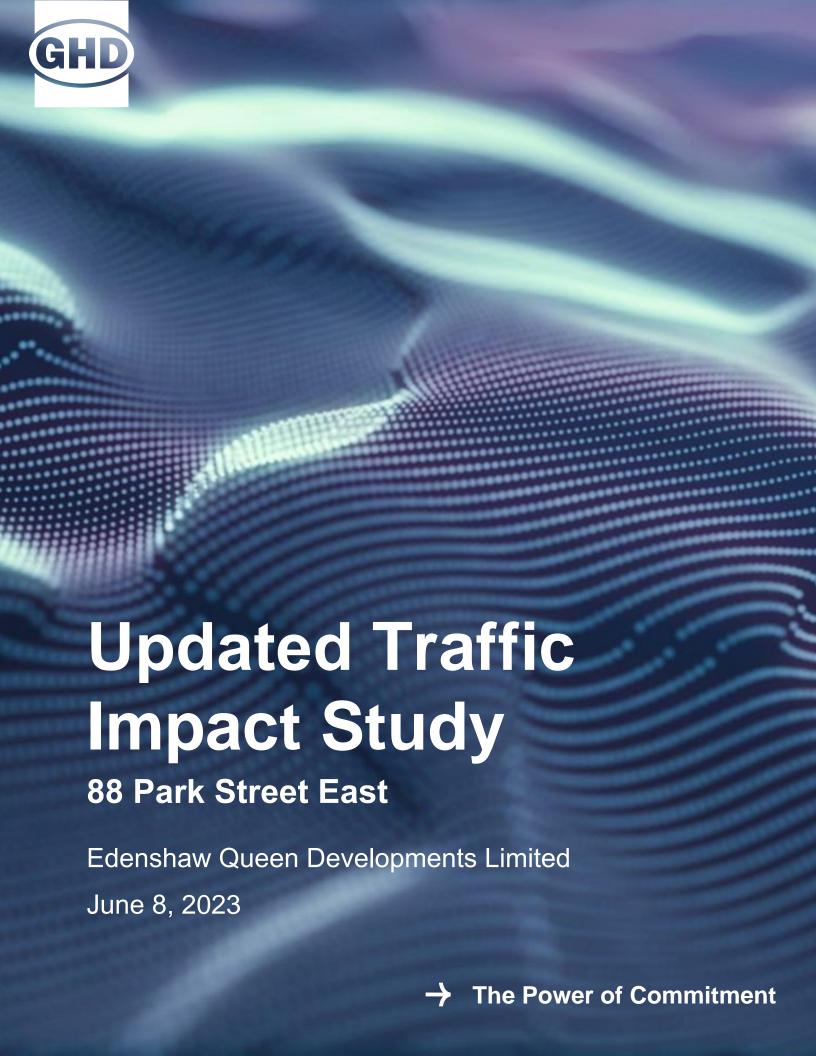

Off-street <u>bicycle parking spaces</u> for non-residential <u>uses</u> shall be provided in accordance with <u>Table 3.1.6.6</u> - Required Number of Bicycle Parking Spaces for Non-Residential Uses.

Table 3.1.6.6 - Required Number of Bicycle Parking Spaces for Non-Residential Uses

Column A		В	С
Line 1.0	TYPE OF USE	BICYCLE PARKING - CLASS A	BICYCLE PARKING - CLASS B
2.0	Active Recreational Use, Community Centre, Hospital, Library, Place of Religious Assembly, and Recreational Establishment	0.1 spaces per 100 m ² <u>GFA -</u> <u>non-residential</u>	0.1 spaces per 100 m ² <u>GFA -</u> <u>non-residential</u>
3.0	Active Recreational Use, Community Centre, Hospital, Library, Place of Religious Assembly, and Recreational Establishment (within CC1 to CC4 and CCO zones)	0.3 spaces per 100 m ² <u>GFA -</u> <u>non-residential</u>	0.3 spaces per 100 m ² <u>GFA -</u> <u>non-residential</u>
4.0	College, University	1.0 spaces per 100 m ² GFA - non-residential	1.2 spaces per 100 m ² GFA - non-residential
5.0	Contractor's Yard, Essential Emergency Service, Power Generating Facility, Self Storage Facility, Utilities (Electric Transformer and Distribution Facility, Sewage Treatment Plant, Utility Building, Water Treatment Facility) and Waste Transfer Station	n/a	2.0 spaces
6.0	Education and Training Facility, Financial Institution, Manufacturing Facility, Science and Technology Facility, Warehouse/Distribution Facility, and Wholesaling Facility	0.1 spaces per 100 m ² GFA - non-residential	2.0 spaces
7.0	Education and Training Facility, Financial Institution, Manufacturing Facility, Science and Technology Facility, Warehouse/Distribution Facility, and Wholesaling Facility (within CC1 to CC4 and CCO zones)	0.15 spaces per 100 m ² GFA - non-residential	0.15 spaces per 100 m ² <u>GFA -</u> <u>non-residential</u>

8.0	Entertainment Establishment , Restaurant , Convenience Restaurant , Take-out Restaurant, Retail Centre, Retail Store , and Service Establishment	0.15 spaces per 100 m ² GFA - non-residential	0.2 spaces per 100 m ² <u>GFA -</u> <u>non-residential</u>
9.0	Entertainment Establishment, Restaurant, Convenience Restaurant, Take-out Restaurant, Retail Centre, Retail Store, and Service Establishment (within CC1 to CC4 and CCO zones)	0.15 spaces per 100 m ² GFA - non-residential	0.3 spaces per 100 m ² GFA - non-residential
10.0	Medical Office and Medical Office - Restricted	0.1 spaces per 100 m ² <u>GFA -</u> non-residential	0.1 spaces per 100 m ² <u>GFA -</u> non-residential
11.0	Medical Office and Medical Office - Restricted (within CC1 to CC4 and CCO zones)	0.15 spaces per 100 m ² GFA - non-residential	0.2 spaces per 100 m ² GFA - non-residential
12.0	Office	0.1 spaces per 100 m ² GFA - non-residential	0.1 spaces per 100 m ² GFA - non-residential
13.0	Office (within CC1 to CC4 and CCO zones)	0.2 spaces per 100 m ² GFA - non-residential	0.15 spaces per 100 m ² GFA - non-residential
14.0	Public/Private School	0.1 spaces per 100 m ² GFA - non-residential	0.4 spaces per 100 m ² GFA - non-residential
15.0	All other non-residential uses	0.05 spaces per 100 m ² GFA - non-residential	0.1 spaces per 100 m ² GFA - non-residential

ATTACHMENT 8: Parking Proposal Trends Excerpts

Office

- Less than or equal to 2 350 m²: None Required
- Greater than 2 350 m² but less than or equal to 11 600 m²: 1.0 space
- Greater than 11 600 m²: 1.0 space plus 1.0 additional space for each 9 300 m² gross floor area non-residential or portion thereof

All loading spaces shall have an unobstructed rectangular area with a minimum width of 3.5 metres and minimum length of 9.0 metres.

Under the City of Mississauga's Zoning By-Law, the subject site is required to provide a minimum of 3 loading spaces.

9.2 Proposed Site Parking

The following table summarizes the parking and loading requirement and provision for the subject site.

Table 13 Parking Requirements and Provisions

Туре	Unit Count/GFA	By-Law Requirement	Requ	uired	Provided
Vehicle Parking – Residential (Residents)		Minimum 0.80 parking space per unit	Minimum of	1,062 spaces	
Vehicle Parking – Residential (Visitors)		Minimum 0.20 parking space per unit	Minimum of 266 spaces		E92 vahiele porting appear
Vehicle Parking - Retail	1,328 dwelling	Minimum 3 parking spaces per 100 m² of non- residential GFA	Minimum of 50 spaces	*Minimum of 266 parking visitors/non-resi	583 vehicle parking spaces (474 for residents at 0.36 spaces per unit
Vehicle Parking - Office	units, 1,680 m ² retail GFA, 2,017 m ² office GFA, and 907 m ² daycare GFA	Minimum 2 parking spaces per 100 m² of non- residential GFA	Minimum of 40 spaces		and 109 spaces for visitors/non-residential uses at 0.08 spaces per unit)
Vehicle Parking - Daycare		Minimum 2.5 parking spaces per 100 m² of non- residential GFA	Minimum of 23 spaces		
Barrier Free Parking – Non-Residential		2.0 spaces + 2% of total visit	Minimum (of 8 spaces	

Bicycle Parking (Class A)	0.6 spaces per unit (residential) 0.1 space per 100 m² GFA (office) 0.05 spaces per 100 m² GFA – non-residential (retail + daycare)	Minimum of 797 for residential, 3 spaces for retail, 2 spaces for office, and 1 space for all other uses	804 spaces
Bicycle Parking (Class B)	The greater of 0.05 spaces per unit or 6.0 spaces (residential) 0.1 space per 100 m ² GFA – non-residential spaces (retail + office + daycare)	Minimum of 66 spaces for residential, 3 spaces for retail, 2 spaces for office, and 1 space for all other uses	72 spaces
Loading Space	1 loading space per apartment building with a minimum of 30 dwelling units. 1 loading space when the non-residential land use has a GFA greater than 250 m² but less than or equal to 2 350 m² 2 loading spaces when the non-residential land use has a GFA greater than 2 350 m² but less than or equal to 7 500 m²	3 loading spaces (1 for residential and 2 for the retail/daycare component)	4 loading spaces

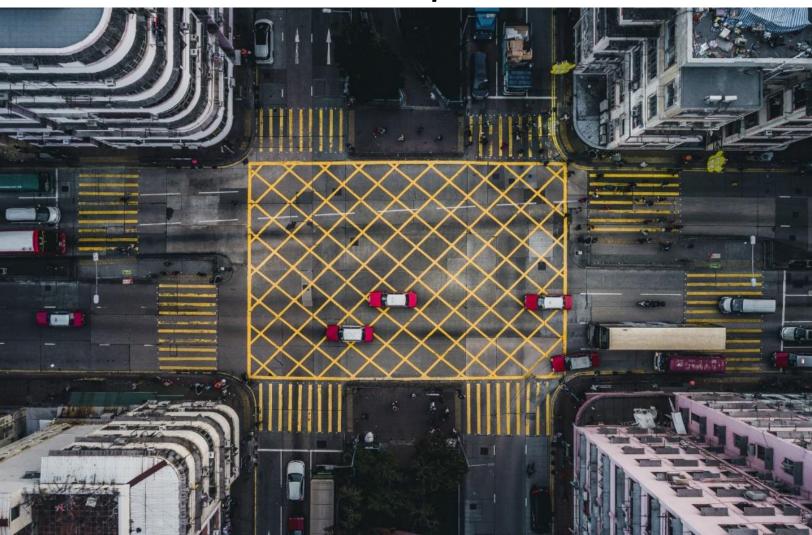
^{*}Shared arrangement for residential visitor and non-residential parking components.

The parking provision of 474 resident parking spaces represents a deficit of 588 spaces from the Zoning By-law requirement of 1,062 resident spaces. The provision of 109 visitor/non-resident visitor parking spaces represents a deficit of 157 parking space from the minimum 266 visitor spaces required for the residential visitor, retail, office and daycare uses. However, the site is well suited to intensification from an urban transportation perspective and current travel characteristics confirm that the surrounding area provides significant opportunity for urban living in a mixed-used environment. The site will promote reduced automobile usage with opportunities to incorporate car share facilities, good pedestrian and cycling infrastructure and connectivity to transit including the existing nearby GO Station and future light rail transit along Hurontario Street.

9.3 Parking Assessment

9.3.1 Ontario's Five Year Climate Change Action Plan

The purpose of Ontario's Climate Change Action Plan, announced in 2016, is to address climate change through transportation and land-use measures. The plan aims to reduce emissions, create more livable, mixed-use communities, and prioritize addressing climate change at the municipal level.



Traffic Impact Study

49 South Service Road

Edenshaw SSR Developments Limited 14 October 2022

→ The Power of Commitment

8.1.2 Bicycle Parking Requirement

The bicycle parking requirement is also found within the City of Mississauga's Zoning By-law 0225-2007, with the minimum bicycle parking requirement found in Section 3.1.6.5.1 for apartments without exclusive garages. The minimum required bicycle parking By-law rate for the development is as follows:

- Apartment and stacked townhouse without exclusive garages
 - Class A: 0.6 spaces per unit
 - Class B: The greater of 0.05 spaces per unit of 6.0 spaces

Notwithstanding Sections 3.1.6.5 and 3.1.6.6 of the City's By-law, required off-street bicycle parking spaces shall only be required for the construction of new buildings or portions thereof, effective June 8, 2023. Under the City's By-law, the proposed development is required to provide the following bicycle parking supply:

- 353 dwelling units x (0.6 spaces/unit) = 212 Class A spaces
- 353 dwelling units x (0.05 spaces/unit) = 18 Class B spaces

In total, 230 bicycle parking spaces are required, with 212 Class A spaces and 18 Class B spaces.

8.1.3 Loading Space Requirement

Under City of Mississauga's Zoning By-law 0225-2007, the loading space requirement for apartment buildings is found in Section 3.1.4.5. and requires 1 loading space per apartment and/or retirement building containing a minimum of 30 dwelling units. The subject site is therefore required to provide one loading space with an unobstructed rectangular area with a minimum width of 3.5 m and a minimum length of 9.0 m.

8.2 Proposed Parking and Loading Supply

The following parking and loading supply is proposed for the 353 unit high-rise development:

- Resident parking spaces provided: 102 spaces. (0.29 spaces/unit)
- Visitor parking spaces provided: 35 spaces. (0.10 space/unit).
- 212 long-term bicycle parking spaces
- 17 short-term bicycle parking spaces
- 1 loading space

The Zoning By-law requirement for vehicle and bicycle parking and loading spaces and the subject site's provision are summarized in the table below.

Table 12 Parking and Loading Requirements and Provision

	Requirement	Provision	Surplus/Shortfall
Vehicle Parking	318 spaces	102 spaces	-216 spaces
Visitor Parling	71 spaces	35 spaces	-36 spaces
Long-term Bicycle Parking	212 spaces	212 spaces	Met
Short-term Bicycle Parking	18 spaces	18 spaces	Met
Loading Space	1 space	1 space	Met

Edenshaw Elizabeth Developments Limited

TRANSPORTATION IMPACT STUDY

UPDATE

Proposed Residential Development

42-46 Park Street East & 23 Elizabeth Street North, City of Mississauga

1.1 STUDY BACKGROUND

By way of background, LEA previously completed the following submissions in support of prior Official Plan Amendment (OPA), Zoning By-law Amendment (ZBA), and Site Plan Approval (SPA) applications for the proposed development:

- Transportation Impact Study (TIS) dated May 2020;
- Response to City Comments dated December 2021;
- Parking Study Update dated February 2023; and,
- TIS Addendum dated February 2023.

As well, LEA provided evidence and attended a hearing for OLT Case No. OLT-21-002260, which occurred in July 2023. As per the OLT decision for Case No. OLT-21-002260, issued October 5, 2023, appeals for the development proposal for the subject site at the time were dismissed.

1.2 STUDY SCOPE

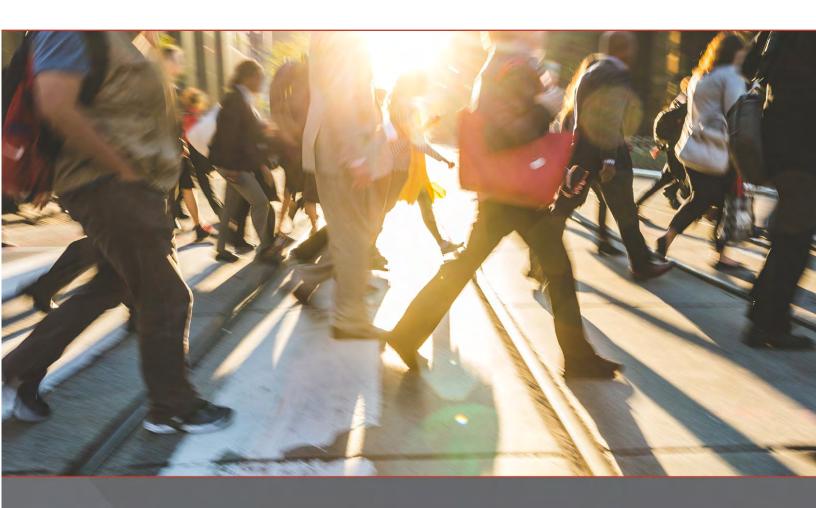
The purpose of this TIS Update is to analyze the transportation conditions based on the latest understanding of the subject site and the surrounding context in support of the present OPA, ZBA, and SPA submissions for the proposed development. This TIS Update will also review the latest development plans and statistics to demonstrate conformity to relevant applicable standards for parking rates, loading requirements, and Transportation Demand Management plan (TDM) measures.

The Terms of Reference provided for the previous TIS dated May 2020 were referenced for this study. The assumption of corridor growth rates, future transit improvements and future road network improvements remain unchanged. The background developments included have been updated accordingly and are detailed in **Section 3.4**. The Terms of Reference correspondence is enclosed in **Appendix A**.

1.3 DEVELOPMENT PROPOSAL

The proposed development consists of a single 30-storey residential building with 378 residential units. The site statistics from the most recent submission in February 2023 and the current proposal are presented below in **Table 1-1**.

Table 1-1: Proposed Site Statistics Comparison


Residential Unit Type	Previous Submission (February 2023)	Current Submission (May 2025)	Change
Studio	4 Units	6 Units	+2 Units
1 Bedroom	157 Units	253 Units	+96 Units
2 Bedroom	113 Units	119 Units	+6 Units
Total	274 Units	378 Units	+104 Units

Based on the revised site plan, as illustrated in **Figure 1-2**, one (1) unsignalized site access along Park Street East is proposed for the subject development. The proposed parking supply consists of 101 residential and 22 visitor parking spaces, which will be accommodated within four levels of underground parking. Additionally, the proposed bicycle parking supply shall consist of 250 long-term and 19 short-term residential bicycle parking spaces, which will be accommodated within the underground P1 level.

3085 HURONTARIO STREET CITY OF MISSISSAUGA

Mixed Use Development Urban Transportation Considerations

Prepared For: Equity Three Holdings Inc.
September 2024

3.0 PROPOSED REDEVELOPMENT

3.1 Development Uses

The proposed development includes four (4) mixed-use buildings comprising the following uses:

- Building 1: 461 residential units and 918 square metres of retail GFA
- Building 2: 488 residential units and 304 square metres of retail GFA
- Building 3: 417 residential units
- Building 4: 325 residential units

Overall, the updated development plan includes 1,691 residential units (all market condominium) and 1,222 square metres of retail GFA. In comparison to the September 2023 submission, the number of residential units has increased slightly with a modest increase in retail GFA. A reduction in vehicle parking spaces is additionally proposed. The updated development proposal is outlined in **Table 1** and illustrated in **Figure 2**. Reduced scale architectural plans are provided in **Appendix B**.

Table 1 **Development Proposal**

Use	September 2023¹	Current ²	Net Change
Residential units	1,658 units	1,691 units	+ 33 units
Retail	1,160 square metres GFA	1,222 square metres GFA	+62 square metres GFA
Vehicle parking supply	1,056 parking spaces	802 parking spaces (170 non-residential, 589 resident, 43 car share spaces)	- 254 parking spaces
Bicycle parking supply	1,303 (1,217 long-term and 86 short- term)	1,126 (1,029 long-term and 97 short- term)	- 177
Loading supply	7 loading spaces	6 loading spaces	-1 loading space
Site access	Via driveways off new east-west municipal road and Kirwin Avenue	Via driveways off a north-south private road between Kirwin Avenue and Street C	All driveways now take access from a private north-south road, none from public roads

Notes:

- Based on site statistics provided by Diamond Schmitt Architects on July 17, 2023. Based on site plan prepared by 3XN Architects on September 13, 2024.

nextrans.ca

Transportation Impact Study Update

PROPOSED MIXED-USE DEVELOPMENT

3115 Hurontario Street, MISSISSAUGA, ONTARIO

July 2024

Project No: NT-21-262

Based on the information outlined in the table above, the existing non-auto modal split in the area is approximately 30% and 29% during the morning and afternoon peak periods, respectively. This assessment suggests that there are viable alternative modes of transportation other than driving private automobiles. It is anticipated that with the future Hurontario LRT, the modal split along this corridor and this area will be much higher (i.e. could be up to 50% for all modal split).

3.3. Proposed Development Statistics

The proposed redevelopment of the site consists of a 42-storey mixed-use building with the following breakdown. A full moves access will be provided onto Kirwin Avenue to service the proposed development. It should be noted that this access will be shared with the adjacent development, 3085 Hurontario Street. **Figure 5** illustrates the proposed development site plan.

- Total of 520 residential dwelling units
 - 39 bachelor units
 - 321 one-bedroom units:
 - o 122 two-bedroom units; and
 - 38 three-bedroom units
- 218.53 m² (2,352 ft²) ground related retail gross floor area
- 940.94 m² (10,128 ft²) of charity centre gross floor area
- Total of 200 parking spaces
- Total of 338 bicycle parking spaces
 - 312 Type B
 - 26 Type A

Figure 5 – Proposed Site Plan

ATTACHMENT 9: Previous Submission Excerpts

TRANSPORTATION IMPACT, AND PARKING AND LOADING JUSTIFICATION STUDY UPDATE

69 & 117 JOHN STREET RESIDENTIAL DEVELOPMENT

CITY OF MISSISSAUGA

PREPARED FOR: CENTRACONDOS DE LA MONTAGNE

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 211 YONGE STREET, SUITE 600 TORONTO, ON M5B 1M4

OCTOBER 2024

CFCA FILE NO. 2378-6557

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1
	1.1	Developments Lands	1
	1.2	Development Proposal (UPDATED)	1
	1.3	Study Purpose and Scope	4
2.0	EXISTI	IG CONDITIONS	5
	2.1	Study Road Network	
	2.2	Transit Operations	
	2.3	Transportation Data	
		2.3.1 AADT Data	13
	2.4	Establishing Existing Traffic Volumes	13
		2.4.1 Growth Rates	13
		2.4.2 Baseline Volumes	15
		2.4.3 GO Access Adjustments	16
	2.5	Traffic Modelling and Assumptions	19
	2.6	Intersection Operations	19
		2.6.1 Queueing Analysis	. 22
3.0	FUTUR	BACKGROUND CONDITIONS	24
	3.1	Future Transportation Planning Policy Context	
		3.1.1 MTO Transit Supportive Guidelines	
		3.1.2 Cooksville GO Protected Major Transit Station Area	
		3.1.3 Metrolinx 2041 Regional Transportation Plan	
	3.2	Future Transportation Network	27
		3.2.1 Hazel McCallion Light Rail Transit	27
		3.2.2 Dundas Bus Rapid Transit	29
		3.2.3 GO Transit Expansion	30
		3.2.4 Hurontario Street and Dundas Street Cycle Tracks	30
		3.2.5 Summary	. 31
	3.3	Future Transportation Trends	31
	3.4	Growth Rates	32
	3.5	Background Developments	33
	3.6	Traffic Modelling and Assumptions	39
	3.7	Intersection Operations	41
		3.7.1 Queueing Analysis	. 47
	3.8	Future Background Recommendations Summary	50

4.0	SITE G	ENERATE	ED TRAFFIC	51
	4.1	Trip Ge	eneration (UPDATED)	51
	4.2	Trip Dis	stribution and Assignment	54
		4.2.1	Residential Trips	54
		4.2.2	Commercial Trips	57
		4.2.3	Transit Trips (UPDATED)	59
5.0	FUTUR	E TOTAL	CONDITIONS	64
	5.1	Traffic	Modelling and Assumptions (UPDATED)	66
	5.2	Interse	ection Operations (UPDATED)	66
		5.2.1	Queuing Analysis (UPDATED)	71
	5.3	Signal	Warrant Assessment (UPDATED)	73
	5.4	All-Wa	ay Stop Control Warrant Assessment (UPDATED)	74
	5.5	Future	Total Recommendations Summary	75
6.0	SITE C	IRCULAT	TION REVIEW	75
	6.1	Vehicl	le Maneuverability	75
		6.1.1	Waste Collection Vehicles	76
		6.1.2	Loading Vehicles	76
		6.1.3	Emergency Vehicles	76
		6.1.4	Passenger Vehicles	76
		6.1.5	Summary	76
	6.2	Pedes	trian Circulation	76
7.0	SITE A	CCESS R	REVIEW	76
	7.1	Interse	ection Sight Distance	77
	7.2	Acces	ss Spacing and Corner Clearance (UPDATED)	78
8.0	SAFET	Y REVIEV	N	79
9.0	PARKI	NG REVI	IEW (UPDATED)	80
	9.1		ng Policy Context	
	9.2		le Parking	
	9.3		r-Free Parking	
	9.4		e Parking	
10.0	LOAD	ING REV	/IEW	82
	10.1	Loadir	ng Requirements (UPDATED)	82
	10.2		ng Operations	
11.0	TRANS	PORTAT	TON DEMAND MANAGEMENT	83

	11.1	Existing Transit and Active Transportation Opportunities	84
	11.2	Future Transit and Active Transportation Opportunities	84
	11.3	Site Specific TDM Recommendations	84
12.0	COM	MUNITY IMPACTS	88
	12.1	Support Intensification for Transit Oriented Areas	89
	12.2	Cycling and Pedestrian Access, Circulation and Safety Concerns	89
13.0	CON	CLUSIONS AND RECOMMENDATIONS (UPDATED)	90
	13.1	Conclusions	90
	13.2	Recommendations	94

LIST OF TABLES

Table 1: Development Proposal (Comparison)	2
Table 2: Access Configuration (Comparison)	2
Table 3: Study Roadways	9
Table 4: Existing Transit Services	11
Table 5: Turning Movement Count and Signal Timing Plan Data	13
Table 6: Hurontario Street Historic Growth Rate	14
Table 7: Road Network Growth Rates	15
Table 8: Observed Cooksville GO Trips	17
Table 9: 2024 Existing Traffic Operations — Signalized Intersections	20
Table 10: 2024 Existing Traffic Operations – Unsignalized Intersections	22
Table 11: 2024 Existing Queuing Assessment	23
Table 12: Planned Roadway Improvements in Study Area	31
Table 13: Existing and Expected Future Mode Split	32
Table 14: Arterial and Collector Growth Rates	32
Table 15: Background Developments Breakdown	34
Table 16: 2029 Future Background Traffic Operations – Signalized Intersections	43
Table 17: 2029 Future Background Traffic Operations – Unsignalized Intersections	47
Table 18: 2029 Future Background Queuing Assessment	48
Table 19: Recommended Future Background Improvements	50
Table 20: Trip Generation	53
Table 21: Trip Generation Comparison	54
Table 22: Residential Trip Distribution	55
Table 23: Commercial Trip Distribution	57
Table 24: Existing Transit Trip Distribution	59
Table 25: Forecasted Transit Trip Distribution	63
Table 26: Forecasted Transit Trip Assignment	64
Table 27: 2029 Future Total Traffic Operations – Signalized Intersections	66
Table 28: 2029 Future Total Traffic Operations – Unsignalized Intersections	70
Table 29: 2029 Future Total Queuing Assessment	71
Table 30: Signal Warrant Analysis	74
Table 31: Recommended Future Total Improvements	75
Table 32: Intersection Sight Distance Assessment	78
Table 33: Access Spacing Review	79
Table 34: Proposed Safety Recommendations	80

Table 35: Provincial Bill 185 Vehicle Parking Requirements	81
Table 36: City of Mississauga Zoning By-Law 0225-2007 Bicycle Parking Requirements	82
Table 37: City of Mississauga Zoning By-Law Loading Requirements	82
Table 38: Site Specific TDM Recommendations	85

C.F. Crozier & Associates Inc. Project No. 2378-6557

LIST OF FIGURES

Figure 1: Site Location	1
Figure 2: Site Plan	3
Figure 3: Existing Study Road Network	10
Figure 4: 2024 Existing Traffic Volumes	18
Figure 5: Cooksville GO Protected Major Transit Station Area (OPA No. 144)	26
Figure 6: Hazel McCallion LRT Proposed Route (Metrolinx)	29
Figure 7: Dundas BRT Proposed Alignment (Metrolinx)	30
Figure 8: Background Developments Map	35
Figure 9: Background Development Traffic Volumes	38
Figure 10: Hazel McCallion LRT Design (Metrolinx, February 2017)	39
Figure 11: Planned Future Study Road Network	40
Figure 12: 2029 Future Background Traffic Volumes	42
Figure 13: Residential Trip Assignment	56
Figure 14: Commercial Trip Assignment	58
Figure 15: Existing Transit Trip Distribution Breakdown	61
Figure 16: 2029 Future Total Traffic Volumes	65

LIST OF APPENDICES

Appendix A: Site Plan

Appendix B: Correspondence

Appendix C: Existing Transit Information

Appendix D: Traffic Data

Appendix E: Level of Service Definitions

Appendix F: Detailed Capacity Analysis

Appendix G: Future Improvement Excerpts

Appendix H: Background Development Excerpts

Appendix I: Trip Generation Excerpts

Appendix J: TTS Data

Appendix K: Signal Warrant Analysis

Appendix L: All-Way Stop Control Warrant Analysis

Appendix M: Vehicle Turning Diagrams

Appendix N: Pedestrian Circulation Plan

Appendix O: TAC GDGCR Excerpts

Appendix P: City of Mississauga Zoning By-Law Excerpts

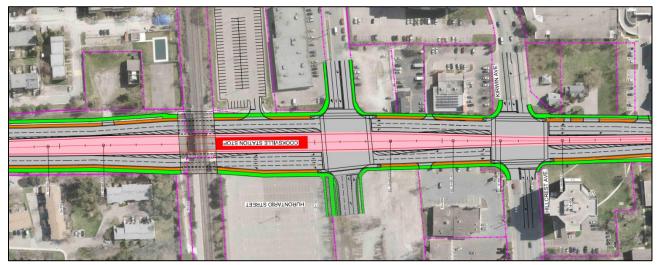
Appendix Q: Transportation Demand Management and Pedestrian Circulation Checklist

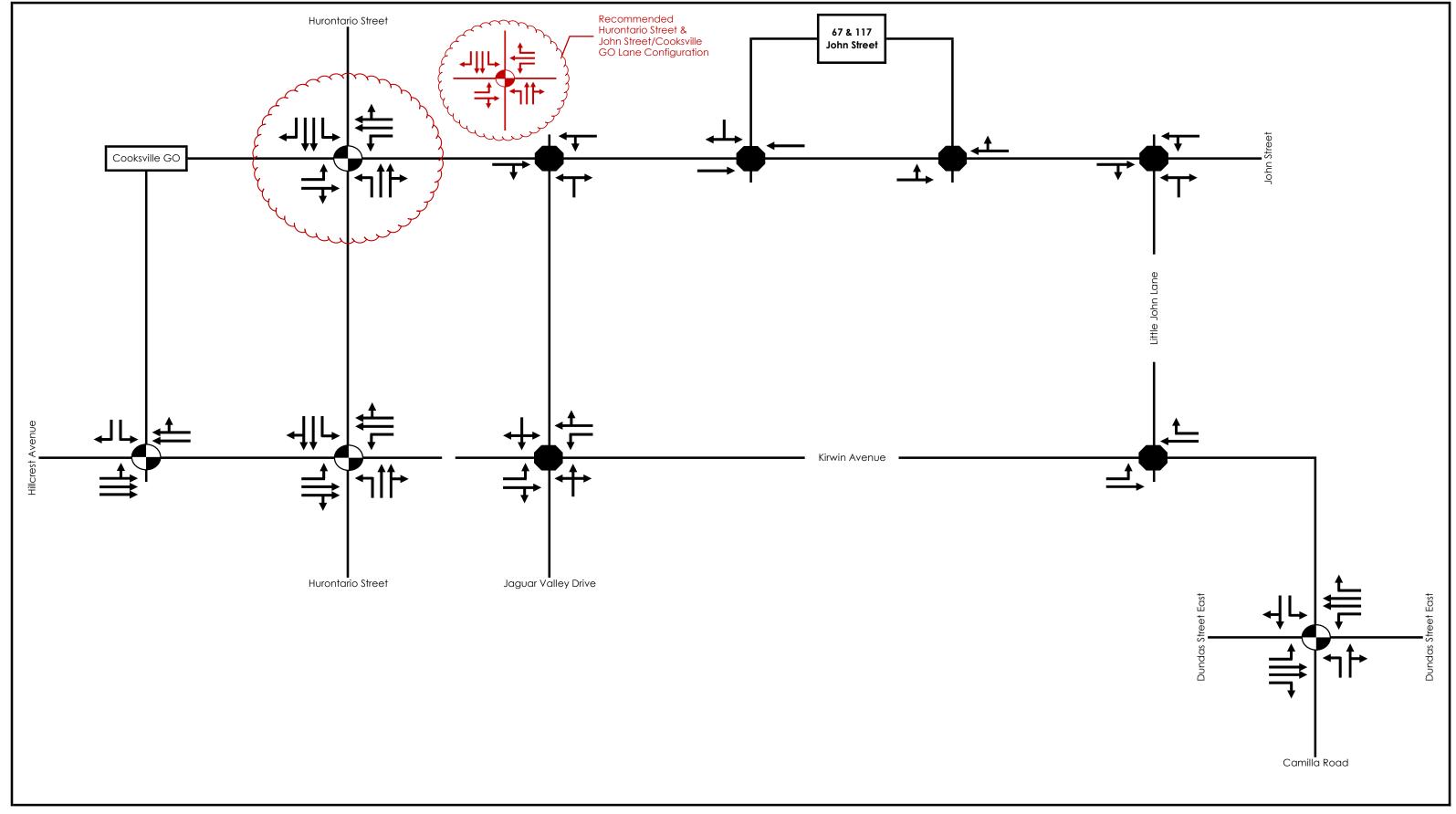
Appendix R: Certification Form

3.6 Traffic Modelling and Assumptions

For traffic modelling purposes, signal timing plans by default were kept consistent with existing conditions, unless other considerations necessitated adjustments. Due to the Hazel McCallion LRT, the signal timing plans for study intersections along Hurontario Street were adjusted for future conditions, considering that left-turns along the corridor would occur via protected left-turn phases only. Accordingly, protected northbound and southbound left-turn phases were implemented at Hurontario Street & John Street/Cooksville GO and Hurontario Street & Hillcrest Avenue/Kirwin Avenue. Both intersections were also optimized.

The future lane configurations and auxiliary turn lane storage lengths along the Hurontario Street corridor were reviewed to understand the future design outlined in the Hazel McCallion LRT Rollout Map (June 2017), received from City staff. **Figure 10** illustrates the Hazel McCallion LRT design within the study area.




Figure 10: Hazel McCallion LRT Design (Metrolinx, February 2017)

The intersection of Hurontario Street & John Street/Cooksville GO was initially modelled per the lane configurations in **Figure 10**. However, initial modelling assuming the westbound lane configuration (exclusive left-turn, exclusive through and shared through-right), per **Figure 10** indicated delay and capacity issues were projected at this intersection. Consequently, an alternative configuration with exclusive left-turn, through, and right-turn lanes for the east approach was also reviewed herein. This configuration results in improved operations due to the high number of westbound right-turn movements compared to relatively low through traffic volumes. However, it is recognized that the Hazel McCallion LRT Design configuration may also function adequately in future conditions, particularly if the projected automobile traffic growth does not materialize as expected given the use of historic data for Hurontario volumes.

Therefore, both the planned shared westbound through-right-turn configuration as well as an exclusive westbound right-turn lane configuration were assessed for future background and future total conditions analysis herein for the purposes of traffic modelling.

PHFs of 0.92 and lost time adjustments of -1.0 were kept consistent with existing operations.

Appendix G contains the relevant future improvement excerpts. **Figure 11** outlines the planned future study road network.

Legend xx A.M. Peak Hour Traffic Volumes	69 & 117 John Street	CROZIER
(xx) P.M. Peak Hour Traffic Volumes	Planned Future Study Road Network	CONSULTING ENGINEERS

Figure 11

Project No. 2378-6557 Date. 2024.09.17 Analyst. MY

3.7 Intersection Operations

Figure 12 illustrates the 2029 future background traffic volumes. **Table 16** and **Table 17** outlines the 2029 future background traffic operations for signalized and unsignalized study intersections, respectively. **Appendix F** contains the detailed capacity analysis worksheets.

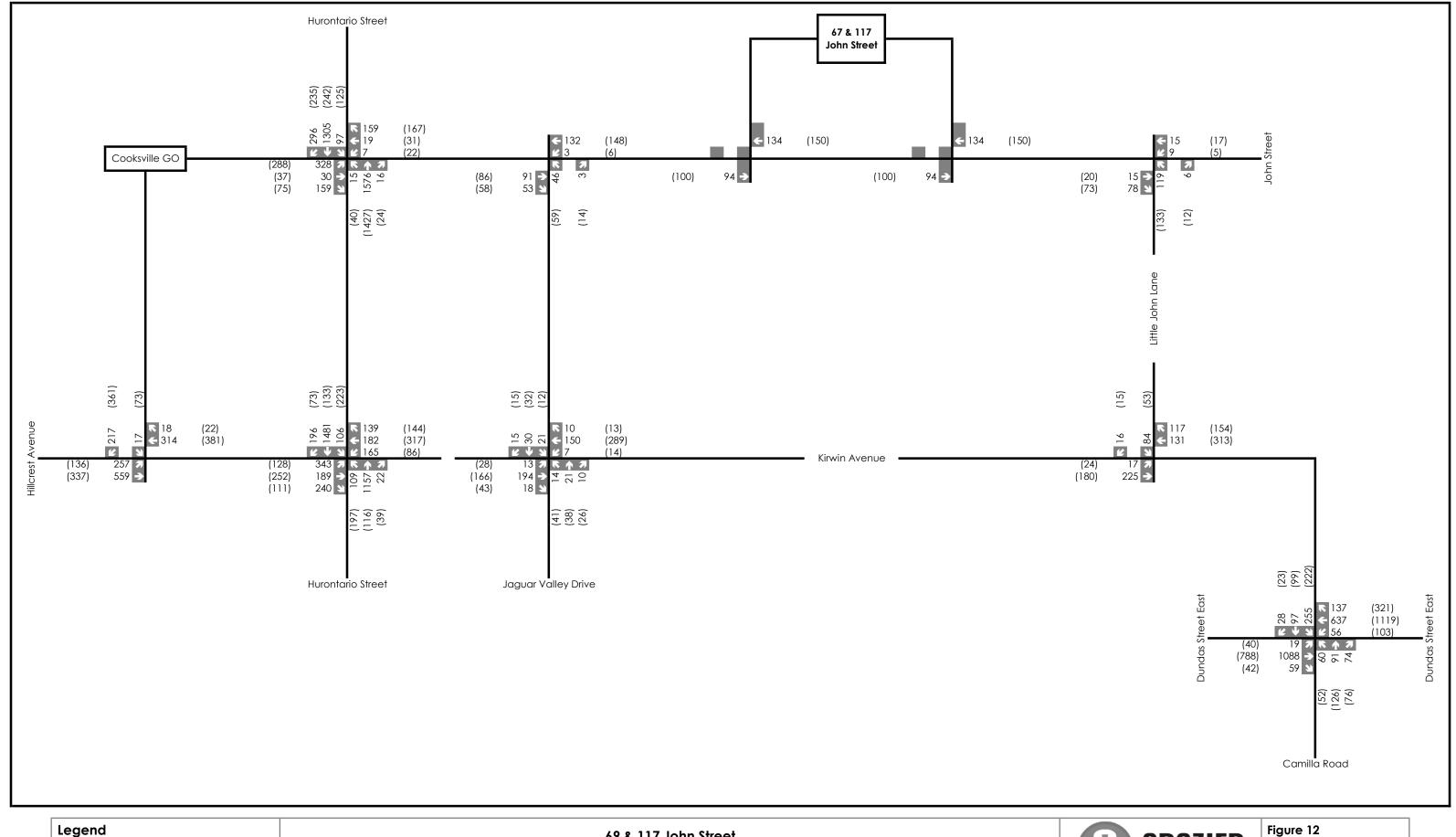


Figure 12

Project No. 2378-6557

Date. 2024.09.17

Analyst. MY

(xx) P.M. Peak Hour Traffic Volumes

{xx} Weekend Peak Hour Traffic Volumes

Table 16: 2029 Future Background Traffic Operations – Signalized Intersections

		Performance Metrics								
Inters	ection	Mayamant	LC	OS ¹	Delay (s)		v/c ratio²			
		Movement	A.M.	P.M.	A.M.	P.M.	A.M.	P.M.		
		Overall	F	E	82	61	1.08	0.98		
		EBL	F	F	101	108	1.01	1.01		
	ne	EBTR	D	D	37	41	0.29	0.17		
0	미	WBL	С	D	34	40	0.02	0.08		
Ö	/BTR	WBTR	D	D	35	40	0.14	0.11		
I	Shared WBTR Lane	NBL	F	Е	87	78	0.57	0.49		
oks	are	NBTR	F	Е	126	68	1.17	1.02		
ပိ	S.	SBL	F	F	133	85	0.92	0.76		
e /		SBT	D	В	46	19	0.92	0.16		
Stre		SBR	С	В	25	20	0.41	0.21		
Hurontario Street & John Street/Cooksville GO	Exclusive WBR Lane	Overall	Е	D	57	47	1.03	0.93		
9		EBL	F	F	126	111	1.07	1.00		
₩ ₩		EBTR	D	D	46	47	0.35	0.20		
Stre		WBL	D	D	41	45	0.03	0.09		
.e		WBT	D	D	41	45	0.04	0.08		
重		WBR	D	D	44	46	0.23	0.13		
2		NBL	F	Е	87	74	0.57	0.49		
_ T	Cle	NBTR	Е	D	72	35	1.05	0.93		
	úì	SBL	F	F	98	69	0.79	0.74		
		SBT	С	В	30	15	0.82	0.15		
		SBR	В	В	18	15	0.36	0.21		
	_	Overall	F	E	123	58	1.12	0.46		
«ŏ	<u> </u>	EBL	F	Е	201	63	1.28	0.75		
je je	₹	EBTR	D	D	41	48	0.40	0.43		
Hurontario Street &	HIIICrest Avenue/Kirwin Avenue	WBL	F	Е	97	64	0.91	0.61		
흕	Avenue Avenue	WBTR	D	Е	47	68	0.34	0.78		
l tr	A A	NBL	F	Е	100	79	0.82	0.80		
	<u>0</u>	NBTR	D	С	48	27	0.89	0.12		
	Ě	SBL	Е	F	78	86	0.82	0.81		
		SBTR	F	С	203	21	1.30	0.14		

		Performance Metrics									
Inters	ection		LC)S¹	Dele	ay (s)	v/c ratio²				
		Movement	A.M.	P.M.	A.M.	P.M.	A.M.	P.M.			
		Overall	D	С	36	34	0.64	0.65			
		EBL	Α	В	9	17	0.06	0.21			
		EBT	В	В	14	18	0.55	0.45			
Ď	ਰ	EBR	Α	В	9	13	0.05	0.04			
Rog	ign	WBL	В	В	13	11	0.28	0.29			
₽	S G	WBT	В	В	11	14	0.33	0.56			
ä	Existing Signal	WBR	А	В	9	11	0.11	0.28			
Ŏ	Ä	NBL	Е	Е	65	60	0.43	0.31			
n		NBTR	Е	Е	77	76	0.72	0.77			
Ne Ne		SBL	F	F	175	191	1.18	1.21			
in A		SBTR	D	D	50	50	0.32	0.31			
Dundas Street East & Kirwin Avenue/Camilla Road	Signal Optimized #1	Overall	С	С	29	30	0.67	0.68			
<u>∞</u>		EBL	В	С	14	26	0.07	0.27			
ast		EBT	С	С	23	26	0.63	0.52			
e E		EBR	В	В	14	19	0.06	0.04			
Sŧre		WBL	С	В	23	16	0.36	0.34			
as :	p∰r	WBT	В	С	17	22	0.38	0.63			
ğ	9	WBR	В	В	14	17	0.11	0.31			
ے	guc	NBL	Е	Е	65	60	0.43	0.31			
	Š	NBTR	Е	Е	77	76	0.73	0.77			
		SBL	D	D	54	52	0.77	0.74			
		SBTR	D	D	39	39	0.24	0.23			
	4.	Overall	Α	В	8	12	0.34	0.26			
Hillcrest Avenue &	Cooksville GO	EBLT	Α	А	5	4	0.35	0.21			
Hillcrest Wenue 8	sks GO	WBTR	Α	Α	4	4	0.16	0.19			
¥≅	Ö	SBL	С	С	25	27	0.09	0.37			
·	_	SBR	С	С	26	26	0.16	0.26			

Note 1: The LOS of a signalized intersection is based on the average control delay per vehicle (HCM 2000). Note 2: All intersection v/c ratios above 0.85 as well as movements above 1.0 are bolded with red text.

At the study intersections along Hurontario Street significant operational performance loss is projected by the traffic model, with a drop in LOS from "C" to "E" or "F" being projected with at or slightly beyond capacity conditions.

The implementation of the Hazel McCallion LRT will result in higher delays due to the vehicle travel lane reductions along the Hurontario Street corridor as well as the implementation of northbound and southbound protected left-turn movements. These operations are not uncommon for transit corridors with required protected left-turn phases, such as the Highway 7 BRT and St. Clair Avenue. Some congestion is expected along transit corridors such as along the Hazel McCallion LRT, as the priority is to provide higher-order transit service that transport people in a more efficient manner than the traditional automobile. As outlined in MTO's Transit Supportive Guidelines, congestion can motivate commuters to shift from automobile to sustainable modes and the negative impact to vehicle operations due to the implementation of higher-order transit, such as the Hazel McCallion LRT, is an acceptable trade-off.

Furthermore, the volumes used herein can be considered conservative as historic counts were used and may not fully account for the modal split impacts of the Hazel McCallion LRT as well as new routes being available on the boundary road network being available through redevelopment (e.g., Hurontario Street & John Street/Cooksville GO). Due to the Hazel McCallion LRT construction, historic counts at some study intersections (e.g., Hurontario Street & Hillcrest Avenue/Kirwin Avenue) were grown to estimate "existing volumes". While a one-time negative growth factor was applied along Hurontario Street, there may be additional impacts of the Hazel McCallion LRT to the future mode split within the entire study area, especially if there are delays and congestion. As such, the volumes used herein may be considered conservative.

Hurontario Street & John Street/Cooksville GO

Traffic operational issues were projected along Hurontario Street in future background conditions. Several movements are projected to experience operational issues such as LOS "F" with volume-to-capacity ratios above 1.0 at Hurontario Street & John Street/Cooksville GO. However, it is noted that the volume-to-capacity ratios expected are only moderately above 1.0, indicating that vehicles may require more than one cycle length to advance through the intersection during the peak hours.

These conditions are somewhat typical in high volume urban areas during the peak periods within the GTHA, including the Hurontario Street corridors. Given these findings, it is recommended that the City monitor traffic operations along the Hurontario Street corridor within the study area, in the future and revise the associated signal timing plans, as required, to maintain safe and efficient traffic operations. The recommended monitoring will also confirm the rate at which projected traffic growth actually materializes, to assist the City in planning for signal timing optimization along the corridor.

Furthermore, it is recommended that the City consider revising the lane configuration of the east approach at Hurontario Street & John Street/Cooksville GO. Instead of the shared through right-turn movement in the righthand curb lane, as outlined in the most recent design plates, an exclusive right-turn movement should be considered. This change would accommodate the high number of westbound-right traffic projected at the intersection, and result in improved overall conditions during the peak hours. However, it is anticipated that intersection performance of the default lane configuration in practical conditions may be similar to the recommended configuration since with the high westbound left-turn volumes, the westbound through/right curb lane may operate as a defacto westbound right-turn lane.

<u>Hurontario Street & Hillcrest Avenue/Kirwin Avenue</u>

The signalized intersection of Hurontario Street & Hillcrest Avenue/Kirwin Avenue is expected to operate at a LOS "F" and "E" during the weekday a.m. and p.m. peak hours, respectively, with an intersection control delay of 123 seconds or better and an intersection volume-to-capacity ratio of 1.12 or better. During the weekday a.m. peak hour, the eastbound left-turn and southbound through-right lanes are forecasted to operate above capacity with volume-to-capacity ratios above 1.0. However, all other movements during the weekday a.m. and p.m. peak hours are expected to operate below capacity.

As outlined above, vehicles may require more than one cycle length to clear the intersection during the peak hours. However, these conditions are typical in congested areas during the peak periods within the GTHA, including the Hurontario Street corridor. Given these findings, it is recommended that the City monitor traffic operations along the Hurontario Street corridor,

within the study area, in the future and revise the associated signal timing plans, as required, to maintain safe and efficient traffic operations.

Dundas Street East & Kirwin Avenue/Camilla Road

Under the existing signal timing plan, the intersection of Dundas Street East & Kirwin Avenue/Camilla Road continues to operate at a LOS "D" or better during the weekday a.m. and p.m. peak hour. The intersection is expected to operate with a volume-to-capacity ratio of 0.65 or better and a control delay of 36 seconds or better. It is noted that the southbound leftturn movement has a volume-to-capacity ratio above 1.0 during both the weekday a.m. and p.m. peak hours. As such, the signal timing plan was optimized.

Upon optimizing the signal timing plan (Signal Optimized #1), the Dundas Street East & Kirwin Avenue/Camilla Road intersection is expected to operate at a LOS "C" with a control delay of 30 seconds or better and a volume-to-capacity ratio of 0.68 or better during the weekday a.m. and p.m. peak hours. Furthermore, the no movements are expected to have a volume-tocapacity ratio over 1.0.

Hillcrest Avenue & Cooksville GO

Finally, the intersection of Hillcrest Avenue & Cooksville GO is forecasted to operate similarly to existing conditions at a LOS "B" or better and with no notable operational issues during both the a.m. and p.m. weekday peak hour periods.

C.F. Crozier & Associates Inc. Project No. 2378-6557

Table 17: 2029 Future Background Traffic Operations – Unsignalized Intersections

	Performance Metrics									
Intersection (Control)	Movement	LC	OS	Delo	Delay (s)		ratio²			
(Colinol)	Movement	A.M.	P.M.	A.M.	P.M.	A.M.	P.M.			
	Overall ¹	В	В	11	11	0.09	0.12			
John treet 8 aguar Valley Drive	EBTR	-	-	0	0	0.09	0.09			
John Street & Jaguar Valley Drive	WBLT	Α	А	0	0	0.00	0.01			
	NBLTR	В	В	11	11	0.08	0.12			
e	Overall ¹	Α	В	9	11	0.32	0.48			
e & Oriv	EBL	Α	А	9	10	0.02	0.05			
ey l	EBTR	Α	В	10	11	0.32	0.33			
Kirwin Avenue & ıguar Valley Driv	WBL	Α	А	8	9	0.01	0.02			
vin , ar /	WBTR	А	В	10	13	0.25	0.48			
Kirwin Avenue & Jaguar Valley Drive	NBLTR	Α	Α	8	10	0.07	0.17			
ř	SBLTR	Α	Α	9	9	0.10	0.10			
, c	Overall ¹	Α	В	10	10	0.16	0.18			
John Street & Little John Lane	EBTR	-	-	0	0	0.06	0.06			
John Street 8 Itle Jol Lane	WBLT	Α	Α	3	2	0.01	0.00			
Li v	NBLTR	Α	В	10	10	0.16	0.18			
∞ ŏ 0	Overall ¹	Α	В	9	10	0.35	0.46			
ue an(EBL	Α	Α	8	9	0.03	0.04			
ven Jur	EBT	В	Α	11	10	0.35	0.28			
n A Jol	WBT	Α	В	9	12	0.21	0.46			
Kirwin Avenue & Little John Lane	WBR	Α	А	8	8	0.15	0.20			
	SBLR	Α	А	9	9	0.16	0.11			

Note 1: The overall LOS of a two-way stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM 2000). The overall LOS of an AWSC intersection is based on the overall delay for the intersection (HCM 2010).

Under 2029 future background conditions, the unsignalized intersections within the study road network are generally operating efficiently with moderate delays and reserve capacity to accommodate future traffic growth. These operations are consistent with the operations under the 2024 existing conditions.

3.7.1 Queueing Analysis

Finally, as outlined in **Section 2.5**, Synchro was used to conduct a queuing assessment and estimate 95th percentile queues within the study road network. The a.m. and p.m. peak hour 95th percentile queues were compared against the auxiliary turn storage lane lengths at the study intersections to understand if there is at least the potential for occasional queuing exceedances.

Table 18 outlines the 2029 future background queuing assessment.

Table 18: 2029 Future Background Queuing Assessment

		Performance Metrics						
Intersection	on		95 th Percentile Q	Auxiliary Lane				
		Movement	A.M.	P.M.	Storage Length (m)			
		EBL	182	165	2001			
	Shared WBTR	WBL	6	13	25			
		NBL	6	27	37.5			
	Lane	SBL	72	66	48.5			
Hurontario Street &		SBR	62	14	48.5			
John Street/ Cooksville GO		EBL	189	165	200			
		WBL	6	14	25 ²			
	Exclusive WBR Lane	NBL	6	27	37.5			
	Work Edite	SBL	52	65	48.5			
		SBR	47	12	48.5			
		EBL	187	49	185 ³			
Hurontario Street	& Hillcrest	WBL	95	45	50			
Avenue/Kirwin /	Avenue	NBL	91	90	53			
		SBL	50	107	36			
		EBL	6	17	15			
	Existing Signal	EBR	8	3	30			
		WBL	19	21	30			
		WBR	9	21	65			
		NBL	33	29	36			
Dundas Street East & Kirwin Avenue/		SBL	139	123	40			
Camilla Road		EBL	8	20	15			
		EBR	10	4	30			
	Signal Optimized	WBL	27	27	30			
	#1	WBR	11	39	65			
		NBL	34	29	36			
		SBL	87	75	40			
Hillcrest Avenue & GO		No Auxiliary Turn Lanes	-	-	-			
John Street & Jagu Drive	Jar Valley	No Auxiliary Turn Lanes	-	-	-			
Kirwin Avenue & Jag	guar Valley	EBL	0	0	20			
Drive ⁴		WBL	0	0	15			
John Street & Little John Lane		No Auxiliary Turn Lanes	-	-	-			
Kirwin Avenue & L	ittle John	EBL	0	0	10			
Lane ⁴	noo to unstrag	WBR	1	1	50			

Note 1: Based on distance to upstream intersection.

Note 2: Based on existing storage length as future storage length is not provided in the most recent design drawings.

Note 3: Two-way left-turn lane storage.

Note 4: Queuing results for the AWSC intersections based on HCM 2010 methodology.

Hurontario Street & John Street/Cooksville GO

Similar to existing conditions, the minor queuing exceedances at the Hurontario Street & John Street/Cooksville GO intersection is forecasted. However, these queue exceedances can be accommodated within the provided taper and are not expected to appreciably impact traffic operations.

For the southbound left-turn movement, the most recent Hazel McCallion LRT design drawings appear to include a painted median via pavement markings, at the north end of the delineated southbound left-turn lane, such that the total available storage is approximately 120 metres. Should sufficient space exist, it is recommended that the pavement markings be revised to extend the provided storage to 65 metres for the southbound left-turn movement and mitigate potential queuing impacts.

Hurontario Street & Hillcrest Avenue/Kirwin Avenue

Under 2029 future background conditions, queuing constraints are most notable at the intersection of Hurontario Street & Hillcrest Avenue/Kirwin Avenue. In the most critical cases, each of the four left-turn movement 95th percentile queues are projected to extend beyond their respective turn-lane storage. For the eastbound and northbound left-turn movements, the associated advanced and protected left-turn phases are expected to clear queues to avoid spillback and/or starvation impacts on the adjacent vehicle travel lanes.

Similarly to the Hurontario Steet & John Street/Cooksville GO intersection, for the southbound left-turn movement at Hurontario Street & Hillcrest Avenue/Kirwin Avenue, the most recent Hazel McCallion LRT design drawings appear to include a painted median via pavement markings, at the north end of the delineated southbound left-turn lane, such that the total available storage is approximately 90 metres. Should sufficient space exist, it is recommended that the pavement markings be revised to maximize the provided storage for the southbound left-turn movement and mitigate potential queuing impacts.

For the westbound left-turn movement, while there is no protected left-turn phase, the wide median is expected allow vehicles to queue beyond the storage bay without impacting vehicle movements in either of the bi-directional travel lanes. Furthermore, most of the expected queues can be accommodated within the provided storage and taper. Therefore, the noted queueing issues at this study intersection are expected to be mitigated.

<u>Dundas Street East & Kirwin Avenue/Camilla Road</u>

Consistent with existing conditions, queuing concerns are expected for the southbound left-turn movement at Dundas Street East & Kirwin Avenue/Camilla Avenue for the optimized signal timing plan (Signal Optimized #1). It is noted that the expected queue of 87 metres, during the weekday a.m. peak hour, cannot be accommodated within the provided storage and taper. However, similar to existing conditions, impacts to the adjacent vehicle travel lane are expected to be mitigated due to the protected left-turn phase.

The City should monitor the traffic volumes and queues post- Hazel McCallion LRT to determine if improvements for the southbound left-turn movement is required. Should improvements be required, the City can consider adjusting the pavement markings, including on-street parking on the east, to extend the southbound left-turn lane storage. It is noted that the adjustments to onstreet parking is only expected to affect a few driveways, thus not significantly impacting residents in the area.

It is also noted that the eastbound left-turn queue is expected to extend beyond the provided storage. However, the queue can be accommodated within the storage and taper length.

3.8 Future Background Recommendations Summary

Table 19 summarizes the future background recommended improvements.

Table 19: Recommended Future Background Improvements

Intersection	Improvement	Responsibility
Hurontario Street & John Street/Cooksville GO	Consider implementing an exclusive westbound right-turn movement, instead of a shared westbound through-right-turn movement. Optimize the signal timing plan, providing the following green time (Exclusive WBR Movement): • EBT: 53.0 s (a.m.), 48.0 s (p.m.) • WBT: 53.0 s (a.m.), 48.0 s (p.m.) • NBL: 9.5 s (a.m.), 14.8 s (p.m.) • NBT: 89.2 s (a.m.), 86.6 s (p.m.) • SBL: 17.8 s (a.m.), 25.4 s (p.m.) • SBT: 97.5 s (a.m.), 97.6 s (p.m.) Consider updating the Hazel McCallion LRT design drawings and revise the planned pavement markings to extend the southbound left-turn lane storage length to at least 65 metres.	City
Hurontario Street & Hillcrest Avenue/Kirwin Avenue	Consider optimizing the signal timing plan, providing the following green time: • EBL: 11.0 s (a.m.), 13.0 s (p.m.) • EBT: 67.0 s (a.m.), 69.0 s (p.m.) • WBT: 56.0 s (a.m.), 56.0 s (p.m.) • NBL: 13.0 s (a.m.), 37.0 s (p.m.) • NBT: 76.4 s (a.m.), 53.0 s (p.m.) • SBL: 16.6 s (a.m.), 38.0 s (p.m.) • SBT: 80.0 s (a.m.), 54.0 s (p.m.) Consider updating the Hazel McCallion LRT design drawings and revise the planned pavement markings to maximize the southbound left-turn lane storage length.	City

C.F. Crozier & Associates Inc. Project No. 2378-6557

Intersection	Improvement	Responsibility
Dundas Street East & Kirwin Avenue/Camilla Road	Consider optimizing the signal timing plan, providing the following green time (Signal Optimized #1): • EBT: 84.0 s (a.m.), 78.0 s (p.m.) • WBL: 0.0 s (a.m.), 11.0 s (p.m.) • WBT: 84.0 s (a.m.), 89.0 s (p.m.) • NBT: 43.0 s (a.m.), 28.0 s (p.m.) • SBL: 33.0 s (a.m.), 71.0 s (p.m.) Monitor traffic volumes post- Hazel McCallion LRT and post-Dundas BRT to determine if improvements are required, including: • Adjust pavement markings, including the start of on-street parking on the east side, to extend the southbound left-turn lane storage.	City

4.0 Site Generated Traffic

The Proposed Development will result in additional turning movements at the study intersections. Therefore, this section describes the trip forecasting methodology and results of this forecast for the development proposal.

The site generated traffic forecasting methodology for this study consists of two steps. The first step, Trip Generation, projects the number of trips that originate or are destined for the Proposed Development, while the second step, Trip Distribution and Assignment, assigns trips to the study road network based on the expected distribution of trips to catchment areas and expected shortest paths for trips destined for particular locations.

4.1 Trip Generation (UPDATED)

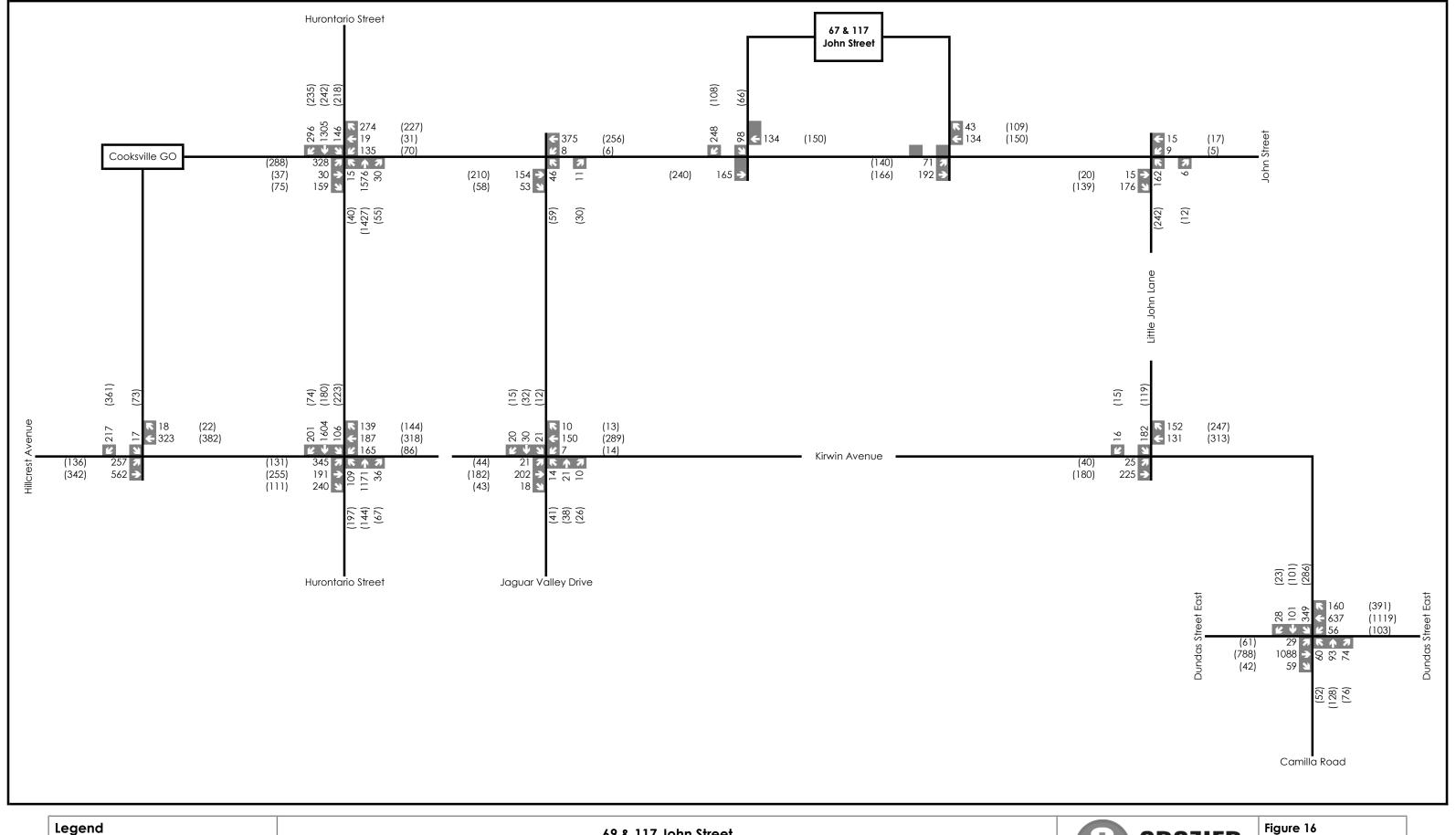
As noted, the development is proposed to consist of 1,342 residential units and 600 m^2 of commercial space.

Trip generation for the proposed mixed-use development was determined using the methodology outlined below:

- Residential person trips were generated based on Institute of Transportation Engineers
 (ITE) Trip Generation Manual 11th Edition for Land Use Categories (LUC) 222 "Multifamily
 (High-Rise)". The Dense Multi-use Urban category was also selected to represent the
 future development and transportation context of the surrounding area. In addition, the
 Close to Rail Transit setting was used for the residential trip generation due to the
 development's proximity to the Cooksville GO Station (approximately 650 metres).
- As commercial person trips are not available in the ITE Trip Generation Manual, 11th
 Edition for LUC 822 "Strip Retail Plaza (<40k)", the commercial person trips were based on
 the vehicle trip generation outlined in ITE Trip Generation Manual, 11th Edition and
 converted to person trips using the factors outlined in ITE Trip Generation Manual, 10th

Table 26: Forecasted Transit Trip Assignment

Turnell Comice	O7 of Trime	A.M. Trips ¹		P.M. Trips ¹	
Transit Service	% of Trips	ln	Out	In	Out
Milton GO Train	26%	24	74	52	37
Lakeshore West GO Train	-	-	-	-	-
Hazel McCallion LRT	17%	15	47	33	24
MiWay Bus	34%	32	97	68	48
Milton GO & TTC Subway	5%	5	14	10	7
Hazel McCallion LRT & Lakeshore West GO Train	6%	5	16	11	8
MiWay Bus & GO Bus	3%	3	9	6	4
Hazel McCallion LRT & MiWay Bus	9%	8	25	18	13
MiWay Bus & TTC Subway	-	-	-	-	-
Total	100%	92	281	198	141


Note 1: Rounding may cause appearance of minor discrepancies.

5.0 Future Total Conditions

This section will summarize the future total conditions of the study road network. The future total traffic volumes for the horizon years consist of the following components:

- Future Background Traffic Volumes
- Proposed Development's Site Generated Traffic Volumes

Figure 16 outlines the resulting total volumes for the 2029 horizon year.

Project No. 2378-6557 Date. 2024.09.17

Analyst. MY

5.1 Traffic Modelling and Assumptions (UPDATED)

The intersection of John Street & Little John Lane was modelled as AWSC. As outlined in **Section 5.4** and **Section 8.0**, AWSC is recommended as it is warranted and will facilitate safe north-south pedestrian crossings.

Signal timing plans are kept consistent with future background conditions, for comparative purposes. Once again, for future total conditions, PHFs of 0.92 and lost time adjustments of -1.0 were kept unchanged from existing and future background operations.

As outlined in **Section 4.1**, a fulsome update of future total operational analysis was not prepared. However, with the updated East Site Access configuration the updated operations for John Street & Little John Lane and John Street & East Site Access were updated and included herein.

5.2 Intersection Operations (UPDATED)

Table 27 and **Table 28** outlines the 2029 future total traffic operations for signalized and unsignalized study intersections, respectively. **Appendix F** contains the detailed capacity analysis worksheets.

Table 27: 2029 Future Total Traffic Operations – Signalized Intersections

		Performance Metrics								
Interse	ection		LC)\$ ¹	Delay (s)		v/c ratio²			
		Movement	A.M.	P.M.	A.M.	P.M.	A.M.	P.M.		
		Overall	F	F	93	85	1.21	1.11		
		EBL	F	F	170	149	1.20	1.13		
	a E	EBTR	D	D	37	41	0.29	0.17		
0	P	WBL	D	D	40	42	0.45	0.24		
09 6	BTR	WBTR	D	D	37	41	0.28	0.16		
₩	≥	NBL	F	Е	86	79	0.57	0.49		
oks	Shared WBTR Lane	NBTR	F	F	131	94	1.18	1.09		
S		SBL	F	F	300	137	1.40	1.12		
 		SBT	D	В	46	19	0.92	0.16		
Stre		SBR	С	В	25	20	0.41	0.21		
& John Street/Cooksville	Φ	Overall	E	E	64	61	1.07	1.01		
윽		EBL	F	F	126	111	1.07	1.00		
# # # # # # # # # # # # # # # # # # #		EBTR	D	D	46	47	0.35	0.20		
= i	Lan	WBL	D	D	53	48	0.59	0.29		
Hurontario Street	8R	WBT	D	D	41	45	0.04	0.08		
<u>ē</u>	≥	WBR	D	D	50	48	0.56	0.26		
o n	Siv	NBL	F	E	86	79	0.57	0.49		
ヹ	Exclusive WBR Lane	NBTR	F	Е	81	58	1.07	1.00		
	ũ	SBL	F	F	189	145	1.13	1.06		
		SBT	С	В	30	15	0.82	0.15		
		SBR	В	В	18	16	0.36	0.21		

				Perfo	rmance Me	trics		
Interse	ection		LC)S ¹	Dele	ay (s)	v/c r	atio ²
		Movement	A.M.	P.M.	A.M.	P.M.	A.M.	P.M.
		Overall	F	Е	142	56	1.17	0.48
Hurontario Street &	=	EBL	F	Е	207	65	1.29	0.77
ki č	Z	EBTR	D	D	41	48	0.41	0.44
Stre	Je (WBL	F	Е	97	64	0.91	0.59
Hurontario Street &	Avenue	WBTR	D	E	47	68	0.35	0.78
t t	₹ }	NBL	F	Е	101	79	0.83	0.80
O S	<u>ĝ</u>	NBTR	D	С	50	28	0.92	0.16
ᆍᅟᆖ		SBL	F	F	83	81	0.82	0.81
	_	SBTR	F	С	243	23	1.40	0.19
		Overall	D	С	35	33	0.73	0.72
		EBL	В	С	16	33	0.11	0.43
	+ 1	EBT	С	С	25	28	0.65	0.53
ğ	Signal Optimized #1	EBR	В	В	15	20	0.06	0.04
Roc	nize	WBL	С	В	26	17	0.39	0.35
₽	ptiin	WBT	В	С	19	24	0.39	0.64
ä	0	WBR	В	В	16	19	0.13	0.38
ŭ	gud	NBL	Е	Е	65	60	0.42	0.31
nue	Sić	NBTR	Е	Е	77	77	0.73	0.77
Ne N		SBL	F	Е	86	70	0.98	0.90
in A		SBTR	D	D	37	38	0.24	0.23
i.		Overall	С		34		0.73	
∞		EBL	В		17		0.11	
ast	42	EBT	С		26		0.66	
ta l	φ	EBR	В		16		0.06	
ire.	nize	WBL	С		27		0.40	
Dundas Street East & Kirwin Avenue/Camilla Road	ignal Optimized #2	WBT	В	n/a	20	n/a	0.39	n/a
pur	0 =	WBR	В		17		0.13	
۵	gno	NBL	Е		65		0.42	
	Sić	NBTR	Е		77		0.73	
		SBL	Е		75		0.94	
		SBTR	D		36		0.23	
	4	Overall	Α	В	8	12	0.34	0.26
est es es	ville .	EBLT	Α	А	4	4	0.35	0.21
Hillcrest Avenue &	Cooksville GO	WBTR	Α	А	4	4	0.16	0.19
₩¥	Ö	SBL	С	С	25	27	0.09	0.37
•	-	SBR	С	С	25	26	0.16	0.26

Note 1: The LOS of a signalized intersection is based on the average control delay per vehicle (HCM 2000). Note 2: All intersection v/c ratios above 0.85 as well as movements above 1.0 are bolded with red text.

Overall, traffic operations at the signalized study intersections are similar under 2029 future total conditions when compared to 2029 future background conditions. The LOS are expected to remain unchanged at the signalized study intersections between future background and future total conditions.

Hurontario Street & John Street/Cooksville GO

Consistent with future background conditions, an exclusive westbound right-turn lane at Hurontario Street & John Street/Cooksville GO is expected to result in better traffic operations than a shared westbound through right-turn lane. As outlined in **Section 3.7**, the City should consider updating the planned east approach lane configuration to include an exclusive right-turn lane at Hurontario Street & John Street/Cooksville GO.

With an exclusive westbound right-turn lane under 2029 future total conditions, Hurontario Street & John Street/Cooksville GO is expected to operate at an unchanged LOS "E" or better during the weekday a.m. and p.m. peak hours compared to 2029 future background conditions. The intersection is expected to operate with a maximum increase of 14 seconds in intersection control delay and 0.08 in intersection volume-to-capacity ratio.

Consistent with future background conditions, some movements are expected to have operational concerns with LOS "F" and/or volume-to capacity ratios of 1.0. As discussed in future background conditions, these operations are typical within congested areas during peak periods within the GTHA as well as along transit corridors, such as Hurontario Street.

Hurontario Street & Hillcrest Avenue/Kirwin Avenue

Under 2029 future total conditions, the Hurontario Street & Hillcrest Avenue/Kirwin Avenue intersection is expected to operate at an unchanged LOS "F" and "E" during the weekday a.m. and p.m. peak hours, respectively, when compared to future background conditions. Furthermore, the intersection control delay and intersection volume-to-capacity ratio is expected to increase by a maximum of 19 seconds and 0.05, respectively.

It is noted that operational concerns are expected at some movements, including LOS "F" and/or volume-to-capacity ratios above 1.0. However, these conditions are consistent with future background conditions.

Dundas Street East & Kirwin Avenue/Camilla Road

The optimized signalized intersection of Dundas Street East & Kirwin Avenue/Camilla Road (Signal Optimized #1) is expected to operate at an unchanged LOS "C" during the weekday a.m. and p.m. peak hours under 2029 future total conditions compared to future background conditions. The intersection is also expected to operate with an increase of 6 seconds and 0.06 in intersection control delay and intersection volume-to-capacity ratio, respectively.

It is noted that the southbound left-turn movement is expected to operate with a LOS "F" during the weekday a.m. peak hour. As such, the City should monitor traffic volumes and queues post-Hazel McCallion LRT and post-Dundas BRT to determine if improvements for the southbound left-turn movement are required. Should improvements be required, the City can consider implementing an alternate optimized timing plan (Signal Optimized #2) for the weekday a.m. peak hour as well as the previously recommended storage length increase. While slight increases in delay may result due to the new timing plan, the most operationally constrained movements on the minor street approaches will see delay reduction, with no material impact to operations along the Dundas Street corridor.

Hillcrest Avenue & Cooksville GO

Consistent with future background conditions, Hillcrest Avenue & Cooksville GO is expected to operate at a LOS "B" with low control delays and volume-to-capacity ratios during the weekday a.m. and p.m. peak hours.

<u>Summary</u>

The Subject Development does not materially impact the traffic operations at the signalized study intersections. Moreover, the operational issues observed under future total conditions is consistent with future background conditions. As such, the Subject Development is supportable from a transportation operations perspective and not further improvements are required.

Table 28: 2029 Future Total Traffic Operations – Unsignalized Intersections

			Per	formance Me	trics		
Intersection (Control)	Mayamant	LC	os	Delo	ıy (s)	Maximum	v/c ratio²
(Collifor)	Movement	A.M.	P.M.	A.M.	P.M.	A.M.	P.M.
	Overall ¹	В	В	14	14	0.14	0.20
John treet 8 laguar Valley Drive	EBTR	-	-	0	0	0.13	0.17
John Street & Jaguar Valley Drive	WBLT	Α	Α	0	0	0.01	0.01
•	NBLTR	В	В	14	14	0.14	0.20
е	Overall ¹	Α	В	10	11	0.33	0.48
e & Oriv	EBL	Α	Α	9	10	0.04	0.09
Kirwin Avenue & Jaguar Valley Drive	EBTR	В	В	10	11	0.33	0.36
Ave /all	WBL	Α	Α	8	9	0.01	0.02
vin ar \	WBTR	Α	В	10	13	0.25	0.48
Kirv	NBLTR	Α	Α	8	10	0.07	0.18
Ť	SBLTR	Α	Α	9	9	0.11	0.10
" _	Overall ¹	В	В	11	11	0.22	0.33
John Street & Little John Lane	EBTR	-	-	0	0	0.12	0.10
Jo Street	WBLT	Α	Α	3	2	0.01	0.00
• ii	NBLR	В	В	11	11	0.22	0.33
% o	Overall ¹	В	В	10	11	0.38	0.49
ue an	EBL	Α	Α	9	9	0.05	0.07
ven In L	EBT	В	В	11	11	0.38	0.30
A n Jol	WBT	Α	В	10	13	0.22	0.49
Kirwin Avenue & Little John Lane	WBR	Α	Α	9	10	0.22	0.34
Σ'	SBLR	В	В	11	11	0.33	0.24
" (t)	Overall ¹	В	В	13	12	0.46	0.26
hn et 8 t Sit	EBLT	-	-	0	0	0.00	0.00
John Street & West Site Access	WBTR	-	-	0	0	0.09	0.10
~ > `	SBLR	В	В	13	12	0.46	0.26
st ss	Overall ¹	Α	Α	3	4	0.11	0.17
John Street & East Ste Access	EBLT	Α	А	3	4	0.06	0.12
, ~ % A	WBTR	-	-	0	0	0.11	0.17

Note 1: The overall LOS of a two-way stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM 2000). The overall LOS of an AWSC intersection is based on the overall delay for the intersection (HCM 2010).

All of the unsignalized study intersections, including John Street & West Site Access and John Street & East Site Access, are expected to continue operating efficiently with an acceptable LOS under 2029 future total traffic conditions. This is consistent with the operations observed under future background conditions. As such, the Proposed Development is expected to have a minimal impact on the unsignalized study intersections and is supportable from a transportation operations perspective.

5.2.1 Queuing Analysis (UPDATED)

As outlined in **Section 2.5**, Synchro was used to conduct a queuing assessment and estimate 95th percentile queues within the study road network. The a.m. and p.m. peak hour 95th percentile queues were compared against the auxiliary turn storage lane lengths at the study intersections to understand if there is at least the potential for occasional queuing exceedances.

Table 29 outlines the results of the 2029 future total queuing assessments.

Table 29: 2029 Future Total Queuing Assessment

			Perfor	mance Metrics		
Intersection	on		95 th Percentile Q	Auxiliary Lane		
		Movement	A.M.	P.M.	Storage Length (m)	
		EBL	200	176	2001	
	Shared	WBL	58	33	25	
	WBTR	NBL	6	27	37.5	
	Lane	SBL	116	141	48.5	
Hurontario Street & John Street/		SBR	62	14	48.5	
Cooksville GO		EBL	189	165	2001	
		WBL	66	36	25 ²	
	Exclusive WBR Lane	NBL	6	27	37.5	
	Work Edite	SBL	105	137	48.5	
		SBR	47	12	48.5	
		EBL	189	50	185 ³	
Hurontario Street	Hurontario Street & Hillcrest		95	45	50	
Avenue/Kirwin	Avenue	NBL	91	90	53	
		SBL	52	106	36	
		EBL	12	33	15	
		EBR	10	4	30	
	Signal Optimized	WBL	27	27	30	
	#1	WBR	12	49	65	
		NBL	33	29	36	
Dundas Street East & Kirwin Avenue/		SBL	127	105	40	
Camilla Road		EBL	12		15	
		EBR	10		30	
	Signal Optimized	WBL	29	n/a	30	
	#2	WBR	12	II/G	65	
		NBL	33		36	
		SBL	121		40	
Hillcrest Avenue & GO	Cooksville	No Auxiliary Turn Lanes	-	-	-	
John Street & Jago	uar Valley	No Auxiliary	-	-	-	
Drive	au au Vallas	Turn Lanes EBL	0	0	20	
Kirwin Avenue & Ja Drive ⁴	guar valley	WBL	0	0	15	
576		VV DL	U	U	15	

	Performance Metrics						
Intersection	Movement	95 th Percentile Q	Auxiliary Lane				
	Movemeni	A.M.	P.M.	Storage Length (m)			
John Street & Little John Lane	No Auxiliary Turn Lanes	-	-	-			
Kirwin Avenue & Little John	EBL	0	0	10			
Lane ⁴	WBR	1	2	50			
John Street & West Site Access	No Auxiliary Turn Lanes	-	-	-			
John Street & East Site Access	No Auxiliary Turn Lanes	-	-	-			

- Note 1: Based on distance to upstream intersection.
- Note 2: Based on existing storage length as future storage length is not provided in the most recent design drawings.
- Note 3: Two-way left-turn lane storage.
- Note 4: Queuing results for the AWSC intersections based on HCM 2010 methodology.

Similar to future background conditions, the future total conditions aueuing assessment results in several of instances where 95th percentile queues exceed the auxiliary turn lane storage length.

Hurontario Street & John Street/Cooksville GO

At the intersection of Hurontario Street & John Street/Cooksville GO, the westbound left-turn and southbound left-turn queues have materially worsened as a result of development traffic when compared to future background conditions, while the remaining 95th percentile queuing projections are effectively the same as future background conditions.

As outlined for future background conditions in **Section 3.7.1**, for the southbound left-turn movement, the most recent Hazel McCallion LRT design drawings appear to show a paved median behind the southbound left-turn lane. Should sufficient space exist, it is recommended that pavement marking revisions be pursued to maximize the provided storage to mitigate potential queuing impacts. Given the southbound left-turn movement is planned to have an advanced protected left-turn phase, queuing issues are also expected to be minimized.

The planned westbound left-turn lane storage length at Hurontario Street & John Street/Cooksville GO is not provided in the most recent design drawings. As such, the City should consider providing minimum of 70 metre storage length is provided for the westbound auxiliary left-turn lane to accommodate the projected 95th percentile queues under 2029 future total conditions.

Hurontario Street & Hillcrest Avenue/Kirwin Avenue

At the intersection of Hurontario Street & Hillcrest Avenue/Kirwin Avenue, queuing issues are consistent with future background conditions. The eastbound and northbound left-turn movements are continued to be expected to be mitigated by the advanced and protected left-turn phases.

As outlined in **Section 3.7.1**, it is recommended that pavement marking revisions be implemented to maximize the provided storage for the southbound left-turn movement and mitigate potential queueing impacts. Regardless, the queueing concerns are expected to be mitigated by the protected left-turn phase.

C.F. Crozier & Associates Inc. Project No. 2378-6557

Consistent with future background conditions, the westbound left-turn queues are expected to be mitigated by the wide median and provided taper which will also for additional vehicles to queue beyond the storage length.

Dundas Street East & Kirwin Avenue/Camilla Road

The queueing concerns for the southbound left-turn movement at Dundas Street East & Kirwin Avenue/Camilla Road (Signal Optimized #1) are similar to future background conditions. The available storage length of 40 metres, in comparison to the maximum 95th percentile queue of up to 130 metres, is expected to be operationally adequate due to the following rationales:

- Similar to future background conditions, the advanced protected left-turn phase allows the queues to clear and avoid impacting adjacent through traffic upon commencement of the circular green phase.
- Significant distance (approximately 270 metres) to the nearest intersection along Kirwin Avenue before intersecting with Dundas Street East provides more than adequate capacity for queuing after the storage lanes splits.
- Given that Kirwin Avenue and Camilla Road are collector roads, traffic flow is not as critical when compared to arterials. Occasional queuing blockages during the peak hours would not compromise the purpose of the roadway.

The City should continue to monitor traffic volumes and queues post- Hazel McCallion LRT and post-Dundas BRT to determine if improvements for the southbound left-turn movement are required. Should improvements be required, the City can consider the following:

- Adjust the pavement markings, including on-street parking on the east, to extend the southbound left-turn lane storage. It is noted that the adjustments to on-street parking are only expected to affect a few driveways, thus not significantly impacting residents in the area.
- Adjust the signal timing plan (Signal Optimized #2) for the weekday a.m. peak period to increase the allotted green time for the protected southbound left-turn and/or minor approach movements.

5.3 Signal Warrant Assessment (UPDATED)

The signal warrant assessment was conducted at each of the unsignalized study intersections, including at the proposed site accesses off John Street.

The analysis was conducted based on Chapter 4 of the Ontario Traffic Manual (OTM) Book 12: Traffic Signals (Ontario Ministry of Transportation, March 2012). As only peak hour volumes were available, Justification 7: Projected Volumes was selected as the most appropriate warrants to assess the unsignalized study intersections.

The average hour volume was determined using the following formula from OTM Book 12:

AHV = (amPHV + pmPHV) / 4

Where:

AHV = average hour volume amPHV = a.m. peak hour volume

5.5 Future Total Recommendations Summary

Table 31 outlines the recommended future total improvements. These improvements should be implemented in addition to the future background warranted improvements outlined in **Table 19**.

Table 31: Recommended Future Total Improvements

Intersection	Improvement	Responsibility
Hurontario Street & John Street/Cooksville GO	Consider updating the Hazel McCallion LRT design drawings and revise the planned pavement markings to maximize the southbound left-turn lane storage length.	City/Developer
	Consider providing westbound left-turn lane storage length of at least 70 metres.	
Dundas Street East & Kirwin Avenue/Camilla Road	Continue to monitor traffic volumes post- Hazel McCallion LRT and post-Dundas BRT to determine improvements are required, including: • Adjust pavement markings, including the start of on-street parking on the east side, to extend the southbound left-turn lane storage. • Adjust the signal timing plans (Signal Optimized #2) for the weekday a.m. peak period to increase the green time for the southbound left-turn and/or minor approach movements,	City
John Street & Little John Lane	Implement AWSC.	Developer

6.0 Site Circulation Review

The proposed Site Plan was reviewed from a circulation perspective. The section herein reviews both the vehicle maneuverability and pedestrian circulation.

6.1 Vehicle Maneuverability

This section considers the internal vehicle maneuverability of the Subject Site to confirm vehicles can safely operate without conflicts or constraints. Vehicle Turning Diagrams were prepared using AutoTURN software.

The following design vehicles are expected to operate on site and are reviewed herein:

- Region of Peel Typical Waste Collection Vehicle
- Region of Peel Typical Fire Truck
- Medium Single Unit (MSU) Truck (Delivery Trucks)
- TAC p-car

Appendix M includes the Vehicle Turning Diagrams.

- TDM Information Package for New Tenants
- Wayfinding Signage
- Flex Workspace Amenity Spaces
- Pick-up/Drop-off Area(s)
- Subsidized Transit Passes
- Real-Time Transit Information Screens
- Secure & Excess Bicycle Parking Spaces
- Bicycle Repair Station
- Reduced Parking Supply
- Unbundled Parking
- Carshare Spaces

11.1 Existing Transit and Active Transportation Opportunities

There are existing TDM opportunities in the study area to encourage the use of non-auto modes of transportation and reduce SOV trips.

As the surrounding area consists of urban commercial land uses, there are many walkable destinations from the subject property such as parks, commercial and retail businesses, fast-food and sit-down restaurants, many of which are located along Hurontario Street and Dundas Street.

As outlined in **Section 2.2**, there are existing transit services in the study area to provide connectivity to the wider GTHA. Several transit routes are available along Hurontario Street and Dundas Street. Specifically, for the Subject Property, a bus stop is located at Hurontario Street and John Street and/or at Dundas Street and Hurontario Street.

Furthermore, Cooksville GO is a short walk away from the Subject Property (approximately 8 minutes). Thus, daily work commute and weekend trips within and outside of the City can be easily conducted by high capacity, frequent rail services.

The transit availability and options within a short distance from the Subject Property will encourage transit use, and potentially lead to a reduction in SOV trips and parking demands.

11.2 Future Transit and Active Transportation Opportunities

As outlined above, there are significant improvements to the transportation network planned within the study road network. Specifically, the following improvements have been proposed within the study area which are geared towards reducing automobile dependency and maximizing sustainable mode share:

- Hazel McCallion LRT
- Dundas BRT
- Hurontario Street and Dundas Street Cycle Tracks

It is noted that the Dundas BRT and Dundas Street Cycle Tracks is assumed to be built out beyond the 2029 horizon year. Regardless, these improvements are expected to further improve the sustainable mode share in the long term.

11.3 Site Specific TDM Recommendations

There are several opportunities for the development to promote TDM measures at the Site Plan level in support of reduced automobile use. **Table 38** outlines the recommendations which are expected to contribute to reduced automobile use and increased sustainable mode share.

C.F. Crozier & Associates Inc. Project No. 2378-6557

Table 38: Site Specific TDM Recommendations

Recommended/Provided TDM Measure	Implementation Summary
	Upon and prior to occupancy, a TDM information package should be provided to new and prospective residents and owners. Promotional material should also be readily available (and continuously updated) in the building's lobby to increase awareness of available alternate travel modes and reduce the barriers to adopting more sustainable travel behaviour. Such marketing allows prospective tenants to be aware of sustainable travel options, as well as updates in the transit and cycling infrastructures improvements of the area.
TDM Information Package for New Tenants	 TDM Information Package can comprise of: Active Transportation Network Maps Transit Maps and Schedules SmartTripsON Car Rental and Carshare Locations
	Neighbourhood commercial, retail, and institutional facilities should also be included in the marketing package to promote local businesses and to promote a walkable mixed-use community.
	Information on the future transit projects could be provided to prospective buyers to make them aware of pending mass transit opportunities (such as the Hazel McCallion LRT, which can encourage measures such as reduced vehicle ownership and SOV use.
Wayfinding Signage	Multi-modal wayfinding signage is recommended throughout the Subject Site. Individuals on-site will be provided directions to transportation services, infrastructure, and key destinations, such as transit stops, bicycle parking and pick-up/drop-off areas, and adjacent commercial facilities.
Flex Workspace Amenity Spaces	A flex workspace (coworking space) is recommended as part of the proposed amenities to encourage remote work. In providing a flex workspace, tenants have access to additional workspace and office-related amenities provided, encouraging residents to work remotely, and eliminating the need to commute during peak hours.

Recommended/Provided TDM Measure	Implementation Summary
	A PUDO/loading zone as well as two lay-by parking areas are proposed within the Subject Development.
Pick-up/Drop-off (PUDO) Areas	It is recommended that these lay-by parking areas be designated as short-term parking or a pick-up/drop-off area to support deliveries, and ride share and taxi services that typically would only require stopping or parking for a short time.
	The PUDO/loading zone can be booked by residential and retail tenants, when needed for loading, and will operate similarly to the lay-by parking areas at all other times.
Subsidized Transit Pass	Subsidized transit passes should be provided to new tenants at occupancy to encourage transit use as resident's primary mode of transportation. The subsidized transit passes will be provided for two (2) years and the details will be determined at a later date through subsequent discussions.
	Real-time transit information screens are recommended in the lobby or via wall mounted screens. This provides residents information about transit schedules and real time service delays, increasing reliability for residents to use transit as their primary mode of travel.
Real-Time Transit Information Screens	Residents will also be encouraged to download the Transit app. The Transit app provides users with trip planning and real-time transit information including real time passenger volume counts on buses. The app also allows buses to be tracked along its route and allows for live arrival countdowns that help minimize wait times and notify users if an approaching bus is delayed, and if it is not busy to very busy.
	Overall, this measure is expected to decrease vehicle dependency and increase transit reliability and perception for tenants to use transit as a primary mode of travel.

Recommended/Provided TDM Measure	Implementation Summary
Secure & Excess Bicycle Parking Spaces	Safe and secure bicycle parking is proposed for the development. Access to safe and secure bicycle parking will increase confidence and reliability for prospective cyclists to cycle as their primary mode of transportation. In addition, nine (9) excess bicycle parking spaces are provided for residents, further encouraging residents to cycle. The provision of cycling maps, short term bicycle
	parking spaces, and secure long-term spaces encourages bicycle use and provides residents and visitors convenient and safe storage for frequent bicycle use.
Bicycle Repair Station	A small, compact bicycle repair station with a toolkit and pump are also recommended. These stations can be provided near the resident or visitor bicycle parking spaces in order to promote cycling use. These stations also increase confidence and reliability for prospective cyclists to cycle as their primary mode of transportation as cyclists will be able to perform preventative and emergency maintenance on their bike
Reduced Parking Supply	As the proposed resident parking rate is 0.61 space per unit, inherently a parking space is not available for every unit. The proposal therefore allows for a maximum vehicle ownership rate of 0.61 vehicles per unit associated with the residential use.
	This measure reduces the number of residents with parking spaces on-site and consequently is expected to reduce the number of automobile trips to/from the Subject Development.

Recommended/Provided TDM Measure	Implementation Summary
	Parking will be purchased by residents on a first-come first-serve basis in addition to unit costs, as opposed to automatically including a parking space with the unit costs. Prospective tenants should be advised in advance
Unbundled Parking	of the parking availability and cost of leasing a parking space, if available. Potential tenants will also be warned of the limited on-street parking in the area. As such, the residential parking demand can be controlled. By advising the parking availability to potential tenants prior to the rental/purchase agreements, the ambiguity of the parking demand and parking availability can be managed.
	This strategy allows for prospective tenants to choose whether they wish to incur the added cost of purchasing a parking space, particularly if parking is not desired due to vehicle ownership choices and access to sustainable modes such as the nearby Cooksville GO station and future Hazel McCallion LRT stop.
Carshare Spaces	The development is recommended to propose a carshare priority parking zone. The developer should explore the opportunity of providing two (2) carshare spaces with a provider. As the area develops and additional residential demand occurs, carshare spaces should be protected to incentivize use and reduced SOV trips.
	The ultimate location of the carshare spaces will be confirmed as applications advance.

The Subject Development has a 5 Star rating, the highest rating, per the City's Transportation Demand Management and Pedestrian Circulation Checklist. As such, the recommended TDM measures support the Proposed Development's transit oriented context. **Appendix Q** includes the Transportation Demand Management and Pedestrian Circulation Checklist.

12.0 Community Impacts

The report herein has evaluated and addressed the traffic related community impacts as a result of the Subject Development. **Section 5.1** summarizes the transportation operational impact of the Proposed Development as well as recommended improvements.

As no formal public consultation session has been held regarding the Proposed Development, community concerns have not been provided at this time. Should a public consultation session be conducted in the future, the specific community concerns can be addressed in a subsequent submission.

APPENDIX E:

Level of Service Definitions

Level of Service Definitions

Two-Way Stop Controlled Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Large and frequent gaps in traffic on the main roadway. Queuing on the minor street is rare.
В	> 10 and ≤ 15	VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.
С	> 15 and ≤ 25	GOOD. Fewer gaps exist in traffic on the main roadway. Delay on minor approach becomes more noticeable.
D	> 25 and ≤ 35	FAIR. Infrequent and shorter gaps in traffic on the main roadway. Queue lengths develop on the minor street.
Е	> 35 and ≤ 50	POOR. Very infrequent gaps in traffic on the main roadway. Queue lengths become noticeable.
F	> 50	UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with significant queue lengths on the minor street.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

Signalized Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Extremely favourable progression with most vehicles arriving during the green phase. Most vehicles do not stop and short cycle lengths may contribute to low delay.
В	> 10 and ≤ 20	VERY GOOD. Very good progression and/or short cycle lengths with slightly more vehicles stopping than LOS "A" causing slightly higher levels of average delay.
С	> 20 and ≤ 35	GOOD. Fair progression and longer cycle lengths lead to a greater number of vehicles stopping than LOS "B".
D	> 35 and ≤ 55	FAIR. Congestion becomes noticeable with higher average delays resulting from a combination of long cycle lengths, high volumeto-capacity ratios and unfavourable progression.
E	> 55 and ≤ 80	POOR. Lengthy delays values are indicative of poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures are common with individual movement failures also common.
F	> 80	UNSATISFACTORY. Indicative of oversaturated conditions with vehicular demand greater than the capacity of the intersection.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

APPENDIX F:

Detailed Capacity Analysis

1: Hurontario Street & Cooksville GO/John Street

	•	→	1	←	1	†	1	ļ	4
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	*	1	×	†	7	↑ ↑	7	^	7
Traffic Volume (vph)	328	30	7	19	15	1576	97	1305	296
Future Volume (vph)	328	30	7	19	15	1576	97	1305	296
Lane Group Flow (vph)	357	206	8	194	16	1730	105	1418	322
Turn Type	Perm	NA	Perm	NA	Prot	NA	Prot	NA	Perm
Protected Phases		8		4	1	6	5	2	
Permitted Phases	8		4			6		2	2
Detector Phase	8	8	4	4	1	6	5	2	2
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0
Minimum Split (s)	46.0	46.0	46.0	46.0	9.5	38.0	9.5	38.0	38.0
Total Split (s)	64.0	64.0	64.0	64.0	9.5	81.0	15.0	86.5	86.5
Total Split (%)	40.0%	40.0%	40.0%	40.0%	5.9%	50.6%	9.4%	54.1%	54.1%
Yellow Time (s)	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0	1.0	3.0	1.0	3.0	3.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)	7.0	7.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0
Lead/Lag					Lead	Lag	Lead	Lag	Lag
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	C-Max
v/c Ratio	1.01	0.36	0.02	0.20	0.28	1.17	0.92	0.90	0.46
Control Delay	99.5	23.4	34.0	17.6	78.5	120.5	136.5	42.2	14.7
Queue Delay	0.0	40.7	0.0	0.0	0.0	1.5	0.0	48.9	0.0
Total Delay	99.5	64.1	34.0	17.6	78.5	122.0	136.5	91.1	14.7
Queue Length 50th (m)	~114.9	27.2	1.7	10.6	4.6	~348.7	33.8	195.4	30.6
Queue Length 95th (m)	#182.1	49.6	5.7	20.2	m5.9 r	n#362.1	#72.2	#278.5	62.2
Internal Link Dist (m)		191.8		112.9		109.3		252.0	
Turn Bay Length (m)			25.0		37.5		48.5		48.5
Base Capacity (vph)	355	565	330	972	57	1478	114	1579	705
Starvation Cap Reductn	0	0	0	0	0	449	0	0	0
Spillback Cap Reductn	0	364	0	0	0	0	0	812	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.01	1.02	0.02	0.20	0.28	1.68	0.92	1.85	0.46

Intersection Summary

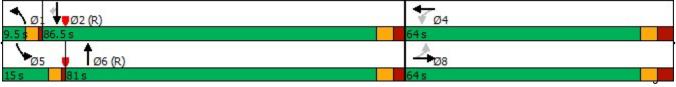
Cycle Length: 160

Actuated Cycle Length: 160

Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Hurontario Street & Cooksville GO/John Street

	٠	→	•	•	•	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		*	†		*	† 1>		*	^	7
Traffic Volume (vph)	328	30	159	7	19	159	15	1576	16	97	1305	296
Future Volume (vph)	328	30	159	7	19	159	15	1576	16	97	1305	296
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	7.0	7.0		7.0	7.0		3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	0.94		1.00	1.00		1.00	1.00	0.85
Flpb, ped/bikes	0.95	1.00		0.98	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.87		1.00	0.87		1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1504	1429		1578	2552		1409	3151		1530	2933	1187
Flt Permitted	0.63	1.00		0.56	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	997	1429		929	2552		1409	3151		1530	2933	1187
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	357	33	173	8	21	173	16	1713	17	105	1418	322
RTOR Reduction (vph)	0	56	0	0	64	0	0	1	0	0	0	69
Lane Group Flow (vph)	357	150	0	8	130	0	16	1729	0	105	1418	253
Confl. Peds. (#/hr)	47		20	20		47	90		46	46		90
Confl. Bikes (#/hr)						1			1			2
Heavy Vehicles (%)	2%	0%	3%	0%	0%	5%	14%	4%	0%	5%	12%	3%
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4				6			2	2
Actuated Green, G (s)	56.0	56.0		56.0	56.0		2.2	74.0		11.0	82.8	82.8
Effective Green, g (s)	57.0	57.0		57.0	57.0		3.2	75.0		12.0	83.8	83.8
Actuated g/C Ratio	0.36	0.36		0.36	0.36		0.02	0.47		0.08	0.52	0.52
Clearance Time (s)	8.0	8.0		8.0	8.0		4.0	7.0		4.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	355	509		330	909		28	1477		114	1536	621
v/s Ratio Prot		0.10			0.05		0.01	c0.55		c0.07	0.48	
v/s Ratio Perm	c0.36			0.01			_					0.21
v/c Ratio	1.01	0.29		0.02	0.14		0.57	1.17		0.92	0.92	0.41
Uniform Delay, d1	51.5	37.0		33.4	34.9		77.7	42.5		73.5	35.1	23.1
Progression Factor	1.00	1.00		1.00	1.00		0.98	1.07		1.00	1.00	1.00
Incremental Delay, d2	49.2	0.3		0.0	0.1		10.7	80.1		59.8	10.7	2.0
Delay (s)	100.7	37.4		33.5	35.0		86.9	125.6		133.4	45.9	25.1
Level of Service	F	D		С	D		F	F		F	D	С
Approach Delay (s)		77.5			34.9			125.2			47.2	
Approach LOS		E			С			F			D	
Intersection Summary												
HCM 2000 Control Delay			81.8	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		1.08									
Actuated Cycle Length (s)			160.0		um of lost				16.0			
Intersection Capacity Utiliza	tion		122.3%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	1	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	↑ ↑	7	↑ ↑	7	†	7	↑ ↑	
Traffic Volume (vph)	343	189	165	182	109	1157	106	1481	
Future Volume (vph)	343	189	165	182	109	1157	106	1481	
Lane Group Flow (vph)	373	466	179	349	118	1282	115	1823	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	3	8		4	1	6	5	2	
Permitted Phases	8		4			6		2	
Detector Phase	3	8	4	4	1	6	5	2	
Switch Phase									
Minimum Initial (s)	5.0	8.0	8.0	8.0	7.0	8.0	5.0	8.0	
Minimum Split (s)	9.5	56.0	56.0	56.0	11.0	51.5	9.5	51.5	
Total Split (s)	11.0	67.0	56.0	56.0	13.0	76.4	16.6	80.0	
Total Split (%)	6.9%	41.9%	35.0%	35.0%	8.1%	47.8%	10.4%	50.0%	
Yellow Time (s)	3.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	4.0	4.0	4.0	1.0	3.5	1.0	3.5	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	2.0	7.0	7.0	7.0	3.0	6.5	3.0	6.5	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
v/c Ratio	1.19	0.45	0.91	0.41	0.82	0.89	0.82	1.30	
Control Delay	154.0	29.7	100.6	30.3	106.7	49.0	85.5	186.6	
Queue Delay	3.1	0.0	0.0	0.0	0.0	49.9	0.0	1.4	
Total Delay	157.1	29.7	100.6	30.3	106.7	98.9	85.5	188.0	
Queue Length 50th (m)	~110.9	41.8	53.5	29.2	~42.6	206.1	37.6	~384.1	
Queue Length 95th (m)	#187.2	56.8	#94.6	43.3	#90.5	#255.5	m#50.0	#425.0	
Internal Link Dist (m)		206.4		133.2		400.9		109.3	
Turn Bay Length (m)			50.0		53.0		36.0		
Base Capacity (vph)	313	1122	222	955	144	1434	142	1403	
Starvation Cap Reductn	0	0	0	0	0	0	0	399	
Spillback Cap Reductn	68	0	0	21	0	792	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.52	0.42	0.81	0.37	0.82	2.00	0.81	1.82	

Intersection Summary

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 99 (62%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	←	•	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	† ‡		7	†		*	† 1>	
Traffic Volume (vph)	343	189	240	165	182	139	109	1157	22	106	1481	196
Future Volume (vph)	343	189	240	165	182	139	109	1157	22	106	1481	196
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	2.0	7.0		7.0	7.0		3.0	6.5		3.0	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.97		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		0.98	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.92		1.00	0.94		1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1553	2777		1428	2834		1460	3061		1575	3043	
Flt Permitted	0.44	1.00		0.48	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	725	2777		728	2834		1460	3061		1575	3043	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	373	205	261	179	198	151	118	1258	24	115	1610	213
RTOR Reduction (vph)	0	86	0	0	92	0	0	1	0	0	6	0
Lane Group Flow (vph)	373	380	0	179	257	0	118	1281	0	115	1817	0
Confl. Peds. (#/hr)	18		42	42		18	96		4	4		96
Heavy Vehicles (%)	3%	4%	6%	10%	7%	7%	10%	7%	5%	2%	5%	2%
Turn Type	pm+pt	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases	3	8			4		1	6		5	2	
Permitted Phases	8			4				6			2	
Actuated Green, G (s)	53.2	53.2		42.2	42.2		14.8	74.0		13.3	72.5	
Effective Green, g (s)	54.2	54.2		43.2	43.2		15.8	75.0		14.3	73.5	
Actuated g/C Ratio	0.34	0.34		0.27	0.27		0.10	0.47		0.09	0.46	
Clearance Time (s)	3.0	8.0		8.0	8.0		4.0	7.5		4.0	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	292	940		196	765		144	1434		140	1397	
v/s Ratio Prot	c0.07	0.14			0.09		c0.08	0.42		0.07	c0.60	
v/s Ratio Perm	0.36			c0.25				• • • • • • • • • • • • • • • • • • • •				
v/c Ratio	1.28	0.40		0.91	0.34		0.82	0.89		0.82	1.30	
Uniform Delay, d1	52.2	40.5		56.6	46.9		70.7	38.9		71.6	43.2	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		0.77	1.47	
Incremental Delay, d2	148.7	0.3		40.6	0.3		29.1	8.9		23.3	139.0	
Delay (s)	200.9	40.8		97.2	47.1		99.8	47.7		78.4	202.7	
Level of Service	F	D		F	D		F	D		Е	F	
Approach Delay (s)		112.0			64.1			52.1			195.3	
Approach LOS		F			Е			D			F	
Intersection Summary												
HCM 2000 Control Delay			123.1	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		1.12									
Actuated Cycle Length (s)			160.0	Sı	um of lost	time (s)			18.5			
Intersection Capacity Utiliza	tion		124.6%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

7: Camilla Road/Kirwin Avenue & Dundas Street East

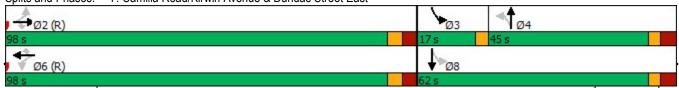
	۶	→	*	•	•	•	1	†	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	^	7	*	^	7	7	7	*	7	
Traffic Volume (vph)	19	1088	59	56	637	137	60	91	255	97	
Future Volume (vph)	19	1088	59	56	637	137	60	91	255	97	
Lane Group Flow (vph)	21	1183	64	61	692	149	65	179	277	135	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		2			6			4	3	8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	3	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	44.0	44.0	44.0	44.0	44.0	44.0	43.0	43.0	9.5	43.0	
Total Split (s)	98.0	98.0	98.0	98.0	98.0	98.0	45.0	45.0	17.0	62.0	
Total Split (%)	61.3%	61.3%	61.3%	61.3%	61.3%	61.3%	28.1%	28.1%	10.6%	38.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	0.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	
Lead/Lag							Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes		
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.06	0.55	0.07	0.28	0.33	0.16	0.43	0.75	1.11	0.33	
Control Delay	10.8	15.3	4.1	15.9	11.8	1.9	69.7	75.2	138.8	46.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	10.8	15.3	4.1	15.9	11.8	1.9	69.7	75.2	138.8	46.5	
Queue Length 50th (m)	2.1	95.8	1.6	7.2	45.1	0.0	19.2	48.3	~89.3	32.8	
Queue Length 95th (m)	6.4	133.5	7.8	19.0	65.5	8.6	33.4	71.4	#139.1	49.3	
Internal Link Dist (m)		302.1			262.5			162.3		279.0	
Turn Bay Length (m)	15.0		30.0	30.0		65.0	36.0		40.0		
Base Capacity (vph)	369	2140	914	219	2099	936	263	396	249	574	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.06	0.55	0.07	0.28	0.33	0.16	0.25	0.45	1.11	0.24	

Intersection Summary

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 38 (24%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 100


Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

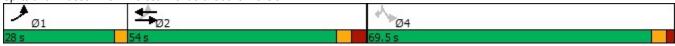
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Camilla Road/Kirwin Avenue & Dundas Street East

	•	→	•	•	←	•	4	†	~	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	^	7	7	1→		*	1₃	
Traffic Volume (vph)	19	1088	59	56	637	137	60	91	74	255	97	28
Future Volume (vph)	19	1088	59	56	637	137	60	91	74	255	97	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		2.0	6.0	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93		1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1428	3159	1327	1604	3099	1312	1534	1551		1558	1622	
Flt Permitted	0.36	1.00	1.00	0.19	1.00	1.00	0.67	1.00		0.35	1.00	
Satd. Flow (perm)	546	3159	1327	324	3099	1312	1083	1551		577	1622	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	1183	64	61	692	149	65	99	80	277	105	30
RTOR Reduction (vph)	0	0	15	0	0	48	0	21	0	0	8	0
Lane Group Flow (vph)	21	1183	49	61	692	101	65	158	0	277	127	0
Confl. Peds. (#/hr)	6		5	5		6	15		3	3		15
Heavy Vehicles (%)	12%	4%	5%	0%	6%	6%	3%	1%	6%	3%	3%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		2			6			4		3	8	
Permitted Phases	2		2	6		6	4			8		
Actuated Green, G (s)	107.4	107.4	107.4	107.4	107.4	107.4	21.6	21.6		38.6	38.6	
Effective Green, g (s)	108.4	108.4	108.4	108.4	108.4	108.4	22.6	22.6		39.6	39.6	
Actuated g/C Ratio	0.68	0.68	0.68	0.68	0.68	0.68	0.14	0.14		0.25	0.25	
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	369	2140	899	219	2099	888	152	219		234	401	
v/s Ratio Prot		c0.37			0.22			c0.10		c0.11	0.08	
v/s Ratio Perm	0.04		0.04	0.19		0.08	0.06			0.18		
v/c Ratio	0.06	0.55	0.05	0.28	0.33	0.11	0.43	0.72		1.18	0.32	
Uniform Delay, d1	8.7	13.3	8.6	10.3	10.7	9.0	62.8	65.7		57.4	49.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.3	1.0	0.1	3.1	0.4	0.3	1.9	11.2		117.6	0.5	
Delay (s)	8.9	14.3	8.8	13.4	11.1	9.3	64.7	76.9		175.0	49.6	
Level of Service	Α	В	Α	В	В	Α	Ε	Е		F	D	
Approach Delay (s)		14.0			11.0			73.7			133.9	
Approach LOS		В			В			Е			F	
Intersection Summary												
HCM 2000 Control Delay			35.7	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.64									
Actuated Cycle Length (s)	,		160.0	S	um of los	t time (s)			14.0			
Intersection Capacity Utilizat	tion		86.5%			of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	←	-	1
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		414	↑ ↑	ች	7
Traffic Volume (vph)	257	559	314	17	217
Future Volume (vph)	257	559	314	17	217
Lane Group Flow (vph)	0	887	361	18	236
Turn Type	pm+pt	NA	NA	Perm	Perm
Protected Phases	1	2	2		
Permitted Phases	2			4	4
Detector Phase	1	2	2	4	4
Switch Phase					
Minimum Initial (s)	7.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.5	32.0	32.0	34.5	34.5
Total Split (s)	28.0	54.0	54.0	69.5	69.5
Total Split (%)	18.5%	35.6%	35.6%	45.9%	45.9%
Yellow Time (s)	3.0	3.5	3.5	3.5	3.5
All-Red Time (s)	0.0	3.5	3.5	2.0	2.0
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		6.0	6.0	4.5	4.5
Lead/Lag	Lead	Lag	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes		
Recall Mode	None	Max	Max	None	None
v/c Ratio		0.35	0.16	0.09	0.54
Control Delay		4.9	3.9	26.3	9.3
Queue Delay		0.0	0.0	0.0	0.0
Total Delay		4.9	3.9	26.3	9.3
Queue Length 50th (m)		14.1	6.9	2.0	0.0
Queue Length 95th (m)		20.0	11.1	7.1	17.0
Internal Link Dist (m)		132.4	206.4	85.2	
Turn Bay Length (m)					
Base Capacity (vph)		2520	2278	1200	1451
Starvation Cap Reductn		0	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.35	0.16	0.01	0.16
Intersection Summary					


Intersection Summary

Cycle Length: 151.5 Actuated Cycle Length: 69.9

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Splits and Phases: 9: Hillcrest Avenue & Cooksville GO

Fit Protected 0.98 1.00 0.95 1.00 Satd. Flow (prot) 4862 3301 1264 1500 Fit Permitted 0.74 1.00 0.95 1.00 Satd. Flow (perm) 3666 3301 1264 1500 Feak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 279 608 341 20 18 236 Flow (vph) 0 0 1 0 0 199 Cane Group Flow (vph) 0 887 360 0 18 37 Confl. Peds. (#hr) 30 30 23 7 Confl. Bikes (#hr) 1 1 Heavy Vehicles (%) 5% 6% 10% 0% 42% 7% Trum Type pm+pt NA NA Perm Perm Perm Perm Protected Phases 1 2 2 Permitted Phases 2 4 4 4 A A C C C A Canada Group Flow (vph) 2533 2280 200 238 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Group Flow (ph) 2533 2280 200 238 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Cane Group Flow (ph) 9 Co.24 Vok Ratio Perm C C.24 0.01 c0.02 Vok Ratio Perm C C.24 0.01 c0.02 Vok Ratio Demands 1 0.01 co.02 Vok Ratio Demands 1 0.01 co.02 Co.02 Vok Ratio Demands 1 0.01 co.02 Co.02 Co.02 Co.02 Co.02 Co.03 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A A C C C Approach LOS A A C C Intersection Summary HCM 2000 Control Delay The Service B Analysis Period (min) 15		•	-	•		-	4		
Lane Configurations Traffic Volume (vph) 257 559 314 18 17 217 Future Volume (vph) 257 559 314 18 17 217 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	Movement	FRI	FRT	WRT	WRR	SBI	SBR		
Traffic Volume (vph)					WER				
Future Volume (vph) 257 559 314 18 17 217 Ideal Flow (vphp) 1900 1900 1900 1900 1900 1900 1900 190		257			18				
Ideal Flow (yphpl)	\ 1 <i>/</i>								
Total Lost time (s) 6.0 6.0 4.5 4.5 Lane UII, Factor 0.91 0.95 1.00 1.00 Firt 1.00 1.00 0.98 1.00 0.85 Fipb, ped/bikes 1.00 1.00 0.98 1.00 0.85 Fith potentials 1.00 0.99 1.00 0.85 Fith crotected 0.98 1.00 0.95 1.00 Satd. Flow (prot) 4862 3301 1264 1500 Fit Premitted 0.74 1.00 0.95 1.00 Satd. Flow (perm) 3666 3301 1264 1500 Fit Permitted 0.74 1.00 0.95 1.00 Satd. Flow (perm) 3666 3301 1264 1500 Fit Permitted 0.74 1.00 0.95 1.00 Satd. Flow (perm) 3666 3301 1264 1500 Fit Permitted 0.74 1.00 0.95 1.00 Satd. Flow (perm) 3666 3301 1264 1500 Fack-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 279 608 341 20 18 236 RTOR Reduction (vph) 0 887 360 0 18 37 Confl. Peds. (#/hr) 30 30 23 7 Confl. Peds. (#/hr) 30 30 23 7 Confl. Pikes (#/hr) 1 1 Heavy Vehicles (%) 5% 6% 10% 0% 42% 7% Turn Type pm+pt NA NA Perm Perm Perm Permitted Phases 2 2 Adtuated Green, G (s) 47.3 47.3 10.1 10.1 Effective Green, g (s) 48.3 48.3 11.1 11.1 Actuated Green, G (s) 47.3 47.3 10.1 10.1 Effective Green, g (s) 48.3 48.3 11.1 11.1 Actuated green, G (s) 47.0 7.0 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grop Cap (vph) 2533 2280 200 238 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grop Cap (vph) 2533 2280 200 238 Vehicle Extension Factor 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A A C C C Approach LOS C C C C Approach LOS C C C C Approach LOS C C C C C C C C C C C C C C C C C C C	· · · ·								
Lane Util. Factor		1000			1000				
Frpb, ped/bikes									
Fipb, ped/bikes									
Fit Protected									
Fit Protected 0.98 1.00 0.95 1.00 Satd. Flow (prot) 4862 3301 1264 1500 Fit Permitted 0.74 1.00 0.95 1.00 Satd. Flow (perm) 3666 3301 1264 1500 Fit Permitted 1.00 0.95 1.00 Satd. Flow (perm) 3666 3301 1264 1500 Feak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Frt								
Satd. Flow (prot) 4862 3301 1264 1500									
Fit Permitted 0.74 1.00 0.95 1.00 Satd. Flow (perm) 3666 3301 1264 1500 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 279 608 341 20 18 236 RTOR Reduction (vph) 0 0 1 0 0 199 Lane Group Flow (vph) 0 887 360 0 18 37 Confl. Peds, (#/hr) 30 30 23 7 Confl. Bikes (#/hr) 1 1 Heavy Vehicles (%) 5% 6% 10% 0% 42% 7% Turn Type pm+pt NA NA Perm Perm Protected Phases 1 2 2 Permitted Phases 2 4 4 4 Actuated Green, G (s) 47.3 47.3 10.1 10.1 Effective Green, g (s) 48.3 48.3 11.1 11.1 Actuated g/C Ratio 0.69 0.69 0.16 0.16 Clearance Time (s) 7.0 7.0 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Vehicle Extension (s) 2533 2280 200 238 V/s Ratio Prot 0.11 V/s Ratio Perm 0.24 0.01 c0.02 V/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 Approach LoS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A Analysis Period (min) 15									
Satd. Flow (perm) 3666 3301 1264 1500 Peak-hour factor, PHF 0.92 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02									
Peak-hour factor, PHF 0.92 0.02 0.02 0.00									
Adj. Flow (vph)		0 92			0.92				
RTOR Reduction (vph)	,								
Lane Group Flow (vph) 0 887 360 0 18 37 Confl. Peds. (#/hr) 30 30 23 7 Confl. Bikes (#/hr) 1 Heavy Vehicles (%) 5% 6% 10% 0% 42% 7% Turn Type pm+pt NA NA Perm Perm Protected Phases 1 2 2 Permitted Phases 2 4 4 4 Actuated Green, G (s) 47.3 47.3 10.1 10.1 Effective Green, g (s) 48.3 48.3 11.1 11.1 Actuated g/C Ratio 0.69 0.69 0.16 0.16 Clearance Time (s) 7.0 7.0 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2533 2280 200 238 v/s Ratio Prot 0.11 v/s Ratio Perm c0.24 0.01 c0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A A C C Approach Delay (s) A.5 3.9 25.6 Approach Delay (s) A.5 3.9 25.6 Approach Delay (s) A.5 3.9 25.6 Approach Delay (s) A.5 3.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15									
Confl. Peds. (#/hr) 30 30 23 7									
Confl. Bikes (#/hr)			331	000					
Heavy Vehicles (%)	, ,	00				20			
Turn Type	, ,	5%	6%	10%	· · · · · · · · · · · · · · · · · · ·	42%	7%		
Protected Phases 1 2 2 Permitted Phases 2 4 4 4 Actuated Green, G (s) 47.3 47.3 10.1 10.1 Effective Green, g (s) 48.3 48.3 11.1 11.1 Actuated g/C Ratio 0.69 0.69 0.16 0.16 Clearance Time (s) 7.0 7.0 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2533 2280 200 238 v/s Ratio Prot v/s Ratio Perm c0.24 0.01 c0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A A C C C Approach Delay (s) 4.5 3.9 25.6 Approach LOS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15					• • • • • • • • • • • • • • • • • • • •				
Permitted Phases 2 Actuated Green, G (s) 47.3 47.3 10.1 10.1 Effective Green, g (s) 48.3 48.3 11.1 11.1 Actuated g/C Ratio 0.69 0.69 0.16 0.16 Clearance Time (s) 7.0 7.0 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2533 2280 200 238 V/s Ratio Prot 0.11 V/s Ratio Perm c0.24 0.01 c0.02 V/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio AAL Adults of Service B Analysis Period (min) 15						1 Cilli	1 01111		
Actuated Green, G (s)						4	4		
Effective Green, g (s) 48.3 48.3 11.1 11.1 Actuated g/C Ratio 0.69 0.69 0.16 0.16 Clearance Time (s) 7.0 7.0 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2533 2280 200 238 v/s Ratio Prot 0.11 0.11 0.02 v/s Ratio Perm c0.24 0.01 c0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach LOS A A C C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 0.34 <td< td=""><td></td><td></td><td>47.3</td><td>47.3</td><td></td><td></td><td></td><td></td><td></td></td<>			47.3	47.3					
Actuated g/C Ratio 0.69 0.69 0.16 0.16 Clearance Time (s) 7.0 7.0 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2533 2280 200 238 v/s Ratio Prot 0.11 v/s Ratio Perm c0.24 0.01 c0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A A C C C Approach Delay (s) 4.5 3.9 25.6 Approach LOS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15									
Clearance Time (s) 7.0 7.0 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2533 2280 200 238 v/s Ratio Prot 0.11 0.01 0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 Approach LOS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis									
Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2533 2280 200 238 v/s Ratio Prot 0.11 0.01 c0.02 v/s Ratio Perm c0.24 0.01 c0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach LOS A A C C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 A C C Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level o									
Lane Grp Cap (vph) 2533 2280 200 238 v/s Ratio Prot 0.11 0.01 c0.02 v/s Ratio Perm c0.24 0.01 c0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach LOS A A C C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 A C C Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15	. ,								
v/s Ratio Prot 0.11 v/s Ratio Perm c0.24 0.01 c0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 A Approach LOS A A C C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 A C C HCM 2000 Volume to Capacity ratio 0.34 C C C HCM 2000 Control Delay 7.9 HCM 2000 tevel of Service A HCM 2000 Volume to Capacity ratio 0.34 C C C Intersection Capacity Utilization 62.2% ICU Level of Service B <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
v/s Ratio Perm c0.24 0.01 c0.02 v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 A Approach LOS A A C C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 A C C HCM 2000 Volume to Capacity ratio 0.34 C C C Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15			2000			200	200		
v/c Ratio 0.35 0.16 0.09 0.16 Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 A Approach LOS A A C C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 A A C A HCM 2000 Volume to Capacity (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15			c0 24	0.11		0.01	c0.02		
Uniform Delay, d1 4.4 3.7 25.1 25.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 Approach LOS A A C Intersection Summary For the control Delay The control Delay The control Delay The control Delay A HCM 2000 Volume to Capacity ratio 0.34 A A C Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15				0.16					
Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.1 0.2 0.3 Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 Approach LOS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 A Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15									
Incremental Delay, d2									
Delay (s) 4.5 3.9 25.3 25.7 Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 Approach LOS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 C Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15									
Level of Service A A C C Approach Delay (s) 4.5 3.9 25.6 Approach LOS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 C Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15									
Approach Delay (s) 4.5 3.9 25.6 Approach LOS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15									
Approach LOS A A C Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15									
Intersection Summary HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15	Approach LOS								
HCM 2000 Control Delay 7.9 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.34 Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15	••								
HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) 0.34 Sum of lost time (s) 14.5 ICU Level of Service B				7 0	Щ	CM 2000	Level of San	rice	Δ
Actuated Cycle Length (s) 69.9 Sum of lost time (s) 14.5 Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15		acity ratio			110	CIVI 2000	FRACIOI OGIA	IOG	
Intersection Capacity Utilization 62.2% ICU Level of Service B Analysis Period (min) 15		•			Q ₁	ım of lost	time (e)		14 5
Analysis Period (min) 15									
		Lation			10	O LEVEL	DI OCIVICE		ט
	c Critical Lane Group			10					

	-	*	1	•	1	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1			4	**		-
Traffic Volume (veh/h)	91	53	3	132	46	3	
Future Volume (Veh/h)	91	53	3	132	46	3	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	99	58	3	143	50	3	
Pedestrians	4			2	13		
Lane Width (m)	3.7			3.7	3.7		
Walking Speed (m/s)	1.1			1.1	1.1		
Percent Blockage	0			0	1		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	137						
pX, platoon unblocked							
vC, conflicting volume			170		294	143	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			170		294	143	
tC, single (s)			4.4		6.5	6.5	
tC, 2 stage (s)							
tF (s)			2.5		3.6	3.6	
p0 queue free %			100		92	100	
cM capacity (veh/h)			1225		662	817	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	157	146	53				
Volume Left	0	3	50				
Volume Right	58	0	3				
cSH	1700	1225	669				
Volume to Capacity	0.09	0.00	0.08				
Queue Length 95th (m)	0.0	0.1	2.0				
Control Delay (s)	0.0	0.2	10.8				
Lane LOS		Α	В				
Approach Delay (s)	0.0	0.2	10.8				
Approach LOS			В				
Intersection Summary							
Average Delay			1.7				
Intersection Capacity Utiliza	ation		21.4%	IC	U Level o	f Service	
Analysis Period (min)			15				

Intersection												
Intersection Delay, s/veh	9.4											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	ĵ.		×	ĵ.			4			4	
Traffic Vol, veh/h	13	194	18	7	150	10	14	21	10	21	30	15
Future Vol, veh/h	13	194	18	7	150	10	14	21	10	21	30	15
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	39	1	6	0	6	10	0	7	10	0	4	20
Mvmt Flow	14	211	20	8	163	11	15	23	11	23	33	16
Number of Lanes	1	1	0	1	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
	WD	·	·				0.0			NID	·	

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	2	2	1	1
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	1	1	2	2
Conflicting Approach Right	NB	SB	WB	EB
Conflicting Lanes Right	1	1	2	2
HCM Control Delay	9.8	9.4	8.4	8.5
HCM LOS	Α	A	A	Α

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	
Vol Left, %	31%	100%	0%	100%	0%	32%	
Vol Thru, %	47%	0%	92%	0%	94%	45%	
Vol Right, %	22%	0%	8%	0%	6%	23%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	45	13	212	7	160	66	
LT Vol	14	13	0	7	0	21	
Through Vol	21	0	194	0	150	30	
RT Vol	10	0	18	0	10	15	
Lane Flow Rate	49	14	230	8	174	72	
Geometry Grp	2	5	5	5	5	2	
Degree of Util (X)	0.068	0.024	0.315	0.012	0.245	0.098	
Departure Headway (Hd)	4.969	6.128	4.917	5.515	5.071	4.933	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Cap	719	584	730	649	708	725	
Service Time	3.012	3.862	2.65	3.251	2.807	2.975	
HCM Lane V/C Ratio	0.068	0.024	0.315	0.012	0.246	0.099	
HCM Control Delay	8.4	9	9.9	8.3	9.5	8.5	
HCM Lane LOS	Α	Α	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0.1	1.4	0	1	0.3	

	۶	→	*	•	←	•	1	†	~	1		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1			स्			4				
Traffic Volume (veh/h)	0	15	78	9	15	0	119	0	6	0	0	0
Future Volume (Veh/h)	0	15	78	9	15	0	119	0	6	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	16	85	10	16	0	129	0	7	0	0	0
Pedestrians		2			1			11				
Lane Width (m)		3.7			3.7			3.7				
Walking Speed (m/s)		1.1			1.1			1.1				
Percent Blockage		0			0			1				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)		354										
pX, platoon unblocked												
vC, conflicting volume	16			112			108	106	70	102	148	18
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	16			112			108	106	70	102	148	18
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			85	100	99	100	100	100
cM capacity (veh/h)	1602			1475			852	771	987	860	731	1059
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total	101	26	136									
Volume Left	0	10	129									
Volume Right	85	0	7									
cSH	1700	1475	858									
Volume to Capacity	0.06	0.01	0.16									
Queue Length 95th (m)	0.0	0.2	4.3									
Control Delay (s)	0.0	2.9	10.0									
Lane LOS		A	Α									
Approach Delay (s)	0.0	2.9	10.0									
Approach LOS			Α									
Intersection Summary												
Average Delay			5.4									
Intersection Capacity Utiliza	ation		23.6%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Intersection						
Intersection Delay, s/veh	9.4					
Intersection LOS	9.4 A					
moroodion 200						
Mayamant	EDI	EDT	WOT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\	1005	104	447	¥	40
Traffic Vol, veh/h	17	225	131	117	84	16
Future Vol, veh/h	17	225	131	117	84	16
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	3	9	2	1	0
Mvmt Flow	18	245	142	127	91	17
Number of Lanes	1	1	1	1	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	2		2		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		2	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		2	
HCM Control Delay	10.4		8.6		9.2	
HCM LOS	В		Α		Α	
		FBI n1	FBI n2	WBI n1	WBL n2	SBL n1
Lane		EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Lane Vol Left, %		100%	0%	0%	0%	84%
Lane Vol Left, % Vol Thru, %		100% 0%	0% 100%	0% 100%	0% 0%	84% 0%
Lane Vol Left, % Vol Thru, % Vol Right, %		100% 0% 0%	0% 100% 0%	0% 100% 0%	0% 0% 100%	84% 0% 16%
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 100% 0% Stop	0% 100% 0% Stop	0% 0% 100% Stop	84% 0% 16% Stop
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 17	0% 100% 0% Stop 225	0% 100% 0% Stop 131	0% 0% 100% Stop 117	84% 0% 16% Stop 100
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 17 17	0% 100% 0% Stop 225	0% 100% 0% Stop 131	0% 0% 100% Stop 117 0	84% 0% 16% Stop 100 84
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 17 17	0% 100% 0% Stop 225 0 225	0% 100% 0% Stop 131 0	0% 0% 100% Stop 117 0	84% 0% 16% Stop 100 84
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 17 17 0	0% 100% 0% Stop 225 0 225	0% 100% 0% Stop 131 0 131	0% 0% 100% Stop 117 0 0	84% 0% 16% Stop 100 84 0
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 17 17 0 0	0% 100% 0% Stop 225 0 225 0 245	0% 100% 0% Stop 131 0 131 0	0% 0% 100% Stop 117 0 0 117	84% 0% 16% Stop 100 84 0 16
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 17 17 0 0	0% 100% 0% Stop 225 0 225 0 245	0% 100% 0% Stop 131 0 131 0 142	0% 0% 100% Stop 117 0 0 117 127	84% 0% 16% Stop 100 84 0 16 109
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 17 17 0 0 18 5	0% 100% 0% Stop 225 0 225 0 245 5	0% 100% 0% Stop 131 0 131 0 142 5	0% 0% 100% Stop 117 0 0 117 127 5	84% 0% 16% Stop 100 84 0 16 109 2
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		100% 0% 0% Stop 17 17 0 0 18 5 0.028 5.524	0% 100% 0% Stop 225 0 225 0 245 5 0.345 5.073	0% 100% 0% Stop 131 0 131 0 142 5 0.205 5.177	0% 0% 100% Stop 117 0 0 117 127 5 0.154 4.353	84% 0% 16% Stop 100 84 0 16 109 2 0.157 5.192
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		100% 0% 0% Stop 17 17 0 0 18 5 0.028 5.524 Yes	0% 100% 0% Stop 225 0 225 0 245 5 0.345 5.073 Yes	0% 100% 0% Stop 131 0 131 0 142 5 0.205 5.177 Yes	0% 0% 100% Stop 117 0 0 117 127 5 0.154 4.353 Yes	84% 0% 16% Stop 100 84 0 16 109 2 0.157 5.192 Yes
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		100% 0% 0% Stop 17 17 0 0 18 5 0.028 5.524 Yes 648	0% 100% 0% Stop 225 0 225 0 245 5 0.345 5.073 Yes 709	0% 100% 0% Stop 131 0 131 0 142 5 0.205 5.177 Yes 693	0% 0% 100% Stop 117 0 0 117 127 5 0.154 4.353 Yes 823	84% 0% 16% Stop 100 84 0 16 109 2 0.157 5.192 Yes 689
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		100% 0% 0% Stop 17 17 0 0 18 5 0.028 5.524 Yes 648 3.259	0% 100% 0% Stop 225 0 225 0 245 5 0.345 5.073 Yes 709 2.808	0% 100% 0% Stop 131 0 131 0 142 5 0.205 5.177 Yes 693 2.911	0% 0% 100% Stop 117 0 0 117 127 5 0.154 4.353 Yes 823 2.087	84% 0% 16% Stop 100 84 0 16 109 2 0.157 5.192 Yes 689 3.234
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 17 17 0 0 18 5 0.028 5.524 Yes 648 3.259 0.028	0% 100% 0% Stop 225 0 225 0 245 5 0.345 5.073 Yes 709 2.808 0.346	0% 100% 0% Stop 131 0 131 0 142 5 0.205 5.177 Yes 693 2.911 0.205	0% 0% 100% Stop 117 0 0 117 127 5 0.154 4.353 Yes 823 2.087 0.154	84% 0% 16% Stop 100 84 0 16 109 2 0.157 5.192 Yes 689 3.234 0.158
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		100% 0% 0% Stop 17 17 0 0 18 5 0.028 5.524 Yes 648 3.259 0.028 8.4	0% 100% 0% Stop 225 0 225 0 245 5 0.345 5.073 Yes 709 2.808 0.346 10.5	0% 100% 0% Stop 131 0 131 0 142 5 0.205 5.177 Yes 693 2.911 0.205 9.2	0% 0% 100% Stop 117 0 0 117 127 5 0.154 4.353 Yes 823 2.087 0.154 7.9	84% 0% 16% Stop 100 84 0 16 109 2 0.157 5.192 Yes 689 3.234 0.158 9.2
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 17 17 0 0 18 5 0.028 5.524 Yes 648 3.259 0.028	0% 100% 0% Stop 225 0 225 0 245 5 0.345 5.073 Yes 709 2.808 0.346	0% 100% 0% Stop 131 0 131 0 142 5 0.205 5.177 Yes 693 2.911 0.205	0% 0% 100% Stop 117 0 0 117 127 5 0.154 4.353 Yes 823 2.087 0.154	84% 0% 16% Stop 100 84 0 16 109 2 0.157 5.192 Yes 689 3.234 0.158

1: Hurontario Street & Cooksville GO/John Street

	۶	→	1	←	1	1	1	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	}
Lane Configurations	7	f)	7	↑ ↑	×	†	7	^	7	1
Traffic Volume (vph)	288	37	22	31	40	1427	125	242	235	5
Future Volume (vph)	288	37	22	31	40	1427	125	242	235	j
Lane Group Flow (vph)	313	122	24	216	43	1577	136	263	255	;
Turn Type	Perm	NA	Perm	NA	Prot	NA	Prot	NA	Perm	1
Protected Phases		8		4	1	6	5	2		
Permitted Phases	8		4			6		2	2	
Detector Phase	8	8	4	4	1	6	5	2	2	<u>)</u>
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0)
Minimum Split (s)	46.0	46.0	46.0	46.0	9.5	38.0	9.5	38.0	38.0)
Total Split (s)	56.0	56.0	56.0	56.0	14.4	79.8	24.2	89.6	89.6	;
Total Split (%)	35.0%	35.0%	35.0%	35.0%	9.0%	49.9%	15.1%	56.0%	56.0%)
Yellow Time (s)	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	4.0)
All-Red Time (s)	4.0	4.0	4.0	4.0	1.0	3.0	1.0	3.0	3.0)
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0)
Total Lost Time (s)	7.0	7.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0)
Lead/Lag					Lead	Lag	Lead	Lag	Lag	J
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	3
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	C-Max	(
v/c Ratio	1.01	0.25	0.08	0.22	0.43	1.02	0.76	0.16	0.33	}
Control Delay	106.7	20.8	40.5	8.9	86.0	67.1	93.8	19.2	3.3	}
Queue Delay	0.0	0.1	0.0	0.0	0.0	31.2	0.0	0.0	0.0)
Total Delay	106.7	20.9	40.5	8.9	86.0	98.3	93.8	19.2	3.3	}
Queue Length 50th (m)	~100.8	12.9	5.5	4.0	13.1	~280.2	42.3	22.2	0.0)
Queue Length 95th (m)	#164.8	29.8	13.1	14.1	m26.8	#330.6	65.5	31.0	14.0)
Internal Link Dist (m)		191.8		112.9		109.3		252.0		
Turn Bay Length (m)			25.0		37.5		48.5		48.5	5
Base Capacity (vph)	311	493	319	981	114	1545	212	1655	766	;
Starvation Cap Reductn	0	0	0	0	0	314	0	0	0)
Spillback Cap Reductn	0	27	19	0	0	0	0	0	0)
Storage Cap Reductn	0	0	0	0	0	0	0	0	0)
Reduced v/c Ratio	1.01	0.26	0.08	0.22	0.38	1.28	0.64	0.16	0.33	}

Intersection Summary

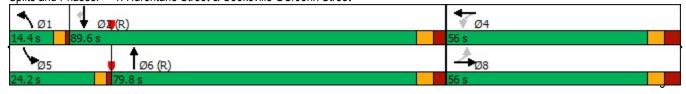
Cycle Length: 160

Actuated Cycle Length: 160

Offset: 115 (72%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Hurontario Street & Cooksville GO/John Street

	۶	→	•	•	•	•	1	†	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		*	†		*	† 1>		*	^	7
Traffic Volume (vph)	288	37	75	22	31	167	40	1427	24	125	242	235
Future Volume (vph)	288	37	75	22	31	167	40	1427	24	125	242	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	7.0	7.0		7.0	7.0		3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	0.97		1.00	1.00		1.00	1.00	0.86
Flpb, ped/bikes	0.99	1.00		0.97	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.90		1.00	0.87		1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1583	1462		1491	2791		1606	3208		1606	3042	1195
Flt Permitted	0.61	1.00		0.66	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1017	1462		1042	2791		1606	3208		1606	3042	1195
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	313	40	82	24	34	182	43	1551	26	136	263	255
RTOR Reduction (vph)	0	46	0	0	126	0	0	1	0	0	0	117
Lane Group Flow (vph)	313	76	0	24	90	0	43	1576	0	136	263	138
Confl. Peds. (#/hr)	16		24	24		16	81		34	34		81
Confl. Bikes (#/hr)						1						2
Heavy Vehicles (%)	0%	0%	5%	5%	0%	0%	0%	2%	0%	0%	8%	4%
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4				6			2	2
Actuated Green, G (s)	48.0	48.0		48.0	48.0		7.7	76.0		17.0	85.3	85.3
Effective Green, g (s)	49.0	49.0		49.0	49.0		8.7	77.0		18.0	86.3	86.3
Actuated g/C Ratio	0.31	0.31		0.31	0.31		0.05	0.48		0.11	0.54	0.54
Clearance Time (s)	8.0	8.0		8.0	8.0		4.0	7.0		4.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	311	447		319	854		87	1543		180	1640	644
v/s Ratio Prot	0.04	0.05		0.00	0.03		0.03	c0.49		c0.08	0.09	0.40
v/s Ratio Perm	c0.31	0.47		0.02	0.44		0.40	4.00		0.70	0.40	0.12
v/c Ratio	1.01	0.17		0.08	0.11		0.49	1.02		0.76	0.16	0.21
Uniform Delay, d1	55.5	40.6		39.4	39.8		73.5	41.5		68.9	18.6	19.2
Progression Factor	1.00	1.00		1.00	1.00		1.01	0.96		1.00	1.00	1.00
Incremental Delay, d2	52.7	0.2		0.1	0.1 39.8		4.4	28.5 68.2		16.4	0.2	0.8
Delay (s)	108.2 F	40.8 D		39.5 D	39.0 D		78.3 E	00.2 E		85.3 F	18.8 B	19.9 B
Level of Service	Г	89.3		U	39.8		Е	68.5		Г	33.1	Б
Approach Delay (s) Approach LOS		69.5 F			39.0 D			00.5 E			33.1 C	
• •		Г			D						C	
Intersection Summary												
HCM 2000 Control Delay			61.4	H	CM 2000	Level of S	Service		E			
HCM 2000 Volume to Capa	city ratio		0.98									
Actuated Cycle Length (s)			160.0		um of lost				16.0			
Intersection Capacity Utiliza	ition		108.1%	IC	U Level o	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

2: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

	•	→	•	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	↑ ↑	7	↑ ↑	7	↑ ↑	*	↑ ↑	
Traffic Volume (vph)	128	252	86	317	197	116	223	133	
Future Volume (vph)	128	252	86	317	197	116	223	133	
Lane Group Flow (vph)	139	395	93	502	214	168	242	224	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	3	8		4	1	6	5	2	
Permitted Phases	8		4			6		2	
Detector Phase	3	8	4	4	1	6	5	2	
Switch Phase									
Minimum Initial (s)	5.0	8.0	8.0	8.0	7.0	8.0	5.0	8.0	
Minimum Split (s)	9.5	56.0	56.0	56.0	11.0	51.5	9.5	51.5	
Total Split (s)	13.0	69.0	56.0	56.0	37.0	53.0	38.0	54.0	
Total Split (%)	8.1%	43.1%	35.0%	35.0%	23.1%	33.1%	23.8%	33.8%	
Yellow Time (s)	3.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	4.0	4.0	4.0	1.0	3.5	1.0	3.5	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	2.0	7.0	7.0	7.0	3.0	6.5	3.0	6.5	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
v/c Ratio	0.71	0.46	0.59	0.79	0.80	0.13	0.82	0.16	
Control Delay	62.1	42.7	73.3	64.9	84.3	24.9	91.1	17.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.7	0.8	0.0	
Total Delay	62.1	42.7	73.3	64.9	84.3	25.7	91.9	17.0	
Queue Length 50th (m)	33.9	48.2	27.4	74.0	66.2	13.5	79.3	11.8	
Queue Length 95th (m)	49.3	60.1	45.2	89.3	90.4	25.6	107.1	20.4	
Internal Link Dist (m)		206.4		133.2		400.9		109.3	
Turn Bay Length (m)			50.0		53.0		36.0		
Base Capacity (vph)	196	1201	252	977	338	1314	358	1392	
Starvation Cap Reductn	0	0	0	0	0	0	19	0	
Spillback Cap Reductn	0	0	0	7	0	881	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.71	0.33	0.37	0.52	0.63	0.39	0.71	0.16	
	•				2.00			-	

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

	۶	→	•	•	•	•	1	†	~	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	†		*	†		*	↑ ↑	
Traffic Volume (vph)	128	252	111	86	317	144	197	116	39	223	133	73
Future Volume (vph)	128	252	111	86	317	144	197	116	39	223	133	73
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	2.0	7.0		7.0	7.0		3.0	6.5		3.0	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.99		1.00	0.97		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		0.97	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	0.95		1.00	0.96		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1589	3020		1506	3083		1575	2966		1606	2999	
Flt Permitted	0.22	1.00		0.52	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	371	3020		822	3083		1575	2966		1606	2999	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	139	274	121	93	345	157	214	126	42	242	145	79
RTOR Reduction (vph)	0	37	0	0	39	0	0	16	0	0	36	0
Lane Group Flow (vph)	139	358	0	93	463	0	214	152	0	242	188	0
Confl. Peds. (#/hr)	16		60	60		16	24		49	49		24
Heavy Vehicles (%)	1%	0%	5%	3%	1%	0%	2%	5%	0%	0%	2%	3%
Turn Type	pm+pt	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases	3	8		. 0	4		1	6		5	2	
Permitted Phases	8			4	•		•	6			2	
Actuated Green, G (s)	42.8	42.8		29.8	29.8		26.3	69.1		28.6	71.4	
Effective Green, g (s)	43.8	43.8		30.8	30.8		27.3	70.1		29.6	72.4	
Actuated g/C Ratio	0.27	0.27		0.19	0.19		0.17	0.44		0.19	0.45	
Clearance Time (s)	3.0	8.0		8.0	8.0		4.0	7.5		4.0	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	185	826		158	593		268	1299		297	1357	
v/s Ratio Prot	c0.05	0.12		100	c0.15		0.14	0.05		c0.15	c0.06	
v/s Ratio Perm	0.15	0.12		0.11	00.10		0.11	0.00		00.10	00.00	
v/c Ratio	0.75	0.43		0.59	0.78		0.80	0.12		0.81	0.14	
Uniform Delay, d1	47.6	47.9		58.8	61.4		63.7	26.6		62.6	25.6	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.13	0.82	
Incremental Delay, d2	15.7	0.4		5.5	6.6		15.2	0.2		15.6	0.2	
Delay (s)	63.3	48.2		64.3	68.0		78.9	26.8		86.2	21.3	
Level of Service	E	D		E	E		E	C		F	C	
Approach Delay (s)	_	52.2		_	67.4		_	56.0		•	55.0	
Approach LOS		D			E			E			E	
Intersection Summary												
HCM 2000 Control Delay			58.2	H	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capac	city ratio		0.46	· ·								
Actuated Cycle Length (s)	,		160.0	Sı	um of lost	time (s)			18.5			
Intersection Capacity Utilizat	tion		113.8%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

7: Camilla Road/Kirwin Avenue & Dundas Street East

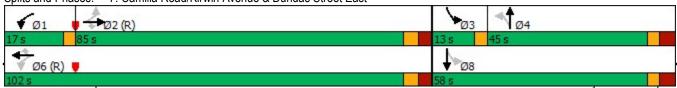
	۶	→	•	•	•	•	1	†	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	^	7	7	^	7	*	7	7	1	
Traffic Volume (vph)	40	788	42	103	1119	321	52	126	222	99	
Future Volume (vph)	40	788	42	103	1119	321	52	126	222	99	
Lane Group Flow (vph)	43	857	46	112	1216	349	57	220	241	133	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		2		1	6			4	3	8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	1	6	6	4	4	3	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	44.0	44.0	44.0	9.5	44.0	44.0	43.0	43.0	9.5	43.0	
Total Split (s)	85.0	85.0	85.0	17.0	102.0	102.0	45.0	45.0	13.0	58.0	
Total Split (%)	53.1%	53.1%	53.1%	10.6%	63.8%	63.8%	28.1%	28.1%	8.1%	36.3%	
Yellow Time (s)	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.0	3.0	3.0	
All-Red Time (s)	3.5	3.5	3.5	0.0	3.5	3.5	4.0	4.0	0.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	6.0	6.0	6.0	2.0	6.0	6.0	6.0	6.0	2.0	6.0	
Lead/Lag	Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes	Yes	Yes		
Recall Mode	C-Max	C-Max	C-Max	None	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.21	0.45	0.06	0.28	0.56	0.34	0.31	0.78	1.14	0.32	
Control Delay	20.7	19.5	1.6	10.4	15.3	3.2	60.9	76.5	151.4	46.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	20.7	19.5	1.6	10.4	15.3	3.2	60.9	76.5	151.4	46.9	
Queue Length 50th (m)	6.0	75.0	0.0	10.6	98.9	5.6	16.2	62.7	~77.2	32.7	
Queue Length 95th (m)	16.6	109.2	3.2	21.0	138.5	20.7	28.7	87.2	#122.7	48.9	
Internal Link Dist (m)		302.1			262.5			162.3		279.0	
Turn Bay Length (m)	15.0		30.0	30.0		65.0	36.0		40.0		
Base Capacity (vph)	208	1917	811	428	2183	1016	272	407	211	545	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.21	0.45	0.06	0.26	0.56	0.34	0.21	0.54	1.14	0.24	

Intersection Summary

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 26 (16%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green


Natural Cycle: 110

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Camilla Road/Kirwin Avenue & Dundas Street East

	٠	→	*	•	←	•	1	1	~	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	^	7	*	13		*	f	
Traffic Volume (vph)	40	788	42	103	1119	321	52	126	76	222	99	23
Future Volume (vph)	40	788	42	103	1119	321	52	126	76	222	99	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7
Total Lost time (s)	6.0	6.0	6.0	2.0	6.0	6.0	6.0	6.0		2.0	6.0	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.99	1.00	1.00	1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94		1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1598	3189	1304	1604	3221	1360	1582	1616		1587	1661	
Flt Permitted	0.21	1.00	1.00	0.27	1.00	1.00	0.67	1.00		0.30	1.00	
Satd. Flow (perm)	347	3189	1304	459	3221	1360	1119	1616		506	1661	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	857	46	112	1216	349	57	137	83	241	108	25
RTOR Reduction (vph)	0	0	18	0	0	94	0	15	0	0	6	0
Lane Group Flow (vph)	43	857	28	112	1216	255	57	205	0	241	127	0
Confl. Peds. (#/hr)	16		13	13		16	14		10	10		14
Heavy Vehicles (%)	0%	3%	5%	0%	2%	0%	0%	0%	0%	1%	0%	3%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		2		1	6			4		3	8	
Permitted Phases	2		2	6		6	4			8		
Actuated Green, G (s)	95.3	95.3	95.3	107.5	107.5	107.5	25.5	25.5		38.5	38.5	
Effective Green, g (s)	96.3	96.3	96.3	108.5	108.5	108.5	26.5	26.5		39.5	39.5	
Actuated g/C Ratio	0.60	0.60	0.60	0.68	0.68	0.68	0.17	0.17		0.25	0.25	
Clearance Time (s)	7.0	7.0	7.0	3.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	208	1919	784	384	2184	922	185	267		199	410	
v/s Ratio Prot		0.27		0.02	c0.38	·		c0.13		c0.08	0.08	
v/s Ratio Perm	0.12	V	0.02	0.18	00.00	0.19	0.05	001.10		0.22	0.00	
v/c Ratio	0.21	0.45	0.04	0.29	0.56	0.28	0.31	0.77		1.21	0.31	
Uniform Delay, d1	14.5	17.3	13.0	10.1	13.3	10.2	58.7	63.8		58.2	49.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.2	0.8	0.1	0.4	1.0	0.7	1.0	12.4		132.2	0.4	
Delay (s)	16.7	18.1	13.0	10.5	14.3	10.9	59.6	76.2		190.5	49.6	
Level of Service	В	В	В	В	В	В	E	E		F	D	
Approach Delay (s)		17.8			13.4	_	_	72.8		•	140.4	
Approach LOS		В			В			E			F	
Intersection Summary												
HCM 2000 Control Delay			34.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	citv ratio		0.65									
Actuated Cycle Length (s)	-,		160.0	S	um of los	t time (s)			16.0			
Intersection Capacity Utiliza	ition		90.8%			of Service			E			
Analysis Period (min)			15		, , , , , , ,							
c Critical Lane Group												

	•	\rightarrow	•	-	1
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		414	†	*	7
Traffic Volume (vph)	136	337	381	73	361
Future Volume (vph)	136	337	381	73	361
Lane Group Flow (vph)	0	514	438	79	392
Turn Type	pm+pt	NA	NA	Perm	Perm
Protected Phases	1	2	2		
Permitted Phases	2			4	4
Detector Phase	1	2	2	4	4
Switch Phase					
Minimum Initial (s)	7.0	10.0	10.0	10.0	10.0
Minimum Split (s)	14.5	32.0	32.0	34.5	34.5
Total Split (s)	28.0	54.0	54.0	69.5	69.5
Total Split (%)	18.5%	35.6%	35.6%	45.9%	45.9%
Yellow Time (s)	3.0	3.5	3.5	3.5	3.5
All-Red Time (s)	0.0	3.5	3.5	2.0	2.0
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		6.0	6.0	4.5	4.5
Lead/Lag	Lead	Lag	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes		
Recall Mode	None	Max	Max	None	None
v/c Ratio		0.21	0.19	0.38	0.68
Control Delay		4.5	4.4	31.8	9.9
Queue Delay		0.0	0.0	0.0	0.0
Total Delay		4.5	4.4	31.8	9.9
Queue Length 50th (m)		7.1	8.6	9.4	0.0
Queue Length 95th (m)		12.5	15.6	21.0	21.7
Internal Link Dist (m)		132.4	206.4	85.2	
Turn Bay Length (m)					
Base Capacity (vph)		2484	2250	1193	1450
Starvation Cap Reductn		0	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.21	0.19	0.07	0.27


Intersection Summary

Cycle Length: 151.5
Actuated Cycle Length: 70.4

Natural Cycle: 85

Control Type: Semi Act-Uncoord

Splits and Phases: 9: Hillcrest Avenue & Cooksville GO

	٠	-	←	•	-	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		441>	†	11511	<u> </u>	7		
Traffic Volume (vph)	136	337	381	22	73	361		
Future Volume (vph)	136	337	381	22	73	361		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	1000	6.0	6.0	1000	4.5	4.5		
Lane Util. Factor		0.91	0.95		1.00	1.00		
Frpb, ped/bikes		1.00	1.00		1.00	0.98		
Flpb, ped/bikes		1.00	1.00		0.98	1.00		
Frt		1.00	0.99		1.00	0.85		
FIt Protected		0.99	1.00		0.95	1.00		
Satd. Flow (prot)		4871	3301		1264	1500		
FIt Permitted		0.74	1.00		0.95	1.00		
Satd. Flow (perm)		3652	3301		1264	1500		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	148	366	414	24	79	392		
RTOR Reduction (vph)	0	0	1	0	0	326		
_ane Group Flow (vph)	0	514	437	0	79	66		
Confl. Peds. (#/hr)	30	J 14	701	30	23	7		
Confl. Bikes (#/hr)	30			1	23	ı		
Heavy Vehicles (%)	5%	6%	10%	0%	42%	7%		
Furn Type		NA	NA	0 70	Perm	Perm		
Protected Phases	pm+pt 1	2	2		reiiii	reiiii		
Permitted Phases	2	2	Z		1	4		
Actuated Green, G (s)		47.0	47.0		4 10.8	10.8		
Effective Green, g (s)		48.0	48.0		11.8	11.8		
		0.68	0.68		0.17	0.17		
Actuated g/C Ratio Clearance Time (s)		7.0	7.0		5.5	5.5		
Vehicle Extension (s)		3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)		2493	2253		212	251		
v/s Ratio Prot		oO 44	0.13		a0.00	0.04		
v/s Ratio Perm		c0.14	0.40		c0.06	0.04		
v/c Ratio		0.21	0.19		0.37	0.26		
Uniform Delay, d1		4.1	4.1		26.0	25.5		
Progression Factor		1.00	1.00		1.00	1.00		
Incremental Delay, d2		0.0 4.2	0.2 4.3		1.1 27.1	0.6 26.0		
Delay (s)								
Level of Service		A 4.2	A 4.3		C 26.2	С		
Approach Delay (s)								
Approach LOS		Α	Α		С			
ntersection Summary								
HCM 2000 Control Delay			11.5	Н	CM 2000	Level of Serv	vice	В
HCM 2000 Volume to Capa	city ratio		0.26					
Actuated Cycle Length (s)			70.3		um of lost			14.5
Intersection Capacity Utiliza	ation		55.5%	IC	CU Level of	of Service		В
Analysis Period (min)			15					
c Critical Lane Group								

Movement EBT EBR WBL WBT NBL NBR Lane Configurations 1
Lane Configurations Image: Configuration of the confi
Traffic Volume (veh/h) 86 58 6 148 59 14 Future Volume (Veh/h) 86 58 6 148 59 14 Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 93 63 7 161 64 15 Pedestrians 21 6 30 3.7 3.7 3.7 Walking Speed (m/s) 1.1 1.1 1.1 1.1 Percent Blockage 2 1 3 3 Right turn flare (veh) None None None
Future Volume (Veh/h) 86 58 6 148 59 14 Sign Control Free Free Stop Grade 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 93 63 7 161 64 15 Pedestrians 21 6 30 3.7 3.7 3.7 Walking Speed (m/s) 1.1 1.1 1.1 1.1 1.1 Percent Blockage 2 1 3 3 3 7 Right turn flare (veh) None None None None Median storage veh) None
Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 93 63 7 161 64 15 Pedestrians 21 6 30 3.7 3.7 3.7 Walking Speed (m/s) 1.1 1.1 1.1 1.1 1.1 Percent Blockage 2 1 3 3 3 Right turn flare (veh) None None None Median type None None Median storage veh)
Grade 0% 0% 0% Peak Hour Factor 0.92
Peak Hour Factor 0.92
Hourly flow rate (vph) 93 63 7 161 64 15 Pedestrians 21 6 30 Lane Width (m) 3.7 3.7 3.7 Walking Speed (m/s) 1.1 1.1 1.1 Percent Blockage 2 1 3 Right turn flare (veh) Median type None None Median storage veh)
Pedestrians 21 6 30 Lane Width (m) 3.7 3.7 3.7 Walking Speed (m/s) 1.1 1.1 1.1 Percent Blockage 2 1 3 Right turn flare (veh) Median type None None Median storage veh)
Lane Width (m) 3.7 3.7 3.7 Walking Speed (m/s) 1.1 1.1 1.1 Percent Blockage 2 1 3 Right turn flare (veh) Median type None None Median storage veh)
Walking Speed (m/s) 1.1 1.1 1.1 Percent Blockage 2 1 3 Right turn flare (veh) Median type None None Median storage veh)
Percent Blockage 2 1 3 Right turn flare (veh) Median type None None Median storage veh)
Right turn flare (veh) Median type None None Median storage veh)
Median type None None Median storage veh)
Median storage veh)
Opolitodin olgital (III) IOI
pX, platoon unblocked
vC, conflicting volume 186 350 160
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 186 350 160
tC, single (s) 4.1 6.5 6.2
tC, 2 stage (s)
tF (s) 2.2 3.6 3.3
p0 queue free % 99 89 98
cM capacity (veh/h) 1361 602 860
Direction, Lane # EB 1 WB 1 NB 1
Volume Total 156 168 79
Volume Left 0 7 64
Volume Right 63 0 15
cSH 1700 1361 638
Volume to Capacity 0.09 0.01 0.12
Queue Length 95th (m) 0.0 0.1 3.2
Control Delay (s) 0.0 0.4 11.4
Lane LOS A B
Approach Delay (s) 0.0 0.4 11.4
Approach LOS B
Intersection Summary
Average Delay 2.4
Intersection Capacity Utilization 27.0% ICU Level of Service
Analysis Period (min) 15

Intersection												
Intersection Delay, s/veh	11.1											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	13		7	1			4			4	
Traffic Vol, veh/h	28	166	43	14	289	13	41	38	26	12	32	15
Future Vol, veh/h	28	166	43	14	289	13	41	38	26	12	32	15
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	29	1	0	0	0	0	0	0	0	0	0	13
Mvmt Flow	30	180	47	15	314	14	45	41	28	13	35	16
Number of Lanes	1	1	0	1	1	0	0	1	0	0	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	2	2	1	1
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	1	1	2	2
Conflicting Approach Right	NB	SB	WB	EB
Conflicting Lanes Right	1	1	2	2
HCM Control Delay	10.4	12.4	9.6	9.1
HCM LOS	В	В	Α	Α

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	
Vol Left, %	39%	100%	0%	100%	0%	20%	
Vol Thru, %	36%	0%	79%	0%	96%	54%	
Vol Right, %	25%	0%	21%	0%	4%	25%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	105	28	209	14	302	59	
LT Vol	41	28	0	14	0	12	
Through Vol	38	0	166	0	289	32	
RT Vol	26	0	43	0	13	15	
Lane Flow Rate	114	30	227	15	328	64	
Geometry Grp	2	5	5	5	5	2	
Degree of Util (X)	0.171	0.053	0.327	0.024	0.474	0.099	
Departure Headway (Hd)	5.388	6.307	5.178	5.731	5.197	5.54	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	659	564	688	620	686	651	
Service Time	3.482	4.093	2.962	3.51	2.975	3.54	
HCM Lane V/C Ratio	0.173	0.053	0.33	0.024	0.478	0.098	
HCM Control Delay	9.6	9.5	10.5	8.7	12.6	9.1	
HCM Lane LOS	Α	Α	В	Α	В	Α	
HCM 95th-tile Q	0.6	0.2	1.4	0.1	2.6	0.3	

	۶	→	*	•	—	•	1	†	~	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1			र्स			4				
Traffic Volume (veh/h)	0	20	73	5	17	0	133	0	12	0	0	0
Future Volume (Veh/h)	0	20	73	5	17	0	133	0	12	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	22	79	5	18	0	145	0	13	0	0	0
Pedestrians		1			1			12				
Lane Width (m)		3.7			3.7			3.7				
Walking Speed (m/s)		1.1			1.1			1.1				
Percent Blockage		0			0			1				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)		354										
pX, platoon unblocked												
vC, conflicting volume	18			113			102	102	74	104	141	19
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	18			113			102	102	74	104	141	19
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			83	100	99	100	100	100
cM capacity (veh/h)	1599			1472			860	777	981	855	739	1058
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total	101	23	158									
Volume Left	0	5	145									
Volume Right	79	0	13									
cSH	1700	1472	869									
Volume to Capacity	0.06	0.00	0.18									
Queue Length 95th (m)	0.0	0.1	5.0									
Control Delay (s)	0.0	1.6	10.1									
Lane LOS		Α	В									
Approach Delay (s)	0.0	1.6	10.1									
Approach LOS			В									
Intersection Summary												
Average Delay			5.8									
Intersection Capacity Utiliza	ation		25.0%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

Intersection						
Intersection Delay, s/veh	10.2					
Intersection LOS	В					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	<u></u>	*	#	¥	35,1
Traffic Vol, veh/h	24	180	313	154	53	15
Future Vol, veh/h	24	180	313	154	53	15
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0.52	1	1	2	2	0.52
Mymt Flow	26	196	340	167	58	16
Number of Lanes	1	130	1	107	1	0
		'	•	<u>'</u>	•	
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	2		2		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		2	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		2	
HCM Control Delay	9.7		10.5		9.2	
HCM LOS	Α		В		Α	
Lane		EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Vol Left, %		100%	0%	0%	0%	78%
Vol Thru, %		0%	100%	100%	0%	0%
Vol Right, %		0%	0%	0%	100%	22%
Sign Control		Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		24	180	313	154	68
LT Vol		24	0	0	0	53
Through Vol		0	180	313	0	0
RT Vol		0	0	0	154	15
Lane Flow Rate		26	196	340	167	74
Geometry Grp		5	5	5	5	2
Degree of Util (X)		0.041	0.28	0.464	0.197	0.113
Departure Headway (Hd)		5.638	5.152	4.915	4.229	5.481
				Yes	Yes	Yes
Convergence, Y/N		Yes	Yes	Yes 735	Yes 849	Yes 653
Convergence, Y/N Cap		Yes 635	Yes 697	735	849	653
Convergence, Y/N Cap Service Time		Yes 635 3.374	Yes 697 2.888	735 2.643	849 1.957	653 3.527
Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		Yes 635 3.374 0.041	Yes 697 2.888 0.281	735 2.643 0.463	849 1.957 0.197	653 3.527 0.113
Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		Yes 635 3.374 0.041 8.6	Yes 697 2.888 0.281 9.9	735 2.643 0.463 11.8	849 1.957 0.197 8	653 3.527 0.113 9.2
Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		Yes 635 3.374 0.041	Yes 697 2.888 0.281	735 2.643 0.463	849 1.957 0.197	653 3.527 0.113

	•	→	•	•	•	1	†	-	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	7	7	↑	7	7	↑ ↑	7	^	7	
Traffic Volume (vph)	328	30	7	19	159	15	1576	97	1305	296	
Future Volume (vph)	328	30	7	19	159	15	1576	97	1305	296	
Lane Group Flow (vph)	357	206	8	21	173	16	1730	105	1418	322	
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	Prot	NA	Perm	
Protected Phases		8		4		1	6	5	2		
Permitted Phases	8		4		4		6		2	2	
Detector Phase	8	8	4	4	4	1	6	5	2	2	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0	
Minimum Split (s)	46.0	46.0	46.0	46.0	46.0	9.5	38.0	9.5	38.0	38.0	
Total Split (s)	53.0	53.0	53.0	53.0	53.0	9.5	89.2	17.8	97.5	97.5	
Total Split (%)	33.1%	33.1%	33.1%	33.1%	33.1%	5.9%	55.8%	11.1%	60.9%	60.9%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	4.0	4.0	4.0	4.0	4.0	1.0	3.0	1.0	3.0	3.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0	
Lead/Lag						Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	C-Max	
v/c Ratio	1.07	0.44	0.03	0.04	0.37	0.28	1.04	0.79	0.80	0.41	
Control Delay	121.4	29.1	41.7	41.6	16.4	79.4	70.0	107.3	29.0	9.5	
Queue Delay	0.0	66.6	0.0	0.0	0.0	0.0	23.8	0.0	50.2	0.0	
Total Delay	121.4	95.7	41.7	41.6	16.4	79.4	93.8	107.3	79.2	9.5	
Queue Length 50th (m)	~125.2	30.1	1.9	4.9	11.6	4.6	~319.6	33.1	161.8	20.9	
Queue Length 95th (m)	#189.1	55.0	6.4	12.0	33.0	m5.7	m#329.6	#63.4	225.7	47.4	
Internal Link Dist (m)		191.8		112.9			109.3		252.0		
Turn Bay Length (m)			25.0			37.5		48.5		48.5	
Base Capacity (vph)	334	473	249	497	462	57	1656	141	1781	786	
Starvation Cap Reductn	0	0	0	0	0	0	536	0	0	0	
Spillback Cap Reductn	0	297	0	0	0	0	0	0	961	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.07	1.17	0.03	0.04	0.37	0.28	1.54	0.74	1.73	0.41	

Intersection Summary

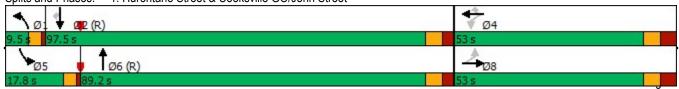
Cycle Length: 160

Actuated Cycle Length: 160

Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	*	•	←	•	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f		*	†	7	*	↑ ↑		*	^	7
Traffic Volume (vph)	328	30	159	7	19	159	15	1576	16	97	1305	296
Future Volume (vph)	328	30	159	7	19	159	15	1576	16	97	1305	296
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	1.00	0.93	1.00	1.00		1.00	1.00	0.85
Flpb, ped/bikes	0.94	1.00		0.98	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.87		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1484	1429		1579	1729	1300	1409	3151		1530	2933	1187
Flt Permitted	0.74	1.00		0.52	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1162	1429		869	1729	1300	1409	3151		1530	2933	1187
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	357	33	173	8	21	173	16	1713	17	105	1418	322
RTOR Reduction (vph)	0	63	0	0	0	88	0	0	0	0	0	68
Lane Group Flow (vph)	357	143	0	8	21	85	16	1730	0	105	1418	254
Confl. Peds. (#/hr)	47		20	20		47	90		46	46		90
Confl. Bikes (#/hr)						1			1			2
Heavy Vehicles (%)	2%	0%	3%	0%	0%	5%	14%	4%	0%	5%	12%	3%
Turn Type	Perm	NA		Perm	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4		4		6			2	2
Actuated Green, G (s)	45.0	45.0		45.0	45.0	45.0	2.2	83.0		13.0	93.8	93.8
Effective Green, g (s)	46.0	46.0		46.0	46.0	46.0	3.2	84.0		14.0	94.8	94.8
Actuated g/C Ratio	0.29	0.29		0.29	0.29	0.29	0.02	0.52		0.09	0.59	0.59
Clearance Time (s)	8.0	8.0		8.0	8.0	8.0	4.0	7.0		4.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	334	410		249	497	373	28	1654		133	1737	703
v/s Ratio Prot		0.10			0.01		0.01	c0.55		c0.07	0.48	
v/s Ratio Perm	c0.31			0.01		0.07						0.21
v/c Ratio	1.07	0.35		0.03	0.04	0.23	0.57	1.05		0.79	0.82	0.36
Uniform Delay, d1	57.0	45.1		41.0	41.1	43.4	77.7	38.0		71.6	25.7	16.9
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.19		1.00	1.00	1.00
Incremental Delay, d2	68.7	0.5		0.1	0.0	0.3	9.6	27.2		26.0	4.4	1.4
Delay (s)	125.7	45.7		41.0	41.1	43.8	87.3	72.4		97.5	30.1	18.3
Level of Service	F	D		D	D	D	F	Е		F	С	В
Approach Delay (s)		96.4			43.4			72.5			31.9	
Approach LOS		F			D			Е			С	
Intersection Summary												
HCM 2000 Control Delay			57.1	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Cap	pacity ratio		1.03									
Actuated Cycle Length (s)			160.0	Sı	um of lost	t time (s)			16.0			
Intersection Capacity Utili	zation		114.0%	IC	U Level	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

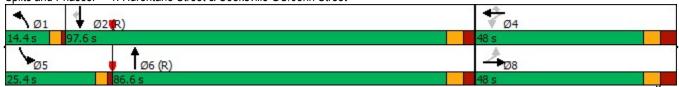
	٠	→	•	•	•	1	†	-	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	1	7	↑	7	*	†	*	^	7	
Traffic Volume (vph)	288	37	22	31	167	40	1427	125	242	235	
Future Volume (vph)	288	37	22	31	167	40	1427	125	242	235	
Lane Group Flow (vph)	313	122	24	34	182	43	1577	136	263	255	
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	Prot	NA	Perm	
Protected Phases		8		4		1	6	5	2		
Permitted Phases	8		4		4		6		2	2	
Detector Phase	8	8	4	4	4	1	6	5	2	2	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0	
Minimum Split (s)	46.0	46.0	46.0	46.0	46.0	9.5	38.0	9.5	38.0	38.0	
Total Split (s)	48.0	48.0	48.0	48.0	48.0	14.4	86.6	25.4	97.6	97.6	
Total Split (%)	30.0%	30.0%	30.0%	30.0%	30.0%	9.0%	54.1%	15.9%	61.0%	61.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	4.0	4.0	4.0	4.0	4.0	1.0	3.0	1.0	3.0	3.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0	
Lead/Lag						Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	C-Max	
v/c Ratio	1.00	0.29	0.09	0.08	0.36	0.43	0.93	0.74	0.15	0.31	
Control Delay	109.8	25.6	46.7	45.9	8.0	86.0	41.8	91.1	15.3	2.7	
Queue Delay	0.0	0.1	0.0	0.0	0.0	0.0	45.3	0.0	0.0	0.0	
Total Delay	109.8	25.7	46.8	45.9	8.0	86.0	87.2	91.1	15.3	2.7	
Queue Length 50th (m)	~100.8	14.9	5.9	8.3	0.0	13.1	195.8	42.3	19.7	0.0	
Queue Length 95th (m)	#164.6	33.3	14.2	17.7	19.4	m26.8	#306.5	64.9	27.5	12.4	
Internal Link Dist (m)		191.8		112.9			109.3		252.0		
Turn Bay Length (m)			25.0			37.5		48.5		48.5	
Base Capacity (vph)	312	420	261	443	499	114	1697	224	1807	813	
Starvation Cap Reductn	0	0	0	0	0	0	362	0	0	0	
Spillback Cap Reductn	0	28	20	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.00	0.31	0.10	0.08	0.36	0.38	1.18	0.61	0.15	0.31	

Intersection Summary

Cycle Length: 160
Actuated Cycle Length: 160

Offset: 115 (72%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 125


Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

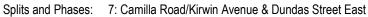
Queue shown is maximum after two cycles.

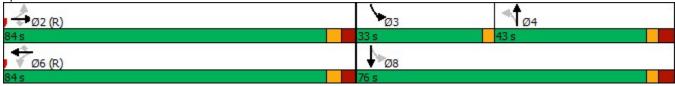
m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	*	•	•	•	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		7	†	7	*	↑ ↑		*	^	7
Traffic Volume (vph)	288	37	75	22	31	167	40	1427	24	125	242	235
Future Volume (vph)	288	37	75	22	31	167	40	1427	24	125	242	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	1.00	0.97	1.00	1.00		1.00	1.00	0.86
Flpb, ped/bikes	0.98	1.00		0.97	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.90		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1575	1462		1492	1729	1422	1606	3208		1606	3042	1195
Flt Permitted	0.73	1.00		0.65	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1219	1462		1023	1729	1422	1606	3208		1606	3042	1195
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	313	40	82	24	34	182	43	1551	26	136	263	255
RTOR Reduction (vph)	0	46	0	0	0	135	0	0	0	0	0	105
Lane Group Flow (vph)	313	76	0	24	34	47	43	1577	0	136	263	150
Confl. Peds. (#/hr)	16		24	24		16	81		34	34		81
Confl. Bikes (#/hr)						1						2
Heavy Vehicles (%)	0%	0%	5%	5%	0%	0%	0%	2%	0%	0%	8%	4%
Turn Type	Perm	NA		Perm	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4		4		6			2	2
Actuated Green, G (s)	40.0	40.0		40.0	40.0	40.0	7.7	83.6		17.4	93.3	93.3
Effective Green, g (s)	41.0	41.0		41.0	41.0	41.0	8.7	84.6		18.4	94.3	94.3
Actuated g/C Ratio	0.26	0.26		0.26	0.26	0.26	0.05	0.53		0.11	0.59	0.59
Clearance Time (s)	8.0	8.0		8.0	8.0	8.0	4.0	7.0		4.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	312	374		262	443	364	87	1696		184	1792	704
v/s Ratio Prot		0.05			0.02		0.03	c0.49		c0.08	0.09	
v/s Ratio Perm	c0.26			0.02		0.03						0.13
v/c Ratio	1.00	0.20		0.09	0.08	0.13	0.49	0.93		0.74	0.15	0.21
Uniform Delay, d1	59.5	46.7		45.3	45.1	45.8	73.5	34.9		68.5	14.8	15.4
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.01	0.88		1.00	1.00	1.00
Incremental Delay, d2	51.8	0.3		0.2	0.1	0.2	4.4	10.5		14.4	0.2	0.7
Delay (s)	111.3	46.9		45.5	45.2	45.9	78.4	41.2		82.9	14.9	16.1
Level of Service	F	D		D	D	D	Е	D		F	В	В
Approach Delay (s)		93.2			45.8			42.2			29.5	
Approach LOS		F			D			D			С	
Intersection Summary												
HCM 2000 Control Delay			47.2	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Cap	pacity ratio		0.93									
Actuated Cycle Length (s			160.0	Sı	um of lost	t time (s)			16.0			
Intersection Capacity Utili	ization		99.9%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	*	•	←	*	1	†	1	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	^	7	7	^	7	7	1	7	1	
Traffic Volume (vph)	19	1088	59	56	637	137	60	91	255	97	
Future Volume (vph)	19	1088	59	56	637	137	60	91	255	97	
Lane Group Flow (vph)	21	1183	64	61	692	149	65	179	277	135	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		2			6			4	3	8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	3	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	44.0	44.0	44.0	44.0	44.0	44.0	43.0	43.0	9.5	43.0	
Total Split (s)	84.0	84.0	84.0	84.0	84.0	84.0	43.0	43.0	33.0	76.0	
Total Split (%)	52.5%	52.5%	52.5%	52.5%	52.5%	52.5%	26.9%	26.9%	20.6%	47.5%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	0.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	
Lead/Lag							Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes		
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.07	0.63	0.08	0.36	0.38	0.18	0.43	0.75	0.74	0.25	
Control Delay	17.6	24.3	6.6	27.7	18.8	3.0	69.7	75.4	51.5	35.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.6	24.3	6.6	27.7	18.8	3.0	69.7	75.4	51.5	35.1	
Queue Length 50th (m)	2.8	127.0	2.1	9.9	59.7	0.0	19.2	48.3	68.0	28.3	
Queue Length 95th (m)	8.4	172.8	10.1	26.5	84.7	11.1	33.5	71.5	87.0	41.6	
Internal Link Dist (m)		302.1			262.5			162.3		279.0	
Turn Bay Length (m)	15.0		30.0	30.0		65.0	36.0		40.0		
Base Capacity (vph)	309	1881	809	169	1845	841	250	377	394	715	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.63	0.08	0.36	0.38	0.18	0.26	0.47	0.70	0.19	

Intersection Summary


Cycle Length: 160


Actuated Cycle Length: 160

Offset: 38 (24%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

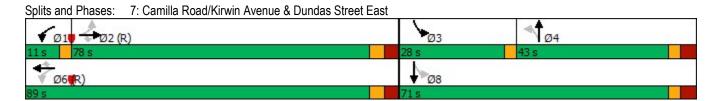
Natural Cycle: 100

Control Type: Actuated-Coordinated

	۶	→	•	•	•	•	1	1	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	^	7	*	1		ሻ	ĵ.	
Traffic Volume (vph)	19	1088	59	56	637	137	60	91	74	255	97	28
Future Volume (vph)	19	1088	59	56	637	137	60	91	74	255	97	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		2.0	6.0	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93		1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1428	3159	1327	1604	3099	1312	1534	1551		1558	1622	
FIt Permitted	0.35	1.00	1.00	0.17	1.00	1.00	0.67	1.00		0.35	1.00	
Satd. Flow (perm)	520	3159	1327	284	3099	1312	1083	1551		575	1622	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	1183	64	61	692	149	65	99	80	277	105	30
RTOR Reduction (vph)	0	0	19	0	0	60	0	21	0	0	7	0
Lane Group Flow (vph)	21	1183	45	61	692	89	65	158	0	277	128	0
Confl. Peds. (#/hr)	6		5	5		6	15		3	3		15
Heavy Vehicles (%)	12%	4%	5%	0%	6%	6%	3%	1%	6%	3%	3%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		2	, , , , , ,		6			4		3	8	
Permitted Phases	2		2	6	•	6	4	-		8		
Actuated Green, G (s)	94.3	94.3	94.3	94.3	94.3	94.3	21.5	21.5		51.7	51.7	
Effective Green, g (s)	95.3	95.3	95.3	95.3	95.3	95.3	22.5	22.5		52.7	52.7	
Actuated g/C Ratio	0.60	0.60	0.60	0.60	0.60	0.60	0.14	0.14		0.33	0.33	
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	309	1881	790	169	1845	781	152	218		362	534	
v/s Ratio Prot	000 1	c0.37	100	100	0.22	101	102	c0.10		c0.13	0.08	
v/s Ratio Perm	0.04	00.07	0.03	0.21	U.ZZ	0.07	0.06	00.10		0.12	0.00	
v/c Ratio	0.07	0.63	0.06	0.36	0.38	0.11	0.43	0.73		0.77	0.24	
Uniform Delay, d1	13.6	20.9	13.5	16.7	16.8	14.0	62.9	65.8		44.3	39.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.4	1.6	0.1	5.9	0.6	0.3	1.9	11.4		9.3	0.2	
Delay (s)	14.1	22.5	13.7	22.6	17.4	14.3	64.8	77.2		53.6	39.3	
Level of Service	В	C	В	C	В	В	E	E		D	D	
Approach Delay (s)		21.9			17.3		_	73.9			48.9	
Approach LOS		C			В			E			D	
Intersection Summary												
HCM 2000 Control Delay			28.9	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	citv ratio		0.67									
Actuated Cycle Length (s)	,		160.0	Sı	um of lost	t time (s)			14.0			
Intersection Capacity Utilizat	tion		86.5%			of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	1	←	*	1	†	1	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	^	7	7	^	7	7	1	7	7.	
Traffic Volume (vph)	40	788	42	103	1119	321	52	126	222	99	
Future Volume (vph)	40	788	42	103	1119	321	52	126	222	99	
Lane Group Flow (vph)	43	857	46	112	1216	349	57	220	241	133	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		2		1	6			4	3	8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	1	6	6	4	4	3	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	44.0	44.0	44.0	9.5	44.0	44.0	43.0	43.0	9.5	43.0	
Total Split (s)	78.0	78.0	78.0	11.0	89.0	89.0	43.0	43.0	28.0	71.0	
Total Split (%)	48.8%	48.8%	48.8%	6.9%	55.6%	55.6%	26.9%	26.9%	17.5%	44.4%	
Yellow Time (s)	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.0	3.0	3.0	
All-Red Time (s)	3.5	3.5	3.5	0.0	3.5	3.5	4.0	4.0	0.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	6.0	6.0	6.0	2.0	6.0	6.0	6.0	6.0	2.0	6.0	
Lead/Lag	Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes	Yes	Yes		
Recall Mode	C-Max	C-Max	C-Max	None	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.27	0.52	0.06	0.33	0.63	0.38	0.31	0.78	0.71	0.24	
Control Delay	31.4	28.2	2.2	16.7	24.1	6.8	61.0	76.8	50.3	35.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.4	28.2	2.2	16.7	24.1	6.8	61.0	76.8	50.3	35.8	
Queue Length 50th (m)	7.7	95.1	0.0	14.2	130.3	14.4	16.2	62.7	57.6	28.3	
Queue Length 95th (m)	20.3	128.3	3.7	27.2	176.3	39.4	28.8	87.3	75.2	41.8	
Internal Link Dist (m)		302.1			262.5	_ <u> </u>		162.3		279.0	
Turn Bay Length (m)	15.0		30.0	30.0		65.0	36.0		40.0		
Base Capacity (vph)	160	1659	711	337	1925	911	258	387	354	680	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.52	0.06	0.33	0.63	0.38	0.22	0.57	0.68	0.20	

Intersection Summary


Cycle Length: 160

Actuated Cycle Length: 160

Offset: 26 (16%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

	۶	→	•	•	•	•	4	1	~	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	^	7	*	1		7	1>	
Traffic Volume (vph)	40	788	42	103	1119	321	52	126	76	222	99	23
Future Volume (vph)	40	788	42	103	1119	321	52	126	76	222	99	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7
Total Lost time (s)	6.0	6.0	6.0	2.0	6.0	6.0	6.0	6.0		2.0	6.0	911
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94		1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1599	3189	1304	1604	3221	1360	1582	1616		1587	1661	
Flt Permitted	0.18	1.00	1.00	0.25	1.00	1.00	0.67	1.00		0.30	1.00	
Satd. Flow (perm)	309	3189	1304	416	3221	1360	1119	1616		506	1661	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	857	46	112	1216	349	57	137	83	241	108	25
RTOR Reduction (vph)	0	037	22	0	0	98	0	157	0	0	6	0
Lane Group Flow (vph)	43	857	24	112	1216	251	57	205	0	241	127	0
Confl. Peds. (#/hr)	16	037	13	13	1210	16	14	203	10	10	121	14
Heavy Vehicles (%)	0%	3%	5%	0%	2%	0%	0%	0%	0%	1%	0%	3%
		_	_						0 /0			J /0
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases	0	2	0		6	C	4	4		3	8	
Permitted Phases	2	00.0	2	6	04.0	6	4	05.5		8	54.4	
Actuated Green, G (s)	82.2	82.2	82.2	94.6	94.6	94.6	25.5	25.5		51.4	51.4	
Effective Green, g (s)	83.2	83.2	83.2	95.6	95.6	95.6	26.5	26.5		52.4	52.4	
Actuated g/C Ratio	0.52	0.52	0.52	0.60	0.60	0.60	0.17	0.17		0.33	0.33	
Clearance Time (s)	7.0	7.0	7.0	3.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	160	1658	678	325	1924	812	185	267		327	543	
v/s Ratio Prot		0.27		0.02	c0.38			c0.13		c0.11	0.08	
v/s Ratio Perm	0.14		0.02	0.18		0.18	0.05			0.13		
v/c Ratio	0.27	0.52	0.04	0.34	0.63	0.31	0.31	0.77		0.74	0.23	
Uniform Delay, d1	21.4	25.2	18.8	15.8	20.8	15.9	58.7	63.8		43.5	39.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.1	1.2	0.1	0.6	1.6	1.0	1.0	12.4		8.4	0.2	
Delay (s)	25.5	26.4	18.9	16.4	22.4	16.9	59.6	76.2		51.9	39.4	
Level of Service	С	С	В	В	С	В	E	Е		D	D	
Approach Delay (s)		26.0			20.9			72.8			47.5	
Approach LOS		С			С			Е			D	
Intersection Summary												
HCM 2000 Control Delay			29.8	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.68									
Actuated Cycle Length (s)			160.0		um of lost				16.0			
Intersection Capacity Utilizati	on		90.8%	IC	CU Level of	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

<i>→ ← </i>	← ◀	†	1	↓	4
Lane Group EBL EBT WBL W	VBT NBL	NBT	SBL	SBT	SBR
Lane Configurations 7 %	ተ ጮ ኝ	↑ ↑	×	^	7
Traffic Volume (vph) 328 30 135	19 15		147	1305	296
Future Volume (vph) 328 30 135	19 15	1576	147	1305	296
Lane Group Flow (vph) 357 206 147	319 16	1746	160	1418	322
Turn Type Perm NA Perm	NA Prof	NA	Prot	NA	Perm
Protected Phases 8	4 1	6	5	2	
Permitted Phases 8 4		6		2	2
Detector Phase 8 8 4	4 1	6	5	2	2
Switch Phase					
Minimum Initial (s) 8.0 8.0 8.0	8.0 5.0	8.0	5.0	8.0	8.0
Minimum Split (s) 46.0 46.0 46.0 4	16.0 9.5		9.5	38.0	38.0
Total Split (s) 64.0 64.0 64.0 6	64.0 9.5	81.0	15.0	86.5	86.5
Total Split (%) 40.0% 40.0% 40.0% 40	.0% 5.9%	50.6%	9.4%	54.1%	54.1%
Yellow Time (s) 4.0 4.0 4.0	4.0 3.0	4.0	3.0	4.0	4.0
All-Red Time (s) 4.0 4.0 4.0	4.0 1.0	3.0	1.0	3.0	3.0
Lost Time Adjust (s) -1.0 -1.0 -1.0	-1.0 -1.0	-1.0	-1.0	-1.0	-1.0
Total Lost Time (s) 7.0 7.0 7.0	7.0 3.0	6.0	3.0	6.0	6.0
Lead/Lag	Lead	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes
Recall Mode None None None N	one None	C-Max	None	C-Max	C-Max
v/c Ratio 1.20 0.36 0.45 0	0.28	1.18	1.40	0.90	0.46
Control Delay 162.2 23.4 44.7 2	26.4 78.0	125.9	275.1	42.2	14.7
Queue Delay 0.0 42.2 75.2	0.0 0.0	1.5	0.0	48.9	0.0
Total Delay 162.2 65.6 119.9 2	26.4 78.0	127.3	275.1	91.1	14.7
Queue Length 50th (m) ~137.1 27.2 35.8 2	26.3 4.6	~355.0	~67.6	195.4	30.6
Queue Length 95th (m) #201.0 49.6 58.4 3	39.5 m5.7	m#366.3	#115.7	#278.5	62.2
Internal Link Dist (m) 191.8 11	12.9	109.3		252.0	
Turn Bay Length (m) 25.0	37.5		48.5		48.5
	961 57	1474	114	1579	705
Starvation Cap Reductn 0 0 0	0 0	447	0	0	0
Spillback Cap Reductn 0 365 219	0 0	0	0	813	0
Storage Cap Reductn 0 0 0	0 0	0	0	0	0
	0.28	1.70	1.40	1.85	0.46

Intersection Summary

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	٠	→	•	•	•	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		*	†		7	↑ ↑		*	^	7
Traffic Volume (vph)	328	30	159	135	19	274	15	1576	30	147	1305	296
Future Volume (vph)	328	30	159	135	19	274	15	1576	30	147	1305	296
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	7.0	7.0		7.0	7.0		3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	0.93		1.00	1.00		1.00	1.00	0.85
Flpb, ped/bikes	0.96	1.00		0.98	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.87		1.00	0.86		1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1518	1429		1578	2520		1409	3144		1530	2933	1187
Flt Permitted	0.52	1.00		0.56	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	836	1429		929	2520		1409	3144		1530	2933	1187
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	357	33	173	147	21	298	16	1713	33	160	1418	322
RTOR Reduction (vph)	0	56	0	0	64	0	0	1	0	0	0	69
Lane Group Flow (vph)	357	150	0	147	255	0	16	1745	0	160	1418	253
Confl. Peds. (#/hr)	47		20	20		47	90		46	46		90
Confl. Bikes (#/hr)						1			1			2
Heavy Vehicles (%)	2%	0%	3%	0%	0%	5%	14%	4%	0%	5%	12%	3%
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4				6			2	2
Actuated Green, G (s)	56.0	56.0		56.0	56.0		2.2	74.0		11.0	82.8	82.8
Effective Green, g (s)	57.0	57.0		57.0	57.0		3.2	75.0		12.0	83.8	83.8
Actuated g/C Ratio	0.36	0.36		0.36	0.36		0.02	0.47		0.08	0.52	0.52
Clearance Time (s)	8.0	8.0		8.0	8.0		4.0	7.0		4.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	297	509		330	897		28	1473		114	1536	621
v/s Ratio Prot		0.10			0.10		0.01	c0.56		c0.10	0.48	
v/s Ratio Perm	c0.43			0.16								0.21
v/c Ratio	1.20	0.29		0.45	0.28		0.57	1.18		1.40	0.92	0.41
Uniform Delay, d1	51.5	37.0		39.4	36.9		77.7	42.5		74.0	35.1	23.1
Progression Factor	1.00	1.00		1.00	1.00		0.98	1.06		1.00	1.00	1.00
Incremental Delay, d2	118.6	0.3		1.0	0.2		9.8	85.8		225.8	10.7	2.0
Delay (s)	170.1	37.4		40.4	37.1		85.9	131.1		299.8	45.9	25.1
Level of Service	F	D		D	D		F	F		F	D	С
Approach Delay (s)		121.5			38.1			130.7			63.7	
Approach LOS		F			D			F			Е	
Intersection Summary												
HCM 2000 Control Delay			93.3	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	city ratio		1.21									
Actuated Cycle Length (s)	•		160.0	Sı	um of lost	time (s)			16.0			
Intersection Capacity Utilizat	tion		126.8%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

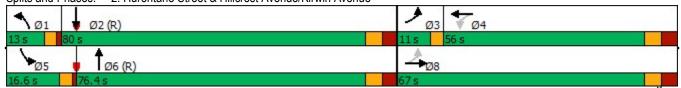
2: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

	•	-	1	←	1	†	1	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	↑ ↑	*	†	7	†	*	†	
Traffic Volume (vph)	345	191	165	187	109	1171	106	1604	
Future Volume (vph)	345	191	165	187	109	1171	106	1604	
Lane Group Flow (vph)	375	469	179	354	118	1312	115	1961	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	3	8		4	1	6	5	2	
Permitted Phases	8		4			6		2	
Detector Phase	3	8	4	4	1	6	5	2	
Switch Phase									
Minimum Initial (s)	5.0	8.0	8.0	8.0	7.0	8.0	5.0	8.0	
Minimum Split (s)	9.5	56.0	56.0	56.0	11.0	51.5	9.5	51.5	
Total Split (s)	11.0	67.0	56.0	56.0	13.0	76.4	16.6	80.0	
Total Split (%)	6.9%	41.9%	35.0%	35.0%	8.1%	47.8%	10.4%	50.0%	
Yellow Time (s)	3.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	4.0	4.0	4.0	1.0	3.5	1.0	3.5	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	2.0	7.0	7.0	7.0	3.0	6.5	3.0	6.5	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
v/c Ratio	1.21	0.46	0.91	0.41	0.83	0.92	0.82	1.40	
Control Delay	158.6	29.9	100.4	31.2	107.6	51.2	90.6	224.5	
Queue Delay	3.2	0.0	0.0	0.0	0.0	49.1	0.0	1.0	
Total Delay	161.8	29.9	100.4	31.2	107.6	100.3	90.6	225.6	
Queue Length 50th (m)	~112.9	42.3	53.5	30.4	~43.2	214.6	37.3	~433.1	
Queue Length 95th (m)	#189.3	57.5	#94.8	44.7	#90.5	#266.4	m#52.1	#473.8	
Internal Link Dist (m)		206.4		133.2		400.9		109.3	
Turn Bay Length (m)			50.0		53.0		36.0		
Base Capacity (vph)	311	1123	222	953	143	1432	142	1405	
Starvation Cap Reductn	0	0	0	0	0	0	0	315	
Spillback Cap Reductn	69	0	0	20	0	789	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.55	0.42	0.81	0.38	0.83	2.04	0.81	1.80	

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160

Offset: 99 (62%), Referenced to phase 2:SBT and 6:NBT, Start of Green


Natural Cycle: 150

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

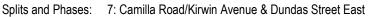
Splits and Phases: 2: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

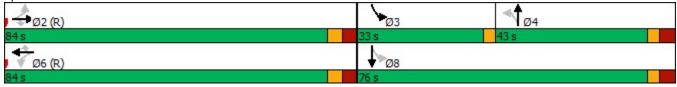
	۶	→	•	1	•	•	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	†		7	†		*	† 1>	
Traffic Volume (vph)	345	191	240	165	187	139	109	1171	36	106	1604	201
Future Volume (vph)	345	191	240	165	187	139	109	1171	36	106	1604	201
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	2.0	7.0		7.0	7.0		3.0	6.5		3.0	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.97		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		0.98	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.92		1.00	0.94		1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1553	2780		1428	2837		1460	3056		1575	3047	
Flt Permitted	0.44	1.00		0.48	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	718	2780		726	2837		1460	3056		1575	3047	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	375	208	261	179	203	151	118	1273	39	115	1743	218
RTOR Reduction (vph)	0	85	0	0	89	0	0	1	0	0	6	0
Lane Group Flow (vph)	375	384	0	179	265	0	118	1311	0	115	1955	0
Confl. Peds. (#/hr)	18	001	42	42	200	18	96	1011	4	4	1000	96
Heavy Vehicles (%)	3%	4%	6%	10%	7%	7%	10%	7%	5%	2%	5%	2%
Turn Type	pm+pt	NA	070	Perm	NA	1 /0	Prot	NA	070	Prot	NA	270
Protected Phases	3	8		I GIIII	4		1	6		5	2	
Permitted Phases	8	U		4	7		Į.	6		3	2	
Actuated Green, G (s)	53.3	53.3		42.3	42.3		14.7	73.9		13.3	72.5	
Effective Green, g (s)	54.3	54.3		43.3	43.3		15.7	74.9		14.3	73.5	
Actuated g/C Ratio	0.34	0.34		0.27	0.27		0.10	0.47		0.09	0.46	
Clearance Time (s)	3.0	8.0		8.0	8.0		4.0	7.5		4.0	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	290	943		196	767		143	1430		140	1399	
v/s Ratio Prot	c0.07	0.14		190	0.09		c0.08	0.43		0.07	c0.64	
v/s Ratio Perm	0.37	0.14		c0.25	0.09		00.00	0.43		0.07	00.04	
v/c Ratio	1.29	0.41		0.91	0.35		0.83	0.92		0.82	1.40	
Uniform Delay, d1	52.1	40.5		56.5	46.9		70.8	39.6		71.6	43.2	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		0.83	1.41	
	155.2	0.3		40.6	0.3		30.5	10.8		23.7	182.1	
Incremental Delay, d2	207.3	40.8		97.1	47.2		101.3	50.4		83.4	243.1	
Delay (s) Level of Service	207.3 F	40.6 D		97.1 F	47.2 D		101.5 F	30.4 D		03.4 F	243.1 F	
	Г	114.8		Г	64.0		Г	54.6		Г	234.2	
Approach Delay (s) Approach LOS		114.0 F			64.0 E			54.6 D			234.Z F	
Intersection Summary		'			_						'	
HCM 2000 Control Delay			142.4	<u></u>	CM 2000	Lovel of 9	Sorvico		F			
	oity rotio			יח	CIVI ZUUU	Level of 3	service		Г			
HCM 2000 Volume to Capa	city ratio		1.17 160.0	C.	ım of loca	time (a)			18.5			
Actuated Cycle Length (s)	tion				um of lost U Level o				10.5 H			
Intersection Capacity Utiliza	IUUII		128.5%	IC	o Level (n Service			П			
Analysis Period (min) c Critical Lane Group			15									
Chilical Lane Group												

	۶	→	*	•	•	•	1	†	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	^	7	*	^	7	7	7	*	7	
Traffic Volume (vph)	29	1088	59	56	637	161	60	93	350	101	
Future Volume (vph)	29	1088	59	56	637	161	60	93	350	101	
Lane Group Flow (vph)	32	1183	64	61	692	175	65	181	380	140	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		2			6			4	3	8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	3	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	44.0	44.0	44.0	44.0	44.0	44.0	43.0	43.0	9.5	43.0	
Total Split (s)	84.0	84.0	84.0	84.0	84.0	84.0	43.0	43.0	33.0	76.0	
Total Split (%)	52.5%	52.5%	52.5%	52.5%	52.5%	52.5%	26.9%	26.9%	20.6%	47.5%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	0.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	
Lead/Lag							Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes		
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.11	0.65	0.08	0.39	0.39	0.21	0.42	0.75	0.94	0.25	
Control Delay	18.7	26.0	6.7	29.9	20.0	3.0	69.2	75.6	74.6	34.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	18.7	26.0	6.7	29.9	20.0	3.0	69.2	75.6	74.6	34.0	
Queue Length 50th (m)	4.5	129.9	2.1	10.3	61.1	0.0	19.2	49.2	100.0	29.1	
Queue Length 95th (m)	11.6	173.9	10.1	27.3	85.2	11.8	33.4	72.3	#127.3	42.8	
Internal Link Dist (m)		302.1			262.5			162.3		279.0	
Turn Bay Length (m)	15.0		30.0	30.0		65.0	36.0		40.0		
Base Capacity (vph)	296	1823	786	158	1789	831	249	377	404	716	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.65	0.08	0.39	0.39	0.21	0.26	0.48	0.94	0.20	

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160


Offset: 38 (24%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green


Natural Cycle: 100

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	•	•	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	^	7	*	₽		*	7	
Traffic Volume (vph)	29	1088	59	56	637	161	60	93	74	350	101	28
Future Volume (vph)	29	1088	59	56	637	161	60	93	74	350	101	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		2.0	6.0	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93		1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1428	3159	1327	1604	3099	1312	1534	1553		1558	1624	
FIt Permitted	0.34	1.00	1.00	0.16	1.00	1.00	0.67	1.00		0.35	1.00	
Satd. Flow (perm)	514	3159	1327	273	3099	1312	1078	1553		573	1624	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	1183	64	61	692	175	65	101	80	380	110	30
RTOR Reduction (vph)	0	0	20	0	0	74	0	20	0	0	7	0
Lane Group Flow (vph)	32	1183	44	61	692	101	65	161	0	380	133	0
Confl. Peds. (#/hr)	6		5	5		6	15		3	3		15
Heavy Vehicles (%)	12%	4%	5%	0%	6%	6%	3%	1%	6%	3%	3%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		2			6	. 0		4		3	8	
Permitted Phases	2	_	2	6		6	4	•		8		
Actuated Green, G (s)	91.4	91.4	91.4	91.4	91.4	91.4	21.8	21.8		54.6	54.6	
Effective Green, g (s)	92.4	92.4	92.4	92.4	92.4	92.4	22.8	22.8		55.6	55.6	
Actuated g/C Ratio	0.58	0.58	0.58	0.58	0.58	0.58	0.14	0.14		0.35	0.35	
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	296	1824	766	157	1789	757	153	221		388	564	
v/s Ratio Prot	230	c0.37	700	107	0.22	101	100	c0.10		c0.19	0.08	
v/s Ratio Perm	0.06	00.07	0.03	0.22	0.22	0.08	0.06	00.10		0.15	0.00	
v/c Ratio	0.11	0.65	0.06	0.39	0.39	0.13	0.42	0.73		0.98	0.24	
Uniform Delay, d1	15.2	22.8	14.8	18.4	18.4	15.5	62.6	65.7		46.7	37.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.7	1.8	0.1	7.1	0.6	0.4	1.9	11.4		39.7	0.2	
Delay (s)	16.0	24.6	14.9	25.5	19.0	15.8	64.5	77.1		86.4	37.3	
Level of Service	В	C	В	C	В	В	E	E		F	D	
Approach Delay (s)		23.9			18.8		_	73.8		•	73.2	
Approach LOS		C			В			E			E	
Intersection Summary												
HCM 2000 Control Delay			35.1	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacit	tv ratio		0.73									
Actuated Cycle Length (s)	,		160.0	Sı	um of lost	t time (s)			14.0			
	on								F			
c Critical Lane Group												
Intersection Capacity Utilization Analysis Period (min) C. Critical Lane Group	on		92.4% 15	IC	U Level o	of Service			F			


	۶	→	←	-	1
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		4412	† \$	7	7
Traffic Volume (vph)	257	562	323	17	217
Future Volume (vph)	257	562	323	17	217
Lane Group Flow (vph)	0	890	371	18	236
Turn Type	pm+pt	NA	NA	Perm	Perm
Protected Phases	1	2	2		
Permitted Phases	2			4	4
Detector Phase	1	2	2	4	4
Switch Phase					
Minimum Initial (s)	7.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.5	32.0	32.0	34.5	34.5
Total Split (s)	28.0	54.0	54.0	69.5	69.5
Total Split (%)	18.5%	35.6%	35.6%	45.9%	45.9%
Yellow Time (s)	3.0	3.5	3.5	3.5	3.5
All-Red Time (s)	0.0	3.5	3.5	2.0	2.0
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		6.0	6.0	4.5	4.5
Lead/Lag	Lead	Lag	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes		
Recall Mode	None	Max	Max	None	None
v/c Ratio		0.35	0.16	0.09	0.54
Control Delay		4.9	4.0	26.3	9.3
Queue Delay		0.0	0.0	0.0	0.0
Total Delay		4.9	4.0	26.3	9.3
Queue Length 50th (m)		14.1	7.1	2.0	0.0
Queue Length 95th (m)		20.1	11.4	7.1	17.0
Internal Link Dist (m)		132.4	206.4	85.2	
Turn Bay Length (m)					
Base Capacity (vph)		2514	2278	1200	1451
Starvation Cap Reductn		0	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.35	0.16	0.01	0.16
Intersection Summary					

Cycle Length: 151.5 Actuated Cycle Length: 69.9

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Splits and Phases: 9: Hillcrest Avenue & Cooksville GO

۶	→	•	•	-	4	
EBL	EBT	WBT	WBR	SBL	SBR	
257			18			
1000			1000			
0.02			0.02			
	090	370				
30				23	I	
5 0/.	60/	100/		100/	70/.	
			0 /0			
				Perm	Perm	
•	Z	Z		1	1	
	17.2	17.2				
	2526			200	238	
	0.04	0.11		0.04	0.00	
		0.40				
					C	
	Α	А		С		
		7.9	Н	CM 2000	Level of Ser	vice A
y ratio		0.54				
y ratio		69.9	Sı	um of lost	t time (s)	14.5
y ratio n				um of lost	t time (s) of Service	14.5 B
		69.9				
	EBL 257 257 1900 0.92 279 0 0 30 5% pm+pt 1 2	257 562 257 562 1900 1900 6.0 0.91 1.00 1.00 1.00 0.98 4863 0.74 3656 0.92 0.92 279 611 0 0 0 890 30 5% 6% pm+pt NA 1 2 2 47.3 48.3 0.69 7.0 3.0 2526 c0.24 0.35 4.4 1.00 0.1 4.5 A	257 562 323 257 562 323 1900 1900 1900 6.0 6.0 0.91 0.95 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00 4863 3301 0.74 1.00 3656 3301 0.92 0.92 279 611 351 0 0 1 0 890 370 30 5% 6% 10% pm+pt NA NA 1 2 2 2 47.3 47.3 48.3 48.3 0.69 0.69 7.0 7.0 3.0 3.0 2526 2280 0.11 c0.24 0.35 0.16 4.4 3.8 1.00 1.00 0.1 0.2 4.5 3.9 A A 4.5 3.9 A A	257 562 323 18 257 562 323 18 1900 1900 1900 1900 6.0 6.0 0.91 0.95 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00 4863 3301 0.74 1.00 3656 3301 0.92 0.92 0.92 279 611 351 20 0 0 1 0 0 890 370 0 30 30 5% 6% 10% 0% pm+pt NA NA 1 2 2 2 47.3 47.3 48.3 48.3 0.69 0.69 7.0 7.0 3.0 3.0 2526 2280 0.11 c0.24 0.35 0.16 4.4 3.8 1.00 1.00 0.1 0.2 4.5 3.9 A A 4.5 3.9 A A 7.9 H	257 562 323 18 17 257 562 323 18 17 1900 1900 1900 1900 1900 6.0 6.0 6.0 4.5 0.91 0.95 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.98 1.00 0.95 4863 3301 1264 0.74 1.00 0.95 3656 3301 1264 0.92 0.92 0.92 0.92 0.92 279 611 351 20 18 0 0 1 0 0 0 890 370 0 18 30 30 23 1 5% 6% 10% 0% 42% pm+pt NA NA Perm 1 2 2 2 4 47.3 47.3 10.1 48.3 48.3 11.1 0.69 0.69 0.16 7.0 7.0 5.5 3.0 3.0 3.0 2526 2280 200 0.11 c0.24 0.01 0.35 0.16 0.09 4.4 3.8 25.1 1.00 1.00 1.00 0.1 0.2 0.2 4.5 3.9 25.3 A A A C 4.5 3.9 25.6 A A A C	257 562 323 18 17 217 257 562 323 18 17 217 1900 1900 1900 1900 1900 1900 6.0 6.0 6.0 4.5 4.5 0.91 0.95 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.99 1.00 0.85 0.98 1.00 0.95 1.00 4863 3301 1264 1500 0.74 1.00 0.95 1.00 3656 3301 1264 1500 0.92 0.92 0.92 0.92 0.92 279 611 351 20 18 236 0 0 1 0 0 199 0 890 370 0 18 37 30 30 23 7 1 5% 6% 10% 0% 42% 7% pm+pt NA NA Perm Perm 1 2 2 2 4 4 4 47.3 47.3 10.1 10.1 48.3 48.3 11.1 11.1 0.69 0.69 0.16 0.16 7.0 7.0 5.5 5.5 3.0 3.0 3.0 3.0 3.0 2526 2280 200 238 0.11 c0.24 0.01 c0.02 0.35 0.16 0.09 0.16 4.4 3.8 25.1 25.4 1.00 1.00 1.00 0.1 0.2 0.2 0.3 4.5 3.9 25.3 25.7 A A C C 7.9 HCM 2000 Level of Ser

	-	•	1	←	1	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	**		
Traffic Volume (veh/h)	155	53	8	375	46	11	
Future Volume (Veh/h)	155	53	8	375	46	11	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	168	58	9	408	50	12	
Pedestrians	4			2	13		
Lane Width (m)	3.7			3.7	3.7		
Walking Speed (m/s)	1.1			1.1	1.1		
Percent Blockage	0			0	1		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	137						
pX, platoon unblocked							
vC, conflicting volume			239		640	212	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			239		640	212	
tC, single (s)			4.4		6.5	6.5	
tC, 2 stage (s)							
tF (s)			2.5		3.6	3.6	
p0 queue free %			99		88	98	
cM capacity (veh/h)			1152		413	745	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	226	417	62				
Volume Left	0	9	50				
Volume Right	58	0	12				
cSH	1700	1152	452				
Volume to Capacity	0.13	0.01	0.14				
Queue Length 95th (m)	0.0	0.2	3.6				
Control Delay (s)	0.0	0.3	14.2				
Lane LOS		Α	В				
Approach Delay (s)	0.0	0.3	14.2				
Approach LOS			В				
Intersection Summary							
Average Delay			1.4				
Intersection Capacity Utiliza	ation		40.0%	IC	U Level c	f Service	
Analysis Period (min)			15	10	2 207010	. 5011100	
raidiyolo i chibu (ililii)			10				

Intersection												
Intersection Delay, s/veh	9.5											,
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	ĵ»		×	7			4			4	
Traffic Vol, veh/h	21	202	18	7	150	10	14	21	10	21	30	20
Future Vol, veh/h	21	202	18	7	150	10	14	21	10	21	30	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	39	1	6	0	6	10	0	7	10	0	4	20
Mvmt Flow	23	220	20	8	163	11	15	23	11	23	33	22
Number of Lanes	1	1	0	1	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			2		
HCM Control Delay	10			9.5			8.4			8.6		
HCM LOS	Α			Α			Α			Α		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1					
Lane Vol Left, %		NBLn1 31%	EBLn1 100%	EBLn2 0%	WBLn1 100%	WBLn2	SBLn1 30%					
		31% 47%	100% 0%	0% 92%			30% 42%					
Vol Left, %		31%	100%	0%	100%	0%	30%					
Vol Left, % Vol Thru, %		31% 47%	100% 0%	0% 92%	100% 0%	0% 94%	30% 42%					
Vol Left, % Vol Thru, % Vol Right, %		31% 47% 22%	100% 0% 0% Stop 21	0% 92% 8%	100% 0% 0%	0% 94% 6%	30% 42% 28% Stop 71					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		31% 47% 22% Stop 45 14	100% 0% 0% Stop	0% 92% 8% Stop 220	100% 0% 0% Stop	0% 94% 6% Stop 160	30% 42% 28% Stop					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		31% 47% 22% Stop 45 14 21	100% 0% 0% Stop 21	0% 92% 8% Stop 220 0 202	100% 0% 0% Stop 7	0% 94% 6% Stop 160 0	30% 42% 28% Stop 71 21 30					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		31% 47% 22% Stop 45 14 21	100% 0% 0% Stop 21 21 0	0% 92% 8% Stop 220 0 202 18	100% 0% 0% Stop 7 7 0	0% 94% 6% Stop 160 0 150	30% 42% 28% Stop 71 21 30 20					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		31% 47% 22% Stop 45 14 21 10	100% 0% 0% Stop 21 21 0	0% 92% 8% Stop 220 0 202 18 239	100% 0% 0% Stop 7 7 0 0	0% 94% 6% Stop 160 0 150 10	30% 42% 28% Stop 71 21 30 20					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		31% 47% 22% Stop 45 14 21 10 49	100% 0% 0% Stop 21 21 0 0 23	0% 92% 8% Stop 220 0 202 18 239	100% 0% 0% Stop 7 7 0 0 8	0% 94% 6% Stop 160 0 150 10	30% 42% 28% Stop 71 21 30 20 77					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		31% 47% 22% Stop 45 14 21 10 49 2	100% 0% 0% Stop 21 21 0 0 23 5	0% 92% 8% Stop 220 0 202 18 239 5	100% 0% 0% Stop 7 7 0 0 8 5	0% 94% 6% Stop 160 0 150 10 174 5	30% 42% 28% Stop 71 21 30 20 77 2					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		31% 47% 22% Stop 45 14 21 10 49 2 0.068 5.019	100% 0% 0% Stop 21 21 0 0 23 5 0.039 6.146	0% 92% 8% Stop 220 0 202 18 239 5 0.328 4.937	100% 0% 0% Stop 7 7 0 0 8 5 0.012 5.552	0% 94% 6% Stop 160 0 150 174 5 0.247 5.108	30% 42% 28% Stop 71 21 30 20 77 2 0.106 4.939					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		31% 47% 22% Stop 45 14 21 10 49 2 0.068 5.019 Yes	100% 0% 0% Stop 21 21 0 0 23 5 0.039 6.146 Yes	0% 92% 8% Stop 220 0 202 18 239 5 0.328 4.937 Yes	100% 0% 0% Stop 7 7 0 0 8 5 0.012 5.552 Yes	0% 94% 6% Stop 160 0 150 174 5 0.247 5.108 Yes	30% 42% 28% Stop 71 21 30 20 77 2 0.106 4.939 Yes					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		31% 47% 22% Stop 45 14 21 10 49 2 0.068 5.019 Yes 711	100% 0% 0% Stop 21 21 0 0 23 5 0.039 6.146 Yes 583	0% 92% 8% Stop 220 0 202 18 239 5 0.328 4.937 Yes 727	100% 0% 0% Stop 7 7 0 0 8 5 0.012 5.552 Yes 644	0% 94% 6% Stop 160 0 150 10 174 5 0.247 5.108 Yes 703	30% 42% 28% Stop 71 21 30 20 77 2 0.106 4.939 Yes 724					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		31% 47% 22% Stop 45 14 21 10 49 2 0.068 5.019 Yes 711 3.066	100% 0% 0% Stop 21 21 0 0 23 5 0.039 6.146 Yes 583 3.881	0% 92% 8% Stop 220 0 202 18 239 5 0.328 4.937 Yes 727 2.671	100% 0% 0% Stop 7 7 0 0 8 5 0.012 5.552 Yes 644 3.289	0% 94% 6% Stop 160 0 150 10 174 5 0.247 5.108 Yes 703 2.844	30% 42% 28% Stop 71 21 30 20 77 2 0.106 4.939 Yes 724 2.982					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		31% 47% 22% Stop 45 14 21 10 49 2 0.068 5.019 Yes 711 3.066 0.069	100% 0% 0% Stop 21 21 0 0 23 5 0.039 6.146 Yes 583 3.881 0.039	0% 92% 8% Stop 220 0 202 18 239 5 0.328 4.937 Yes 727 2.671 0.329	100% 0% 0% Stop 7 7 0 0 8 5 0.012 5.552 Yes 644 3.289 0.012	0% 94% 6% Stop 160 0 150 174 5 0.247 5.108 Yes 703 2.844 0.248	30% 42% 28% Stop 71 21 30 20 77 2 0.106 4.939 Yes 724 2.982 0.106					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		31% 47% 22% Stop 45 14 21 10 49 2 0.068 5.019 Yes 711 3.066 0.069 8.4	100% 0% 0% Stop 21 21 0 0 23 5 0.039 6.146 Yes 583 3.881 0.039 9.1	0% 92% 8% Stop 220 0 202 18 239 5 0.328 4.937 Yes 727 2.671 0.329 10.1	100% 0% 0% Stop 7 7 0 0 8 5 0.012 5.552 Yes 644 3.289 0.012 8.4	0% 94% 6% Stop 160 0 150 174 5 0.247 5.108 Yes 703 2.844 0.248 9.5	30% 42% 28% Stop 71 21 30 20 77 2 0.106 4.939 Yes 724 2.982 0.106 8.6					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		31% 47% 22% Stop 45 14 21 10 49 2 0.068 5.019 Yes 711 3.066 0.069	100% 0% 0% Stop 21 21 0 0 23 5 0.039 6.146 Yes 583 3.881 0.039	0% 92% 8% Stop 220 0 202 18 239 5 0.328 4.937 Yes 727 2.671 0.329	100% 0% 0% Stop 7 7 0 0 8 5 0.012 5.552 Yes 644 3.289 0.012	0% 94% 6% Stop 160 0 150 174 5 0.247 5.108 Yes 703 2.844 0.248	30% 42% 28% Stop 71 21 30 20 77 2 0.106 4.939 Yes 724 2.982 0.106					

	-	•	1	•	4	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	**		
Traffic Volume (veh/h)	15	176	9	15	162	6	
Future Volume (Veh/h)	15	176	9	15	162	6	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	16	191	10	16	176	7	
Pedestrians	2			1	11		
Lane Width (m)	3.7			3.7	3.7		
Walking Speed (m/s)	1.1			1.1	1.1		
Percent Blockage	0			0	1		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	354						
pX, platoon unblocked							
vC, conflicting volume			218		160	124	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			218		160	124	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			99		78	99	
cM capacity (veh/h)			1350		817	922	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	207	26	183				
Volume Left	0	10	176				
Volume Right	191	0	7				
cSH	1700	1350	820				
Volume to Capacity	0.12	0.01	0.22				
Queue Length 95th (m)	0.12	0.01	6.5				
Control Delay (s)	0.0	3.0	10.6				
Lane LOS	0.0	3.0 A	В				
Approach Delay (s)	0.0	3.0	10.6				
Approach LOS	0.0	3.0	В				
•			ט				
Intersection Summary							
Average Delay			4.9				
Intersection Capacity Utiliza	ition		31.1%	IC	U Level o	f Service	
Analysis Period (min)			15				

Intersection						
Intersection Delay, s/veh	10.4					
Intersection LOS	В					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	*	*	7	W	
Traffic Vol, veh/h	25	225	131	153	183	16
Future Vol, veh/h	25	225	131	153	183	16
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0	3	9	2	1	0
Mvmt Flow	27	245	142	166	199	17
Number of Lanes	1	1	1	1	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	2		2		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		2	
Conflicting Approach Right	•		SB		EB	
Conflicting Lanes Right	0		1		2	
HCM Control Delay	11.3		9.3		11	
HCM LOS	В		A		В	
Lane		FRI n1	FRI n2	WBI n1	WRI n2	SBI n1
Vol Left %		EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Vol Left, %		100%	0%	0%	0%	92%
Vol Left, % Vol Thru, %		100% 0%	0% 100%	0% 100%	0% 0%	92% 0%
Vol Left, % Vol Thru, % Vol Right, %		100% 0% 0%	0% 100% 0%	0% 100% 0%	0% 0% 100%	92% 0% 8%
Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 100% 0% Stop	0% 100% 0% Stop	0% 0% 100% Stop	92% 0% 8% Stop
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 25	0% 100% 0% Stop 225	0% 100% 0% Stop 131	0% 0% 100% Stop 153	92% 0% 8% Stop 199
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 25 25	0% 100% 0% Stop 225	0% 100% 0% Stop 131	0% 0% 100% Stop 153	92% 0% 8% Stop 199 183
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 25 25 0	0% 100% 0% Stop 225 0	0% 100% 0% Stop 131 0	0% 0% 100% Stop 153 0	92% 0% 8% Stop 199 183 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 25 25 0	0% 100% 0% Stop 225 0 225	0% 100% 0% Stop 131 0 131	0% 0% 100% Stop 153 0 0	92% 0% 8% Stop 199 183 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 25 25 0 0	0% 100% 0% Stop 225 0 225 0 225	0% 100% 0% Stop 131 0 131	0% 0% 100% Stop 153 0 0 153 166	92% 0% 8% Stop 199 183 0 16
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 25 25 0 0 27	0% 100% 0% Stop 225 0 225 0 245	0% 100% 0% Stop 131 0 131 0 142	0% 0% 100% Stop 153 0 0 153 166	92% 0% 8% Stop 199 183 0 16 216
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 25 25 0 0 27 5	0% 100% 0% Stop 225 0 225 0 245 5	0% 100% 0% Stop 131 0 131 0 142 5	0% 0% 100% Stop 153 0 0 153 166 5	92% 0% 8% Stop 199 183 0 16 216 2
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		100% 0% 0% Stop 25 25 0 0 27 5 0.045 5.912	0% 100% 0% Stop 225 0 225 0 245 5 0.371 5.459	0% 100% 0% Stop 131 0 131 0 142 5 0.219	0% 0% 100% Stop 153 0 0 153 166 5 0.218 4.717	92% 0% 8% Stop 199 183 0 16 216 2 0.323 5.384
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		100% 0% 0% Stop 25 25 0 0 27 5 0.045 5.912 Yes	0% 100% 0% Stop 225 0 225 0 245 5 0.371 5.459 Yes	0% 100% 0% Stop 131 0 131 0 142 5 0.219 5.544 Yes	0% 0% 100% Stop 153 0 0 153 166 5 0.218 4.717 Yes	92% 0% 8% Stop 199 183 0 16 216 2 0.323 5.384 Yes
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		100% 0% 0% Stop 25 25 0 0 27 5 0.045 5.912 Yes 601	0% 100% 0% Stop 225 0 225 0 245 5 0.371 5.459 Yes 653	0% 100% 0% Stop 131 0 131 0 142 5 0.219 5.544 Yes 642	0% 0% 100% Stop 153 0 0 153 166 5 0.218 4.717 Yes 753	92% 0% 8% Stop 199 183 0 16 216 2 0.323 5.384 Yes 662
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		100% 0% 0% Stop 25 25 0 0 27 5 0.045 5.912 Yes 601 3.691	0% 100% 0% Stop 225 0 225 0 245 5 0.371 5.459 Yes 653 3.237	0% 100% 0% Stop 131 0 131 0 142 5 0.219 5.544 Yes 642 3.321	0% 0% 100% Stop 153 0 0 153 166 5 0.218 4.717 Yes 753 2.493	92% 0% 8% Stop 199 183 0 16 216 2 0.323 5.384 Yes 662 3.463
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 25 25 0 0 27 5 0.045 5.912 Yes 601	0% 100% 0% Stop 225 0 225 0 245 5 0.371 5.459 Yes 653 3.237 0.375	0% 100% 0% Stop 131 0 131 0 142 5 0.219 5.544 Yes 642 3.321 0.221	0% 0% 100% Stop 153 0 0 153 166 5 0.218 4.717 Yes 753 2.493 0.22	92% 0% 8% Stop 199 183 0 16 216 2 0.323 5.384 Yes 662 3.463 0.326
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		100% 0% 0% Stop 25 25 0 0 27 5 0.045 5.912 Yes 601 3.691 0.045 9	0% 100% 0% Stop 225 0 225 0 245 5 0.371 5.459 Yes 653 3.237 0.375 11.5	0% 100% 0% Stop 131 0 131 0 142 5 0.219 5.544 Yes 642 3.321 0.221 9.9	0% 0% 100% Stop 153 0 0 153 166 5 0.218 4.717 Yes 753 2.493 0.22 8.8	92% 0% 8% Stop 199 183 0 16 216 2 0.323 5.384 Yes 662 3.463 0.326
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 25 25 0 0 27 5 0.045 5.912 Yes 601 3.691 0.045	0% 100% 0% Stop 225 0 225 0 245 5 0.371 5.459 Yes 653 3.237 0.375	0% 100% 0% Stop 131 0 131 0 142 5 0.219 5.544 Yes 642 3.321 0.221	0% 0% 100% Stop 153 0 0 153 166 5 0.218 4.717 Yes 753 2.493 0.22	92% 0% 8% Stop 199 183 0 16 216 2 0.323 5.384 Yes 662 3.463 0.326

	٠	→	—	1	-	4	•
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	1→		N/		
Traffic Volume (veh/h)	0	166	134	0	99	248	
Future Volume (Veh/h)	0	166	134	0	99	248	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	180	146	0	108	270	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)		264					
pX, platoon unblocked							
vC, conflicting volume	146				326	146	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	146				326	146	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				84	70	
cM capacity (veh/h)	1436				668	901	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	180	146	378				
Volume Left	0	0	108				
Volume Right	0	0	270				
cSH	1436	1700	819				
Volume to Capacity	0.00	0.09	0.46				
Queue Length 95th (m)	0.0	0.0	18.7				
Control Delay (s)	0.0	0.0	13.1				
Lane LOS			В				
Approach Delay (s)	0.0	0.0	13.1				
Approach LOS			В				
Intersection Summary							
Average Delay			7.0				
Intersection Capacity Utiliza	ition		36.2%	IC	U Level o	of Service	
Analysis Period (min)			15				
Alialysis Fellou (IIIIII)			13				

	۶	→	•	*	-	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	1→			
Traffic Volume (veh/h)	71	192	134	43	0	0
Future Volume (Veh/h)	71	192	134	43	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	77	209	146	47	0	0
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		330				
pX, platoon unblocked						
vC, conflicting volume	193				532	170
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	193				532	170
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	94				100	100
cM capacity (veh/h)	1380				479	874
	EB 1	WB 1				
Direction, Lane #						
Volume Total	286	193				
Volume Left	77	0				
Volume Right	0	47				
cSH	1380	1700				
Volume to Capacity	0.06	0.11				
Queue Length 95th (m)	1.3	0.0				
Control Delay (s)	2.5	0.0				
Lane LOS	A					
Approach Delay (s)	2.5	0.0				
Approach LOS						
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utiliza	ation		30.4%	IC	U Level o	f Service
Analysis Period (min)			15			

	•	-	1	•	1	†	-	Ţ	1
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	*	ĵ»	7	↑ ↑	×	†	*	^	7
Traffic Volume (vph)	288	37	70	31	40	1427	218	242	235
Future Volume (vph)	288	37	70	31	40	1427	218	242	235
Lane Group Flow (vph)	313	122	76	282	43	1611	237	263	255
Turn Type	Perm	NA	Perm	NA	Prot	NA	Prot	NA	Perm
Protected Phases		8		4	1	6	5	2	
Permitted Phases	8		4			6		2	2
Detector Phase	8	8	4	4	1	6	5	2	2
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0
Minimum Split (s)	46.0	46.0	46.0	46.0	9.5	38.0	9.5	38.0	38.0
Total Split (s)	56.0	56.0	56.0	56.0	14.4	79.8	24.2	89.6	89.6
Total Split (%)	35.0%	35.0%	35.0%	35.0%	9.0%	49.9%	15.1%	56.0%	56.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0	1.0	3.0	1.0	3.0	3.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)	7.0	7.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0
Lead/Lag					Lead	Lag	Lead	Lag	Lag
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	C-Max
v/c Ratio	1.13	0.25	0.24	0.28	0.43	1.09	1.12	0.16	0.33
Control Delay	141.4	20.8	44.1	12.4	86.7	92.2	157.2	19.2	3.3
Queue Delay	0.0	0.0	0.1	0.0	0.0	3.5	0.0	0.0	0.0
Total Delay	141.4	20.9	44.2	12.4	86.7	95.7	157.2	19.2	3.3
Queue Length 50th (m)	~114.6	12.9	18.2	9.1	12.9	~300.9	~86.1	22.2	0.0
Queue Length 95th (m)	#175.9	29.8	33.0	20.7	m26.8	#343.5	#141.4	31.0	14.0
Internal Link Dist (m)		191.8		112.9		109.3		252.0	
Turn Bay Length (m)			25.0		37.5		48.5		48.5
Base Capacity (vph)	278	493	319	991	114	1473	212	1655	766
Starvation Cap Reductn	0	0	0	0	0	281	0	0	0
Spillback Cap Reductn	0	23	16	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.13	0.26	0.25	0.28	0.38	1.35	1.12	0.16	0.33

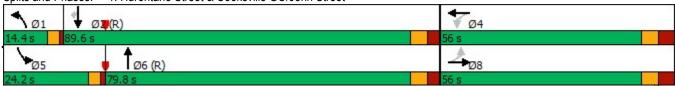
Intersection Summary

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 115 (72%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 145


Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

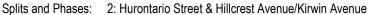
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	•	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		*	†		*	† 1>		*	^	7
Traffic Volume (vph)	288	37	75	70	31	228	40	1427	55	218	242	235
Future Volume (vph)	288	37	75	70	31	228	40	1427	55	218	242	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	7.0	7.0		7.0	7.0		3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	0.97		1.00	1.00		1.00	1.00	0.86
Flpb, ped/bikes	0.99	1.00		0.97	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.90		1.00	0.87		1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1585	1462		1491	2770		1606	3192		1606	3042	1195
Flt Permitted	0.54	1.00		0.66	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	907	1462		1042	2770		1606	3192		1606	3042	1195
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	313	40	82	76	34	248	43	1551	60	237	263	255
RTOR Reduction (vph)	0	46	0	0	143	0	0	2	0	0	0	117
Lane Group Flow (vph)	313	76	0	76	139	0	43	1609	0	237	263	138
Confl. Peds. (#/hr)	16		24	24		16	81		34	34		81
Confl. Bikes (#/hr)						1						2
Heavy Vehicles (%)	0%	0%	5%	5%	0%	0%	0%	2%	0%	0%	8%	4%
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4				6			2	2
Actuated Green, G (s)	48.0	48.0		48.0	48.0		7.7	72.8		20.2	85.3	85.3
Effective Green, g (s)	49.0	49.0		49.0	49.0		8.7	73.8		21.2	86.3	86.3
Actuated g/C Ratio	0.31	0.31		0.31	0.31		0.05	0.46		0.13	0.54	0.54
Clearance Time (s)	8.0	8.0		8.0	8.0		4.0	7.0		4.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	277	447		319	848		87	1472		212	1640	644
v/s Ratio Prot		0.05			0.05		0.03	c0.50		c0.15	0.09	
v/s Ratio Perm	c0.35			0.07								0.12
v/c Ratio	1.13	0.17		0.24	0.16		0.49	1.09		1.12	0.16	0.21
Uniform Delay, d1	55.5	40.6		41.5	40.5		73.5	43.1		69.4	18.6	19.2
Progression Factor	1.00	1.00		1.00	1.00		1.02	0.95		1.00	1.00	1.00
Incremental Delay, d2	93.7	0.2		0.4	0.1		4.4	53.3		97.1	0.2	0.8
Delay (s)	149.2	40.8		41.9	40.6		79.1	94.3		166.5	18.8	19.9
Level of Service	F	D		D	D		Е	F		F	В	В
Approach Delay (s)		118.8			40.9			93.9			65.5	
Approach LOS		F			D			F			Е	
Intersection Summary												
HCM 2000 Control Delay			84.7	⊔ /	CM 2000	Level of S	Sorvico		F			
HCM 2000 Control Delay HCM 2000 Volume to Capa	oity ratio		1.11	П	CIVI ZUUU	Level of 3	sei vice		Г			
Actuated Cycle Length (s)	icity ratio		160.0	C.	um of lost	time (c)			16.0			
Intersection Capacity Utiliza	ation		116.3%			of Service			10.0 H			
Analysis Period (min)	atiOH		15	10	O LEVEL	JI OEI VICE			11			
c Critical Lane Group			10									
o Ontical Lane Gloup												

2: Hurontario Street & Hillcrest Avenue/Kirwin Avenue

	•	-	1	•	1	†	1	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	↑ ↑	7	↑ ↑	7	†	7	↑ ↑	
Traffic Volume (vph)	131	255	86	318	197	144	223	180	
Future Volume (vph)	131	255	86	318	197	144	223	180	
Lane Group Flow (vph)	142	398	93	503	214	230	242	276	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	3	8		4	1	6	5	2	
Permitted Phases	8		4			6		2	
Detector Phase	3	8	4	4	1	6	5	2	
Switch Phase									
Minimum Initial (s)	5.0	8.0	8.0	8.0	7.0	8.0	5.0	8.0	
Minimum Split (s)	9.5	56.0	56.0	56.0	11.0	51.5	9.5	51.5	
Total Split (s)	13.0	69.0	56.0	56.0	37.0	53.0	38.0	54.0	
Total Split (%)	8.1%	43.1%	35.0%	35.0%	23.1%	33.1%	23.8%	33.8%	
Yellow Time (s)	3.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	4.0	4.0	4.0	1.0	3.5	1.0	3.5	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	2.0	7.0	7.0	7.0	3.0	6.5	3.0	6.5	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
v/c Ratio	0.72	0.46	0.59	0.79	0.80	0.18	0.82	0.20	
Control Delay	63.4	42.7	73.2	65.0	84.3	24.2	85.8	21.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	1.6	0.7	0.0	
Total Delay	63.4	42.7	73.2	65.0	84.3	25.8	86.6	21.7	
Queue Length 50th (m)	34.7	48.6	27.3	74.3	66.2	18.0	78.9	20.9	
Queue Length 95th (m)	50.4	60.6	45.2	89.6	90.4	32.8	106.1	32.2	
Internal Link Dist (m)		206.4		133.2		400.9		109.3	
Turn Bay Length (m)			50.0		53.0		36.0		
Base Capacity (vph)	196	1201	250	976	338	1304	358	1394	
Starvation Cap Reductn	0	0	0	0	0	0	18	0	
Spillback Cap Reductn	0	0	0	7	0	897	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.33	0.37	0.52	0.63	0.57	0.71	0.20	


Intersection Summary


Cycle Length: 160 Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

	٠	→	•	•	•	•	4	†	~	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	†		*	†		*	†	
Traffic Volume (vph)	131	255	111	86	318	144	197	144	67	223	180	74
Future Volume (vph)	131	255	111	86	318	144	197	144	67	223	180	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	2.0	7.0		7.0	7.0		3.0	6.5		3.0	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.99		1.00	0.97		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		0.97	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1589	3022		1506	3083		1575	2922		1606	3038	
Flt Permitted	0.22	1.00		0.52	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	371	3022		820	3083		1575	2922		1606	3038	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	142	277	121	93	346	157	214	157	73	242	196	80
RTOR Reduction (vph)	0	37	0	0	38	0	0	27	0	0	21	0
Lane Group Flow (vph)	142	361	0	93	465	0	214	203	0	242	255	0
Confl. Peds. (#/hr)	16		60	60		16	24		49	49		24
Heavy Vehicles (%)	1%	0%	5%	3%	1%	0%	2%	5%	0%	0%	2%	3%
Turn Type	pm+pt	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases	3	8		. 0	4		1	6		5	2	
Permitted Phases	8			4	•		•	6			2	
Actuated Green, G (s)	42.9	42.9		29.9	29.9		26.3	69.0		28.6	71.3	
Effective Green, g (s)	43.9	43.9		30.9	30.9		27.3	70.0		29.6	72.3	
Actuated g/C Ratio	0.27	0.27		0.19	0.19		0.17	0.44		0.19	0.45	
Clearance Time (s)	3.0	8.0		8.0	8.0		4.0	7.5		4.0	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	185	829		158	595		268	1278		297	1372	
v/s Ratio Prot	c0.05	0.12		100	c0.15		0.14	0.07		c0.15	c0.08	
v/s Ratio Perm	0.16	0.12		0.11	00.10		0.14	0.01		00.10	00.00	
v/c Ratio	0.77	0.44		0.59	0.78		0.80	0.16		0.81	0.19	
Uniform Delay, d1	47.9	47.8		58.8	61.3		63.7	27.2		62.6	26.2	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.04	0.86	
Incremental Delay, d2	17.2	0.4		5.5	6.6		15.2	0.3		15.6	0.3	
Delay (s)	65.1	48.2		64.3	68.0		78.9	27.5		80.9	23.0	
Level of Service	E	D		E	E		E	C		F	C	
Approach Delay (s)	_	52.7		_	67.4		_	52.3		•	50.0	
Approach LOS		D			E			D			D	
Intersection Summary												
HCM 2000 Control Delay			56.1	H	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.48	· ·								
Actuated Cycle Length (s)	,		160.0	Sı	um of lost	time (s)			18.5			
Intersection Capacity Utiliza	tion		113.8%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	*	•	•	•	1	†	-	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	^	7	*	^	7	7	1	*	1	
Traffic Volume (vph)	61	788	42	103	1119	391	52	128	286	101	
Future Volume (vph)	61	788	42	103	1119	391	52	128	286	101	
Lane Group Flow (vph)	66	857	46	112	1216	425	57	222	311	135	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		2		1	6			4	3	8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	1	6	6	4	4	3	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	44.0	44.0	44.0	9.5	44.0	44.0	43.0	43.0	9.5	43.0	
Total Split (s)	78.0	78.0	78.0	11.0	89.0	89.0	43.0	43.0	28.0	71.0	
Total Split (%)	48.8%	48.8%	48.8%	6.9%	55.6%	55.6%	26.9%	26.9%	17.5%	44.4%	
Yellow Time (s)	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.0	3.0	3.0	
All-Red Time (s)	3.5	3.5	3.5	0.0	3.5	3.5	4.0	4.0	0.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	6.0	6.0	6.0	2.0	6.0	6.0	6.0	6.0	2.0	6.0	
Lead/Lag	Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes	Yes	Yes		
Recall Mode	C-Max	C-Max	C-Max	None	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.43	0.53	0.07	0.34	0.64	0.46	0.31	0.78	0.87	0.24	
Control Delay	39.4	29.2	2.2	17.4	25.2	7.5	60.7	76.8	64.5	35.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.4	29.2	2.2	17.4	25.2	7.5	60.7	76.8	64.5	35.0	
Queue Length 50th (m)	13.2	96.3	0.0	14.5	132.0	18.5	16.1	63.6	77.7	28.6	
Queue Length 95th (m)	32.7	128.3	3.7	27.4	177.2	49.1	28.7	88.1	#105.3	42.1	
Internal Link Dist (m)		302.1			262.5			162.3		279.0	
Turn Bay Length (m)	15.0		30.0	30.0		65.0	36.0		40.0		
Base Capacity (vph)	152	1620	696	328	1886	919	258	387	359	680	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.43	0.53	0.07	0.34	0.64	0.46	0.22	0.57	0.87	0.20	

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160

Offset: 26 (16%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 110

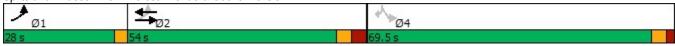
Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	•	•	4	†	~	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	^	7	7	1>		7	₽	
Traffic Volume (vph)	61	788	42	103	1119	391	52	128	76	286	101	23
Future Volume (vph)	61	788	42	103	1119	391	52	128	76	286	101	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7
Total Lost time (s)	6.0	6.0	6.0	2.0	6.0	6.0	6.0	6.0		2.0	6.0	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.95	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94		1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1599	3189	1304	1605	3221	1360	1582	1617		1587	1662	
FIt Permitted	0.18	1.00	1.00	0.24	1.00	1.00	0.67	1.00		0.30	1.00	
Satd. Flow (perm)	302	3189	1304	408	3221	1360	1117	1617		503	1662	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	66	857	46	112	1216	425	57	139	83	311	110	25
RTOR Reduction (vph)	0	0	23	0	0	123	0	14	0	0	6	0
Lane Group Flow (vph)	66	857	23	112	1216	302	57	208	0	311	129	0
Confl. Peds. (#/hr)	16		13	13		16	14		10	10	0	14
Heavy Vehicles (%)	0%	3%	5%	0%	2%	0%	0%	0%	0%	1%	0%	3%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	• 70	pm+pt	NA	070
Protected Phases	1 01111	2	1 01111	1	6	1 01111	1 01111	4		3	8	
Permitted Phases	2	_	2	6	•	6	4	·		8	•	
Actuated Green, G (s)	80.3	80.3	80.3	92.7	92.7	92.7	25.7	25.7		53.3	53.3	
Effective Green, g (s)	81.3	81.3	81.3	93.7	93.7	93.7	26.7	26.7		54.3	54.3	
Actuated g/C Ratio	0.51	0.51	0.51	0.59	0.59	0.59	0.17	0.17		0.34	0.34	
Clearance Time (s)	7.0	7.0	7.0	3.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	153	1620	662	316	1886	796	186	269		344	564	
v/s Ratio Prot	100	0.27	002	0.02	c0.38	7 30	100	c0.13		c0.14	0.08	
v/s Ratio Perm	0.22	0.21	0.02	0.18	60.00	0.22	0.05	60.10		0.16	0.00	
v/c Ratio	0.43	0.53	0.04	0.35	0.64	0.38	0.31	0.77		0.90	0.23	
Uniform Delay, d1	24.8	26.5	19.7	16.7	22.1	17.7	58.5	63.7		44.5	37.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	8.6	1.2	0.1	0.7	1.7	1.4	0.9	12.9		25.9	0.2	
Delay (s)	33.4	27.7	19.8	17.4	23.8	19.0	59.5	76.6		70.4	38.1	
Level of Service	C	C	13.0 B	В	C	В	55.5 E	70.0 E		70.4 E	D	
Approach Delay (s)		27.7			22.2			73.1			60.6	
Approach LOS		C			C			73.1 E			00.0 E	
• •												
Intersection Summary			00.0	.,	014 0000	1 1 6	<u>.</u>					
HCM 2000 Control Delay	11 11		32.9	Н	CM 2000	Level of S	service		С			
HCM 2000 Volume to Capac	city ratio		0.72						40.0			
Actuated Cycle Length (s)			160.0		um of lost				16.0			
Intersection Capacity Utilizat	tion		94.8%	IC	U Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	-	1
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		414	† \$	*	7
Traffic Volume (vph)	136	342	382	73	361
Future Volume (vph)	136	342	382	73	361
Lane Group Flow (vph)	0	520	439	79	392
Turn Type	pm+pt	NA	NA	Perm	Perm
Protected Phases	1	2	2		
Permitted Phases	2			4	4
Detector Phase	1	2	2	4	4
Switch Phase					
Minimum Initial (s)	7.0	10.0	10.0	10.0	10.0
Minimum Split (s)	14.5	32.0	32.0	34.5	34.5
Total Split (s)	28.0	54.0	54.0	69.5	69.5
Total Split (%)	18.5%	35.6%	35.6%	45.9%	45.9%
Yellow Time (s)	3.0	3.5	3.5	3.5	3.5
All-Red Time (s)	0.0	3.5	3.5	2.0	2.0
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		6.0	6.0	4.5	4.5
Lead/Lag	Lead	Lag	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes		
Recall Mode	None	Max	Max	None	None
v/c Ratio		0.21	0.20	0.38	0.68
Control Delay		4.5	4.4	31.8	9.9
Queue Delay		0.0	0.0	0.0	0.0
Total Delay		4.5	4.4	31.8	9.9
Queue Length 50th (m)		7.2	8.6	9.4	0.0
Queue Length 95th (m)		12.7	15.6	21.0	21.7
Internal Link Dist (m)		132.4	206.4	85.2	
Turn Bay Length (m)					
Base Capacity (vph)		2488	2250	1193	1450
Starvation Cap Reductn		0	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.21	0.20	0.07	0.27
Interception Summary					


Intersection Summary

Cycle Length: 151.5
Actuated Cycle Length: 70.4

Natural Cycle: 85

Control Type: Semi Act-Uncoord

Splits and Phases: 9: Hillcrest Avenue & Cooksville GO

	۶	-	←	*	-	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		414	†	11511	7	7		
Traffic Volume (vph)	136	342	382	22	73	361		
Future Volume (vph)	136	342	382	22	73	361		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	1000	6.0	6.0	1000	4.5	4.5		
Lane Util. Factor		0.91	0.95		1.00	1.00		
Frpb, ped/bikes		1.00	1.00		1.00	0.98		
Flpb, ped/bikes		1.00	1.00		0.98	1.00		
Frt		1.00	0.99		1.00	0.85		
Flt Protected		0.99	1.00		0.95	1.00		
Satd. Flow (prot)		4872	3301		1264	1500		
Flt Permitted		0.74	1.00		0.95	1.00		
Satd. Flow (perm)		3656	3301		1264	1500		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	148	372	415	24	79	392		
RTOR Reduction (vph)	0	0	1	0	0	326		
Lane Group Flow (vph)	0	520	438	0	79	66		
Confl. Peds. (#/hr)	30	320	.00	30	23	7		
Confl. Bikes (#/hr)				1		•		
Heavy Vehicles (%)	5%	6%	10%	0%	42%	7%		
Turn Type	pm+pt	NA	NA	0,0	Perm	Perm		
Protected Phases	1	2	2		1 01111	1 Cilli		
Permitted Phases	2	_	_		4	4		
Actuated Green, G (s)		47.0	47.0		10.8	10.8		
Effective Green, g (s)		48.0	48.0		11.8	11.8		
Actuated g/C Ratio		0.68	0.68		0.17	0.17		
Clearance Time (s)		7.0	7.0		5.5	5.5		
Vehicle Extension (s)		3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)		2496	2253		212	251		
v/s Ratio Prot		2-750	0.13		<i>L</i> 1 <i>L</i>	201		
v/s Ratio Perm		c0.14	0.10		c0.06	0.04		
v/c Ratio		0.21	0.19		0.37	0.26		
Uniform Delay, d1		4.1	4.1		26.0	25.5		
Progression Factor		1.00	1.00		1.00	1.00		
Incremental Delay, d2		0.0	0.2		1.1	0.6		
Delay (s)		4.2	4.3		27.1	26.0		
Level of Service		Α	A		C	C		
Approach Delay (s)		4.2	4.3		26.2	_		
Approach LOS		Α	A		C			
Intersection Summary								
HCM 2000 Control Delay			11.5	Н	CM 2000	Level of Serv	/ice	В
HCM 2000 Volume to Capacit	y ratio		0.26					
Actuated Cycle Length (s)			70.3	S	um of lost	time (s)		14.5
Intersection Capacity Utilization	n		55.6%			of Service		В
Analysis Period (min)			15					
c Critical Lane Group								

	→	•	1	←	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			र्स	**		
Traffic Volume (veh/h)	210	58	6	257	59	30	
Future Volume (Veh/h)	210	58	6	257	59	30	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	228	63	7	279	64	33	
Pedestrians	21			6	30		
Lane Width (m)	3.7			3.7	3.7		
Walking Speed (m/s)	1.1			1.1	1.1		
Percent Blockage	2			1	3		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	137						
pX, platoon unblocked							
vC, conflicting volume			321		604	296	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			321		604	296	
tC, single (s)			4.1		6.5	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.6	3.3	
p0 queue free %			99		85	95	
cM capacity (veh/h)			1215		428	724	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	291	286	97				
Volume Left	0	7	64				
Volume Right	63	0	33				
cSH	1700	1215	497				
Volume to Capacity	0.17	0.01	0.20				
Queue Length 95th (m)	0.0	0.1	5.4				
Control Delay (s)	0.0	0.2	14.0				
Lane LOS		Α	В				
Approach Delay (s)	0.0	0.2	14.0				
Approach LOS			В				
Intersection Summary							
Average Delay			2.1				
Intersection Capacity Utiliza	ation		34.3%	IC	U Level c	f Service	
Analysis Period (min)			15	.0			
raidiyolo i orlod (ililii)			10				

11.2											
В											
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
7	₽		*	1€			4			4	
44	182	43	14	289	13	41	38	26	12	32	15
44	182	43	14	289	13	41	38	26	12	32	15
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
29	1	0	0	0	0	0	0	0	0	0	13
48	198	47	15	314	14	45	41	28	13	35	16
1	1	0	1	1	0	0	1	0	0	1	0
	EBL 44 44 0.92 29	B EBL EBT 44 182 44 182 0.92 0.92 29 1	B EBL EBT EBR 44 182 43 44 182 43 0.92 0.92 0.92 29 1 0 48 198 47	B EBL EBT EBR WBL 44 182 43 14 44 182 43 14 0.92 0.92 0.92 0.92 29 1 0 0 48 198 47 15	B EBL EBT EBR WBL WBT 44 182 43 14 289 44 182 43 14 289 0.92 0.92 0.92 0.92 29 1 0 0 0 0 48 198 47 15 314	B EBL EBT EBR WBL WBT WBR 44 182 43 14 289 13 44 182 43 14 289 13 0.92 0.92 0.92 0.92 0.92 29 1 0 0 0 0 0 48 198 47 15 314 14	B EBL EBT EBR WBL WBT WBR NBL 44 182 43 14 289 13 41 44 182 43 14 289 13 41 0.92 0.92 0.92 0.92 0.92 0.92 29 1 0 0 0 0 0 0 48 198 47 15 314 14 45	EBL EBT EBR WBL WBT WBR NBL NBT 44 182 43 14 289 13 41 38 44 182 43 14 289 13 41 38 0.92 0.92 0.92 0.92 0.92 0.92 0.92 29 1 0 0 0 0 0 0 0 48 198 47 15 314 14 45 41	EBL EBT EBR WBL WBT WBR NBL NBT NBR 44 182 43 14 289 13 41 38 26 44 182 43 14 289 13 41 38 26 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 29 1 0 0 0 0 0 0 0 0 0 48 198 47 15 314 14 45 41 28	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 44 182 43 14 289 13 41 38 26 12 44 182 43 14 289 13 41 38 26 12 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 44 182 43 14 289 13 41 38 26 12 32 44 182 43 14 289 13 41 38 26 12 32 44 182 43 14 289 13 41 38 26 12 32 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	2	2	1	1
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	1	1	2	2
Conflicting Approach Right	NB	SB	WB	EB
Conflicting Lanes Right	1	1	2	2
HCM Control Delay	10.6	12.6	9.8	9.3
HCM LOS	В	В	A	Α

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	
Vol Left, %	39%	100%	0%	100%	0%	20%	
Vol Thru, %	36%	0%	81%	0%	96%	54%	
Vol Right, %	25%	0%	19%	0%	4%	25%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	105	44	225	14	302	59	
LT Vol	41	44	0	14	0	12	
Through Vol	38	0	182	0	289	32	
RT Vol	26	0	43	0	13	15	
Lane Flow Rate	114	48	245	15	328	64	
Geometry Grp	2	5	5	5	5	2	
Degree of Util (X)	0.176	0.084	0.353	0.024	0.478	0.1	
Departure Headway (Hd)	5.566	6.316	5.196	5.778	5.244	5.629	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	648	562	685	614	679	640	
Service Time	3.566	4.109	2.989	3.567	3.032	3.633	
HCM Lane V/C Ratio	0.176	0.085	0.358	0.024	0.483	0.1	
HCM Control Delay	9.8	9.7	10.8	8.7	12.8	9.3	
HCM Lane LOS	Α	Α	В	Α	В	Α	
HCM 95th-tile Q	0.6	0.3	1.6	0.1	2.6	0.3	

	→	*	1	←	1	-
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			4	**	
Traffic Volume (veh/h)	20	139	5	17	242	12
Future Volume (Veh/h)	20	139	5	17	242	12
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	151	5	18	263	13
Pedestrians	1			1	12	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.1			1.1	1.1	
Percent Blockage	0			0	1	
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)	354					
pX, platoon unblocked						
vC, conflicting volume			185		138	110
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			185		138	110
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			100		69	99
cM capacity (veh/h)			1386		844	937
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	173	23	276			
Volume Left	0	5	263			
Volume Right	151	0	13			
cSH	1700	1386	848			
Volume to Capacity	0.10	0.00	0.33			
Queue Length 95th (m)	0.0	0.1	10.8			
Control Delay (s)	0.0	1.7	11.3			
Lane LOS		Α	В			
Approach Delay (s)	0.0	1.7	11.3			
Approach LOS			В			
Intersection Summary						
Average Delay			6.7			
Intersection Capacity Utiliza	ation		34.7%	IC	U Level o	f Service
Analysis Period (min)	440H		15	10	2 200010	. 55, 1100
Analysis i Gliou (Illill)			13			

Intersection Intersection Delay, s/veh 11 Intersection LOS B
THO COOKION LOO
Movement EDI EDT MIDT MIDD ON ODD
Movement EBL EBT WBT WBR SBL SBR Lane Configurations
Traffic Vol, veh/h 40 180 313 247 119 15
Future Vol, veh/h 40 180 313 247 119 15
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92
Heavy Vehicles, % 0 1 1 2 2 0
Mvmt Flow 43 196 340 268 129 16
Number of Lanes 1 1 1 1 1 0
Approach EB WB SB
Opposing Approach WB EB
Opposing Lanes 2 2 0
Conflicting Approach Left SB WB
Conflicting Lanes Left 1 0 2
Conflicting Approach Right SB EB
Conflicting Lanes Right 0 1 2
HCM Control Delay 10.4 11.4 10.6
HCM LOS B B B
Lane EBLn1 EBLn2 WBLn1 WBLn2 SBLn1
Vol Left, % 100% 0% 0% 0% 89%
Vol Thru, % 0% 100% 100% 0% 0%
Vol Right, % 0% 0% 0% 100% 11%
Sign Control Stop Stop Stop Stop Stop
Traffic Vol by Lane 40 180 313 247 134
LT Vol 40 0 0 119
Through Vol 0 180 313 0 0
RT Vol 0 0 247 15
Lane Flow Rate 43 196 340 268 146
Geometry Grp 5 5 5 2
Geometry Grp 5 5 5 5 2 Degree of Util (X) 0.073 0.3 0.49 0.335 0.233
Degree of Util (X) 0.073 0.3 0.49 0.335 0.233
Degree of Util (X) 0.073 0.3 0.49 0.335 0.233 Departure Headway (Hd) 6.007 5.519 5.186 4.498 5.754
Degree of Util (X) 0.073 0.3 0.49 0.335 0.233 Departure Headway (Hd) 6.007 5.519 5.186 4.498 5.754 Convergence, Y/N Yes Yes Yes Yes Yes
Degree of Util (X) 0.073 0.3 0.49 0.335 0.233 Departure Headway (Hd) 6.007 5.519 5.186 4.498 5.754 Convergence, Y/N Yes Yes Yes Yes Yes Cap 592 646 691 792 619
Degree of Util (X) 0.073 0.3 0.49 0.335 0.233 Departure Headway (Hd) 6.007 5.519 5.186 4.498 5.754 Convergence, Y/N Yes Yes Yes Yes Cap 592 646 691 792 619
Degree of Util (X) 0.073 0.3 0.49 0.335 0.233 Departure Headway (Hd) 6.007 5.519 5.186 4.498 5.754 Convergence, Y/N Yes Yes Yes Yes Yes Cap 592 646 691 792 619 Service Time 3.791 3.303 2.949 2.261 3.835
Degree of Util (X) 0.073 0.3 0.49 0.335 0.233 Departure Headway (Hd) 6.007 5.519 5.186 4.498 5.754 Convergence, Y/N Yes Yes Yes Yes Yes Cap 592 646 691 792 619 Service Time 3.791 3.303 2.949 2.261 3.835 HCM Lane V/C Ratio 0.073 0.303 0.492 0.338 0.236

	٠	→	•	1	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	13		N/		
Traffic Volume (veh/h)	0	240	150	0	66	109	
Future Volume (Veh/h)	0	240	150	0	66	109	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	261	163	0	72	118	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)		264					
pX, platoon unblocked							
vC, conflicting volume	163				424	163	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	163				424	163	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				88	87	
cM capacity (veh/h)	1416				587	882	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	261	163	190				
Volume Left	0	0	72				
Volume Right	0	0	118				
cSH	1416	1700	741				
Volume to Capacity	0.00	0.10	0.26				
Queue Length 95th (m)	0.00	0.10	7.8				
Control Delay (s)	0.0	0.0	11.5				
Lane LOS	0.0	0.0	11.5 B				
	0.0	0.0	11.5				
Approach LOS	0.0	0.0	11.5 B				
Approach LOS			В				
Intersection Summary							
Average Delay			3.6				
Intersection Capacity Utiliza	ation		29.7%	IC	U Level c	f Service	
Analysis Period (min)			15				

	۶	→	•	•	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	1>				
Traffic Volume (veh/h)	140	166	150	109	0	0	
Future Volume (Veh/h)	140	166	150	109	0	0	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	152	180	163	118	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)		330					
pX, platoon unblocked							
vC, conflicting volume	281				706	222	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	281				706	222	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	88				100	100	
cM capacity (veh/h)	1282				355	818	
Direction, Lane #	EB 1	WB 1					
Volume Total	332	281					
Volume Left	152	0					
Volume Right	0	118					
cSH	1282	1700					
Volume to Capacity	0.12	0.17					
Queue Length 95th (m)	3.1	0.0					
Control Delay (s)	4.3	0.0					
Lane LOS	Α						
Approach Delay (s)	4.3	0.0					
Approach LOS							
Intersection Summary							
Average Delay			2.3				
Intersection Capacity Utilization	on		37.7%	IC	U Level o	of Service	
Analysis Period (min)			15				

1: Hurontario Street & Cooksville GO/John Street

	•	→	•	•	•	1	†	-	↓	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	7	7	↑	7	7	↑ ↑	*	^	7	
Traffic Volume (vph)	328	30	135	19	274	15	1576	147	1305	296	
Future Volume (vph)	328	30	135	19	274	15	1576	147	1305	296	
Lane Group Flow (vph)	357	206	147	21	298	16	1746	160	1418	322	
Turn Type	Perm	NA	Perm	NA	Perm	Prot		Prot	NA	Perm	
Protected Phases		8		4		1	6	5	2		
Permitted Phases	8		4		4		6		2	2	
Detector Phase	8	8	4	4	4	1	6	5	2	2	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0	
Minimum Split (s)	46.0	46.0	46.0	46.0	46.0	9.5	38.0	9.5	38.0	38.0	
Total Split (s)	53.0	53.0	53.0	53.0	53.0	9.5	89.2	17.8	97.5	97.5	
Total Split (%)	33.1%	33.1%	33.1%	33.1%	33.1%	5.9%	55.8%	11.1%	60.9%	60.9%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	4.0	4.0	4.0	4.0	4.0	1.0	3.0	1.0	3.0	3.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0	
Lead/Lag						Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	C-Max	
v/c Ratio	1.07	0.44	0.59	0.04	0.65	0.28	1.07	1.13	0.80	0.41	
Control Delay	121.4	29.1	60.2	41.6	35.6	78.5	78.2	177.9	29.0	9.5	
Queue Delay	0.0	66.6	79.0	0.0	0.0	0.0	14.8	0.0	50.2	0.0	
Total Delay	121.4	95.7	139.1	41.6	35.6	78.5	93.0	177.9	79.2	9.5	
Queue Length 50th (m)	~125.2	30.1	40.4	4.9	49.4	4.6		~58.8	161.8	20.9	
Queue Length 95th (m)	#189.1	55.0	66.3	12.0	84.5	m5.7	m#333.8	#106.9	225.7	47.4	
Internal Link Dist (m)		191.8		112.9			109.3		252.0		
Turn Bay Length (m)			25.0			37.5		48.5		48.5	
Base Capacity (vph)	334	473	249	497	462	57	1635	141	1781	786	
Starvation Cap Reductn	0	0	0	0	0	0	532	0	0	0	
Spillback Cap Reductn	0	297	161	0	0	0	0	0	962	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.07	1.17	1.67	0.04	0.65	0.28	1.58	1.13	1.73	0.41	

Intersection Summary

Cycle Length: 160

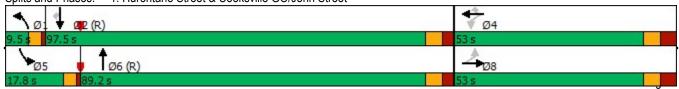
Actuated Cycle Length: 160

Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Hurontario Street & Cooksville GO/John Street

	۶	→	•	•	←	•	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f		7	†	7	*	↑ ↑		*	^	7
Traffic Volume (vph)	328	30	159	135	19	274	15	1576	30	147	1305	296
Future Volume (vph)	328	30	159	135	19	274	15	1576	30	147	1305	296
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	1.00	0.93	1.00	1.00		1.00	1.00	0.85
Flpb, ped/bikes	0.94	1.00		0.98	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.87		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1484	1429		1579	1729	1300	1409	3144		1530	2933	1187
Flt Permitted	0.74	1.00		0.52	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1162	1429		869	1729	1300	1409	3144		1530	2933	1187
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	357	33	173	147	21	298	16	1713	33	160	1418	322
RTOR Reduction (vph)	0	63	0	0	0	88	0	_1_	0	0	0	68
Lane Group Flow (vph)	357	143	0	147	21	210	16	1745	0	160	1418	254
Confl. Peds. (#/hr)	47		20	20		47	90		46	46		90
Confl. Bikes (#/hr)						1			1			2
Heavy Vehicles (%)	2%	0%	3%	0%	0%	5%	14%	4%	0%	5%	12%	3%
Turn Type	Perm	NA		Perm	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4		4		6			2	2
Actuated Green, G (s)	45.0	45.0		45.0	45.0	45.0	2.2	82.2		13.8	93.8	93.8
Effective Green, g (s)	46.0	46.0		46.0	46.0	46.0	3.2	83.2		14.8	94.8	94.8
Actuated g/C Ratio	0.29	0.29		0.29	0.29	0.29	0.02	0.52		0.09	0.59	0.59
Clearance Time (s)	8.0	8.0		8.0	8.0	8.0	4.0	7.0		4.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	334	410		249	497	373	28	1634		141	1737	703
v/s Ratio Prot		0.10			0.01		0.01	c0.56		c0.10	0.48	
v/s Ratio Perm	c0.31			0.17		0.16						0.21
v/c Ratio	1.07	0.35		0.59	0.04	0.56	0.57	1.07		1.13	0.82	0.36
Uniform Delay, d1	57.0	45.1		48.9	41.1	48.4	77.7	38.4		72.6	25.7	16.9
Progression Factor	1.00	1.00		1.00	1.00	1.00	0.99	1.18		1.00	1.00	1.00
Incremental Delay, d2	68.7	0.5		3.7	0.0	1.9	8.6	35.3		116.6	4.4	1.4
Delay (s)	125.7	45.7		52.6	41.1	50.4	85.8	80.7		189.2	30.1	18.3
Level of Service	F	D		D	D	D	F	F		F	С	В
Approach Delay (s)		96.4			50.7			80.7			41.5	
Approach LOS		F			D			F			D	
Intersection Summary												
HCM 2000 Control Delay			63.7	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Cap			1.07									
Actuated Cycle Length (s)	_		160.0	Sı	um of lost	t time (s)			16.0			
Intersection Capacity Utili			125.2%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

1: Hurontario Street & Cooksville GO/John Street

	•	→	•	•	•	1	†	-	↓	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	1	7	↑	7	*	†	7	^	7	
Traffic Volume (vph)	288	37	70	31	228	40	1427	218	242	235	
Future Volume (vph)	288	37	70	31	228	40	1427	218	242	235	
Lane Group Flow (vph)	313	122	76	34	248	43	1611	237	263	255	
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	Prot	NA	Perm	
Protected Phases		8		4		1	6	5	2		
Permitted Phases	8		4		4		6		2	2	
Detector Phase	8	8	4	4	4	1	6	5	2	2	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0	
Minimum Split (s)	46.0	46.0	46.0	46.0	46.0	9.5	38.0	9.5	38.0	38.0	
Total Split (s)	48.0	48.0	48.0	48.0	48.0	14.4	86.6	25.4	97.6	97.6	
Total Split (%)	30.0%	30.0%	30.0%	30.0%	30.0%	9.0%	54.1%	15.9%	61.0%	61.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	4.0	4.0	4.0	4.0	4.0	1.0	3.0	1.0	3.0	3.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	3.0	6.0	3.0	6.0	6.0	
Lead/Lag						Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	C-Max	
v/c Ratio	1.00	0.29	0.29	0.08	0.48	0.43	1.00	1.06	0.15	0.31	
Control Delay	109.8	25.6	51.5	45.9	13.3	86.8	57.4	139.4	15.3	2.7	
Queue Delay	0.0	0.1	0.2	0.0	0.0	0.0	36.5	0.0	0.0	0.0	
Total Delay	109.8	25.7	51.7	45.9	13.3	86.8	93.9	139.4	15.3	2.7	
Queue Length 50th (m)	~100.8	14.9	19.6	8.3	10.1	12.9	~241.1	~82.1	19.7	0.0	
Queue Length 95th (m)	#164.6	33.3	35.5	17.7	36.2	m26.9	#319.3	#137.4	27.5	12.4	
Internal Link Dist (m)		191.8		112.9			109.3		252.0		
Turn Bay Length (m)			25.0			37.5		48.5		48.5	
Base Capacity (vph)	312	420	261	443	518	114	1608	224	1807	813	
Starvation Cap Reductn	0	0	0	0	0	0	321	0	0	0	
Spillback Cap Reductn	0	24	17	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.00	0.31	0.31	0.08	0.48	0.38	1.25	1.06	0.15	0.31	

Intersection Summary

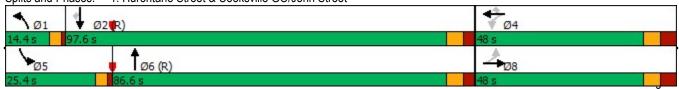
Cycle Length: 160

Actuated Cycle Length: 160

Offset: 115 (72%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Hurontario Street & Cooksville GO/John Street

	٠	→	*	1	•	•	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ.		*	†	7	*	↑ ↑		*	^	7
Traffic Volume (vph)	288	37	75	70	31	228	40	1427	55	218	242	235
Future Volume (vph)	288	37	75	70	31	228	40	1427	55	218	242	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.7	3.5	3.7	3.5
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	3.0	6.0		3.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.97		1.00	1.00	0.97	1.00	1.00		1.00	1.00	0.86
Flpb, ped/bikes	0.98	1.00		0.97	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.90		1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1575	1462		1492	1729	1422	1606	3192		1606	3042	1195
Flt Permitted	0.73	1.00		0.65	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1219	1462		1023	1729	1422	1606	3192		1606	3042	1195
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	313	40	82	76	34	248	43	1551	60	237	263	255
RTOR Reduction (vph)	0	46	0	0	0	154	0	_1	0	0	0	105
Lane Group Flow (vph)	313	76	0	76	34	94	43	1610	0	237	263	150
Confl. Peds. (#/hr)	16		24	24		16	81		34	34		81
Confl. Bikes (#/hr)						1						2
Heavy Vehicles (%)	0%	0%	5%	5%	0%	0%	0%	2%	0%	0%	8%	4%
Turn Type	Perm	NA		Perm	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases		8			4		_1_	6		5	2	
Permitted Phases	8			4	-	4		6			2	2
Actuated Green, G (s)	40.0	40.0		40.0	40.0	40.0	7.7	79.6		21.4	93.3	93.3
Effective Green, g (s)	41.0	41.0		41.0	41.0	41.0	8.7	80.6		22.4	94.3	94.3
Actuated g/C Ratio	0.26	0.26		0.26	0.26	0.26	0.05	0.50		0.14	0.59	0.59
Clearance Time (s)	8.0	8.0		8.0	8.0	8.0	4.0	7.0		4.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	312	374		262	443	364	87	1607		224	1792	704
v/s Ratio Prot		0.05			0.02		0.03	c0.50		c0.15	0.09	
v/s Ratio Perm	c0.26			0.07		0.07						0.13
v/c Ratio	1.00	0.20		0.29	0.08	0.26	0.49	1.00		1.06	0.15	0.21
Uniform Delay, d1	59.5	46.7		47.8	45.1	47.4	73.5	39.7		68.8	14.8	15.4
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.02	0.88		1.00	1.00	1.00
Incremental Delay, d2	51.8	0.3		0.6	0.1	0.4	4.3	22.8		76.3	0.2	0.7
Delay (s)	111.3	46.9		48.4	45.2	47.8	79.2	57.6		145.1	14.9	16.1
Level of Service	F	D D		D	D	D	Е	E		F	В	В
Approach Delay (s)		93.2			47.7			58.1			56.2	
Approach LOS		F			D			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			61.3	H	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Ca			1.01									
Actuated Cycle Length (s			160.0		um of lost				16.0			
Intersection Capacity Util	ization	•	103.5%	IC	U Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

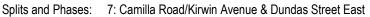
7: Camilla Road/Kirwin Avenue & Dundas Street East

	٠	→	•	•	←	*	1	†	1	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	^	7	*	^	7	7	4	7	13	
Traffic Volume (vph)	29	1088	59	56	637	161	60	93	350	101	
Future Volume (vph)	29	1088	59	56	637	161	60	93	350	101	
Lane Group Flow (vph)	32	1183	64	61	692	175	65	181	380	140	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		2			6			4	3	8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	3	8	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	44.0	44.0	44.0	44.0	44.0	44.0	43.0	43.0	9.5	43.0	
Total Split (s)	80.0	80.0	80.0	80.0	80.0	80.0	45.0	45.0	35.0	80.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	28.1%	28.1%	21.9%	50.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.0	3.0	3.0	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	0.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	
Lead/Lag							Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes		
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.11	0.66	0.08	0.40	0.39	0.21	0.42	0.75	0.91	0.24	
Control Delay	19.8	27.3	7.0	32.2	21.0	3.1	69.3	75.1	66.4	32.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.8	27.3	7.0	32.2	21.0	3.1	69.3	75.1	66.4	32.8	
Queue Length 50th (m)	4.6	134.1	2.2	10.6	63.1	0.0	19.2	48.9	97.8	28.5	
Queue Length 95th (m)	12.0	178.8	10.4	28.6	87.6	12.2	33.4	72.0	#121.0	41.9	
Internal Link Dist (m)		302.1			262.5			162.3		279.0	
Turn Bay Length (m)	15.0		30.0	30.0		65.0	36.0		40.0		
Base Capacity (vph)	289	1792	774	151	1758	820	263	396	422	757	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.66	0.08	0.40	0.39	0.21	0.25	0.46	0.90	0.18	

Intersection Summary

Cycle Length: 160

Actuated Cycle Length: 160


Offset: 38 (24%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	•	•	4	1	~	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	^	7	*	1		7	13	
Traffic Volume (vph)	29	1088	59	56	637	161	60	93	74	350	101	28
Future Volume (vph)	29	1088	59	56	637	161	60	93	74	350	101	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.7	3.5	3.7	3.7
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		2.0	6.0	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93		1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1428	3159	1327	1604	3099	1312	1534	1553		1558	1624	
Flt Permitted	0.34	1.00	1.00	0.16	1.00	1.00	0.67	1.00		0.35	1.00	
Satd. Flow (perm)	510	3159	1327	267	3099	1312	1078	1553		573	1624	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	1183	64	61	692	175	65	101	80	380	110	30
RTOR Reduction (vph)	0	0	21	0	0	76	0	21	0	0	7	0
Lane Group Flow (vph)	32	1183	43	61	692	99	65	160	0	380	133	0
Confl. Peds. (#/hr)	6	1100	5	5	UUL	6	15	100	3	3	100	15
Heavy Vehicles (%)	12%	4%	5%	0%	6%	6%	3%	1%	6%	3%	3%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	070	pm+pt	NA	0 70
Protected Phases	1 CIIII	2	I GIIII	1 GIIII	6	i Giiii	I GIIII	4		3	8	
Permitted Phases	2		2	6	U	6	4	т.		8	U	
Actuated Green, G (s)	89.8	89.8	89.8	89.8	89.8	89.8	21.8	21.8		56.2	56.2	
Effective Green, g (s)	90.8	90.8	90.8	90.8	90.8	90.8	22.8	22.8		57.2	57.2	
Actuated g/C Ratio	0.57	0.57	0.57	0.57	0.57	0.57	0.14	0.14		0.36	0.36	
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	289	1792	753	151	1758	744	153	221		404	580	
v/s Ratio Prot	203	c0.37	755	101	0.22	144	155	c0.10		c0.19	0.08	
v/s Ratio Perm	0.06	60.57	0.03	0.23	0.22	0.08	0.06	60.10		0.15	0.00	
v/c Ratio	0.00	0.66	0.03	0.40	0.39	0.00	0.42	0.73		0.13	0.23	
Uniform Delay, d1	16.0	23.9	15.5	19.4	19.3	16.2	62.6	65.6		44.6	36.0	
Progression Factor Incremental Delay, d2	1.00	1.00 1.9	1.00 0.1	1.00 7.8	1.00 0.7	1.00 0.4	1.00 1.9	1.00 11.2		1.00 30.0	1.00 0.2	
Delay (s)	16.7	25.9	15.6	27.3	19.9	16.6	64.5	76.8		74.6	36.2	
Level of Service	В	23.9 C	15.0 B	21.3 C	19.9 B	10.0 B	04.5 E	70.0 E		74.0 E	30.2 D	
Approach Delay (s)	Ь	25.1	Б	U	19.8	Ь		73.6			64.3	
Approach LOS		23.1 C			19.0 B			73.0 E			04.3 E	
					D							
Intersection Summary												
HCM 2000 Control Delay			34.3	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.73									
Actuated Cycle Length (s)			160.0	Sum of lost time (s)					14.0			
Intersection Capacity Utilizati	on		92.4%	IC	U Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

APPENDIX Q:

Transportation Demand Management and Pedestrian Circulation Checklist

Appendix E

Application Summary

Transportation Demand Management and Pedestrian Circulation Checklist

This checklist is designed to evaluate the incorporation of Transportation Demand Management (TDM) measures, including pedestrian circulation techniques, into development proposals. The template is modelled on the prototype Class 2: Medium Density/Moderate Congestion (TDM Moderate) checklist contained in *TDM Supportive Guidelines for Development Approvals* (ACT Canada, 2008).

The applicant must complete and return this checklist with their **Transportation Demand Management Plan** (TDMP) and/or **Pedestrian Circulation Plan** (PCP).

, approaction outliniary							
Development Application No:	Date:						
DARC 23-146 W7	October 16, 2024						
Applicant:	Staff:						
GSAI	Cyrus Hiranandani						
SCORE AND RATING:	TDM SUPPORTIVE?						
92% (5 Star)	Vec X No						

Scorecard

Use the scorecard below to determine the TDM rating and supportiveness of the development proposal based on the final score calculated on page E-5. If the proposal does not satisfy the minimum threshold, review and enhance the TDM measures.

Final Score	Rating	TDM Supportive?
91% - 100%	***** (5 Star)	
81% - 90%	**** (4 Star)	YES
71% - 80%	*** (3 Star)	
61% - 70%	** (2 Star)	
50% - 60%	* (1 Star)	NO (Review and Enhance TDM Measures)
Less than 50%	(None)	(Neview and Enhance 1011 Measures)

CATEGORY A - Pedestrian Circulation

In creating an environment that facilitates and supports pedestrian activity, the public realm needs to be accessible, safe, and comfortable to encourage movement on the street and in the surrounding area(s).

	Features	Yes	No	N/A	Comments
A1	Development located within 800 m walking distance of residential (if employment) or employment (if residential) uses	х			
A2	Development located within 400 m walking distance of retail, restaurant, or other pedestrian-oriented uses or similar services provided on-site	х			
A3	At least one functional building entrance oriented towards public space (i.e., street, park, square)	Х			
A4	At least one functional building entrance located close to on-site or adjacent street transit stop	Х			
A5	Nearest functional building entrance located within 50 m of (and connected to) public street with sidewalk	x			
A6	Accessible on-site pedestrian routes provided and connected to surrounding network and transit	х			
A7	Continuous sidewalks (1.5 m min. width) provided along all on-site roads and both sides of adjacent public streets	х			
A8	No conflict points between pedestrians and other users (i.e., vehicles, cyclists)	х			
A9	Adequate and properly designed pedestrian crossings provided on-site	х			
A10	Off-site road works designed to maximize pedestrian safety and minimize pedestrian crossing distances (e.g., no right turn channelization)	x			
A11	Amenities provided along pedestrian routes (i.e., benches, street furniture)		х		
A11	Shelters and benches provided at transit stops	Х			
A12	Wayfinding provided to guide pedestrians	Х			
A13	Lighting provided along pedestrian routes	Х			
A14	Weather protection provided along pedestrian routes		X		
A15	Vehicle parking areas located away from street and pedestrian routes	х			
A16	Protected pedestrian routes provided through vehicle parking lots and linked to building(s)	х			

CATI	CATEGORY A – Pedestrian Circulation						
In creating an environment that facilitates and supports pedestrian activity, the public realm needs to be accessible, safe, and comfortable to encourage movement on the street and in the surrounding area(s).							
	Features Yes No N/A Comments				Comments		
A17	Passenger pick-up and drop-off areas located to side or rear of buildings, downstream from major building entrance points, but no more than 30 m away	х					
A18	Loading areas located away from street and pedestrian routes	х					

2

0

16

In creating an environment that facilitates and supports cycling activity, the public realm needs to be

Sub-Total

accessible, safe, and comfortable to encourage movement on the street and in the surrounding area(s).

Features

Yes

No

N/A

Comments

B1

On-site cycling routes provided and connected to surrounding network

B2

Class A (long-term) and Class B (short-term) bicycle parking spaces provided per City of Mississauga Zoning By-law (reproduced at end of this checklist for reference)

	Mississauga Zoning By-law (reproduced at end of this checklist for reference)	^			
В3	Bicycle repair station provided at-grade or within underground structure close to long-term bicycle parking	×			
B4	Wayfinding provided to guide cyclists	Х			
B5	Other amenities provided for cyclists (e.g., showers, change rooms)	Х			
	Sub-Total	4	0	1	

CATEGORY C - Transit Service

The availability and proximity of convenient public transit service with direct pedestrian linkages to the building expands the range of viable travel options for employees, visitors, and residents.

	Features	Yes	No	N/A	Comments
C1	Development located within 800 m walking distance of a rapid transit station (existing or planned) or within 400 m of two or more public bus routes with minimum 15-minute headway service during peak commuter periods and every 30 minutes throughout the remainder of the day	х			
C2	Information about public transit routes, schedules, and fares provided in accessible and visible location on-site and in adjacent bus stops	х			
C3	Sufficient capacity available to accommodate transit riders generated by development	х			
	Sub-Total Sub-Total	6			

CATEGORY D - Motor Vehicle Parking

The location and design of motor vehicle parking facilities can affect the character and cost of a development. Avoiding the oversupply of parking can also help reduce single occupant vehicle travel.

40.0	development. Avoiding the oversupply of parking can also help reduce single occupant vehicle travel.						
	Features	Yes	No	N/A	Comments		
D1	No more than the minimum number of parking spaces required by the Zoning By-law provided			х			
D2	Priority parking equivalent to 10% of employee spaces provided for carpooling/vanpooling			х			
D3	Priority parking equivalent to 3% of full-time building occupants provided for auto share and hybrid/alternative fuel vehicles	x					
D4	Priority parking equivalent to 1% of the parking stalls provided for mopeds, motorcycles, and minicars		х				
D5	Parking shared for different uses on-site and/or adjoining properties	х					
D6	50% of parking located underground or in structured parking	Х					
	Sub-Total	3	1	2			