

1225 Dundas Street East Transportation Impact Study

Whitehorn Investments Limited Dundix Realty Holdings

1225 Dundas Street East Transportation Impact Study

Prepared for:

Whitehorn Investments Limited
Dundix Realty Holdings
c/o SmartCentres REIT
3200 Highway 7
Vaughan, ON L4K 5Z5

Prepared by:

628 Haines Road Newmarket, ON L3Y 6V5

July 2025

PN: 2022-050

Table of Contents

L.	Intro	oduction	5
2.		ing Conditions	
	2.1	Area Road Network	7
	2.2	Existing Intersections	8
	2.2.1	1 Existing Driveways	9
	2.3	Cycling and Pedestrian Facilities	10
	2.4	Transit	10
	2.5	Existing Peak Hour Travel Demand	10
3.	Futu	re Background Conditions	14
	3.1	Planned Conditions	14
	3.1.1	1 Dundas Bus Rapid Transit	14
	3.2	Other Study Area Developments	14
	3.3	Background Growth	16
	3.3.1	1 Future Background Traffic Volumes	17
	3.4	Trip Generation and Mode Shares	20
	3.5	Trip Distribution	22
	3.6	Trip Assignment and Future Total Travel Demands	22
1.	Deve	elopment Design	27
	4.1	Development Access	27
	4.2	Turning Template Analysis	
	4.3	Sightline Review	28
	4.4	Loading	28
	4.5	Design for Sustainable Modes	
	4.6	Transportation Demand Management	
	4.7	Parking	
	4.7.1	1 Vehicular Parking	30
	4.7.2	2 Accessible Parking	31
	4.7.3	Bike Parking	31
	4.7.4	4 Electric Vehicle Ready Parking Spaces	32
	4.8	Community Impacts	32
5.	Ope	rational Analysis	33
	5.1	2024 Existing Conditions	33
	5.2	2028 Future Background Conditions	35
	5.3	2028 Future Total Conditions	37
	5.4	2033 Future Background Conditions	38
	5.5	2033 Future Total Conditions	40
ŝ	Cond	dusion	42

List of Figures

Figure 1: Site Context	5
Figure 2: Proposed Site Plan	6
Figure 3: Existing MiWay Transit Study Area Service	10
Figure 4: Existing Traffic Volumes	12
Figure 5: Existing Pedestrian Volumes	13
Figure 6: Future Dundas Street East Cross-Section at Dixie Road	14
Figure 7: 2525 Dixie Road - Site Trip Generation	15
Figure 8: 1000 and 1024 Dundas Street Projected Site Trips – 2026 & 2031	16
Figure 9: 2028 Future Background Traffic Volumes	18
Figure 10: 2033 Future Background Traffic Volumes	19
Figure 11: New Site Generated Auto Volumes	23
Figure 12: Pass-By Volumes	24
Figure 13: 2028 Future Total Traffic Volumes	25
Figure 14: 2033 Future Total Traffic Volumes	26
List of Tables	
Table 1: Turning Movement Count Data Dates and Data Source	
Table 2: Compound Annual Growth Rates - Dundas Corridor	
Table 3: Compounded Annual Growth Rates	
Table 4: Trip Generation Person Trip Rates	
Table 5: Total Person Trip Generation	
Table 6: 2016 TTS Mode Shares	
Table 7: Applied Mode Shares	
Table 8: NCHRP 684 Internal Capture Rates	
Table 9: Trip Generation by Mode	
Table 10: 2016 TTS Trip Distribution	
Table 11: Minimum Clear Throat Length by Land Use	
Table 12: Sightline Calculations	
Table 13: 1225 Dundas Street East Vehicle Parking Requirements – Zoning By-Law Approach	
Table 14: 1225 Dundas Street East Vehicle Parking Requirements – Shared Parking Arrangement Application.	
Table 15: 1225 Dundas Street East Accessible Parking Requirements and Provisions - AODA	
Table 16: 1225 Dundas Street East Bike Parking Provisions	
Table 17: Electric Vehicle Ready Parking Requirements	
Table 18: Peak Hour Factors	
Table 19: 2024 Existing Conditions Operational Analysis	
Table 20: 2028 Future Background Conditions Operational Analysis	
Table 21: 2028 Total Future Conditions Operational Analysis	
Table 22: 2033 Future Background Conditions Operational Analysis	
Table 23: 2033 Total Future Operational Conditions	40

List of Appendices

Appendix A – Terms of Reference (TOR)

Appendix B – Turning Movement Count Data and Signal Timing Plans

Appendix C – Dundas Bus Rapid Transit Preliminary Detailed Design

Appendix D – Background Development Trip Generation Figures and E-mail Correspondence

Appendix E – Mode Shares and E-mail Correspondence

Appendix F – The Synergy Trip Calculation

Appendix G - TTS 2016 Zone 3669 Data

Appendix H – Traffic Control Signal Warrants

Appendix I – Left Turn Lane Warrants

Appendix J – Turning Template Drawings

Appendix K – Sightline Calculations

Appendix L – Peak Hour Factor Calculations

Appendix M – 2024 Existing Conditions Synchro Worksheets

Appendix N – 2028 Future Background Conditions Synchro Worksheets

Appendix O – 2028 Future Total Conditions Synchro Worksheets

Appendix P – 2033 Future Background Conditions Synchro Worksheets

Appendix Q – 2033 Future Total Conditions Synchro Worksheets

1. Introduction

This Transportation Impact Study (TIS) has been prepared to support the proposed development at 1225 Dundas Street East in the City of Mississauga. The scope of this TIA has been confirmed with staff from both the City of Mississauga and the Region of Peel in the forms of a Terms of Reference (TOR) document which can be seen in Appendix A. It is noted that this Transportation Impact Study serves as an update to previously circulated versions dated July 2022 and August 2024. Comments received on the TIS submissions from May 2024 and November 2024 have been implemented in this update.

The existing site, located at 1225 Dundas Street East, is zoned as Commercial Zone (C3). The proposed development includes 35 townhome units and 586 condo units with a ground floor retail space (1,230 m²) and will replace the existing a single-storey shopping centre. The proposed development will have two full-movement accesses located on Arena Road and Dundix Road to access the surface parking and one level of underground parking. A total of 294 underground parking spaces and 12 surface parking spaces are proposed. This site is within the Dixie GO Major Transit Station Area. For the purposes of this TIS, the projected full build-out and occupancy horizon has been assumed to be 2028. Figure 1 illustrates the site context. Figure 2 illustrates the proposed site plan.

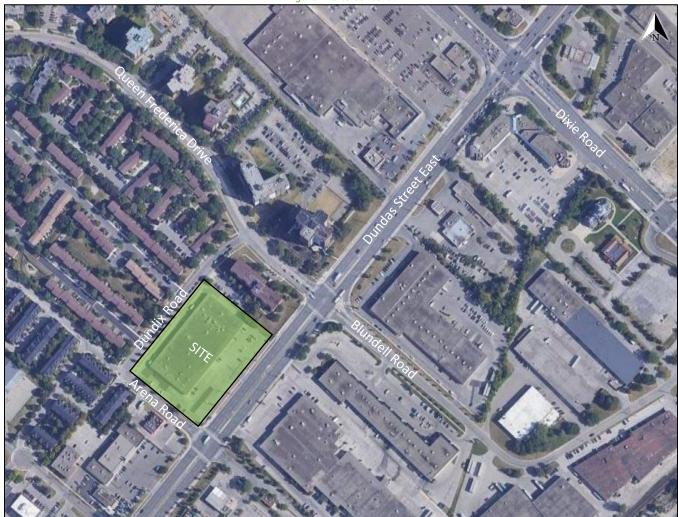
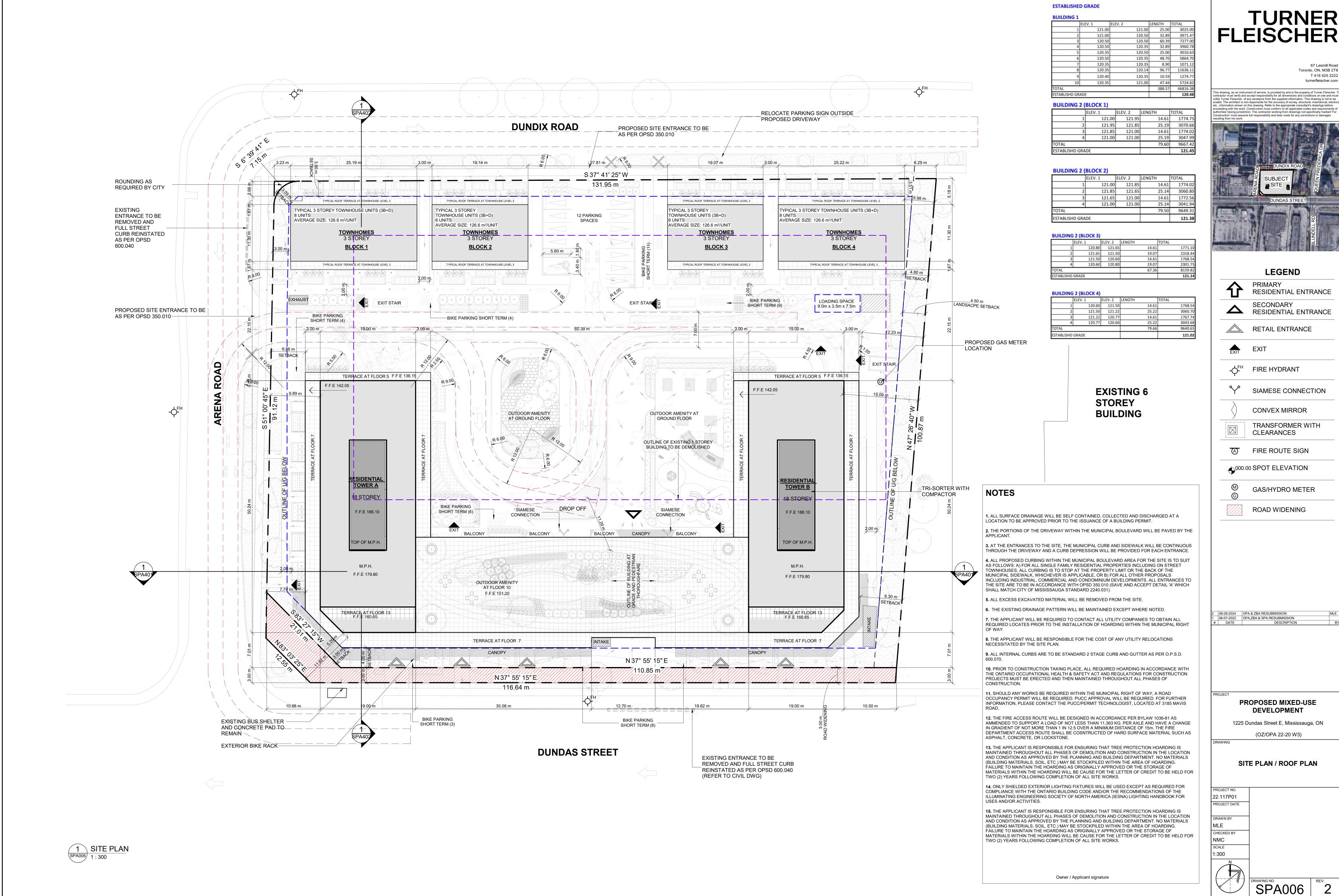



Figure 1: Site Context

TURNER FLEISCHER

2. Existing Conditions

2.1 Area Road Network

Dundas Street East

Dundas Street East is a City of Mississauga arterial road with a six-lane urban cross-section. The City of Mississauga Official Plan protects a 35-metre right-of-way for this road. West of Queen Frederica Drive, a boulevard-separated sidewalk is provided on the north side of the road and a sidewalk is provided on the south side of the road. East of Queen Frederica Drive, sidewalks are provided on both sides of the road. The posted speed limit is 60 km/h within the study area.

Dixie Road

Dixie Road is a City of Mississauga regional arterial road with a six-lane urban cross-section. The City of Mississauga Official Plan protects a 45-metre right-of-way for this road. North of Dundas Street East, a multi-use path is provided on the west side of the road and a sidewalk is provided on the east side of the road. South of Dundas Street East, sidewalks are provided on both sides of the road. The posted speed limit is 60 km/h within the study area.

Queen Frederica Drive

Queen Frederica Drive is a City of Mississauga minor collector road with a two-lane urban cross-section. The right-of-way of this road has been measured using the Mississauga Zoning Information Map and found to be approximately 26 metres wide. Boulevard-separated sidewalks are provided on both sides of the road. The posted speed limit is 40 km/h within the study area.

Blundell Road

Blundell Road is a City of Mississauga minor collector road with a two-lane urban cross-section. The right-of-way of this road has been measured using the Mississauga Zoning Information Map and found to be approximately 26 metres wide. Boulevard-separated sidewalks are provided on both sides of the road. The posted speed limit is 40 km/h within the study area.

Arena Road

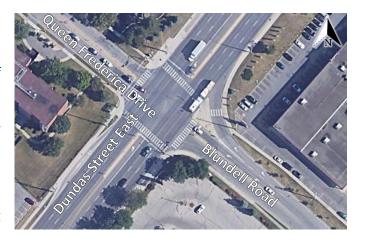
Arena Road is a City of Mississauga local road with a two-lane urban cross-section. The right-of-way of this road has been measured using the Mississauga Zoning Information Map and found to be approximately 20 metres wide. Boulevard-separated sidewalks are provided on both sides of the road south of Dundix Road and on the west side of the road north of Dundix Road. The posted speed limit is 40 km/h south of Dundix Road.

Dundix Road

Dundix Road is a City of Mississauga local road with a two-lane urban cross-section. The right-of-way of this road has been measured using the Mississauga Zoning Information Map and found to be approximately 20 metres wide. Boulevard-separated sidewalks are provided on both sides of the road. The unposted speed limit is assumed to be 40 km/h. On-street parking is permitted on the south side of the road for a maximum of 15 hours.

2.2 Existing Intersections

A description and accompanying aerial photographs of the existing Study Area intersections can be found below.


Dundas Street East and Dixie Road

The intersection of Dundas Street East and Dixie Road is a four-legged signalized intersection. The northbound and westbound approaches each consist of an auxiliary left-turn lane, two through lanes, and a shared through/channelized right-turn lane, and the southbound approach consists of two auxiliary left-turn lanes, three through lanes, an auxiliary channelized right-turn lane. The eastbound approach consists of an auxiliary left-turn lane, three through lanes, and an auxiliary channelized right-turn lane. Pedestrian signal heads and pedestrian call buttons are present on all legs of the intersection. No turn restrictions were noted.

Dundas Street East and Queen Frederica Drive / Blundell Road

Dundas Street East and Queen Frederica Drive/Blundell Road is a four-legged signalized intersection. The northbound approach consists of a left-turn lane and a channelized right-turn lane, and the southbound approach consists of an auxiliary left-turn lane and a shared through/right-turn lane. The eastbound and westbound approaches each consist of an auxiliary left-turn, two through lanes, and a shared through/right-turn lane. A bus-only taper is present on the westbound approach to the west of the intersection along Dundas Street East. Pedestrian signal heads are present on all legs with pedestrian call buttons on the east and west legs. Northbound through movement is restricted at this intersection.

Arena Road at Dundas Street East

Arena Road at Dundas Street East is a four-legged signalized intersection. The northbound and southbound approaches each consist of a left-turn lane and a shared through/ right-turn lane. The eastbound and westbound approaches each consist of an auxiliary left-turn, two through lanes, and a shared through/right-turn lane. Crosswalks and pedestrian signal heads are present on all legs with pedestrian call buttons on the east and west legs. No turn restrictions were noted.

Oueen Frederica Drive at Dundix Road

Queen Frederica Drive at Dundix Road is a threelegged all-way stop-controlled intersection. Each approach consists of a shared all-movement lane. Crosswalks and pedestrian signal heads are present on all legs. No turn restrictions were noted.

Dundix Road at Arena Road

Dundix Road at Arena Road is a four-legged unsignalized intersection with free movement on the northbound and westbound approach and stop controls on the eastbound and southbound approach. Each approach consists of a shared all-movement lane. No turn restrictions were noted.

2.2.1 Existing Driveways

As the proposed development is located near residential land uses, driveways to townhouses are located on the north side of Dundix Street. Two driveways to a restaurant are located on the west side of Arena Road, and the parking lot connects to the nearby plaza's parking lot. Multiple driveways to retail plazas and shopping centres are located along Dundas Street East.

As part of the proposed redevelopment, existing access to 1225 Dundas Street East on Dundas Street East will be closed. Additionally, the existing access to Arena Road will be relocated and reconfigured.

2.3 Cycling and Pedestrian Facilities

Sidewalks are located along at least one side of all roads in the Study Area, with boulevards present along portions of Dundas Street East, Queen Frederica Drive, Blundell Road, Arena Road, and Dundix Road. There is a multi-use pathway present on the west side of Dixie Road. No bike lanes are present in the vicinity of the subject development.

2.4 Transit

As of July of 2025, MiWay routes within the Study Area include Routes #1, #1C, #101 and #101A along Dundas Street East in addition to Routes #5 and #31 along Dixie Road. Transit destinations along Dundas Street East near the study area include Kipling Bus Terminal, Kipling Subway Station and Trillium Hospital. Transit destinations along Dixie Road include Dixie GO station, Dixie Outlet Mall, Sherway Gardens and Dixie Transitway Station. The existing Study Area MiWay service is presented in Figure 3.

2.5 Source: https://www.mississauga.ca/miway-transit/maps/transit-system-maps// Accessed: July 4, 2025Existing Peak Hour Travel Demand

To understand the existing AM and PM peak hour traffic volumes, turning movement counts (TMC) for the Study Area intersections have been acquired from the Ontario Traffic Inc. Signal timing plans have been obtained from City of Mississauga staff. The collected intersection counts also provided existing pedestrian and cyclist volumes at the Study Area intersections for both AM and PM peak periods. It is noted that there is no existing cyclist volume at the study area intersections.

Table 1 summarizes the dates and data sources of the turning movement counts used as part of this study. Turning movement count data and signal timing plans are included in Appendix B.

Table 1: Turning Movement Count Data Dates and Data Source

Intersection	Count Date	Data Source	
Dixie Road and Dundas Street East			
Queen Frederica Drive/Blundell Road and Dundas Street East	Tuesday luns 7		
Arena Road and Dundas Street East	Tuesday, June 7, 2022	Ontario Traffic Inc.	
Queen Frederica Drive and Dundix Road	2022		
Arena Road and Dundix Road			

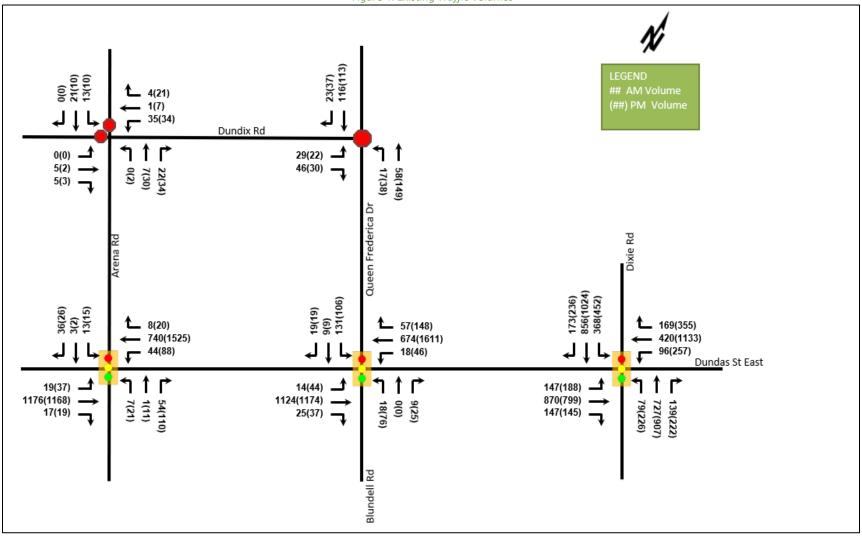
Given that the turning movement counts were collected in 2022, compound annual background growth rates for Dundas Street were obtained from City staff and applied to the Study Area intersections to represent the 2024 existing horizon volumes. Given this is the second submission within a one year timeframe, the additional growth to the study area intersections were not applied to estimate a 2025 existing horizon. The traffic volumes between 2024 and 2025 is not expected to be significantly different. The confirmed growth rates are listed in Table 2.

Table 2: Compound Annual Growth Rates - Dundas Corridor

Roadway	Peak Period	CAGR from 2022 to 2024 to 2026		
Roduway	Peak Periou	EB	WB	
Dundas Street	AM	0.5%	1.0%	
East	PM	0.5%	0.5%	

Along Dixie Road, a conservative growth rate of 1% has been assumed and applied to through movements only to grow the 2022 traffic volumes to the 2024 existing horizon traffic volumes. This growth rate has not been applied to local roadways, accesses, or left or right turning movements. This growth rate assumption has been used to capture any land use changes that may have been implemented along the Dixie Road corridor in the vicinity of Dundas Street since the turning movement counts have been collected at the intersection of Dundas Street East at Dixie Road.

As per City commentary, the counts were collected during the recovery period following the pandemic lockdown, the projected traffic volumes may be lower than actual amounts. The latest counts, conducted on April 29th, 2025, were requested from the Peel Region for the intersection of Dundas Street East at Dixie Road to compare with the 2022 TMCs with growth applied to determine the difference in volumes. As this is a major intersection in the study area, the changes observed at this intersection is a good indicator to determine growth in the area. This comparison is shown in Table 3 below.


Table 3: Turning Movement Count Comparison

		Total Volumes
2022 TMC Counts	AM Peak Hour	4196
2022 IMC Counts	PM Peak Hour	5967
2025 TMC Counts	AM Peak Hour	4761
2025 TMC Counts	PM Peak Hour	5995
0/ Difference	AM Peak Hour	13.5%
% Difference	PM Peak Hour	0.5%

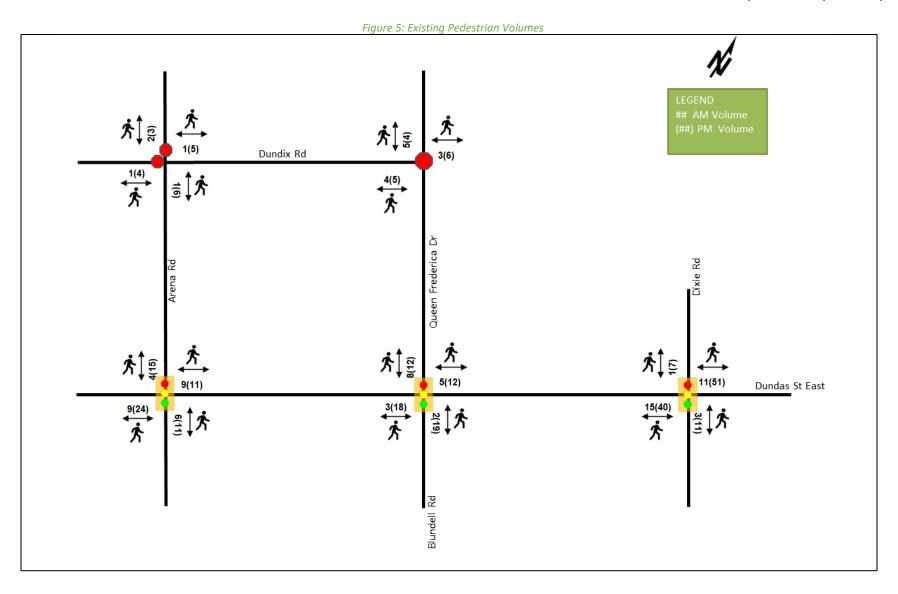

As shown in the table above, there is very little difference in the PM volumes, and a difference in the AM volumes that is only slightly higher than the 10% daily variation in traffic volumes. This variance is believed to be minor and would not warrant the need for new TMC counts to be conducted. Therefore, the use of the 2022 TMCs with growth applied will be maintained. Existing traffic volumes are displayed in Figure 4. Figure 5 illustrates the existing pedestrian volumes.

Figure 4: Existing Traffic Volumes

3. Future Background Conditions

3.1 Planned Conditions

3.1.1 Dundas Bus Rapid Transit

The subject development is located along the future Dundas BRT Alignment, which will enhance the mobility and transit experience along Dundas Street East. The future Dundas BRT is assumed to be build-out prior to 2027, based on the TOR comments from the City, which stated that the Dundas Street East construction commencement is anticipated to be in 2026, and the future Dundas BRT will be analyzed in the future horizons. The future geometry is based upon the preliminary detailed design from the Dundas Bus Rapid Transit Mississauga East Environmental Report (Metrolinx/City of Mississauga, 2022), and is provided in Appendix C. The closest BRT stop to the proposed development will be located at Dixie Road. Figure 6 shows the proposed Dundas Street East crosssection at Dixie Road and is an excerpt from Dundas Connects Master Plan (Mississauga, 2018).

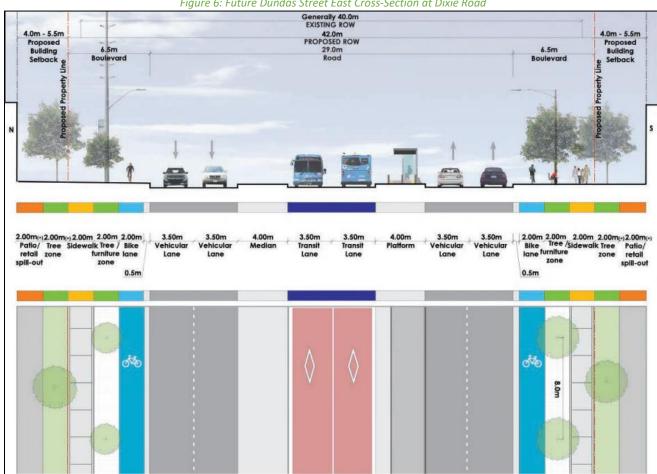


Figure 6: Future Dundas Street East Cross-Section at Dixie Road

Source: Dundas Connects Master Plan (March 2018)

Other Study Area Developments

Several development applications were available for the adjacent properties as listed on the City's Development Application webpage. The anticipated trip generation figures for these developments are provided in Appendix D.

3085 Queen Frederica Drive

The proposed development at 3085 Queen Frederica Drive includes a condominium conversion of 73 units. No additional trips are anticipated to be generated.

2525 Dixie Road

The proposed development at 2525 Dixie Road includes a Shell gasoline station with associated convenience store (211 sq.m.), Jiffy Lube service station (159 sq.m.), and an automated carwash facility (114 sq.m.). The proposed development was analyzed with respect to a 2024 study horizon for the build-out year. The site traffic volume figure for this development is shown in Appendix D. However, as of April 2024, the site is currently undeveloped. As such, it has been assumed that this site will be buildout by the 2028 future analysis horizon and will be included in the 2028 future analysis horizon. The development is anticipated to generate 40 new AM and 56 new PM two-way peak hour auto trips. (WSP, 2019). A volume figure for site traffic at the subject site Study Area intersections has been created using trip distribution and assignment assumptions for the subject site, and it is shown in Figure 7. These trips have been included in the background traffic projections.

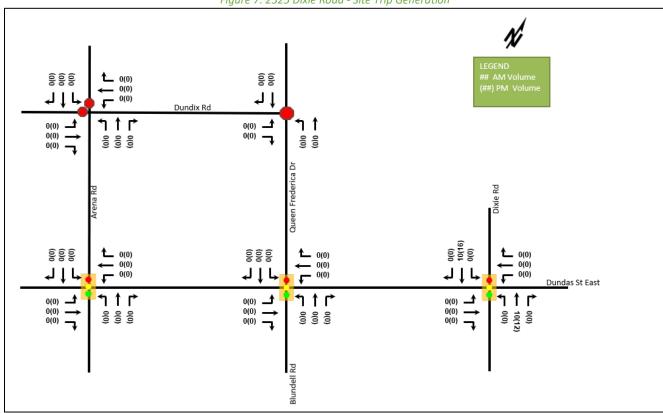


Figure 7: 2525 Dixie Road - Site Trip Generation

1000 and 1024 Dundas Street East

The proposed development at 1000 and 1024 Dundas Street East includes 462 rental apartment units and ground floor retail (790 sq. m.). The proposed development was analyzed with respect to a 2028 study horizon for the build-out year. The development is anticipated to generate 117 new AM and 191 new PM two-way peak hour auto trips. (GHD, 2022). These trips have been included in the background traffic projections. The 2026 and 2031 site traffic volume figures for this development are shown in Appendix D. It has been noted that this background development TIS has provided two volume figures for site trip generation in different horizon years. However, these two volume figures were provided to differentiate the site access configuration before and after the

implementation of the BRT median lane along Dundas Street East. As a result, this change does not impact the background development site trip volumes travelling eastbound or westbound through the subject site Study Area intersections at Arena Road, Queen Frederica Drive/Blundell Road, or Dixie Road, which have remained the same. The volume figure for 2026 site traffic has been created using the same trip distribution and assignment prepared for 1225 Dundas Street East discussed in Sections 3.5 and 3.6, given its proximity to the Study Area. As such, this site trip generation will be included in the 2028 future analysis horizon and the 2033 future analysis horizon. Figure 8 illustrates the site traffic for the proposed development at full buildout.

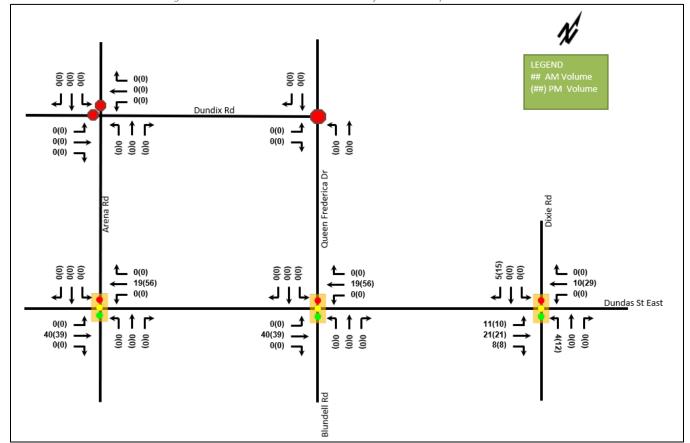


Figure 8: 1000 and 1024 Dundas Street Projected Site Trips - 2026 & 2031

3.3 Background Growth

The growth rates from the existing horizon to 2026, 2026 to 2031, and 2031 to 2035 for Dundas Street East were obtained from the City of Mississauga Transportation and Works Department. These rates are specific to the studied road segments, peak periods, and horizon years. The growth rates between 2026 and 2035 account for the expected reduction in traffic as a result of the Dundas Street East implementation. It has been noted, however, that non-zero growth rates for the westbound direction in the AM peak period and for the eastbound direction in the PM peak period have been projected between 2031 and 2035. Table 4 summarizes the projected growth rates for Dundas Street within the Study Area.

Table 4: Compounded Annual Growth Rates

R	oadway	Peak	CAGR from Existing to 2026		CAGR from 2026 to 2031		CAGR from 2031 to 2035	
		Period	EB	WB	EB	WB	EB	WB
	Dundas	AM	0.5%	1.0%	0%	0%	0%	1.0%
Stı	reet East	PM	0.5%	0%	0%	0%	0.5%	0%

Consistent with the background growth rate that has been applied along Dixie Road in Section 2.5, a growth rate of 1% has been assumed and applied to Dixie Road through movements to grow the 2024 existing horizon volumes to the 2028 and 2033 future analysis horizon volumes. This growth rate has not been applied to local roadways, accesses, or left or right turning movements. This growth rate assumption has been applied to produce future volumes that capture any future changes to the currently and mostly built out land use conditions along the Dixie Road corridor in the vicinity of Dundas Street.

3.3.1 Future Background Traffic Volumes

Using the background growth rates above, the turning movement volumes were grown to reflect the 2028 and 2033 future background traffic volumes. Figure 9 illustrates the 2028 future background traffic volumes and Figure 10 illustrates the 2033 future background traffic volumes.

23(37) 116(113) 4(21) 1(7) 35(34) Dundix Rd 0(0) 5(2) 5(3) 29(22) 46(30) 22(34) 7(30) 0(2) 58(149) 17(38) Queen Frederica Dr 178(251) 946(1136) 368(452) 19(19) 9(9) 131(106) 36(26) 3(2) 13(15) 8(20) **57(148)** 169(355) 447(1162) **721(1667)** 789(1581) 96(257) 44(88) 18(46) **Dundas St East** ↑ ↑ 54(110) 1 7(21) 158(198) 19(37) 14(44) 1228(1231) 17(19) 1175(1237) 25(37) 900(836) 9(25) 83(238) 139(222) 806(1004) 0(0) 18(76) 155(153) Blundell Rd

Figure 10: 2033 Future Background Traffic Volumes

3.4 Trip Generation and Mode Shares

The proposed development will include 586 condo units, 35 townhome units, and 1,230 m 2 (13,234 ft 2) of retail spaces. The *ITE Trip Generation Manual* 11th Edition has been reviewed to determine the appropriate trip generation rate equations for the proposed land uses. To estimate person trip generation, a factor of 1.28, calculated from a default 10% non-auto mode share and an average vehicle occupancy rate of 1.15 (i.e. 1.15/0.90 = 1.28), has been applied to the vehicle trip rates. Table 5 summarizes the person trip rates for the proposed land uses.

Table 5: Trip Generation Person Trip Rates

Dwelling Type	Land Use Code	Peak Hour	Vehicle Trip Rate	Person Trip Rates
Multifamily Housing	220	AM	0.40	0.51
(Low-Rise)	220	PM	0.51	0.65
Multifamily Housing	222	AM	0.27	0.35
(High-Rise)	222	PM	0.32	0.41
Retail	ดาา	AM	2.36	3.02
Ketali	822	PM	6.59	8.44

Using the above Person Trip rates, the total person trip generation has been estimated. Table 6 below illustrates the total person trip generation by land use.

Table 6: Total Person Trip Generation

Land Use	Units/GFA	A AM Peak Hour			PM Peak Hour			
Land Ose	(sq. ft.)	In	Out	Total	In	Out	Total	
Multifamily								
Housing	35	4	14	18	14	9	23	
(Low-Rise)								
Multifamily								
Housing	586	53	152	205	149	91	240	
(High-Rise)								
Retail	13,234	24	16	40	56	56	112	
Total Per	son Trips	81	182	263	219	156	375	

As shown above, the proposed development is projected to generate 263 AM and 375 PM two-way person trips.

The existing mode shares in the Study Area were obtained from the 2016 Transportation Tomorrow Survey (TTS). The Dundas Street East implementation is expected to increase transit mode share in the Study Area, therefore, a 6% shift to transit mode and a 2% shift to cycling mode taken from the auto mode is proposed (see Appendix E). Table 7 and Table 8 summarize the 2016 TTS mode shares and applied mode shares, respectively.

Table 7: 2016 TTS Mode Shares

Travel Mode	2016 Mode Shares (TTS)
Auto Driver	63%
Auto Passenger	16%
Transit	14%
Cycling	0%
Walking	7%
Total	100%

Table 8: Applied Mode Shares

Travel Mode	Applied Mode Shares
Auto Driver	55%
Auto Passenger	16%
Transit	20%
Cycling	2%
Walking	7%
Total	100%

Synergy is expected at the proposed development since it includes mixed-use buildings containing residential, and retail uses. Internal capture rates for both the retail and residential land uses were calculated using the methodology identified in Section 6.5 of the ITE Trip Generation Handbook 3rd Edition. The synergy trip calculation tool developed by National Cooperative Highway Research Program (NCHRP) was used and can be found in Appendix F. The rates summarized in Table 9 represent the percentage of trips to/from each use that are considered internal capture trips.

Table 9: NCHRP 684 Internal Capture Rates

Lond Hoo	Α	М	PM	
Land Use	In	Out	In	Out
Residential	3%	1%	4%	4%
Retail	14%	25%	13%	25%

Pass-by reductions have been applied to the retail trip generation at a rate of 40%. This value is based on the average value in Appendix E in ITE Trip Generation Handbook 3rd Edition.

Using the above mode share targets, the internal capture and pass-by rates, and the person trip rates, the person trips by mode have been projected. Table 10 summarizes the residential trip generation and the non-residential trip generation by mode and peak hour.

Table 10: Trip Generation by Mode

			А	M Peak Hou	ır	P	M Peak Ho	ur
Travel Mode		Mode Share	In	Out	Total	In	Out	Total
	Auto Driver	55%	2	8	10	8	5	13
	Auto Passenger	16%	1	2	3	2	1	4
i≓	Transit	20%	1	3	4	3	2	5
Multi-Unit	Cycling	2%	0	0	0	0	0	0
풀	Walking	7%	0	1	1	1	1	2
Σ	Total	100%	4	14	18	14	9	24
	Internal Capture (varies)	-	0	0	0	0	0	0
	Net New Auto Driver	55%	2	8	10	8	5	13
	Auto Driver	55%	29	84	113	82	50	132
	Auto Passenger	16%	8	24	33	24	15	38
ξ	Transit	20%	11	30	41	30	18	48
Multi-Unit	Cycling	2%	1	3	4	3	2	5
품	Walking	7%	4	11	14	10	6	17
Σ	Total	100%	53	152	205	149	91	240
	Internal Capture (varies)	-	-1	-1	-2	-3	-2	-5
	Net New Auto Driver	55%	28	83	111	79	48	127

Travel Mode			Α	M Peak Ho	ur	Р	M Peak Ho	ur
		Mode Share	In	Out	Total	In	Out	Total
	Auto Driver	55%	13	9	22	31	31	62
	Auto Passenger	16%	4	3	6	9	9	18
_	Transit	20%	5	3	8	11	11	22
=	Cycling	2%	0	0	1	1	1	2
Retail	Walking	7%	2	1	3	4	4	8
~	Total	100%	24	16	40	56	56	112
	Internal Capture (varies)	-	-1	-1	-2	-2	-4	-6
	Pass-by (40%)	-	-5	-4	-9	-12	-12	-24
	Net New Auto Driver	55%	6	3	9	15	11	26
	Auto Driver	55%	44	101	145	121	86	207
	Auto Passenger	16%	13	29	42	35	25	60
_	Transit	20%	17	36	53	44	31	75
Total	Cycling	2%	1	3	5	4	3	7
-	Walking	7%	6	13	18	15	11	27
	Total	100%	81	182	263	219	156	376
	Net New Auto Driver	55%	36	94	130	102	64	166

As shown above, 263 AM and 376 PM new peak hour two-way person trips are projected as a result of the proposed development, of which 130 AM and 166 PM trips are net new peak hour two-way vehicle trips.

3.5 Trip Distribution

Using 2016 TTS data in Appendix G, the travel patterns in the traffic analysis zone 3669 have been determined. Table 11 below summarizes the trip distribution in the vicinity of 1225 Dundas Street East.

Table 11: 2016 TTS Trip Distribution

To/From	Percent of Trips
North	30%
South	25%
East	15%
West	30%
Total	100%

3.6 Trip Assignment and Future Total Travel Demands

Using existing turning movement splits, access to major transportation infrastructure, lane configurations, and traffic controls, the major routes and their associated probability of use to and from the site have been determined for each direction in the above distribution. Using this information and the above distribution, the trips generated by the site have been assigned to the study area road network. Figure 11 illustrates the new site generated volumes, and Figure 12 illustrates the Pass-By volumes. The site generated traffic has been combined with the 2028 and 2033 future background traffic volumes to estimate the future total traffic volumes. The 2028 and 2033 future total traffic volumes are illustrated in Figure 13 and Figure 14.

Figure 11: New Site Generated Auto Volumes ## AM Volume 000 0(0) 0(0) Dundix Rd 0(0) 0(0) 0 44 (30) Site Access # 2 0(0) 0(0) 6(17) 0(0) 0(0) Queen Frederica Dr 000 Arena Rd 30(85) 40(28) 0(0) 10(6) 0(0) 0(0) 44(30) 5(15) 0(0) 0(0) 15(41) 6(17) 15(41) 12(31) 0(0) Dundas St East ↑ ↑ ↑ 12 66 66 15(44) 0(0) 14(9) 10(6) 29(19) 0(0) 0(0) 0(0) 11(8) Blundell Rd

Figure 12: Pass-By Volumes

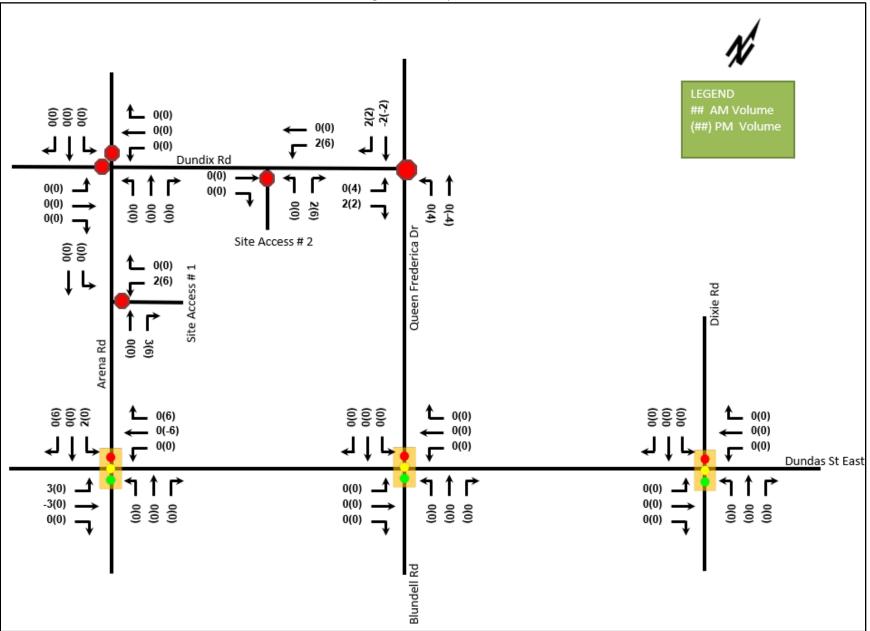


Figure 13: 2028 Future Total Traffic Volumes

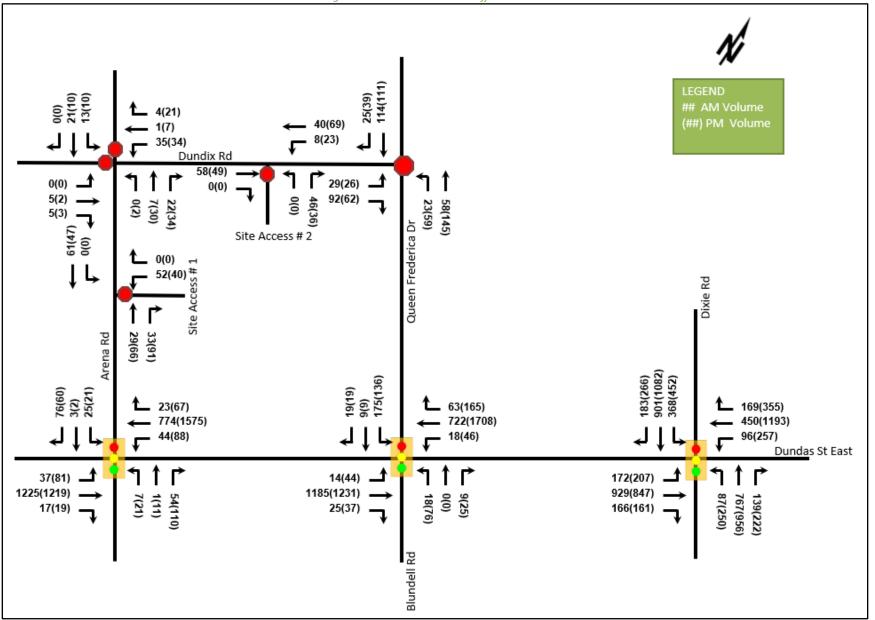


Figure 14: 2033 Future Total Traffic Volumes ## AM Volume 4(21) 40(69) (##) PM Volume 1(7) 35(34) Dundix Rd 58(49) 0(0) 0(0) 0(0) 46(36) Site Access # 2 5(2) 92(62) 58(145) 22(34) 7(30) 23(59) 5(3) Queen Frederica Dr 61(47) 0(0) (0)0 \$\rightarrow\$ (00)25
Site Access # 1 0(0) Dixie Rd 33(91) Arena Rd 183(266) 946(1136) 368(452) 9(9) 175(136) 76(60) 3(2) 25(21) 19(19) 169(355) 23(67) 63(165) 789(1575) 736(1708) 459(1193) 18(46) 96(257) 44(88) Dundas St East 37(81) 14(44) 172(207) 1225(1231) 1185(1243) 929(855) 9(25) 0(0) 806(1004) 139(222) 54(110) 18(76) 87(250) 1(11) 7(21) 25(37) 166(161) 17(19) Blundell Rd

4. Development Design

4.1 Development Access

The site is proposed to have two accesses – one full movement access on Arena Road (Site Access #1) and one full movement access on Dundix Road (Site Access #2). Both accesses are 7.0 metres wide and are connected to a drop-off loop, surface parking spaces, and underground parking garage access ramp. The vehicle and bicycle parking are proposed to access the underground parking via a 7.5% slope parking garage ramp. A total of three loading spaces are provided for garbage collection and move-in truck loading.

A total of 12 surface parking and 294 underground parking spaces are proposed. Pedestrian and cycling connections are provided from the building entrances to the boundary streets of Dundas Street East, Dundix Road, and Arena Road.

Using OTM Book 12 Justification 7, traffic control signal warrants at the site accesses have been examined using the 2028 and 2033 future total volumes. It has been found that signals are not warranted using Justification 7, and thus the site access will have a stop control on the minor approach. The signalization warrant for the accesses can be found in Appendix H. A Left-turn Lane warrant for unsignalized intersections was examined at accesses for the 2028 and 2033 future total horizons. To determine if a left-turn lane is warranted, the MTO Geometric Design Standards for Ontario Highways, Section E, left-turn lane warrant nomographs were examined. It was found that a left turn lane is not warranted at the accesses for the future horizons. Left-turn lane warrants have been provided in Appendix I.

According to Transportation Association of Canada's Geometric Design Guide for Canadian Roads (TAC), Table 8.9.3, there are no throat length requirements for local roads. As Dundix Road and Arena Road are both designated as local roads, minimum throat length requirements for both Site Access #1 and Site Access #2 are not applicable. However, for reference, the suggested minimum clear throat lengths for collector roads, for a development of this size, based on each land use are summarized in Table 12 below.

Table 12: Minimum Clear Throat Length by Land Use

Land Use	Required Clear Throat Length (m) Collector
Apartment (>200 units)	25
Shopping Centre (< 25,000 sq.m)	8

The throat length of the access on Arena Road (Site Access #1) is proposed to be approximately 13.0 metres due to the location of the underground parking ramp. The throat length of the access on Dundix Road (Site Access #2) is approximately 3.0 metres due to the location of the proposed surface level parking spaces. With reference to corner clearance, it is noted that the minimum suggested clearance from street corners required for local roads as per Figure 8.9.2 in the TAC design guidelines is 2 metres for residential land uses. Therefore, this applicable minimum clearance requirement is met for both site accesses. In addition, based on our vehicle queue analysis in Section 5.5 at the proposed site accesses, there is expected to be minimal queues for outbound vehicles, meaning the parking spaces along the throat of the access at Dundix Road would have minimal conflicts with the site through traffic.

4.2 Turning Template Analysis

The delivery, move-in, and garbage collection vehicle turning templates were reviewed to confirm movements will be permitted on site. Appendix J includes drawings illustrating the turning paths for the design vehicles.

Sightline Review 4.3

A sightline analysis of the proposed site accesses onto Arena Road and Dundix Road has been undertaken to determine if the proposed access is impeded by obstructions, which would limit the visibility from the access point to cars approaching on Arena Road and Dundix Road. The sightlines have been reviewed to the right and to the left of vehicles entering Arena Road and Dundix Road from the site accesses. The cases associated with stop control on the minor road have been reviewed at this location. To the right, the left turn scenario for sightline calculations governs. To the left, the right turn scenario for sightline calculations governs. The departure sight distance and stopping sight distance have been reviewed for a 50 km/h design speed (40 km/h speed limit). Table 13 outlines the stopping sight distance and departure sight requirements for the proposed accesses in metres, and Appendix K includes a sightline drawing and reference tables for these scenarios.

Departure Departure **Available Available** Design Sight Sight Stopping Sight Sight Road Speed Distance Distance Sight Distance -Distance -(km/h) **Distance** (left-turn (right-turn Right-turn Left-turn scenario) scenario) 50 51 **Arena Road** 105 95 65 85 **Dundix Road** 50 105 95 65 135 80

Table 13: Sightline Calculations

Since no site volumes will be generated at the intersection of Arena Road and Dundix Road and the proposed access on Arena Road (Site Access #1) will move the existing access toward Dundas Street by approximately 5.0 metres, the distance between Site Access #1 and Arena Road and Dundix Road intersection will be increased, and the site distance will be improved.

To the north of Site Access #1, a sight distance of 51 metres is provided along Arena Road, due to a 90 degree turn between Arena Road and Dundix Road. The distance would meet the stopping sight distance requirements for a vehicle speed of 32 km/h traveling onto Arena Road. Approximately 120 metres in advance of the left turn from Dundix Road to Arena Road, there is a posted warning speed sign indicating a sharp-bend, and that vehicles should reduce speed to 20 km/h. Therefore, it is anticipated that vehicles turning this corner would be traveling at speeds below the posted speed and would be decelerating as they approach the subject corner. Stopping sight distance for a 42-kilometre per hour design speed (turning speed of 32 km/h plus 10 km/h) has been evaluated and it has been determined to be 50 metres. This is an appropriate design speed for a short section of a local road, which assumes a 10 km/h buffer from the 32 km/h turning speed. As a result, the assumed turning speed of 32 km/h is anticipated to be accommodated in both directions at Site Access #1 at a minimum. Therefore, no mitigation measures are required or recommended. It is anticipated that provided stopping sight distances for the access on Arena Road (Site Access #1) would be sufficient.

4.4 Loading

According to the City of Mississauga Loading Space Regulations, three loading spaces in total are required. The dimensions of a loading space outlined in the City of Mississauga Zoning By-Law are 3.5 metres in width, and 9 metres in length. The loading spaces at this site meets these requirements. Given that there are three loading spaces provided onsite, the City of Mississauga Loading Space requirements are met.

Design for Sustainable Modes

Dundas Bus Rapid Transit Mississauga East Environmental Report (Metrolinx/City of Mississauga, 2022) identified that protected cycle tracks, multi-use-paths, and widened sidewalks will be provided along Dundas Steet. Furthermore, The City of Mississauga Pedestrian Master Plan aims to improve the pedestrian network and

increase the number of walking trips in Mississauga. The active mode facilities will encourage pedestrian traffic within the overall Study Area.

4.6 Transportation Demand Management

Outlined below are the measures that will be provided at 1225 Dundas Street East site to ensure that the mode shares at the proposed development contribute to the Study Area traffic superzone meeting the Regional mode share targets:

- Unbundle parking costs from purchase price
- Provide a multimodal travel option information package to new residents
- · Assist in resident school travel planning
- Provide 3 carpool spaces

Additionally, it is recommended that the following TDM measures are considered in later stages during the Site Plan Application process:

- Offer PRESTO cards preloaded with one monthly transit pass on initial residence purchase/move-in, to encourage residents to use transit
- Contract with provider to install on-site bikeshare station (subject to bikeshare provider agreement/willingness)
- Provide residents with bikeshare memberships, either free or subsidized

4.7 Parking

4.7.1 Vehicular Parking

The parking requirements and provisions for the proposed land uses at 1225 Dundas Street East were established through the review of the City of Mississauga Zoning By-law 0117-2022, which serves to amend Zoning By-law 0225-2007 Section 3.1.2. Precinct 3 parking rates within the by-law apply. The vehicle parking requirements and provisions are summarized in Table 14.

Table 14: 1225 Dundas Street East Vehicle Parking Requirements – Zoning By-Law Approach

Parking Classification	Units/ GFA (sq.m.)	Parking Rate	Parking Spaces Required	Parking Spaces Provided		
Condominium Apartment	586 units	1.00 residential spaces/dwelling unit 0.20 residential visitor spaces/dwelling unit	586 resident spaces 118 visitor spaces			
Townhouse	35	1.3 resident spaces per unit 0.25 visitor spaces per unit	46 resident spaces 9 visitor spaces	229 resident spaces 60 visitor spaces 17 retail spaces		
Retail (Total)	1,230	(4.0 spaces per 100 m²)	50 retail spaces			
		Total	632 resident spaces 127 visitor spaces 50 retail spaces (809 spaces total)	229 resident spaces 60 visitor spaces 17 retail spaces (306 spaces total)		

As noted above, the parking space requirement for the proposed land uses at 1225 Dundas Street East is 809 stalls, whereas 306 parking spaces are provided. Shared parking arrangements are outlined in the by-law that may be applied at the subject site for residential visitor and non-residential parking components of a new development, which is outlined in the amended by-law. The shared parking requirements for residential and retail land use within Precinct 3 proposed in the zoning by-law can be seen in Table 15.

Table 15: 1225 Dundas Street East Vehicle Parking Requirements – Shared Parking Arrangement Application

Shared Parking Arrangement						
Criteria	Parking Rate	Parking Spaces Required	Parking Spaces Provided			
Option 1	Visitor spaces per unit in accordance with applicable regulations contained in Table 3.1.2.1 of this Bylaw	127 spaces	-			
Option 2	Parking required for all non- residential uses, located in the same building or on the same lot as the residential use	50 spaces	-			
Shared Arrangement	The greater of Option 1 and Option 2	127 total shared spaces	-			
	Total	127 total shared spaces	60 visitor spaces 17 retail spaces (77 total shared spaces)			

As shown above, the shared parking arrangement for the proposed development as per the by-law requires that 127 spaces are allocated to be shared between visitor and retail users. With this arrangement in place, there is a deficiency of 50 shared parking spaces for the use of visitor and retail parking. However, the application of Bill 185 and resulting updated parking standards supports the removal of minimum parking requirements for residential, visitor, and retail parking spaces for new developments located in protected major transit station areas (PMTSAs).

No Parking Requirements for PMTSAs - Bill 185

On April 10, 2024, Ontario's provincial government introduced new legislation to expedite government processes known as Bill 185: the Cutting Red Tape to Build More Homes Act ("Bill 185"), which has recently been approved through Royal Assent. This Act was created to assist in the province's goal of building 1.5 million homes by 2031 using key land-use planning legislation. A provision as part of this Act states that no official plan or zoning by-law in Ontario may "contain any policy that has the effect of requiring an owner or occupant of a building or structure to provide and maintain parking facilities, other than parking facilities for bicycles" on specified lands that include protected major transit station areas (PMTSAs). The planned major transit station stop located at Dundas Street East at Dixie Road is City of Mississauga Dixie PMTSA according to Schedule 11 of the latest 2024 amendment to the City of Mississauga Official Plan. This PMTSA corresponds to the Primary Major Transit Station Area in the Peel Region Official Plan with reference code "DUN-16" (2021). Given that the future Dundas and Dixie BRT station at Dundas Street at Dixie Road is within a 400-metre walking distance from the proposed development located within this PMTSA, it is anticipated that new developments within this area will not require minimum auto parking rates for residential, visitor, and commercial land uses. Transit and active transportation are anticipated to be attractive modes of travel for residents and visitors to and from this area with the implementation of the BRT in the future.

4.7.2 Accessible Parking

The accessible parking requirements and provisions for the proposed land uses at 1225 Dundas Street East were estimated through the Mississauga Zoning By-law 0225-2007 Section 3.1.3. Based on the Mississauga Zoning By-law, accessible parking spaces for residential uses shall only apply to the total number of visitor parking spaces required. The accessible parking supply is calculated based on the required parking as per the Zoning By-law. However, considering the no parking requirement legislation of Bill 185, the proposed supply was used to calculate the required accessible parking space instead and it is summarized in Table 16.

D	Parking Space	Parking	Spaces R	equired	Parking Spaces Provided		
Parking Classification	Requirements	Type A	Туре В	Total	Type A	Туре В	Total
Residential Visitor	4% of the total	1	2	3	2	2	4
Retail	1	1	-	1	2	2	4
	Total	2	2	4	2	2	4

Table 16: 1225 Dundas Street East Accessible Parking Requirements and Provisions - AODA

As shown in the above table, 2 Type A and 2 Type B barrier-free parking spaces are required at the site based on the number of visitor parking spaces and retail parking spaces provided on-site. The provision of 2 Type A barrier-free parking spaces and 2 Type B barrier-free parking spaces at the site satisfies this zoning requirement.

4.7.3 Bike Parking

The bicycle parking provisions at 1225 Dundas Street East will be compared to bicycle parking requirements outlined in the City of Mississauga Zoning By-law 0118-2022, which serves to amend Zoning By-law 0225-2007 Section 3.1.6.5 and 3.1.6.6. The bicycle parking provisions and requirements are summarized in Table 17.

Table 17: 1225 Dundas Street East Bike Parking Provisions

Land Use / GFA Unit Type (sq.m.) / Units		Parking Rate (Required)	Parking Required	Parking Provided
Residential	621	0.6 spaces/unit (indoor) 0.05 spaces/unit (outdoor) (6 minimum)	373 (indoor) 31 (outdoor)	375 (indoor)
Retail	1,230	0.15 spaces/100m ² (indoor) 0.20 spaces/100m ² (outdoor)	2 (indoor) 3 (outdoor)	34(outdoor)
Total	-	-	375 (indoor) 34 (outdoor)	375(indoor) 34 (outdoor)

As shown in the above table, the number of indoor bicycle parking and outdoor bicycle parking spaces provided on-site meet bicycle parking requirements exactly according to the by-law, as amended. As a result, bicycle parking provisions at 1225 Dundas Street East are satisfied.

4.7.4 Electric Vehicle Ready Parking Spaces

The electric vehicle ready parking requirements and provisions for the proposed land uses at 1225 Dundas Street East have been reviewed using the City of Mississauga Zoning By-law 0117-2022, which serves to amend Zoning By-law 0225-2007 Section 3.1.2, and are summarized in Table 18.

Table 18: Electric Vehicle Ready Parking Requirements

Land Use / Unit Type	Total Spaces	Parking Rate (Required)	Parking Required	Parking Provided
Residential 229		20% of the total or 1.0 space, whichever is greater	46	46
		10% of the total or 1.0 space, whichever is greater	6	7
Retail	17	10% of the total or 1.0 space, whichever is greater, where parking structure includes 10 or more parking spaces	0	0
Total	306	-	52	53

As shown in the above table, the number of electric vehicle ready parking spaces provided on-site meet zoning by-law requirements in excess based on number of parking spaces provided.

4.8 Community Impacts

The site is anticipated to generate approximately 80 AM and 119 PM new two-way vehicle trips on Arena Road and 50 AM and 47 PM new two-way vehicle trips on Dundix Road. No site generated volume is anticipated to travel north of Site Access #1 and west of Site Access #2, and all site-generated volumes are anticipated to travel straight to the major road. Given the location of the proposed development and the location of the proposed accesses, there are no opportunities for cut-through traffic through the existing adjacent low-rise residential developments. Therefore, no detrimental community impacts are anticipated.

5. Operational Analysis

To understand the operational characteristics of the Study Area intersections, Synchro (Version 11) model has been coded using the existing traffic signal timing plans, provided by City of Mississauga and Peel Region staff. Peak Hour Factors (PHF) have been calculated based on the existing turning movement counts and are included in Appendix L. Where peak hour volumes in 15-minute increments were unavailable, the PHF from the adjacent intersections was used. The Peak Hour Factors used for each intersection are shown below in Table 19.

Table 19: Peak Hour Factors

linta una atta in	Peak Hou	ır Factor
Intersection	AM	PM
Dixie Road and Dundas Street East	0.96	0.98
Queen Frederica Drive/Blundell Road and Dundas Street East	0.93	0.93
Arena Road and Dundas Street East	0.92	0.99
Queen Frederica Drive and Dundix Road	0.93	0.94
Arena Road and Dundix Road	0.86	0.98
Site Access 1 # at Arena Road	*0.86	*0.98
Site Access 2 # at Dundix Road	*0.86	*0.98
*PHF taken from adjacent intersections		

The Heavy Vehicle percentage (HV %) was obtained from the TMC data for each turning movement. All Heavy Vehicle percentages below 2% were entered as 2% in order to produce a conservative analysis. All other parameters have been coded using accepted best practices and default parameters where applicable.

Criteria for critical movements and critical intersections have been considered for Study Area intersections as outlined by The City of Mississauga's Traffic Impact Study Guidelines (2022). Criteria for critical movements and critical intersections for signalized intersections have been defined as those with volume to capacity ratios of 0.85 or greater for the overall intersection, volume to capacity ratios of 1.00 or greater for individual through or turning movements. Additionally, 95th percentile queue lengths for an individual movement that exceed available turning lane storage or 95th percentile queue lengths for through lanes that block vehicles from entering turning lanes have been identified as critical conditions for signalized intersections. Critical movements at unsignalized intersections have been defined as individual movements with worse than LOS E, based on the average delay, or if the 95th percentile queue for an individual movement exceeds the available lane storage.

5.1 2024 Existing Conditions

The existing intersection volumes have been analyzed to establish a baseline condition and determine the impact of the subject development, surrounding background developments, growth, and changes to the transportation network on the Study Area. Table 20 summarizes the operational analysis of the 2024 existing conditions. Appendix M contains the 2024 Existing Conditions Synchro worksheets and HCM 2000 results are reported for signalized intersections. Given the incompatibility of HCM 2000 and all-way stop analysis, HCM 6th Edition values were reported for unsignalized intersections. All 95th percentile queues were also reported using HCM 6th Edition reports given its ability to provide these values.

Table 20: 2024 Existing Conditions Operational Analysis

Intersection	Mymnt		AM Pe	ak Hour			PM Pe	ak Hour	
intersection	ivivmnt	LOS	V/C	Del (s)	Q (95 th)	LOS	V/C	Del. (s)	Q (95 th)
	EBL	С	0.47	33	38	F	0.93	96	#87
	EBT/R	D	0.81	54	45	Е	0.75	68	112
	WBL	E	0.68	56	33	F	0.95	81	#105
	WBT	D	0.40	52	53	Е	0.79	55	133
Dixie Road and Dundas	WBR	D	0.13	49	20	D	0.41	46	53
Street East	NBL	С	0.26	27	21	D	0.72	38	64
(Signalized)	NBT/R	D	0.49	38	102	D	0.76	54	143
	SBL	Е	0.78	74	77	Е	0.78	70	#100
	SBT	С	0.38	26	83	D	0.57	42	125
	SBR	С	0.12	22	14	D	0.17	35	23
	Overall	D	0.65	44	-	E	0.86	56	-
	Mit	igation Me	asure: Sign	al Timing A	Adjustments				
	EBL				_	Ε	0.84	74	#84
	EBT/R					Е	0.80	69	112
	WBL					Е	0.89	70	#102
	WBT					Е	0.83	58	143
Dixie Road and Dundas	WBR					D	0.47	49	67
Street East	NBL			-		D	0.74	39	62
(Signalized)	NBT/R					D	0.72	51	140
(e.g	SBL					E	0.86	79	94
	SBT					D	0.56	42	123
	SBR					С	0.16	35	20
	Overall					E	0.84	56	-
	EBL	Α	0.03	2	1	В	0.39	14	#11
	EBT/R	A	0.32	3	6	A	0.35	4	27
	WBL	A	0.06	3	3	A	0.19	4	m3
Queen Frederica	WBT/R	A	0.21	3	24	A	0.51	7	#181
Drive/Blundell Road and	NBL	E	0.11	62	12	E	0.31	60	38
Dundas Street East	NBR	E	0.01	61	1	E	0.02	56	9
(Signalized)	SBL	E	0.62	71	59	E	0.40	60	49
	SBT/R	E	0.02	61	12	E	0.40	56	12
	Overall	A	0.36	9	-	A	0.49	10	-
	EBL	A	0.05	3	6	В В	0.21	10	14
	EBT/R	A	0.32	3	72	В А	0.21	9	84
_	WBL	A	0.32	4	9	A	0.34	2	4
Arena Road and Dundas	WBT/R	A	0.10	2	28	A	0.23	3	53
Street East	NBL	E	0.20	69	7	E	0.44	62	13
(Signalized)	NBT/R	E	0.05	68	12	E	0.13	62	19
(Signanzeu)	SBL	E	0.03	69	10	E	0.13	62	19
	SBT/R	E	0.05	68	11	E	0.03	61	9
	Overall	A	0.30	7	-	Α	0.38	9	-
Queen Frederica Drive and	EBL/R	A	0.10	8	2	Α	0.07	8	2 7
Dundix Road	NBL/T	A	0.10	8	2	Α	0.24	9	
(Unsignalized)	SBT/R	A	0.17	8	5	A	0.18	8	5
	Overall	Α	- 0.01	8	-	Α	- 0.01	8	-
	EBL/T/R	Α	0.01	7	0	A	0.01	7	0
Arena Road and Dundix	WBL/T/R	A	0.06	8	2	A	0.07	7	2
Road	NBL/T/R	Α	0.03	7	1	A	0.07	7	2
(Unsignalized)	SBL/T/R	Α	0.05	7	1	Α	0.02	7	1
· • •	Overall	Α		7		Α		7	

The intersections within study area operate well overall in the 2024 existing conditions.

At Dixie Road and Dundas Street East intersection during PM peak hour, the volume for the 95th percentile cycle exceeds capacity at eastbound, and westbound left-turn movements. However, where a V/C ratio is less than one, it can be assumed that the 95th percentile queue will rarely be exceeded. Moreover, turn lane storage length adjustments at this intersection is not a feasible mitigation measure as storage lengths are limited by adjacent intersection turn lanes as well as existing access locations along Dundas Street East and Dixie Road. The eastbound and westbound left movement may be subject to high delays as a result. To address the overall V/C ratio greater than 0.85 at this intersection in the PM peak hour, signal timing adjustments have been proposed in the PM peak hour. This mitigation measure was shown to reduce the delays for individual movements and reduce the overall V/C ratio of this intersection from 0.86 to 0.84. With the mitigation measure applied, the intersection operates below critical conditions overall in the PM peak hour.

At Queen Frederica Drive/Blundell Road and Dundas Street East intersection during PM peak hour, the volume for the 95th percentile cycle queue exceeds capacity at eastbound left and westbound shared through/right movements. Since V/C ratios are less than one, it can be assumed that the 95th percentile queue will rarely be exceeded.

The unsignalized intersections of Queen Frederica Drive at Dundix Road and Arena Road at Dundix Road both operate with individual movement LOS A for all movements and with overall intersection LOS A in both peak hours.

5.2 2028 Future Background Conditions

The 2028 future background conditions have been examined to determine the future traffic conditions without the addition of the proposed development. This will isolate the impact of the subject development on the traffic network. Due to the proposed roadway modifications to accommodate Dundas BRT, the signal timing splits, and phasing have been adjusted throughout the Study Area. Along Dundas Street East, the intersection geometry was coded in Synchro according to the Dundas Bus Rapid Transit Mississauga East Environmental Report (Metrolinx/City of Mississauga, 2022). Excerpts of these documents showcasing the preliminary design of Dundas Street East have been included in Appendix C. Eastbound and westbound protected left turn phases along Dundas Street East at each signalized intersection were added to support the BRT operations within the median lanes on Dundas Street East as per the comments received from City staff in Appendix A. Amber clearance and all red clearance times were calculated using the methodology provided in OTM Book 12-Traffic Signals for these phases. The same Walk Times and Flash Don't Walk times provided in the existing signal timing plans were carried forward as it is not anticipated that crosswalk lengths will meaningfully change with the conversion of the innermost lanes to include BRT infrastructure. The minimum initial was also taken from OTM Book 12 where applicable, and the signal offsets and signal timing splits were optimized using the Synchro optimization features. Further details are shown in the Synchro worksheets.

Table 21 summarizes the operational analysis of the 2028 future background conditions, and the 2028 future background Synchro worksheets are included as Appendix N.

Table 21: 2028 Future Background Conditions Operational Analysis

Interception	Mummt		AM Pe	ak Hour			PM P	eak Hour	
Intersection	Mvmnt	LOS	V/C	Del (s)	Q (95 th)	LOS	V/C	Del. (s)	Q (95 th)
	EBL	F	0.78	86	76	F	1.18	208	#132
	EBT/R	D	0.92	52	153	D	0.88	46	#163
	WBL	F	0.76	94	#58	F	0.92	98	#133
	WBT/R	D	0.64	49	110	F	1.15	126	#344
Dixie Road and Dundas	NBL	D	0.35	36	27	F	1.10	137	#128
Street East	NBT/R	D	0.69	54	119	F	0.99	84	#171
(Signalized)	SBL	Е	0.84	80	80	F	1.21	188	#127
	SBT	D	0.52	39	105	Е	0.85	63	141
	SBR	С	0.13	33	17	D	0.25	49	37
	Overall	D	0.83	53	-	F	1.15	98	-
	EBL	F	0.44	115	m10	F	0.73	126	m#31
	EBT/R	Α	0.52	3	12	Α	0.59	5	33
	WBL	Е	0.35	75	m12	F	0.59	80	m19
Queen Frederica	WBT/R	Α	0.34	6	53	В	0.83	11	m95
Drive/Blundell Road and	NBL	Е	0.11	62	12	Е	0.37	60	38
Dundas Street East	NBR	Е	0.01	61	0	Е	0.02	56	2
(Signalized)	SBL	Е	0.63	71	59	Е	0.40	60	49
	SBT/R	Е	0.06	61	12	Е	0.05	56	12
	Overall	В	0.53	11	-	В	0.74	14	-
	EBL	F	0.45	83	16	Е	0.49	80	24
	EBT/R	Α	0.52	9	183	В	0.56	17	168
	WBL	Е	0.54	75	31	F	0.64	88	m37
Arena Road and Dundas	WBT/R	Α	0.33	6	55	Α	0.69	9	64
Street East	NBL	E	0.08	69	7	E	0.10	57	13
(Signalized)	NBT/R	E	0.05	68	12	Е	0.11	57	19
	SBL	E	0.14	69	10	E	0.08	57	10
	SBT/R	E	0.05	68	11	E	0.02	56	9
	Overall	В	0.48	13	-	В	0.59	18	-
Over and Europe Duive	EBL/R	Α	0.10	8	2	Α	0.07	8	2
Queen Frederica Drive and Dundix Road	NBL/T	Α	0.10	8	2	Α	0.23	9	7
(Unsignalized)	SBT/R	Α	0.17	8	5	Α	0.18	8	5
(Onsignanzea)	Overall	Α	-	8	-	Α	-	8	-
	EBL/T/R	Α	0.01	7	0	Α	0.01	7	0
Arena Road and Dundix	WBL/T/R	Α	0.06	8	2	Α	0.07	7	2
Road	NBL/T/R	Α	0.03	7	1	Α	0.07	7	2
(Unsignalized)	SBL/T/R	Α	0.05	7	1	Α	0.02	7	1
	Overall	Α	-	7	-	Α	-	7	-
Notes:	n	n - volume f		•	tile exceeds queue is me		n upstrear	n signal	

With the addition of background development traffic, growth, and the geometric changes due to Dundas BRT implementation, the overall V/C ratio will be increased at all intersections within the study area.

The intersections within the study area will operate well overall in terms of V/C ratio except for the Dixie Road and Dundas Street East intersection where V/C ratios greater than 1.00 will occur at opposing approaches. For example, in the PM period, the westbound shared through/right movement will experience a V/C ratio of 1.15, while the southbound left movement will experience a V/C ratio of 1.29. Signal optimization and signal timing adjustments were explored as mitigation measures for the critical V/C ratios at this intersection in both peak hours; however, this mitigation was not sufficient to reduce the V/C ratios below one and decrease delays at all movements due to the constrained opposing movements. Providing more green time to the westbound movement to clear the accumulated volume in that direction will reduce green time for the southbound direction

and as a result, increase its V/C ratio further. Given that this intersection contains two major arterial roads with large through volumes during the peak periods of analysis and the geometric changes results in one through lane being removed, the level of service of F observed is expected. It is anticipated that TDM measures and active mode shares will improve with the anticipated Dundas corridor improvements. As such, no signal optimization was performed at this Study Area intersection.

The unsignalized intersections of Queen Frederica Drive at Dundix Road and Arena Road at Dundix Road continue to both operate with individual movement LOS A for all movements and with overall intersection LOS A in both peak hours in the 2028 future background analysis horizon.

5.3 2028 Future Total Conditions

The 2028 trip generation of the proposed development has been added to the 2028 future background traffic volumes to project the impact of new traffic on the future road network. Table 22 summarizes the results of the Synchro Analysis. Synchro worksheets have been included in Appendix O.

Table 22: 2028 Total Future Conditions Operational Analysis

		2020 7014		ak Hour			PM P	eak Hour	
Intersection	Mvmnt	LOS	V/C	Del (s)	Q (95 th)	LOS	V/C	Del. (s)	Q (95 th)
	EBL	F	0.81	89	82	F	1.23	226	#139
	EBT/R	D	0.94	54	#79	D	0.91	49	#200
	WBL	F	0.76	94	#58	F	0.92	98	#133
	WBT/R	D	0.65	50	112	F	1.18	135	#355
Dixie Road and Dundas	NBL	D	0.37	37	28	F	1.15	155	#137
Street East	NBT/R	D	0.71	55	119	F	0.99	84	#171
(Signalized)	SBL	Е	0.84	80	80	F	1.21	188	#127
	SBT	D	0.53	40	105	E	0.85	63	141
	SBR	С	0.13	34	17	D	0.30	50	43
	Overall	D	0.84	54	-	F	1.18	102	-
	EBL	F	0.44	112	m10	F	0.73	126	m#31
	EBT/R	Α	0.54	4	16	Α	0.59	5	35
	WBL	E	0.35	76	m12	E	0.59	80	m19
Queen Frederica	WBT/R	Α	0.36	7	54	В	0.86	12	m99
Drive/Blundell Road and	NBL	E	0.09	59	12	Е	0.35	59	38
Dundas Street East (Signalized)	NBR	E	0.01	58	0	D	0.02	55	2
(Signalizea)	SBL	E	0.72	74	78	Е	0.49	61	61
	SBT/R	E	0.05	58	12	E	0.05	55	12
	Overall	В	0.56	13	-	В	0.79	16	-
	EBL	F	0.56	84	#27	F	0.76	100	#57
	EBT/R	Α	0.53	10	182	В	0.56	17	168
	WBL	E	0.54	75	31	F	0.64	88	m36
Arena Road and Dundas	WBT/R	Α	0.35	7	57	В	0.73	11	65
Street East	NBL	E	0.07	66	7	Е	0.10	57	13
(Signalized)	NBT/R	E	0.05	66	12	E	0.11	57	19
	SBL	E	0.23	68	15	E	0.11	57	13
	SBT/R	E	0.07	67	15	E	0.05	56	13
	Overall	В	0.50	15	-	С	0.62	21	-
Overen Frederice Duty	EBL/R	Α	0.15	8	4	Α	0.11	8	3
Queen Frederica Drive and Dundix Road	NBL/T	Α	0.11	8	3	Α	0.26	9	8
(Unsignalized)	SBT/R	Α	0.17	8	5	Α	0.19	8	5
(Unsignalizea)	Overall	Α	-	8	-	Α	-	9	-

Internation	B. 4		AM Pe	ak Hour			PM P	eak Hour	
Intersection	Mvmnt	LOS	V/C	Del (s)	Q (95 th)	LOS	V/C	Del. (s)	Q (95 th)
	EBL/T/R	Α	0.01	7	0	Α	0.01	7	0
Arena Road and Dundix	WBL/T/R	Α	0.06	8	2	Α	0.07	7	2
Road	NBL/T/R	Α	0.03	7	1	Α	0.07	7	2
(Unsignalized)	SBL/T/R	Α	0.05	7	1	Α	0.02	7	1
	Overall	Α	-	7	-	Α	-	7	-
614 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	WBL/R	Α	0.06	9	2	Α	0.06	10	2
Site Access 1 # at Arena	NBT/R	-	-	-	-	-	-	-	-
Road (Unsignalized)	SBL/T	Α	-	0	0	Α	-	0	0
(Onsignanzea)	Overall	Α	-	3	-	Α	-	2	-
City Assess 2 # st Down div	EBT/R	-	-	-	-	-	-	-	-
Site Access 2 # at Dundix	WBL/T	Α	0.01	7	0	Α	0.02	7	1
Road	NBL/R	Α	0.05	9	2	Α	0.04	9	1
(Unsignalized)	Overall	Α	-	3	-	Α	-	3	-
Notes:	r	n - volume f		•	tile exceeds queue is me		n upstrear	n signal	

The network intersection operations for the 2028 future total conditions will operate similarly to the 2028 future background conditions.

Upon adding site-generated traffic to the 2028 future background conditions, movements previously projected to operate with a level of service of F at the Dixie Road and Dundas Street East intersection will remain the same level of service as the future background conditions, and no new capacity issues are noted. The V/C ratios that exceeded 1.00 in the 2028 future background analysis horizon have either stayed the same or slightly increased with the addition of background growth.

At the intersection of Dixie Road and Dundas Street East during the PM peak, the site volumes are projected to increase the delay on the eastbound left-turn movement by eighteen seconds, on the northbound left movement by eighteen seconds, and on the westbound through movement by nine seconds. The site volumes are projected to be nine on the eastbound left-turn movement (4.79% of existing volumes), four on the northbound left movement (1.77% of the existing volumes) and twelve on the westbound through movement (1.06% of existing volumes), and none on the southbound left movement. Therefore, the site-generated volumes are not anticipated to be a contributing factor to the existing network constraints.

The planned geometric changes at the Dixie Road and Dundas Street intersections focus on the development and facilitation of transit service along the corridor and will not directly mitigate auto operational constraints.

Both access intersections at Arena Road and Dundix Road will operate well with individual movement LOS A for all movements and overall LOS A for both intersections.

5.4 2033 Future Background Conditions

The 2033 future background conditions have been examined to determine the future traffic conditions without the addition of the proposed development. This will isolate the impact of the subject development on the traffic network. Due to the proposed roadway modifications to accommodate Dundas BRT, the signal timing splits, and phasing have been adjusted throughout the Study Area, similar to the 2033 future background analysis horizon.

Table 23 summarizes the operational analysis of the 2033 future background conditions, and the 2033 future background Synchro worksheets are included as Appendix P.

Table 23: 2033 Future Background Conditions Operational Analysis

Mvmnt EBL EBT/R	LOS	V/C	Del (s)	Q (95 th)	LOS	V/C	Del. (s)	0 (0=th)
	_		- 1-7	Q (33)	LO3	V/C	Dei. (3)	Q (95 th)
FRT/P	F	0.78	86	76	F	1.18	207	#133
LDI/N	D	0.92	52	153	D	0.89	47	#172
WBL	F	0.76	94	#58	F	0.92	98	#133
WBT/R	D	0.65	50	112	F	1.15	126	#344
NBL	D	0.36	37	27	F	1.10	137	#128
NBT/R	D	0.72	55	125	F	1.03	95	#183
SBL	E	0.84	80	80	F	1.21	188	#127
SBT	D	0.54	40	111	E	0.89	66	150
SBR	С	0.13	33	17	D	0.25	49	37
Overall	D	0.84	53	-	F	1.15	100	-
EBL	F	0.44	115	m10	F	0.73	126	m#30
EBT/R	Α		3	12	Α	0.59	5	34
	Е		76	m12	F		80	m19
	Α				В			m95
	E			12	E			38
	E			0	E			2
				-				49
								12
								-
								24
								171
-			-					m37
								64
			-					13
								19
								10
								9
								9
								2
								7
								5
								-
				-				0
								2
								2
		0.05		1		0.02		1
		-		-		-		-
· · · · · · · · · · · · · · · · · · ·								2
								7
				5				5
	Α			-	Α	-		-
	Α	0.01	7		Α	0.01	7	0
	Α	0.06	8	2	Α	0.07	7	2
NBL/T/R	Α	0.03	7	1	Α	0.07	7	2
SBL/T/R	Α	0.05	7	1	Α	0.02	7	1
Overall	Α	-	7	-	Α	-	7	-
	SBL SBT SBR Overall EBL EBT/R WBL WBT/R NBL NBR SBL SBT/R Overall EBL EBT/R WBL WBT/R NBL SBT/R OVERAL SBT/R OVERAL SBT/R OVERAL SBT/R OVERAL EBL/R NBL/T SBT/R OVERAL EBL/T/R WBL/T/R SBL/T/R OVERAL EBL/T/R NBL/T/R SBL/T/R OVERAL EBL/T/R NBL/T SBT/R OVERAL EBL/T/R NBL/T/R SBL/T/R OVERAL EBL/T/R NBL/T SBT/R OVERAL EBL/T/R SBL/T/R OVERAL EBL/T/R NBL/T SBT/R OVERAL EBL/T/R SBL/T/R OVERAL EBL/T/R SBL/T/R OVERAL	SBL E SBT D SBR C Overall D EBL F EBT/R A WBL E WBT/R A NBL E SBL E SBT/R E SBT/R A WBL E WBT/R A NBL E SBT/R E SBT/R E SBT/R A Overall B EBL/R A NBL/T A SBT/R A Overall A EBL/T/R A NBL/T/R A NBL/T/R A NBL/T/R A Overall A EBL/T/R A NBL/T/R A NBL/T/R A NBL/T/R A NBL/T/R A NB	SBL E 0.84 SBT D 0.54 SBR C 0.13 Overall D 0.84 EBL F 0.44 EBT/R A 0.52 WBL E 0.35 WBT/R A 0.34 NBL E 0.11 NBR E 0.01 SBL E 0.63 SBT/R E 0.06 Overall B 0.53 EBL F 0.45 EBT/R A 0.52 WBL E 0.045 WBL/R A 0.03 NBL/R A 0.03 SBL E 0.04 WBL/R A 0.05 WBL/R A 0.05 Overall B 0.48 EBL/R A 0.10 SBT/R A 0.01 WBL/T/R A 0.	SBL E 0.84 80 SBT D 0.54 40 SBR C 0.13 33 Overall D 0.84 53 EBL F 0.44 115 EBL F 0.44 115 EBT/R A 0.52 3 WBT/R A 0.34 6 WBT/R A 0.34 6 NBL E 0.01 61 SBL E 0.01 61 SBL E 0.03 71 SBL/R E 0.06 61 Overall B 0.53 11 EBL F 0.45 83 EBL/R A 0.52 9 WBL E 0.54 75 WBT/R A 0.33 6 NBL/R A 0.03 6 SBT/R E 0.05 68	SBL E 0.84 80 80 SBT D 0.54 40 111 SBR C 0.13 33 17 Overall D 0.84 53 - EBL F 0.44 115 m10 EBT/R A 0.52 3 12 WBL E 0.35 76 m12 WBT/R A 0.34 6 53 NBL E 0.01 61 0 NBR E 0.01 61 0 SBL E 0.63 71 59 SBT/R E 0.06 61 12 Overall B 0.53 11 - EBL F 0.45 83 16 EBT/R A 0.52 9 183 WBL E 0.54 75 31 WBT/R A 0.33 6	SBL E 0.84 80 80 F SBT D 0.54 40 111 E SBR C 0.13 33 17 D Overall D 0.84 53 - F EBL F 0.44 115 m10 F EBT/R A 0.52 3 12 A WBL E 0.35 76 m12 F WBT/R A 0.34 6 53 B NBL E 0.11 62 12 E NBR E 0.01 61 0 E SBL E 0.63 71 59 E SBT/R E 0.06 61 12 E Overall B 0.53 11 - B EBL E 0.045 83 16 E EBL EBL F 0.45 83 </td <td>SBL E 0.84 80 80 F 1.21 SBT D 0.54 40 111 E 0.89 SBR C 0.13 33 17 D 0.25 Overall D 0.84 53 - F 1.15 EBL F 0.44 115 m10 F 0.73 EBT/R A 0.52 3 12 A 0.59 WBI E 0.35 76 m12 F 0.59 WBT/R A 0.34 6 53 B 0.83 NBL E 0.11 62 12 E 0.37 NBR E 0.01 61 0 E 0.02 SBL E 0.63 71 59 E 0.40 SBT/R E 0.06 61 12 E 0.05 Overall B 0.53 11 - B 0.74 EBI F 0.45 83 16 E 0.49 EBI/R A 0.33 6 57 A 0.69 NBL E 0.54 75 31 F 0.64 WBT/R A 0.33 6 57 A 0.69 NBL E 0.05 68 12 E 0.10 NBT/R E 0.05 68 12 E 0.11 SBL E 0.14 69 10 E 0.02 Overall B 0.48 13 - B 0.59 EBI/R A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.23 SBT/R A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.00 Overall A - 8 - A - EBL/T/R A 0.05 7 1 A 0.00 Overall A - 7 - A - EBL/T/R A 0.10 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.00 NBL/T A 0.00 7 1 A 0.00 NBL/T/R A 0.01 7 0 A 0.01 NBL/T/R A 0.05 7 1 A 0.02 Overall A - 7 - A - EBL/T/R A 0.10 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.07 NBL/T A 0.00 7 1 A 0.00 NBL/T A 0.01 8 2 A 0.03 SBT/R A 0.10 8 2 A 0.23 SBT/R A 0.17 8 5 A 0.18 Overall A - 8 - A - EBL/T/R A 0.05 7 1 A 0.00 NBL/T A 0.00 7 1 A 0.07 NBL/T A 0.00 8 2 A 0.07 NBL/T A 0.00 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.00 SBL/T/R A 0.01 8 2 A 0.07 NBL/T A 0.00 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.00 NBL/T A 0.00 7 1 A 0.00 SBT/R A 0.11 8 5 A 0.18 Overall A - 8 - A - EBL/T/R A 0.01 SBT/R A 0.01 7 0 A 0.01 WBL/T/R A 0.00 7 1 A 0.07 NBL/T/R A 0.00 8 2 A 0.07 NBL/T/R A 0.00 7 1 A 0.00 NBL/T/R A 0.00 7 1 A 0.00 NBL/T/R A 0.00 7 1 A 0.00 NBL/T/R A 0.00 7 1 A 0.00</td> <td>SBL E 0.84 80 80 F 1.21 188 SBT D 0.54 40 111 E 0.89 66 SBR C 0.13 33 17 D 0.25 49 Overall D 0.84 53 - F 1.15 100 EBL F 0.44 115 m10 F 0.73 126 EBT/R A 0.52 3 12 A 0.59 5 WBT E 0.34 6 53 B 0.83 11 NBL E 0.01 61 0 E 0.02 56 SBL E 0.01 61 0 E 0.02 56 Overall B 0.53 11 - B 0.44 60 SBT/R E 0.06 61 12 E 0.05 56 Overall</td>	SBL E 0.84 80 80 F 1.21 SBT D 0.54 40 111 E 0.89 SBR C 0.13 33 17 D 0.25 Overall D 0.84 53 - F 1.15 EBL F 0.44 115 m10 F 0.73 EBT/R A 0.52 3 12 A 0.59 WBI E 0.35 76 m12 F 0.59 WBT/R A 0.34 6 53 B 0.83 NBL E 0.11 62 12 E 0.37 NBR E 0.01 61 0 E 0.02 SBL E 0.63 71 59 E 0.40 SBT/R E 0.06 61 12 E 0.05 Overall B 0.53 11 - B 0.74 EBI F 0.45 83 16 E 0.49 EBI/R A 0.33 6 57 A 0.69 NBL E 0.54 75 31 F 0.64 WBT/R A 0.33 6 57 A 0.69 NBL E 0.05 68 12 E 0.10 NBT/R E 0.05 68 12 E 0.11 SBL E 0.14 69 10 E 0.02 Overall B 0.48 13 - B 0.59 EBI/R A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.23 SBT/R A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.07 NBL/T A 0.10 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.00 Overall A - 8 - A - EBL/T/R A 0.05 7 1 A 0.00 Overall A - 7 - A - EBL/T/R A 0.10 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.00 NBL/T A 0.00 7 1 A 0.00 NBL/T/R A 0.01 7 0 A 0.01 NBL/T/R A 0.05 7 1 A 0.02 Overall A - 7 - A - EBL/T/R A 0.10 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.07 NBL/T A 0.00 7 1 A 0.00 NBL/T A 0.01 8 2 A 0.03 SBT/R A 0.10 8 2 A 0.23 SBT/R A 0.17 8 5 A 0.18 Overall A - 8 - A - EBL/T/R A 0.05 7 1 A 0.00 NBL/T A 0.00 7 1 A 0.07 NBL/T A 0.00 8 2 A 0.07 NBL/T A 0.00 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.00 SBL/T/R A 0.01 8 2 A 0.07 NBL/T A 0.00 8 2 A 0.07 NBL/T A 0.00 7 1 A 0.00 NBL/T A 0.00 7 1 A 0.00 SBT/R A 0.11 8 5 A 0.18 Overall A - 8 - A - EBL/T/R A 0.01 SBT/R A 0.01 7 0 A 0.01 WBL/T/R A 0.00 7 1 A 0.07 NBL/T/R A 0.00 8 2 A 0.07 NBL/T/R A 0.00 7 1 A 0.00 NBL/T/R A 0.00 7 1 A 0.00 NBL/T/R A 0.00 7 1 A 0.00 NBL/T/R A 0.00 7 1 A 0.00	SBL E 0.84 80 80 F 1.21 188 SBT D 0.54 40 111 E 0.89 66 SBR C 0.13 33 17 D 0.25 49 Overall D 0.84 53 - F 1.15 100 EBL F 0.44 115 m10 F 0.73 126 EBT/R A 0.52 3 12 A 0.59 5 WBT E 0.34 6 53 B 0.83 11 NBL E 0.01 61 0 E 0.02 56 SBL E 0.01 61 0 E 0.02 56 Overall B 0.53 11 - B 0.44 60 SBT/R E 0.06 61 12 E 0.05 56 Overall

The network intersection operations for the 2033 future background conditions will operate similarly to the 2028 future background conditions with only slight increases in V/C ratios and LOS for select movements. Between the 2028 future background horizon and the 2033 future background horizon, the eastbound and westbound volumes

along Dundas Street East experience no growth between 2028 and 2031 and experience minimal growth between 2031 and 2033 in the westbound direction in the AM peak hour and in the eastbound direction in the PM peak hour. As such, the operational performance of individual movements and overall intersections operate very similarly to the 2028 future background conditions and no new capacity issues have been identified.

5.5 2033 Future Total Conditions

The 2033 trip generation of the proposed development has been added to the 2033 future background traffic volumes to project the impact of new traffic on the future road network.

Table 24 summarizes the results of the Synchro Analysis. Synchro worksheets have been included in Appendix Q.

Table 24: 2033 Total Future Operational Conditions

Internation	D. do come on the		AM Pe	ak Hour			PM P	eak Hour	
Intersection	Mvmnt	LOS	V/C	Del (s)	Q (95 th)	LOS	V/C	Del. (s)	Q (95th)
	EBL	F	0.81	89	81	F	1.23	226	#139
	EBT/R	D	0.94	54	#80	D	0.91	50	#203
	WBL	F	0.76	94	#58	F	0.92	98	#133
	WBT/R	D	0.66	50	115	F	1.18	135	#356
Dixie Road and Dundas	NBL	D	0.39	37	28	F	1.15	156	#137
Street East	NBT/R	Е	0.74	56	125	F	1.03	95	#183
(Signalized)	SBL	Е	0.84	80	80	F	1.21	188	#127
	SBT	D	0.55	41	111	Е	0.89	66	150
	SBR	С	0.13	34	17	D	0.30	50	43
	Overall	D	0.85	54	-	F	1.18	104	-
	EBL	F	0.44	112	m10	F	0.73	126	m#31
	EBT/R	Α	0.54	4	16	Α	0.60	5	35
	WBL	Е	0.35	75	m12	E	0.59	80	m19
Queen Frederica	WBT/R	Α	0.36	7	55	В	0.86	12	m99
Drive/Blundell Road and	NBL	Е	0.09	59	12	Е	0.35	59	38
Dundas Street East	NBR	Е	0.01	58	0	D	0.02	55	2
(Signalized)	SBL	Е	0.72	74	78	E	0.49	61	61
	SBT/R	Е	0.05	58	12	E	0.05	55	12
	Overall	В	0.56	13	-	В	0.79	16	-
	EBL	F	0.56	84	#28	F	0.76	100	#57
	EBT/R	Α	0.53	10	182	В	0.57	17	171
	WBL	Е	0.54	75	31	F	0.64	88	m36
Arena Road and Dundas	WBT/R	Α	0.35	7	58	В	0.73	11	65
Street East	NBL	Е	0.07	66	7	E	0.10	57	13
(Signalized)	NBT/R	Е	0.05	66	12	E	0.11	57	19
	SBL	Е	0.23	68	16	E	0.11	57	13
	SBT/R	Е	0.07	67	15	E	0.05	56	13
	Overall	В	0.50	15	-	С	0.62	21	-
	EBL/R	Α	0.15	8	4	Α	0.12	8	3
Queen Frederica Drive	NBL/T	Α	0.11	8	3	Α	0.26	9	8
and Dundix Road	SBT/R	Α	0.17	8	5	Α	0.19	8	5
(Unsignalized)	Overall	Α	-	8	-	Α	-	9	-
	EBL/T/R	Α	0.01	7	0	Α	0.01	7	0
Arena Road and Dundix	WBL/T/R	Α	0.06	8	2	Α	0.07	7	2
Road	NBL/T/R	Α	0.03	7	1	Α	0.07	7	2
(Unsignalized)	SBL/T/R	Α	0.05	7	1	Α	0.02	7	1
	Overall	Α	-	7	-	Α	-	7	-
	WBL/R	Α	0.07	9	2	A	0.06	10	2
Site Access 1 # at Arena	NBT/R	-	-	-	-	-	-	-	-
Road	SBL/T	Α	-	0	0	Α	-	0	0
(Unsignalized)	Overall	Α	_	3	_	Α	_	1	-

I t	D.d		AM Pe	ak Hour			PM P	eak Hour	
Intersection	Mvmnt	LOS	V/C	Del (s)	Q (95 th)	LOS	V/C	Del. (s)	Q (95 th)
Site Access 2 # at Douglis	EBT/R	-	-	-	-	-	-	-	-
Site Access 2 # at Dundix	WBL/T	Α	0.01	7	0	Α	0.02	7	1
Road (Unsignalized)	NBL/R	Α	0.05	9	2	Α	0.04	9	1
(Onsignanzea)	Overall	Α	-	3	-	Α	-	3	-
Notes:	m	ı - volume f		•	tile exceeds queue is me		n upstrean	n signal	

With the addition of site generated traffic to the 2033 future background horizon, the Study Area intersections operate similarly to the 2033 future background horizon with slight V/C ratio increases for select movements that were previously overcapacity. Movements previously projected to operate with a level of service of F at the Dixie Road and Dundas Street East intersection will remain the same level of service as the future background conditions, and no new capacity issues are noted. The V/C ratios that exceeded 1.00 in the 2028 future total analysis horizon have either stayed the same or slightly increased with the addition of background growth.

At the intersection of Dixie Road and Dundas Street East during the PM peak, the site volumes are projected to increase the delay on the eastbound left-turn movement by nineteen seconds, on the northbound left movement by nineteen seconds, and on the westbound through movement by nine seconds. Similar to the 2028 future total analysis horizon, the site-generated volumes are not anticipated to be a contributing factor to the network constraints.

Both access intersections at Arena Road and Dundix Road will operate well with individual movement LOS A for all movements and overall LOS A for both intersections.

6. Conclusion

This Transportation Impact Study Update has examined the trip generation, access requirements, and study area road network impact of the proposed development at 1225 Dundas Street East. The TIS has shown the following:

- a) The proposed development will include 35 townhome units and 586 condo units with a 13,234 ft² (1,230 m²) ground floor retail space.
- b) The subject development will include 306 vehicular parking spaces, which include 60 visitor parking spaces and 17 shared retail-visitor spaces. The parking justification section of this report has been prepared to support the proposed vehicular parking provision rates.
- c) Access to the development will be accommodated via one full movement access at Arena Road (Site Access #1) and full movement access at Dundix Road (Site Access #2).
- d) The growth rates in the Study Area were mostly provided by the City of Mississauga staff and range between 0% to 1% depending on the studied segment and horizon year for Dundas Street East. Growth rates along this corridor beyond 2026 take into account the lane reductions along Dundas Street East as a result of the Dundas Street East implementation. Along Dixie Road, a conservative growth rate of 1% has been assumed and applied to through movements along Dixie Road over all years of analysis.
- e) The proposed development is located within the Dundas BRT area, and the implementation of the Dundas BRT was included in the future horizons.
- f) The existing mode shares in the Study Area were obtained from the 2016 TTS, and 6% shift to transit mode and a 2% shift to cycling mode taken from the auto mode is proposed as a result of the Dundas Street East implementation.
- g) It was found that 263 AM and 376 PM new peak hour two-way person trips are projected as a result of the proposed development, of which 130 AM and 166 PM trips are net new peak hour two-way vehicle trips.
- h) Using the available turning movement counts in the Study Area. The key findings of the existing horizon operational analysis are listed below:
 - a. Several movements at Dixie Road and Dundas Street East intersection during PM peak hour may be subject to high delays, and optimized signal timings has been shown to reduce the delays.
 - b. The volume for the 95th percentile cycle exceeds capacity on several movements at the intersections of Dixie Road at Dundas Street East and Queen Frederica Drive/Blundell Road at Dundas Street East. However, where a V/C ratio is less than one, it can be assumed that the 95th percentile queue will rarely be exceeded.
- i) The 2028 future background traffic volumes, including background developments, growth, and geometric changes to Dundas Street East as a result of the Dundas BRT implementation, were analysed. With these changes the Study Area performs at a lower level of service and with higher V/C ratios at critical movements when compared to the existing horizon.
- j) The addition of the site generated trips to the 2028 future background horizon resulted in slight increases in the delays on several movements in the study area. However, the site-generated volumes are low and are not anticipated to be a contributing factor to the existing network constraints.

- k) The 2033 future background traffic volumes, including growth compared to the 2028 future background traffic volumes, were analysed. Due to the minimal growth applied between these horizons, the 2033 future background horizon operates similarly to the 2028 future background horizon and no new capacity issues have been identified.
- The addition of the site generated trips to the 2033 future background horizon resulted in slight increases in the delays on several movements in the study area. However, the site-generated volumes are not anticipated to be a contributing factor to the existing network constraints.
- m) The planned geometric changes at the Dixie Road and Dundas Street intersections focus on the development and facilitation of transit service along the corridor and will not directly mitigate auto operational constraints.
- n) Both access intersections at Arena Road and Dundix Road operate well in the 2028 and 2033 future total horizons.
- o) The delivery, move-in, and garbage collection vehicle turning templates were reviewed to confirm movements will be permitted on site.
- p) A parking justification has been provided to support the parking variance at 1225 Dundas Street East. Considering the no parking requirement legislation of Bill 185 as well as the features of the Dixie PMTSA, residential, visitor, retail, and accessible parking provisions at the site are anticipated to be sufficient for the proposed land uses.
- q) A sightline analysis of the proposed site access has been reviewed, and it is anticipated that provided stopping sight distances for both site accesses would be sufficient.
- r) Site design elements and TDM measures supportive of sustainable modes have been proposed for 1225 Dundas Street East to ensure that the mode shares at the proposed development contribute to the Study Area traffic superzone meeting the Regional mode share targets. Some of the proposed TDM measures include reduced vehicular parking provisions and enhanced-usability bike parking.

The proposed development will have a minor impact on the study area road network and the proposed accesses will operate well overall with the proposed mitigation measures. The 1225 Dundas Street East site design aligns with the future surrounding area context, with an emphasis on sustainable modes of travel. It is recommended that, from a transportation perspective, the proposed development application proceed.

Prepared By:

Jamon

Johnson Ly, Transportation Analyst CGH Transportation Inc.

P: 647-781-8337

E: Johnson.Ly@CGHTransportation.com

Reviewed By:

Mark Crockford, P.Eng. CGH Transportation Inc.

P: 905-251-4070

E: Mark.Crockford@CGHTransportation.com

Appendix A

Terms of Reference (TOR)

Technical Memorandum

То:	Michael Turco – City of Mississauga Rosalie Shan – Region of Peel	Date:	2022-04-25
Cc:	Mark Crockford – CGH Transportation		
From:	Zhengxuan Lai, EIT	Project Number:	2022-050

Re: 1225 Dundas Street East Transportation Impact Study – Terms of Reference

We have been asked to undertake a Transportation Impact Study (TIS) for in Mississauga, located approximately 450 metres west of Dixie Road at Dundas Street intersection. Currently, the 1225 Dundas Street East property lot is occupied by a single-storey shopping centre containing nine retail units and its parking lot along the frontage. The subject development would replace the existing shopping centre with a proposed residential development. The existing uses will be removed as part of the proposed development. The residential development is proposed to include 520 apartment units and 24 townhome units equally divided into two phases, while ground floor retail space is included along the Dundas Street frontage. Parking will be provided via one level of underground parking, with access to the parking garage from Dundix Road behind the lot. A total of 378 and 24 parking spaces will be provided to the apartment and the townhouse units, respectively.

Attached is a concept plan illustrating the proposed development. This plan has been provided without prejudice and for discussion only as it is subject to change as the development design proceeds.

We have prepared the following TIS scope of work for Peel Region's and the City of Mississauga's review. Please let us know if you have any comments or additions.

Transportation Impact Study Requirements (TIS):

The study will be in accordance with the Region of Peel's *Guidelines for the Preparation of Traffic Impact Studies*, and City of Mississauga's *Traffic Impact Study Guidelines*.

Proposed Development Overview:

- A description of the proposed development and any planned active mode facilities.
- Outline of land use as it relates to the development and site statistics.
- Transportation Demand Management (TDM) supportive elements of the proposed development.
- Review of site circulation, site access, and sight triangle

Study Area:

- An overview of the transportation network existing conditions will be documented (including transit, cycling, pedestrian and automobile modes)
- A summary of existing transportation planning policies within the Study Area will be identified.
- An overview of the study area road network will be provided including the road classification and descriptions of:
 - o Dundas Street
 - o Dixie Road
 - o Queen Frederica Drive/Blundell Road

- o Arena Road
- Dundix Road
- The following intersections will be included in the Transportation Impact Study:
 - Dundas Street and Dixie Road
 - Queen Frederica Drive/Blundell Road and Dundas Street
 - Arena Road at Dundas Street
 - Queen Frederica Drive at Dundix Road
 - o Dundix Road at Arena Road

Study Horizon & Peak Periods:

- Base year 2022, followed by a full buildout future horizon of 2027, and a 5-years beyond full buildout future horizon of 2027
- AM, and PM peak hour periods

Existing Study Area Multimodal Conditions:

- Existing Turning Movement Count Summary Reports will be requested for the following intersections from Peel Region and the City of Mississauga staff, as applicable, and will be used to produce the existing conditions auto, cyclist, and pedestrian volumes within the Study Area:
 - Dundas Street and Dixie Road (Regional)
 - o Queen Frederica Drive/Blundell Road and Dundas Street (Regional)
 - Arena Road at Dundas Street (Regional)
 - Queen Frederica Drive at Dundix Road (City)
 - Dundix Road at Arena Road (City)
- Signal Timing Plans will be requested for the same intersections from Peel Region's and the City of Mississauga's traffic signal operations divisions:
 - o Dundas Street and Dixie Road
 - Queen Frederica Drive/Blundell Road and Dundas Street
 - Arena Road at Dundas Street
- Existing transit ridership data will be obtained from Mississauga Transit and GO Transit.

<u>Planned Transportation Improvements:</u>

 Dundas BRT Corridor – currently under the public consultation phase, <u>CGH would like to confirm the expected</u> completion date of this project as part of this <u>TOR</u>

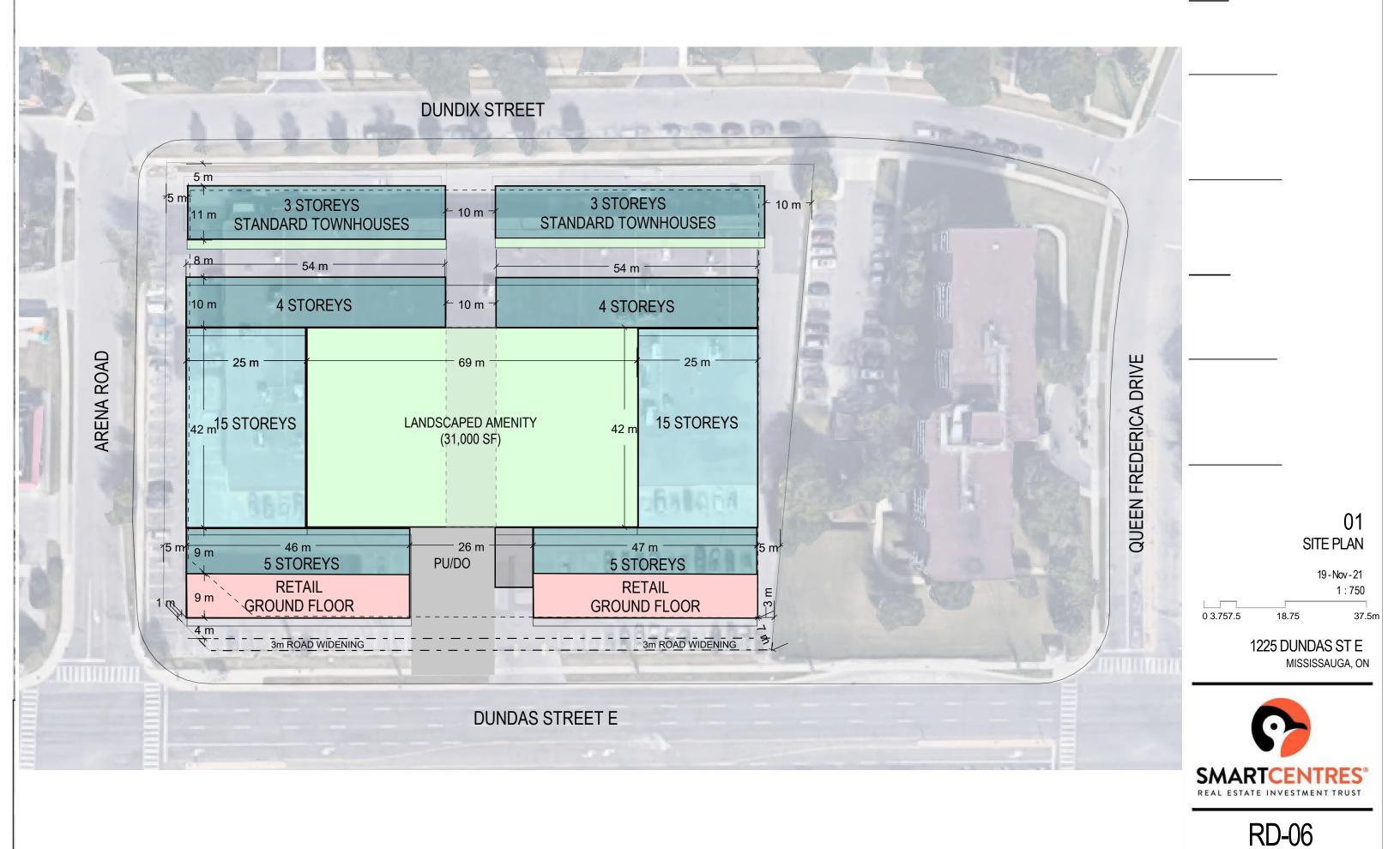
Background Growth:

- As per TIS Guidelines and as part of this TOR, CGH would like to acquire growth rates for all study area segments from a calibrated traffic forecasting model from the City of Mississauga's Transportation Planning section
- If such data is not available or extra information is required, compound annual growth rates calculated using
 historical traffic counts and output from the Region of Peel Travel Demand Forecasting Model will be applied to
 auto, walking, cycling and transit 2022 existing volumes, as applicable, to establish the 2027 future analysis horizon
 volumes.
- Background development generated traffic will be considered as part of the background growth. Surrounding
 background development that need to be included in this Study are to be confirmed with the City of Mississauga
 staff, relevant information is also requested for each development. Currently, the following developments will be
 included:
 - o 3085 Queen Frederica Drive
 - o 2525 Dixie Road

o 1333 Tonolli Road

<u>Development Site Multimodal Trip Distribution and Assignment:</u>

- Trip generation: ITE Trip Generation Manual 11th Edition (residential, commercial).
 - To estimate person trip generation, a factor of 1.28, calculated from a default 10% non-auto mode share and an average vehicle occupancy rate of 1.15 (i.e. 1.15/0.90 = 1.28), will be applied to the vehicle trip rates.
- Existing Modal Split will be calculated based on Transportation Tomorrow Survey (TTS) in the surrounding zones.
- Future mode shares estimation
 - As the proposed development is fronting the proposed Dundas BRT and within 1 km walking distance of
 Dixie GO train station, it is not recommended that the existing TAZ mode shares are used in determining
 the future modal share in the Study Area. <u>Instead, CGH would like to acquire target mode shares in the
 area from the City of Mississauga as part of this TOR to use in the analysis of future horizons.</u>
 - Alternatively, Peel Region's Sustainable Transportation Strategy Development of Mode Share Targets
 (2018) is aiming for 50% of sustainable (non-auto driver) mode share in 2041, consisting of approximately
 18% of carpool, 17% of transit, 11% of active transportation, and 4% of others. <u>CGH would like the Region
 and the City to confirm whether interpolations from this projection could be applied to the proposed
 development.</u>
- Trip distribution and assignment of auto trips: Transportation Tomorrow Survey (TTS), existing traffic routing patterns and surrounding area characteristics.
- Synergy trip reductions as required for residential and commercial interactions.


Performance and Analysis:

- Traffic analysis to be performed using Synchro 11 on Study Area network intersections to determine the LOS, delay, V / C ratio and the 95th percentile queues for both signalized and unsignalized intersections as well as individual critical movements.
 - Critical movements for signalized and unsignalized intersections will be identified, using the definitions from City of Mississauga's TIS Guidelines.
 - Heavy Vehicle % and Peak Hour Factors will be taken from the collected TMC data. Where information is not available, a Heavy Vehicle % of 2%, and the Peak Hour Factor of an adjacent intersection will be applied.
 - o Base saturation flow rates for arterial roadways according to City of Mississauga's TIS Guidelines
 - Advanced Left 1860, Through 1900, Right 1640
 - Other Synchro inputs will be based on site observations as well as Synchro default parameters.
- A qualitative transit, cycling, and pedestrian analysis in consideration of any planned improvements.
- Access configuration and control will be explored. Access location analysis will include a sight distance evaluation.
- Site circulation to be considered where necessary.
- Parking and loading to be evaluated against the City of Mississauga's comprehensive Zoning By-Law. Proxy parking data will be collected at a comparable site in order to help justify the proposed parking reduction.

Recommendations, Implementation Plan, and Conclusions:

• Any recommended offsite and onsite improvements or mitigation measures, which may include turn lane requirements, pedestrian / cycling / transit amenities, TDM measures, construction impacts, safety measures etc.

Appendix B

Turning Movement Count Data

								Turnir	ng Mov	ement (Count ((33 . DIXIE RD &	DUNDA	AS ST)	CustID	: 00403	3738								
Otant Three				Southboun DIXIE RD	nd)					Westboun	d T E					Northbour DIXIE RE	nd					Eastbound DUNDAS ST	i re		Int. Total (15 min)
Start Time	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	
2025-04-29 07:00:00	55	199	22	0	5	276	16	62	32	0	4	110	25	102	31	1	7	159	22	146	34	0	5	202	747
2025-04-29 07:15:00	66	195	28	0	6	289	15	80	39	0	6	134	16	95	32	1	6	144	38	185	45	0	8	268	835
2025-04-29 07:30:00	74	258	48	0	5	380	23	57	30	0	5	110	23	167	24	1	4	215	26	152	41	0	10	219	924
2025-04-29 07:45:00	90	294	56	0	6	440	24	97	43	0	3	164	32	152	26	0	5	210	48	226	54	0	3	328	1142
Hourly	285	946	154	0	22	1385	78	296	144	0	18	518	96	516	113	3	22	728	134	709	174	0	26	1017	3648
2025-04-29 08:00:00	74	345	46	0	5	465	20	96	41	0	6	157	31	189	20	0	9	240	46	213	51	0	8	310	1172
2025-04-29 08:15:00	89	277	50	0	9	416	29	122	35	0	5	186	34	182	23	0	3	239	54	196	49	0	10	299	1140
2025-04-29 08:30:00	63	260	50	0	7	373	20	140	63	0	8	223	34	221	29	0	5	284	57	231	58	0	11	346	1226
2025-04-29 08:45:00	111	267	58	0	7	436	20	102	57	0	4	179	20	234	38	0	6	292	70	195	51	0	14	316	1223
Hourly	337	1149	204	0	28	1690	89	460	196	0	23	745	119	826	110	0	23	1055	227	835	209	0	43	1271	4761
BREAK		·····																							
2025-04-29 11:00:00	81	180	64	1	14	326	25	172	74	1	4	272	65	153	30	1	11	249	48	155	41	0	13	244	1091
2025-04-29 11:15:00	88	169	66	1	7	324	31	156	66	0	5	253	57	141	45	0	7	243	52	169	66	1	7	288	1108
2025-04-29 11:30:00	77	203	76	0	5	356	29	138	54	0	4	221	49	162	48	0	8	259	62	158	56	1	6	277	1113
2025-04-29 11:45:00	93	142	67	2	10	304	23	143	82	2	7	250	64	139	36	0	16	239	69	192	59	0	16	320	1113
Hourly	339	694	273	4	36	1310	108	609	276	3	20	996	235	595	159	1	42	990	231	674	222	2	42	1129	4425
2025-04-29 12:00:00	101	187	62	0	8	350	44	170	89	0	2	303	62	173	37	0	11	272	79	168	52	0	11	299	1224
2025-04-29 12:15:00	73	187	55	2	8	317	44	135	66	1	10	246	60	162	46	0	15	268	62	167	64	0	18	293	1124
2025-04-29 12:30:00	79	150	48	0	16	277	31	155	74	0	12	260	62	151	42	1	12	256	68	186	55	2	15	311	1104
2025-04-29 12:45:00	86	174	62	0	18	322	25	119	64	0	22	208	62	175	39	1	8	277	51	144	59	0	9	254	1061
Hourly	339	698	227	2	50	1266	144	579	293	1	46	1017	246	661	164	2	46	1073	260	665	230	2	53	1157	4513
2025-04-29 13:00:00	86	146	68	0	11	300	41	148	79	3	4	271	64	147	37	1	13	249	56	165	51	0	13	272	1092
2025-04-29 13:15:00	82	154	64	2	6	302	37	161	78	0	8	276	62	156	45	1	13	264	64	177	64	0	9	305	1147
2025-04-29 13:30:00	91	176	73	1	19	341	42	125	81	0	12	248	64	151	38	0	13	253	71	161	64	1	22	297	1139
2025-04-29 13:45:00	71	133	74	1	8	279	30	153	77	0	7	260	68	175	41	0	14	284	54	167	49	1	14	271	1094
Hourly	330	609	279	4	44	1222	150	587	315	3	31	1055	258	629	161	2	53	1050	245	670	228	2	58	1145	4472
BREAK																									
2025-04-29 15:00:00	71	192	77	2	14	342	36	174	113	1	8	324	70	247	31	0	27	348	52	155	47	0	13	254	1268
2025-04-29 15:15:00	61	251	103	1	19	416	39	193	93	1	1	326	57	274	35	1	16	367	53	165	58	1	18	277	1386
2025-04-29 15:30:00	88	240	117	1	7	446	45	180	122	0	13	347	63	290	36	1	15	390	53	156	39	0	20	248	1431
2025-04-29 15:45:00	88	218	91	1	17	398	42	181	98	2	12	323	67	258	35	0	21	360	63	179	50	0	4	292	1373
Hourly	308	901	388	5	57	1602	162	728	426	4	34	1320	257	1069	137	2	79	1465	221	655	194	1	55	1071	5458
2025-04-29 16:00:00	68	240	89	0	10	397	24	201	108	1	14	334	66	279	59	0	15	404	49	147	37	0	18	233	1368
2025-04-29 16:15:00	108	278	101	0	6	487	26	208	93	2	14	329	49	251	38	1	11	339	54	161	58	0	11	273	1428
2025-04-29 16:30:00	90	302	100	0	18	492	26	176	74	2	21	278	56	263	33	1	10	353	77	166	35	0	12	278	1401
2025-04-29 16:45:00	106	296	98	0	18	500	46	222	111	2	22	381	68	242	31	0	16	341	57	166	50	0	26	273	1495
Hourly	372	1116	388	0	52	1876	122	807	386	7	71	1322	239	1035	161	2	52	1437	237	640	180	0	67	1057	5692
2025-04-29 17:00:00	104	290	100	2	9	496	42	260	96	3	9	401	73	254	27	0	12	354	46	199	45	0	16	290	1541
2025-04-29 17:15:00	93	301	95	2	11	491	46	232	81	0	13	359	67	239	50	1	13	357	58	173	55	0	23	286	1493
2025-04-29 17:30:00	114	315	120	0	9	549	44	217	102	1	10	364	79	255	38	0	8	372	52	161	41	1	22	255	1540
2025-04-29 17:45:00	111	243	83	2	15	439	35	210	97	0	11	342	73	226	35	0	20	334	54	205	47	0	18	306	1421
Hourly	422	1149	398	6	44	1975	167	919	376	4	43	1466	292	974	150	1	53	1417	210	738	188	1	79	1137	5995
Grand Total	2732	7262	2311	21	333	12326	1020	4985	2412	22	286	8439	1742	6305	1155	13	370	9215	1765	5586	1625	8	423	8984	38964
Approach%	22.2%	58.9%	18.7%	0.2%			12.1%	59.1%	28.6%	0.3%			18.9%	68.4%	12.5%	0.1%			19.6%	62.2%	18.1%	0.1%		-	-

Totals %	7%	18.6%	5.9%	0.1%	31.6%	2.6%	12.8%	6.2%	0.1%	21.7%	4.5%	16.2%	3%	0%	23.7%	4.5%	14.3%	4.2%	0%	23.1%	-	
Heavy	131	266	95	0	-	72	172	131	0	-	39	239	74	0	-	89	205	42	0	-	-	
Heavy %	4.8%	3.7%	4.1%	0%	-	7.1%	3.5%	5.4%	0%	-	2.2%	3.8%	6.4%	0%	-	5%	3.7%	2.6%	0%	=	-	
Bicycles	0	5	0	0	-	0	4	0	0	-	1	1	0	0	-	0	4	1	0	-	-	
Bicycle %	0%	0.1%	0%	0%	-	0%	0.1%	0%	0%	-	0.1%	0%	0%	0%	-	0%	0.1%	0.1%	0%	-	-	

										Peak	Hour: 0	0:00 AM - 09:0	0 AM	Weath	ner:										
Start Time				Southbou						Westbour DUNDAS S	nd T E					Northbour DIXIE RE	nd O					Eastboune DUNDAS S	j TE		Int. Total (15 min)
	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	
2025-04-29 08:00:00	74	345	46	0	5	465	20	96	41	0	6	157	31	189	20	0	9	240	46	213	51	0	8	310	1172
2025-04-29 08:15:00	89	277	50	0	9	416	29	122	35	0	5	186	34	182	23	0	3	239	54	196	49	0	10	299	1140
2025-04-29 08:30:00	63	260	50	0	7	373	20	140	63	0	8	223	34	221	29	0	5	284	57	231	58	0	11	346	1226
2025-04-29 08:45:00	111	267	58	0	7	436	20	102	57	0	4	179	20	234	38	0	6	292	70	195	51	0	14	316	1223
Grand Total	337	1149	204	0	28	1690	89	460	196	0	23	745	119	826	110	0	23	1055	227	835	209	0	43	1271	4761
Approach%	19.9%	68%	12.1%	0%		-	11.9%	61.7%	26.3%	0%		-	11.3%	78.3%	10.4%	0%		-	17.9%	65.7%	16.4%	0%		-	-
Totals %	7.1%	24.1%	4.3%	0%		35.5%	1.9%	9.7%	4.1%	0%		15.6%	2.5%	17.3%	2.3%	0%		22.2%	4.8%	17.5%	4.4%	0%		26.7%	
PHF	0.76	0.83	0.88	0		0.91	0.77	0.82	0.78	0		0.84	0.88	0.88	0.72	0		0.9	0.81	0.9	0.9	0		0.92	0.97
Heavy	20	56	8	0		84	16	26	26	0		68	6	34	9			49	10	44	7			61	262
Heavy %	5.9%	4.9%	3.9%	0%		5%	18%	5.7%	13.3%	0%		9.1%	5%	4.1%	8.2%	0%		4.6%	4.4%	5.3%	3.3%	0%		4.8%	5.5%
Lights	317	1093	196	0		1606	73	434	170	0		677	113	792	101	0		1006	217	791	202	0		1210	4499
Lights %	94.1%	95.1%	96.1%	0%		95%	82%	94.3%	86.7%	0%		90.9%	95%	95.9%	91.8%	0%		95.4%	95.6%	94.7%	96.7%	0%		95.2%	94.5%
Single-Unit Trucks	16	34	3	0		53	13	10	9	0		32	4	21	4	0		29	5	22	5	0		32	146
Single-Unit Trucks %	4.7%	3%	1.5%	0%		3.1%	14.6%	2.2%	4.6%	0%		4.3%	3.4%	2.5%	3.6%	0%		2.7%	2.2%	2.6%	2.4%	0%		2.5%	3.1%
Buses	2	12	2	0		16	1	14	8	0		23	2	12	1	0		15	3	16	2	0		21	75
Buses %	0.6%	1%	1%	0%		0.9%	1.1%	3%	4.1%	0%		3.1%	1.7%	1.5%	0.9%	0%		1.4%	1.3%	1.9%	1%	0%		1.7%	1.6%
Articulated Trucks	2	10	3	0		15	2	2	9	0		13	0	1	4	0		5	2	6	0	0		8	41
Articulated Trucks %	0.6%	0.9%	1.5%	0%		0.9%	2.2%	0.4%	4.6%	0%		1.7%	0%	0.1%	3.6%	0%		0.5%	0.9%	0.7%	0%	0%		0.6%	0.9%
Pedestrians	-	-	-	-	27	-	-	-	-	-	21	-	-	-	-	-	23	-	-	-	-	-	42	-	-
Pedestrians%	-	-	-	-	23.1%		-	-	-	-	17.9%		-	-	-	-	19.7%		-	-	-	-	35.9%		-
Bicycles on Crosswalk	-	-	-	-	1	=	-	-	-	-	2	-	-	-	-	-	0	-	-	-	-	-	1	-	-
Bicycles on Crosswalk%					0.9%						1.7%						0%						0.9%		
Bicycles on Road	0	1	0	0		-	0	0	0	0		-	0	1	0	0		-	0	0	1	0		-	-
Bicycles on Road%	0%	100%	0%	0%			0%	0%	0%	0%			0%	100%	0%	0%			0%	0%	100%	0%			-

								Pe	ak Hou	ır: 12:00	PM - 0	1:00 PM We	ather: E	roken (Clouds	(20 °C)									
Start Time				Southbou DIXIE RI	nd					Westbour DUNDAS S	nd IT E					Northbour DIXIE RE	nd O					Eastbound DUNDAS S	j TE		Int. Tot (15 mi
	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	
2025-04-29 12:00:00	101	187	62	0	8	350	44	170	89	0	2	303	62	173	37	0	11	272	79	168	52	0	11	299	1224
2025-04-29 12:15:00	73	187	55	2	8	317	44	135	66	1	10	246	60	162	46	0	15	268	62	167	64	0	18	293	1124
2025-04-29 12:30:00	79	150	48	0	16	277	31	155	74	0	12	260	62	151	42	1	12	256	68	186	55	2	15	311	1104
2025-04-29 12:45:00	86	174	62	0	18	322	25	119	64	0	22	208	62	175	39	1	8	277	51	144	59	0	9	254	1061
Grand Total	339	698	227	2	50	1266	144	579	293	1	46	1017	246	661	164	2	46	1073	260	665	230	2	53	1157	4513
Approach%	26.8%	55.1%	17.9%	0.2%		-	14.2%	56.9%	28.8%	0.1%		-	22.9%	61.6%	15.3%	0.2%		-	22.5%	57.5%	19.9%	0.2%		-	-
Totals %	7.5%	15.5%	5%	0%		28.1%	3.2%	12.8%	6.5%	0%		22.5%	5.5%	14.6%	3.6%	0%		23.8%	5.8%	14.7%	5.1%	0%		25.6%	-
PHF	0.84	0.93	0.92	0.25		0.9	0.82	0.85	0.82	0.25		0.84	0.99	0.94	0.89	0.5		0.97	0.82	0.89	0.9	0.25		0.93	0.92
Heavy	11	32	13	0		56	19	20	14	0		53	2	28	11	0		41	14	25	8	0		47	197
Heavy %	3.2%	4.6%	5.7%	0%		4.4%	13.2%	3.5%	4.8%	0%		5.2%	0.8%	4.2%	6.7%	0%		3.8%	5.4%	3.8%	3.5%	0%		4.1%	4.4%
Lights	328	666	214	2		1210	125	559	279	1		964	244	633	153	2		1032	246	640	222	2		1110	4316
Lights %	96.8%	95.4%	94.3%	100%		95.6%	86.8%	96.5%	95.2%	100%		94.8%	99.2%	95.8%	93.3%	100%		96.2%	94.6%	96.2%	96.5%	100%		95.9%	95.6%
Single-Unit Trucks	7	23	10	0		40	9	12	13	0		34	2	18	7	0		27	11	16	7	0		34	135
Single-Unit Trucks %	2.1%	3.3%	4.4%	0%		3.2%	6.3%	2.1%	4.4%	0%		3.3%	0.8%	2.7%	4.3%	0%		2.5%	4.2%	2.4%	3%	0%		2.9%	3%
Buses	0	3	1	0		4	1	5	0	0		6	0	2	0	0		2	1	4	0	0		5	17
Buses %	0%	0.4%	0.4%	0%		0.3%	0.7%	0.9%	0%	0%		0.6%	0%	0.3%	0%	0%		0.2%	0.4%	0.6%	0%	0%		0.4%	0.4%
Articulated Trucks	4	6	2	0		12	9	3	1	0		13	0	8	4	0		12	2	5	1	0		8	45
Articulated Trucks %	1.2%	0.9%	0.9%	0%		0.9%	6.3%	0.5%	0.3%	0%		1.3%	0%	1.2%	2.4%	0%		1.1%	0.8%	0.8%	0.4%	0%		0.7%	1%
Pedestrians	-	-	-	-	46	-	-	-	-	-	44	-	-	-	-	-	42	-	-	-	-	-	50	-	-
Pedestrians%	-	-	-	-	23.6%		-	-	-	-	22.6%		-	-	-	-	21.5%		-	-	-	-	25.6%		-
Bicycles on Crosswalk	-	-	-	-	4	-	-	-	-	-	2	-	-	-	-	-	4	-	-	-	-	-	3	-	-
Bicycles on Crosswalk%		-	-	-	2.1%						1%						2.1%		-				1.5%		
Bicycles on Road	0	0	0	0			0	0	0	0			0	0	0	0			0	1	0	0			
Bicycles on Road%	0%	0%	0%	0%			0%	0%	0%	0%			0%	0%	0%	0%			0%	100%	0%	0%			-

								Pe	ak Hou	ır: 05:00	PM - 0	6:00 PM We	ather: E	Broken (Clouds	(26 °C)									
Start Time				Southbou	nd					Westbour DUNDAS S	nd IT E					Northbour DIXIE RE	nd O					Eastbound DUNDAS S	j TE		Int. To (15 mi
	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	Left	Thru	Right	UTurn	Peds	Approach Total	
2025-04-29 17:00:00	104	290	100	2	9	496	42	260	96	3	9	401	73	254	27	0	12	354	46	199	45	0	16	290	1541
2025-04-29 17:15:00	93	301	95	2	11	491	46	232	81	0	13	359	67	239	50	1	13	357	58	173	55	0	23	286	1493
2025-04-29 17:30:00	114	315	120	0	9	549	44	217	102	1	10	364	79	255	38	0	8	372	52	161	41	1	22	255	1540
2025-04-29 17:45:00	111	243	83	2	15	439	35	210	97	0	11	342	73	226	35	0	20	334	54	205	47	0	18	306	1421
Grand Total	422	1149	398	6	44	1975	167	919	376	4	43	1466	292	974	150	1	53	1417	210	738	188	1	79	1137	5995
Approach%	21.4%	58.2%	20.2%	0.3%		-	11.4%	62.7%	25.6%	0.3%		-	20.6%	68.7%	10.6%	0.1%		-	18.5%	64.9%	16.5%	0.1%		-	-
Totals %	7%	19.2%	6.6%	0.1%		32.9%	2.8%	15.3%	6.3%	0.1%		24.5%	4.9%	16.2%	2.5%	0%		23.6%	3.5%	12.3%	3.1%	0%		19%	-
PHF	0.93	0.91	0.83	0.75		0.9	0.91	0.88	0.92	0.33		0.91	0.92	0.95	0.75	0.25		0.95	0.91	0.9	0.85	0.25		0.93	0.97
Heavy	18	27	12	0		57		17	4	0		21	3	18	5	0		26	6	21	1	0		28	132
Heavy %	4.3%	2.3%	3%	0%		2.9%	0%	1.8%	1.1%	0%		1.4%	1%	1.8%	3.3%	0%		1.8%	2.9%	2.8%	0.5%	0%		2.5%	2.2%
Lights	404	1122	386	6		1918	167	902	372	4		1445	289	956	145	1		1391	204	717	187	1		1109	5863
Lights %	95.7%	97.7%	97%	100%		97.1%	100%	98.2%	98.9%	100%		98.6%	99%	98.2%	96.7%	100%		98.2%	97.1%	97.2%	99.5%	100%		97.5%	97.8%
Single-Unit Trucks	14	19	8	0		41	0	3	4	0		7	2	8	3	0		13	6	10	0	0		16	77
Single-Unit Trucks %	3.3%	1.7%	2%	0%		2.1%	0%	0.3%	1.1%	0%		0.5%	0.7%	0.8%	2%	0%		0.9%	2.9%	1.4%	0%	0%		1.4%	1.3%
Buses	0	4	0	0		4	0	11	0	0		11	0	4	0	0		4	0	8	0	0		8	27
Buses %	0%	0.3%	0%	0%		0.2%	0%	1.2%	0%	0%		0.8%	0%	0.4%	0%	0%		0.3%	0%	1.1%	0%	0%		0.7%	0.5%
Articulated Trucks	4	4	4	0		12	0	3	0	0		3	1	6	2	0		9	0	3	1	0		4	28
Articulated Trucks %	0.9%	0.3%	1%	0%		0.6%	0%	0.3%	0%	0%		0.2%	0.3%	0.6%	1.3%	0%		0.6%	0%	0.4%	0.5%	0%		0.4%	0.5%
Pedestrians	-	-	-	-	41	-	-	-	-	-	39	-	-	-	-	-	43	-	-	-	-	-	69	-	-
Pedestrians%	-	-	-	-	18.7%		-	-	-	-	17.8%		-	-	-	-	19.6%		-	-	-	-	31.5%		-
Bicycles on Crosswalk	-	-	-	-	3	=	-	-	-	-	4	-	-	-	-	-	10	=	-	-	-	-	10	-	-
Bicycles on Crosswalk%					1.4%						1.8%						4.6%						4.6%		
Bicycles on Road	0	0	0	0		-	0	0	0	0		-	0	0	0	0		-	0	2	0	0		-	
Bicycles on Road%	0%	0%	0%	0%			0%	0%	0%	0%			0%	0%	0%	0%			0%	100%	0%	0%			

Peel Region SUITE B 10 PEEL CENTRE DR BRAMPTON ONTARIO, L6T 4B9 CANADA

Peak Hour: 08:00 AM - 09:00 AM Weather:

Traffic Count Summary

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001 Municipality: Mississauga

Count Date: Jun 07, 2022

Dixie Rd - Traffic Summary

		North	Appr	oach T	otals			South	Appr	oach T	otals		
	In	cludes Ca	rs, Truc	ks, Buse	s, Bicycle	s	In	cludes Ca	rs, Truc	ks, Buses	s, Bicycle	S	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	290	635	126	0	1051	12	78	480	106	0	664	20	1715
08:00 - 09:00	368	820	173	0	1361	11	79	713	139	0	931	15	2292
					В	REAK							
16:00 - 17:00	423	907	237	0	1567	47	207	848	213	0	1268	54	2835
17:00 - 18:00	467	960	225	0	1652	56	218	817	232	0	1267	27	2919
GRAND TOTAL	1548	3322	761	0	5631	126	582	2858	690	0	4130	116	9761

Traffic Count Summary

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001 Municipality: Mississauga

Count Date: Jun 07, 2022

Dundas St E - Traffic Summary

		East	Appro	ach To	tals			West	Appro	oach To	otals		
	In	cludes Ca	rs, Truc	ks, Buse	s, Bicycle	S	In	cludes Ca	rs, Truc	ks, Buse	s, Bicycle	S	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	77	323	103	0	503	7	116	704	121	0	941	0	1444
08:00 - 09:00	96	412	169	0	677	3	147	861	147	0	1155	1	1832
					В	REAK							
16:00 - 17:00	237	1111	362	0	1710	29	189	751	162	0	1102	8	2812
17:00 - 18:00	261	1134	343	0	1738	21	191	875	148	0	1214	6	2952
GRAND TOTAL	671	2980	977	0	4628	60	643	3191	578	0	4412	15	9040

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Dixie Rd

			Cars				T	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	J.	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	57	134	21	0	212	2	1	1	0	4	0	2	0	0	2	0	0	0	0	0	3
07:15	52	127	32	0	211	1	2	1	0	4	0	6	0	0	6	0	0	0	0	0	2
07:30	78	162	27	0	267	2	5	5	0	12	0	2	2	0	4	0	0	0	0	0	3
07:45	93	180	31	0	304	4	11	4	0	19	1	3	2	0	6	0	0	0	0	0	4
08:00	80	189	31	0	300	5	14	0	0	19	1	3	2	0	6	0	0	0	0	0	2
08:15	74	221	46	0	341	10	9	4	0	23	0	3	1	0	4	0	0	0	0	0	1
08:30	103	151	28	0	282	4	6	2	0	12	1	6	3	0	10	0	0	0	0	0	5
08:45	88	205	54	0	347	2	12	1	0	15	0	1	1	0	2	0	0	0	0	0	3
SUBTOTAL	625	1369	270	0	2264	30	60	18	0	108	3	26	11	0	40	0	0	0	0	0	23

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Dixie Rd

			Cars				Ti	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	104	215	53	0	372	4	2	6	0	12	0	1	1	0	2	0	0	0	0	0	7
16:15	114	236	56	0	406	6	3	2	0	11	4	3	0	0	7	0	0	0	0	0	9
16:30	93	188	52	0	333	0	4	1	0	5	0	2	0	0	2	0	0	0	0	0	18
16:45	98	247	63	0	408	0	5	3	0	8	0	1	0	0	1	0	0	0	0	0	13
17:00	121	234	47	0	402	1	5	2	0	8	0	2	0	0	2	0	0	0	0	0	16
17:15	92	219	56	0	367	2	3	4	0	9	0	1	0	0	1	0	0	0	0	0	13
17:30	137	281	61	0	479	1	5	0	0	6	0	1	0	0	1	0	0	0	0	0	9
17:45	109	204	51	0	364	4	3	4	0	11	0	2	0	0	2	0	0	0	0	0	18
SUBTOTAL	868	1824	439	0	3131	18	30	22	0	70	4	13	1	0	18	0	0	0	0	0	103
GRAND TOTAL	1493	3193	709	0	5395	48	90	40	0	178	7	39	12	0	58	0	0	0	0	0	126

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Dixie Rd

			Cars				Ti	rucks				В	Buses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	-	1	Total	4	1	•	1	Total	4	1	-	1	Total	Total Peds
07:00	13	87	28	0	128	0	4	1	0	5	1	1	1	0	3	0	0	0	0	0	9
07:15	20	89	24	0	133	1	3	1	0	5	0	3	1	0	4	0	0	0	0	0	5
07:30	20	137	24	0	181	0	8	1	0	9	0	3	0	0	3	0	0	0	0	0	5
07:45	21	140	23	0	184	1	3	2	0	6	1	2	0	0	3	0	0	0	0	0	1
08:00	18	127	36	0	181	1	12	2	0	15	0	4	2	0	6	0	0	0	0	0	4
08:15	8	176	34	0	218	1	15	3	0	19	0	5	0	0	5	0	0	0	0	0	4
08:30	29	172	26	0	227	1	5	0	0	6	0	1	1	0	2	0	0	0	0	0	7
08:45	21	183	35	0	239	0	10	0	0	10	0	3	0	0	3	0	0	0	0	0	0
SUBTOTAL	150	1111	230	0	1491	5	60	10	0	75	2	22	5	0	29	0	0	0	0	0	35

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Dixie Rd

			Cars				Tı	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	J	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	42	235	70	0	347	1	5	1	0	7	0	1	0	0	1	0	0	0	0	0	15
16:15	60	191	47	0	298	1	9	1	0	11	0	1	2	0	3	0	0	0	0	0	13
16:30	43	166	48	0	257	0	3	2	0	5	0	3	0	0	3	0	0	0	0	0	7
16:45	59	227	41	0	327	1	6	0	0	7	0	1	1	0	2	0	0	0	0	0	19
17:00	58	243	50	0	351	0	4	1	0	5	0	1	1	0	2	0	0	0	0	0	5
17:15	52	204	49	0	305	0	1	2	0	3	0	3	0	0	3	0	0	0	0	0	7
17:30	54	192	76	0	322	2	6	0	0	8	0	1	1	0	2	0	0	0	0	0	9
17:45	52	156	49	0	257	0	5	3	0	8	0	1	0	0	1	0	0	0	0	0	6
SUBTOTAL	420	1614	430	0	2464	5	39	10	0	54	0	12	5	0	17	0	0	0	0	0	81
GRAND TOTAL	570	2725	660	0	3955	10	99	20	0	129	2	34	10	0	46	0	0	0	0	0	116

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001

Municipality: Mississauga

Count Date: Jun 07, 2022

East Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	J	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	21	68	24	0	113	2	2	1	0	5	0	3	0	0	3	0	0	0	0	0	1
07:15	12	65	23	0	100	2	8	0	0	10	1	4	1	0	6	0	0	0	0	0	0
07:30	19	64	17	0	100	1	5	2	0	8	1	2	0	0	3	0	0	0	0	0	3
07:45	16	90	28	0	134	0	8	6	0	14	2	4	1	0	7	0	0	0	0	0	3
08:00	25	100	32	0	157	2	5	4	0	11	1	1	3	0	5	0	0	0	0	0	0
08:15	15	83	36	0	134	1	4	7	0	12	1	3	1	0	5	0	0	0	0	0	1
08:30	29	116	38	0	183	1	8	3	0	12	0	3	1	0	4	0	0	0	0	0	0
08:45	18	80	38	0	136	3	6	3	0	12	0	3	3	0	6	0	0	0	0	0	2
SUBTOTAL	155	666	236	0	1057	12	46	26	0	84	6	23	10	0	39	0	0	0	0	0	10

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001

Municipality: Mississauga

Count Date: Jun 07, 2022

East Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			Takal
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	33	253	78	0	364	0	27	8	0	35	0	3	1	0	4	0	0	0	0	0	12
16:15	59	249	93	0	401	1	10	3	0	14	1	3	0	0	4	0	0	0	0	0	10
16:30	83	276	90	0	449	1	4	3	0	8	0	4	0	0	4	0	0	0	0	0	6
16:45	58	276	82	0	416	1	2	4	0	7	0	4	0	0	4	0	0	0	0	0	1
17:00	75	264	105	0	444	1	7	2	0	10	0	2	0	0	2	0	0	0	0	0	4
17:15	49	332	68	0	449	2	0	2	0	4	0	3	0	0	3	0	0	0	0	0	2
17:30	70	236	86	0	392	1	5	6	0	12	0	2	0	0	2	0	0	0	0	0	4
17:45	60	276	70	0	406	3	3	4	0	10	0	4	0	0	4	0	0	0	0	0	11
SUBTOTAL	487	2162	672	0	3321	10	58	32	0	100	1	25	1	0	27	0	0	0	0	0	50
GRAND TOTAL	642	2828	908	0	4378	22	104	58	0	184	7	48	11	0	66	0	0	0	0	0	60

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Dundas St E

			Cars				T	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	-	1	Total	4	1	•	1	Total	4	1	-	1	Total	Total Peds
07:00	21	147	31	0	199	3	3	0	0	6	2	3	0	0	5	0	0	0	0	0	0
07:15	22	161	27	0	210	3	11	0	0	14	0	4	0	0	4	0	0	0	0	0	0
07:30	26	146	25	0	197	3	8	1	0	12	0	3	0	0	3	0	0	0	0	0	0
07:45	32	203	34	0	269	4	10	1	0	15	0	5	2	0	7	0	0	0	0	0	0
08:00	21	163	35	0	219	3	8	1	0	12	0	3	1	0	4	0	0	0	0	0	1
08:15	39	190	44	0	273	2	9	2	0	13	1	2	0	0	3	0	0	0	0	0	0
08:30	46	231	31	0	308	3	8	0	0	11	0	6	0	0	6	0	0	0	0	0	0
08:45	27	234	33	0	294	4	5	0	0	9	1	2	0	0	3	0	0	0	0	0	0
SUBTOTAL	234	1475	260	0	1969	25	62	5	0	92	4	28	3	0	35	0	0	0	0	0	1

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	icycles			Takal
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	42	164	30	0	236	1	8	2	0	11	0	1	0	0	1	0	0	0	0	0	1
16:15	43	188	40	0	271	3	6	1	0	10	0	2	1	0	3	0	0	0	0	0	5
16:30	57	183	53	0	293	3	9	0	0	12	0	2	0	0	2	0	0	0	0	0	1
16:45	38	179	34	0	251	2	6	0	0	8	0	3	1	0	4	0	0	0	0	0	1
17:00	42	188	42	0	272	0	3	2	0	5	0	3	0	0	3	0	0	0	0	0	6
17:15	49	233	34	0	316	5	3	0	0	8	0	1	1	0	2	0	0	0	0	0	0
17:30	52	163	31	0	246	0	6	0	0	6	0	3	0	0	3	0	0	0	0	0	0
17:45	42	267	38	0	347	1	4	0	0	5	0	1	0	0	1	0	0	0	0	0	0
SUBTOTAL	365	1565	302	0	2232	15	45	5	0	65	0	16	3	0	19	0	0	0	0	0	14
GRAND TOTAL	599	3040	562	0	4201	40	107	10	0	157	4	44	6	0	54	0	0	0	0	0	15

Peak Hour Diagram

Specified Period

One Hour Peak

From: 07:00:00 To: 09:00:00

From: 08:00:00 To: 09:00:00

Intersection: Dundas St E & Dixie Rd

 Site Code:
 2219300001

 Count Date:
 Jun 07, 2022

Weather conditions:

Clear

** Signalized Intersection **

Major Road: Dixie Rd runs N/S

North Approach

	Out	ln	Total
	1270	935	2205
	69	71	140
	22	23	45
ॐ	0	0	0
	1361	1029	2390

Dixie Rd

	4	1	L	Ú
Totals	173	820	368	0
≘	159	766	345	0
₽	7	41	21	0
盘	7	13	2	0
₫	0	0	0	0
1				

East Approach

	Out	In	Total
	610	1294	1904
	47	56	103
	20	18	38
ॐ	0	0	0
	677	1368	2045

Dundas St E

<i>₫</i>				Totals	
0	0	0	0	0	7
0	2	12	133	147	4
0	13	30	818	861	\rightarrow
0	1	3	143	147	4

Dundas St E

	Totals				<i>₫</i>
C	0	0	0	0	0
£	169	144	17	8	0
-	412	379	23	10	0
F	96	87	7	2	0

West Approach

	Out	ln	Total
	1094	614	1708
	45	33	78
	16	17	33
<i>₫</i>	0	0	0
	1155	664	1819

Peds: 15

	4	1		J.
Totals	79	713	139	0
	76	658	131	0
₽	3	42	5	0
=	0	13	3	0
<i>₫</i>	0	0	0	0

Dixie Rd

South Approach

	Out	In	Total
	865	996	1861
	50	51	101
田	16	16	32
<i>₫</i>	0	0	0
	931	1063	1994

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Dundas St E & Dixie Rd

 Site Code:
 2219300001

 Count Date:
 Jun 07, 2022

 Period:
 07:00 - 09:00

Peak Hour Data (08:00 - 09:00)

		N		pproac e Rd	ch			S		pproac ie Rd	:h				East Ap Dunda	proacl as St E	1			'	West A Dund	pproacl as St E	h		Total Vehicl
Start Time	4	1	P	J	Peds	Total	4	1	P	J	Peds	Total	4	1	•	J	Peds	Total	4	1	•	4	Peds	Total	es
08:00	86	206	33	0	2	325	19	143	40	0	4	202	28	106	39	0	0	173	24	174	37	0	1	235	935
08:15	84	233	51	0	1	368	9	196	37	0	4	242	17	90	44	0	1	151	42	201	46	0	0	289	1050
08:30	108	163	33	0	5	304	30	178	27	0	7	235	30	127	42	0	0	199	49	245	31	0	0	325	1063
08:45	90	218	56	0	3	364	21	196	35	0	0	252	21	89	44	0	2	154	32	241	33	0	0	306	1076
Grand Total	368	820	173	0	11	1361	79	713	139	0	15	931	96	412	169	0	3	677	147	861	147	0	1	1155	4124
Approach %	27	60.2	12.7	0		-	8.5	76.6	14.9	0		-	14.2	60.9	25	0		-	12.7	74.5	12.7	0		-	
Totals %	8.9	19.9	4.2	0		33	1.9	17.3	3.4	0		22.6	2.3	10	4.1	0		16.4	3.6	20.9	3.6	0		28	
PHF	0.85	0.88	0.77	0		0.92	0.66	0.91	0.87	0		0.92	0.8	0.81	0.96	0		0.85	0.75	0.88	0.8	0		0.89	0.96
Cars	345	766	159	0		1270	76	658	131	0		865	87	379	144	0		610	133	818	143	0		1094	3839
% Cars	93.8	93.4	91.9	0		93.3	96.2	92.3	94.2	0		92.9	90.6	92	85.2	0		90.1	90.5	95	97.3	0		94.7	93.1
Trucks	21	41	7	0		69	3	42	5	0		50	7	23	17	0		47	12	30	3	0		45	211
% Trucks	5.7	5	4	0		5.1	3.8	5.9	3.6	0		5.4	7.3	5.6	10.1	0		6.9	8.2	3.5	2	0		3.9	5.1
Buses	2	13	7	0		22	0	13	3	0		16	2	10	8	0		20	2	13	1	0		16	74
% Buses	0.5	1.6	4	0		1.6	0	1.8	2.2	0		1.7	2.1	2.4	4.7	0		3	1.4	1.5	0.7	0		1.4	1.8
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					11	-					15	-					3	-					1	-	30
% Peds					36.7	-					50	-					10	-					3.3	-	

Peak Hour Diagram

Specified Period

One Hour Peak

To:

From: 16:00:00 To: 18:00:00 From: 16:45:00

17:45:00

Intersection: Dundas St E & Dixie Rd

 Site Code:
 2219300001

 Count Date:
 Jun 07, 2022

Weather conditions:

Clear

** Signalized Intersection **

Major Road: Dixie Rd runs N/S

North Approach

	Out	In	Total
	1656	1388	3044
	31	38	69
	5	6	11
ॐ	0	0	0
	1692	1432	3124

Dixie Rd

ĵ
0
0
0
0
0

East Approach

	Out	In	Total
	1701	1427	3128
	33	25	58
	11	13	24
ॐ	0	0	0
	1745	1465	3210

Dundas St E

	Totals				₫®
7	0	0	0	0	0
4	188	181	7	0	0
\Rightarrow	791	763	18	10	0
4	145	141	2	2	0

Peds: 51

Dundas St E

	Totals				<i>₫</i>
C	0	0	0	0	0
£	355	341	14	0	0
-	1133	1108	14	11	0
F	257	252	5	0	0

West Approach

	Out	ln	Total
	1085	1558	2643
	27	26	53
	12	11	23
<i>₫</i>	0	0	0
	1124	1595	2719

Peds: 40

	4	1		.1			
Totals	226	889	222	0			
	223	866	216	0			
₽	3	17	3	0			
	0	6	3	0			
<i>₫</i>	0	0	0	0			

Dixie Rd

South Approach

	Out	In	Total
	1305	1374	2679
	23	25	48
=	9	7	16
ॐ	0	0	0
	1337	1406	2743

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Dundas St E & Dixie Rd

Site Code: 2219300001 Count Date: Jun 07, 2022

Period: 16:00 - 18:00

Peak Hour Data (16:45 - 17:45)

	North Approach Dixie Rd						South Approach Dixie Rd						East Approach Dundas St E						West Approach Dundas St E						Total Vehicl
Start Time	4	1	•	•	Peds	Total	4	1	•	J	Peds	Total	4	1	•	J	Peds	Total	4	1	•	•	Peds	Total	es
16:45	98	253	66	0	13	417	60	234	42	0	19	336	59	282	86	0	1	427	40	188	35	0	1	263	1443
17:00	122	241	49	0	16	412	58	248	52	0	5	358	76	273	107	0	4	456	42	194	44	0	6	280	1506
17:15	94	223	60	0	13	377	52	208	51	0	7	311	51	335	70	0	2	456	54	237	35	0	0	326	1470
17:30	138	287	61	0	9	486	56	199	77	0	9	332	71	243	92	0	4	406	52	172	31	0	0	255	1479
Grand Total	452	1004	236	0	51	1692	226	889	222	0	40	1337	257	1133	355	0	11	1745	188	791	145	0	7	1124	5898
Approach %	26.7	59.3	13.9	0		-	16.9	66.5	16.6	0		-	14.7	64.9	20.3	0		-	16.7	70.4	12.9	0		-	
Totals %	7.7	17	4	0		28.7	3.8	15.1	3.8	0		22.7	4.4	19.2	6	0		29.6	3.2	13.4	2.5	0		19.1	
PHF	0.82	0.87	0.89	0		0.87	0.94	0.9	0.72	0		0.93	0.85	0.85	0.83	0		0.96	0.87	0.83	0.82	0		0.86	0.98
Cars	448	981	227	0		1656	223	866	216	0		1305	252	1108	341	0		1701	181	763	141	0		1085	5747
% Cars	99.1	97.7	96.2	0		97.9	98.7	97.4	97.3	0		97.6	98.1	97.8	96.1	0		97.5	96.3	96.5	97.2	0		96.5	97.4
Trucks	4	18	9	0		31	3	17	3	0		23	5	14	14	0		33	7	18	2	0		27	114
% Trucks	0.9	1.8	3.8	0		1.8	1.3	1.9	1.4	0		1.7	1.9	1.2	3.9	0		1.9	3.7	2.3	1.4	0		2.4	1.9
Buses	0	5	0	0		5	0	6	3	0		9	0	11	0	0		11	0	10	2	0		12	37
% Buses	0	0.5	0	0		0.3	0	0.7	1.4	0		0.7	0	1	0	0		0.6	0	1.3	1.4	0		1.1	0.6
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					51	-					40	-					11	-					7	-	109
% Peds					46.8	-					36.7	-					10.1	-					6.4	-	

Traffic Count Summary

Intersection: Dundas St E & Queen Frederica Dr -

Blundell Rd

Site Code: 2219300002 Municipality: Mississauga Count Date: Jun 07, 2022

Queen Frederica Dr - Traffic Summary

		North	Appr	oach T	otals			South	Appr	oach T	otals		
	Inc	ludes Ca	rs, Truc	ks, Buses	, Bicycle	s	Inc	ludes Ca	rs, Truc	ks, Buses	, Bicycle	S	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	104	9	19	0	132	1	13	0	10	0	23	5	155
08:00 - 09:00	131	9	19	0	159	5	18	0	9	0	27	3	186
					В	REAK							
16:00 - 17:00	78	3	13	0	94	3	82	1	22	0	105	20	199
17:00 - 18:00	111	9	16	0	136	12	76	0	25	0	101	16	237
GRAND TOTAL	424	30	67	0	521	21	189	1	66	0	256	44	777

Traffic Count Summary

Intersection: Dundas St E & Queen Frederica Dr -

Blundell Rd

Site Code: 2219300002 Municipality: Mississauga

Count Date: Jun 07, 2022

Dundas St E - Traffic Summary

		East	Appro	ach To	tals			West	Appro	oach To	otals		
	In	cludes Ca	rs, Truc	ks, Buses	s, Bicycle	s	In	cludes Ca	rs, Truc	ks, Buses	s, Bicycle	S	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	16	498	35	0	549	4	10	804	21	0	835	5	1384
08:00 - 09:00	18	661	57	0	736	2	14	1113	25	0	1152	8	1888
					В	REAK							
16:00 - 17:00	38	1563	131	0	1732	16	32	1042	36	0	1110	13	2842
17:00 - 18:00	50	1609	147	0	1806	13	43	1131	31	0	1205	4	3011
GRAND TOTAL	122	4331	370	0	4823	35	99	4090	113	0	4302	30	9125

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: 2219300002

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Queen Frederica Dr

			Cars				T	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	31	0	5	0	36	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
07:15	13	1	3	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	36	2	4	0	42	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
07:45	22	6	7	0	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	24	1	6	0	31	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	3
08:15	34	2	4	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	35	2	3	0	40	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
08:45	36	4	6	0	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
SUBTOTAL	231	18	38	0	287	3	0	0	0	3	1	0	0	0	1	0	0	0	0	0	6

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: 2219300002

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Queen Frederica Dr

			Cars				Tı	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	16	0	6	0	22	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	1
16:15	14	1	2	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
16:30	25	2	1	0	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
16:45	21	0	4	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
17:00	24	4	6	0	34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
17:15	25	1	5	0	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
17:30	35	4	4	0	43	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	5
17:45	26	0	1	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	186	12	29	0	227	1	0	0	0	1	2	0	0	0	2	0	0	0	0	0	15
GRAND TOTAL	417	30	67	0	514	4	0	0	0	4	3	0	0	0	3	0	0	0	0	0	21

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: 2219300002

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Blundell Rd

			Cars				T	rucks				В	Buses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	J	Total	4	1	•	1	Total	4	1	-	1	Total	Total Peds
07:00	2	0	3	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	2	0	2	0	4	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
07:30	3	0	1	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
07:45	5	0	4	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:00	3	0	1	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
08:15	7	0	3	0	10	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0
08:30	4	0	1	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:45	4	0	2	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	30	0	17	0	47	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0	8

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: 2219300002

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Blundell Rd

			Cars				Tı	rucks				В	uses				Bi	cycles			Tatal
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	22	0	5	0	27	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	4
16:15	16	0	2	0	18	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0	5
16:30	22	0	9	0	31	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	6
16:45	19	1	5	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
17:00	20	0	9	0	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
17:15	20	0	4	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
17:30	17	0	7	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
17:45	19	0	5	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
SUBTOTAL	155	1	46	0	202	3	0	1	0	4	0	0	0	0	0	0	0	0	0	0	36
GRAND TOTAL	185	1	63	0	249	4	0	3	0	7	0	0	0	0	0	0	0	0	0	0	44

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: 2219300002

Municipality: Mississauga

Count Date: Jun 07, 2022

East Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	3	92	7	0	102	0	3	0	0	3	0	3	0	0	3	0	0	0	0	0	1
07:15	4	94	12	0	110	1	6	0	0	7	0	4	0	0	4	0	0	0	0	0	1
07:30	3	118	9	0	130	0	9	0	0	9	0	4	1	0	5	0	0	0	0	0	1
07:45	5	149	5	0	159	0	11	1	0	12	0	5	0	0	5	0	0	0	0	0	1
08:00	3	127	15	0	145	0	3	2	0	5	0	2	0	0	2	0	0	0	0	0	0
08:15	10	154	13	0	177	0	10	0	0	10	0	4	0	0	4	0	0	0	0	0	0
08:30	3	166	10	0	179	0	16	2	0	18	0	3	0	0	3	0	0	0	0	0	1
08:45	2	167	15	0	184	0	5	0	0	5	0	4	0	0	4	0	0	0	0	0	1
SUBTOTAL	33	1067	86	0	1186	1	63	5	0	69	0	29	1	0	30	0	0	0	0	0	6

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: 2219300002

Municipality: Mississauga

Count Date: Jun 07, 2022

East Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			Takal
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	9	359	22	0	390	2	12	0	0	14	0	3	1	0	4	0	0	0	0	0	2
16:15	7	396	41	0	444	0	10	0	0	10	0	2	0	0	2	0	0	0	0	0	2
16:30	7	378	31	0	416	0	5	0	0	5	0	2	0	0	2	0	0	0	0	0	5
16:45	13	388	35	0	436	0	3	1	0	4	0	5	0	0	5	0	0	0	0	0	7
17:00	8	382	36	0	426	1	10	0	0	11	0	2	0	0	2	0	0	0	0	0	2
17:15	13	413	45	0	471	0	3	0	0	3	0	3	0	0	3	0	0	0	0	0	7
17:30	11	395	31	0	437	0	6	0	0	6	0	1	0	0	1	0	0	0	0	0	3
17:45	16	383	35	0	434	1	7	0	0	8	0	4	0	0	4	0	0	0	0	0	1
SUBTOTAL	84	3094	276	0	3454	4	56	1	0	61	0	22	1	0	23	0	0	0	0	0	29
GRAND TOTAL	117	4161	362	0	4640	5	119	6	0	130	0	51	2	0	53	0	0	0	0	0	35

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: 2219300002

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	4	166	3	0	173	0	10	0	0	10	0	2	0	0	2	0	0	0	0	0	1
07:15	4	170	8	0	182	0	14	1	0	15	0	3	0	0	3	0	0	0	0	0	0
07:30	2	172	4	0	178	0	5	0	0	5	0	3	0	0	3	0	0	0	0	0	0
07:45	0	243	5	0	248	0	13	0	0	13	0	3	0	0	3	0	0	0	0	0	4
08:00	4	223	8	0	235	0	10	1	0	11	1	1	0	0	2	0	0	0	0	0	4
08:15	1	281	6	0	288	0	8	0	0	8	0	3	0	0	3	0	0	0	0	0	0
08:30	5	266	7	0	278	1	10	0	0	11	0	3	0	0	3	0	0	0	0	0	2
08:45	2	297	3	0	302	0	9	0	0	9	0	2	0	0	2	0	0	0	0	0	2
SUBTOTAL	22	1818	44	0	1884	1	79	2	0	82	1	20	0	0	21	0	0	0	0	0	13

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: 2219300002

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			Takal
Start Time	4	1	•	1	Total	4	1	•	Q	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	6	216	6	0	228	0	6	0	0	6	0	3	0	0	3	0	0	0	0	0	1
16:15	8	260	9	0	277	0	8	1	0	9	0	2	0	0	2	0	0	0	0	0	0
16:30	12	245	7	0	264	0	5	1	0	6	0	2	0	0	2	0	0	0	0	0	4
16:45	6	285	12	0	303	0	6	0	0	6	0	4	0	0	4	0	0	0	0	0	8
17:00	17	257	7	0	281	0	1	0	0	1	0	4	0	0	4	0	0	0	0	0	0
17:15	11	318	8	0	337	0	9	0	0	9	0	2	0	0	2	0	0	0	0	0	1
17:30	10	268	9	0	287	0	6	1	0	7	0	2	0	0	2	0	0	0	0	0	3
17:45	5	260	5	0	270	0	1	0	0	1	0	3	1	0	4	0	0	0	0	0	0
SUBTOTAL	75	2109	63	0	2247	0	42	3	0	45	0	22	1	0	23	0	0	0	0	0	17
GRAND TOTAL	97	3927	107	0	4131	1	121	5	0	127	1	42	1	0	44	0	0	0	0	0	30

Peak Hour Diagram

Specified Period

One Hour Peak

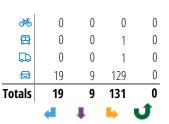
From: To: 07:00:00 09:00:00 From: To: 08:00:00 09:00:00

Intersection:

Dundas St E & Queen Frederica Dr - Blundell Rd

Site Code: Count Date: 2219300002 Jun 07, 2022 Weather conditions:

Clear


** Signalized Intersection **

Major Road: Dundas St E runs E/W

North Approach

	Out	In	Total
	157	65	222
	1	5	6
	1	1	2
<i>₹</i>	0	0	0
	159	71	230

Queen Frederica Dr

East Approach

	Out	In	Total
	685	1203	1888
۵	38	40	78
田	13	10	23
₹	0	0	0
	736	1253	1989

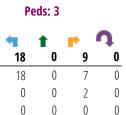
Dundas St E

	Totals				Æ
7	0	0	0	0	0
4	14	12	1	1	0
\rightarrow	1113	1067	37	9	0
4	25	24	1	0	0

Peds: 5

Dundas St E

_,	Totals				₫
C	0	0	0	0	0
£	57	53	4	0	0
-	661	614	34	13	0
F	18	18	0	0	0


West Approach

	Out	ln	Total
	1103	651	1754
	39	34	73
	10	13	23
<i>₫</i>	0	0	0
	1152	698	1850

Ped

Totals

ॐ

0

0

Blundell Rd

South Approach

	Out	In	Total
	25	51	76
	2	1	3
=	0	0	0
ॐ	0	0	0
	27	52	79

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

 Site Code:
 2219300002

 Count Date:
 Jun 07, 2022

 Period:
 07:00 - 09:00

Peak Hour Data (08:00 - 09:00)

		N Qu	North A leen Fr	pproac ederica	:h Dr				South A Blund	pproac Iell Rd	h				East Ap Dund	pproacl as St E	h			١	Nest A Dund	pproacl as St E	h		Total Vehicl
Start Time	4	1	P	J	Peds	Total	4	1	•	J	Peds	Total	•	1	P	J	Peds	Total	4	1	P	J	Peds	Total	es
08:00	25	1	6	0	3	32	3	0	1	0	2	4	3	132	17	0	0	152	5	234	9	0	4	248	436
08:15	34	2	4	0	0	40	7	0	5	0	0	12	10	168	13	0	0	191	1	292	6	0	0	299	542
08:30	36	2	3	0	1	41	4	0	1	0	1	5	3	185	12	0	1	200	6	279	7	0	2	292	538
08:45	36	4	6	0	1	46	4	0	2	0	0	6	2	176	15	0	1	193	2	308	3	0	2	313	558
Grand Total	131	9	19	0	5	159	18	0	9	0	3	27	18	661	57	0	2	736	14	1113	25	0	8	1152	2074
Approach %	82.4	5.7	11.9	0		-	66.7	0	33.3	0		-	2.4	89.8	7.7	0		-	1.2	96.6	2.2	0		-	
Totals %	6.3	0.4	0.9	0		7.7	0.9	0	0.4	0		1.3	0.9	31.9	2.7	0		35.5	0.7	53.7	1.2	0		55.5	
PHF	0.91	0.56	0.79	0		0.86	0.64	0	0.45	0		0.56	0.45	0.89	0.84	0		0.92	0.58	0.9	0.69	0		0.92	0.93
Cars	129	9	19	0		157	18	0	7	0		25	18	614	53	0		685	12	1067	24	0		1103	1970
% Cars	98.5	100	100	0		98.7	100	0	77.8	0		92.6	100	92.9	93	0		93.1	85.7	95.9	96	0		95.7	95
Trucks	1	0	0	0		1	0	0	2	0		2	0	34	4	0		38	1	37	1	0		39	80
% Trucks	0.8	0	0	0		0.6	0	0	22.2	0		7.4	0	5.1	7	0		5.2	7.1	3.3	4	0		3.4	3.9
Buses	1	0	0	0		1	0	0	0	0		0	0	13	0	0		13	1	9	0	0		10	24
% Buses	0.8	0	0	0		0.6	0	0	0	0		0	0	2	0	0		1.8	7.1	0.8	0	0		0.9	1.2
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					5	-					3	-					2	-					8	-	18
% Peds					27.8	-					16.7	-					11.1	-					44.4	-	

Peak Hour Diagram

Specified Period

One Hour Peak

From: 16:00:00 To: 18:00:00 From: 16:45:00 To: 17:45:00

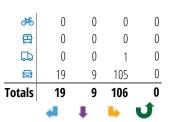
Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

 Site Code:
 2219300002

 Count Date:
 Jun 07, 2022

Weather conditions:

Clear


** Signalized Intersection **

Major Road: Dundas St E runs E/W

North Approach

	Out	In	Total
	133	192	325
	1	1	2
	0	0	0
<i>₫</i>	0	0	0
	134	193	327

Queen Frederica Dr

East Approach

	Out	ln	Total
	1770	1258	3028
	24	23	47
=	11	12	23
<i>₫</i> 6	0	0	0
	1805	1293	3098

Dundas St E

<i>₫</i>				Totals	
0	0	0	0	0	7
0	0	0	44	44	4
0	12	22	1128	1162	-
0	0	1	36	37	4

Peds: 12

Dundas St E

	Totals				₫ %
C	0	0	0	0	0
£	148	147	1	0	0
-	1611	1578	22	11	0
F	46	45	1	0	0

West Approach

	Out	ln	Total
	1208	1673	2881
	23	22	45
	12	11	23
<i>₫</i>	0	0	0
	1243	1706	2949

	4	1	•	J
Totals	76	1	25	0
	76	1	25	0
₽	0	0	0	0
=	0	0	0	0
<i>₫</i> %	0	0	0	0

Peds: 18

Blundell Rd

South Approach

	Out	ln	Total
	102	90	192
.	0	2	2
	0	0	0
秀	0	0	0
	102	92	194

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Dundas St E & Queen Frederica Dr - Blundell Rd

 Site Code:
 2219300002

 Count Date:
 Jun 07, 2022

 Period:
 16:00 - 18:00

Peak Hour Data (16:45 - 17:45)

		N Qu	North A leen Fr	pproac ederica	ch a Dr			S	outh A Blund	pproac Iell Rd	h					pproacl as St E	1			Ī		pproacl as St E	h		Total Vehicl
Start Time	4	1	•	•	Peds	Total	4	1	•	J	Peds	Total	4	1	•	4	Peds	Total	4	1	•	J	Peds	Total	es
16:45	21	0	4	0	0	25	19	1	5	0	5	25	13	396	36	0	7	445	6	295	12	0	8	313	808
17:00	24	4	6	0	3	34	20	0	9	0	4	29	9	394	36	0	2	439	17	262	7	0	0	286	788
17:15	25	1	5	0	4	31	20	0	4	0	3	24	13	419	45	0	7	477	11	329	8	0	1	348	880
17:30	36	4	4	0	5	44	17	0	7	0	6	24	11	402	31	0	3	444	10	276	10	0	3	296	808
Grand Total	106	9	19	0	12	134	76	1	25	0	18	102	46	1611	148	0	19	1805	44	1162	37	0	12	1243	3284
Approach %	79.1	6.7	14.2	0		-	74.5	1	24.5	0		-	2.5	89.3	8.2	0		-	3.5	93.5	3	0		-	
Totals %	3.2	0.3	0.6	0		4.1	2.3	0	0.8	0		3.1	1.4	49.1	4.5	0		55	1.3	35.4	1,1	0		37.9	
PHF	0.74	0.56	0.79	0		0.76	0.95	0.25	0.69	0		0.88	0.88	0.96	0.82	0		0.95	0.65	0.88	0.77	0		0.89	0.93
Cars	105	9	19	0		133	76	1	25	0		102	45	1578	147	0		1770	44	1128	36	0		1208	3213
% Cars	99.1	100	100	0		99.3	100	100	100	0		100	97.8	98	99.3	0		98.1	100	97.1	97.3	0		97.2	97.8
Trucks	1	0	0	0		1	0	0	0	0		0	1	22	1	0		24	0	22	1	0		23	48
% Trucks	0.9	0	0	0		0.7	0	0	0	0		0	2.2	1.4	0.7	0		1.3	0	1.9	2.7	0		1.9	1.5
Buses	0	0	0	0		0	0	0	0	0		0	0	11	0	0		11	0	12	0	0		12	23
% Buses	0	0	0	0		0	0	0	0	0		0	0	0.7	0	0		0.6	0	1	0	0		1	0.7
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					12	-					18	-					19	-					12	-	61
% Peds					19.7	-					29.5	-					31.1	-					19.7	-	

Traffic Count Summary

Intersection: Dundas St E & Arena Rd - Commercial

Access

Site Code: 2219300003 Municipality: Mississauga Count Date: Jun 07, 2022

Arena Rd - Traffic Summary

		North	Appr	oach T	otals			South	Appr	oach T	otals		
	Inc	ludes Ca	rs, Truc	ks, Buses	, Bicycle	s	Inc	ludes Ca	rs, Truc	ks, Buses	s, Bicycle	S	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	4	0	38	0	42	1	2	0	18	0	20	6	62
08:00 - 09:00	13	3	36	0	52	9	7	1	54	0	62	9	114
					В	REAK							
16:00 - 17:00	14	3	29	0	46	3	22	10	109	0	141	20	187
17:00 - 18:00	13	2	23	0	38	13	19	9	105	0	133	20	171
GRAND TOTAL	44	8	126	0	178	26	50	20	286	0	356	55	534

Traffic Count Summary

Intersection: Dundas St E & Arena Rd - Commercial

Access

Site Code: 2219300003 Municipality: Mississauga Count Date: Jun 07, 2022

Dundas St E - Traffic Summary

		East	Appro	ach To	otals			West	Appro	oach To	otals		
	In	cludes Ca	rs, Truc	ks, Buse	s, Bicycle	S	In	cludes Ca	rs, Truc	ks, Buse	s, Bicycle	!S	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	23	490	5	0	518	5	21	849	10	0	880	3	1398
08:00 - 09:00	44	725	8	0	777	6	19	1164	17	0	1200	4	1977
					В	REAK							
16:00 - 17:00	84	1492	17	0	1593	4	41	1080	17	0	1138	18	2731
17:00 - 18:00	81	1530	18	0	1629	10	29	1162	17	0	1208	12	2837
GRAND TOTAL	232	4237	48	0	4517	25	110	4255	61	0	4426	37	8943

Intersection: Dundas St E & Arena Rd - Commercial Access

Site Code: 2219300003

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Arena Rd

			Cars				Ti	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	0	7	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	9	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	1	0	9	0	10	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1
07:45	3	0	11	0	14	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
08:00	4	1	7	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:15	4	1	15	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	1	0	7	0	8	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	6
08:45	3	1	7	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
SUBTOTAL	16	3	72	0	91	0	0	0	0	0	1	0	2	0	3	0	0	0	0	0	10

Intersection: Dundas St E & Arena Rd - Commercial Access

Site Code: 2219300003

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Arena Rd

			Cars				Tı	rucks				В	uses				Bi	cycles			Takal
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	5	0	7	0	12	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
16:15	1	2	6	0	9	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
16:30	5	0	9	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16:45	3	1	5	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:00	4	0	6	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:15	3	1	6	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
17:30	3	0	5	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
17:45	3	1	5	0	9	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	2
SUBTOTAL	27	5	49	0	81	0	0	2	0	2	0	0	1	0	1	0	0	0	0	0	16
GRAND TOTAL	43	8	121	0	172	0	0	2	0	2	1	0	3	0	4	0	0	0	0	0	26

Intersection: Dundas St E & Arena Rd - Commercial Access

Site Code: 2219300003

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Commercial Access

			Cars				Ti	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
07:15	0	0	5	0	5	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
07:30	1	0	3	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:45	1	0	7	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:00	1	0	9	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
08:15	2	0	11	0	13	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	2
08:30	1	1	19	0	21	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
08:45	3	0	11	0	14	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	2
SUBTOTAL	9	1	67	0	77	0	0	5	0	5	0	0	0	0	0	0	0	0	0	0	15

Intersection: Dundas St E & Arena Rd - Commercial Access

Site Code: 2219300003

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Commercial Access

			Cars				Ti	rucks				В	uses				Bi	icycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	4	1	24	0	29	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	3
16:15	6	2	21	0	29	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	7
16:30	8	3	30	0	41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
16:45	3	4	31	0	38	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	6
17:00	4	3	23	0	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
17:15	5	1	26	0	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
17:30	6	4	27	0	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:45	4	1	29	0	34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
SUBTOTAL	40	19	211	0	270	1	0	3	0	4	0	0	0	0	0	0	0	0	0	0	40
GRAND TOTAL	49	20	278	0	347	1	0	8	0	9	0	0	0	0	0	0	0	0	0	0	55

Intersection: Dundas St E & Arena Rd - Commercial Access

Site Code: 2219300003

Municipality: Mississauga

Count Date: Jun 07, 2022

East Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	102	1	0	103	0	4	0	0	4	0	4	0	0	4	0	0	0	0	0	0
07:15	6	96	1	0	103	1	7	0	0	8	0	3	0	0	3	0	0	0	0	0	0
07:30	3	117	2	0	122	1	2	0	0	3	0	4	0	0	4	0	0	0	0	0	3
07:45	12	141	1	0	154	0	5	0	0	5	0	5	0	0	5	0	0	0	0	0	2
08:00	7	138	1	0	146	2	6	0	0	8	0	2	0	0	2	0	0	0	0	0	0
08:15	15	163	2	0	180	0	7	0	0	7	0	4	0	0	4	0	0	0	0	0	0
08:30	9	189	2	0	200	0	13	0	0	13	0	3	0	0	3	0	0	0	0	0	3
08:45	11	185	3	0	199	0	11	0	0	11	0	4	0	0	4	0	0	0	0	0	3
SUBTOTAL	63	1131	13	0	1207	4	55	0	0	59	0	29	0	0	29	0	0	0	0	0	11

Intersection: Dundas St E & Arena Rd - Commercial Access

Site Code: 2219300003

Municipality: Mississauga

Count Date: Jun 07, 2022

East Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			T. 4.1
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	19	336	3	0	358	0	9	0	0	9	0	3	0	0	3	0	0	0	0	0	1
16:15	18	370	3	0	391	0	8	0	0	8	0	1	0	0	1	0	0	0	0	0	1
16:30	19	371	4	0	394	0	5	0	0	5	0	3	0	0	3	0	0	0	0	0	2
16:45	27	372	7	0	406	1	9	0	0	10	0	5	0	0	5	0	0	0	0	0	0
17:00	20	372	1	0	393	0	6	0	0	6	0	3	0	0	3	0	0	0	0	0	7
17:15	21	371	8	0	400	0	6	0	0	6	0	2	0	0	2	0	0	0	0	0	2
17:30	17	375	4	0	396	1	3	0	0	4	0	2	0	0	2	0	0	0	0	0	0
17:45	22	382	5	0	409	0	5	0	0	5	0	3	0	0	3	0	0	0	0	0	1
SUBTOTAL	163	2949	35	0	3147	2	51	0	0	53	0	22	0	0	22	0	0	0	0	0	14
GRAND TOTAL	226	4080	48	0	4354	6	106	0	0	112	0	51	0	0	51	0	0	0	0	0	25

Intersection: Dundas St E & Arena Rd - Commercial Access

Site Code: 2219300003

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Dundas St E

			Cars				T	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	2	185	0	0	187	0	10	0	0	10	0	2	0	0	2	0	0	0	0	0	1
07:15	5	178	3	0	186	0	13	0	0	13	1	3	0	0	4	0	0	0	0	0	0
07:30	4	182	3	0	189	0	7	1	0	8	0	3	0	0	3	0	0	0	0	0	1
07:45	8	247	3	0	258	0	16	0	0	16	1	3	0	0	4	0	0	0	0	0	1
08:00	5	228	1	0	234	0	11	0	0	11	0	2	0	0	2	0	0	0	0	0	1
08:15	4	304	4	0	312	0	7	0	0	7	1	3	0	0	4	0	0	0	0	0	0
08:30	5	276	7	0	288	0	10	0	0	10	0	2	0	0	2	0	0	0	0	0	2
08:45	3	308	5	0	316	0	11	0	0	11	1	2	0	0	3	0	0	0	0	0	1
SUBTOTAL	36	1908	26	0	1970	0	85	1	0	86	4	20	0	0	24	0	0	0	0	0	7

Intersection: Dundas St E & Arena Rd - Commercial Access

Site Code: 2219300003

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Dundas St E

			Cars				Ti	rucks				В	uses				Bi	cycles			T I
Start Time	4	1	•	1	Total	4	1	•	Q	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	12	221	1	0	234	0	7	0	0	7	0	3	0	0	3	0	0	0	0	0	4
16:15	11	283	3	0	297	0	8	0	0	8	0	2	0	0	2	0	0	0	0	0	1
16:30	8	264	7	0	279	1	7	1	0	9	0	3	0	0	3	0	0	0	0	0	7
16:45	9	272	5	0	286	0	7	0	0	7	0	3	0	0	3	0	0	0	0	0	6
17:00	11	293	2	0	306	0	2	0	0	2	0	4	0	0	4	0	0	0	0	0	2
17:15	8	291	4	0	303	0	8	0	0	8	0	2	0	0	2	0	0	0	0	0	0
17:30	5	275	5	0	285	0	6	0	0	6	0	2	0	0	2	0	0	0	0	0	5
17:45	5	272	6	0	283	0	3	0	0	3	0	4	0	0	4	0	0	0	0	0	5
SUBTOTAL	69	2171	33	0	2273	1	48	1	0	50	0	23	0	0	23	0	0	0	0	0	30
GRAND TOTAL	105	4079	59	0	4243	1	133	2	0	136	4	43	0	0	47	0	0	0	0	0	37

Peak Hour Diagram

Specified Period

One Hour Peak

From: To: 07:00:00 09:00:00

From: 08:00:00

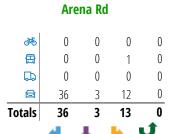
To: 09:00:00

Intersection: Dundas St E & Arena Rd - Commercial Access

 Site Code:
 2219300003

 Count Date:
 Jun 07, 2022

Weather conditions:


Clear

** Signalized Intersection **

Major Road: Dundas St E runs E/W

North Approach

	Out	In	Total
	51	26	77
	0	0	0
	1	2	3
<i>₹</i>	0	0	0
	52	28	80

Peds: 9

East Approach

	Out	In	Total
	725	1178	1903
	39	43	82
	13	10	23
ॐ	0	0	0
	777	1231	2008

Dundas St E

	Totals				Ť
7	0	0	0	0	0
4	19	17	0	2	0
\Rightarrow	1164	1116	39	9	0
4	17	17	0	0	0

	Totals				<i>₫</i>
C	0	0	0	0	0
Ł	8	8	0	0	0
(=	725	675	37	13	0
F	44	42	2	0	0

Dundas St E

West Approach

	Out	ln	Total
	1150	718	1868
	39	37	76
	11	13	24
<i>₫</i>	0	0	0
	1200	768	1968

	4	1		J
Totals	7	1	54	0
	7	1	50	0
	0	0	4	0
	0	0	0	0
<i>₫</i>	0	0	0	0

Peds: 9

Commercial Access

South Approach

	Out	ln	Total
	58	62	120
	4	2	6
田	0	0	0
<i>₫</i>	0	0	0
	62	64	126

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Dundas St E & Arena Rd - Commercial Access

 Site Code:
 2219300003

 Count Date:
 Jun 07, 2022

 Period:
 07:00 - 09:00

Peak Hour Data (08:00 - 09:00)

		N		pproac na Rd	ch			S Co	outh A	Approac	h ess				East Ap Dund	proacl as St E	1			1	Nest A _l Dunda	pproacl as St E	h		Total Vehicl
Start Time	4	1	•	1	Peds	Total	4	1	•	1	Peds	Total	4	1	•	4	Peds	Total	4	1	•	1	Peds	Total	es
08:00	4	1	7	0	1	12	1	0	9	0	4	10	9	146	1	0	0	156	5	241	1	0	1	247	425
08:15	4	1	15	0	0	20	2	0	13	0	2	15	15	174	2	0	0	191	5	314	4	0	0	323	549
08:30	2	0	7	0	6	9	1	1	20	0	1	22	9	205	2	0	3	216	5	288	7	0	2	300	547
08:45	3	1	7	0	2	11	3	0	12	0	2	15	11	200	3	0	3	214	4	321	5	0	1	330	570
Grand Total	13	3	36	0	9	52	7	1	54	0	9	62	44	725	8	0	6	777	19	1164	17	0	4	1200	2091
Approach %	25	5.8	69.2	0		-	11.3	1.6	87.1	0		-	5.7	93.3	1	0		-	1.6	97	1.4	0		-	
Totals %	0.6	0.1	1.7	0		2.5	0.3	0	2.6	0		3	2.1	34.7	0.4	0	,	37.2	0.9	55.7	0.8	0		57.4	
PHF	0.81	0.75	0.6	0		0.65	0.58	0.25	0.68	0		0.7	0.73	0.88	0.67	0		0.9	0.95	0.91	0.61	0		0.91	0.92
Cars	12	3	36	0		51	7	1	50	0		58	42	675	8	0		725	17	1116	17	0		1150	1984
% Cars	92.3	100	100	0		98.1	100	100	92.6	0		93.5	95.5	93.1	100	0		93.3	89.5	95.9	100	0		95.8	94.9
Trucks	0	0	0	0		0	0	0	4	0		4	2	37	0	0		39	0	39	0	0		39	82
% Trucks	0	0	0	0		0	0	0	7.4	0		6.5	4.5	5.1	0	0		5	0	3.4	0	0		3.3	3.9
Buses	1	0	0	0		1	0	0	0	0		0	0	13	0	0		13	2	9	0	0		11	25
% Buses	7.7	0	0	0		1.9	0	0	0	0		0	0	1.8	0	0		1.7	10.5	0.8	0	0		0.9	1.2
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					9	-					9	-					6	-					4	-	28
% Peds					32.1	-					32.1	-					21.4	-					14.3	-	

Peak Hour Diagram

Specified Period

One Hour Peak

From: To:

16:00:00 18:00:00 From: 16:30:00 To: 17:30:00

Intersection: Dundas St E & Arena Rd - Commercial Access

 Site Code:
 2219300003

 Count Date:
 Jun 07, 2022

Weather conditions:

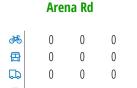
0

0

0

0

0


Clear

** Signalized Intersection **

Major Road: Dundas St E runs E/W

North Approach

	Out	In	Total
	43	67	110
	0	1	1
	0	0	0
<i>₫</i> 6	0	0	0
	43	68	111

 Email 26
 2
 15
 0

 Totals
 26
 2
 15
 0

 ■
 ■
 ■
 ■
 ■

East Approach

	Out	In	Total
	1593	1245	2838
	27	24	51
	13	12	25
ॐ	0	0	0
	1633	1281	2914

Dundas St E

₫®				Totals	
0	0	0	0	0	7
0	0	1	36	37	4
0	12	24	1120	1156	-
0	0	1	18	19	4

Dundas St E

	Totals				<i>₹</i>
C	0	0	0	0	0
£	20	20	0	0	0
-	1525	1486	26	13	0
F	88	87	1	0	0

West Approach

	Out	In	Total
	1174	1532	2706
	26	27	53
	12	13	25
<i>₫</i>	0	0	0
	1212	1572	2784

	4	1	•	J
Totals	21	11	110	0
	20	11	110	0
	1	0	0	0
	0	0	0	0

Peds: 24

Commercial Access

South Approach

	Out	In	Total
	141	107	248
_	1	2	3
	0	0	0
秀	0	0	0
	142	109	251

ॐ - Bicycles

Comments

Peak Hour Summary

Intersection: Dundas St E & Arena Rd - Commercial Access

 Site Code:
 2219300003

 Count Date:
 Jun 07, 2022

 Period:
 16:00 - 18:00

Peak Hour Data (16:30 - 17:30)

		ľ	North A Aren	pproac ia Rd	:h			S Co	outh A	pproac	h ess					pproacl las St E	h			\	Nest A Dund	pproacl as St E	h		Total Vehicl
Start Time	4	1	P	J	Peds	Total	4	1	•	J	Peds	Total	4	1	•	4	Peds	Total	4	1	•	1	Peds	Total	es
16:30	5	0	9	0	1	14	8	3	30	0	4	41	19	379	4	0	2	402	9	274	8	0	7	291	748
16:45	3	1	5	0	2	9	4	4	31	0	6	39	28	386	7	0	0	421	9	282	5	0	6	296	765
17:00	4	0	6	0	2	10	4	3	23	0	8	30	20	381	1	0	7	402	11	299	2	0	2	312	754
17:15	3	1	6	0	6	10	5	1	26	0	6	32	21	379	8	0	2	408	8	301	4	0	0	313	763
Grand Total	15	2	26	0	11	43	21	11	110	0	24	142	88	1525	20	0	11	1633	37	1156	19	0	15	1212	3030
Approach %	34.9	4.7	60.5	0		-	14.8	7.7	77.5	0		-	5.4	93.4	1.2	0		-	3.1	95.4	1.6	0		-	
Totals %	0.5	0.1	0.9	0		1.4	0.7	0.4	3.6	0		4.7	2.9	50.3	0.7	0		53.9	1.2	38.2	0.6	0		40	
PHF	0.75	0.5	0.72	0		0.77	0.66	0.69	0.89	0		0.87	0.79	0.99	0.63	0		0.97	0.84	0.96	0.59	0		0.97	0.99
Cars	15	2	26	0		43	20	11	110	0		141	87	1486	20	0		1593	36	1120	18	0		1174	2951
% Cars	100	100	100	0		100	95.2	100	100	0		99.3	98.9	97.4	100	0		97.6	97.3	96.9	94.7	0		96.9	97.4
Trucks	0	0	0	0		0	1	0	0	0		1	1	26	0	0		27	1	24	1	0		26	54
% Trucks	0	0	0	0		0	4.8	0	0	0		0.7	1.1	1.7	0	0		1.7	2.7	2.1	5.3	0		2.1	1.8
Buses	0	0	0	0		0	0	0	0	0		0	0	13	0	0		13	0	12	0	0		12	25
% Buses	0	0	0	0		0	0	0	0	0		0	0	0.9	0	0		0.8	0	1	0	0		1	0.8
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					11	-					24	-					11	-					15	-	61
% Peds					18	-					39.3	-					18	-					24.6	-	

Traffic Count Summary

Intersection: Queen Frederica Dr & Dundix Rd

Site Code: 2219300004 Municipality: Mississauga

Count Date: Jun 07, 2022

Queen Frederica Dr - Traffic Summary

		North	Appr	oach T	otals			South	Appr	oach T	otals		
	Inc	ludes Ca	rs, Truc	ks, Buses	, Bicycle	s	Inc	ludes Ca	rs, Truc	ks, Buses	, Bicycle	S	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	0	108	13	0	121	5	12	37	0	0	49	2	170
08:00 - 09:00	0	116	23	0	139	3	17	58	0	0	75	4	214
					В	REAK							
16:00 - 17:00	0	72	25	0	97	12	37	128	0	0	165	12	262
17:00 - 18:00	0	117	37	0	154	5	42	139	0	0	181	7	335
GRAND TOTAL	0	413	98	0	511	25	108	362	0	0	470	25	981

Traffic Count Summary

Intersection: Queen Frederica Dr & Dundix Rd

Site Code: 2219300004

Municipality: Mississauga

Count Date: Jun 07, 2022

Dundix Rd - Traffic Summary

		East /	Appro	ach To	tals			West	Appro	oach To	otals		
	Inc	ludes Ca	rs, Truc	ks, Buse	s, Bicycl	es	Inc	cludes Ca	rs, Truc	ks, Buses	s, Bicycle	S	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	0	0	0	0	0	0	23	0	27	0	50	4	50
08:00 - 09:00	0	0	0	0	0	0	29	0	46	0	75	5	75
					Е	BREAK							
16:00 - 17:00	0	0	0	0	0	0	24	0	18	0	42	6	42
17:00 - 18:00	0	0	0	0	0	0	15	0	32	0	47	2	47
GRAND TOTAL	0	0	0	0	0	0	91	0	123	0	214	17	214

Intersection: Queen Frederica Dr & Dundix Rd

Site Code: 2219300004

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Queen Frederica Dr

			Cars				T	rucks				В	Buses				Bi	icycles			Total
Start Time	4	1	•	1	Total	4	1	•	J	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	31	1	0	32	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
07:15	0	15	4	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
07:30	0	29	2	0	31	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
07:45	0	31	5	0	36	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	2
08:00	0	28	5	0	33	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2
08:15	0	24	5	0	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:30	0	34	8	0	42	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
08:45	0	28	5	0	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	220	35	0	255	0	3	0	0	3	0	1	1	0	2	0	0	0	0	0	8

Intersection: Queen Frederica Dr & Dundix Rd

Site Code: 2219300004

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Queen Frederica Dr

			Cars				Tı	rucks				В	Buses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	J	Total	4	1	•	1	Total	4	1	•	1	Total	
16:00	0	16	4	0	20	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	3
16:15	0	13	4	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
16:30	0	19	7	0	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
16:45	0	22	10	0	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
17:00	0	28	8	0	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
17:15	0	27	12	0	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	35	7	0	42	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
17:45	0	26	10	0	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	186	62	0	248	0	1	0	0	1	0	2	0	0	2	0	0	0	0	0	17
GRAND TOTAL	0	406	97	0	503	0	4	0	0	4	0	3	1	0	4	0	0	0	0	0	25

Intersection: Queen Frederica Dr & Dundix Rd

Site Code: 2219300004

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Queen Frederica Dr

			Cars				T	rucks				I	Buses				В	icycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	3	7	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:15	4	15	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	2	10	0	0	12	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	1
07:45	2	4	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	3	18	0	0	21	0	2	0	0	2	0	1	0	0	1	0	0	0	0	0	2
08:15	2	14	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	5	10	0	0	15	0	2	0	0	2	1	0	0	0	1	0	0	0	0	0	1
08:45	6	11	0	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
SUBTOTAL	27	89	0	0	116	0	4	0	0	4	2	2	0	0	4	0	0	0	0	0	6

Intersection: Queen Frederica Dr & Dundix Rd

Site Code: 2219300004

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Queen Frederica Dr

			Cars				T	rucks				ı	Buses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	
16:00	5	23	0	0	28	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
16:15	9	36	0	0	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
16:30	13	32	0	0	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
16:45	9	37	0	0	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:00	10	42	0	0	52	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
17:15	11	35	0	0	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:30	8	34	0	0	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
17:45	13	27	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
SUBTOTAL	78	266	0	0	344	0	1	0	0	1	1	0	0	0	1	0	0	0	0	0	19
GRAND TOTAL	105	355	0	0	460	0	5	0	0	5	3	2	0	0	5	0	0	0	0	0	25

Intersection: Queen Frederica Dr & Dundix Rd

Site Code: 2219300004

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Dundix Rd

			Cars				T	rucks				I	Buses				В	icycles			Total
Start Time	4	1	-	1	Total	4	1	•	J.	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	3	0	4	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:15	4	0	4	0	8	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	2
07:30	7	0	11	0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:45	7	0	8	0	15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
08:00	3	0	6	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:15	12	0	14	0	26	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
08:30	6	0	11	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:45	6	0	15	0	21	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	2
SUBTOTAL	48	0	73	0	121	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	9

Intersection: Queen Frederica Dr & Dundix Rd

Site Code: 2219300004

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Dundix Rd

			Cars				T	rucks				Е	Buses	_			Bi	cycles	_		Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	
16:00	6	0	3	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	6	0	6	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	3	0	7	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
16:45	9	0	2	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:00	6	0	8	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
17:15	4	0	8	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	3	0	12	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
17:45	2	0	4	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	39	0	50	0	89	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
GRAND TOTAL	87	0	123	0	210	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	17

Peak Hour Diagram

Specified Period

One Hour Peak

From: To: 07:00:00 09:00:00

From: 08:00:00 To: 09:00:00

Intersection:

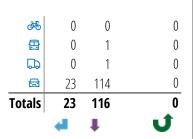
Queen Frederica Dr & Dundix Rd

 Site Code:
 2219300004

 Count Date:
 Jun 07, 2022

Weather conditions:

Clear


** Unsignalized Intersection **

Major Road: Queen Frederica Dr runs N/S

North Approach

	Out	In	Total
	137	80	217
	1	4	5
	1	3	4
<i>₫</i>	0	0	0
	139	87	226

Queen Frederica Dr

Dundix Rd

	Totals				<i>₫</i>
7	0	0	0	0	0
4	29	27	0	2	0
7	46	46	0	0	0

Peds: 3

Peds: 4

West Approach

	Out	In	Total
	73	39	112
	0	0	0
	2	1	3
ॐ	0	0	0
'	75	40	115

	7	T	- +
Totals	17	58	0
	16	53	0
	0	4	0
	1	1	0
₫ %	0	0	0

Queen Frederica Dr

South Approach

	Out	In	Total
	69	160	229
<u>ټ</u>	4	1	5
	2	1	3
₹6	0	0	0
,	75	162	237

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Queen Frederica Dr & Dundix Rd

 Site Code:
 2219300004

 Count Date:
 Jun 07, 2022

 Period:
 07:00 - 09:00

Peak Hour Data (08:00 - 09:00)

		N Qu	North <i>A</i> Ieen Fr	pproac ederica	ch a Dr			S Qu	outh <i>A</i> ieen Fr	pproac ederica	h Dr				East A	pproacl	1		West Approach Dundix Rd						Total Vehicl
Start Time	4	1	•	•	Peds	Total	4	1	•	J	Peds	Total	4	1	•	J	Peds	Total	4	1	•	1	Peds	Total	es
08:00		29	5	0	2	34	3	21		0	2	24					0		3		6	0	1	9	67
08:15		24	5	0	1	29	2	14		0	0	16					0		13		14	0	1	27	72
08:30		35	8	0	0	43	6	12		0	1	18					0		6		11	0	1	17	78
08:45		28	5	0	0	33	6	11		0	1	17					0		7		15	0	2	22	72
Grand Total		116	23	0	3	139	17	58		0	4	75					0	0	29		46	0	5	75	289
Approach %		83.5	16.5	0		-	22.7	77.3		0		-						-	38.7		61.3	0		-	
Totals %		40.1	8	0		48.1	5.9	20.1		0		26						0	10		15.9	0		26	
PHF		0.83	0.72	0		0.81	0.71	0.69		0		0.78						0	0.56		0.77	0		0.69	0.93
Cars		114	23	0		137	16	53		0		69						0	27		46	0		73	279
% Cars		98.3	100	0		98.6	94.1	91.4		0		92						0	93.1		100	0		97.3	96.5
Trucks		1	0	0		1	0	4		0		4						0	0		0	0		0	5
% Trucks		0.9	0	0		0.7	0	6.9		0		5.3						0	0		0	0		0	1.7
Buses		1	0	0		1	1	1		0		2						0	2		0	0		2	5
% Buses		0.9	0	0		0.7	5.9	1.7		0		2.7						0	6.9		0	0		2.7	1.7
Bicycles		0	0	0		0	0	0		0		0						0	0		0	0		0	0
% Bicycles		0	0	0		0	0	0		0		0						0	0		0	0		0	0
Peds					3	-					4	-					0	-					5	-	12
% Peds					25	-					33.3	-					0	-					41.7	-	

Peak Hour Diagram

Specified Period

One Hour Peak

From: To: 16:00:00 18:00:00 From: 16:45:00 To: 17:45:00

Intersection:

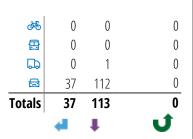
Queen Frederica Dr & Dundix Rd

 Site Code:
 2219300004

 Count Date:
 Jun 07, 2022

Weather conditions:

Clear


** Unsignalized Intersection **

Major Road: Queen Frederica Dr runs N/S

North Approach

	Out	In	Total
	149	170	319
	1	1	2
	0	0	0
<i>₫</i>	0	0	0
	150	171	321

Queen Frederica Dr

Dundix Rd

	Totals			盘	<i>₫</i>
7	0	0	0	0	0
4	22	22	0	0	0
7	30	30	0	0	0

Out

52

0

0

0

52

田

West Approach

75

0

0

0

75

In Total

127

0

0

0

127

Peds: 6

Peds: 5

4	1	u
38	149	0
38	148	0
0	1	0
0	0	0
0	0	0
	38 0 0	38 148 0 1 0 0

Queen Frederica Dr

South Approach

	Out	In	Total
	186	142	328
۵	1	1	2
	0	0	0
₹	0	0	0
	187	143	330

Comments

Peak Hour Summary

Intersection: Queen Frederica Dr & Dundix Rd

 Site Code:
 2219300004

 Count Date:
 Jun 07, 2022

 Period:
 16:00 - 18:00

Peak Hour Data (16:45 - 17:45)

		N Qu	North A leen Fr	pproac ederica	ch a Dr		South Approach Queen Frederica Dr							East A	pproacl	1			West Approach Dundix Rd					Total Vehicl	
Start Time	4	1	P	1	Peds	Total	4	1	•	4	Peds	Total	4	1	•	4	Peds	Total	4	1	•	4	Peds	Total	es
16:45		22	10	0	1	32	9	37		0	2	46					0		9		2	0	2	11	89
17:00		28	8	0	4	36	10	43		0	0	53					0		6		8	0	1	14	103
17:15		27	12	0	0	39	11	35		0	2	46					0		4		8	0	0	12	97
17:30		36	7	0	1	43	8	34		0	1	42					0		3		12	0	1	15	100
Grand Total		113	37	0	6	150	38	149		0	5	187					0	0	22		30	0	4	52	389
Approach %		75.3	24.7	0		-	20.3	79.7		0		-						-	42.3		57.7	0		-	
Totals %		29	9.5	0		38.6	9.8	38.3		0		48.1						0	5.7		7.7	0		13.4	
PHF		0.78	0.77	0		0.87	0.86	0.87		0		0.88						0	0.61		0.63	0		0.87	0.94
Cars		112	37	0		149	38	148		0		186						0	22		30	0		52	387
% Cars		99.1	100	0		99.3	100	99.3		0		99.5						0	100		100	0		100	99.5
Trucks		1	0	0		1	0	1		0		1						0	0		0	0		0	2
% Trucks		0.9	0	0		0.7	0	0.7		0		0.5						0	0		0	0		0	0.5
Buses		0	0	0		0	0	0		0		0						0	0		0	0		0	0
% Buses		0	0	0		0	0	0		0		0						0	0		0	0		0	0
Bicycles		0	0	0		0	0	0		0		0						0	0		0	0		0	0
% Bicycles		0	0	0		0	0	0		0		0						0	0		0	0		0	0
Peds					6	-					5	-					0	-					4	-	15
% Peds					40	-					33.3	-					0	-					26.7	-	

Traffic Count Summary

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005 Municipality: Mississauga

Count Date: Jun 07, 2022

Arena Rd - Traffic Summary

		North	Appr	oach T	otals								
	Inc	ludes Ca	rs, Truc	ks, Buses	, Bicycle	s	Inc	!S					
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	11	15	0	0	26	3	1	5	20	0	26	3	52
08:00 - 09:00	12	16	0	0	28	0	1	8	18	0	27	0	55
					В	REAK							
16:00 - 17:00	10	10	0	0	20	5	2	30	34	0	66	4	86
17:00 - 18:00	9	13	0	0	22	1	1	30	28	0	59	8	81
GRAND TOTAL	42	54	0	0	96	9	5	73	100	0	178	15	274

Traffic Count Summary

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005 Municipality: Mississauga

Count Date: Jun 07, 2022

Dundix Rd - Traffic Summary

		East	Appro	ach To	tals			West	Appro	oach To	otals		
	Inc	ludes Ca	rs, Truc	ks, Buses	, Bicycle	s	Inc	ludes Ca	rs, Truc	ks, Buses	, Bicycle	es.	
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	25	1	3	0	29	2	0	2	2	0	4	5	33
08:00 - 09:00	33	1	2	0	36	2	0	6	4	0	10	1	46
					В	REAK							
16:00 - 17:00	34	7	21	0	62	6	0	2	3	0	5	3	67
17:00 - 18:00	23	2	16	0	41	6	0	2	1	0	3	3	44
GRAND TOTAL	115	11	42	0	168	16	0	12	10	0	22	12	190

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Arena Rd

			Cars				T	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	2	1	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
07:30	4	7	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:45	5	3	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	2	7	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	2	4	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	5	2	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	3	3	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	23	31	0	0	54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005

Municipality: Mississauga

Count Date: Jun 07, 2022

North Approach - Arena Rd

			Cars				Ti	rucks				В	uses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	J.	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	2	2	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
16:15	2	3	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	3	2	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
16:45	3	3	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
17:00	2	4	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	3	3	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	2	2	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
17:45	2	3	0	0	5	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	19	22	0	0	41	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	6
GRAND TOTAL	42	53	0	0	95	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	9

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Arena Rd

			Cars				Ti	rucks				В	uses				Bi	cycles			Takal
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	1	3	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:15	1	1	4	0	6	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1
07:30	0	3	3	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	8	0	8	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1
08:00	0	2	5	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	2	4	0	6	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
08:30	1	2	4	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	2	3	0	5	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
SUBTOTAL	2	13	34	0	49	0	0	0	0	0	0	0	4	0	4	0	0	0	0	0	3

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005

Municipality: Mississauga

Count Date: Jun 07, 2022

South Approach - Arena Rd

			Cars				Ti	rucks				В	uses				Bi	icycles			Total
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	1	6	8	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	8	7	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16:30	1	7	9	0	17	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
16:45	0	9	9	0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:00	0	7	9	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:15	1	9	8	0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	6	6	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
17:45	0	8	5	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
SUBTOTAL	3	60	61	0	124	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	12
GRAND TOTAL	5	73	95	0	173	0	0	1	0	1	0	0	4	0	4	0	0	0	0	0	15

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005

Municipality: Mississauga

Count Date: Jun 07, 2022

East Approach - Dundix Rd

			Cars				T	rucks				В	Buses				Bi	cycles			Total
Start Time	4	1	•	1	Total	4	1	•	J	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:15	6	0	1	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	7	1	2	0	10	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
07:45	5	0	0	0	5	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
08:00	7	0	2	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	14	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	4	1	0	0	5	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	2
08:45	7	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	55	2	5	0	62	0	0	0	0	0	3	0	0	0	3	0	0	0	0	0	4

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005

Municipality: Mississauga

Count Date: Jun 07, 2022

East Approach - Dundix Rd

			Cars				Tı	rucks				В	uses				Bi	icycles			Total
Start Time	4	1	•	J.	Total	4	1	•	J.	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	8	3	4	0	15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	3
16:15	10	2	5	0	17	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
16:30	8	1	6	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16:45	6	1	6	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:00	5	0	4	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
17:15	7	1	5	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
17:30	6	0	4	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	5	1	3	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
SUBTOTAL	55	9	37	0	101	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	12
GRAND TOTAL	110	11	42	0	163	1	0	0	0	1	4	0	0	0	4	0	0	0	0	0	16

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Private Access

			Cars				T	rucks				В	uses				Bi	cycles			Takal
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
07:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:15	0	3	3	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	1	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	8	6	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6

Intersection: Dundix Rd & Arena Rd - Private Access

Site Code: 2219300005

Municipality: Mississauga

Count Date: Jun 07, 2022

West Approach - Private Access

			Cars				Tı	rucks				В	uses				Bi	icycles			Takal
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16:30	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
17:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	4	4	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
GRAND TOTAL	0	12	10	0	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12

Peak Hour Diagram

Specified Period

One Hour Peak

From: To: 07:00:00 09:00:00

From: To: 07:30:00 08:30:00

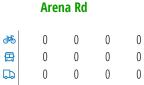
Intersection:

Dundix Rd & Arena Rd - Private Access

 Site Code:
 2219300005

 Count Date:
 Jun 07, 2022

Weather conditions:


Clear

** Unsignalized Intersection **

Major Road: Arena Rd runs N/S

North Approach

	Out	In	Total
	34	11	45
	0	0	0
	0	0	0
<i>₹</i>	0	0	0
	34	11	45

 □
 0
 21
 13
 0

 Totals
 0
 21
 13
 0

East Approach

	Out	ln	Total
	38	38	76
	0	0	0
	2	2	4
<i>₹</i>	0	0	0
	40	40	80

Private Access

	Totals				<i>₫</i>	
7	0	0	0	0	0	
4	0	0	0	0	0	
\rightarrow	5	5	0	0	0	
4	5	5	0	0	0	

Dundix Rd

	Totals			盘	₫
C	0	0	0	0	0
£	4	4	0	0	0
-	1	1	0	0	0
F	35	33	0	2	0

West Approach

	Out	In	Total
	10	1	11
	0	0	0
	0	0	0
<i>₫</i>	0	0	0
	10	1	11

	4	1		J
Totals	0	7	22	0
	0	7	20	0
₽	0	0	0	0
毌	0	0	2	0
<i>ॐ</i>	0	0	0	0

Peds: 1

Arena Rd

South Approach

	Out	In	Total
	27	59	86
	0	0	0
	2	2	4
<i>₫</i>	0	0	0
	29	61	90

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Dundix Rd & Arena Rd - Private Access

 Site Code:
 2219300005

 Count Date:
 Jun 07, 2022

 Period:
 07:00 - 09:00

Peak Hour Data (07:30 - 08:30)

		ľ	North <i>A</i> Are	Approac na Rd	ch			S	outh A Arer	ipproac na Rd	h				East A _l Dunc	pproacl dix Rd	1			1	West A Private	pproacl Access	h ;		Total Vehicl
Start Time	4	1	•	J	Peds	Total	4	1	P	J	Peds	Total	4	1	P	J	Peds	Total	4	1	•	J	Peds	Total	es
07:30	4	7	0	0	1	11	0	3	3	0	0	6	8	1	2	0	0	11	0	1	0	0	0	1	29
07:45	5	3	0	0	0	8	0	0	9	0	1	9	6	0	0	0	1	6	0	0	2	0	1	2	25
08:00	2	7	0	0	0	9	0	2	5	0	0	7	7	0	2	0	0	9	0	1	0	0	1	1	26
08:15	2	4	0	0	0	6	0	2	5	0	0	7	14	0	0	0	0	14	0	3	3	0	0	6	33
Grand Total	13	21	0	0	1	34	0	7	22	0	1	29	35	1	4	0	1	40	0	5	5	0	2	10	113
Approach %	38.2	61.8	0	0		-	0	24.1	75.9	0		-	87.5	2.5	10	0		-	0	50	50	0		-	
Totals %	11.5	18.6	0	0		30.1	0	6.2	19.5	0		25.7	31	0.9	3.5	0		35.4	0	4.4	4.4	0		8.8	
PHF	0.65	0.75	0	0		0.77	0	0.58	0.61	0		0.81	0.63	0.25	0.5	0		0.71	0	0.42	0.42	0		0.42	0.86
Cars	13	21	0	0		34	0	7	20	0		27	33	1	4	0		38	0	5	5	0		10	109
% Cars	100	100	0	0		100	0	100	90.9	0		93.1	94.3	100	100	0		95	0	100	100	0		100	96.5
Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Buses	0	0	0	0		0	0	0	2	0		2	2	0	0	0		2	0	0	0	0		0	4
% Buses	0	0	0	0		0	0	0	9.1	0		6.9	5.7	0	0	0		5	0	0	0	0		0	3.5
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					1	-					1	-					1	-					2	-	5
% Peds					20	-					20	-					20	-					40	-	

Peak Hour Diagram

Specified Period

One Hour Peak

From: 16:00:00 To: 18:00:00 From: 16:00:00 To: 17:00:00

Intersection: Dundix Rd & Arena Rd - Private Access

 Site Code:
 2219300005

 Count Date:
 Jun 07, 2022

Weather conditions:

Clear

** Unsignalized Intersection **

Major Road: Arena Rd runs N/S

North Approach

	Out	In	Total
	20	51	71
	0	0	0
	0	0	0
<i>₹</i>	0	0	0
	20	51	71

Peds: 5

East Approach

	Out	ln	Total
	60	45	105
	1	1	2
	1	0	1
ॐ	0	0	0
	62	46	108

Private Access

	Totals				₫ %
7	0	0	0	0	0
4	0	0	0	0	0
-	2	2	0	0	0
4	3	3	0	0	0

Dundix Rd

_,	Totals				₫
C	0	0	0	0	0
£	21	21	0	0	0
-	7	7	0	0	0
F	34	32	1	1	0

West Approach

	Out	In	Total
	5	9	14
	0	0	0
	0	0	0
ॐ	0	0	0
	5	9	14

	4	1		J.
Totals	2	30	34	0
⊟	2	30	33	0
₽	0	0	1	0
	0	0	0	0
<i>₫</i>	0	0	0	0

Arena Rd

Peds: 4

South Approach

	Out	In	Total
	65	45	110
	1	1	2
	0	1	1
<i>₫</i>	0	0	0
	66	47	113

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Dundix Rd & Arena Rd - Private Access

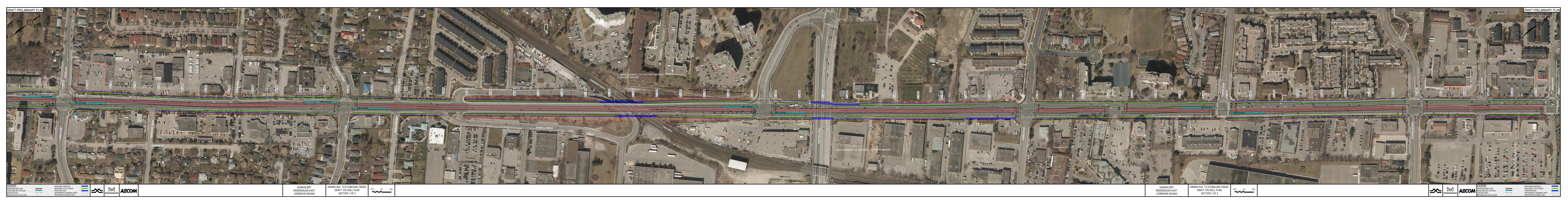
 Site Code:
 2219300005

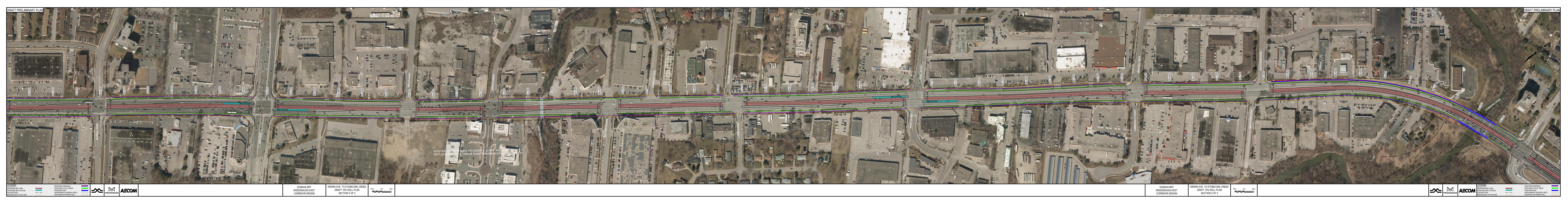
 Count Date:
 Jun 07, 2022

 Period:
 16:00 - 18:00

Peak Hour Data (16:00 - 17:00)

		N	lorth <i>A</i> Arei	Approac na Rd	:h			S	outh <i>A</i> Arei	ipproac na Rd	h				East Ap Dunc	pproacl dix Rd	1				West A Private				Total Vehicl
Start Time	4	1	•	4	Peds	Total	4	1	•	4	Peds	Total	4	1	•	4	Peds	Total	4	1	•	1	Peds	Total	es
16:00	2	2	0	0	2	4	1	6	8	0	0	15	9	3	4	0	3	16	0	0	2	0	0	2	37
16:15	2	3	0	0	0	5	0	8	7	0	1	15	11	2	5	0	0	18	0	1	0	0	1	1	39
16:30	3	2	0	0	2	5	1	7	10	0	1	18	8	1	6	0	1	15	0	0	1	0	0	1	39
16:45	3	3	0	0	1	6	0	9	9	0	2	18	6	1	6	0	2	13	0	1	0	0	2	1	38
Grand Total	10	10	0	0	5	20	2	30	34	0	4	66	34	7	21	0	6	62	0	2	3	0	3	5	153
Approach %	50	50	0	0		-	3	45.5	51.5	0		-	54.8	11.3	33.9	0		-	0	40	60	0		-	
Totals %	6.5	6.5	0	0		13.1	1.3	19.6	22.2	0		43.1	22.2	4.6	13.7	0		40.5	0	1.3	2	0		3.3	
PHF	0.83	0.83	0	0		0.83	0.5	0.83	0.85	0		0.92	0.77	0.58	0.88	0		0.86	0	0.5	0.38	0		0.63	0.98
Cars	10	10	0	0		20	2	30	33	0		65	32	7	21	0		60	0	2	3	0		5	150
% Cars	100	100	0	0		100	100	100	97.1	0		98.5	94.1	100	100	0		96.8	0	100	100	0		100	98
Trucks	0	0	0	0		0	0	0	1	0		1	1	0	0	0		1	0	0	0	0		0	2
% Trucks	0	0	0	0		0	0	0	2.9	0		1.5	2.9	0	0	0		1.6	0	0	0	0		0	1.3
Buses	0	0	0	0		0	0	0	0	0		0	1	0	0	0		1	0	0	0	0		0	1
% Buses	0	0	0	0		0	0	0	0	0		0	2.9	0	0	0		1.6	0	0	0	0		0	0.7
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					5	-					4	-					6	-					3	-	18
% Peds					27.8	-					22.2	-					33.3	-					16.7	-	


		REGIONAL MUN Traffic Signa	_	_	PEEL				
Database l	Date	July 25, 2024			Pre	pared Date	l Date July 29, 2024		
Database l	Rev	iNET			Cor	npleted By		N.T	
Timing Ca	rd / Field rev	-			C	Checked By N.R.L			
Location Dixie Road and Dundas Street									
Phase #	Street Name - Direction I Minimum (s) I I		All Red (s)		TIME PERIOD (s) (Green+Amber+All Red)				
"		William (3)	WALK	FDWALK	(3)	(3)	SPLITS	OFF SPLITS	PM SPLITS
1	Dixie Road - NBLT Prot. Perm.	7	0	0	3	0	16	19	24
2	Dixie Road - Southbound	10	10	26	4	2.5	64	54	54
3	Dundas Street - EBLT Prot. Perm.	7	0	0	3	0	21	24	18
4	Dundas Street - Westbound	10	10	31	4	2.8	59	63	64
5	Dixie Road - SBLT PROT.	7	0	0	3	2	29	27	27
6	Dixie Road - Northbound	10	10	26	4	2.5	51	46	51
7	Dundas Street - WBLT Prot. Perm.	7	0	0	3	0	13	18	23
8	Dundas Street - Eastbound	10	10	31	4	2.8	67	69	59
	System Control			TIME	(M-F)	PEAK	CYCLE L	ENGTH (s)	OFFSET (s)
	Yes			6:00	- 9:30	AM	1	60	3
	Semi-Actuated Mode				15:00 - 00:00	OFF	160		0
	No			15:00	- 19:30	PM	1	60	0


Intelig	ght		1306			DUNDAS STREET E	@ Queen Fredrica Driv	e/Blundell Road	
Phase -	Units	Phase 1	Phase 2 -EB	Phase 3	Phase 4 - NB	Phase 5	Phase 6 - WB	Phase 7	Phase 8 - SB
Parameter 1-16 Phase Description*	String	i iluse i	Thuse 2 -Lb	Thuse o	Thuse 4 - ND	Thuse 5	Thuse 0 - WD	i ilude i	Tillage 0 - OD
Walk	Sec	0	10	0	10	0	10	0	10
Ped Clear	Sec	0	17	0	27	0	17	0	27
Min Green	Sec	0	8	0	8	0	8	0	8
Passage	Sec	0.0	3.0	0.0	3.0	0.0	0.0	0.0	3.0
Maximum 1	Sec	0	39	0	25	0	39	0	25
Maximum 2	Sec	0	39	0	25	0	39	0	25
Yellow Change	Sec	3.0	4.0	3.0	3.0	3.0	4.0	3.0	3.0
Red Clearance Red Revert	Sec Sec	0.0	0.0	0.0	4.0 0.0	0.0	0.0	0.0	4.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before Reduction	Sec	0	0	0	0	0	0	0	0
Cars Before Reduction	Veh	0	0	0	0	0	0	0	0
Time To Reduce	Sec	0	0	0	0	0	0	0	0
Reduce By	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[P2] Start Up	Enum	other	redClear	other	phaseNotOn	other	redClear	other	phaseNotOn
[P2] Options	Bit		0:Enabled Phase 3:Non-Actuated 1 7:Max Vehicle Recall 8:Ped. Recall 10:Dual Entry Phase 13:Actuated Rest In Walk		0:Enabled Phase 5:Non Lock Detector Memory 10:Dual Entry Phase		0:Enabled Phase 3:Non-Actuated 1 7:Max Vehicle Recall 8:Ped. Recall 10:Dual Entry Phase 13:Actuated Rest In Walk		0:Enabled Phase 5:Non Lock Detector Memory 10:Dual Entry Phase
[P2] Ring	Ring	0	1	0	1	0	2	0	2
[P2] Concurrency	Phase (,)	0	(6)	0	(8)	0	(2)	0	(4)
Coordination - Pattern 1-32	Units	1	2	3	4	5	6	7	8
Cycle Time	Sec	160	160	160	0	0	0	0	0
Offset	Sec	37	96	101	0	0	0	0	0
Split	Split	1	2	3	4	5	6	7	8
Sequence	Sequence	1	1	1	1	1	1	1	1
Phase Parameter Table* Coord Phase Reference	Number Enum	1	1	1	1	1	1	1	1
Point*		green	green	green	green	green	green	green	green
Coord Mode*	Enum	singlePermissive	singlePermissive	singlePermissive	singlePermissive	singlePermissive	singlePermissive	singlePermissive	singlePermissive
Coordination - Splits	Units	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7	Phase 8
Split 1 - Mode	Enum	none	none	none	none	none	none	none	none
Split 1 - Time	Sec	0	107	0	53	0	107	0	53
Split 1 - Coord	Enum	False	True	False	False	False	True	False	False
Split 1 - Coord Phase Options*	Bit		0: Reference Point				0: Reference Point		
Split 2 - Mode	Enum	none	none	none	none	none	none	none	none
Split 2 - Time	Sec	0	99	0	61	0	99	0	61
Split 2 - Coord Split 2 - Coord Phase	Enum	False	True	False	False	False	True	False	False
Options*	Bit		0: Reference Point				0: Reference Point		
Split 3 - Mode	Enum	none	none	none	none	none	none	none	none
Split 3 - Time	Sec	0	107	0	53	0	107	0	53
Split 3 - Coord	Enum	False	True	False	False	False	True	False	False
Split 3 - Coord Phase Options*	Bit		0: Reference Point				0: Reference Point		
Time Base - Schedule 1-16	Units	1	2	3	4	5	6	7	8
Month	Bit	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	J	-F	M	M	J
Day of Week	Bit	-MTWTF-	S	S	W	-M	F-	-M	-M
Day of Month	Bit	12345678901234567 89012345678901	12345678901234567 89012345678901	12345678901234567 89012345678901	1	99	9 -	0	1
Day Plan	Number	1	3	2	3	3	3	3	3
Time Base - Schedule 1-16	Units	9	10	11	12	13	14	15	16
Month	Bit	A	S		D	D	D	S	
Day of Week	Bit	-M	-M	-M	W	T	T	-M	SMTWTFS
		5	2	4	5	6	4		
Day of Month	Bit			-	=	-	-	0- 3	0
Day of Month Day Plan	Bit Number	3	3	3	3	3	3	3	
Day Plan Time Base -	Number							·	
Day Plan Time Base - Day Plans	Number Units	Evt 1	Evt 2	Evt 3	Evt 4	Evt 5	Evt 6	3	
Day Plan Time Base - Day Plans Plan 1 Hour	Number Units Hour		Evt 2	Evt 3	Evt 4 15	Evt 5	Evt 6	3	
Day Plan Time Base - Day Plans	Number Units	Evt 1	Evt 2	Evt 3	Evt 4	Evt 5	Evt 6	3	
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute	Number Units Hour Min	Evt 1 0 0	Evt 2 6 0	Evt 3 9 30	Evt 4 15	Evt 5 19 30	Evt 6 3 0	3	
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action	Number Units Hour Min Number	Evt 1 0 0 8	Evt 2 6 0 1	Evt 3 9 30 2	Evt 4 15 0 3	Evt 5 19 30 2	Evt 6 3 0 7	3	
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action Plan 2 Hour	Number Units Hour Min Number Hour	Evt 1 0 0 8 0	Evt 2 6 0 1 7	Evt 3 9 30 2 3	Evt 4 15 0 3	Evt 5 19 30 2 0	Evt 6 3 0 7	3	
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action Plan 2 Hour Plan 2 Minute	Number Units Hour Min Number Hour Min	Evt 1 0 0 8 0 0	Evt 2 6 0 1 7	Evt 3 9 30 2 3 0	Evt 4 15 0 3 0 0	Evt 5 19 30 2 0 0	Evt 6 3 0 7 0	3	
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action Plan 2 Hour Plan 2 Minute Plan 3 Action Plan 3 Minute	Number Units Hour Min Number Hour Min Number	Evt 1 0 0 8 0 0 8	Evt 2 6 0 1 7 0 2 8 0	Evt 3 9 30 2 3 0 7	Evt 4 15 0 3 0 0 3 0 0 0 0 0 0 0 0	Evt 5 19 30 2 0 0 0 0	Evt 6 3 0 7 0 0 0	3	
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action Plan 2 Hour Plan 2 Minute Plan 3 Action Plan 3 Minute Plan 3 Action	Number Units Hour Min Number Hour Min Number Hour Hour	Evt 1 0 0 8 0 0 8 0 0 0 0	Evt 2 6 0 1 7 0 2 8	Evt 3 9 30 2 3 0 7 23	Evt 4 15 0 3 0 0 3 3 3 3 4 5 6 6 7 8 7 8 8 8 8 8 8 8 8 8 8	Evt 5 19 30 2 0 0 0	Evt 6 3 0 7 0 0 0 0	3	
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action Plan 2 Hour Plan 2 Minute Plan 3 Action Plan 3 Minute	Number Units Hour Min Number Hour Min Number Hour Min Number Hour Min	Evt 1 0 0 8 0 0 8 0 0 0 0 8 0 0 0	Evt 2 6 0 1 7 0 2 8 0	Evt 3 9 30 2 3 0 7 23 0	Evt 4 15 0 3 0 0 3 0 0 0 0 0 0 0 0	Evt 5 19 30 2 0 0 0 0	Evt 6 3 0 7 0 0 0 0 0	7	8
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action Plan 2 Hour Plan 2 Minute Plan 3 Hour Plan 3 Minute Plan 3 Action Time Base -	Number Units Hour Min Number Hour Min Number Hour Min Number Hour Min Number	Evt 1 0 0 8 0 8 0 0 0 8 0 0 8 0 0 8	Evt 2 6 0 1 7 0 2 8 0 2	Evt 3 9 30 2 3 0 7 23 0 8	Evt 4 15 0 3 0 0 0 0 7	Evt 5 19 30 2 0 0 0 0 0 0	Evt 6 3 0 7 0 0 0 0 0 0 0 0		8 Free
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action Plan 2 Hour Plan 2 Minute Plan 2 Action Plan 3 Minute Plan 3 Action Time Base - Action 1-32	Number Units Hour Min Number Hour Min Number Hour Min Number Hour Min Number Units	Evt 1 0 0 8 0 0 8 0 0 8 0 0 8 1	Evt 2 6 0 1 7 0 2 8 0 2 2	9 30 2 3 0 7 23 0 8 8 3	Evt 4 15 0 3 0 0 0 7 4	Evt 5 19 30 2 0 0 0 0 0 5	Evt 6 3 0 7 0 0 0 0 0 0 0 0 6	7	
Day Plan Time Base - Day Plans Plan 1 Hour Plan 1 Minute Plan 1 Action Plan 2 Hour Plan 2 Minute Plan 2 Action Plan 3 Hour Plan 3 Minute Plan 3 Action Time Base - Action 1-32 Pattern	Number Units Hour Min Number	Evt 1 0 0 8 0 0 8 0 0 8 0 0 8 1	Evt 2 6 0 1 7 0 2 8 0 2 2	9 30 2 3 0 7 23 0 8 8 3	Evt 4 15 0 3 0 0 0 7 4	Evt 5 19 30 2 0 0 0 0 0 5	Evt 6 3 0 7 0 0 0 0 0 0 0 0 6	7	

Page-Content	Intelig			1305			DUNDAS STREET E	@ Arena Road/Private	Access	
May 1988	e -	nits Phase			Phase 3	Phase 4 - N/S				Phase 8
NAME SAME SAME SAME SAME SAME SAME SAME S				1114002 2711	7 11400 0	111100 1 1110	i nace c	7 11400 0	7 Hugo 7	111111111111111111111111111111111111111
Medicene Section 1962 1979 1989 1989 1999 1999 1999 1999 1999				10	0	10	0	0	0	0
Momena Sec										
NameSame50										
Momman	age						0.0		0.0	0.0
New Colors	num 1	ec 10			0	25	0	0	0	0
MacNews 1	num 2	ec 10	;	36	0	25	0	0	0	0
Medicalmental Sec. 80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	w Change	ec 3.0		4.0	3.0	3.0	3.0	4.0	3.0	4.0
Marke Principation Sect	Clearance	ec 0.0	:	2.5	0.0	4.5	0.0	0.0	0.0	0.0
Maximum Sect	Revert	ec 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time Defice Reduction Sect. O. O. O. O. O. O. O.	d Initial	ec 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Came Basine Amanestem Valid	nitial	ec 0		0	0	0	0	0	0	0
Time To Rebease Sec.	Before Reduction	ec 0		0	0	0	0	0	0	0
	Before Reduction	eh 0		0	0	0	0	0	0	0
Managemon Mana	To Reduce	ec 0		0	0	0	0	0	0	0
	ce By	ec 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pyropenic Marce Now Sec Co	ap	ec 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
PRISENSING PreseNo P	mic Max Limit	ec 0			0	0	0	0	0	0
PR Sett 15										0.0
	•									other
PAR PAR PAR PAR 1		t 0:Enab 5:Non	abled Phase n Lock Detector lory	3:Non-Actuated 1 7:Max Vehicle Recall 8:Ped. Recall 13:Actuated Rest In		0:Enabled Phase 5:Non Lock Detector				
	Ring	ng 1			0	1	0	0	0	0
Pattern 1-32	Concurrency	nase (,) ()		0	0	0	0	0	0	0
		nite 1		2	3	4	5	6	7	8
Spite S										
Parase Parameter Table* Number 1 1 1 1 1 1 1 1 1										
		num green	n <u>i</u>	green	green	green	green	green	green	green
		num singleF	ePermissive	singlePermissive	singlePermissive	singlePermissive	singlePermissive	singlePermissive	singlePermissive	singlePermissive
		nits Phase	se 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7	Phase 8
										none
Spill 1 - Coord Enum False True False Rate Palse none none none none none none none none none palse False F										
										False
					i disc	i disc	i disc	i disc	i disc	i alsc
Spilt 2 - Time	ns*									
Palse Pals										none
Spilt 2 - Coord Phase Enum none none		ec 16				59	0	0		
Digital Septite					False	False	False	False	False	False
Spirit 3 - Mode		t	•	0: Reference Point						
Spilt 3 - Time		num none	: 1	none	none	none	none	none	none	none
False Fals										
Spilt 3 - Coord Phase Sit Sit										False
Distribute Dis										
Schedule 1-16	ns*		· ·							
Month Bit JFMAMJJASOND JFMAMJASOND JF		nits 1	:	2	3	4	5	6	7	8
Day of Week Bit -MTWTF- S S S -W -M -F- -M			AMJJASOND .	JFMAMJJASOND	JFMAMJJASOND	J	-F	M		J
Day of Month Bit 123456789012345678 123456789012345678 123456789012345678 1						W				-M
Day Plan Number 9012345678901 9012345678901 2 3 3 3 3 3 3 3 3 3							9	9	0	1
Time Base -		90123	345678901	9012345678901	9012345678901	=	- 3	- 3	- 3	- q
Schedule 1-16		amber 1	;	J	-	J	0	3	J	J
Month Bit		nits 9		10	11	12	13	14	15	16
Day of Month Bit		tA	-A	S	0	D	D	D	S	
Plan	of Week	t -M		-M	-M	W	T	T	-M	SMTWTFS
Day Plan Number 3 3 3 3 0 Time Base- Day Plans Units Evt 1 Evt 2 Evt 3 Evt 4 Evt 5 Evt 6 Evt 6 Evt 5 Evt 6 Evt 6 Evt 9 Evt	of Month	t5		-2	4	5	6	4		
Cline Base - Day Plans Units Evt 1 Evt 2 Evt 3 Evt 4 Evt 5 Evt 6 Plan 1 Hour Hour 0 6 9 15 19 3 Plan 1 Minute Min 0 0 30 0 0 Plan 1 Action Number 8 1 2 3 2 7 Plan 2 Hour Hour 0 0 0 0 0 Plan 2 Minute Min 0 0 0 0 0	Plan	umber 3		3	3	3	3	3		0
Day Plans Units Evt 1 Evt 2 Evt 3 Evt 4 Evt 5 Evt 6 Plan 1 Hour Hour 0 6 9 15 19 3 Plan 1 Minute Min 0 0 30 0 0 Plan 1 Action Number 8 1 2 3 2 7 Plan 2 Hour Hour 0 7 3 0 0 0 Plan 2 Minute Min 0 0 0 0 0										
Plan 1 Minute Min 0 0 30 0 30 0 Plan 1 Action Number 8 1 2 3 2 7 Plan 2 Hour Hour 0 7 3 0 0 0 0 Plan 2 Minute Min 0 0 0 0 0 0		nits Evt 1	1	Evt 2	Evt 3	Evt 4	Evt 5	Evt 6		
Plan 1 Action Number 8 1 2 3 2 7 Plan 2 Hour Hour 0 7 3 0 0 0 0 Plan 2 Minute Min 0 0 0 0 0 0	1 Hour	our 0		6	9	15	19	3		
Plan 2 Hour Hour 0 7 3 0 0 0 0 Plan 2 Hinute Min 0 0 0 0 0 0 0	1 Minute	in 0	(0	30	0	30	0		
Plan 2 Minute Min 0 0 0 0 0 0	1 Action	umber 8		1	2	3	2	7		
		our 0	•	7	3	0	0	0		
Plan 2 Action Number 8 2 7 0 0 0	2 Hour			0	0	0	0	0		
			:	2	7	0	0	0		
Plan 3 Hour Hour 0 8 23 3 0 0	2 Minute	umber 8				3	0	0		
Plan 3 Minute Min 0 0 0 0 0 0	2 Minute 2 Action									
Plan 3 Action Number 8 2 8 7 0 0	2 Minute 2 Action 3 Hour	our 0								
Tima Basa .	2 Minute 2 Action 3 Hour 3 Minute	our 0			8	7	0			
Time Base - Units 1 2 3 4 5 6 7 8 Action 1-32	2 Minute 2 Action 3 Hour 3 Minute 3 Action	our 0 in 0 umber 8	:	2						
Pattern Enum Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Free Free	2 Minute 2 Action 3 Hour 3 Minute 3 Action Base -	our 0 in 0 umber 8	:	2					7	8
Aux. Functions Bit	2 Minute 2 Action 3 Hour 3 Minute 3 Action Base - n 1-32	our 0 in 0 umber 8 1	:	2 2	3	4	5	6		8 Free
Spec. Functions Bit	2 Minute 2 Action 3 Hour 3 Minute 3 Action Base - n 1-32	our 0 in 0 umber 8 nits 1 num Pattern	:	2 2	3	4	5	6		

Appendix C

Dundas Bus Rapid Transit Preliminary Detailed Design

Appendix D

Background Development Trip Generation Figures and E-mail Correspondence

Nasteha Abdullahi

From: Tyler Xuereb <Tyler.Xuereb@mississauga.ca>

Sent:July 25, 2024 9:06 AMTo:Nasteha AbdullahiCc:Tyrone Dollano

Subject: RE: 2022-050 1225 Dundas St Mississauga Data Request

Good Morning Nasteha,

Below are the updated recommended growth rates to be used along Dundas Street, these rates are compounded annually from existing to 2026, 2026 to 2031 and 2031 to 2035.

Dundas Street

	Compo Annual from Ex 20	Growth		
	EB WB			
AM Peak	0.5%	1.0%		
PM Peak	0.5%	0.0%		

	Compounde Annual Grow from 2026 to 2		
	EB WB		
AM Peak	0.0%	0.0%	
PM Peak	0.0%	0.0%	

	Compounded Annual Growth from 2031 to 2035			
AM Peak	0.0%	1.0%		
PM Peak	0.5%	0.0%		

Regards,

From: <u>Tyler Xuereb</u>
To: <u>Nasteha Abdullahi</u>

Cc: <u>Michelle Chen; Mark Crockford</u>

Subject: RE: 2022-050 1225 Dundas St Mississauga Data Request

Date: Thursday, June 2, 2022 1:56:28 PM

Attachments: image001.png

image002.png

Hi Nasteha,

Below are the recommended growth rates to be used along Dundas Street for your study.

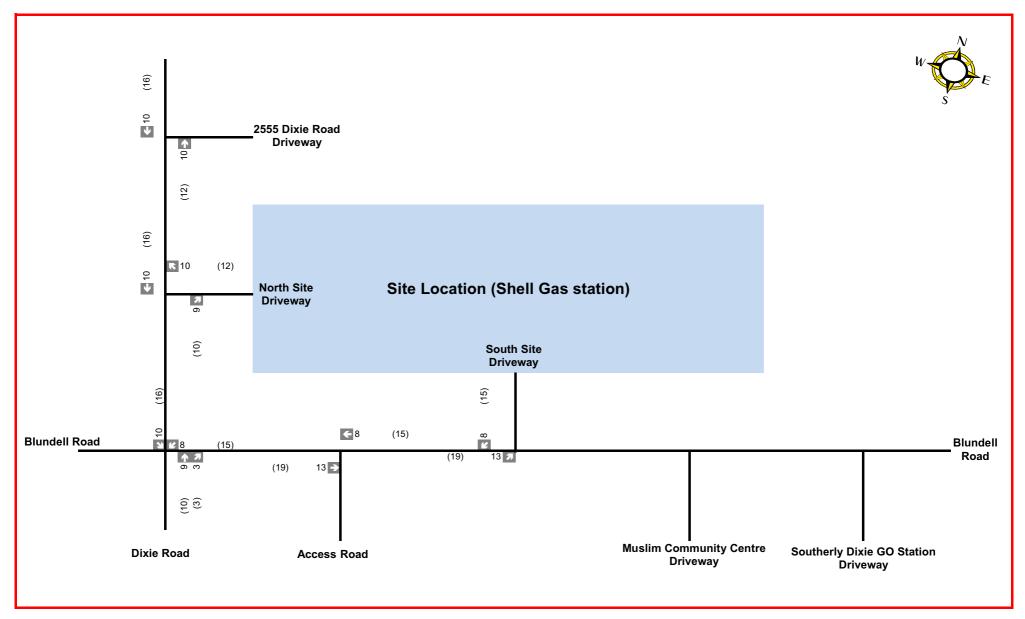
	Compounded				
	Annual Growth				
	from Existing to				
	2026				
	EB WB				
AM Peak	0.5%	1.0%			
PM Peak	0.5%	0.5%			

	Compounded				
	Annual Growth				
	from 2026 to				
	2027				
	EB	WB			
AM Peak	0.0%	0.0%			
PM Peak	0.0%	0.0%			

Rates from 2026 to 2027 show a 0.0% growth due to the lane reductions along Dundas Street as a result of BRT implementation.

Regards,

Tyler Xuereb


Transportation Planning Analyst T 905-615-3200 ext.4783
<u>Tyler.xuereb@mississauga.ca</u>

<u>City of Mississauga</u> | Transportation and Works Department, Infrastructure Planning and Engineering Services Division

Please consider the environment before printing.

From: Nasteha Abdullahi <nasteha.abdullahi@cghtransportation.com>

Sent: Thursday, June 2, 2022 10:48 AM

Legend

A.M. Peak Hour Traffic Volumes

(##)

P.M. Peak Hour Traffic Volumes Figure 4-2
Net Site-Generated
Traffic Volumes

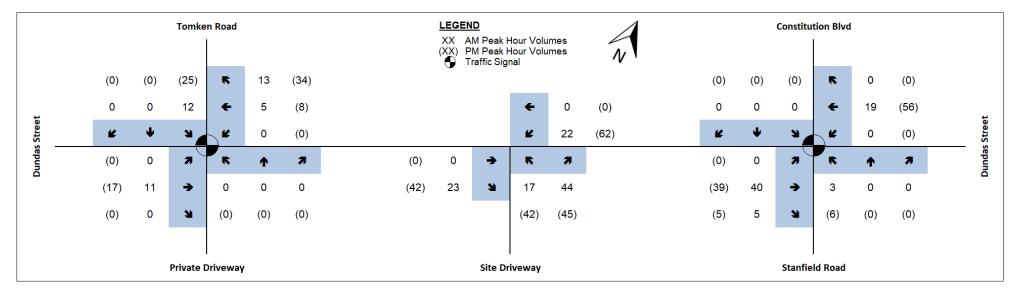


Figure 11 2026 Site Trip Volumes

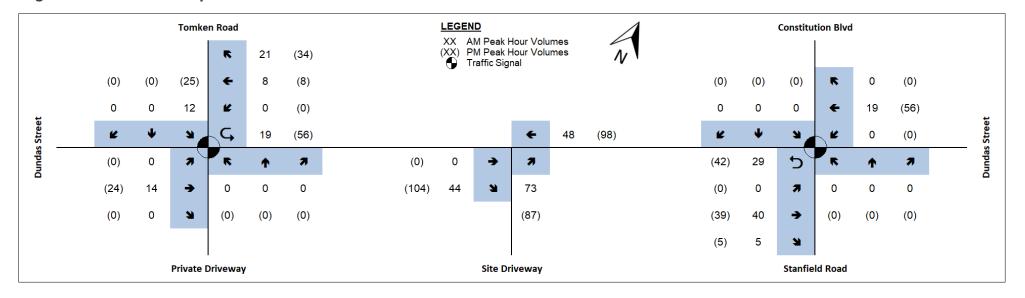


Figure 12 2031 Site Trip Volumes

Appendix E

Mode Shares and E-mail Correspondence

From: Michelle Chen
To: Norbert Orzel

Cc: Mark Crockford; Kate Vassilyev

Subject: RE: Mode Share Targets in the City of Mississauga

Date: Wednesday, June 8, 2022 3:45:00 PM

Attachments: image001.png

image004.png

Hi Norbert.

Based on the TOR comments from the City, the Dundas BRT study completion is anticipated to be completed this year (2022) with the design. It is anticipated that the construction commencement will be in 2024.

Also, the Dundas Bus Rapid Transit Mississauga East Project Live Meeting – January 27, 2022, 1:15:15 mentioned that if successfully getting the funding, the construction will occur between 2024 and 2027.

https://www.metrolinxengage.com/en/content/dundas-bus-rapid-transit-mississauga-east-project-live-meeting-%E2%80%93-january-27-2022

Therefore, we assumed that it will be completed in 2027.

After discussing with our client, the full buildout year 2028 was more in line with their schedule. Therefore, the horizon year would be the base year 2022, followed by a full buildout future horizon of 2028, and a 5-years beyond full buildout future horizon of 2028.

The applied mode shares provided in the previous email will be used for 2028 (full buildout year).

Regards,

Michelle

From: Norbert Orzel < Norbert.Orzel@mississauga.ca>

Sent: Wednesday, June 8, 2022 11:51 AM

To: Michelle Chen <michelle.chen@cghtransportation.com>

Cc: Mark Crockford <mark.crockford@cghtransportation.com>; Kate Vassilyev

<Kate.Vassilyev@mississauga.ca>

Subject: RE: Mode Share Targets in the City of Mississauga

Hi Michelle,

I'm okay with your suggested mode shares. One additional point I wanted to make is in regards to the Dundas BRT. My understanding is that the BRT would not be built by 2027 and as such I'm just wondering where did you get assumption that it would be built by 2027?

Thanks, Norbert

From: Michelle Chen <michelle.chen@cghtransportation.com>

Sent: Wednesday, June 8, 2022 11:12 AM

To: Norbert Orzel < Norbert. Orzel@mississauga.ca>

Cc: Mark Crockford < <u>mark.crockford@cghtransportation.com</u>>; Kate Vassilyev

<Kate.Vassilyev@mississauga.ca>

Subject: RE: Mode Share Targets in the City of Mississauga

Hi Norbert,

Thanks for your input and suggestions. We've looked at the existing (2016) TTS data. Please see the table below.

Travel Mode 2016 Mode Shares (TTS)

Auto Driver 63%

Auto Passenger 16%

Transit 14%

Cycling 0%

Walking 7%

Total 100%

Table 5: 2016 TTS Mode Shares

It is noted that the 2016 TTS Transit share for the area in question has already reached the 2027 mode share targets that we calculated for the whole Region. (44% of sustainable (non-auto driver) mode share, consisting of approximately 17% of carpool, 14% of transit, 9% of active transportation, and 4% of others)

From the mode share targets shown in the Peel Region's Sustainable Transportation Strategy Development of Mode Share Targets (2018)), transit will increase by approximately 6% and cycling will increase approximately 2% from 2011 to 2041.

Because the development is located on Dundas Street, and the future BRT will be completed by 2027, it is expected that the cycling and transit will increase more than the % increase for region.

Mode Share in AM Peak Period	Baseline 2011	2041 'Vision'
Driving	62.6%	49.7%
Walking	6.8%	9.1%
Cycling	0.3%	2.0%
Transit	10.8%	17.0%
Carpool	15.2%	17.9%
Other	4.3%	4.3%
Sustainable Modes	37.4%	50.3%

We are thinking about shifting 6% from auto driver to transit and 2% from auto driver to cycling and using the mode share shown below. Please confirm if you agree with the applied mode shares.

Table 6: Applied Mode Shares

Travel Mode	Applied Mode Shares		
Auto Driver	55%		
Auto Passenger	16%		
Transit	20%		
Cycling	2%		
Walking	7%		
Total	100%		

Regards,

Michelle Chen, EIT **CGH Transportation Inc.** P:343-777-2426

E: michelle.chen@CGHTransportation.com

From: Norbert Orzel < <u>Norbert.Orzel@mississauga.ca</u>>

Sent: Tuesday, June 7, 2022 2:44 PM

To: Michelle Chen < michelle.chen@cghtransportation.com >

Cc: Mark Crockford < <u>mark.crockford@cghtransportation.com</u>>; Kate Vassilyev

< Kate. Vassilyev@mississauga.ca>

Subject: RE: Mode Share Targets in the City of Mississauga

Hi Michelle,

I have reviewed the data you provided and while I don't have a concerns with the modal split values you are proposing to use I was wondering if you have reviewed existing (2016) Transportation Tomorrow Survey (TTS) data to look at existing travel behaviours in the area? The Regional values represent targets for the Region as a whole which may not be reflective of the area where the development is located, specifically the proposed development is located along Dundas St. which may experience higher levels of transit usage as compared to Region wide target values. I would suggest you review the existing TTS data to determine if the Regional target values are appropriate for this area. Using the TTS data you may also be able to decipher different values between commercial/ residential trips and also different values for different time periods of the day.

Thanks,

Norbert

From: Michelle Chen < michelle.chen@cghtransportation.com >

Sent: Thursday, June 2, 2022 10:42 AM

To: Norbert Orzel < Norbert. Orzel@mississauga.ca >

Cc: Mark Crockford <mark.crockford@cghtransportation.com>; Kate Vassilyev <<u>Kate.Vassilyev@mississauga.ca</u>>

Subject: RE: Mode Share Targets in the City of Mississauga

Hi Norbert,

- The horizon year: The base year 2022, followed by a full buildout future horizon of 2027, and a 5-years beyond full buildout future horizon of 2027
- Yes, we will estimate person trip generation and apply the mode split
- Yes, it should be 44% sustainable mode share. It is interpolations from the projection to get the mode share for 2027. Please see the table shown below (from Peel Region's Sustainable Transportation Strategy Development of Mode Share Targets (2018)).

Mode Share in AM Peak Period	Baseline 2011	2041 'Vision'
Driving	62.6%	49.7%
Walking	6.8%	9.1%
Cycling	0.3%	2.0%
Transit	10.8%	17.0%
Carpool	15.2%	17.9%
Other	4.3%	4.3%
Sustainable Modes	37.4%	50.3%

Thank you,

Michelle

From: Norbert Orzel < <u>Norbert.Orzel@mississauga.ca</u>>

Sent: Thursday, June 2, 2022 10:25 AM

To: Michelle Chen < michelle.chen@cghtransportation.com >

Cc: Mark Crockford < mark.crockford@cghtransportation.com >; Kate Vassilyev

< Kate. Vassilyev@mississauga.ca>

Subject: RE: Mode Share Targets in the City of Mississauga

Hi Michelle,

Thanks for your email. I have a few comments and questions in regards to your email:

- -What is the horizon year of your analysis? The Region of Peel's mode split target is a long term goal and is identified for the AM Peak Period and as such it may not be appropriate to assume those rates for your application if the analysis horizon year is more short term.
- -In terms of your trip generation process will you be developing person trips generated from the proposed development and applying the mode split adjustments on those numbers?
- -I'm assuming from your email below that you meant 44% sustainable mode share and not 56% (i.e. 56% would be the auto driver split)? How were those numbers generated?

Thanks,

Norbert

From: Michelle Chen < michelle.chen@cghtransportation.com>

Sent: Wednesday, June 1, 2022 5:11 PM

To: Norbert Orzel < Norbert.Orzel@mississauga.ca >

Cc: Mark Crockford < mark.crockford@cghtransportation.com >

Subject: Mode Share Targets in the City of Mississauga

Hi Norbert,

CGH has been retained to prepare a Traffic Impact Study for a property in eastern Mississauga at 1225 Dundas Street East.

Peel Region's Sustainable Transportation Strategy Development of Mode Share Targets (2018) is aiming for 50% of sustainable (non-auto driver) mode share in 2041, consisting of approximately 18% of carpool, 17% of transit, 11% of active transportation, and 4% of others. We would like to confirm whether interpolations from this projection could be applied to the proposed development. Could 56% of sustainable (non-auto driver) mode share, consisting of approximately 17% of carpool, 14% of transit, 9% of active transportation, and 4% of others be applied to the proposed development? Are there any differences between mode share for residential and commercial?

Regards,

Michelle Chen, EIT **CGH Transportation Inc.** P:343-777-2426

E: michelle.chen@CGHTransportation.com

Appendix F

The Synergy Trip Calculation

Project Name:	2022-50
Analysis Period:	AM Street Peak Hour

Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Land Use	Tab	ole 7-A (D): Enter	ing Trips			Table 7-A (O): Exiting Trips				
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*	1	Veh. Occ.	Vehicle-Trips	Person-Trips*			
Office	1.00	0	0	1	1.00	0	0			
Retail	1.00	8	8	1	1.00	5	5			
Restaurant	1.00	0	0	1	1.00	0	0			
Cinema/Entertainment	1.00	0	0	1	1.00	0	0			
Residential	1.00	31	31		1.00	64	64			
Hotel	1.00	0	0	1	1.00	0	0			

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Origin (Fram)		Destination (To)									
Origin (From)	Office	Office Retail Restaurant Cinema/Entertainment Residentia				Hotel					
Office		0	0	0	0	0					
Retail	1		1	0	1	0					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	1	1	13	0		0					
Hotel	0	0	0	0	0						

	Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)										
Origin (From)	Destination (To)										
Origin (From)	Office	Office Retail Restaurant Cinema/Entertainment Reside		Residential	Hotel						
Office		3	0	0	0	0					
Retail	0		0	0	1	0					
Restaurant	0	1		0	2	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	1	0	0		0					
Hotel	0	0 0 0 0 0									

	Table 9-A (D): Internal and External Trips Summary (Entering Trips)									
Destination Land Use		Person-Trip Estir	mates		External Trips by Mode*					
	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0		0	0	0			
Retail	1	7	8		7	0	0			
Restaurant	0	0	0		0	0	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	1	30	31		30	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

Table 9-A (O): Internal and External Trips Summary (Exiting Trips)										
Origin Land Llag		Person-Trip Esti	mates		External Trips by Mode*					
Origin Land Use	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0	1	0	0	0			
Retail	1	4	5	1	4	0	0			
Restaurant	0	0	0 0	7 [0	0	0			
Cinema/Entertainment	0	0	0	1	0	0	0			
Residential	1	63	64	7	63	0	0			
Hotel	0	0	0		0	0	0			
I Other Land Uses ³ 0 0		0		0	0	0				

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

ı	Project Name:	2022-050
-	Analysis Period:	PM Street Peak Hour

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends									
Land Use	Table	7-P (D): Entering	g Trips		Table 7-P (O): Exiting Trips				
Land Ose	Veh. Occ.	Vehicle-Trips	icle-Trips Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*		
Office	1.00	0	0		1.00	0	0		
Retail	1.00	17	17	1	1.00	18	18		
Restaurant	1.00	0	0	1	1.00	0	0		
Cinema/Entertainment	1.00	0	0		1.00	0	0		
Residential	1.00	64	64	1	1.00	48	48		
Hotel	1.00	0	0		1.00	0	0		

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Origin (From)		Destination (To)									
Origin (From)	Office	Office Retail Restaurant Cinema/Entertainment Resid		Residential	Hotel						
Office	ifice 0 0 0										
Retail	0		5	1	5	1					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	2	20	10	0		1					
Hotel	0	0 0 0 0 0									

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)										
Origin (From)	Destination (To)									
Origin (From)	Office Retail Restaurant Cinema/Entertainme		Cinema/Entertainment	Residential	Hotel					
Office		1	0	0	3	0				
Retail	0		0	0	29	0				
Restaurant	0	9		0	10	0				
Cinema/Entertainment	0	1	0		3	0				
Residential	0	2	0	0		0				
Hotel	0	0 0 0 0 0								

	Table 9-P (D): Internal and External Trips Summary (Entering Trips)									
Destination Land Use	P	erson-Trip Estima	ites		External Trips by Mode*					
	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0	7 [0	0	0			
Retail	2	15	17	7 [15	0	0			
Restaurant	0	0	0	1 [0	0	0			
Cinema/Entertainment	0	0	0	7 [0	0	0			
Residential	5	59	64	7 [59	0	0			
Hotel	0	0	0	1 [0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

Table 9-P (O): Internal and External Trips Summary (Exiting Trips)										
Origin Land Use	Pe	Person-Trip Estimates				External Trips by Mode*				
Origin Land Ose	Internal External Total			Vehicles ¹	Transit ²	Non-Motorized ²				
Office	0	0	0		0	0	0			
Retail	5	13	18		13	0	0			
Restaurant	0	0	0		0	0	0			
Cinema/Entertainment	0	0	0	1	0	0	0			
Residential	2	46	48		46	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0	1	0	0	0			

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P ²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

Appendix G TTS 2016 Zone 3669 Data

Fri Jun 03 2022 14:39:27 GMT-0400 (Eastern Daylight Time) - Run Time: 2676ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: 2006 GTA zone of destination - gta06_dest

Filters:

(2006 GTA zone of destination - gta06_dest In 3669

and

Primary travel mode of trip - mode_prime In D

and

Start time of trip - start_time In 700-1000)

Trip 2016

Table:

	3669	
68	8	
128	18	
147	14	
271	25	
285	32	
308	47	
309	18	
312	4	
324	36	
336	10	
339	28	
439	19	
2564	19	
3344	13	
3436	41	
3604	15	
3607	7	
3608	12	
3610	16	
3622	14	
3638	7	
3641	27	
3642	69	
3643	14	
3646	27	
3649	13	
3651	8	
3653	60	
3658	48	
3660	20	
3667	8	
3668	83	
3669	423	
3673	12	
3674	214	
3675	70	
3677	8	
3678	72	
3681	35	
3689	12	
3690	50	
3709	12	
3714	22	
3716	15	
3812	5	
3841	8	
3842	18	
3844	19	
3853	13	
3861	23	
3863	80	
3874	26	
8904	11	

Fri Jun 03 2022 14:39:41 GMT-0400 (Eastern Daylight Time) - Run Time: 2602ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: 2006 GTA zone of destination - gta06_dest

Filters:

(2006 GTA zone of origin - gta06_orig In 3669

Primary travel mode of trip - mode_prime In D

and n 700-1000) Start

and Start time of trip	- start_time In
Trip 2016 Table:	
	8669
36 56	20 10
67	16
68	8
93 147	16 14
210	8
211 218	37 12
269	9
270 290	41 15
292	7
296 308	34 65
309	31
311	33 20
312 313	50
322	33
323 325	17 6
326	18
332 336	42 10
358	36
361 371	19 23
373	15
387 391	19 37
439	19
456 2236	13 46
2366	40 17
2400 2562	34 10
3323	18
3361 3385	6 12
3494	38
3601 3603	8 13
3605	24
3608 3610	17 16
3612	5
3626 3627	22 75
3632	34
3635 3645	20 22
3649	79
3650 3653	27 18
3654	43
3658 3659	4 11
3660	34
3661 3662	33 11
3663	11
3666	5 46
3668 3669	46
3670 3673	59
3672 3673	4 44
3674	149
3675 3677	67 8
3678	24
3680 3692	63 18
3693	21
3698 3702	99 90
3703	8
3705 3706	23 7
3707	29
3709 3710	8 67
3711	10
3715 3719	22 19
3721	108
3831	10

13

3863

Fri Jun 03 2022 14:38:33 GMT-0400 (Eastern Daylight Time) - Run Time: 2379ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: 2006 GTA zone of destination - gta06_dest

Filters:

(2006 GTA zone of destination - gta06_dest In 3669

Primary travel mode of trip - mode_prime In D

and ime In 1500-1800) Start

Trip Tab

d art time of tri	p - start ₋	_tim
p 2016		
ble:		
43	3669 10	
45 56	14 10	
57 65	20 7	
69 89	18 10	
110	41	
147 210	14 8	
211 222	18 11	
285 290	32 15	
292 295	7 11	
296 309	34 25	
311 313	33 40	
323 326	33 10	
332	42	
336 351	27 10	
371 379	12 13	
386 387	14 19	
388 391	25 37	
403 439	25 19	
465 2063	16 25	
2082 2109	7 17	
2236	46	
2366 2400	17 34	
2422 2562	4 10	
2656 2702	22 28	
3323 3339	18 12	
3361 3364	6 18	
3419 3429	13 9	
3480 3494	24 38	
3496 3605	34 24	
3608 3610	17 30	
3612	5	
3613 3621	11 17	
3626 3627	10 75	
3635 3639	43 15	
3649 3653	59 9	
3654 3655	70 32	
3656 3658	10 4	
3660 3661	39 56	
3664 3666	13 11	
3667	12	
3668 3669	36 195	
3674 3675	152 37	
3680 3682	29 28	
3685 3686	17 69	
3688 3692	7 18	
3696 3698	17 65	
3699 3701	19 42	
3703 3705	34 23	
3709	8	
3710 3713	67 22	
3715 3717	37 14	
3720 3721	16 66	
3816 3831	44 10	
3834	11	

3861

Fri Jun 03 2022 14:37:20 GMT-0400 (Eastern Daylight Time) - Run Time: 2553ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: 2006 GTA zone of destination - gta06_dest

Filters:

(2006 GTA zone of origin - gta06_orig In 3669

and

Primary travel mode of trip - mode_prime In D

and

Start time of trip - start_time In 1500-1800)

Trip 2016

Table:

	3669
128	18
147	14
211	28
271	25
309	17
323	36
345	28
439	19
1171	14
3151	11
3324	50
3339	12
3344	13
3479	9
3602	4
3604	15
3610	11
3619	31 18
3632 3635	29
3639	13
3641	14
3642	38
3649	39
3651	10
3653	103
3654	78
3655	10
3656	14
3660	25
3661	41
3668 3669	15 195
3671	195
3673	12
3674	74
3675	32
3680	13
3682	9
3686	69
3693	7
3698	14
3701	27
3703	16
3709	42
3714	22
3716	15
3812	5
3841 3844	8 19
3848	18
3857	37
3858	16
3859	23
3860	11
3861	42
3863	58
3874	18
3879	7
4005	15 10
4193	10

Appendix H

Traffic Control Signal Warrants

Access #1 @ Arena Rd 2028 FT

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LITTIE 70	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	105	15%	15%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	35	20%	15%	NO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	82	11%		
,	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	23	31%	11%	No

- 1. Refer to OTM Book 12, pg 92, Mar 2012
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
- 4. T-intersection factor corrected, applies only to 1B

Access #1 @ Arena Rd 2033 FT

Justification #7

		Minimum R	equirement	Minimum R	Requirement		Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /0	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	105	15%	15%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	35	20%	15%	INO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	82	11%		
2. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	23	31%	11%	No

- 1. Refer to OTM Book 12, pg 92, Mar 2012
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
- 4. T-intersection factor corrected, applies only to 1B

Access #2 @ Dundix Rd 2028 FT

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /0	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	82	11%	11%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	31	18%	1176	No
	A. Vehicle volumes, major street (average hour)	480	720	600	900	62	9%		
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	0	0%	0%	No

- 1. Refer to OTM Book 12, pg 92, Mar 2012
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
- 4. T-intersection factor corrected, applies only to 1B

Access #2 @ Dundix Rd 2033 FT

Justification #7

		Minimum R	equirement	Minimum R	Requirement		Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LITTIE 70	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	82	11%	11%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	31	18%	11%	INO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	62	9%		
2. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	0	0%	0%	No

- 1. Refer to OTM Book 12, pg 92, Mar 2012
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
- 4. T-intersection factor corrected, applies only to 1B

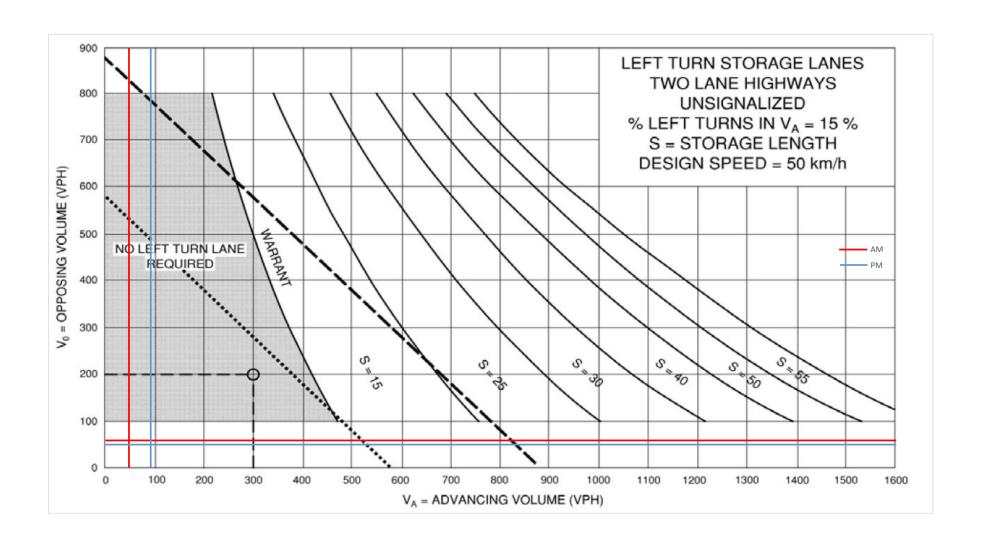
Queen Frederica Drive @ Dundix Road 2028 FT

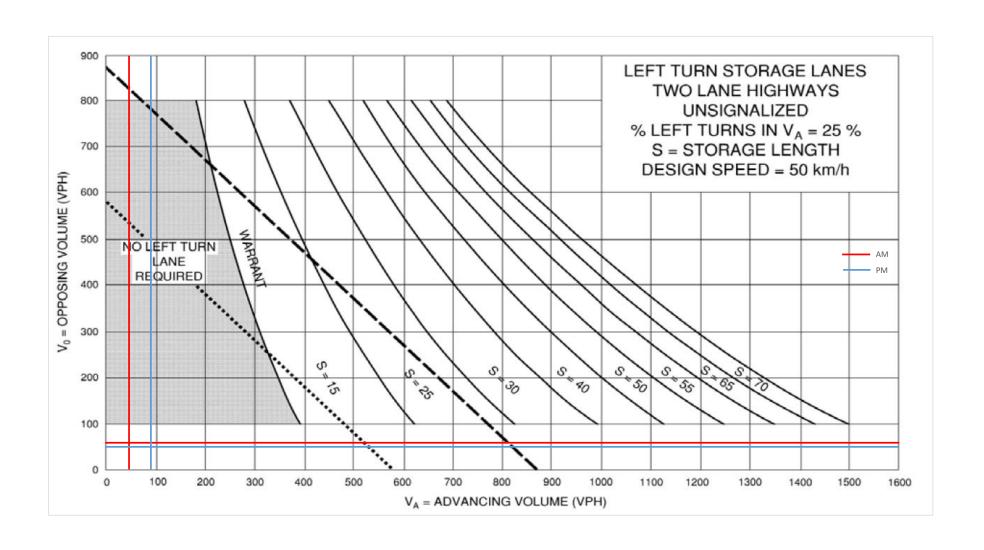
Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Littile /0	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	196	27%	27%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	78	46%	27%	No
	A. Vehicle volumes, major street (average hour)	480	720	600	900	144	20%		
,	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	14	18%	18%	No

- 1. Refer to OTM Book 12, pg 92, Mar 2012
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
- 4. T-intersection factor corrected, applies only to 1B

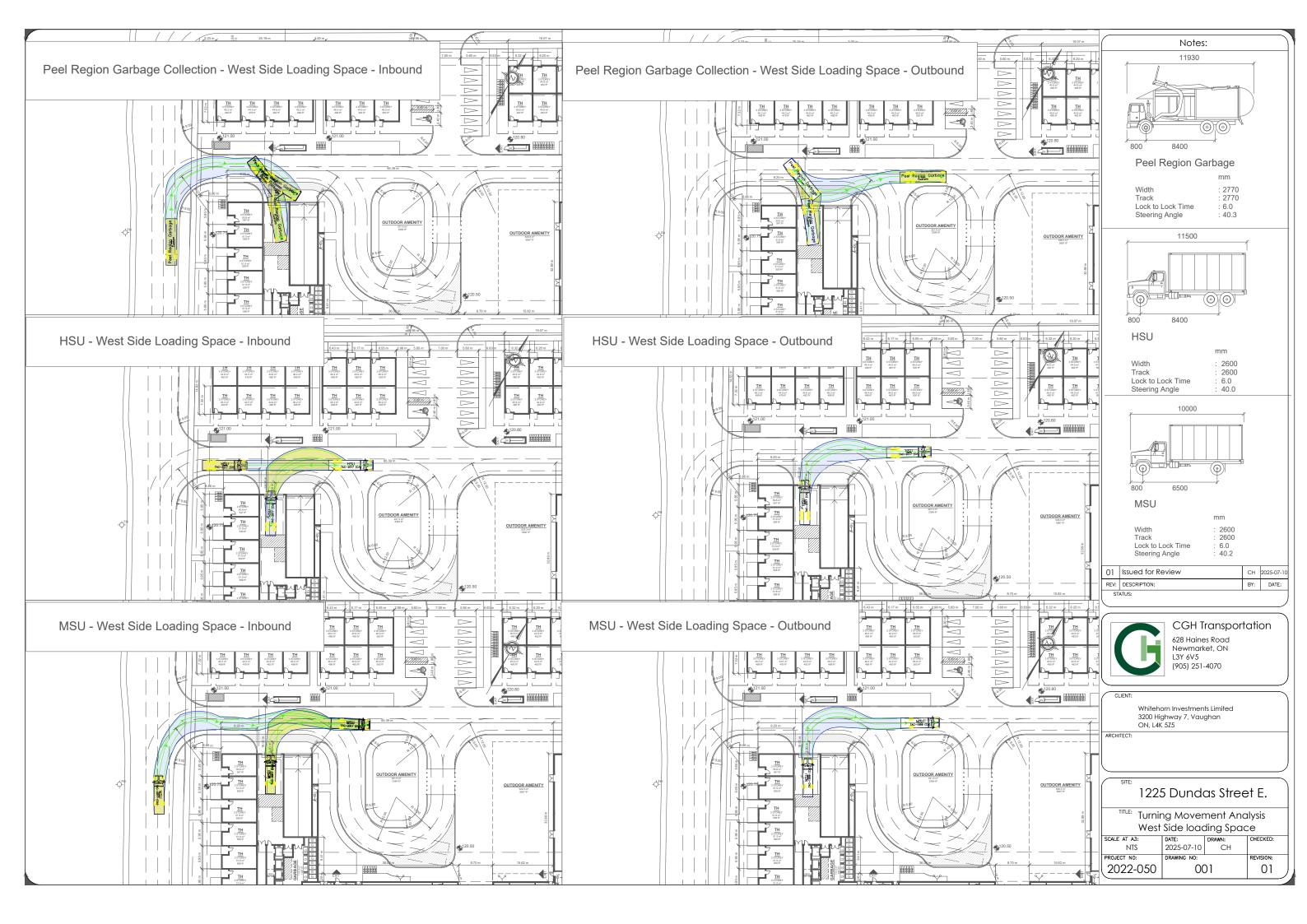
Queen Frederica Drive @ Dundix Road 2033 FT

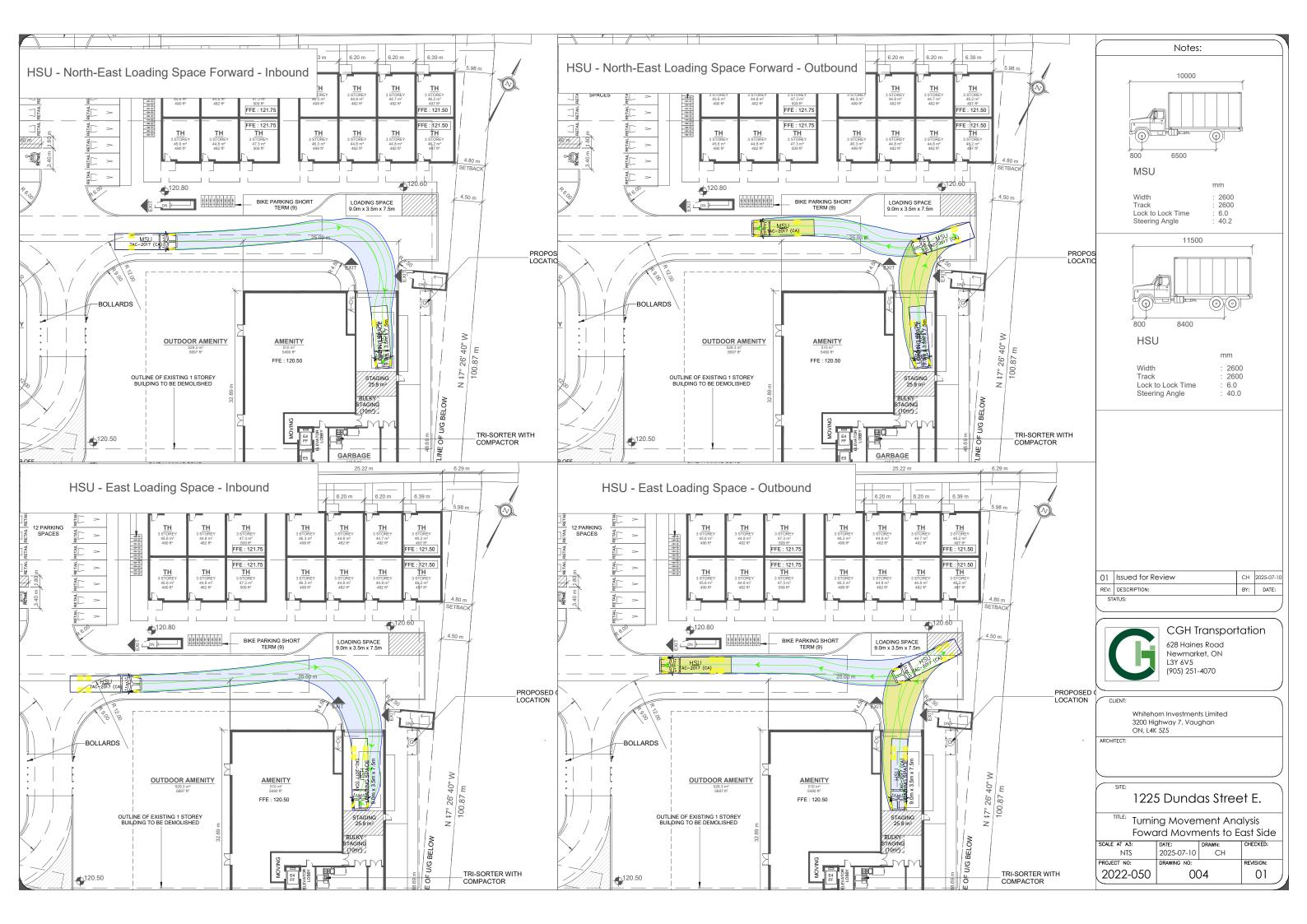

Justification #7


		Minimum R	equirement	Minimum R	Requirement		Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /0	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	196	27%	27%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	78	46%	2770	INO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	144	20%		
2. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	14	18%	18%	No

- 1. Refer to OTM Book 12, pg 92, Mar 2012
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
- 4. T-intersection factor corrected, applies only to 1B

Appendix I


Left Turn Lane Warrants


Appendix J

Turning Template Drawings

Appendix K

Sightline Calculations

Appendix L

Peak Hour Factor Calculations

					[4] D:	: - D l	d Door de c	ь т					
	[1] Dixie Road and Dundas Street E												
	AM												
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum
8:00	86	206	33	19	143	40	28	106	39	24	174	37	935
8:15	84	233	51	9	196	37	17	90	44	42	201	46	1050
8:30	108	163	33	30	178	27	30	127	42	49	245	31	1063
8:45	90	218	56	21	196	35	21	89	44	32	241	33	1076
Total	368	820	173	79	713	139	96	412	169	147	861	147	4124
PHF	1.07	1.00	0.77	2.19	0.91	0.94	1.14	1.16	1.08	1.15	1.24	1.11	0.96
						Р	M						
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum
16:45	98	253	66	60	234	42	59	282	86	40	188	35	1443
17:00	122	241	49	58	248	52	76	273	107	42	194	44	1506
17:15	94	223	60	52	208	51	51	335	70	54	237	35	1470
17:30	138	287	61	56	199	77	71	243	92	52	172	31	1479
Total	452	1004	236	226	889	222	257	1133	355	188	791	145	5898
PHF	0.82	0.87	0.89	0.94	0.90	0.72	0.85	0.85	0.83	0.87	0.83	0.82	0.98

				[2] 0	- I ·	D: /DI	1 11 5 1	10 1	61 15				
				[2] Que	en Frederica			and Dundas	Street E				
	AM												
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum
8:00	25	1	6	3	0	1	3	132	17	5	234	9	436
8:15	34	2	4	7	0	5	10	168	13	1	292	6	542
8:30	36	2	3	4	0	1	3	185	12	6	279	7	538
8:45	36	4	6	4	0	2	2	176	15	2	308	3	558
Total	131	9	19	18	0	9	18	661	57	14	1113	25	2074
PHF	0.91	0.56	0.79	0.64	#DIV/0!	0.45	0.45	0.89	0.84	0.58	0.90	0.69	0.93
						Р	M						
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum
16:45	21	0	4	19	1	5	13	396	36	6	295	12	808
17:00	24	4	6	20	0	9	9	394	36	17	262	7	788
17:15	25	1	5	20	0	4	13	419	45	11	329	8	880
17:30	36	4	4	17	0	7	11	402	31	10	276	10	808
Total	106	9	19	76	1	25	46	1611	148	44	1162	37	3284
PHF	0.74	0.56	0.79	0.95	0.25	0.69	0.88	0.96	0.82	0.65	0.88	0.77	0.93

	[3] Arena Road and Dundas Street E													
						А	M							
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum	
8:00	4	1	7	1	0	9	9	146	1	5	241	1	425	
8:15	4	1	15	2	0	13	15	174	2	5	314	4	549	
8:30	2	0	7	1	1	20	9	205	2	5	288	7	547	
8:45	3	1	7	3	0	12	11	200	3	4	321	5	570	
Total	13	3	36	7	1	54	44	725	8	19	1164	17	2091	
PHF	0.81	0.75	0.60	0.58	0.25	0.68	0.73	0.88	0.67	0.95	0.91	0.61	0.92	
						Р	M							
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum	
16:45	5	0	9	8	3	30	19	379	4	9	274	8	748	
17:00	3	1	5	4	4	31	28	386	7	9	282	5	765	
17:15	4	0	6	4	3	23	20	381	1	11	299	2	754	
17:30	3	1	6	5	1	26	21	379	8	8	301	4	763	
Total	15	2	26	21	11	110	88	1525	20	37	1156	19	3030	
PHF	0.75	0.50	0.72	0.66	0.69	0.89	0.79	0.99	0.63	0.84	0.96	0.59	0.99	

					[4] Queen	Frederica [Drive and Du	undix Road					
						А	М						
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum
8:00		29	5	3	21					3		6	67
8:15		24	5	2	14					13		14	72
8:30		35	8	6	12					6		11	78
8:45		28	5	6	11					7		15	72
Total	0	116	23	17	58	0	0	0	0	29	0	46	289
PHF	#DIV/0!	0.83	0.72	0.71	0.69	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0.56	#DIV/0!	0.77	0.93
						Р	M						
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum
16:45		22	10	9	37					9		2	89
17:00		28	8	10	43					6		8	103
17:15		27	12	11	35					4		8	97
17:30		36	7	8	34					3		12	100
Total	0	113	37	38	149	0	0	0	0	22	0	30	389
PHF	#DIV/0!	0.78	0.77	0.86	0.87	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0.61	#DIV/0!	0.63	0.94

	[5] Arena Road and Dundix Road														
	AM														
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum		
7:30	4	7			3	3	8	1	2		1	0	29		
7:45	5	3			0	9	6		0		0	2	25		
8:00	2	7			2	5	7		2		1	0	26		
8:15	2	4			2	5	14		0		3	3	33		
Total	13	21	0	0	7	22	35	1	4	0	5	5	113		
PHF	0.65	0.75	#DIV/0!	#DIV/0!	0.58	0.61	0.63	0.25	0.50	#DIV/0!	0.42	0.42	0.86		
						Р	M								
End Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Sum		
16:00	2	2		1	6	8	9	3	4		0	2	37		
16:15	2	3		0	8	7	11	2	5		1	0	39		
16:30	3	2		1	7	10	8	1	6		0	1	39		
16:45	3	3		0	9	9	6	1	6		1	0	38		
Total	10	10	0	2	30	34	34	7	21	0	2	3	153		
PHF	0.83	0.83	#DIV/0!	0.50	0.83	0.85	0.77	0.58	0.88	#DIV/0!	0.50	0.38	0.98		

Appendix M

2024 Existing Conditions Synchro Worksheets

	•	→	*	•	•	•	1	†	-	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተ ተጉ		*	ተተተ	7	7	ተተጉ		1/4	ተተተ	7
Traffic Volume (vph)	147	870	147	96	420	169	79	727	139	368	856	173
Future Volume (vph)	147	870	147	96	420	169	79	727	139	368	856	173
Satd. Flow (prot)	1623	4771	0	1638	4749	1389	1716	4637	0	3267	4794	1479
Flt Permitted	0.389			0.123			0.307			0.950		
Satd. Flow (perm)	660	4771	0	211	4749	1355	554	4637	0	3263	4794	1459
Satd. Flow (RTOR)		23				176		24				180
Lane Group Flow (vph)	153	1059	0	100	438	176	82	902	0	383	892	180
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		4	6					2
Detector Phase	3	8		7	4	4	1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	10.0	10.0	7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	10.0	48.0		10.0	48.0	48.0	15.0	43.0		15.0	43.0	43.0
Total Split (s)	21.0	67.0		13.0	59.0	59.0	16.0	51.0		29.0	64.0	64.0
Total Split (%)	13.1%	41.9%		8.1%	36.9%	36.9%	10.0%	31.9%		18.1%	40.0%	40.0%
Yellow Time (s)	3.0	4.0		3.0	4.0	4.0	3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	2.8		0.0	2.8	2.8	0.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	6.8		3.0	6.8	6.8	3.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	C-Max
Act Effct Green (s)	59.6	43.1		50.7	37.2	37.2	74.5	61.9		23.9	78.8	78.8
Actuated g/C Ratio	0.37	0.27		0.32	0.23	0.23	0.47	0.39		0.15	0.49	0.49
v/c Ratio	0.45	0.81		0.65	0.40	0.39	0.25	0.50		0.78	0.38	0.22
Control Delay	33.1	54.5		53.2	52.6	8.6	19.1	38.9		77.0	26.9	4.0
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	33.1	54.5		53.2	52.6	8.6	19.1	38.9		77.0	26.9	4.0
LOS	С	D		D	D	Α	В	D		Е	С	Α
Approach Delay		51.8			41.9			37.2			37.2	
Approach LOS		D			D			D			D	
Queue Length 50th (m)	35.9	116.4		21.2	43.9	0.0	10.8	77.5		61.3	63.3	0.0
Queue Length 95th (m)	38.2	44.7		33.1	53.3	19.5	20.8	102.4		76.7	83.4	14.4
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	83.0			197.5		61.5	89.5			107.5		148.0
Base Capacity (vph)	354	1809		156	1549	560	365	1809		521	2361	810
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.43	0.59		0.64	0.28	0.31	0.22	0.50		0.74	0.38	0.22

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160

Offset: 3 (2%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

↑Ø6 (R)

Maximum v/c Ratio: 0.81	
Intersection Signal Delay: 42.0	Intersection LOS: D
Intersection Capacity Utilization 90.7%	ICU Level of Service E
Analysis Period (min) 15	
Splits and Phases: 1: Dixie Rd & Dundas St E	
→ Ø1	→ Ø3 → Ø4
16 s 64 s	21 s 59 s

€ø7

	۶	→	•	•	←	•	1	1	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተጉ		*	^	7	*	^		44	^	7
Traffic Volume (vph)	147	870	147	96	420	169	79	727	139	368	856	173
Future Volume (vph)	147	870	147	96	420	169	79	727	139	368	856	173
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		3.0	6.8	6.8	3.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.98	1.00	1.00		1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1619	4772		1637	4749	1355	1716	4637		3267	4794	1459
Flt Permitted	0.39	1.00		0.12	1.00	1.00	0.31	1.00		0.95	1.00	1.00
Satd. Flow (perm)	662	4772		213	4749	1355	554	4637		3267	4794	1459
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	153	906	153	100	438	176	82	757	145	383	892	180
RTOR Reduction (vph)	0	17	0	0	0	135	0	15	0	0	0	91
Lane Group Flow (vph)	153	1042	0	100	438	41	82	887	0	383	892	89
Confl. Peds. (#/hr)	11	5 0/	15	15	00/	11	1	00/	3	3	70/	1
Heavy Vehicles (%)	10%	5%	3%	9%	8%	15%	4%	8%	6%	6%	7%	8%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4	4	1	6		5	2	0
Permitted Phases	8	40.4		4	27.0	4	6	CO 0		02.0	70.0	20.0
Actuated Green, G (s)	55.8	43.1 43.1		46.9	37.2	37.2	71.0	62.0 62.0		23.9	78.9	78.9
Effective Green, g (s)	55.8 0.35	0.27		46.9 0.29	37.2 0.23	37.2 0.23	71.0 0.44	0.39		23.9 0.15	78.9 0.49	78.9 0.49
Actuated g/C Ratio Clearance Time (s)	3.0	6.8		3.0	6.8	6.8	3.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
	324	1285		148	1104	315	311	1796		488	2364	719
Lane Grp Cap (vph) v/s Ratio Prot	0.05	c0.22		c0.04	0.09	313	0.01	c0.19		c0.12	0.19	119
v/s Ratio Prot v/s Ratio Perm	0.03	00.22		0.16	0.09	0.03	0.01	60.19		CU. 12	0.19	0.06
v/c Ratio	0.12	0.81		0.10	0.40	0.03	0.10	0.49		0.78	0.38	0.00
Uniform Delay, d1	37.7	54.6		44.1	51.9	48.6	26.0	37.1		65.6	25.3	21.9
Progression Factor	0.86	0.92		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.1	3.9		11.6	0.2	0.2	0.5	1.00		8.1	0.5	0.4
Delay (s)	33.3	54.4		55.6	52.1	48.8	26.5	38.1		73.7	25.7	22.2
Level of Service	C	D		E	D	TO.0	C C	D		F E	C	C
Approach Delay (s)		51.7		_	51.8			37.1		=	37.9	J
Approach LOS		D			D			D			D	
••												
Intersection Summary			40.0		0110000		<u> </u>					
HCM 2000 Control Delay	7 0		43.8	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity ratio		0.65	•		. 4! ()			04.0				
Actuated Cycle Length (s)	_ t'		160.0		um of lost				21.3			
Intersection Capacity Utiliza	ation		90.7%	IC	CU Level	or Service)		Е			
Analysis Period (min)			15									

c Critical Lane Group

Lane Group
Traffic Volume (vph)
Future Volume (vph) 14 1124 25 18 674 57 18 0 9 131 9 19 Satd. Flow (prot) 1566 4914 0 1750 4724 0 1750 0 1309 1750 1633 0 Flt Permitted 0.342 0.206 0.738 0.950 34 0 1290 1745 1633 0 Satd. Flow (perm) 561 4914 0 379 4724 0 1346 0 1290 1745 1633 0 Satd. Flow (RTOR) 4 16 27 20 20 2 20 141 30 0 0 19 745 1633 0 0 141 30 0 0 141 30 0 0 120 141 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Satd. Flow (prot) 1566 4914 0 1750 4724 0 1750 0 1309 1750 1633 0 Flt Permitted 0.342 0.206 0.738 0.950 0.950 Satd. Flow (perm) 561 4914 0 379 4724 0 1346 0 1290 1745 1633 0 Satd. Flow (RTOR) 4 16 27 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8 9 8 8 8
Fit Permitted
Satd. Flow (perm) 561 4914 0 379 4724 0 1346 0 1290 1745 1633 0 Satd. Flow (RTOR) 4 16 27 20 20 Lane Group Flow (vph) 15 1236 0 19 786 0 19 0 10 141 30 0 Turn Type Perm NA NA A 4 4 8 8 S Desm S 8 8 8 S S S
Satd. Flow (RTOR) 4 16 27 20 Lane Group Flow (vph) 15 1236 0 19 786 0 19 0 10 141 30 0 Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 2 6 4 4 8 Na Na Permitted Phases 2 6 6 4 4 8 Na N
Lane Group Flow (vph) 15 1236 0 19 786 0 19 0 10 141 30 0 Turn Type
Turn Type
Protected Phases 2 6 4 4 8 Permitted Phases 2 2 6 4 4 8 Detector Phase 2 2 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 8.0
Permitted Phases 2 2 6 6 4 4 8 8
Detector Phase 2 2 6 6 6 4 4 8 8
Switch Phase Minimum Initial (s) 8.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.1% 33.1
Minimum Initial (s) 8.0 4.0 44.0 44.0 44.0 44.0 44.0 45.0 53.0 33.1% 33.1% 33.
Minimum Split (s) 34.0 34.0 34.0 34.0 34.0 44.0 44.0 44.0 44.0 Total Split (s) 107.0 107.0 107.0 107.0 53.0 53.0 53.0 53.0 Total Split (%) 66.9% 66.9% 66.9% 66.9% 33.1% 33.1% 33.1% 33.1% Yellow Time (s) 4.0 4.0 4.0 3.0
Total Split (s) 107.0 107.0 107.0 107.0 53.0 53.0 53.0 53.0 53.0 Total Split (%) 66.9% 66.9% 66.9% 66.9% 66.9% 33.1% 33.1% 33.1% 33.1% Yellow Time (s) 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Total Split (%) 66.9% 66.9% 66.9% 66.9% 33.1% 33.1% 33.1% 33.1% 33.1% Yellow Time (s) 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Yellow Time (s) 4.0 4.0 4.0 3.0 4.0
All-Red Time (s) 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Lost Time Adjust (s) 0.0
Total Lost Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max None None None None Act Effct Green (s) 125.2 125.2 125.2 125.2 20.8 20.8 20.8 20.8 Actuated g/C Ratio 0.78 0.78 0.78 0.13 0.13 0.13 0.13 v/c Ratio 0.03 0.32 0.06 0.21 0.11 0.05 0.62 0.13 Control Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5
Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max None None None None Act Effct Green (s) 125.2 125.2 125.2 125.2 20.8 20.8 20.8 20.8 Actuated g/C Ratio 0.78 0.78 0.78 0.13 0.13 0.13 0.13 v/c Ratio 0.03 0.32 0.06 0.21 0.11 0.05 0.62 0.13 Control Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5
Recall Mode C-Max C-Max Max Max None None None None Act Effct Green (s) 125.2 125.2 125.2 125.2 20.8 20.8 20.8 20.8 Actuated g/C Ratio 0.78 0.78 0.78 0.13 0.13 0.13 0.13 0.13 v/c Ratio 0.03 0.32 0.06 0.21 0.11 0.05 0.62 0.13 Control Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5
Act Effct Green (s) 125.2 125.2 125.2 125.2 20.8 20.8 20.8 20.8 Actuated g/C Ratio 0.78 0.78 0.78 0.13 0.13 0.13 0.13 0.13 v/c Ratio 0.03 0.32 0.06 0.21 0.11 0.05 0.62 0.13 Control Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5
Actuated g/C Ratio 0.78 0.78 0.78 0.13 0.13 0.13 0.13 v/c Ratio 0.03 0.32 0.06 0.21 0.11 0.05 0.62 0.13 Control Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5
v/c Ratio 0.03 0.32 0.06 0.21 0.11 0.05 0.62 0.13 Control Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5
Control Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5 Queue Delay 0.0 <td< td=""></td<>
Queue Delay 0.0
Total Delay 2.4 3.4 4.8 3.4 57.9 2.1 76.4 28.5
Approach Delay 3.4 3.5 38.7 68.0
Approach LOS A A D E
Queue Length 50th (m) 1.0 39.0 0.6 10.4 5.5 0.0 43.9 2.9
Queue Length 95th (m) 0.5 6.2 3.4 23.8 12.3 1.3 59.3 11.7
Internal Link Dist (m) 184.5 312.2 88.0 88.9
Turn Bay Length (m) 46.0 60.0
Base Capacity (vph) 439 3847 296 3701 386 390 501 483
Starvation Cap Reductn 0 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0 0 0 0
Reduced v/c Ratio 0.03 0.32 0.06 0.21 0.05 0.03 0.28 0.06

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160

Offset: 37 (23%), Referenced to phase 2:EBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.62	
Intersection Signal Delay: 8.8	Intersection LOS: A
Intersection Capacity Utilization 55.5%	ICU Level of Service B
Analysis Period (min) 15	
Splits and Phases: 2: Blundell Rd /Queen Frederica Dr & Dun	das St E
107 s	53 s
▼ Ø6	₽øs
107 s	53 s

08-01-2024 CGH Transportation Page 5 MC

	۶	→	*	•	+	4	1	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተጉ		7	^		7		7	Ť	1→	
Traffic Volume (vph)	14	1124	25	18	674	57	18	0	9	131	9	19
Future Volume (vph)	14	1124	25	18	674	57	18	0	9	131	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.99	1.00	0.99 1.00	
Flpb, ped/bikes Frt	1.00 1.00	1.00 1.00		1.00 1.00	1.00 0.99		0.99 1.00		1.00 0.85	1.00 1.00	0.90	
FIt Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1558	4913		1747	4725		1733		1290	1745	1633	
Flt Permitted	0.34	1.00		0.21	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	561	4913		379	4725		1345		1290	1745	1633	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	15	1209	27	19	725	61	19	0.50	10	141	10	20
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	9	0	17	0
Lane Group Flow (vph)	15	1235	0	19	783	0	19	0	1	141	13	0
Confl. Peds. (#/hr)	5		3	3		5	8		2	2		8
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
Turn Type	Perm	NA		Perm	NA		Perm		Perm	Perm	NA	
Protected Phases		2			6						8	
Permitted Phases	2			6			4		4	8		
Actuated Green, G (s)	125.2	125.2		125.2	125.2		20.8		20.8	20.8	20.8	
Effective Green, g (s)	125.2	125.2		125.2	125.2		20.8		20.8	20.8	20.8	
Actuated g/C Ratio	0.78	0.78		0.78	0.78		0.13		0.13	0.13	0.13	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0		7.0	7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)	438	3844		296	3697		174		167	226	212	
v/s Ratio Prot	0.00	c0.25		0.05	0.17		0.04		0.00	0.00	0.01	
v/s Ratio Perm	0.03	0.20		0.05	0.01		0.01		0.00	c0.08	0.00	
v/c Ratio	0.03	0.32 5.1		0.06 4.0	0.21 4.5		0.11 61.4		0.01 60.6	0.62 65.9	0.06 61.0	
Uniform Delay, d1 Progression Factor	0.36	0.56		0.71	0.64		1.00		1.00	1.00	1.00	
Incremental Delay, d2	0.30	0.50		0.71	0.04		0.3		0.0	5.3	0.1	
Delay (s)	1.6	3.0		3.2	3.1		61.7		60.6	71.2	61.1	
Level of Service	Α	0.0 A		Α.2	Α		E		E	7 1.Z	E	
Approach Delay (s)	, ,	3.0		, ,	3.1		_	61.3	_	-	69.4	
Approach LOS		A			A			E			E	
••												
Intersection Summary			0.0		ON 4 0000	l accel af (Δ.			
HCM 2000 Control Delay	noity rotio		8.8	Н	CM 2000	Level of S	service		Α			
HCM 2000 Volume to Capa	acity ratio		0.36 160.0	C	um of lost	time (a)			14.0			
Actuated Cycle Length (s) Intersection Capacity Utiliza	ation		55.5%		um of lost CU Level o				14.0 B			
Analysis Period (min)	auOH		15	IC	O LEVEL	JI GELVICE			D			
miaiyaia i eliuu (iliili)			10									

c Critical Lane Group

Bane Group		•	→	•	•	←	•	1	†	-	-	ļ	1
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 19 1176 17 44 740 8 7 1 54 13 3 3 36 Sato. Flow (prot) 1608 4921 0 1700 4784 0 1750 1469 0 1653 1561 0 Flt Permitted 0 0.333 0 1.97 0.730 0.730 0.718 0.718 0.730 0.730 0.718 0.730 0.730 0.731 0.748 0 1700 1700 1700 1700 1700 1700 1700 1	Lane Configurations	×	ተ ተጉ		7	ተ ተጉ		7	7		7	7	
Satd. Flow (prot) 1608 4921 0 1700 4784 0 1750 1469 0 1653 1561 0	Traffic Volume (vph)	19		17	44	740	8			54	13	3	
Fit Permitted	Future Volume (vph)	19	1176	17	44	740	8	7	1	54	13	3	
Satd. Flow (perm) 560 4921 0 351 4784 0 1338 1469 0 1241 1561 0 Satd. Flow (RTOR) 2 2 2 59 39 39 Lane Group Flow (vph) 21 1296 0 48 813 0 8 60 0 14 42 0 Turn Type Perm NA 4 4 4 Perm NA A A		1608	4921	0	1700	4784	0	1750	1469	0	1653	1561	0
Satd. Flow (RTOR)	Flt Permitted	0.333			0.197			0.730			0.718		
Lane Group Flow (vph)	Satd. Flow (perm)	560	4921	0	351	4784	0	1338	1469	0	1241	1561	0
Turn Type	Satd. Flow (RTOR)		2										
Protected Phases 2	Lane Group Flow (vph)	21	1296	0	48		0	8		0	14	42	0
Permitted Phases 2 2 2 2 4 4 4 4 4 4	Turn Type	Perm			Perm			Perm	NA		Perm	NA	
Detector Phase 2 2 2 2 2 4 4 4 4 4	Protected Phases		2			2			4			4	
Switch Phase Minimum Initial (s)	Permitted Phases												
Minimum Initial (s)	Detector Phase	2	2		2	2		4	4		4	4	
Minimum Split (s) 109.0 109.0 109.0 109.0 109.0 46.5 46.5 46.5 Total Split (s) 109.0 109.0 109.0 109.0 51.0 31.9% 31.0 31.0	Switch Phase												
Total Split (s) 109.0 109.0 109.0 109.0 51.0 51.0 51.0 51.0 Total Split (%) 68.1% 68.1% 68.1% 68.1% 31.9% 31.9% 31.9% Yellow Time (s) 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.5 2.5 2.5 2.5 2.5 4.5 4.5 4.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max None None None None Recall Mode C-Max C-Max C-Max C-Max None	Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Total Split (%) 68.1% 68.1% 68.1% 68.1% 31.9% 31.9% 31.9% Yellow Time (s) 4.0 4.0 4.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.5 2.5 2.5 2.5 4.5 4.5 4.5 Lost Time (s) 0.0	Minimum Split (s)	109.0	109.0		109.0	109.0		46.5	46.5		46.5	46.5	
Yellow Time (s) 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.5 2.5 2.5 2.5 4.5 4.5 4.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max C-Max None None None None None None Advanced <	Total Split (s)	109.0	109.0		109.0	109.0		51.0			51.0	51.0	
All-Red Time (s)	Total Split (%)	68.1%	68.1%		68.1%	68.1%		31.9%	31.9%		31.9%	31.9%	
Lost Time Adjust (s) 0.0	Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	
Total Lost Time (s) 6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 Lead/Lag Lead-Lag Optimize? Recall Mode	All-Red Time (s)	2.5	2.5		2.5	2.5		4.5	4.5		4.5	4.5	
Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max None	Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max None None None None Act Effct Green (s) 136.1 136.1 136.1 136.1 14.3 14.2 14.4 14.6 6.6	Total Lost Time (s)	6.5	6.5		6.5	6.5		7.5	7.5		7.5	7.5	
Recall Mode C-Max C-Max C-Max C-Max None None None None Act Effct Green (s) 136.1 136.1 136.1 136.1 14.3 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td>Lead/Lag</td> <td></td>	Lead/Lag												
Act Effct Green (s) 136.1 136.1 136.1 136.1 14.3 14.3 14.3 14.3 Actuated g/C Ratio 0.85 0.85 0.85 0.85 0.09 0.09 0.09 0.09 v/c Ratio 0.04 0.31 0.16 0.20 0.07 0.33 0.13 0.24 Control Delay 5.3 4.4 6.6 3.4 60.4 17.3 63.2 20.3 Queue Delay 0.0	Lead-Lag Optimize?												
Actuated g/C Ratio 0.85 0.85 0.85 0.85 0.09 0.09 0.09 0.09 v/c Ratio 0.04 0.31 0.16 0.20 0.07 0.33 0.13 0.24 Control Delay 5.3 4.4 6.6 3.4 60.4 17.3 63.2 20.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 5.3 4.4 6.6 3.4 60.4 17.3 63.2 20.3 LOS A A A A E B E C Approach Delay 4.4 3.6 22.4 31.0 31.0 31.0 31.0 4.0 4.0 4.0 4.0 4.0 C C C C C Queue Length 50th (m) 0.8 21.7 1.7 10.5 2.5 0.3 4.4 0.9 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2	Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
V/c Ratio 0.04 0.31 0.16 0.20 0.07 0.33 0.13 0.24 Control Delay 5.3 4.4 6.6 3.4 60.4 17.3 63.2 20.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 5.3 4.4 6.6 3.4 60.4 17.3 63.2 20.3 LOS A A A E B E C Approach Delay 4.4 3.6 22.4 31.0 31.0 Approach LOS A A A C C C Queue Length 50th (m) 0.8 21.7 1.7 10.5 2.5 0.3 4.4 0.9 Queue Length 95th (m) 5.6 72.4 8.6 28.1 6.7 12.3 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 6	Act Effct Green (s)				136.1	136.1		14.3			14.3	14.3	
Control Delay 5.3 4.4 6.6 3.4 60.4 17.3 63.2 20.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 5.3 4.4 6.6 3.4 60.4 17.3 63.2 20.3 LOS A A A E B E C Approach Delay 4.4 3.6 22.4 31.0 31.0 Approach LOS A A C C C Queue Length 50th (m) 0.8 21.7 1.7 10.5 2.5 0.3 4.4 0.9 Queue Length 95th (m) 5.6 72.4 8.6 28.1 6.7 12.3 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442	Actuated g/C Ratio							0.09			0.09		
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	v/c Ratio												
Total Delay 5.3 4.4 6.6 3.4 60.4 17.3 63.2 20.3 LOS A A A A E B E C Approach Delay 4.4 3.6 22.4 31.0 Approach LOS A A C C Queue Length 50th (m) 0.8 21.7 1.7 10.5 2.5 0.3 4.4 0.9 Queue Length 95th (m) 5.6 72.4 8.6 28.1 6.7 12.3 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0	Control Delay												
LOS A A A A E B E C Approach Delay 4.4 3.6 22.4 31.0 Approach LOS A A C C Queue Length 50th (m) 0.8 21.7 1.7 10.5 2.5 0.3 4.4 0.9 Queue Length 95th (m) 5.6 72.4 8.6 28.1 6.7 12.3 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0	Queue Delay							0.0					
Approach Delay 4.4 3.6 22.4 31.0 Approach LOS A A C C Queue Length 50th (m) 0.8 21.7 1.7 10.5 2.5 0.3 4.4 0.9 Queue Length 95th (m) 5.6 72.4 8.6 28.1 6.7 12.3 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0		5.3	4.4		6.6				17.3				
Approach LOS A A C C Queue Length 50th (m) 0.8 21.7 1.7 10.5 2.5 0.3 4.4 0.9 Queue Length 95th (m) 5.6 72.4 8.6 28.1 6.7 12.3 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	LOS	Α			Α			Е			Е		
Queue Length 50th (m) 0.8 21.7 1.7 10.5 2.5 0.3 4.4 0.9 Queue Length 95th (m) 5.6 72.4 8.6 28.1 6.7 12.3 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0	Approach Delay		4.4			3.6							
Queue Length 95th (m) 5.6 72.4 8.6 28.1 6.7 12.3 9.8 11.2 Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0													
Internal Link Dist (m) 148.2 184.5 118.2 107.5 Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0	Queue Length 50th (m)	0.8	21.7		1.7	10.5		2.5	0.3		4.4	0.9	
Turn Bay Length (m) 46.0 60.0 48.5 35.0 Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Queue Length 95th (m)	5.6	72.4		8.6	28.1		6.7	12.3		9.8	11.2	
Base Capacity (vph) 476 4186 298 4070 363 442 337 452 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0	Internal Link Dist (m)		148.2			184.5			118.2			107.5	
Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Turn Bay Length (m)												
Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0		476				4070			442			452	
Storage Cap Reductn 0 0 0 0 0 0 0	Starvation Cap Reductn	0			0	0		0	0		0	0	
		0			0	0		0	0		0	0	
Reduced v/c Ratio 0.04 0.31 0.16 0.20 0.02 0.14 0.09	Storage Cap Reductn				0			0			0	0	
	Reduced v/c Ratio	0.04	0.31		0.16	0.20		0.02	0.14		0.04	0.09	

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160

Offset: 19 (12%), Referenced to phase 2:EBWB, Start of Green

Natural Cycle: 160

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.33		
Intersection Signal Delay: 5.3	Intersection LOS: A	
Intersection Capacity Utilization 59.3%	ICU Level of Service B	
Analysis Period (min) 15		
Splits and Phases: 3: Dundas St E & Arena Rd		
Ø2 (R)		₩ _{Ø4}

	۶	→	•	•	+	•	1	†	~	/		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተጉ		*	^		*	1→		ሻ	1→	
Traffic Volume (vph)	19	1176	17	44	740	8	7	1	54	13	3	36
Future Volume (vph)	19	1176	17	44	740	8	7	1	54	13	3	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.85		1.00	0.86	
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1595	4920		1693	4786		1742	1470		1641	1561	
FIt Permitted	0.33	1.00		0.20	1.00		0.73	1.00		0.72	1.00	
Satd. Flow (perm)	559	4920	0.00	350	4786	0.00	1338	1470	2.22	1240	1561	2.00
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	1278	18	48	804	9	8	1	59	14	3	39
RTOR Reduction (vph)	0	0	0	0	0	0	0	54	0	0	36	0
Lane Group Flow (vph)	21	1296	0	48	813	0	8	6	0	14	6	0
Confl. Peds. (#/hr)	9	4%	9	9	70/	9	4 2%	20/	6	6	2%	4 2%
Heavy Vehicles (%)	11%		2%	5%	7%	2%		2%	7%	8%		<u> </u>
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	2	2		2	2		1	4		1	4	
Permitted Phases	133.3	133.3		133.3	133.3		4 12.7	12.7		4 12.7	12.7	
Actuated Green, G (s) Effective Green, g (s)	133.3	133.3		133.3	133.3		12.7	12.7		12.7	12.7	
Actuated g/C Ratio	0.83	0.83		0.83	0.83		0.08	0.08		0.08	0.08	
Clearance Time (s)	6.5	6.5		6.5	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	465	4098		291	3987		106	116		98	123	
v/s Ratio Prot	403	c0.26		231	0.17		100	0.00		30	0.00	
v/s Ratio Perm	0.04	60.20		0.14	0.17		0.01	0.00		c0.01	0.00	
v/c Ratio	0.05	0.32		0.14	0.20		0.08	0.05		0.14	0.05	
Uniform Delay, d1	2.3	3.0		2.6	2.7		68.2	68.1		68.6	68.1	
Progression Factor	1.00	1.00		1.00	0.87		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.2		1.2	0.1		0.3	0.2		0.7	0.2	
Delay (s)	2.5	3.2		3.8	2.4		68.5	68.2		69.3	68.2	
Level of Service	A	Α		Α	Α		E	E		Е	E	
Approach Delay (s)		3.2			2.5			68.3			68.5	
Approach LOS		Α			Α			Е			Е	
Intersection Summary												
			G F		CN4 2000	l aval af (Λ			
HCM 2000 Control Delay	noity rotio		6.5 0.30	П	CM 2000	Level of S	sei vice		Α			
HCM 2000 Volume to Capa Actuated Cycle Length (s)	acity ratio		160.0	C	um of lost	time (c)			14.0			
Intersection Capacity Utiliza	ation		59.3%		UIII OI IOSI CU Level o				14.0 B			
Analysis Period (min)	auOH		15	IC	O LEVEL	JI GEI VICE			D			
riiaiysis reliou (IIIIII)			10									

c Critical Lane Group

	٠	•	1	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	NA.			ર્ન	ĵ.	
Traffic Volume (vph)	29	46	17	58	116	23
Future Volume (vph)	29	46	17	58	116	23
Satd. Flow (prot)	1626	0	0	1715	1800	0
Flt Permitted	0.981			0.989		
Satd. Flow (perm)	1626	0	0	1715	1800	0
Lane Group Flow (vph)	80	0	0	80	150	0
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Control Type: Unsignalized	d					
Intersection Capacity Utiliz	zation 28.2%			IC	U Level c	of Service A
Analysis Period (min) 15						

08-01-2024 CGH Transportation Page 10 MC

	٠	*	1	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	ĵ.	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	29	46	17	58	116	23
Future Volume (vph)	29	46	17	58	116	23
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	31	49	18	62	125	25
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	80	80	150			
Volume Left (vph)	31	18	0			
Volume Right (vph)	49	0	25			
Hadj (s)	-0.22	0.19	-0.07			
Departure Headway (s)	4.2	4.4	4.1			
Degree Utilization, x	0.09	0.10	0.17			
Capacity (veh/h)	815	788	857			
Control Delay (s)	7.6	7.9	7.9			
Approach Delay (s)	7.6	7.9	7.9			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			7.8			
Level of Service			Α			
Intersection Capacity Utiliz	zation		28.2%	IC	U Level c	of Service
Analysis Period (min)			15			

Intersection						
Intersection Delay, s/veh	7.8					
Intersection LOS	Α					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/			र्स	1⇒	
Traffic Vol, veh/h	29	46	17	58	116	23
Future Vol, veh/h	29	46	17	58	116	23
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	7	2	6	9	2	2
Mvmt Flow	31	49	18	62	125	25
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB		•	
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	7.7		7.8		7.9	
HCM LOS	Α		Α		A	
Lane		NBLn1	EBLn1	SBLn1		
Vol Left, %		23%	39%	0%		
Vol Thru, %		77%	0%	83%		
Vol Right, %		0%	61%	17%		
Sign Control		Stop	Stop	Stop		
Traffic Vol by Lane		75	75	139		
LT Vol		17	29	0		
Through Vol		58	0	116		
RT Vol		0	46	23		
Lane Flow Rate		81	81	149		
Geometry Grp		1	1	1		
Degree of Util (X)		0.096	0.095	0.168		
Departure Headway (Hd)		4.305	4.232	4.039		
Convergence, Y/N						
		Yes	Yes	Yes		
Cap		Yes				
Cap Service Time		Yes 823	852	879		
Cap Service Time HCM Lane V/C Ratio		Yes				
Service Time		Yes 823 2.382	852 2.232	879 2.106		
Service Time HCM Lane V/C Ratio		Yes 823 2.382 0.098	852 2.232 0.095	879 2.106 0.17		

	•	→	*	1	•		4	†	-	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Satd. Flow (prot)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
FIt Permitted					0.958						0.981	
Satd. Flow (perm)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
Lane Group Flow (vph)	0	12	0	0	47	0	0	34	0	0	39	0
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 24.5%			IC	U Level	of Service	Α					
Analysis Period (min) 15												

	٠	→	*	•	←	•	4	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	0	6	6	41	1	5	0	8	26	15	24	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	12	47	34	39								
Volume Left (vph)	0	41	0	15								
Volume Right (vph)	6	5	26	0								
Hadj (s)	-0.27	0.20	-0.33	0.11								
Departure Headway (s)	3.8	4.3	3.7	4.2								
Degree Utilization, x	0.01	0.06	0.04	0.05								
Capacity (veh/h)	913	825	935	845								
Control Delay (s)	6.9	7.5	6.9	7.4								
Approach Delay (s)	6.9	7.5	6.9	7.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.3									
Level of Service			Α									
Intersection Capacity Utilizat	ion		24.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Future Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	6	2	2	2	2	9	2	2	2
Mvmt Flow	0	6	6	41	1	5	0	8	26	15	24	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		1		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		1		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				1		1		
HCM Control Delay		6.9		7.5				6.8		7.4		
HCM LOS		Α		Α				Α		Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	88%	38%	
Vol Thru, %	24%	50%	3%	62%	
Vol Right, %	76%	50%	10%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	29	10	40	34	
LT Vol	0	0	35	13	
Through Vol	7	5	1	21	
RT Vol	22	5	4	0	
Lane Flow Rate	34	12	47	40	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.034	0.012	0.055	0.045	
Departure Headway (Hd)	3.608	3.796	4.253	4.136	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	987	939	841	864	
Service Time	1.648	1.835	2.282	2.171	
HCM Lane V/C Ratio	0.034	0.013	0.056	0.046	
HCM Control Delay	6.8	6.9	7.5	7.4	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0	0.2	0.1	

•	→	•	•	•	*	1	†	-	/	Ţ	4
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ተተጉ		7	ተተተ	7	×	ተተጉ		1/4	ተተተ	7
Traffic Volume (vph) 188	799	145	257	1133	355	226	907	222	452	1024	236
Future Volume (vph) 188	799	145	257	1133	355	226	907	222	452	1024	236
Satd. Flow (prot) 1716	4783	0	1750	5029	1536	1750	4805	0	3395	5029	1536
Flt Permitted 0.103			0.127			0.197			0.950		
Satd. Flow (perm) 184	4783	0	232	5029	1427	362	4805	0	3385	5029	1503
Satd. Flow (RTOR)	24				272		36				234
Lane Group Flow (vph) 192	963	0	262	1156	362	231	1153	0	461	1045	241
Turn Type pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		Prot	NA	Perm
Protected Phases 3			7	4		1	6		5	2	
Permitted Phases 8			4		4	6					2
Detector Phase 3	8		7	4	4	1	6		5	2	2
Switch Phase											
Minimum Initial (s) 7.0	10.0		7.0	10.0	10.0	7.0	10.0		7.0	10.0	10.0
Minimum Split (s) 10.0	47.8		10.0	47.8	47.8	12.0	42.5		12.0	42.5	42.5
Total Split (s) 18.0			23.0	64.0	64.0	24.0	51.0		27.0	54.0	54.0
Total Split (%) 11.3%			14.4%	40.0%	40.0%	15.0%	31.9%		16.9%	33.8%	33.8%
Yellow Time (s) 3.0			3.0	4.0	4.0	3.0	4.0		3.0	4.0	4.0
All-Red Time (s) 0.0			0.0	2.8	2.8	2.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s) 0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s) 3.0			3.0	6.8	6.8	5.0	6.5		5.0	6.5	6.5
Lead/Lag Lead			Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize? Yes			Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode None	None		None	None	None	None	C-Max		None	C-Max	C-Max
Act Effct Green (s) 60.4			68.1	46.6	46.6	70.3	49.6		27.9	58.3	58.3
Actuated g/C Ratio 0.38	0.26		0.43	0.29	0.29	0.44	0.31		0.17	0.36	0.36
v/c Ratio 0.91	0.76		0.93	0.79	0.60	0.71	0.76		0.78	0.57	0.35
Control Delay 93.5	69.4		75.5	56.3	15.7	36.6	53.1		72.9	43.8	6.6
Queue Delay 0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay 93.5	69.4		75.5	56.3	15.7	36.6	53.1		72.9	43.8	6.6
LOS F			Е	Е	В	D	D		Е	D	Α
Approach Delay	73.4			50.9			50.3			46.4	
Approach LOS	Е			D			D			D	
Queue Length 50th (m) 56.4	108.3		59.6	125.3	22.9	39.2	119.8		72.4	98.7	1.5
Queue Length 95th (m) #87.2			#104.6	133.0	53.4	63.7	142.7		#100.3	125.1	22.6
Internal Link Dist (m)	312.2			181.0			207.1			198.2	
Turn Bay Length (m) 83.0			197.5		61.5	89.5			107.5		148.0
Base Capacity (vph) 213			288	1797	684	344	1513		591	1831	696
Starvation Cap Reductn 0			0	0	0	0	0		0	0	0
Spillback Cap Reductn 0			0	0	0	0	0		0	0	0
Storage Cap Reductn 0			0	0	0	0	0		0	0	0
Reduced v/c Ratio 0.90			0.91	0.64	0.53	0.67	0.76		0.78	0.57	0.35

Intersection Summary

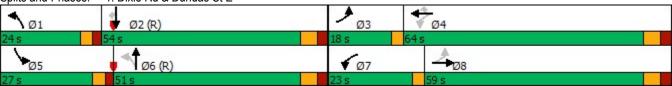
Cycle Length: 160 Actuated Cycle Length: 160

Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93


Intersection Signal Delay: 53.7 Intersection LOS: D Intersection Capacity Utilization 105.9% ICU Level of Service G

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

	۶	→	•	•	←	•	1	1	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተጉ		*	^ ^	7	*	^		44	^ ^	7
Traffic Volume (vph)	188	799	145	257	1133	355	226	907	222	452	1024	236
Future Volume (vph)	188	799	145	257	1133	355	226	907	222	452	1024	236
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		3.0	6.8	6.8	5.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00	0.93	1.00	0.99		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1715	4783		1749	5029	1427	1749	4808		3395	5029	1503
FIt Permitted	0.10	1.00		0.13	1.00	1.00	0.20	1.00		0.95	1.00	1.00
Satd. Flow (perm)	186	4783		234	5029	1427	362	4808		3395	5029	1503
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	192	815	148	262	1156	362	231	926	227	461	1045	241
RTOR Reduction (vph)	0	18	0	0	0	193	0	25	0	0	0	149
Lane Group Flow (vph)	192	945	0	262	1156	169	231	1128	0	461	1045	92
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		4	6					2
Actuated Green, G (s)	56.7	42.0		64.3	46.6	46.6	68.7	49.5		27.9	58.2	58.2
Effective Green, g (s)	56.7	42.0		64.3	46.6	46.6	68.7	49.5		27.9	58.2	58.2
Actuated g/C Ratio	0.35	0.26		0.40	0.29	0.29	0.43	0.31		0.17	0.36	0.36
Clearance Time (s)	3.0	6.8		3.0	6.8	6.8	5.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	206	1255		276	1464	415	321	1487		592	1829	546
v/s Ratio Prot	0.09	0.20		c0.11	0.23		0.09	c0.23		c0.14	0.21	
v/s Ratio Perm	0.24			c0.27		0.12	0.22					0.06
v/c Ratio	0.93	0.75		0.95	0.79	0.41	0.72	0.76		0.78	0.57	0.17
Uniform Delay, d1	41.7	54.2		40.9	52.2	45.6	30.9	49.9		63.1	40.9	34.5
Progression Factor	1.33	1.24		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	42.6	2.5		40.1	2.9	0.7	7.5	3.7		6.4	1.3	0.7
Delay (s)	98.1	69.8		81.0	55.1	46.3	38.4	53.5		69.5	42.2	35.2
Level of Service	F	Е		F	Е	D	D	D		Е	D	D
Approach Delay (s)		74.5			57.1			51.0			48.4	
Approach LOS		Е			Е			D			D	
Intersection Summary												
HCM 2000 Control Delay			56.5	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Cap	acity ratio		0.86									
Actuated Cycle Length (s)			160.0		um of lost				21.3			
Intersection Capacity Utiliz	ation		105.9%	IC	CU Level	of Service	•		G			
Analysis Period (min)			15									
a Critical Lana Croup												

c Critical Lane Group

	۶	-	•	1	•	•	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^		1	ተተ _ጉ		*		7	7	1	
Traffic Volume (vph)	44	1174	37	46	1611	148	76	0	25	106	9	19
Future Volume (vph)	44	1174	37	46	1611	148	76	0	25	106	9	19
Satd. Flow (prot)	1750	4944	0	1750	4941	0	1750	0	1566	1750	1628	0
Flt Permitted	0.090			0.187			0.738			0.950		
Satd. Flow (perm)	166	4944	0	342	4941	0	1339	0	1509	1707	1628	0
Satd. Flow (RTOR)		5			18				27		20	
Lane Group Flow (vph)	47	1302	0	49	1891	0	82	0	27	114	30	0
Turn Type	Perm	NA		Perm	NA		Perm		Perm	Perm	NA	
Protected Phases		2			6						8	
Permitted Phases	2			6			4		4	8		
Detector Phase	2	2		6	6		4		4	8	8	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0		8.0	8.0	8.0	
Minimum Split (s)	34.0	34.0		34.0	34.0		44.0		44.0	44.0	44.0	
Total Split (s)	107.0	107.0		107.0	107.0		53.0		53.0	53.0	53.0	
Total Split (%)	66.9%	66.9%		66.9%	66.9%		33.1%		33.1%	33.1%	33.1%	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0		3.0	3.0	3.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		4.0		4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		7.0		7.0	7.0	7.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max		C-Max	C-Max		None		None	None	None	
Act Effct Green (s)	119.1	119.1		119.1	119.1		26.9		26.9	26.9	26.9	
Actuated g/C Ratio	0.74	0.74		0.74	0.74		0.17		0.17	0.17	0.17	
v/c Ratio	0.38	0.35		0.19	0.51		0.37		0.10	0.40	0.10	
Control Delay	17.6	5.1		5.1	8.0		60.2		16.2	60.6	25.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Delay	17.6	5.1		5.1	8.0		60.2		16.2	60.6	25.0	
LOS	В	A		Α	A		Е	10.0	В	Е	С	
Approach Delay		5.5			7.9			49.3			53.1	
Approach LOS		Α		. –	Α			D			D	
Queue Length 50th (m)	4.6	63.6		1.7	179.0		21.6		0.0	30.2	2.5	
Queue Length 95th (m)	11.2	26.4		m3.4	180.5		38.0		8.6	48.8	11.7	
Internal Link Dist (m)		184.5			312.2			88.0			88.9	
Turn Bay Length (m)	46.0	2221		60.0			001		1-0	400	100	
Base Capacity (vph)	123	3681		254	3682		384		453	490	482	
Starvation Cap Reductn	0	0		0	0		0		0	0	0	
Spillback Cap Reductn	0	0		0	0		0		0	0	0	
Storage Cap Reductn	0	0		0	0		0		0	0	0	
Reduced v/c Ratio	0.38	0.35		0.19	0.51		0.21		0.06	0.23	0.06	

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160

Offset: 101 (63%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

1225 Dundas Street

Maximum v/c Ratio: 0.51		
Intersection Signal Delay: 10.1	Intersection LOS: B	
Intersection Capacity Utilization 68.5%	ICU Level of Service C	
Analysis Period (min) 15		
m Volume for 95th percentile queue is metered by upstream	am signal.	

	۶	→	*	•	+	•	1	1	~	/	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተጉ		7	ተተጉ		7		7	Y	ĵ.	
Traffic Volume (vph)	44	1174	37	46	1611	148	76	0	25	106	9	19
Future Volume (vph)	44	1174	37	46	1611	148	76	0	25	106	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.96	1.00	0.98	
Flpb, ped/bikes	1.00	1.00		0.99	1.00		0.99		1.00	0.98	1.00	
Frt	1.00	1.00		1.00	0.99		1.00		0.85	1.00	0.90	
Fit Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1747	4946		1737	4942		1724		1509	1707	1628	
FIt Permitted	0.09	1.00		0.19	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	165	4946		342	4942		1338		1509	1707	1628	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	47	1262	40	49	1732	159	82	0	27	114	10	20
RTOR Reduction (vph)	0	1	0	0	5	0	0	0	22	0	17	0
Lane Group Flow (vph)	47	1301	0	49	1886	0	82	0	5	114	13	0
Confl. Peds. (#/hr)	12		18	18		12	12		19	19		12
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA		Perm	NA		Perm		Perm	Perm	NA	
Protected Phases		2			6						8	
Permitted Phases	2			6			4		4	8		
Actuated Green, G (s)	119.1	119.1		119.1	119.1		26.9		26.9	26.9	26.9	
Effective Green, g (s)	119.1	119.1		119.1	119.1		26.9		26.9	26.9	26.9	
Actuated g/C Ratio	0.74	0.74		0.74	0.74		0.17		0.17	0.17	0.17	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0		7.0	7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)	122	3681		254	3678		224		253	286	273	
v/s Ratio Prot		0.26			c0.38						0.01	
v/s Ratio Perm	0.28			0.14			0.06		0.00	c0.07		
v/c Ratio	0.39	0.35		0.19	0.51		0.37		0.02	0.40	0.05	
Uniform Delay, d1	7.3	7.1		6.1	8.5		59.0		55.5	59.3	55.8	
Progression Factor	0.71	0.59		0.39	0.76		1.00		1.00	1.00	1.00	
Incremental Delay, d2	8.7	0.3		1.5	0.4		1.0		0.0	0.9	0.1	
Delay (s)	13.9	4.4		3.9	6.9		60.0		55.6	60.3	55.9	
Level of Service	В	A		Α	Α		Е		Е	Е	E	
Approach Delay (s)		4.7			6.8			58.9			59.3	
Approach LOS		Α			Α			E			Е	
Intersection Summary												
HCM 2000 Control Delay			9.8	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.49									
Actuated Cycle Length (s)			160.0	S	um of lost	time (s)			14.0			
Intersection Capacity Utiliza	ition		68.5%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									

c Critical Lane Group

	٠	→	•	•	←	*	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	ተ ተጉ		1	ተ ተጉ		1	1		7	4	
Traffic Volume (vph)	37	1168	19	88	1525	20	21	11	110	15	2	26
Future Volume (vph)	37	1168	19	88	1525	20	21	11	110	15	2	26
Satd. Flow (prot)	1733	4962	0	1750	4967	0	1700	1555	0	1750	1542	0
Flt Permitted	0.133			0.207			0.739			0.591		
Satd. Flow (perm)	242	4962	0	378	4967	0	1299	1555	0	1076	1542	0
Satd. Flow (RTOR)		2			2			111			26	
Lane Group Flow (vph)	37	1199	0	89	1560	0	21	122	0	15	28	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	2			4			4	
Permitted Phases	2			2			4			4		
Detector Phase	2	2		1	2		4	4		4	4	
Switch Phase												
Minimum Initial (s)	8.0	8.0		5.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	35.5	35.5		9.5	35.5		46.5	46.5		46.5	46.5	
Total Split (s)	96.0	96.0		13.0	96.0		51.0	51.0		51.0	51.0	
Total Split (%)	60.0%	60.0%		8.1%	60.0%		31.9%	31.9%		31.9%	31.9%	
Yellow Time (s)	4.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.5	2.5		0.0	2.5		4.5	4.5		4.5	4.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.5	6.5		3.0	6.5		7.5	7.5		7.5	7.5	
Lead/Lag	Lag	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	C-Max	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	115.2	115.2		126.1	115.2		20.4	20.4		20.4	20.4	
Actuated g/C Ratio	0.72	0.72		0.79	0.72		0.13	0.13		0.13	0.13	
v/c Ratio	0.21	0.34		0.25	0.44		0.13	0.41		0.11	0.13	
Control Delay	16.5	10.6		3.1	4.0		56.0	14.8		55.0	18.1	
Queue Delay	0.0	0.0		0.0	0.1		0.0	0.0		0.0	0.0	
Total Delay	16.5	10.6		3.1	4.0		56.0	14.8		55.0	18.1	
LOS	В	В		Α	A		Е	В		D	В	
Approach Delay		10.8			4.0			20.8			31.0	
Approach LOS	0.0	В		0.0	Α		0.0	С		4.7	С	
Queue Length 50th (m)	2.3	30.9		0.6	13.6		6.6	3.4		4.7	0.6	
Queue Length 95th (m)	14.1	83.5		3.5	52.9		12.9	19.4		10.4	9.0	
Internal Link Dist (m)	40.0	148.2		00.0	184.5		40.5	118.2		25.0	107.5	
Turn Bay Length (m)	46.0	2570		60.0	2575		48.5	F02		35.0	400	
Base Capacity (vph)	174	3572		388	3575		353	503		292	438	
Starvation Cap Reductn	0	0		0	448		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.21	0.34		0.23	0.50		0.06	0.24		0.05	0.06	

Intersection Summary

Cycle Length: 160 Actuated Cycle Length: 160

Offset: 114 (71%), Referenced to phase 2:EBWB, Start of Green

Natural Cycle: 95

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.44

Intersection Signal Delay: 7.9 Intersection LOS: A Intersection Capacity Utilization 74.0% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Dundas St E & Arena Rd

	۶	→	•	•	+	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^		*	^		7	1→		7	₽	
Traffic Volume (vph)	37	1168	19	88	1525	20	21	11	110	15	2	26
Future Volume (vph)	37	1168	19	88	1525	20	21	11	110	15	2	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		3.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.98	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.86		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1728	4960		1747	4968		1670	1554		1731	1541	
Flt Permitted	0.13	1.00		0.21	1.00		0.74	1.00		0.59	1.00	
Satd. Flow (perm)	242	4960		381	4968		1299	1554		1076	1541	
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	37	1180	19	89	1540	20	21	11	111	15	2	26
RTOR Reduction (vph)	0	1	0	0	1	0	0	97	0	0	23	0
Lane Group Flow (vph)	37	1198	0	89	1559	0	21	25	0	15	5	0
Confl. Peds. (#/hr)	11		24	24		11	15		11	11		15
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	2			4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	115.2	115.2		122.6	115.2		20.4	20.4		20.4	20.4	
Effective Green, g (s)	115.2	115.2		122.6	115.2		20.4	20.4		20.4	20.4	
Actuated g/C Ratio	0.72	0.72		0.77	0.72		0.13	0.13		0.13	0.13	
Clearance Time (s)	6.5	6.5		3.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	174	3571		355	3576		165	198		137	196	
v/s Ratio Prot		0.24		c0.01	c0.31			c0.02			0.00	
v/s Ratio Perm	0.15			0.18			0.02			0.01		
v/c Ratio	0.21	0.34		0.25	0.44		0.13	0.13		0.11	0.03	
Uniform Delay, d1	7.4	8.3		4.9	9.1		61.9	61.9		61.8	61.1	
Progression Factor	1.00	1.00		0.31	0.31		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.8	0.3		0.3	0.3		0.3	0.3		0.4	0.1	
Delay (s)	10.2	8.5		1.9	3.2		62.3	62.2		62.1	61.2	
Level of Service	В	Α		Α	Α		Е	Е		Е	Е	
Approach Delay (s)		8.6			3.1			62.2			61.5	
Approach LOS		Α			Α			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			8.9	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capac	city ratio		0.38									
Actuated Cycle Length (s)			160.0		um of lost				17.0			
Intersection Capacity Utilizat	tion		74.0%	IC	CU Level of	of Service			D			
Analysis Period (min)			15									

c Critical Lane Group

	۶	•	4	†	ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ની	1	
Traffic Volume (vph)	22	30	38	149	113	37
Future Volume (vph)	22	30	38	149	113	37
Satd. Flow (prot)	1663	0	0	1824	1781	0
Flt Permitted	0.980			0.990		
Satd. Flow (perm)	1663	0	0	1824	1781	0
Lane Group Flow (vph)	55	0	0	199	159	0
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Control Type: Unsignalize	ed					
Intersection Capacity Utili				IC	U Level o	of Service A
Analysis Period (min) 15						

07-31-2024 CGH Transportation Page 10 MC

	•	•	1	†	ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			र्स	1		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	22	30	38	149	113	37	
Future Volume (vph)	22	30	38	149	113	37	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	23	32	40	159	120	39	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	55	199	159				
Volume Left (vph)	23	40	0				
Volume Right (vph)	32	0	39				
Hadj (s)	-0.23	0.07	-0.11				
Departure Headway (s)	4.4	4.3	4.1				
Degree Utilization, x	0.07	0.24	0.18				
Capacity (veh/h)	742	823	854				
Control Delay (s)	7.8	8.6	8.0				
Approach Delay (s)	7.8	8.6	8.0				
Approach LOS	Α	Α	Α				
Intersection Summary							
Delay			8.3				
Level of Service			Α				
Intersection Capacity Utiliza	ation		33.8%	IC	U Level c	of Service	
Analysis Period (min)			15				

Intersection						
Intersection Delay, s/veh	8.2					
Intersection LOS	Α.2					
	, (
Mayamant	EDI	EDD	NIDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	20	20	4	}	27
Traffic Vol, veh/h	22	30	38	149	113	37
Future Vol, veh/h	22	30	38	149	113	37
Peak Hour Factor	0.94	0.94	0.94	0.94 2	0.94	0.94
Heavy Vehicles, %	23	32	40	159	120	39
Mymt Flow						
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	7.8		8.5		8	
HCM LOS	Α		Α		Α	
Lane		NBLn1	EBLn1	SBLn1		
Vol Left, %		20%	42%	0%		
Vol Thru, %		80%	0%	75%		
Vol Right, %		0%	58%	25%		
Sign Control		Stop	Stop	Stop		
Traffic Vol by Lane				Clop		
		187	52	150		
LT Vol		187 38	52 22			
LT Vol Through Vol				150		
		38	22	150 0		
Through Vol		38 149	22 0	150 0 113		
Through Vol RT Vol		38 149 0	22 0 30	150 0 113 37		
Through Vol RT Vol Lane Flow Rate		38 149 0 199	22 0 30 55	150 0 113 37 160		
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		38 149 0 199	22 0 30 55 1	150 0 113 37 160		
Through Vol RT Vol Lane Flow Rate Geometry Grp		38 149 0 199 1 0.232	22 0 30 55 1 0.068	150 0 113 37 160 1 0.179		
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		38 149 0 199 1 0.232 4.193	22 0 30 55 1 0.068 4.445	150 0 113 37 160 1 0.179 4.033		
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		38 149 0 199 1 0.232 4.193 Yes	22 0 30 55 1 0.068 4.445 Yes	150 0 113 37 160 1 0.179 4.033 Yes		
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		38 149 0 199 1 0.232 4.193 Yes 847	22 0 30 55 1 0.068 4.445 Yes 811	150 0 113 37 160 1 0.179 4.033 Yes 876		
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		38 149 0 199 1 0.232 4.193 Yes 847 2.263	22 0 30 55 1 0.068 4.445 Yes 811 2.445	150 0 113 37 160 1 0.179 4.033 Yes 876 2.12		
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		38 149 0 199 1 0.232 4.193 Yes 847 2.263 0.235	22 0 30 55 1 0.068 4.445 Yes 811 2.445 0.068	150 0 113 37 160 1 0.179 4.033 Yes 876 2.12 0.183		

	٠	→	*	1	+	•	4	1	<i>></i>	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Satd. Flow (prot)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Flt Permitted					0.973			0.999			0.976	
Satd. Flow (perm)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Lane Group Flow (vph)	0	5	0	0	63	0	0	68	0	0	20	0
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 24.3%			IC	U Level	of Service	Α					
Analysis Period (min) 15												

	•	→	•	1	•	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	5	63	68	20								
Volume Left (vph)	0	35	2	10								
Volume Right (vph)	3	21	35	0								
Hadj (s)	-0.33	-0.02	-0.26	0.13								
Departure Headway (s)	3.8	4.1	3.8	4.2								
Degree Utilization, x	0.01	0.07	0.07	0.02								
Capacity (veh/h)	913	862	918	828								
Control Delay (s)	6.8	7.4	7.1	7.3								
Approach Delay (s)	6.8	7.4	7.1	7.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									
Level of Service			Α									
Intersection Capacity Utilizati	ion		24.3%	IC	U Level o	of Service			Α			_
Analysis Period (min)			15									

Intersection			
Intersection Delay, s/veh	7.2		
Intersection LOS	Α		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Future Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles, %	2	2	2	6	2	2	2	2	3	2	2	2
Mvmt Flow	0	2	3	35	7	21	2	31	35	10	10	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		1		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			1		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			1			1		
HCM Control Delay		6.8		7.4			7.1			7.3		
HCM LOS		Α		Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	0%	55%	50%	
Vol Thru, %	45%	40%	11%	50%	
Vol Right, %	52%	60%	34%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	66	5	62	20	
LT Vol	2	0	34	10	
Through Vol	30	2	7	10	
RT Vol	34	3	21	0	
Lane Flow Rate	67	5	63	20	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.07	0.005	0.071	0.024	
Departure Headway (Hd)	3.765	3.774	4.065	4.205	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	948	943	880	849	
Service Time	1.8	1.818	2.096	2.244	
HCM Lane V/C Ratio	0.071	0.005	0.072	0.024	
HCM Control Delay	7.1	6.8	7.4	7.3	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0	0.2	0.1	

	۶	-	•	•	•	•	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተጉ		7	ተተተ	7	*	ተተጉ		44	ተተተ	7
Traffic Volume (vph)	188	799	145	257	1133	355	226	907	222	452	1024	236
Future Volume (vph)	188	799	145	257	1133	355	226	907	222	452	1024	236
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	83.0		0.0	197.5		61.5	89.5		0.0	107.5		148.0
Storage Lanes	1		0	1		1	1		0	2		1
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	0.91	0.91	0.97	0.91	1.00
Ped Bike Factor	0.99	0.99		0.99		0.93	1.00	0.99		1.00		0.98
Frt		0.977				0.850		0.970				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1716	4783	0	1750	5029	1536	1750	4805	0	3395	5029	1536
Flt Permitted	0.101			0.115			0.192			0.950		
Satd. Flow (perm)	181	4783	0	210	5029	1427	353	4805	0	3385	5029	1503
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		22				246		37				241
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		336.2			205.0			231.1			222.2	
Travel Time (s)		20.2			12.3			13.9			13.3	
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Adj. Flow (vph)	192	815	148	262	1156	362	231	926	227	461	1045	241
Shared Lane Traffic (%)												
Lane Group Flow (vph)	192	963	0	262	1156	362	231	1153	0	461	1045	241
Enter Blocked Intersection	No	No	No	No	No							
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			7.0			7.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	•	15	25	•	15	25	•	15	25	•	15
Number of Detectors	1	2		1	2	1	1	2		1	2	1
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	•	-	*	1	•	*	1	Ť	1	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		4	6					2
Detector Phase	3	8		7	4	4	1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	10.0	10.0	7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	10.0	47.8		10.0	47.8	47.8	12.0	42.5		12.0	42.5	42.5
Total Split (s)	22.0	48.0		27.0	53.0	53.0	29.0	53.0		32.0	56.0	56.0
Total Split (%)	13.8%	30.0%		16.9%	33.1%	33.1%	18.1%	33.1%		20.0%	35.0%	35.0%
Maximum Green (s)	19.0	41.2		24.0	46.2	46.2	24.0	46.5		27.0	49.5	49.5
Yellow Time (s)	3.0	4.0		3.0	4.0	4.0	3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	2.8		0.0	2.8	2.8	2.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	6.8		3.0	6.8	6.8	5.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0	10.0		10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0	31.0		26.0			26.0	26.0
Pedestrian Calls (#/hr)		40			51	51		11			7	7
Act Effct Green (s)	60.6	39.7		68.3	44.4	44.4	71.7	51.9		25.3	58.9	58.9
Actuated g/C Ratio	0.38	0.25		0.43	0.28	0.28	0.45	0.32		0.16	0.37	0.37
v/c Ratio	0.83	0.80		0.88	0.83	0.63	0.73	0.73		0.86	0.56	0.34
Control Delay	77.0	69.5		67.9	60.0	20.4	37.8	50.5		81.7	43.3	5.8
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	77.0	69.5		67.9	60.0	20.4	37.8	50.5		81.7	43.3	5.8
LOS	Е	Е		Е	Е	С	D	D		F	D	Α
Approach Delay		70.8			53.1			48.4			48.3	
Approach LOS		Е			D			D			D	
Queue Length 50th (m)	54.6	94.2		60.0	125.5	31.4	41.2	121.0		73.7	100.7	0.0
Queue Length 95th (m)	#84.2	112.0		#101.6	143.0	66.9	61.7	140.0		93.9	122.7	20.1
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	83.0			197.5		61.5	89.5			107.5		148.0
Base Capacity (vph)	252	1247		320	1452	587	380	1583		572	1851	705
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.76	0.77		0.82	0.80	0.62	0.61	0.73		0.81	0.56	0.34

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay: 54.0 Intersection LOS: D

Intersection Capacity Utilization 105.9% ICU Level of Service G

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

	٠	→	*	•	←	•	1	1	~	/	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	††		*	^	7	*	^		44	**	7
Traffic Volume (vph)	188	799	145	257	1133	355	226	907	222	452	1024	236
Future Volume (vph)	188	799	145	257	1133	355	226	907	222	452	1024	236
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		3.0	6.8	6.8	5.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00	0.93	1.00	0.99		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1716	4783		1749	5029	1427	1749	4808		3395	5029	1503
FIt Permitted	0.10	1.00		0.12	1.00	1.00	0.19	1.00		0.95	1.00	1.00
Satd. Flow (perm)	181	4783		212	5029	1427	354	4808		3395	5029	1503
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	192	815	148	262	1156	362	231	926	227	461	1045	241
RTOR Reduction (vph)	0	17	0	0	0	178	0	25	0	0	0	152
Lane Group Flow (vph)	192	946	0	262	1156	184	231	1128	0	461	1045	89
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		4	6					2
Actuated Green, G (s)	56.9	39.8		64.5	44.4	44.4	70.2	51.9		25.3	58.9	58.9
Effective Green, g (s)	56.9	39.8		64.5	44.4	44.4	70.2	51.9		25.3	58.9	58.9
Actuated g/C Ratio	0.36	0.25		0.40	0.28	0.28	0.44	0.32		0.16	0.37	0.37
Clearance Time (s)	3.0	6.8		3.0	6.8	6.8	5.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	228	1189		293	1395	395	314	1559		536	1851	553
v/s Ratio Prot	0.09	0.20		c0.12	0.23		0.08	0.23		c0.14	0.21	
v/s Ratio Perm	0.21			c0.24		0.13	c0.24					0.06
v/c Ratio	0.84	0.80		0.89	0.83	0.47	0.74	0.72		0.86	0.56	0.16
Uniform Delay, d1	42.1	56.3		43.1	54.2	48.0	30.2	47.7		65.6	40.3	33.9
Progression Factor	1.26	1.16		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	22.7	3.6		27.2	4.2	0.9	8.7	3.0		13.2	1.3	0.6
Delay (s)	75.9	69.2		70.3	58.4	48.8	38.8	50.7		78.9	41.6	34.6
Level of Service	E	Е		E	Е	D	D	D		Е	D	С
Approach Delay (s)		70.3			58.2			48.7			50.4	
Approach LOS		Е			Е			D			D	
Intersection Summary												
HCM 2000 Control Delay			56.1	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Cap	acity ratio		0.84									
Actuated Cycle Length (s)			160.0	S	um of lost	time (s)			21.3			
Intersection Capacity Utiliz	zation		105.9%	IC	CU Level	of Service	•		G			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Appendix N

2028 Future Background Conditions Synchro Worksheets

	۶	→	*	•	←	•	1	1	~	/	Ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	↑ ↑		7	↑ ↑		7	ተተጉ		44	^	7
Traffic Volume (vph)	158	900	155	96	438	169	83	767	139	368	901	178
Future Volume (vph)	158	900	155	96	438	169	83	767	139	368	901	178
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	95.0		0.0	197.5		61.5	96.0		0.0	107.5		148.0
Storage Lanes	1		0	1		0	1		0	2		1
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.91	0.91	0.97	0.91	1.00
Ped Bike Factor	0.99	1.00		1.00	0.99		1.00	1.00		1.00		0.99
Frt		0.978			0.958			0.977				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1623	3320	0	1638	3089	0	1716	4642	0	3267	4794	1479
Flt Permitted	0.950			0.950			0.278			0.950		
Satd. Flow (perm)	1614	3320	0	1631	3089	0	502	4642	0	3261	4794	1459
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		14			36			22				185
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		336.2			205.0			231.1			222.2	
Travel Time (s)		20.2			12.3			13.9			13.3	
Confl. Peds. (#/hr)	11		15	15		11	1		3	3		1
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	10%	5%	3%	9%	8%	15%	4%	8%	6%	6%	7%	8%
Adj. Flow (vph)	165	938	161	100	456	176	86	799	145	383	939	185
Shared Lane Traffic (%)												
Lane Group Flow (vph)	165	1099	0	100	632	0	86	944	0	383	939	185
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			7.0			7.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	•	-	*	1	•	*	1	†	1	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Detector Phase	3	8		7	4		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	10.0		7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	10.0	47.8		10.0	47.8		15.0	42.5		15.0	42.5	42.5
Total Split (s)	29.0	67.0		17.0	55.0		15.0	47.0		29.0	61.0	61.0
Total Split (%)	18.1%	41.9%		10.6%	34.4%		9.4%	29.4%		18.1%	38.1%	38.1%
Maximum Green (s)	26.0	60.2		14.0	48.2		12.0	40.5		24.0	54.5	54.5
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	2.8		0.0	2.8		0.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0			10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0			26.0			26.0	26.0
Pedestrian Calls (#/hr)		15			11			3			1	1
Act Effct Green (s)	20.9	57.2		12.9	49.2		59.5	46.2		22.4	60.8	60.8
Actuated g/C Ratio	0.13	0.36		0.08	0.31		0.37	0.29		0.14	0.38	0.38
v/c Ratio	0.78	0.92		0.76	0.65		0.33	0.70		0.84	0.52	0.28
Control Delay	92.9	53.1		104.1	48.6		28.7	53.8		83.5	40.5	5.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	92.9	53.1		104.1	48.6		28.7	53.8		83.5	40.5	5.7
LOS	F	D		F	D		С	D		F	D	Α
Approach Delay		58.3			56.2			51.7			47.1	
Approach LOS		E			E			D			D	
Queue Length 50th (m)	43.3	174.2		31.5	84.8		15.3	100.5		61.3	87.1	0.0
Queue Length 95th (m)	75.9	152.7		#58.2	109.5		26.5	118.7		80.0	104.7	17.1
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	95.0			197.5			96.0			107.5		148.0
Base Capacity (vph)	263	1257		143	984		284	1356		490	1821	668
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.63	0.87		0.70	0.64		0.30	0.70		0.78	0.52	0.28

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 145 (91%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 120

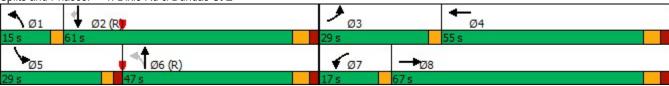
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92

Intersection Signal Delay: 52.7 Intersection LOS: D

1225 Dundas Street

Intersection Capacity Utilization 96.6%


ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

	٠	→	*	•	←	•	1	1	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	†		*	ተተኈ		14.14	ተተተ	7
Traffic Volume (vph)	158	900	155	96	438	169	83	767	139	368	901	178
Future Volume (vph)	158	900	155	96	438	169	83	767	139	368	901	178
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1623	3320		1638	3090		1716	4642		3267	4794	1459
Flt Permitted	0.95	1.00		0.95	1.00		0.28	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1623	3320		1638	3090		501	4642		3267	4794	1459
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	165	938	161	100	456	176	86	799	145	383	939	185
RTOR Reduction (vph)	0	9	0	0	25	0	0	16	0	0	0	115
Lane Group Flow (vph)	165	1090	0	100	607	0	86	928	0	383	939	70
Confl. Peds. (#/hr)	11		15	15		11	1		3	3		1
Heavy Vehicles (%)	10%	5%	3%	9%	8%	15%	4%	8%	6%	6%	7%	8%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Actuated Green, G (s)	20.9	57.2		12.9	49.2		56.0	46.2		22.4	60.8	60.8
Effective Green, g (s)	20.9	57.2		12.9	49.2		56.0	46.2		22.4	60.8	60.8
Actuated g/C Ratio	0.13	0.36		0.08	0.31		0.35	0.29		0.14	0.38	0.38
Clearance Time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	212	1186		132	950		249	1340		457	1821	554
v/s Ratio Prot	c0.10	c0.33		0.06	0.20		0.02	c0.20		c0.12	0.20	
v/s Ratio Perm							0.10					0.05
v/c Ratio	0.78	0.92		0.76	0.64		0.35	0.69		0.84	0.52	0.13
Uniform Delay, d1	67.3	49.2		72.0	47.7		35.6	50.6		67.0	38.2	32.3
Progression Factor	1.06	0.85		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	14.7	10.2		21.7	1.4		0.8	3.0		12.6	1.0	0.5
Delay (s)	86.1	52.3		93.7	49.2		36.4	53.6		79.7	39.3	32.8
Level of Service	F	D		F	D		D	D		Е	D	С
Approach Delay (s)		56.7			55.3			52.1			48.8	
Approach LOS		E			Е			D			D	
Intersection Summary												
HCM 2000 Control Delay			52.8	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.83									
Actuated Cycle Length (s)			160.0		um of lost				21.3			
Intersection Capacity Utiliza	ation		96.6%	IC	U Level o	of Service)		F			
Analysis Period (min)			15									
0 10 11 0												

c Critical Lane Group

	۶	-	•	•	•	•	1	†	~	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	†		1		7	7	4	
Traffic Volume (vph)	14	1175	25	18	707	57	18	0	9	131	9	19
Future Volume (vph)	14	1175	25	18	707	57	18	0	9	131	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	78.0		0.0	81.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		1.00	1.00		0.99		0.99	1.00	0.99	
Frt		0.997			0.989				0.850		0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1566	3420	0	1750	3291	0	1750	0	1309	1750	1633	0
Flt Permitted	0.950			0.950			0.738			0.950		
Satd. Flow (perm)	1558	3420	0	1747	3291	0	1346	0	1290	1745	1633	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			9				55		20	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		208.5			336.2			112.0			112.9	
Travel Time (s)		12.5			20.2			10.1			10.2	
Confl. Peds. (#/hr)	5		3	3		5	8		2	2		8
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
Adj. Flow (vph)	15	1263	27	19	760	61	19	0	10	141	10	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	15	1290	0	19	821	0	19	0	10	141	30	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	, i		3.5	J		3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1		1	1	2	
Detector Template	Left	Thru		Left	Thru		Left		Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0		2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0		2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex		CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	· ·				· ·					· ·		
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0		0.0	0.0	9.4	
Detector 2 Size(m)		0.6			0.6						0.6	
Detector 2 Type		CI+Ex			Cl+Ex						CI+Ex	
Detector 2 Channel		OI LX			OI ' LX						OI. LX	
Detector 2 Extend (s)		0.0			0.0						0.0	
Delector 2 Exterior (2)		0.0			0.0						0.0	

07-31-2024 CGH Transportation Page 5 MC

	٠	→	•	1	•	*	4	1	-	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Detector Phase	5	2		1	6		4		4	8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0		8.0	8.0	8.0	
Minimum Split (s)	11.0	34.0		11.0	34.0		44.0		44.0	44.0	44.0	
Total Split (s)	13.0	99.0		13.0	99.0		48.0		48.0	48.0	48.0	
Total Split (%)	8.1%	61.9%		8.1%	61.9%		30.0%		30.0%	30.0%	30.0%	
Maximum Green (s)	9.0	92.0		9.0	92.0		41.0		41.0	41.0	41.0	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0		3.0	3.0	3.0	
All-Red Time (s)	1.0	3.0		1.0	3.0		4.0		4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None		None	None	None	
Walk Time (s)		10.0			10.0		10.0		10.0	10.0	10.0	
Flash Dont Walk (s)		17.0			17.0		27.0		27.0	27.0	27.0	
Pedestrian Calls (#/hr)		3			5		2		2	8	8	
Act Effct Green (s)	7.7	117.9		7.8	120.2		20.7		20.7	20.7	20.7	
Actuated g/C Ratio	0.05	0.74		0.05	0.75		0.13		0.13	0.13	0.13	
v/c Ratio	0.20	0.51		0.22	0.33		0.11		0.05	0.62	0.13	
Control Delay	107.0	3.5		74.1	6.2		57.9		0.4	76.4	28.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Delay	107.0	3.6		74.1	6.2		57.9		0.4	76.4	28.5	
LOS	F	Α		Е	Α		Е		Α	E	С	
Approach Delay		4.8			7.7			38.1			68.0	
Approach LOS		Α			Α			D			Е	
Queue Length 50th (m)	5.0	31.5		6.4	22.1		5.5		0.0	44.0	2.9	
Queue Length 95th (m)	m10.1	12.3		m12.4	52.6		12.3		0.0	59.3	11.7	
Internal Link Dist (m)		184.5			312.2			88.0			88.9	
Turn Bay Length (m)	78.0			81.0								
Base Capacity (vph)	89	2519		99	2473		344		371	447	433	
Starvation Cap Reductn	0	99		0	0		0		0	0	0	
Spillback Cap Reductn	0	0		0	0		0		0	0	0	
Storage Cap Reductn	0	0		0	0		0		0	0	0	
Reduced v/c Ratio	0.17	0.53		0.19	0.33		0.06		0.03	0.32	0.07	

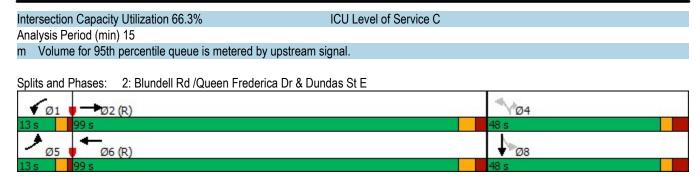
Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 32 (20%), Referenced to phase 2:EBT and 6:WBT, Start of Green


Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.62

Intersection Signal Delay: 10.8 Intersection LOS: B

1225 Dundas Street

	۶	→	*	•	←	•	1	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	†		ሻ	†		7		7	Ť	₽	
Traffic Volume (vph)	14	1175	25	18	707	57	18	0	9	131	9	19
Future Volume (vph)	14	1175	25	18	707	57	18	0	9	131	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.99	1.00 1.00	0.99 1.00	
Flpb, ped/bikes Frt	1.00 1.00	1.00 1.00		1.00 1.00	1.00 0.99		0.99 1.00		1.00 0.85	1.00	0.90	
FIt Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1566	3420		1750	3291		1733		1290	1745	1633	
Flt Permitted	0.95	1.00		0.95	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	1566	3420		1750	3291		1345		1290	1745	1633	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	15	1263	27	19	760	61	19	0.50	10	141	10	20
RTOR Reduction (vph)	0	1	0	0	2	0	0	0	9	0	17	0
Lane Group Flow (vph)	15	1289	0	19	819	0	19	0	1	141	13	0
Confl. Peds. (#/hr)	5		3	3		5	8		2	2		8
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Actuated Green, G (s)	3.5	116.3		5.0	117.8		20.7		20.7	20.7	20.7	
Effective Green, g (s)	3.5	116.3		5.0	117.8		20.7		20.7	20.7	20.7	
Actuated g/C Ratio	0.02	0.73		0.03	0.74		0.13		0.13	0.13	0.13	
Clearance Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)	34	2485		54	2422		174		166	225	211	
v/s Ratio Prot	0.01	c0.38		c0.01	0.25		0.04		0.00	0.00	0.01	
v/s Ratio Perm	0.44	0.50		0.25	0.24		0.01		0.00	c0.08	0.00	
v/c Ratio	0.44	0.52 9.6		0.35 75.9	0.34 7.4		0.11 61.5		0.01 60.7	0.63 66.0	0.06 61.1	
Uniform Delay, d1 Progression Factor	77.3 1.39	0.26		0.94	0.70		1.00		1.00	1.00	1.00	
Incremental Delay, d2	7.9	0.20		3.6	0.70		0.3		0.0	5.4	0.1	
Delay (s)	115.4	3.2		74.8	5.5		61.8		60.7	71.4	61.2	
Level of Service	F	A		74.0 E	Α		E		E	, i	E	
Approach Delay (s)	•	4.5		_	7.1		_	61.4	_	-	69.6	
Approach LOS		A			Α			E			E	
• •												
Intersection Summary			40.0	1.1	014 0000	1						
HCM 2000 Control Delay	noity rotio		10.9	H	CM 2000	Level of S	service		В			
HCM 2000 Volume to Capa	acity ratio		0.53 160.0						18.0			
Actuated Cycle Length (s) Intersection Capacity Utilization	ation		66.3%						18.0 C			
Analysis Period (min)	auOH		15						U			
miaiyoio i enou (iiiii)			10									

c Critical Lane Group

Bell Bell Bell Bell Bell Well Well Well Nel Nel Nel Sel Sel Sel Sel Lane Configurations Nel Nel Nel Nel Nel Sel Sel Sel Sel Lane Configurations Nel Nel Nel Nel Sel Sel Sel Sel Lane Configurations Nel Nel Nel Nel Sel Sel Sel Sel Sel Lane Configurations Nel Nel Nel Nel Sel Sel		۶	→	*	•	←	•	1	1	~	/	Ţ	4
Traffic Volume (yph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	*	† 1>		7	†		7	1		7	1	
Future Volume (vph)	Traffic Volume (vph)	19		17	44		8			54	13		36
		19	1228	17	44	774	8	7	1	54	13	3	36
Storage Langthr (m)	` ' '	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes	,	46.0		0.0	60.0		0.0	48.5		0.0	35.0		0.0
Taper Length (m)		1		0	1		0	1		0	1		
Lane Util. Factor		15.0			15.0			15.0			15.0		
Ped Bike Factor 0.99			0.95	0.95		0.95	0.95		1.00	1.00		1.00	1.00
Fit	Ped Bike Factor												
Fit Protected 0.950 0.950 0.950 0.950 0.950													
Satid. Flow (prot) 1608 3425 0 1700 3330 0 1750 1469 0 1653 1561 0		0.950			0.950			0.950			0.950		
Fit Permitted			3425	0		3330	0		1469	0		1561	0
Satid Flow (perm) 1596 3425 0 1694 3330 0 1338 1469 0 1241 1561 0 Right Turn on Red													
Right Turn on Red			3425	0		3330	0		1469	0		1561	0
Said. Flow (RTOR)													
Link Speed (k/h)			1			1			59			39	
Link Distance (m)	,		60			60							
Travel Time (s)													
Confil Peds. (#/hr)	· ,												
Peak Hour Factor		9		9	9		9	4		6	6		4
Heavy Vehicles (%)	` ,		0.92			0.92			0.92			0.92	
Adj. Flow (vph)													
Shared Lane Traffic (%) Lane Group Flow (vph) 21 1353 0 48 850 0 8 60 0 14 42 0													
Lane Group Flow (vph)													
Enter Blocked Intersection No No No No No No No		21	1353	0	48	850	0	8	60	0	14	42	0
Lane Alignment Left Left Right Right Left Left Right Left Right Left Right Left Right Left Right Left Right Right Left Right Left Right Right Left Right Right Left Right Right Left Right R		No		No	No		No	No	No	No	No	No	No
Median Width(m) 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Lane Alignment	Left		Right			Right	Left	Left		Left		
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01			3.5	, i		3.5	, i		3.5	, i		3.5	J
Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01			0.0			0.0			0.0			0.0	
Headway Factor 1.01			3.0			3.0			3.0			3.0	
Headway Factor 1.01	Two way Left Turn Lane												
Turning Speed (k/h) 25 15 25 15 25 15 25 15 Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0		1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Detector Template Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex DI-Ex CI+Ex <	Turning Speed (k/h)	25		15	25		15	25		15	25		15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0		1	2		1	2		1	2		1	2	
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0	Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Trailing Detector (m) 0.0		2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Channel Detector 1 Extend (s) 0.0 <		2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Channel Detector 1 Extend (s) 0.0 <	. ,				CI+Ex						CI+Ex	Cl+Ex	
Detector 1 Queue (s) 0.0													
Detector 1 Queue (s) 0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s) 0.0											0.0	0.0	
Detector 2 Position(m) 9.4 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex		0.0	0.0					0.0	0.0		0.0	0.0	
Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex													
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex													
<u> </u>													
DOLOGO E OTIGITIO	Detector 2 Channel												
Detector 2 Extend (s) 0.0 0.0 0.0 0.0			0.0			0.0			0.0			0.0	

07-31-2024 MC CGH Transportation Page 9

	۶	-	*	1	•	*	1	†	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	11.0	35.5		11.0	35.5		46.5	46.5		46.5	46.5	
Total Split (s)	11.0	97.0		16.0	102.0		47.0	47.0		47.0	47.0	
Total Split (%)	6.9%	60.6%		10.0%	63.8%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	7.0	90.5		12.0	95.5		39.5	39.5		39.5	39.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.5		1.0	2.5		4.5	4.5		4.5	4.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		19.0			19.0		29.0	29.0		29.0	29.0	
Pedestrian Calls (#/hr)		9			9		6	6		4	4	
Act Effct Green (s)	7.5	124.5		9.8	129.0		14.3	14.3		14.3	14.3	
Actuated g/C Ratio	0.05	0.78		0.06	0.81		0.09	0.09		0.09	0.09	
v/c Ratio	0.28	0.51		0.46	0.32		0.07	0.33		0.13	0.24	
Control Delay	83.1	11.3		81.0	7.1		60.4	17.3		63.2	20.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	83.1	11.3		81.0	7.1		60.4	17.3		63.2	20.3	
LOS	F	В		F	Α		Е	В		Е	С	
Approach Delay		12.4			11.1			22.4			31.0	
Approach LOS		В			В			С			С	
Queue Length 50th (m)	6.6	74.3		15.5	25.5		2.5	0.3		4.4	0.9	
Queue Length 95th (m)	16.3	182.8		30.8	55.1		6.7	12.3		9.8	11.2	
Internal Link Dist (m)		148.2			184.5			118.2			107.5	
Turn Bay Length (m)	46.0			60.0			48.5			35.0		
Base Capacity (vph)	75	2664		128	2684		330	407		306	414	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.28	0.51		0.38	0.32		0.02	0.15		0.05	0.10	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 24 (15%), Referenced to phase 2:WBT and 6:EBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.51

Intersection Signal Delay: 12.6 Intersection LOS: B

	۶	→	•	•	←	•	1	†	~	/		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† 1>		7	†		*	7		*	1	
Traffic Volume (vph)	19	1228	17	44	774	8	7	1	54	13	3	36
Future Volume (vph)	19	1228	17	44	774	8	7	1	54	13	3	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1608	3425		1700	3331		1742	1470		1641	1561	
Flt Permitted	0.95	1.00		0.95	1.00		0.73	1.00		0.72	1.00	
Satd. Flow (perm)	1608	3425		1700	3331		1338	1470		1240	1561	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	1335	18	48	841	9	8	1	59	14	3	39
RTOR Reduction (vph)	0	0	0	0	0	0	0	54	0	0	36	0
Lane Group Flow (vph)	21	1353	0	48	850	0	8	6	0	14	6	0
Confl. Peds. (#/hr)	9	407	9	9	- 0/	9	4	00/	6	6	00/	4
Heavy Vehicles (%)	11%	4%	2%	5%	7%	2%	2%	2%	7%	8%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases		100.0		0.4	4040		4	40.7		8	40.7	
Actuated Green, G (s)	4.7	120.9		8.4	124.6		12.7	12.7		12.7	12.7	
Effective Green, g (s)	4.7	120.9		8.4	124.6		12.7	12.7		12.7	12.7	
Actuated g/C Ratio	0.03	0.76		0.05	0.78		0.08	0.08		0.08	0.08	
Clearance Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	47	2588		89	2594		106	116		98	123	
v/s Ratio Prot	0.01	c0.40		c0.03	c0.26		0.04	0.00		0.04	0.00	
v/s Ratio Perm	0.45	0.50		0.54	0.00		0.01	0.05		c0.01	0.05	
v/c Ratio	0.45	0.52		0.54	0.33		0.08	0.05		0.14	0.05	
Uniform Delay, d1	76.4	7.9		73.9	5.3		68.2	68.1		68.6	68.1	
Progression Factor	1.00	1.00		0.93	0.98		1.00	1.00		1.00	1.00	
Incremental Delay, d2	6.6	0.8		6.0	0.3		0.3	0.2		0.7	0.2	
Delay (s)	83.0	8.7		75.1 E	5.5		68.5 E	68.2 E		69.3 E	68.2	
Level of Service	F	9.8			9.2		Е	68.3		Е	E 68.5	
Approach Delay (s) Approach LOS		9.0 A			9.2 A			00.3 E			00.5 E	
•		А			A							
Intersection Summary												
HCM 2000 Control Delay			12.6	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.48	_					10.5			
Actuated Cycle Length (s)			160.0		um of lost				18.0			
Intersection Capacity Utiliza	ition		59.6%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

c Critical Lane Group

4: Queen Frederica Dr & D	Oundix	Rd			
<i>y</i>	•	4	†	1	1

		•		75	•		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	N.			4	ĵ.		
Traffic Volume (vph)	29	46	17	58	116	23	
Future Volume (vph)	29	46	17	58	116	23	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt	0.917				0.977		
Flt Protected	0.981			0.989			
Satd. Flow (prot)	1626	0	0	1715	1800	0	
Flt Permitted	0.981			0.989			
Satd. Flow (perm)	1626	0	0	1715	1800	0	
Link Speed (k/h)	40			40	40		
Link Distance (m)	217.8			112.9	77.9		
Travel Time (s)	19.6			10.2	7.0		
Confl. Peds. (#/hr)	3	4	4			5	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Heavy Vehicles (%)	7%	2%	6%	9%	2%	2%	
Adj. Flow (vph)	31	49	18	62	125	25	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	80	0	0	80	150	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	3.5			0.0	0.0		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	3.0			3.0	3.0		
Two way Left Turn Lane							
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	
Turning Speed (k/h)	25	15	25			15	
Sign Control	Stop			Stop	Stop		

Intersection Summary

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 28.2%

Analysis Period (min) 15

ICU Level of Service A

	٠	•	1	†	↓	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	₽	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	29	46	17	58	116	23
Future Volume (vph)	29	46	17	58	116	23
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	31	49	18	62	125	25
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	80	80	150			
Volume Left (vph)	31	18	0			
Volume Right (vph)	49	0	25			
Hadj (s)	-0.22	0.19	-0.07			
Departure Headway (s)	4.2	4.4	4.1			
Degree Utilization, x	0.09	0.10	0.17			
Capacity (veh/h)	815	788	857			
Control Delay (s)	7.6	7.9	7.9			
Approach Delay (s)	7.6	7.9	7.9			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			7.8			
Level of Service			Α			
Intersection Capacity Utiliza	ation		28.2%	IC	U Level c	of Service
Analysis Period (min)			15			

 Basingsania / avi
1225 Dundas Street

Intersection						
Intersection Delay, s/veh	7.8					
Intersection LOS	Α					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1>	
Traffic Vol, veh/h	29	46	17	58	116	23
Future Vol, veh/h	29	46	17	58	116	23
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	7	2	6	9	2	2
Mymt Flow	31	49	18	62	125	25
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach	LD		SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	7.7		7.8		7.9	
HCM LOS	Α.		Α.		Α.	
					- , ,	
Lano		NID! ~4	EDI 51	CDI ~1		
Lane		NBLn1	EBLn1	SBLn1		
Vol Left, %		23%	39%	0%		
Vol Thru, %		77%	0%	83%		
Vol Right, %		0%	61%	17%		
Sign Control		Stop	Stop	Stop		
Traffic Vol by Lane		75 47	75	139		
LT Vol		17 58	29	116		
Through Vol RT Vol		0	46	116 23		
Lane Flow Rate		81	81	23 149		
		1	1	149		
Geometry Grp Degree of Util (X)		0.096	0.095	0.168		
Departure Headway (Hd)		4.305	4.232	4.039		
Convergence, Y/N		Yes	Yes	Yes		
Cap		823	852	879		
Service Time		2.382	2.232	2.106		
HCM Lane V/C Ratio		0.098	0.095	0.17		
HCM Control Delay		7.8	7.7	7.9		
HCM Lane LOS		7.0 A	7.7 A	7.9 A		
HCM 95th-tile Q		0.3	0.3	0.6		
1 10111 3311 11110 W		0.3	0.5	0.0		

07-31-2024 CGH Transportation Page 15 MC

	۶	→	*	1	←	1	1	1	~	1		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.932			0.986			0.897				
Flt Protected					0.958						0.981	
Satd. Flow (prot)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
Flt Permitted					0.958						0.981	
Satd. Flow (perm)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
Link Speed (k/h)		40			40			40			20	
Link Distance (m)		67.0			217.8			131.5			82.6	
Travel Time (s)		6.0			19.6			11.8			14.9	
Confl. Peds. (#/hr)	1		1	1		1	2		1	1		2
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	2%	2%	2%	6%	2%	2%	2%	2%	9%	2%	2%	2%
Adj. Flow (vph)	0	6	6	41	1	5	0	8	26	15	24	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	12	0	0	47	0	0	34	0	0	39	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type:	Other											

Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 24.5%

Analysis Period (min) 15

ICU Level of Service A

CGH Transportation Page 16 07-31-2024 MC

	٠	→	*	•	←	•	4	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	0	6	6	41	1	5	0	8	26	15	24	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	12	47	34	39								
Volume Left (vph)	0	41	0	15								
Volume Right (vph)	6	5	26	0								
Hadj (s)	-0.27	0.20	-0.33	0.11								
Departure Headway (s)	3.8	4.3	3.7	4.2								
Degree Utilization, x	0.01	0.06	0.04	0.05								
Capacity (veh/h)	913	825	935	845								
Control Delay (s)	6.9	7.5	6.9	7.4								
Approach Delay (s)	6.9	7.5	6.9	7.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.3									
Level of Service			Α									
Intersection Capacity Utilizat	ion		24.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Future Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	6	2	2	2	2	9	2	2	2
Mvmt Flow	0	6	6	41	1	5	0	8	26	15	24	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		1		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		1		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				1		1		
HCM Control Delay		6.9		7.5				6.8		7.4		
HCM LOS		Α		Α				Α		Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	88%	38%	
Vol Thru, %	24%	50%	3%	62%	
Vol Right, %	76%	50%	10%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	29	10	40	34	
LT Vol	0	0	35	13	
Through Vol	7	5	1	21	
RT Vol	22	5	4	0	
Lane Flow Rate	34	12	47	40	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.034	0.012	0.055	0.045	
Departure Headway (Hd)	3.608	3.796	4.253	4.136	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	987	939	841	864	
Service Time	1.648	1.835	2.282	2.171	
HCM Lane V/C Ratio	0.034	0.013	0.056	0.046	
HCM Control Delay	6.8	6.9	7.5	7.4	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0	0.2	0.1	

	۶	-	•	1	←	•	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	†		7	ተተጉ		44	ተተተ	7
Traffic Volume (vph)	198	828	153	257	1162	355	238	956	222	452	1082	251
Future Volume (vph)	198	828	153	257	1162	355	238	956	222	452	1082	251
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	95.0		0.0	197.5		61.5	96.0		0.0	107.5		148.0
Storage Lanes	1		0	1		0	1		0	2		1
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.91	0.91	0.97	0.91	1.00
Ped Bike Factor	0.99	0.99		0.99	0.98		1.00	1.00		1.00		0.98
Frt		0.977			0.965			0.972				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1716	3328	0	1750	3307	0	1750	4816	0	3395	5029	1536
Flt Permitted	0.950			0.950			0.101			0.950		
Satd. Flow (perm)	1704	3328	0	1730	3307	0	186	4816	0	3379	5029	1503
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		14			30			32				213
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		336.2			205.0			231.1			222.2	
Travel Time (s)		20.2			12.3			13.9			13.3	
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Adj. Flow (vph)	202	845	156	262	1186	362	243	976	227	461	1104	256
Shared Lane Traffic (%)												
Lane Group Flow (vph)	202	1001	0	262	1548	0	243	1203	0	461	1104	256
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			7.0			7.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25	_	15	25	_	15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	٠	-	*	1	←	•	1	†	-	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Detector Phase	3	8		7	4		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	20.0		7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	11.0	47.8		11.0	47.8		12.0	42.5		12.0	42.5	42.5
Total Split (s)	20.0	60.0		31.0	71.0		21.0	46.0		23.0	48.0	48.0
Total Split (%)	12.5%	37.5%		19.4%	44.4%		13.1%	28.8%		14.4%	30.0%	30.0%
Maximum Green (s)	16.0	53.2		27.0	64.2		16.0	39.5		18.0	41.5	41.5
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	1.0	2.8		1.0	2.8		2.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0			10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0			26.0			26.0	26.0
Pedestrian Calls (#/hr)		40			51			11			7	7
Act Effct Green (s)	16.0	54.1		26.1	64.2		57.0	39.5		18.0	41.5	41.5
Actuated g/C Ratio	0.10	0.34		0.16	0.40		0.36	0.25		0.11	0.26	0.26
v/c Ratio	1.18	0.88		0.92	1.15		1.09	0.99		1.21	0.85	0.47
Control Delay	189.0	47.6		101.2	119.4		129.6	81.7		173.3	63.4	12.9
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	189.0	47.6		101.2	119.4		129.6	81.7		173.3	63.4	12.9
LOS	F	D		F	F		F	F		F	E	В
Approach Delay		71.4			116.7			89.7			84.1	
Approach LOS		E			F			F			F	
Queue Length 50th (m)	~78.6	81.6		82.7	~301.3		~70.8	138.0		~91.7	123.0	10.5
Queue Length 95th (m)	#132.4	#162.2		#132.7	#344.1		#128.2	#171.2		#127.3	141.2	36.5
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	95.0			197.5			96.0			107.5		148.0
Base Capacity (vph)	171	1134		295	1344		222	1213		381	1304	547
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	1.18	0.88		0.89	1.15		1.09	0.99		1.21	0.85	0.47

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 48 (30%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.21

Intersection Signal Delay: 92.4

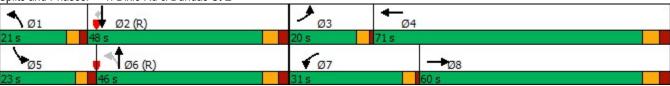
Intersection LOS: F

1225 Dundas Street

Intersection Capacity Utilization 117.1%

ICU Level of Service H

Analysis Period (min) 15


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

	•	\rightarrow	*	1	←	*	1	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†		7	†		7	††		44	^	7
Traffic Volume (vph)	198	828	153	257	1162	355	238	956	222	452	1082	251
Future Volume (vph)	198	828	153	257	1162	355	238	956	222	452	1082	251
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.98		1.00	1.00		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1716	3327		1750	3306		1750	4815		3395	5029	1503
Flt Permitted	0.95	1.00		0.95	1.00		0.10	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1716	3327		1750	3306		187	4815		3395	5029	1503
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	202	845	156	262	1186	362	243	976	227	461	1104	256
RTOR Reduction (vph)	0	9	0	0	18	0	0	24	0	0	0	158
Lane Group Flow (vph)	202	992	0	262	1530	0	243	1179	0	461	1104	98
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Actuated Green, G (s)	16.0	54.1		26.1	64.2		55.5	39.5		18.0	41.5	41.5
Effective Green, g (s)	16.0	54.1		26.1	64.2		55.5	39.5		18.0	41.5	41.5
Actuated g/C Ratio	0.10	0.34		0.16	0.40		0.35	0.25		0.11	0.26	0.26
Clearance Time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	171	1124		285	1326		221	1188		381	1304	389
v/s Ratio Prot	c0.12	0.30		0.15	c0.46		0.11	0.24		c0.14	0.22	
v/s Ratio Perm							c0.27					0.07
v/c Ratio	1.18	0.88		0.92	1.15		1.10	0.99		1.21	0.85	0.25
Uniform Delay, d1	72.0	49.9		65.9	47.9		47.1	60.1		71.0	56.2	47.0
Progression Factor	1.20	0.78		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	120.7	7.2		32.5	78.3		89.7	24.3		116.6	6.9	1.6
Delay (s)	207.5	46.2		98.4	126.2		136.9	84.4		187.6	63.2	48.5
Level of Service	F	D		F	F		F	F		F	Е	D
Approach Delay (s)		73.3			122.1			93.3			92.6	
Approach LOS		Е			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			97.6	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.15									
Actuated Cycle Length (s)			160.0		um of lost	. ,			22.3			
Intersection Capacity Utiliza	ition		117.1%	IC	CU Level o	of Service)		Н			
Analysis Period (min)			15									

c Critical Lane Group

Lanes, Volumes, Timings 2: Blundell Rd /Queen Frederica Dr & Dundas St E

	٠	-	•	•	•	•	1	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	†		1		7	7	4	
Traffic Volume (vph)	44	1225	37	46	1667	148	76	0	25	106	9	19
Future Volume (vph)	44	1225	37	46	1667	148	76	0	25	106	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	78.0		0.0	81.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		0.99	1.00		0.99		0.96	0.98	0.98	
Frt		0.996			0.988				0.850		0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1750	3445	0	1750	3442	0	1750	0	1566	1750	1628	0
Flt Permitted	0.950			0.950			0.738			0.950		
Satd. Flow (perm)	1746	3445	0	1736	3442	0	1339	0	1509	1707	1628	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			11				55		20	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		208.5			336.2			112.0			112.9	
Travel Time (s)		12.5			20.2			10.1			10.2	
Confl. Peds. (#/hr)	12		18	18		12	12		19	19		12
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	47	1317	40	49	1792	159	82	0	27	114	10	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	47	1357	0	49	1951	0	82	0	27	114	30	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	, i		3.5	, i		3.5	<u> </u>		3.5	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1		1	1	2	
Detector Template	Left	Thru		Left	Thru		Left		Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0		2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0		2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex		CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4						9.4	
Detector 2 Size(m)		0.6			0.6						0.6	
Detector 2 Type		CI+Ex			Cl+Ex						CI+Ex	
Detector 2 Channel		O, LA			O LA						O. LA	
Detector 2 Extend (s)		0.0			0.0						0.0	
Estation 2 Exterior (5)		0.0			0.0						0.0	

07-31-2024 CGH Transportation Page 5 MC

	۶	-	7 4		•	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR WE	L WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA	Pr	ot NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1 6						8	
Permitted Phases						4		4	8		
Detector Phase	5	2		1 6		4		4	8	8	
Switch Phase											
Minimum Initial (s)	7.0	8.0	7			8.0		8.0	8.0	8.0	
Minimum Split (s)	11.0	34.0	11			44.0		44.0	44.0	44.0	
Total Split (s)	11.0	102.0	14			44.0		44.0	44.0	44.0	
Total Split (%)	6.9%	63.8%	8.8			27.5%		27.5%	27.5%	27.5%	
Maximum Green (s)	7.0	95.0	10			37.0		37.0	37.0	37.0	
Yellow Time (s)	3.0	4.0		0 4.0		3.0		3.0	3.0	3.0	
All-Red Time (s)	1.0	3.0		.0 3.0		4.0		4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.0	4	0 7.0		7.0		7.0	7.0	7.0	
Lead/Lag	Lead	Lag	Lea								
Lead-Lag Optimize?	Yes	Yes	Ye								
Vehicle Extension (s)	3.0	3.0		0 3.0		3.0		3.0	3.0	3.0	
Recall Mode	None	C-Max	Nor			None		None	None	None	
Walk Time (s)		10.0		10.0		10.0		10.0	10.0	10.0	
Flash Dont Walk (s)		17.0		17.0		27.0		27.0	27.0	27.0	
Pedestrian Calls (#/hr)		18		12		19		19	12	12	
Act Effct Green (s)	7.3	108.3	9	0 110.0		26.9		26.9	26.9	26.9	
Actuated g/C Ratio	0.05	0.68	0.0			0.17		0.17	0.17	0.17	
v/c Ratio	0.59	0.58	0.5			0.37		0.09	0.40	0.10	
Control Delay	117.7	5.6	82			60.2		2.0	60.6	25.0	
Queue Delay	0.0	0.0	0			0.0		0.0	0.0	0.0	
Total Delay	117.7	5.6	82			60.2		2.0	60.6	25.0	
LOS	F	Α		F B		Е		Α	Е	С	
Approach Delay		9.3		14.4			45.7			53.1	
Approach LOS		Α		В			D			D	
Queue Length 50th (m)	15.9	26.6	16			21.6		0.0	30.2	2.5	
Queue Length 95th (m)	m#31.2	33.3	m18			38.0		1.5	48.8	11.7	
Internal Link Dist (m)		184.5		312.2			88.0			88.9	
Turn Bay Length (m)	78.0		81								
Base Capacity (vph)	79	2332	10			309		391	394	391	
Starvation Cap Reductn	0	20		0 45		0		0	0	0	
Spillback Cap Reductn	0	0		0 0		0		0	0	0	
Storage Cap Reductn	0	0		0 0		0		0	0	0	
Reduced v/c Ratio	0.59	0.59	0.4	5 0.84		0.27		0.07	0.29	0.08	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 14.9 Intersection LOS: B

1225 Dundas Street

Intersection Capacity Utilization 81.1% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 2: Blundell Rd /Queen Frederica Dr & Dundas St E # 95th percentile queue is metered by upstream signal. Splits and Phases: 2: Blundell Rd /Queen Frederica Dr & Dundas St E # 95th percentile queue is metered by upstream signal. # 95th percentile queue is metered by upstream signal. # 95th percentile queue is metered by upstream signal.

	۶	→	•	•	+	•	1	†	~	/	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	↑ ↑		*	↑ ↑		7		7	Ť	1→	
Traffic Volume (vph)	44	1225	37	46	1667	148	76	0	25	106	9	19
Future Volume (vph)	44	1225	37	46	1667	148	76	0	25	106	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.96	1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99		1.00	0.98	1.00	
Frt	1.00	1.00		1.00	0.99		1.00		0.85	1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1750	3443		1750	3442		1724		1509	1707	1628	
Flt Permitted	0.95	1.00		0.95	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	1750	3443		1750	3442		1338		1509	1707	1628	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	47	1317	40	49	1792	159	82	0	27	114	10	20
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	22	0	17	0
Lane Group Flow (vph)	47	1356	0	49	1948	0	82	0	5	114	13	0
Confl. Peds. (#/hr)	12		18	18		12	12		19	19		12
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Actuated Green, G (s)	5.9	107.5		7.6	109.2		26.9		26.9	26.9	26.9	
Effective Green, g (s)	5.9	107.5		7.6	109.2		26.9		26.9	26.9	26.9	
Actuated g/C Ratio	0.04	0.67		0.05	0.68		0.17		0.17	0.17	0.17	
Clearance Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)	64	2313		83	2349		224		253	286	273	
v/s Ratio Prot	0.03	0.39		c0.03	c0.57						0.01	
v/s Ratio Perm							0.06		0.00	c0.07		
v/c Ratio	0.73	0.59		0.59	0.83		0.37		0.02	0.40	0.05	
Uniform Delay, d1	76.3	14.2		74.7	18.6		59.0		55.5	59.3	55.8	
Progression Factor	1.25	0.28		1.01	0.49		1.00		1.00	1.00	1.00	
Incremental Delay, d2	31.2	1.0		5.1	1.7		1.0		0.0	0.9	0.1	
Delay (s)	126.1	4.9		80.3	10.8		60.0		55.6	60.3	55.9	
Level of Service	F	Α		F	В		Е		Е	Е	Е	
Approach Delay (s)		9.0			12.5			58.9			59.3	
Approach LOS		Α			В			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			14.4	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.74		JIII 2000	_0101010	331 1100					
Actuated Cycle Length (s)	aony rano		160.0	S	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	ation		81.1%		CU Level o				10.0 D			
Analysis Period (min)	20011		15	ic	JO LOVOI C	7. COI VIOC						
rulalysis i chou (illiii)			10									

c Critical Lane Group

	۶	-	•	•	•	•	4	†	-	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	†		7	^		1	7		7	1→	
Traffic Volume (vph)	37	1219	19	88	1581	20	21	11	110	15	2	26
Future Volume (vph)	37	1219	19	88	1581	20	21	11	110	15	2	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	46.0		0.0	60.0		0.0	48.5		0.0	35.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		0.99	1.00		0.98	0.98		0.99	0.97	
Frt		0.998			0.998			0.864			0.861	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1733	3453	0	1750	3457	0	1700	1555	0	1750	1542	0
Flt Permitted	0.950			0.950			0.739			0.623		
Satd. Flow (perm)	1727	3453	0	1730	3457	0	1299	1555	0	1135	1542	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			1			111			26	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		172.2			208.5			142.2			131.5	
Travel Time (s)		10.3			12.5			12.8			11.8	
Confl. Peds. (#/hr)	11		24	24		11	15		11	11		15
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Adj. Flow (vph)	37	1231	19	89	1597	20	21	11	111	15	2	26
Shared Lane Traffic (%)												
Lane Group Flow (vph)	37	1250	0	89	1617	0	21	122	0	15	28	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	•	15	25	•	15	25	•	15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel											2.2	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	•	-	*	1	←	*	1	†	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases							4			8		
Detector Phase	5	2		1	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	11.0	35.5		11.0	35.5		46.5	46.5		46.5	46.5	
Total Split (s)	13.0	94.0		19.0	100.0		47.0	47.0		47.0	47.0	
Total Split (%)	8.1%	58.8%		11.9%	62.5%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	9.0	87.5		15.0	93.5		39.5	39.5		39.5	39.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.5		1.0	2.5		4.5	4.5		4.5	4.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		19.0			19.0		29.0	29.0		29.0	29.0	
Pedestrian Calls (#/hr)		24			11		11	11		15	15	
Act Effct Green (s)	8.4	102.6		12.8	109.2		26.6	26.6		26.6	26.6	
Actuated g/C Ratio	0.05	0.64		0.08	0.68		0.17	0.17		0.17	0.17	
v/c Ratio	0.41	0.56		0.64	0.69		0.10	0.35		0.08	0.10	
Control Delay	86.4	20.4		94.7	11.3		50.3	12.7		49.3	17.2	
Queue Delay	0.0	0.0		0.0	0.3		0.0	0.0		0.0	0.0	
Total Delay	86.4	20.4		94.7	11.6		50.3	12.7		49.3	17.2	
LOS	F	С		F	В		D	В		D	В	
Approach Delay		22.3			15.9			18.2			28.4	
Approach LOS		С			В			В			С	
Queue Length 50th (m)	11.6	140.1		30.0	60.4		5.2	2.7		3.7	0.5	
Queue Length 95th (m)	24.3	168.4		m37.2	64.3		12.9	19.4		10.3	9.0	
Internal Link Dist (m)		148.2			184.5			118.2			107.5	
Turn Bay Length (m)	46.0			60.0			48.5			35.0		
Base Capacity (vph)	99	2214		166	2358		320	467		280	400	
Starvation Cap Reductn	0	0		0	205		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.37	0.56		0.54	0.75		0.07	0.26		0.05	0.07	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 108 (68%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.69

Intersection Signal Delay: 18.8 Intersection LOS: B

Intersection Capacity Utilization 85.5%

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Dundas St E & Arena Rd

Splits and Phases: 3: Dundas St E & Arena Rd

19 s 94 s 47 s

100 s 47 s

	۶	→	•	•	←	•	1	1	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	† 1>		7	1		7	1	
Traffic Volume (vph)	37	1219	19	88	1581	20	21	11	110	15	2	26
Future Volume (vph)	37	1219	19	88	1581	20	21	11	110	15	2	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.98	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.86		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3453		1750	3458		1670	1554		1731	1541	
Flt Permitted	0.95	1.00		0.95	1.00		0.74	1.00		0.62	1.00	
Satd. Flow (perm)	1733	3453		1750	3458		1299	1554		1134	1541	
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	37	1231	19	89	1597	20	21	11	111	15	2	26
RTOR Reduction (vph)	0	0	0	0	0	0	0	93	0	0	22	0
Lane Group Flow (vph)	37	1250	0	89	1617	0	21	29	0	15	6	0
Confl. Peds. (#/hr)	11		24	24		11	15		11	11		15
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases							4			8		
Actuated Green, G (s)	7.0	102.6		12.8	108.4		26.6	26.6		26.6	26.6	
Effective Green, g (s)	7.0	102.6		12.8	108.4		26.6	26.6		26.6	26.6	
Actuated g/C Ratio	0.04	0.64		0.08	0.68		0.17	0.17		0.17	0.17	
Clearance Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	75	2214		140	2342		215	258		188	256	
v/s Ratio Prot	0.02	0.36		c0.05	c0.47			c0.02			0.00	
v/s Ratio Perm							0.02			0.01		
v/c Ratio	0.49	0.56		0.64	0.69		0.10	0.11		0.08	0.02	
Uniform Delay, d1	74.8	16.1		71.3	15.6		56.5	56.7		56.4	55.8	
Progression Factor	1.00	1.00		1.16	0.53		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.0	1.0		5.4	1.0		0.2	0.2		0.2	0.0	
Delay (s)	79.8	17.2		88.3	9.3		56.7	56.9		56.5	55.9	
Level of Service	E	В		F	Α		Е	E		E	Е	
Approach Delay (s)		19.0			13.4			56.9			56.1	
Approach LOS		В			В			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			18.2	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.59		JW 2000	_0,0,0,0	231 1100					
Actuated Cycle Length (s)	ionly rulio		160.0	2	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	ation		85.5%		CU Level				10.0 E			
Analysis Period (min)			15	IC.	JO LOVOI (7. OOI VIOC			<u> </u>			
Analysis i ellou (IIIII)			IJ									

c Critical Lane Group

Lanes, Volumes, Timings 4: Queen Frederica Dr & Dundix Rd

	•	*	1	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			र्स	1₃	
Traffic Volume (vph)	22	30	38	149	113	37
Future Volume (vph)	22	30	38	149	113	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.921				0.967	
Flt Protected	0.980			0.990		
Satd. Flow (prot)	1663	0	0	1824	1781	0
Flt Permitted	0.980			0.990		
Satd. Flow (perm)	1663	0	0	1824	1781	0
Link Speed (k/h)	40			40	40	
Link Distance (m)	217.8			112.9	77.9	
Travel Time (s)	19.6			10.2	7.0	
Confl. Peds. (#/hr)	6	5	5			4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	23	32	40	159	120	39
Shared Lane Traffic (%)						
Lane Group Flow (vph)	55	0	0	199	159	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 33.8%			IC	CU Level o	of Service A

Analysis Period (min) 15

07-31-2024 CGH Transportation Page 13 MC

	•	•	1	†	↓	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			र्स	₽		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	22	30	38	149	113	37	
Future Volume (vph)	22	30	38	149	113	37	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	23	32	40	159	120	39	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	55	199	159				
Volume Left (vph)	23	40	0				
Volume Right (vph)	32	0	39				
Hadj (s)	-0.23	0.07	-0.11				
Departure Headway (s)	4.4	4.3	4.1				
Degree Utilization, x	0.07	0.24	0.18				
Capacity (veh/h)	742	823	854				
Control Delay (s)	7.8	8.6	8.0				
Approach Delay (s)	7.8	8.6	8.0				
Approach LOS	Α	Α	Α				
Intersection Summary							
Delay			8.3				
Level of Service			Α				
Intersection Capacity Utiliza	ation		33.8%	IC	U Level c	of Service	
Analysis Period (min)			15				

Intersection						
Intersection Delay, s/veh	8.2					
Intersection LOS	Α					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1	
Traffic Vol, veh/h	22	30	38	149	113	37
Future Vol, veh/h	22	30	38	149	113	37
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	23	32	40	159	120	39
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	7.8		8.5		8	
HCM LOS	Α.		Α		A	
110111 200	, ,		, ,		,,,	
		NDL 4	EDL 4	ODI 4		
Lane		NBLn1	EBLn1	SBLn1		
Vol Left, %		20%	42%	0%		
Vol Left, % Vol Thru, %		20% 80%	42% 0%	0% 75%		
Vol Left, % Vol Thru, % Vol Right, %		20% 80% 0%	42% 0% 58%	0% 75% 25%		
Vol Left, % Vol Thru, % Vol Right, % Sign Control		20% 80% 0% Stop	42% 0% 58% Stop	0% 75% 25% Stop		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		20% 80% 0% Stop 187	42% 0% 58% Stop 52	0% 75% 25% Stop 150		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		20% 80% 0% Stop 187 38	42% 0% 58% Stop 52 22	0% 75% 25% Stop 150		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		20% 80% 0% Stop 187 38 149	42% 0% 58% Stop 52 22 0	0% 75% 25% Stop 150 0		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		20% 80% 0% Stop 187 38 149	42% 0% 58% Stop 52 22 0	0% 75% 25% Stop 150 0 113		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		20% 80% 0% Stop 187 38 149 0	42% 0% 58% Stop 52 22 0 30 55	0% 75% 25% Stop 150 0 113 37		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		20% 80% 0% Stop 187 38 149 0 199	42% 0% 58% Stop 52 22 0 30 55	0% 75% 25% Stop 150 0 113 37 160		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		20% 80% 0% Stop 187 38 149 0 199 1	42% 0% 58% Stop 52 22 0 30 55 1	0% 75% 25% Stop 150 0 113 37 160 1 0.179		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		20% 80% 0% Stop 187 38 149 0 199 1 0.232 4.193	42% 0% 58% Stop 52 22 0 30 55 1 0.068 4.445	0% 75% 25% Stop 150 0 113 37 160 1 0.179 4.033		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		20% 80% 0% Stop 187 38 149 0 199 1 0.232 4.193 Yes	42% 0% 58% Stop 52 22 0 30 55 1 0.068 4.445 Yes	0% 75% 25% Stop 150 0 113 37 160 1 0.179 4.033 Yes		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		20% 80% 0% Stop 187 38 149 0 199 1 0.232 4.193 Yes 847	42% 0% 58% Stop 52 22 0 30 55 1 0.068 4.445 Yes 811	0% 75% 25% Stop 150 0 113 37 160 1 0.179 4.033 Yes 876		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		20% 80% 0% Stop 187 38 149 0 199 1 0.232 4.193 Yes 847 2.263	42% 0% 58% Stop 52 22 0 30 55 1 0.068 4.445 Yes 811 2.445	0% 75% 25% Stop 150 0 113 37 160 1 0.179 4.033 Yes 876 2.12		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		20% 80% 0% Stop 187 38 149 0 199 1 0.232 4.193 Yes 847 2.263 0.235	42% 0% 58% Stop 52 22 0 30 55 1 0.068 4.445 Yes 811 2.445 0.068	0% 75% 25% Stop 150 0 113 37 160 1 0.179 4.033 Yes 876 2.12 0.183		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		20% 80% 0% Stop 187 38 149 0 199 1 0.232 4.193 Yes 847 2.263 0.235 8.5	42% 0% 58% Stop 52 22 0 30 55 1 0.068 4.445 Yes 811 2.445 0.068 7.8	0% 75% 25% Stop 150 0 113 37 160 1 0.179 4.033 Yes 876 2.12 0.183 8		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		20% 80% 0% Stop 187 38 149 0 199 1 0.232 4.193 Yes 847 2.263 0.235	42% 0% 58% Stop 52 22 0 30 55 1 0.068 4.445 Yes 811 2.445 0.068	0% 75% 25% Stop 150 0 113 37 160 1 0.179 4.033 Yes 876 2.12 0.183		

	۶	→	*	•	←	•	4	†	~	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.919			0.955			0.931				
Flt Protected					0.973			0.999			0.976	
Satd. Flow (prot)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Flt Permitted					0.973			0.999			0.976	
Satd. Flow (perm)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Link Speed (k/h)		40			40			40			20	
Link Distance (m)		67.0			217.8			131.5			82.6	
Travel Time (s)		6.0			19.6			11.8			14.9	
Confl. Peds. (#/hr)	5		4	4		5	3		6	6		3
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	2%	2%	2%	6%	2%	2%	2%	2%	3%	2%	2%	2%
Adj. Flow (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	5	0	0	63	0	0	68	0	0	20	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type:	Other											_

Area Type: Othe Control Type: Unsignalized

Intersection Capacity Utilization 24.3%

Analysis Period (min) 15

ICU Level of Service A

	٠	→	•	•	•	•	4	†	-	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	5	63	68	20								
Volume Left (vph)	0	35	2	10								
Volume Right (vph)	3	21	35	0								
Hadj (s)	-0.33	-0.02	-0.26	0.13								
Departure Headway (s)	3.8	4.1	3.8	4.2								
Degree Utilization, x	0.01	0.07	0.07	0.02								
Capacity (veh/h)	913	862	918	828								
Control Delay (s)	6.8	7.4	7.1	7.3								
Approach Delay (s)	6.8	7.4	7.1	7.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									
Level of Service			Α									
Intersection Capacity Utiliza	ation		24.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

ntersection	
ntersection Delay, s/veh	7.2
ntersection Delay, s/veh ntersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Future Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles, %	2	2	2	6	2	2	2	2	3	2	2	2
Mvmt Flow	0	2	3	35	7	21	2	31	35	10	10	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		1		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			1		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			1			1		
HCM Control Delay		6.8		7.4			7.1			7.3		
HCM LOS		Α		Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	0%	55%	50%	
Vol Thru, %	45%	40%	11%	50%	
Vol Right, %	52%	60%	34%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	66	5	62	20	
LT Vol	2	0	34	10	
Through Vol	30	2	7	10	
RT Vol	34	3	21	0	
Lane Flow Rate	67	5	63	20	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.07	0.005	0.071	0.024	
Departure Headway (Hd)	3.765	3.774	4.065	4.205	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	948	943	880	849	
Service Time	1.8	1.818	2.096	2.244	
HCM Lane V/C Ratio	0.071	0.005	0.072	0.024	
HCM Control Delay	7.1	6.8	7.4	7.3	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0	0.2	0.1	

Appendix O

2028 Future Total Conditions Synchro Worksheets

	۶	→	•	€	+	•	•	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ }		ሻ	† }		ሻ	ተተ _ጮ		ሻሻ	ተተተ	7
Traffic Volume (vph)	172	928	166	96	449	169	87	767	139	368	901	183
Future Volume (vph)	172	928	166	96	449	169	87	767	139	368	901	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	95.0		0.0	197.5		61.5	96.0		0.0	107.5		148.0
Storage Lanes	1		0	1		0	1		0	2		1
Taper Length (m)	15.0		•	15.0		•	15.0			15.0		•
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.91	0.91	0.97	0.91	1.00
Ped Bike Factor	0.99	1.00	0.00	1.00	0.99	0.00	1.00	1.00	0.01	1.00	0.01	0.99
Frt	0.00	0.977		1.00	0.959		1.00	0.977		1.00		0.850
Flt Protected	0.950	0.011		0.950	0.000		0.950	0.011		0.950		0.000
Satd. Flow (prot)	1623	3317	0	1638	3094	0	1716	4642	0	3267	4794	1479
Flt Permitted	0.950	0011	J	0.950	0001	•	0.274	1012	J	0.950	1701	1110
Satd. Flow (perm)	1614	3317	0	1632	3094	0	495	4642	0	3261	4794	1459
Right Turn on Red	1014	0017	Yes	1002	0004	Yes	400	7072	Yes	0201	77.57	Yes
Satd. Flow (RTOR)		15	103		35	103		22	103			191
Link Speed (k/h)		60			60			60			60	101
Link Distance (m)		336.2			205.0			231.1			222.2	
Travel Time (s)		20.2			12.3			13.9			13.3	
Confl. Peds. (#/hr)	11	20.2	15	15	12.0	11	1	10.0	3	3	10.0	1
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	10%	5%	3%	9%	8%	15%	4%	8%	6%	6%	7%	8%
Adj. Flow (vph)	179	967	173	100	468	176	91	799	145	383	939	191
Shared Lane Traffic (%)	113	301	173	100	400	170	31	133	145	303	909	191
Lane Group Flow (vph)	179	1140	0	100	644	0	91	944	0	383	939	191
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Leit	3.5	rtigiit	Leit	3.5	rtigrit	LGIL	7.0	rtigiit	LGIL	7.0	ragnt
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane		3.0			3.0			3.0			3.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	1.01	1.01	25	1.01	1.01	25	1.01	1.01	25	1.01	1.01
Number of Detectors	1	2	13	1	2	10	1	2	13	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
· ,	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Size(m)	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Type Detector 1 Channel	UI+⊑X	UI+EX		UI+EX	UI+EX		CI+EX	CI+EX		CI+EX	CI+EX	CI+EX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
()	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0											0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	•	-	•	•	←	•	1	†	~	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Detector Phase	3	8		7	4		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	10.0		7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	10.0	47.8		10.0	47.8		15.0	42.5		15.0	42.5	42.5
Total Split (s)	29.0	67.0		17.0	55.0		15.0	47.0		29.0	61.0	61.0
Total Split (%)	18.1%	41.9%		10.6%	34.4%		9.4%	29.4%		18.1%	38.1%	38.1%
Maximum Green (s)	26.0	60.2		14.0	48.2		12.0	40.5		24.0	54.5	54.5
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	2.8		0.0	2.8		0.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0			10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0			26.0			26.0	26.0
Pedestrian Calls (#/hr)		15			11			3			1	1
Act Effct Green (s)	21.9	58.2		12.9	49.3		58.6	45.2		22.4	59.6	59.6
Actuated g/C Ratio	0.14	0.36		0.08	0.31		0.37	0.28		0.14	0.37	0.37
v/c Ratio	0.81	0.94		0.76	0.66		0.35	0.71		0.84	0.53	0.29
Control Delay	95.3	54.5		104.1	49.2		29.6	54.9		83.5	41.4	5.6
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	95.3	54.5		104.1	49.2		29.6	54.9		83.5	41.4	5.6
LOS	F	D		F	D		С	D		F	D	Α
Approach Delay		60.0			56.5			52.7			47.5	
Approach LOS		Е			Е			D			D	
Queue Length 50th (m)	47.4	183.2		31.5	87.4		16.5	101.4		61.3	88.3	0.0
Queue Length 95th (m)	81.7	#79.4		#58.2	112.3		27.9	118.7		80.0	104.7	17.3
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	95.0			197.5			96.0			107.5		148.0
Base Capacity (vph)	263	1257		143	981		279	1326		490	1784	663
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.68	0.91		0.70	0.66		0.33	0.71		0.78	0.53	0.29

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 145 (91%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

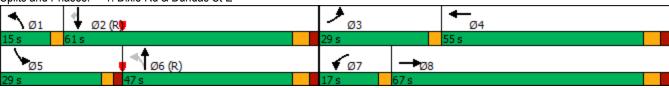
Natural Cycle: 120

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 53.7 Intersection LOS: D

Intersection Capacity Utilization 97.3%


ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

	۶	→	•	•	←	4	4	†	~	/	 	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ β		ሻ	∱ ኈ		ሻ	↑ ↑₽		ሻሻ	^	7
Traffic Volume (vph)	172	928	166	96	449	169	87	767	139	368	901	183
Future Volume (vph)	172	928	166	96	449	169	87	767	139	368	901	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1623	3317		1638	3094		1716	4642		3267	4794	1459
Flt Permitted	0.95	1.00		0.95	1.00		0.27	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1623	3317		1638	3094		495	4642		3267	4794	1459
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	179	967	173	100	468	176	91	799	145	383	939	191
RTOR Reduction (vph)	0	10	0	0	24	0	0	16	0	0	0	120
Lane Group Flow (vph)	179	1130	0	100	620	0	91	928	0	383	939	71
Confl. Peds. (#/hr)	11	5 0/	15	15	00/	11	1	00/	3	3	70/	1
Heavy Vehicles (%)	10%	5%	3%	9%	8%	15%	4%	8%	6%	6%	7%	8%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	0
Permitted Phases	04.0	50.0		40.0	40.0		6	45.4		00.4	50 F	2
Actuated Green, G (s)	21.9	58.3		12.9	49.3		55.1	45.1		22.4	59.5	59.5
Effective Green, g (s)	21.9	58.3		12.9	49.3		55.1	45.1		22.4	59.5	59.5
Actuated g/C Ratio	0.14 3.0	0.36		0.08	0.31 6.8		0.34	0.28		0.14	0.37	0.37
Clearance Time (s)	3.0	6.8		3.0	3.0		3.0 3.0	6.5 3.0		5.0	6.5	6.5
Vehicle Extension (s)		3.0		3.0						3.0	3.0	3.0
Lane Grp Cap (vph)	222	1208		132	953		246	1308		457	1782	542
v/s Ratio Prot v/s Ratio Perm	c0.11	c0.34		0.06	0.20		0.02	c0.20		c0.12	0.20	0.05
v/c Ratio	0.81	0.94		0.76	0.65		0.10 0.37	0.71		0.84	0.53	0.05
Uniform Delay, d1	67.0	49.0		72.0	47.9		36.3	51.6		67.0	39.3	33.2
Progression Factor	1.08	0.85		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	16.8	11.9		21.7	1.6		0.9	3.3		12.6	1.1	0.5
Delay (s)	89.0	53.7		93.7	49.5		37.3	54.9		79.7	40.4	33.7
Level of Service	65.0 F	D		55.7 F	T3.5		57.5 D	04.9 D		7 5.7 E	D	00.7 C
Approach Delay (s)		58.5			55.4		D	53.3		_	49.5	U
Approach LOS		E			E			D			73.0 D	
••					_							
Intersection Summary HCM 2000 Control Delay			E2 0	11/	CM 2000	Lovelof	Convice		D			
•	oity ratio		53.9	П	CM 2000	Level of	Service		U			
HCM 2000 Volume to Capa Actuated Cycle Length (s)	icity ratio		0.84	C.	ım of loca	time (a)			21.3			
Intersection Capacity Utiliza	ation		160.0		um of lost U Level o		`					
Analysis Period (min)	1UUI I		97.3% 15	IC	U Level C	n Service	;		F			
Analysis Period (min)			10									

c Critical Lane Group

Lanes, Volumes, Timings 2: Blundell Rd /Queen Frederica Dr & Dundas St E

	۶	-	\rightarrow	•	←	•	•	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ⊅		7	∱ ∱		ħ		7	7	f)	
Traffic Volume (vph)	14	1184	25	18	721	63	18	0	9	175	9	19
Future Volume (vph)	14	1184	25	18	721	63	18	0	9	175	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	78.0		0.0	81.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		1.00	1.00		0.99		0.99	1.00	0.99	
Frt		0.997			0.988				0.850		0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1566	3420	0	1750	3287	0	1750	0	1309	1750	1633	0
FIt Permitted	0.950			0.950			0.738			0.950		
Satd. Flow (perm)	1559	3420	0	1747	3287	0	1346	0	1290	1745	1633	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			10				55		20	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		208.5			336.2			112.0			112.9	
Travel Time (s)		12.5			20.2			10.1			10.2	
Confl. Peds. (#/hr)	5		3	3		5	8		2	2		8
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
Adj. Flow (vph)	15	1273	27	19	775	68	19	0	10	188	10	20
Shared Lane Traffic (%)			_			_		_				
Lane Group Flow (vph)	15	1300	0	19	843	0	19	0	10	188	30	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane	4.04	4.04	4.04	4.04	1.01	4.04	4.04	4.04	4.04	4.04	4.04	4.04
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	0	15	25	0	15	25		15	25	^	15
Number of Detectors	1	2		1	2		1		1 Dialet	1	2	
Detector Template	Left	Thru		Left	Thru		Left		Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0		2.0	2.0	10.0	
Trailing Detector (m) Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
\	2.0	0.0			0.0		2.0		0.0	2.0	0.0	
Detector 1 Size(m) Detector 1 Type	CI+Ex	CI+Ex		2.0 CI+Ex	CI+Ex		CI+Ex		2.0 CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	UI+EX	CI+EX		CI+EX	CI+EX		CI+EX		CI+EX	CI+EX	OI+EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0		0.0	0.0	9.4	
Detector 2 Size(m)		0.6			0.6						0.6	
Detector 2 Type		CI+Ex			CI+Ex						CI+Ex	
Detector 2 Channel		CITEX			CITEX						CITEX	
Detector 2 Extend (s)		0.0			0.0						0.0	
Delector 2 Exterio (8)		0.0			0.0						0.0	

07-07-2025 CGH Transportation Page 5 MC

2: Blundell Ra /Qu	een Fre	derica	Dr & D	undas	SOLE					122	Street	
	۶	→	•	•	←	•	•	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Detector Phase	5	2		1	6		4		4	8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0		8.0	8.0	8.0	
Minimum Split (s)	11.0	34.0		11.0	34.0		44.0		44.0	44.0	44.0	
Total Split (s)	13.0	99.0		13.0	99.0		48.0		48.0	48.0	48.0	
Total Split (%)	8.1%	61.9%		8.1%	61.9%		30.0%		30.0%	30.0%	30.0%	
Maximum Green (s)	9.0	92.0		9.0	92.0		41.0		41.0	41.0	41.0	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0		3.0	3.0	3.0	
All-Red Time (s)	1.0	3.0		1.0	3.0		4.0		4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None		None	None	None	
Walk Time (s)		10.0			10.0		10.0		10.0	10.0	10.0	
Flash Dont Walk (s)		17.0			17.0		27.0		27.0	27.0	27.0	
Pedestrian Calls (#/hr)		3			5		2		2	8	8	
Act Effct Green (s)	7.7	114.6		7.8	116.9		24.0		24.0	24.0	24.0	
Actuated g/C Ratio	0.05	0.72		0.05	0.73		0.15		0.15	0.15	0.15	
v/c Ratio	0.20	0.53		0.22	0.35		0.09		0.04	0.72	0.11	
Control Delay	103.1	4.8		75.1	7.1		55.4		0.3	79.2	27.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Delay	103.1	4.9		75.1	7.1		55.4		0.3	79.2	27.4	
LOS	F	Α		Е	Α		Е		Α	Е	С	
Approach Delay		6.0			8.6			36.4			72.1	
Approach LOS		Α			Α			D			Е	
Queue Length 50th (m)	4.9	101.3		6.1	25.2		5.4		0.0	58.4	2.8	
Queue Length 95th (m)	m10.1	15.9		m12.4	54.0		12.3		0.0	77.5	11.7	
Internal Link Dist (m)		184.5			312.2			88.0			88.9	
Turn Bay Length (m)	78.0			81.0								
Base Capacity (vph)	89	2450		99	2405		344		371	447	433	
Starvation Cap Reductn	0	98		0	0		0		0	0	0	
Spillback Cap Reductn	0	0		0	0		0		0	0	0	
Storage Cap Reductn	0	0		0	0		0		0	0	0	
Reduced v/c Ratio	0.17	0.55		0.19	0.35		0.06		0.03	0.42	0.07	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 32 (20%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.72

Intersection Signal Delay: 13.2

Intersection LOS: B

1225 Dundas Street

	٠	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		ሻ	∱ ∱		7		7	7	f)	
Traffic Volume (vph)	14	1184	25	18	721	63	18	0	9	175	9	19
Future Volume (vph)	14	1184	25	18	721	63	18	0	9	175	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.99	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99		1.00	1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00		0.85	1.00	0.90	
FIt Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1566	3420		1750	3287		1733		1290	1745	1633	
FIt Permitted	0.95	1.00		0.95	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	1566	3420		1750	3287		1345		1290	1745	1633	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	15	1273	27	19	775	68	19	0	10	188	10	20
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	9	0	17	0
Lane Group Flow (vph)	15	1299	0	19	840	0	19	0	2	188	13	0
Confl. Peds. (#/hr)	5		3	3		5	8		2	2		8
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Actuated Green, G (s)	3.5	113.0		5.0	114.5		24.0		24.0	24.0	24.0	
Effective Green, g (s)	3.5	113.0		5.0	114.5		24.0		24.0	24.0	24.0	
Actuated g/C Ratio	0.02	0.71		0.03	0.72		0.15		0.15	0.15	0.15	
Clearance Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)	34	2415		54	2352		201		193	261	244	
v/s Ratio Prot	0.01	c0.38		c0.01	0.26						0.01	
v/s Ratio Perm							0.01		0.00	c0.11		
v/c Ratio	0.44	0.54		0.35	0.36		0.09		0.01	0.72	0.05	
Uniform Delay, d1	77.3	11.1		75.9	8.7		58.6		57.9	64.8	58.3	
Progression Factor	1.34	0.33		0.95	0.72		1.00		1.00	1.00	1.00	
Incremental Delay, d2	7.8	0.8		3.6	0.4		0.2		0.0	9.4	0.1	
Delay (s)	111.3	4.4		75.8	6.6		58.8		57.9	74.2	58.4	
Level of Service	F	Α		Е	Α		Е		Е	Е	Е	
Approach Delay (s)		5.7			8.1			58.5			72.0	
Approach LOS		Α			Α			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			13.1	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.56									
Actuated Cycle Length (s)			160.0	Sı	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	ation		69.0%		U Level o				С			
Analysis Period (min)			15									

c Critical Lane Group

Lane Configurations The Co		۶	→	•	•	←	•	•	†	/	/	↓	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	ሻ	∱ Љ		ሻ	ተ ኈ		ሻ	£		ሻ	ĵ.	
Idea Flow (ryphpi)	Traffic Volume (vph)	36		17	44		22			54	23		76
Storage Langth (m)	Future Volume (vph)	36	1226	17	44	774	22	7	1	54	23	3	76
Storage Lanes	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Taper Length (m)	Storage Length (m)	46.0		0.0	60.0		0.0	48.5		0.0	35.0		0.0
Lane Util. Factor 1.00	Storage Lanes	1		0	1		0	1		0	1		0
Ped Bike Factor 0.99	Taper Length (m)	15.0			15.0			15.0			15.0		
Fith	Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected 0.950	Ped Bike Factor	0.99	1.00		1.00	1.00		1.00	0.98		0.99	0.98	
Satd. Flow (prot) 1608 3425 0 1700 3323 0 1750 1469 0 1653 1549 0 Fit Permitted	Frt		0.998			0.996			0.852			0.855	
Fit Permitted	Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (perm) 1596 3425 0 1693 3323 0 1286 1469 0 1241 1549 1549	Satd. Flow (prot)	1608	3425	0	1700	3323	0	1750	1469	0	1653	1549	0
Name	Flt Permitted	0.950			0.950			0.701			0.718		
Satd. Flow (RTOR)	Satd. Flow (perm)	1596	3425	0	1693	3323	0	1286	1469	0	1241	1549	0
Link Speed (k/h)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (m)	Satd. Flow (RTOR)		1			3			59			83	
Travel Time (s)	Link Speed (k/h)		60			60			40			40	
Confi. Peds. (#/hr)	Link Distance (m)		172.2			208.5			142.2			79.4	
Peak Hour Factor	Travel Time (s)		10.3			12.5			12.8			7.1	
Heavy Vehicles (%)	Confl. Peds. (#/hr)	9		9	9		9	4		6	6		4
Adj. Flow (vph) 39 1333 18 48 841 24 8 1 59 25 3 83 Shared Lane Traffic (%) Shared Lane Traffic (%) Lane Group Flow (yph) 39 1351 0 48 865 0 8 60 0 25 86 0 Enter Blocked Intersection No No <t< td=""><td>Peak Hour Factor</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td></t<>	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%) Lane Group Flow (vph) 39 1351 0 48 865 0 8 60 0 25 86 0 0 Enter Blocked Intersection No No No No No No No	Heavy Vehicles (%)	11%	4%	2%	5%	7%	2%	2%	2%	7%	8%	2%	2%
Shared Lane Traffic (%) Lane Group Flow (vph) 39 1351 0 48 865 0 8 60 0 25 86 0 0 Enter Blocked Intersection No No No No No No No	Adj. Flow (vph)	39	1333	18	48	841	24	8	1	59	25	3	83
Enter Blocked Intersection No No No No No No No													
Left Left Right Right Median Width(m) 3.5 3	Lane Group Flow (vph)	39	1351	0	48	865	0	8	60	0	25	86	0
Median Width(m) 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Median Width(m) 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Median Width(m)		3.5			3.5			3.5			3.5	
Two way Left Turn Lane Headway Factor 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	Link Offset(m)		0.0			0.0			0.0			0.0	
Headway Factor 1.01	Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Turning Speed (k/h) 25 15 25 15 25 15 25 15 25 15 15 25 15 25 15 15 25 15 15 25 15 15 25 15 15 Number of Detectors 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Two way Left Turn Lane</td> <td></td>	Two way Left Turn Lane												
Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 0.6 2.0 0.0 0.0 <td>Headway Factor</td> <td>1.01</td>	Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Detector Template	Turning Speed (k/h)	25		15	25		15	25		15	25		15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0	Number of Detectors	1	2		1	2		1	2		1	2	
Trailing Detector (m) 0.0	Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.0	Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex	Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Type CI+Ex	Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Channel Detector 1 Extend (s) 0.0 <	Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Extend (s) 0.0	Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s) 0.0	()												
Detector 2 Position(m) 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	. ,												
Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	• ,												
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel													
Detector 2 Channel													
	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

07-07-2025 MC

	•	-	•	•	•	*	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	11.0	35.5		11.0	35.5		46.5	46.5		46.5	46.5	
Total Split (s)	11.0	97.0		16.0	102.0		47.0	47.0		47.0	47.0	
Total Split (%)	6.9%	60.6%		10.0%	63.8%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	7.0	90.5		12.0	95.5		39.5	39.5		39.5	39.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.5		1.0	2.5		4.5	4.5		4.5	4.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		19.0			19.0		29.0	29.0		29.0	29.0	
Pedestrian Calls (#/hr)		9			9		6	6		4	4	
Act Effct Green (s)	8.6	119.6		9.8	120.9		14.8	14.8		14.8	14.8	
Actuated g/C Ratio	0.05	0.75		0.06	0.76		0.09	0.09		0.09	0.09	
v/c Ratio	0.45	0.53		0.46	0.34		0.07	0.32		0.22	0.39	
Control Delay	90.2	11.9		81.0	8.5		59.9	17.0		66.5	16.6	
Queue Delay	0.0	0.0		0.0	0.1		0.0	0.0		0.0	0.0	
Total Delay	90.2	11.9		81.0	8.6		59.9	17.0		66.5	16.6	
LOS	F	В		F	Α		Е	В		E	В	
Approach Delay		14.1			12.4			22.0			27.9	
Approach LOS		В			В			С			С	
Queue Length 50th (m)	12.2	75.6		15.6	29.5		2.5	0.3		7.8	0.9	
Queue Length 95th (m)	#27.2	182.4		30.9	56.5		6.7	12.3		14.8	14.9	
Internal Link Dist (m)		148.2			184.5			118.2			55.4	
Turn Bay Length (m)	46.0			60.0			48.5			35.0		
Base Capacity (vph)	86	2560		128	2511		317	407		306	444	
Starvation Cap Reductn	0	0		0	466		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.45	0.53		0.38	0.42		0.03	0.15		0.08	0.19	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

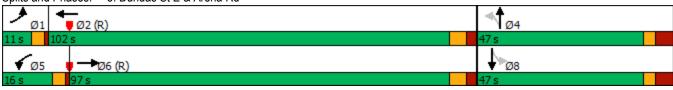
Offset: 24 (15%), Referenced to phase 2:WBT and 6:EBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.53

Intersection Signal Delay: 14.3 Intersection LOS: B


Intersection Capacity Utilization 59.6%

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Dundas St E & Arena Rd

	۶	→	•	€	←	4	1	†	/	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		ሻ	ተ ኈ		ሻ	₽		ሻ	₽	
Traffic Volume (vph)	36	1226	17	44	774	22	7	1	54	23	3	76
Future Volume (vph)	36	1226	17	44	774	22	7	1	54	23	3	76
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1608	3425		1700	3323		1742	1470		1641	1550	
FIt Permitted	0.95	1.00		0.95	1.00		0.70	1.00		0.72	1.00	
Satd. Flow (perm)	1608	3425		1700	3323		1286	1470		1240	1550	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	39	1333	18	48	841	24	8	1	59	25	3	83
RTOR Reduction (vph)	0	0	0	0	1	0	0	54	0	0	75	0
Lane Group Flow (vph)	39	1351	0	48	864	0	8	6	0	25	11	0
Confl. Peds. (#/hr)	9	40/	9	9	7 0/	9	4	00/	6	6	00/	4
Heavy Vehicles (%)	11%	4%	2%	5%	7%	2%	2%	2%	7%	8%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2		•	4		•	8	
Permitted Phases	7.0	440.0		0.4	400.0		4	440		8	44.0	
Actuated Green, G (s)	7.2	118.8		8.4	120.0		14.8	14.8		14.8	14.8	
Effective Green, g (s)	7.2	118.8		8.4	120.0		14.8	14.8		14.8	14.8	
Actuated g/C Ratio	0.05	0.74		0.05	0.75		0.09	0.09		0.09	0.09	
Clearance Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	72	2543		89	2492		118	135		114	143	
v/s Ratio Prot	0.02	c0.39		c0.03	0.26		0.04	0.00		0.00	0.01	
v/s Ratio Perm	0.54	0.50		0.54	0.05		0.01	0.05		c0.02	0.07	
v/c Ratio	0.54	0.53		0.54	0.35		0.07	0.05		0.22	0.07	
Uniform Delay, d1	74.8	8.8		73.9	6.8		66.3	66.2		67.2	66.3	
Progression Factor	1.00	1.00		0.94	0.99		1.00	1.00		1.00	1.00	
Incremental Delay, d2	8.1	0.8		6.0	0.4		0.2	0.1		1.0	0.2	
Delay (s)	82.9	9.6		75.1	7.0		66.5 E	66.3 E		68.2 E	66.6 E	
Level of Service Approach Delay (s)	F	A 11.6		E	A 10.6			66.4			66.9	
Approach LOS		11.0 B			10.0 B			60.4 E			00.9 E	
		Ь			Ь							
Intersection Summary									_			
HCM 2000 Control Delay			15.2	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	icity ratio		0.50						42.2			
Actuated Cycle Length (s)			160.0		um of lost				18.0			
Intersection Capacity Utiliza	ation		59.6%	IC	U Level o	ot Service			В			
Analysis Period (min)			15									

c Critical Lane Group

	•	_	•	†	1	1
Lane Group	EBL	■ EBR	NBL	NBT	▼ SBT	SBR
Lane Configurations	₩.	EDR	NDL	ND I	<u>361</u>	SDN
Traffic Volume (vph)	29	91	23	58	115	24
Future Volume (vph)	29	91	23	58	115	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.897				0.977	
Flt Protected	0.988			0.986		
Satd. Flow (prot)	1613	0	0	1713	1800	0
FIt Permitted	0.988			0.986		
Satd. Flow (perm)	1613	0	0	1713	1800	0
Link Speed (k/h)	40			40	40	
Link Distance (m)	126.4			112.9	77.9	
Travel Time (s)	11.4			10.2	7.0	
Confl. Peds. (#/hr)	3	4	4			5
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	7%	2%	6%	9%	2%	2%
Adj. Flow (vph)	31	98	25	62	124	26
Shared Lane Traffic (%)						
Lane Group Flow (vph)	129	0	0	87	150	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 31.1%			IC	CU Level o	of Service A
Analysis Period (min) 15						

07-07-2025 CGH Transportation Page 13 MC

	٠	\rightarrow	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	ĵ»	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	29	91	23	58	115	24
Future Volume (vph)	29	91	23	58	115	24
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	31	98	25	62	124	26
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	129	87	150			
Volume Left (vph)	31	25	0			
Volume Right (vph)	98	0	26			
Hadj (s)	-0.35	0.20	-0.07			
Departure Headway (s)	4.1	4.5	4.2			
Degree Utilization, x	0.15	0.11	0.18			
Capacity (veh/h)	836	761	827			
Control Delay (s)	7.8	8.1	8.1			
Approach Delay (s)	7.8	8.1	8.1			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.0			
Level of Service			Α			
Intersection Capacity Utiliza	ation		31.1%	IC	U Level c	of Service
Analysis Period (min)			15			

1225	Dundas	Stroot
1773	Dunuas	SHEEL

Intersection Delay, s/veh 8 Intersection LOS A
Intersection LOS A
Movement EBL EBR NBL NBT SBT SBR
Lane Configurations 🏋 📫
Traffic Vol, veh/h 29 91 23 58 115 24
Future Vol, veh/h 29 91 23 58 115 24
Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93
Heavy Vehicles, % 7 2 6 9 2 2
Mvmt Flow 31 98 25 62 124 26
Number of Lanes 1 0 0 1 1 0
Approach EB NB SB
Opposing Approach SB NB
Opposing Lanes 0 1 1
Conflicting Approach Left SB EB
Conflicting Lanes Left 1 1 0
Conflicting Approach Right NB EB
Conflicting Lanes Right 1 0 1
HCM Control Delay 7.9 8.1 8.1
HCM LOS A A A
Lane NBLn1 EBLn1 SBLn1
Vol Left, % 28% 24% 0%
Vol Thru, % 72% 0% 83%
Vol Right, % 0% 76% 17%
Sign Control Stop Stop
Traffic Vol by Lane 81 120 139
LT Vol 23 29 0
Through Vol 58 0 115
RT Vol 0 91 24
Lane Flow Rate 87 129 149
Geometry Grp 1 1 1
Degree of Util (X) 0.109 0.148 0.171
Degree of Util (X) 0.109 0.148 0.171 Departure Headway (Hd) 4.505 4.142 4.125
Degree of Util (X) 0.109 0.148 0.171 Departure Headway (Hd) 4.505 4.142 4.125 Convergence, Y/N Yes Yes Yes
Degree of Util (X) 0.109 0.148 0.171 Departure Headway (Hd) 4.505 4.142 4.125 Convergence, Y/N Yes Yes Yes Cap 800 871 855
Degree of Util (X) 0.109 0.148 0.171 Departure Headway (Hd) 4.505 4.142 4.125 Convergence, Y/N Yes Yes Yes Cap 800 871 855
Degree of Util (X) 0.109 0.148 0.171 Departure Headway (Hd) 4.505 4.142 4.125 Convergence, Y/N Yes Yes Yes Cap 800 871 855 Service Time 2.505 2.145 2.22
Degree of Util (X) 0.109 0.148 0.171 Departure Headway (Hd) 4.505 4.142 4.125 Convergence, Y/N Yes Yes Yes Cap 800 871 855 Service Time 2.505 2.145 2.22 HCM Lane V/C Ratio 0.109 0.148 0.174

	۶	→	•	•	+	4	1	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.932			0.986			0.897				
FIt Protected					0.958						0.981	
Satd. Flow (prot)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
FIt Permitted					0.958						0.981	
Satd. Flow (perm)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
Link Speed (k/h)		40			40			40			20	
Link Distance (m)		67.0			91.4			52.1			82.6	
Travel Time (s)		6.0			8.2			4.7			14.9	
Confl. Peds. (#/hr)	1		1	1		1	2		1	1		2
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	2%	2%	2%	6%	2%	2%	2%	2%	9%	2%	2%	2%
Adj. Flow (vph)	0	6	6	41	1	5	0	8	26	15	24	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	12	0	0	47	0	0	34	0	0	39	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												

Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 24.5%

Analysis Period (min) 15

ICU Level of Service A

CGH Transportation Page 16 07-07-2025 MC

	٠	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	0	6	6	41	1	5	0	8	26	15	24	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	12	47	34	39								
Volume Left (vph)	0	41	0	15								
Volume Right (vph)	6	5	26	0								
Hadj (s)	-0.27	0.20	-0.33	0.11								
Departure Headway (s)	3.8	4.3	3.7	4.2								
Degree Utilization, x	0.01	0.06	0.04	0.05								
Capacity (veh/h)	913	825	935	845								
Control Delay (s)	6.9	7.5	6.9	7.4								
Approach Delay (s)	6.9	7.5	6.9	7.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.3									
Level of Service			Α									
Intersection Capacity Utiliza	tion		24.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Intersection	
Intersection Delay, s/veh	7.2
Intersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Future Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	6	2	2	2	2	9	2	2	2
Mvmt Flow	0	6	6	41	1	5	0	8	26	15	24	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		1		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		1		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				1		1		
HCM Control Delay		6.9		7.5				6.8		7.4		
HCM LOS		Α		Α				Α		Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	88%	38%	
Vol Thru, %	24%	50%	3%	62%	
Vol Right, %	76%	50%	10%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	29	10	40	34	
LT Vol	0	0	35	13	
Through Vol	7	5	1	21	
RT Vol	22	5	4	0	
Lane Flow Rate	34	12	47	40	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.034	0.012	0.055	0.045	
Departure Headway (Hd)	3.608	3.796	4.253	4.136	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	987	939	841	864	
Service Time	1.648	1.835	2.282	2.171	
HCM Lane V/C Ratio	0.034	0.013	0.056	0.046	
HCM Control Delay	6.8	6.9	7.5	7.4	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0	0.2	0.1	

Analysis Period (min) 15

	•	•	†	<i>></i>	\	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		f a			4	_
Traffic Volume (vph)	50	0	29	31	0	61	
Future Volume (vph)	50	0	29	31	0	61	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt			0.930				
Flt Protected	0.950						
Satd. Flow (prot)	1750	0	1713	0	0	1842	
Flt Permitted	0.950						
Satd. Flow (perm)	1750	0	1713	0	0	1842	
Link Speed (k/h)	50		40			40	
Link Distance (m)	55.0		79.4			52.1	
Travel Time (s)	4.0		7.1			4.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	56	0	32	34	0	68	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	56	0	66	0	0	68	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	3.5		3.5			3.5	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	3.0		3.0			3.0	
Two way Left Turn Lane							
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
J 1	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 13.4%			IC	U Level c	of Service	e A

	€	•	†	<i>></i>	/	+
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		ĵ.			र्स
Traffic Volume (veh/h)	50	0	29	31	0	61
Future Volume (Veh/h)	50	0	29	31	0	61
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	56	0	32	34	0	68
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			79			
pX, platoon unblocked						
vC, conflicting volume	117	49			66	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	117	49			66	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	94	100			100	
cM capacity (veh/h)	879	1020			1536	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	56	66	68			
Volume Left	56	0	0			
Volume Right	0	34	0			
cSH	879	1700	1536			
Volume to Capacity	0.06	0.04	0.00			
Queue Length 95th (m)	1.5	0.0	0.0			
Control Delay (s)	9.4	0.0	0.0			
Lane LOS	Α					
Approach Delay (s)	9.4	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			2.8			
Intersection Capacity Utiliz	ation		13.4%	IC	CU Level o	of Service
Analysis Period (min)			15			

La Carrana Carra						
Intersection	0.7					
Int Delay, s/veh	2.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	N/		ĵ.			सी
Traffic Vol, veh/h	50	0	29	31	0	61
Future Vol, veh/h	50	0	29	31	0	61
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	56	0	32	34	0	68
IVIVIIIL I IOW	30	U	JZ	J 4	U	00
Major/Minor	Minor1	N	//ajor1	ľ	Major2	
Conflicting Flow All	117	49	0	0	66	0
Stage 1	49	-	-	-	-	_
Stage 2	68	-	_	-	_	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3 318	_	_	2.218	_
Pot Cap-1 Maneuver	879	1020	_	_	1536	_
Stage 1	973	-	_	_	1000	_
Stage 2	955	_	-	_		-
•	900	-	-	-	-	-
Platoon blocked, %	070	4000	-	-	4500	-
Mov Cap-1 Maneuver	879	1020	-	-	1536	-
Mov Cap-2 Maneuver	879	-	-	-	-	-
Stage 1	973	-	-	-	-	-
Stage 2	955	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.4		0		0	
HCM LOS	9.4 A		U		U	
TIOWI LOG	A					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	879	1536	-
HCM Lane V/C Ratio		-	-	0.063	-	-
HCM Control Delay (s)		-	_	9.4	0	-
HCM Lane LOS		_	_	A	A	_
HCM 95th %tile Q(veh)	_	_	0.2	0	_
HOW JOHN JOHN QUEN)			0.2	U	

	-	•	•	←	~	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f			ર્ન	W	
Traffic Volume (vph)	58	0	7	40	0	45
Future Volume (vph)	58	0	7	40	0	45
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.992		
Satd. Flow (prot)	1842	0	0	1827	1593	0
Flt Permitted				0.992		
Satd. Flow (perm)	1842	0	0	1827	1593	0
Link Speed (k/h)	40			40	50	
Link Distance (m)	91.4			126.4	41.7	
Travel Time (s)	8.2			11.4	3.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	64	0	8	44	0	50
Shared Lane Traffic (%)						
Lane Group Flow (vph)	64	0	0	52	50	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
	0.11					

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 18.1%
Analysis Period (min) 15

ICU Level of Service A

CGH Transportation Page 22 07-07-2025 MC

	-	\rightarrow	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1 >			4	¥#	
Traffic Volume (veh/h)	58	0	7	40	0	45
Future Volume (Veh/h)	58	0	7	40	0	45
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	64	0	8	44	0	50
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			64		124	64
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			64		124	64
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			99		100	95
cM capacity (veh/h)			1538		866	1000
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	64	52	50			
Volume Left	0	8	0			
Volume Right	0	0	50			
cSH	1700	1538	1000			
Volume to Capacity	0.04	0.01	0.05			
Queue Length 95th (m)	0.0	0.1	1.2			
Control Delay (s)	0.0	1.2	8.8			
Lane LOS		Α	Α			
Approach Delay (s)	0.0	1.2	8.8			
Approach LOS			А			
Intersection Summary						
Average Delay			3.0			
Intersection Capacity Utilizat	ion		18.1%	IC	U Level o	f Service
Analysis Period (min)			15			3311133

Intersection						
Int Delay, s/veh	3					
	EBT	EDD	\\/DI	\\/DT	NDL	NBR
		EBR	WBL	WBT	NBL	NRK
Lane Configurations	\$	^	7	<u>र्</u> स	**	4.5
Traffic Vol, veh/h	58	0	7	40	0	45
Future Vol, veh/h	58	0	7	40	0	45
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	64	0	8	44	0	50
Major/Minor Ma	ajor1	ı	Major2		Minor1	
	_					C 4
Conflicting Flow All	0	0	64	0	124	64
Stage 1	-	-	-	-	64	-
Stage 2	-	-	-	-	60	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1538	-	871	1000
Stage 1	-	-	-	-	959	-
Stage 2	-	-	-	-	963	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1538	-	867	1000
Mov Cap-2 Maneuver	-	-	-	-	867	-
Stage 1	-	-	_	_	959	-
Stage 2	_	_	_	_	958	-
	==		1.45			
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.1		8.8	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
			LDI			וטייי
Capacity (veh/h)		1000	-		1538	-
HCM Control Doloy (a)		0.05	-		0.005	-
HCM Control Delay (s)		8.8	-	-	7.4	0
HCM Lang LOC		Λ			٨	٨
HCM Lane LOS HCM 95th %tile Q(veh)		0.2	-	-	A 0	A -

	۶	-	•	•	←	•	1	†	/	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		*	∱ }		*	ተተ _ጉ		44	ተተተ	7
Traffic Volume (vph)	207	847	161	257	1193	355	250	956	222	452	1082	266
Future Volume (vph)	207	847	161	257	1193	355	250	956	222	452	1082	266
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	95.0		0.0	197.5		61.5	96.0		0.0	107.5		148.0
Storage Lanes	1		0	1		0	1		0	2		1
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.91	0.91	0.97	0.91	1.00
Ped Bike Factor	0.99	0.99		0.99	0.98		1.00	1.00		1.00		0.98
Frt		0.976			0.966			0.972				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1716	3324	0	1750	3311	0	1750	4816	0	3395	5029	1536
Flt Permitted	0.950			0.950			0.101			0.950		
Satd. Flow (perm)	1705	3324	0	1730	3311	0	186	4816	0	3379	5029	1503
Right Turn on Red			Yes			Yes			Yes		0000	Yes
Satd. Flow (RTOR)		15			29			32				210
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		336.2			205.0			231.1			222.2	
Travel Time (s)		20.2			12.3			13.9			13.3	
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Adj. Flow (vph)	211	864	164	262	1217	362	255	976	227	461	1104	271
Shared Lane Traffic (%)												
Lane Group Flow (vph)	211	1028	0	262	1579	0	255	1203	0	461	1104	271
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			7.0			7.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane		0.0			0.0			0.0			0.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	1.01	15	25	1.01	15	25	1.01	15	25	1.01	15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OI · LX	OI · LX		OI · LX	OI · LX		OI. LX	OI · LX		OI LX	OITEX	OI · LX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	0.0
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
		CI+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Type		UI+EX			OI+EX			UI+EX			OI+EX	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	۶	-	•	•	←	*	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Detector Phase	3	8		7	4		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	20.0		7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	11.0	47.8		11.0	47.8		12.0	42.5		12.0	42.5	42.5
Total Split (s)	20.0	60.0		31.0	71.0		21.0	46.0		23.0	48.0	48.0
Total Split (%)	12.5%	37.5%		19.4%	44.4%		13.1%	28.8%		14.4%	30.0%	30.0%
Maximum Green (s)	16.0	53.2		27.0	64.2		16.0	39.5		18.0	41.5	41.5
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	1.0	2.8		1.0	2.8		2.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0			10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0			26.0			26.0	26.0
Pedestrian Calls (#/hr)		40			51			11			7	7
Act Effct Green (s)	16.0	54.1		26.1	64.2		57.0	39.5		18.0	41.5	41.5
Actuated g/C Ratio	0.10	0.34		0.16	0.40		0.36	0.25		0.11	0.26	0.26
v/c Ratio	1.23	0.91		0.92	1.17		1.15	0.99		1.21	0.85	0.50
Control Delay	204.7	50.2		101.2	128.0		146.6	81.7		173.3	63.4	15.5
Queue Delay	0.0	0.0		0.0	0.1		0.0	0.0		0.0	0.0	0.0
Total Delay	204.7	50.2		101.2	128.1		146.6	81.7		173.3	63.4	15.5
LOS	F	D		F	F		F	F		F	Е	В
Approach Delay		76.5			124.3			93.0			83.9	
Approach LOS		Е			F			F			F	
Queue Length 50th (m)	~84.7	96.4		82.7	~312.1		~78.8	138.0		~91.7	123.0	15.1
Queue Length 95th (m)	#138.7	#199.5		#132.7	#354.6		#136.9	#171.2		#127.3	141.2	43.0
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	95.0			197.5			96.0			107.5		148.0
Base Capacity (vph)	171	1134		295	1345		222	1213		381	1304	545
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	46		0	0		0	0	2
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	1.23	0.91		0.89	1.22		1.15	0.99		1.21	0.85	0.50

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 48 (30%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.23

Intersection Signal Delay: 96.2

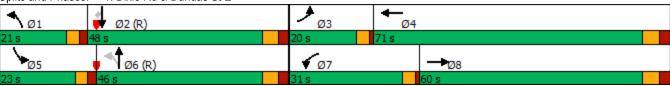
Intersection LOS: F

1225 Dundas Street

Intersection Capacity Utilization 119.1%

ICU Level of Service H

Analysis Period (min) 15


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

CGH Transportation 07-07-2025

	۶	→	•	•	←	•	•	†	~	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ }		Ž	↑ ↑		Ť	ተተ _ጉ		1,1	ተተተ	7
Traffic Volume (vph)	207	847	161	257	1193	355	250	956	222	452	1082	266
Future Volume (vph)	207	847	161	257	1193	355	250	956	222	452	1082	266
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.98		1.00	1.00		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.97		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1716	3325		1750	3310		1750	4815		3395	5029	1503
FIt Permitted	0.95	1.00		0.95	1.00		0.10	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1716	3325		1750	3310		187	4815		3395	5029	1503
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	211	864	164	262	1217	362	255	976	227	461	1104	271
RTOR Reduction (vph)	0	10	0	0	17	0	0	24	0	0	0	156
Lane Group Flow (vph)	211	1018	0	262	1562	0	255	1179	0	461	1104	115
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Actuated Green, G (s)	16.0	54.1		26.1	64.2		55.5	39.5		18.0	41.5	41.5
Effective Green, g (s)	16.0	54.1		26.1	64.2		55.5	39.5		18.0	41.5	41.5
Actuated g/C Ratio	0.10	0.34		0.16	0.40		0.35	0.25		0.11	0.26	0.26
Clearance Time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	171	1124		285	1328		221	1188		381	1304	389
v/s Ratio Prot	c0.12	0.31		0.15	c0.47		0.12	0.24		c0.14	0.22	
v/s Ratio Perm							c0.29					0.08
v/c Ratio	1.23	0.91		0.92	1.18		1.15	0.99		1.21	0.85	0.30
Uniform Delay, d1	72.0	50.5		65.9	47.9		47.1	60.1		71.0	56.2	47.5
Progression Factor	1.20	0.79		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	140.1	8.9		32.5	87.4		108.3	24.3		116.6	6.9	1.9
Delay (s)	226.2	48.9		98.4	135.3		155.4	84.4		187.6	63.2	49.5
Level of Service	F	D		F	F		F	F		F	Е	D
Approach Delay (s)		79.1			130.0			96.9			92.4	
Approach LOS		Е			F			F			F	
Intersection Summary			404 =		014 0000		0 '					
HCM 2000 Control Delay	., .,		101.7	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.18			C ()			00.0			
Actuated Cycle Length (s)			160.0		um of lost				22.3			
Intersection Capacity Utiliza	tion		119.1%	IC	CU Level o	of Service	9		Н			
Analysis Period (min)			15									

c Critical Lane Group

Lanes, Volumes, Timings 2: Blundell Rd /Queen Frederica Dr & Dundas St E

	۶	→	\rightarrow	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ î≽		*	∱ ∱		7		7	7	eî	
Traffic Volume (vph)	44	1231	37	46	1708	165	76	0	25	136	9	19
Future Volume (vph)	44	1231	37	46	1708	165	76	0	25	136	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	78.0		0.0	81.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		0.99	1.00		0.99		0.96	0.98	0.98	
Frt		0.996			0.987				0.850		0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1750	3445	0	1750	3438	0	1750	0	1566	1750	1628	0
Flt Permitted	0.950			0.950			0.738			0.950		
Satd. Flow (perm)	1746	3445	0	1736	3438	0	1339	0	1509	1707	1628	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			12				55		20	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		208.5			336.2			112.0			112.9	
Travel Time (s)		12.5			20.2			10.1			10.2	
Confl. Peds. (#/hr)	12		18	18		12	12		19	19		12
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	47	1324	40	49	1837	177	82	0	27	146	10	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	47	1364	0	49	2014	0	82	0	27	146	30	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1		1	1	2	
Detector Template	Left	Thru		Left	Thru		Left		Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0		2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0		2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex		CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4						9.4	
Detector 2 Size(m)		0.6			0.6						0.6	
Detector 2 Type		Cl+Ex			CI+Ex						CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0						0.0	

07-07-2025 CGH Transportation Page 5 JL

	•	→	>	←	•	•	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA	Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2	1	6						8	
Permitted Phases						4		4	8		
Detector Phase	5	2	1	6		4		4	8	8	
Switch Phase											
Minimum Initial (s)	7.0	8.0	7.0	8.0		8.0		8.0	8.0	8.0	
Minimum Split (s)	11.0	34.0	11.0			44.0		44.0	44.0	44.0	
Total Split (s)	11.0	102.0	14.0			44.0		44.0	44.0	44.0	
Total Split (%)	6.9%	63.8%	8.8%			27.5%		27.5%	27.5%	27.5%	
Maximum Green (s)	7.0	95.0	10.0			37.0		37.0	37.0	37.0	
Yellow Time (s)	3.0	4.0	3.0			3.0		3.0	3.0	3.0	
All-Red Time (s)	1.0	3.0	1.0			4.0		4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.0	4.0	7.0		7.0		7.0	7.0	7.0	
Lead/Lag	Lead	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0			3.0		3.0	3.0	3.0	
Recall Mode	None	C-Max	None			None		None	None	None	
Walk Time (s)		10.0		10.0		10.0		10.0	10.0	10.0	
Flash Dont Walk (s)		17.0		17.0		27.0		27.0	27.0	27.0	
Pedestrian Calls (#/hr)		18		12		19		19	12	12	
Act Effct Green (s)	7.3	107.3	9.0			27.9		27.9	27.9	27.9	
Actuated g/C Ratio	0.05	0.67	0.06			0.17		0.17	0.17	0.17	
v/c Ratio	0.59	0.59	0.50			0.35		0.09	0.49	0.10	
Control Delay	117.8	6.0	80.9			59.3		1.9	63.2	24.9	
Queue Delay	0.0	0.0	0.0			0.0		0.0	0.0	0.0	
Total Delay	117.8	6.0	80.9			59.3		1.9	63.2	24.9	
LOS	F	Α	F			E		Α	Е	С	
Approach Delay		9.7		15.7			45.1			56.7	
Approach LOS		Α		В			D			Е	
Queue Length 50th (m)	15.8	27.7	16.2			21.6		0.0	39.5	2.5	
Queue Length 95th (m)	m#31.0	34.5	m18.8			38.0		1.5	61.1	11.7	
Internal Link Dist (m)		184.5		312.2			88.0			88.9	
Turn Bay Length (m)	78.0		81.0								
Base Capacity (vph)	79	2311	109			309		391	394	391	
Starvation Cap Reductn	0	19	0			0		0	0	0	
Spillback Cap Reductn	0	0	0	-		0		0	0	0	
Storage Cap Reductn	0	0	0			0		0	0	0	
Reduced v/c Ratio	0.59	0.60	0.45	0.87		0.27		0.07	0.37	0.08	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 16.2

Intersection LOS: B

1225 Dundas Street

	٠	→	•	•	←	•	4	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		Ť	∱ ∱		7		7	ሻ	f)	
Traffic Volume (vph)	44	1231	37	46	1708	165	76	0	25	136	9	19
Future Volume (vph)	44	1231	37	46	1708	165	76	0	25	136	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.96	1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99		1.00	0.98	1.00	
Frt	1.00	1.00		1.00	0.99		1.00		0.85	1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1750	3443		1750	3437		1724		1509	1707	1628	
Flt Permitted	0.95	1.00		0.95	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	1750	3443	0.00	1750	3437	0.00	1338	0.00	1509	1707	1628	0.00
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	47	1324	40	49	1837	177	82	0	27	146	10	20
RTOR Reduction (vph)	0	1	0	0	4	0	0	0	22	0	17	0
Lane Group Flow (vph)	47	1363	0	49	2010	0	82	0	5	146	13	0
Confl. Peds. (#/hr)	12	20/	18	18	00/	12	12	00/	19	19	00/	12
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6		4			0	8	
Permitted Phases	5 0	400 5		7.0	400.0		4		4	8	07.0	
Actuated Green, G (s)	5.9	106.5		7.6	108.2		27.9		27.9	27.9	27.9	
Effective Green, g (s)	5.9	106.5		7.6	108.2		27.9		27.9	27.9	27.9	
Actuated g/C Ratio	0.04 4.0	0.67 7.0		0.05	0.68 7.0		0.17 7.0		0.17	0.17 7.0	0.17 7.0	
Clearance Time (s)	3.0	3.0		4.0 3.0	3.0		3.0		7.0 3.0	3.0	3.0	
Vehicle Extension (s)	64											
Lane Grp Cap (vph)		2291		83	2324		233		263	297	283	
v/s Ratio Prot	0.03	0.40		c0.03	c0.58		0.06		0.00	c0.09	0.01	
v/s Ratio Perm v/c Ratio	0.73	0.59		0.59	0.86		0.06		0.00	0.49	0.05	
Uniform Delay, d1	76.3	14.8		74.7	20.2		58.1		54.7	59.6	55.0	
Progression Factor	1.25	0.29		1.00	0.50		1.00		1.00	1.00	1.00	
		1.0									0.1	
Incremental Delay, d2 Delay (s)	31.2 126.2	5.3		4.6 79.5	2.0 12.1		0.9 59.0		0.0 54.7	1.3 60.9	55.1	
Level of Service	120.2 F	J.5		79.5 E	В		59.0 E		54.7 D	00.9 E	55.1 E	
Approach Delay (s)	Į.	9.3		L	13.7		_	58.0	U	_	59.9	
Approach LOS		3.5 A			В			50.0 E			55.5 E	
••		Α										
Intersection Summary			45.5		014 0000							
HCM 2000 Control Delay			15.5	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.79			C ()			40.0			
Actuated Cycle Length (s)	-4'		160.0		um of lost				18.0			
Intersection Capacity Utiliza	ation		83.9%	IC	CU Level o	of Service			E			
Analysis Period (min)			15									

c Critical Lane Group

	۶	→	•	•	←	•	•	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ }		ሻ	∱ }		ሻ	ĥ		ሻ	f)	
Traffic Volume (vph)	81	1219	19	88	1575	67	21	11	110	21	2	60
Future Volume (vph)	81	1219	19	88	1575	67	21	11	110	21	2	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	46.0		0.0	60.0		0.0	48.5		0.0	35.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		0.99	1.00		0.98	0.98		0.99	0.97	
Frt		0.998			0.994			0.864			0.855	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1733	3453	0	1750	3439	0	1700	1555	0	1750	1529	0
Flt Permitted	0.950			0.950			0.716			0.623		
Satd. Flow (perm)	1728	3453	0	1730	3439	0	1260	1555	0	1135	1529	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			5			111			61	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		172.2			208.5			142.2			79.4	
Travel Time (s)		10.3			12.5			12.8			7.1	
Confl. Peds. (#/hr)	11		24	24		11	15		11	11		15
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Adj. Flow (vph)	82	1231	19	89	1591	68	21	11	111	21	2	61
Shared Lane Traffic (%)												
Lane Group Flow (vph)	82	1250	0	89	1659	0	21	122	0	21	63	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

07-07-2025

CGH Transportation Page 9

	•	-	•	•	←	*	•	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases							4			8		
Detector Phase	5	2		1	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	11.0	35.5		11.0	35.5		46.5	46.5		46.5	46.5	
Total Split (s)	13.0	94.0		19.0	100.0		47.0	47.0		47.0	47.0	
Total Split (%)	8.1%	58.8%		11.9%	62.5%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	9.0	87.5		15.0	93.5		39.5	39.5		39.5	39.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.5		1.0	2.5		4.5	4.5		4.5	4.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		19.0			19.0		29.0	29.0		29.0	29.0	
Pedestrian Calls (#/hr)		24			11		11	11		15	15	
Act Effct Green (s)	10.0	102.6		12.8	105.4		26.6	26.6		26.6	26.6	
Actuated g/C Ratio	0.06	0.64		0.08	0.66		0.17	0.17		0.17	0.17	
v/c Ratio	0.76	0.56		0.64	0.73		0.10	0.35		0.11	0.21	
Control Delay	111.5	20.4		93.9	12.3		50.4	12.7		50.8	12.6	
Queue Delay	0.0	0.0		0.0	0.4		0.0	0.0		0.0	0.0	
Total Delay	111.5	20.4		93.9	12.8		50.4	12.7		50.8	12.6	
LOS	F	С		F	В		D	В		D	В	
Approach Delay		26.0			16.9			18.3			22.1	
Approach LOS		С			В			В			С	
Queue Length 50th (m)	26.3	140.1		30.2	61.2		5.2	2.7		5.2	0.5	
Queue Length 95th (m)	#57.0	168.4		m35.8	65.3		12.9	19.4		13.0	13.1	
Internal Link Dist (m)		148.2			184.5			118.2			55.4	
Turn Bay Length (m)	46.0			60.0			48.5			35.0		
Base Capacity (vph)	108	2214		166	2266		311	467		280	423	
Starvation Cap Reductn	0	0		0	201		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.76	0.56		0.54	0.80		0.07	0.26		0.07	0.15	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 108 (68%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.76

Intersection Signal Delay: 20.8 Intersection LOS: C

	٠	→	•	•	←	4	1	†	~	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	∱ î≽		ň	ħβ		7	î,		ħ	₽	
Traffic Volume (vph)	81	1219	19	88	1575	67	21	11	110	21	2	60
Future Volume (vph)	81	1219	19	88	1575	67	21	11	110	21	2	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.98	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.86		1.00	0.85	
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3453		1750	3439		1671	1554		1731	1529	
Flt Permitted	0.95	1.00		0.95	1.00		0.72	1.00		0.62	1.00	
Satd. Flow (perm)	1733	3453		1750	3439		1259	1554		1134	1529	
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	82	1231	19	89	1591	68	21	11	111	21	2	61
RTOR Reduction (vph)	0	0	0	0	2	0	0	93	0	0	51	0
Lane Group Flow (vph)	82	1250	0	89	1657	0	21	29	0	21	12	0
Confl. Peds. (#/hr)	11		24	24		11	15		11	11		15
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases							4			8		
Actuated Green, G (s)	10.0	102.6		12.8	105.4		26.6	26.6		26.6	26.6	
Effective Green, g (s)	10.0	102.6		12.8	105.4		26.6	26.6		26.6	26.6	
Actuated g/C Ratio	0.06	0.64		80.0	0.66		0.17	0.17		0.17	0.17	
Clearance Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	108	2214		140	2265		209	258		188	254	
v/s Ratio Prot	c0.05	0.36		0.05	c0.48			c0.02			0.01	
v/s Ratio Perm							0.02			0.02		
v/c Ratio	0.76	0.56		0.64	0.73		0.10	0.11		0.11	0.05	
Uniform Delay, d1	73.8	16.1		71.3	18.0		56.6	56.7		56.7	56.1	
Progression Factor	1.00	1.00		1.16	0.53		1.00	1.00		1.00	1.00	
Incremental Delay, d2	25.9	1.0		5.0	1.2		0.2	0.2		0.3	0.1	
Delay (s)	99.7	17.2		88.0	10.7		56.8	56.9		56.9	56.1	
Level of Service	F	В		F	В		Е	Е		Е	Е	
Approach Delay (s)		22.3			14.6			56.9			56.3	
Approach LOS		С			В			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			20.6	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	icity ratio		0.62	_					42.2			
Actuated Cycle Length (s)			160.0		um of lost				18.0			
Intersection Capacity Utiliza	ation		89.9%	IC	U Level c	of Service			Е			
Analysis Period (min)			15									

c Critical Lane Group

٠	•	4	†	Ţ	4
EBL	EBR	NBL	NBT	SBT	SBR
¥			ર્ન	1>	
26	62	59	145	111	39
26	62	59	145	111	39
1900	1900	1900	1900	1900	1900
1.00	1.00	1.00	1.00	1.00	1.00
0.905				0.965	
0.985			0.986		
1642	0	0	1816	1778	0
0.985			0.986		
1642	0	0	1816	1778	0
40			40	40	
126.4			112.9	77.9	
11.4			10.2	7.0	
6	5	5			4
0.94	0.94	0.94	0.94	0.94	0.94
28	66	63	154	118	41
94	0	0	217	159	0
No	No	No	No	No	No
Left	Right	Left	Left	Left	Right
3.5			0.0	0.0	
			0.0		
3.0			3.0	3.0	
			1.01	1.01	1.01
	15	25			15
Stop			Stop	Stop	
Other					
ion 36.7%			IC	U Level o	of Service A
	EBL 26 26 1900 1.00 0.905 0.985 1642 0.985 1642 40 126.4 11.4 6 0.94 28 94 No Left 3.5 0.0 3.0 1.01 25 Stop	EBL EBR 26 62 26 62 1900 1900 1.00 1.00 0.905 0.985 1642 0 0.985 1642 0 40 126.4 11.4 6 5 0.94 0.94 28 66 94 0 No No Left Right 3.5 0.0 3.0 1.01 1.01 25 15 Stop	EBL EBR NBL 26 62 59 26 62 59 1900 1900 1900 1.00 1.00 1.00 0.905 0.985 1642 0 0 0.985 1642 0 0 40 126.4 11.4 6 5 5 0.94 0.94 0.94 28 66 63 94 0 0 No No No No Left Right Left 3.5 0.0 3.0 1.01 1.01 1.01 25 15 25 Stop	EBL EBR NBL NBT 26 62 59 145 26 62 59 145 1900 1900 1900 1900 1.00 1.00 1.00 1.00 0.905 0.985 0.986 1642 0 0 1816 0.985 0.986 1642 0 0 1816 40 40 126.4 112.9 11.4 10.2 6 5 5 0.94 0.94 0.94 0.94 28 66 63 154 94 0 0 217 No No No No No Left Right Left 3.5 0.0 0.0 3.0 3.0 1.01 1.01 1.01 1.01 25 15 25 Stop Stop	EBL EBR NBL NBT SBT 26 62 59 145 111 26 62 59 145 111 1900 1900 1900 1900 1900 1.00 1.00 1.00 1.00 1.00 0.905 0.985 0.985 0.986 1642 0 0 1816 1778 0.985 0.986 1642 0 0 1816 1778 40 40 40 126.4 112.9 77.9 11.4 10.2 7.0 6 5 5 0.94 0.94 0.94 0.94 0.94 28 66 63 154 118 94 0 0 217 159 No No No No No No Left Right Left Left 3.5 0.0 0.0 0.0 3.0 3.0 3.0 1.01 1.01 1.01 1.01 1.01 25 15 25 Stop Stop Stop

Analysis Period (min) 15

07-07-2025 CGH Transportation Page 13 JL

	•	•	4	†	ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	f)	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	26	62	59	145	111	39
Future Volume (vph)	26	62	59	145	111	39
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	28	66	63	154	118	41
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	94	217	159			
Volume Left (vph)	28	63	0			
Volume Right (vph)	66	0	41			
Hadj (s)	-0.33	0.09	-0.12			
Departure Headway (s)	4.4	4.4	4.2			
Degree Utilization, x	0.11	0.26	0.19			
Capacity (veh/h)	749	797	816			
Control Delay (s)	8.0	8.9	8.2			
Approach Delay (s)	8.0	8.9	8.2			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.5			
Level of Service			Α			
Intersection Capacity Utiliz	zation		36.7%	IC	U Level c	of Service
Analysis Period (min)			15			

Intersection			
Intersection Delay, s/veh	8.5		
Intersection LOS	Α		

	EDI	EDD	NDI	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ની	₽	
Traffic Vol, veh/h	26	62	59	145	111	39
Future Vol, veh/h	26	62	59	145	111	39
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	28	66	63	154	118	41
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach	•	•	SB		NB	•
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	8		8.9		8.2	
HCM LOS	Α		Α		Α	

Lane	NBLn1	EBLn1	SBLn1	
Vol Left, %	29%	30%	0%	
Vol Thru, %	71%	0%	74%	
Vol Right, %	0%	70%	26%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	204	88	150	
LT Vol	59	26	0	
Through Vol	145	0	111	
RT Vol	0	62	39	
Lane Flow Rate	217	94	160	
Geometry Grp	1	1	1	
Degree of Util (X)	0.264	0.114	0.187	
Departure Headway (Hd)	4.382	4.395	4.219	
Convergence, Y/N	Yes	Yes	Yes	
Сар	825	816	852	
Service Time	2.382	2.415	2.235	
HCM Lane V/C Ratio	0.263	0.115	0.188	
HCM Control Delay	8.9	8	8.2	
HCM Lane LOS	Α	Α	Α	
HCM 95th-tile Q	1.1	0.4	0.7	

Lane Group		۶	→	•	•	←	•	1	†	~	/	 	1
Traffic Volume (vph) 0 2 3 34 7 21 2 30 34 10 10 0 Future Volume (vph) 0 2 3 34 7 21 2 30 34 10 10 0 Ideal Flow (vphpl) 1900 100 1.00 <td< td=""><td>Lane Group</td><td>EBL</td><td>EBT</td><td>EBR</td><td>WBL</td><td>WBT</td><td>WBR</td><td>NBL</td><td>NBT</td><td>NBR</td><td>SBL</td><td>SBT</td><td>SBR</td></td<>	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 0 2 3 34 7 21 2 30 34 10 10 0 Future Volume (vph) 0 2 3 34 7 21 2 30 34 10 10 0 Ideal Flow (vphpl) 1900 <t< td=""><td>Lane Configurations</td><td></td><td>4</td><td></td><td></td><td>4</td><td></td><td></td><td>4</td><td></td><td></td><td>4</td><td></td></t<>	Lane Configurations		4			4			4			4	
Ideal Flow (vphpl)	Traffic Volume (vph)	0		3	34		21	2	30	34	10		0
Lane Util. Factor 1.00 <td>Future Volume (vph)</td> <td>0</td> <td>2</td> <td>3</td> <td>34</td> <td></td> <td>21</td> <td>2</td> <td>30</td> <td>34</td> <td>10</td> <td>10</td> <td>0</td>	Future Volume (vph)	0	2	3	34		21	2	30	34	10	10	0
Ped Bike Factor Fit	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Frt 0.919 0.955 0.931 Filt Protected 0.973 0.999 0.976 Satd. Flow (prot) 0 1693 0 0 1675 0 0 1705 0 0 1798 0 Fit Permitted 0.973 0.999 0.976 0.976 0 0.976 0 0.976 0 0.976 0 0.976 0 0.976 0 0.976 0 0.976 0 0.976 0 0.976 0 0.976 0 0.976 0 0 0.976 0 0 0.976 0 0 0.976 0 0 0.976 0 0 0.976 0 0 0 0 0.976 0 <t< td=""><td>Lane Util. Factor</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td></t<>	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected Satd. Flow (prot) O 1693 O O 1675 O O 1705 O O 1798 O	Ped Bike Factor												
Satd. Flow (prot) 0 1693 0 0 1675 0 0 1705 0 0 1798 0 Flt Permitted 0.973 0.999 0.976 0.976 0.976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9876 <td< td=""><td>Frt</td><td></td><td>0.919</td><td></td><td></td><td>0.955</td><td></td><td></td><td>0.931</td><td></td><td></td><td></td><td></td></td<>	Frt		0.919			0.955			0.931				
Fit Permitted	Flt Protected					0.973			0.999			0.976	
Satd. Flow (perm) 0 1693 0 0 1675 0 0 1705 0 0 1798 0 Link Speed (k/h) 40 40 40 40 20 1 Link Distance (m) 67.0 91.4 52.1 82.6 1 Travel Time (s) 6.0 8.2 4.7 14.9 14.9 Confl. Peds. (#/hr) 5 4 4 5 3 6 6 3 Peak Hour Factor 0.98<	Satd. Flow (prot)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Link Speed (k/h) 40 40 40 52.1 82.6 Travel Time (s) 6.0 8.2 4.7 14.9 Confl. Peds. (#/hr) 5 4 4 5 3 6 6 3 Peak Hour Factor 0.98	Flt Permitted					0.973			0.999			0.976	
Link Distance (m) 67.0 91.4 52.1 82.6 Travel Time (s) 6.0 8.2 4.7 14.9 Confl. Peds. (#/hr) 5 4 4 5 3 6 6 3 Peak Hour Factor 0.98 </td <td>Satd. Flow (perm)</td> <td>0</td> <td>1693</td> <td>0</td> <td>0</td> <td>1675</td> <td>0</td> <td>0</td> <td>1705</td> <td>0</td> <td>0</td> <td>1798</td> <td>0</td>	Satd. Flow (perm)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Travel Time (s) 6.0 8.2 4.7 14.9 Confl. Peds. (#/hr) 5 4 4 5 3 6 6 3 Peak Hour Factor 0.98	Link Speed (k/h)		40			40			40			20	
Confl. Peds. (#/hr) 5 4 4 4 5 3 6 6 6 3 Peak Hour Factor 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	Link Distance (m)		67.0			91.4			52.1			82.6	
Peak Hour Factor 0.98	Travel Time (s)		6.0			8.2			4.7			14.9	
Heavy Vehicles (%) 2% 2% 2% 6% 2% 2% 2% 3% 2% 2% 2% Adj. Flow (vph) 0 2 3 35 7 21 2 31 35 10 10 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 5 0 0 63 0 0 68 0 0 20 0 Enter Blocked Intersection No	Confl. Peds. (#/hr)			-	4			-					_
Adj. Flow (vph) 0 2 3 35 7 21 2 31 35 10 10 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 5 0 0 63 0 0 68 0 0 20 0 Enter Blocked Intersection No	Peak Hour Factor				0.98					0.98			
Shared Lane Traffic (%) Lane Group Flow (vph) 0 5 0 0 63 0 0 68 0 0 20 0 Enter Blocked Intersection No	Heavy Vehicles (%)	2%				2%							2%
Lane Group Flow (vph) 0 5 0 0 63 0 0 68 0 0 20 0 Enter Blocked Intersection No	Adj. Flow (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Enter Blocked Intersection No No <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Lane Alignment Left Left Right Left Left Left Left Left Left Left Right Median Width(m) 0.0 0.0 0.0 0.0 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01 <t< td=""><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			5										
Median Width(m) 0.0 0.0 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01 1			No	No						No			
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Lane Alignment	Left		Right	Left	Left	Right	Left		Right	Left		Right
Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01 </td <td>Median Width(m)</td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td>	Median Width(m)		0.0			0.0			0.0			0.0	
Two way Left Turn Lane Headway Factor 1.01	Link Offset(m)		0.0			0.0			0.0				
Headway Factor 1.01	Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Turning Speed (k/h) 25 15 25 15 25 15 Sign Control Stop Stop Stop Stop Intersection Summary Stop	Two way Left Turn Lane												
Sign Control Stop Stop Stop Stop	Headway Factor	1.01	1.01		1.01	1.01		1.01	1.01		1.01	1.01	
Intersection Summary		25		15	25		15	25		15	25		15
· · · · · · · · · · · · · · · · · · ·	Sign Control		Stop			Stop			Stop			Stop	

Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 24.3%

Analysis Period (min) 15

ICU Level of Service A

CGH Transportation Page 16 07-07-2025 JL

	•	→	*	•	+	4	•	†	/	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	5	63	68	20								
Volume Left (vph)	0	35	2	10								
Volume Right (vph)	3	21	35	0								
Hadj (s)	-0.33	-0.02	-0.26	0.13								
Departure Headway (s)	3.8	4.1	3.8	4.2								
Degree Utilization, x	0.01	0.07	0.07	0.02								
Capacity (veh/h)	913	862	918	828								
Control Delay (s)	6.8	7.4	7.1	7.3								
Approach Delay (s)	6.8	7.4	7.1	7.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									,
Level of Service			Α									
Intersection Capacity Utilization	tion		24.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Future Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles, %	2	2	2	6	2	2	2	2	3	2	2	2
Mvmt Flow	0	2	3	35	7	21	2	31	35	10	10	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		1		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			1		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			1			1		
HCM Control Delay		6.8		7.4			7.1			7.3		
HCM LOS		Α		Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	0%	55%	50%	
Vol Thru, %	45%	40%	11%	50%	
Vol Right, %	52%	60%	34%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	66	5	62	20	
LT Vol	2	0	34	10	
Through Vol	30	2	7	10	
RT Vol	34	3	21	0	
Lane Flow Rate	67	5	63	20	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.07	0.005	0.071	0.024	
Departure Headway (Hd)	3.765	3.774	4.065	4.205	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	948	943	880	849	
Service Time	1.8	1.818	2.096	2.244	
HCM Lane V/C Ratio	0.071	0.005	0.072	0.024	
HCM Control Delay	7.1	6.8	7.4	7.3	
HCM Lane LOS	А	Α	Α	Α	
HCM 95th-tile Q	0.2	0	0.2	0.1	

	•	•	†	<i>></i>	/	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1			4 Î
Traffic Volume (vph)	40	0	66	91	0	47
Future Volume (vph)	40	0	66	91	0	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.922			
Flt Protected	0.950					
Satd. Flow (prot)	1750	0	1698	0	0	1842
Flt Permitted	0.950					
Satd. Flow (perm)	1750	0	1698	0	0	1842
Link Speed (k/h)	50		40			40
Link Distance (m)	55.0		79.4			52.1
Travel Time (s)	4.0		7.1			4.7
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	44	0	73	101	0	52
Shared Lane Traffic (%)						
Lane Group Flow (vph)	44	0	174	0	0	52
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5		3.5			3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	3.0		3.0			3.0
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	15		15	25	
Sign Control	Stop		Free			Free
Intersection Summary						
7 F -	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 19.0%			IC	U Level c	of Service A

Analysis Period (min) 15

•	†	<i>></i>	-	†
WBR	NBT	NBR	SBL	SBT
				र्स
0	66	91	0	47
0	66	91	0	47
	Free			Free
	0%			0%
0.90	0.90	0.90	0.90	0.90
0	73	101	0	52
	None			None
	79			
124			174	
124			174	
6.2			4.1	
3.3			2.2	
100			100	
927			1403	
NB 1	SB 1			
0.0	0.0			
	1.6			
	19.0%	IC	U Level c	f Service
	15			
	WBR 0 0 0 0.90 0 124 124 6.2 3.3 100	WBR NBT 0 66 0 66 0 66 Free 0% 0.90 0.90 0 73 None 79 124 124 6.2 3.3 100 927 NB 1 SB 1 174 52 0 0 0 101 0 1700 1403 0.10 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 19.0%	WBR NBT NBR 0 66 91 0 66 91 Free 0% 0.90 0.90 0.90 0 73 101 None 79 124 124 6.2 3.3 100 927 NB 1 SB 1 174 52 0 0 0 101 0 1700 1403 0.10 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	WBR NBT NBR SBL 0 66 91 0 0 66 91 0 Free 0% 0.90 0.90 0.90 0.90 0 73 101 0 None 79 124 174 6.2 4.1 3.3 2.2 100 100 927 1403 NB 1 SB 1 174 52 0 0 0 101 0 1700 1403 0.10 0.00 0.0

1.6 WBL	WBR				
WBL	WBR				
	WBK	NIDT	NDD	CDI	CDT
TYF		NBT	NBR	SBL	SBT
	^	†	04	٥	€
40	0	66	91	0	47
40	0	66	91	0	47
					_ 0
•					Free
					None
					-
			-		0
	-		-	-	0
					90
					2
44	0	73	101	0	52
Minor1		Maior1		Maior2	
					0
			U		-
			-		_
		-	<u>-</u>		-
		-	-		-
	-	-	-		
	2 240	-	-		-
		-	-		-
	927	-	-	1403	-
	-	-	-	-	-
970	-	-	-	-	-
044	007	-	-	4.400	-
	927	-	-	1403	-
	-	-	-	-	-
	-	-	-	-	-
970	-	-	-	-	-
WB		NB		SB	
		U		U	
	NBT	NBRV	VBLn1	SBL	SBT
mt	ושוי				
mt	-	-		1403	-
	-	-	0.055	-	-
mt S)	-	-			- - -
	-	-	0.055	-	
	Stop	Stop Stop Stop Stop - None 0 - 1e, # 0 - 90 90 2 2 44 0 Minor1 176 124 124 - 52 - 6.42 6.22 5.42 - 5.42 - 5.42 - 3.518 3.318 814 927 902 - 970 - 814 - 902 - 970 - WB 6 9.7	None Free None None	Stop Stop Free Free - None - None 0 1e, # 0 - 0 - 90 90 90 90 2 2 2 2 2 44 0 73 101 Minor1	Stop Stop Free 40 0 0

07-07-2025
JL CGH Transportation
Page 21

	-	•	•	—	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			ર્ન	, A	
Traffic Volume (vph)	49	0	23	69	0	36
Future Volume (vph)	49	0	23	69	0	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.988		
Satd. Flow (prot)	1842	0	0	1820	1593	0
Flt Permitted				0.988		
Satd. Flow (perm)	1842	0	0	1820	1593	0
Link Speed (k/h)	40			40	50	
Link Distance (m)	91.4			126.4	41.7	
Travel Time (s)	8.2			11.4	3.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	54	0	26	77	0	40
Shared Lane Traffic (%)						
Lane Group Flow (vph)	54	0	0	103	40	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						

Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 21.6%
Analysis Period (min) 15

ICU Level of Service A

CGH Transportation Page 22 07-07-2025 JL

	-	•	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			4	W	
Traffic Volume (veh/h)	49	0	23	69	0	36
Future Volume (Veh/h)	49	0	23	69	0	36
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	54	0	26	77	0	40
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			54		183	54
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			54		183	54
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			98		100	96
cM capacity (veh/h)			1551		793	1013
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	54	103	40			
Volume Left	0	26	0			
Volume Right	0	0	40			
cSH	1700	1551	1013			
Volume to Capacity	0.03	0.02	0.04			
Queue Length 95th (m)	0.0	0.4	0.9			
Control Delay (s)	0.0	2.0	8.7			
Lane LOS		Α	Α			
Approach Delay (s)	0.0	2.0	8.7			
Approach LOS			А			
Intersection Summary						
Average Delay			2.8			
Intersection Capacity Utiliza	ation		21.6%	IC	U Level o	f Service
Analysis Period (min)			15			

07-07-2025
JL CGH Transportation
Page 23

Intersection						
Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		EDK	WDL			NDK
Lane Configurations	}	٥	22	<u>र्</u> स	***	26
Traffic Vol, veh/h	49	0	23	69	0	36
Future Vol, veh/h	49	0	23	69	0	36
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	54	0	26	77	0	40
Major/Minor Ma	ajor1	ı	Major2		Minor1	
Conflicting Flow All	0	0	54	0	183	54
Stage 1					54	
	-	-	-	-	129	-
Stage 2	-	-	4.40	-		
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	_	_	5.42	-
Critical Hdwy Stg 2	-	-	- 0.40	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1551	-	806	1013
Stage 1	-	-	-	-	969	-
Stage 2	-	-	-	-	897	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1551	-	791	1013
Mov Cap-2 Maneuver	-	-	-	-	791	-
Stage 1	-	-	-	-	969	-
Stage 2	-	-	-	-	881	-
Approach	EB		WB		NB	
HCM LOS	0		1.8		8.7	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1013	-		1551	-
HCM Lane V/C Ratio		0.039	_		0.016	_
HCM Control Delay (s)		8.7	_	_		0
HCM Lane LOS		A	_	_	A	A
HCM 95th %tile Q(veh)		0.1	_	_	0.1	-
HOW JOHN JUNIO Q(VOII)		0.1			0.1	

07-07-2025
JL CGH Transportation
Page 24

Appendix P

2033 Future Background Conditions Synchro Worksheets

Lane Configurations T		۶	→	*	•	←	•	1	1	~	/	Ţ	4
Traffic Volume (vph) 158 900 155 96 447 169 83 806 139 368 946 178	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	*	†		7	†		7	^		14	^	7
Ideal Flow (yphp) 1900 1000 1	Traffic Volume (vph)	158		155	96		169	83		139			178
Storage Langthr (m) 95.0	Future Volume (vph)	158	900	155	96	447	169	83	806	139	368	946	178
Storage Lanes	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Taper Length (m)	Storage Length (m)	95.0		0.0	197.5		61.5	96.0		0.0	107.5		148.0
Lane Util. Factor	Storage Lanes	1		0	1		0	1		0	2		1
Ped Bike Factor 0.99	Taper Length (m)	15.0			15.0			15.0			15.0		
First	Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.91	0.91	0.97	0.91	1.00
Fit Protected 0.950 0.95	Ped Bike Factor	0.99	1.00		1.00	0.99		1.00	1.00		1.00		0.99
Satd. Flow (prot) 1623 3320 0 1638 3094 0 1716 4647 0 3267 4794 1479 147	Frt		0.978			0.959			0.978				0.850
Fit Permitted	Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (perm) 1614 3320 0 1631 3094 0 462 4647 0 3261 4794 1459 1459 1450	Satd. Flow (prot)	1623	3320	0	1638	3094	0	1716	4647	0	3267	4794	1479
Right Turn on Red	Flt Permitted	0.950			0.950			0.256			0.950		
Satd. Flow (RTOR)	Satd. Flow (perm)	1614	3320	0	1631	3094	0	462	4647	0	3261	4794	1459
Link Speed (k/h)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (m) 336.2 205.0 231.1 222.2 13.3 13.9 13.3 13.3 13.9 13.3	Satd. Flow (RTOR)		14			35			20				185
Travel Time (s)	Link Speed (k/h)		60			60			60			60	
Confi. Peds. (#/hr)	Link Distance (m)		336.2			205.0			231.1			222.2	
Peak Hour Factor	Travel Time (s)		20.2			12.3			13.9			13.3	
Heavy Vehicles (%)	Confl. Peds. (#/hr)	11		15	15		11	1		3	3		1
Adj. Flow (vph) 165 938 161 100 466 176 86 840 145 383 985 185 Shared Lane Traffic (%) Lane Group Flow (vph) 165 1099 0 100 642 0 86 985 0 383 985 185 Enter Blocked Intersection No	Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Shared Lane Traffic (%) Lane Group Flow (yph) 165 1099 0 100 642 0 86 985 0 383 985 185	Heavy Vehicles (%)	10%	5%	3%	9%	8%	15%	4%	8%	6%	6%	7%	8%
Lane Group Flow (vph) 165 1099 0 100 642 0 86 985 0 383 985 185	Adj. Flow (vph)	165	938	161	100	466	176	86	840	145	383	985	185
Enter Blocked Intersection No No No No No No No	Shared Lane Traffic (%)												
Left Left Right Right Left Right Right Left Right	Lane Group Flow (vph)	165	1099	0	100	642	0	86	985	0	383	985	185
Median Width(m) 3.5 3.5 7.0 7.0	Enter Blocked Intersection	No	No	No									
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Lane Alignment	Left	Left	Right									
Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Median Width(m)		3.5						7.0			7.0	
Two way Left Turn Lane Headway Factor 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	Link Offset(m)		0.0										
Headway Factor 1.01	Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Turning Speed (k/h) 25 15 25 15 25 15 25 15 Number of Detectors 1 2 1 0 </td <td>Two way Left Turn Lane</td> <td></td>	Two way Left Turn Lane												
Number of Detectors 1 2 0	Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Detector Template	Turning Speed (k/h)	25		15	25		15	25		15	25		
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 0	Number of Detectors	1	2		1	2		1	2		1	2	1
Trailing Detector (m) 0.0	Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 0.0	Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 Detector 1 Type CI+Ex CI+Ex <t< td=""><td>Trailing Detector (m)</td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td></t<>	Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Type CI+Ex	Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Channel Detector 1 Extend (s) 0.0 <	Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Extend (s) 0.0	Detector 1 Type	Cl+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m) 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m) 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	• ()												
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel	` '		0.6						0.6			0.6	
Detector 2 Channel	` ,												
	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	•	-	*	1	•	*	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Detector Phase	3	8		7	4		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	10.0		7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	10.0	47.8		10.0	47.8		15.0	42.5		15.0	42.5	42.5
Total Split (s)	29.0	67.0		17.0	55.0		15.0	47.0		29.0	61.0	61.0
Total Split (%)	18.1%	41.9%		10.6%	34.4%		9.4%	29.4%		18.1%	38.1%	38.1%
Maximum Green (s)	26.0	60.2		14.0	48.2		12.0	40.5		24.0	54.5	54.5
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	2.8		0.0	2.8		0.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0			10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0			26.0			26.0	26.0
Pedestrian Calls (#/hr)		15			11			3			1	1
Act Effct Green (s)	20.9	57.2		12.9	49.2		59.5	46.2		22.4	60.8	60.8
Actuated g/C Ratio	0.13	0.36		0.08	0.31		0.37	0.29		0.14	0.38	0.38
v/c Ratio	0.78	0.92		0.76	0.66		0.35	0.73		0.84	0.54	0.28
Control Delay	92.9	53.1		104.1	49.0		29.2	55.0		83.5	41.1	5.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	92.9	53.1		104.1	49.0		29.2	55.0		83.5	41.1	5.7
LOS	F	D		F	D		С	Е		F	D	Α
Approach Delay		58.3			56.4			52.9			47.3	
Approach LOS		Е			Е			D			D	
Queue Length 50th (m)	43.3	174.2		31.5	86.7		15.3	106.4		61.3	92.6	0.0
Queue Length 95th (m)	75.9	152.7		#58.2	111.8		26.5	125.1		80.0	110.7	17.1
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	95.0			197.5			96.0			107.5		148.0
Base Capacity (vph)	263	1257		143	985		272	1356		490	1821	668
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.63	0.87		0.70	0.65		0.32	0.73		0.78	0.54	0.28

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 145 (91%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 120

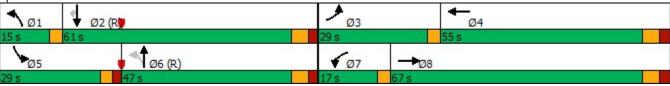
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92

Intersection Signal Delay: 53.1 Intersection LOS: D

1225 Dundas Street

Intersection Capacity Utilization 96.6%


ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

	۶	→	•	•	←	•	4	1	~	/	Ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		*	†		*	^		44	^	7
Traffic Volume (vph)	158	900	155	96	447	169	83	806	139	368	946	178
Future Volume (vph)	158	900	155	96	447	169	83	806	139	368	946	178
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1623	3320		1638	3093		1716	4646		3267	4794	1459
FIt Permitted	0.95	1.00		0.95	1.00		0.26	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1623	3320		1638	3093		462	4646		3267	4794	1459
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	165	938	161	100	466	176	86	840	145	383	985	185
RTOR Reduction (vph)	0	9	0	0	24	0	0	14	0	0	0	115
Lane Group Flow (vph)	165	1090	0	100	618	0	86	971	0	383	985	70
Confl. Peds. (#/hr)	11		15	15		11	1		3	3		1
Heavy Vehicles (%)	10%	5%	3%			15%	4%	8%	6%	6%	7%	8%
Turn Type	Prot	NA		Prot NA pm				NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Actuated Green, G (s)	20.9	57.2		12.9	49.2		56.0	46.2		22.4	60.8	60.8
Effective Green, g (s)	20.9	57.2		12.9	49.2		56.0	46.2		22.4	60.8	60.8
Actuated g/C Ratio	0.13	0.36		0.08	0.31		0.35	0.29		0.14	0.38	0.38
Clearance Time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	212	1186		132	951		238	1341		457	1821	554
v/s Ratio Prot	c0.10	c0.33		0.06	0.20		0.02	c0.21		c0.12	0.21	
v/s Ratio Perm							0.10					0.05
v/c Ratio	0.78	0.92		0.76	0.65		0.36	0.72		0.84	0.54	0.13
Uniform Delay, d1	67.3	49.2		72.0	47.9		35.6	51.2		67.0	38.7	32.3
Progression Factor	1.06	0.85		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	14.7	10.2		21.7	1.5		0.9	3.4		12.6	1.2	0.5
Delay (s)	86.1	52.3		93.7	49.5		36.6	54.6		79.7	39.9	32.8
Level of Service	F	D		F	D		D	D		Е	D	С
Approach Delay (s)		56.7		55.4				53.1			48.8	
Approach LOS		Е			Е			D			D	
Intersection Summary												
HCM 2000 Control Delay			53.0	H	HCM 2000 Level of Se				D			
HCM 2000 Volume to Capa	city ratio		0.84									
Actuated Cycle Length (s)			160.0			of lost time (s)			21.3			
Intersection Capacity Utiliza	ation		96.6%	IC	U Level o	of Service	9		F			
Analysis Period (min)			15									

c Critical Lane Group

	۶	-	•	•	•	•	1	†	~	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		7	↑ ↑		1		7	*	f)	
Traffic Volume (vph)	14	1175	25	18	721	57	18	0	9	131	9	19
Future Volume (vph)	14	1175	25	18	721	57	18	0	9	131	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	78.0		0.0	81.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		1.00	1.00		0.99		0.99	1.00	0.99	
Frt		0.997			0.989				0.850		0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1566	3420	0	1750	3291	0	1750	0	1309	1750	1633	0
Flt Permitted	0.950			0.950			0.738			0.950		
Satd. Flow (perm)	1558	3420	0	1747	3291	0	1346	0	1290	1745	1633	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			9				55		20	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		208.5			336.2			112.0			112.9	
Travel Time (s)		12.5			20.2			10.1			10.2	
Confl. Peds. (#/hr)	5		3	3		5	8		2	2		8
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
Adj. Flow (vph)	15	1263	27	19	775	61	19	0	10	141	10	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	15	1290	0	19	836	0	19	0	10	141	30	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	, i		3.5	, i		3.5	<u> </u>		3.5	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1		1	1	2	
Detector Template	Left	Thru		Left	Thru		Left		Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0		2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0		2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex		CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 2 Position(m)		9.4		- 0.0	9.4		- 0.0				9.4	
Detector 2 Size(m)		0.6			0.6						0.6	
Detector 2 Type		CI+Ex			Cl+Ex						CI+Ex	
Detector 2 Channel		O, LA			O LA						O. LA	
Detector 2 Extend (s)		0.0			0.0						0.0	
Edition 2 Extend (6)		0.0			0.0						0.0	

07-31-2024 CGH Transportation Page 5 MC

	٠	→	•	•	←	*	1	†	1	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Detector Phase	5	2		1	6		4		4	8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0		8.0	8.0	8.0	
Minimum Split (s)	11.0	34.0		11.0	34.0		44.0		44.0	44.0	44.0	
Total Split (s)	13.0	99.0		13.0	99.0		48.0		48.0	48.0	48.0	
Total Split (%)	8.1%	61.9%		8.1%	61.9%		30.0%		30.0%	30.0%	30.0%	
Maximum Green (s)	9.0	92.0		9.0	92.0		41.0		41.0	41.0	41.0	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0		3.0	3.0	3.0	
All-Red Time (s)	1.0	3.0		1.0	3.0		4.0		4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Recall Mode	None	C-Max	ļ	None	C-Max		None		None	None	None	
Walk Time (s)		10.0			10.0		10.0		10.0	10.0	10.0	
Flash Dont Walk (s)		17.0			17.0		27.0		27.0	27.0	27.0	
Pedestrian Calls (#/hr)		3			5		2		2	8	8	
Act Effct Green (s)	7.7	117.9		7.8	120.2		20.7		20.7	20.7	20.7	
Actuated g/C Ratio	0.05	0.74		0.05	0.75		0.13		0.13	0.13	0.13	
v/c Ratio	0.20	0.51		0.22	0.34		0.11		0.05	0.62	0.13	
Control Delay	107.0	3.5		74.9	6.1		57.9		0.4	76.4	28.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Delay	107.0	3.6		74.9	6.1		57.9		0.4	76.4	28.5	
LOS	F	Α		Ε	Α		Е		Α	Е	С	
Approach Delay		4.8			7.7			38.1			68.0	
Approach LOS		Α			Α			D			Ε	
Queue Length 50th (m)	5.0	31.5		6.4	22.3		5.5		0.0	44.0	2.9	
Queue Length 95th (m)	m10.1	12.3	n	ո12.4	53.0		12.3		0.0	59.3	11.7	
Internal Link Dist (m)		184.5			312.2			88.0			88.9	
Turn Bay Length (m)	78.0			81.0								
Base Capacity (vph)	89	2519		99	2473		344		371	447	433	
Starvation Cap Reductn	0	99		0	0		0		0	0	0	
Spillback Cap Reductn	0	0		0	0		0		0	0	0	
Storage Cap Reductn	0	0		0	0		0		0	0	0	
Reduced v/c Ratio	0.17	0.53		0.19	0.34		0.06		0.03	0.32	0.07	

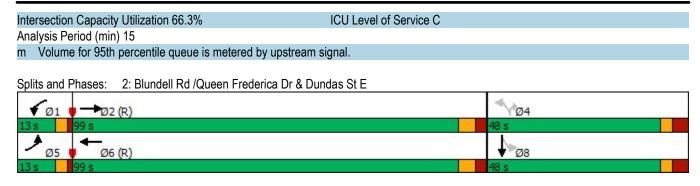
Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 32 (20%), Referenced to phase 2:EBT and 6:WBT, Start of Green


Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.62

Intersection Signal Delay: 10.8 Intersection LOS: B

1225 Dundas Street

	۶	→	*	•	←	4	1	1	~	1	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		ሻ	†		7		7	Ť	₽	
Traffic Volume (vph)	14	1175	25	18	721	57	18	0	9	131	9	19
Future Volume (vph)	14	1175	25	18	721	57	18	0	9	131	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.99	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99		1.00	1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00		0.85	1.00	0.90	
Fit Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1566	3420 1.00		1750	3292		1733		1290	1745	1633 1.00	
Flt Permitted	0.95 1566	3420		0.95 1750	1.00 3292		0.74		1.00 1290	0.95	1633	
Satd. Flow (perm)			0.00			0.00	1345	0.00		1745		0.00
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	15	1263	27	19	775 2	61	19 0	0	10 9	141	10 17	20
RTOR Reduction (vph)	0 15	1 1289	0	0 19	834	0	19	0	1	0 141	17	0
Lane Group Flow (vph) Confl. Peds. (#/hr)	5	1209	3	3	034	5	8	U	2	2	13	8
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
		NA	4 /0		NA	1 /0		Z /0		Perm	NA	<u>Z /0</u>
Turn Type Protected Phases	Prot 5	2		Prot 1	6		Perm		Perm	Pellii	8	
Permitted Phases	J			ı	U		4		4	8	U	
Actuated Green, G (s)	3.5	116.3		5.0	117.8		20.7		20.7	20.7	20.7	
Effective Green, g (s)	3.5	116.3		5.0	117.8		20.7		20.7	20.7	20.7	
Actuated g/C Ratio	0.02	0.73		0.03	0.74		0.13		0.13	0.13	0.13	
Clearance Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)	34	2485		54	2423		174		166	225	211	
v/s Ratio Prot	0.01	c0.38		c0.01	0.25						0.01	
v/s Ratio Perm							0.01		0.00	c0.08		
v/c Ratio	0.44	0.52		0.35	0.34		0.11		0.01	0.63	0.06	
Uniform Delay, d1	77.3	9.6		75.9	7.5		61.5		60.7	66.0	61.1	
Progression Factor	1.39	0.26		0.95	0.69		1.00		1.00	1.00	1.00	
Incremental Delay, d2	7.9	0.7		3.6	0.4		0.3		0.0	5.4	0.1	
Delay (s)	115.4	3.2		75.7	5.5		61.8		60.7	71.4	61.2	
Level of Service	F	Α		E A E					Е	Е	Е	
Approach Delay (s)		4.5		7.0				61.4			69.6	
Approach LOS		Α		A				Е			Е	
Intersection Summary												
HCM 2000 Control Delay			10.8						В			
HCM 2000 Volume to Capa	city ratio		0.53	3								
Actuated Cycle Length (s)			160.0	0 Sum of lost time (s)					18.0			
Intersection Capacity Utiliza	ition		66.3%	IC	U Level c	of Service			С			
Analysis Period (min)			15									

c Critical Lane Group

Lane Configurations		۶	→	*	•	←	•	4	†	~	/	Ţ	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	*	† 1>		7	†		1	1		7	1	
Future Volume (vph)	Traffic Volume (vph)	19		17	44	789	8			54	13		36
Storage Length (m)		19	1228	17	44	789	8	7	1	54	13	3	36
Storage Length (m)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Langle (m)		46.0		0.0	60.0		0.0	48.5		0.0	35.0		0.0
Taper Length (m)													0
Lane Util. Factor		15.0			15.0			15.0			15.0		
Ped Bike Factor			0.95	0.95		0.95	0.95		1.00	1.00		1.00	1.00
Fit													
Fit Protected													
Satd. Flow (prot) 1608 3425 0 1700 3330 0 1750 1469 0 1653 1561 0		0.950			0.950			0.950			0.950		
Fit Permitted			3425	0		3330	0		1469	0		1561	0
Satic Flow (perm) 1596 3425 0 1694 3330 0 1338 1469 0 1241 156													
Right Turn on Red Yes Ye			3425	0		3330	0		1469	0		1561	0
Satd. Flow (RTOR)	(, ,												Yes
Link Speed (k/h) 60 60 40 40 40 Link Distance (m) 172.2 208.5 142.2 131.5 Travel Time (s) 10.3 12.5 12.8 12.8 11.8 Confl. Peds. (#/hr) 9 9 9 9 9 9 4 6 6 6 4 4 6 6 6 4 4 6 6 6 4 4 6 6 6 6 4 4 6 6 6 6 4 4 6 6 6 6 4 4 6 6 6 6 6 4 4 6 6 6 6 6 4 4 6 6 6 6 6 6 4 4 6			1			1			59			39	
Link Distance (m)													
Travel Time (s)													
Confl. Peds. (#/hr)													
Peak Hour Factor 0.92 0.		9		9	9		9	4		6	6		4
Heavy Vehicles (%)			0.92			0.92			0.92			0.92	0.92
Adj. Flow (vph) 21 1335 18 48 858 9 8 1 59 14 3 38 Shared Lane Traffic (%) Lane Group Flow (vph) 21 1353 0 48 867 0 8 60 0 14 42 0 Enter Blocked Intersection Lane Alignment Left Left Right Left Left Right Left Left Left Right Left Left Right Left Left Right Left Right Left Right Left Right Left Right Left Right Left Left													2%
Shared Lane Traffic (%) Lane Group Flow (vph) 21 1353 0 48 867 0 8 60 0 14 42 0 0 0 0 0 0 0 0 0													39
Lane Group Flow (vph) 21 1353 0 48 867 0 8 60 0 14 42 Company of the part of th													
Enter Blocked Intersection No No <th< td=""><td></td><td>21</td><td>1353</td><td>0</td><td>48</td><td>867</td><td>0</td><td>8</td><td>60</td><td>0</td><td>14</td><td>42</td><td>0</td></th<>		21	1353	0	48	867	0	8	60	0	14	42	0
Lane Alignment Left Left Right Left Right Left Right Left Right Median Width(m) 3.5 3.5 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01													No
Median Width(m) 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01 1													Right
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01			3.5										
Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01 <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td>			0.0			0.0			0.0			0.0	
Two way Left Turn Lane Headway Factor 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0			3.0			3.0			3.0			3.0	
Headway Factor 1.01													
Turning Speed (k/h) 25 15 25 15 25 15 25 15 Number of Detectors 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 0 0 0 0 </td <td>Headway Factor</td> <td>1.01</td>	Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0	Turning Speed (k/h)	25		15	25		15	25		15	25		15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0		1	2		1	2		1	2		1	2	
Trailing Detector (m) 0.0	Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Trailing Detector (m) 0.0	Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex	Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Type CI+Ex CI	Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Channel	Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
	Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
	Detector 1 Channel												
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	. ,							0.0			0.0		
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m) 9.4 9.4 9.4 9.4			9.4			9.4			9.4			9.4	
Detector 2 Size(m) 0.6 0.6 0.6			0.6			0.6			0.6			0.6	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	,												
Detector 2 Channel													
Detector 2 Extend (s) 0.0 0.0 0.0			0.0			0.0			0.0			0.0	

	•	-	*	1	•	•	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	11.0	35.5		11.0	35.5		46.5	46.5		46.5	46.5	
Total Split (s)	11.0	97.0		16.0	102.0		47.0	47.0		47.0	47.0	
Total Split (%)	6.9%	60.6%		10.0%	63.8%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	7.0	90.5		12.0	95.5		39.5	39.5		39.5	39.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.5		1.0	2.5		4.5	4.5		4.5	4.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		19.0			19.0		29.0	29.0		29.0	29.0	
Pedestrian Calls (#/hr)		9			9		6	6		4	4	
Act Effct Green (s)	7.5	124.5		9.8	129.0		14.3	14.3		14.3	14.3	
Actuated g/C Ratio	0.05	0.78		0.06	0.81		0.09	0.09		0.09	0.09	
v/c Ratio	0.28	0.51		0.46	0.32		0.07	0.33		0.13	0.24	
Control Delay	83.1	11.3		80.7	7.3		60.4	17.3		63.2	20.3	
Queue Delay	0.0	0.0		0.0	0.1		0.0	0.0		0.0	0.0	
Total Delay	83.1	11.3		80.7	7.4		60.4	17.3		63.2	20.3	
LOS	F	В		F	Α		Е	В		Е	С	
Approach Delay		12.4			11.2			22.4			31.0	
Approach LOS		В			В			С			С	
Queue Length 50th (m)	6.6	74.3		15.5	27.0		2.5	0.3		4.4	0.9	
Queue Length 95th (m)	16.3	182.8		30.8	57.0		6.7	12.3		9.8	11.2	
Internal Link Dist (m)		148.2			184.5			118.2			107.5	
Turn Bay Length (m)	46.0			60.0			48.5			35.0		
Base Capacity (vph)	75	2664		128	2684		330	407		306	414	
Starvation Cap Reductn	0	0		0	501		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.28	0.51		0.38	0.40		0.02	0.15		0.05	0.10	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 24 (15%), Referenced to phase 2:WBT and 6:EBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.51

Intersection Signal Delay: 12.6 Intersection LOS: B

Intersection Capacity Utilization 59.6%

Analysis Period (min) 15

Splits and Phases: 3: Dundas St E & Arena Rd

O1 O2 (R)

11s 102s 47s

16s 97s

	۶	→	•	•	+	•	1	†	~	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	↑ ↑		7	1		7	1	
Traffic Volume (vph)	19	1228	17	44	789	8	7	1	54	13	3	36
Future Volume (vph)	19	1228	17	44	789	8	7	1	54	13	3	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1608	3425		1700	3331		1742	1470		1641	1561	
Flt Permitted	0.95	1.00		0.95	1.00		0.73	1.00		0.72	1.00	
Satd. Flow (perm)	1608	3425		1700	3331		1338	1470		1240	1561	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	1335	18	48	858	9	8	1	59	14	3	39
RTOR Reduction (vph)	0	0	0	0	0	0	0	54	0	0	36	0
Lane Group Flow (vph)	21	1353	0	48	867	0	8	6	0	14	6	0
Confl. Peds. (#/hr)	9		9	9		9	4		6	6		4
Heavy Vehicles (%)	11%	4%	2%	5%	7%	2%	2%	2%	7%	8%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Actuated Green, G (s)	4.7	120.9		8.4	124.6		12.7	12.7		12.7	12.7	
Effective Green, g (s)	4.7	120.9		8.4	124.6		12.7	12.7		12.7	12.7	
Actuated g/C Ratio	0.03	0.76		0.05	0.78		0.08	0.08		0.08	0.08	
Clearance Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	47	2588		89	2594		106	116		98	123	
v/s Ratio Prot	0.01	c0.40		c0.03	c0.26			0.00			0.00	
v/s Ratio Perm							0.01			c0.01		
v/c Ratio	0.45	0.52		0.54	0.33		0.08	0.05		0.14	0.05	
Uniform Delay, d1	76.4	7.9		73.9	5.3		68.2	68.1		68.6	68.1	
Progression Factor	1.00	1.00		0.93	0.99		1.00	1.00		1.00	1.00	
Incremental Delay, d2	6.6	0.8		6.0	0.3		0.3	0.2		0.7	0.2	
Delay (s)	83.0	8.7		74.8	5.6		68.5	68.2		69.3	68.2	
Level of Service	F	Α		E	А		E	E		E	E	
Approach Delay (s)		9.8			9.2			68.3			68.5	
Approach LOS		Α			Α			E			E	
Intersection Summary												
HCM 2000 Control Delay			12.6	ш	CM 2000	Lovel of 9	Sorvico		В			
HCM 2000 Volume to Capa	city ratio		0.48	П	CIVI ZUUU	Level Of 3	Del VICE		D			
	oily rallo		160.0	C	um of look	time (a)			18.0			
Actuated Cycle Length (s)	tion		59.6%		um of lost CU Level o				16.0 B			
Intersection Capacity Utiliza	IUUII			IC	o Level (n service			D			
Analysis Period (min)			15									

c Critical Lane Group

Lanes, Volumes, Timings 4: Queen Frederica Dr & Dundix Rd

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स	13	
Traffic Volume (vph)	29	46	17	58	116	23
Future Volume (vph)	29	46	17	58	116	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.917				0.977	
Flt Protected	0.981			0.989		
Satd. Flow (prot)	1626	0	0	1715	1800	0
Flt Permitted	0.981			0.989		
Satd. Flow (perm)	1626	0	0	1715	1800	0
Link Speed (k/h)	40			40	40	
Link Distance (m)	217.8			112.9	77.9	
Travel Time (s)	19.6			10.2	7.0	
Confl. Peds. (#/hr)	3	4	4			5
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	7%	2%	6%	9%	2%	2%
Adj. Flow (vph)	31	49	18	62	125	25
Shared Lane Traffic (%)						
Lane Group Flow (vph)	80	0	0	80	150	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			0.0	0.0	•
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Stop	Stop	
Intersection Summary	'			'		
	Othor					
71	Other					
Control Type: Unsignalized	i 00 00/			10	NIII amal	-
Intersection Capacity Utilizat	ion 28.2%			IC	U Level o	of Service A
Analysis Period (min) 15						

07-31-2024 CGH Transportation Page 13 MC

Intersection		
Intersection Delay, s/veh	7.8	
Intersection LOS	Α	

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			ર્ન	1	
Traffic Vol, veh/h	29	46	17	58	116	23
Future Vol, veh/h	29	46	17	58	116	23
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	7	2	6	9	2	2
Mvmt Flow	31	49	18	62	125	25
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	7.7		7.8		7.9	
HCM LOS	Α		Α		Α	

Lane	NBLn1	EBLn1	SBLn1	
Vol Left, %	23%	39%	0%	
Vol Thru, %	77%	0%	83%	
Vol Right, %	0%	61%	17%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	75	75	139	
LT Vol	17	29	0	
Through Vol	58	0	116	
RT Vol	0	46	23	
Lane Flow Rate	81	81	149	
Geometry Grp	1	1	1	
Degree of Util (X)	0.096	0.095	0.168	
Departure Headway (Hd)	4.305	4.232	4.039	
Convergence, Y/N	Yes	Yes	Yes	
Сар	823	852	879	
Service Time	2.382	2.232	2.106	
HCM Lane V/C Ratio	0.098	0.095	0.17	
HCM Control Delay	7.8	7.7	7.9	
HCM Lane LOS	А	Α	Α	
HCM 95th-tile Q	0.3	0.3	0.6	

CGH Transportation Page 14 MC

	۶	→	•	•	←	*	4	1	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.932			0.986			0.897				
Flt Protected					0.958						0.981	
Satd. Flow (prot)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
Flt Permitted					0.958						0.981	
Satd. Flow (perm)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
Link Speed (k/h)		40			40			40			20	
Link Distance (m)		67.0			217.8			131.5			82.6	
Travel Time (s)		6.0			19.6			11.8			14.9	
Confl. Peds. (#/hr)	1		1	1		1	2		1	1		2
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	2%	2%	2%	6%	2%	2%	2%	2%	9%	2%	2%	2%
Adj. Flow (vph)	0	6	6	41	1	5	0	8	26	15	24	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	12	0	0	47	0	0	34	0	0	39	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type:	Other											

Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 24.5%

Analysis Period (min) 15

ICU Level of Service A

CGH Transportation Page 15 07-31-2024 MC

ntersection	
ntersection Delay, s/veh	7.2
ntersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Future Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	6	2	2	2	2	9	2	2	2
Mvmt Flow	0	6	6	41	1	5	0	8	26	15	24	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		1		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		1		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				1		1		
HCM Control Delay		6.9		7.5				6.8		7.4		
HCM LOS		Α		Α				Α		Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	88%	38%	
Vol Thru, %	24%	50%	3%	62%	
Vol Right, %	76%	50%	10%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	29	10	40	34	
LT Vol	0	0	35	13	
Through Vol	7	5	1	21	
RT Vol	22	5	4	0	
Lane Flow Rate	34	12	47	40	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.034	0.012	0.055	0.045	
Departure Headway (Hd)	3.608	3.796	4.253	4.136	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	987	939	841	864	
Service Time	1.648	1.835	2.282	2.171	
HCM Lane V/C Ratio	0.034	0.013	0.056	0.046	
HCM Control Delay	6.8	6.9	7.5	7.4	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0	0.2	0.1	

	۶	→	*	•	←	•	1	1	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		7	†		*	ተተጉ		14.54	ተተተ	7
Traffic Volume (vph)	198	836	153	257	1162	355	238	1004	222	452	1136	251
Future Volume (vph)	198	836	153	257	1162	355	238	1004	222	452	1136	251
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	95.0		0.0	197.5		61.5	96.0		0.0	107.5		148.0
Storage Lanes	1		0	1		0	1		0	2		1
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.91	0.91	0.97	0.91	1.00
Ped Bike Factor	0.99	0.99		0.99	0.98		1.00	1.00		1.00		0.98
Frt		0.977			0.965			0.973				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1716	3329	0	1750	3307	0	1750	4822	0	3395	5029	1536
Flt Permitted	0.950			0.950			0.101			0.950		
Satd. Flow (perm)	1704	3329	0	1730	3307	0	186	4822	0	3380	5029	1503
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		14			30			29				213
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		336.2			205.0			231.1			222.2	
Travel Time (s)		20.2			12.3			13.9			13.3	
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Adj. Flow (vph)	202	853	156	262	1186	362	243	1024	227	461	1159	256
Shared Lane Traffic (%)												
Lane Group Flow (vph)	202	1009	0	262	1548	0	243	1251	0	461	1159	256
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	Ţ.		3.5	, i		7.0	, i		7.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		J /			J L.			0.1 LX			51 - LA	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		0.0			0.0			0.0			0.0	

08-01-2024 MC CGH Transportation Page 1

	•	-	*	1	•	*	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Detector Phase	3	8		7	4		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	20.0		7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	11.0	47.8		11.0	47.8		12.0	42.5		12.0	42.5	42.5
Total Split (s)	20.0	60.0		31.0	71.0		21.0	46.0		23.0	48.0	48.0
Total Split (%)	12.5%	37.5%		19.4%	44.4%		13.1%	28.8%		14.4%	30.0%	30.0%
Maximum Green (s)	16.0	53.2		27.0	64.2		16.0	39.5		18.0	41.5	41.5
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	1.0	2.8		1.0	2.8		2.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0			10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0			26.0			26.0	26.0
Pedestrian Calls (#/hr)		40			51			11			7	7
Act Effct Green (s)	16.0	54.1		26.1	64.2		57.0	39.5		18.0	41.5	41.5
Actuated g/C Ratio	0.10	0.34		0.16	0.40		0.36	0.25		0.11	0.26	0.26
v/c Ratio	1.18	0.89		0.92	1.15		1.09	1.03		1.21	0.89	0.47
Control Delay	188.9	48.4		101.2	119.4		129.6	90.9		173.3	66.4	12.9
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	188.9	48.4		101.2	119.4		129.6	90.9		173.3	66.4	12.9
LOS	F	D		F	F		F	F		F	Е	В
Approach Delay		71.9			116.7			97.2			85.4	
Approach LOS		E			F			F			F	
Queue Length 50th (m)	~78.8	85.4		82.7	~301.3		~70.8	~153.0		~91.7	130.9	10.5
Queue Length 95th (m)	#132.5	#171.7		#132.7	#344.1		#128.2	#183.1		#127.3	149.8	36.5
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	95.0			197.5			96.0			107.5		148.0
Base Capacity (vph)	171	1135		295	1344		222	1212		381	1304	547
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	1.18	0.89		0.89	1.15		1.09	1.03		1.21	0.89	0.47

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 48 (30%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.21

Intersection Signal Delay: 94.5

Intersection LOS: F

1225 Dundas Street

Intersection Capacity Utilization 117.1%

ICU Level of Service H

Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

	٠	→	*	•	•	•	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		7	†		*	^		44	^	7
Traffic Volume (vph)	198	836	153	257	1162	355	238	1004	222	452	1136	251
Future Volume (vph)	198	836	153	257	1162	355	238	1004	222	452	1136	251
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.98		1.00	1.00		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1716	3328		1750	3306		1750	4821		3395	5029	1503
Flt Permitted	0.95	1.00		0.95	1.00		0.10	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1716	3328		1750	3306		187	4821		3395	5029	1503
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	202	853	156	262	1186	362	243	1024	227	461	1159	256
RTOR Reduction (vph)	0	9	0	0	18	0	0	22	0	0	0	158
Lane Group Flow (vph)	202	1000	0	262	1530	0	243	1229	0	461	1159	98
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Actuated Green, G (s)	16.0	54.1		26.1	64.2		55.5	39.5		18.0	41.5	41.5
Effective Green, g (s)	16.0	54.1		26.1	64.2		55.5	39.5		18.0	41.5	41.5
Actuated g/C Ratio	0.10	0.34		0.16	0.40		0.35	0.25		0.11	0.26	0.26
Clearance Time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	171	1125		285	1326		221	1190		381	1304	389
v/s Ratio Prot	c0.12	0.30		0.15	c0.46		0.11	0.25		c0.14	0.23	
v/s Ratio Perm							c0.27					0.07
v/c Ratio	1.18	0.89		0.92	1.15		1.10	1.03		1.21	0.89	0.25
Uniform Delay, d1	72.0	50.1		65.9	47.9		47.4	60.2		71.0	57.0	47.0
Progression Factor	1.21	0.79		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	120.6	7.5		32.5	78.3		89.7	34.9		116.6	9.3	1.6
Delay (s)	207.4	47.0		98.4	126.2		137.1	95.2		187.6	66.3	48.5
Level of Service	F	D		F	F		F	F		F	Е	D
Approach Delay (s)		73.8			122.1			102.0			93.7	
Approach LOS		Е			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			99.9	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.15									
Actuated Cycle Length (s)			160.0		um of lost				22.3			
Intersection Capacity Utiliza	ation		117.1%	IC	CU Level o	of Service)		Н			
Analysis Period (min)			15									

c Critical Lane Group

Lanes, Volumes, Timings 2: Blundell Rd /Queen Frederica Dr & Dundas St E

	۶	→	*	•	—	•	4	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	†		*		7	*	1	
Traffic Volume (vph)	44	1237	37	46	1667	148	76	0	25	106	9	19
Future Volume (vph)	44	1237	37	46	1667	148	76	0	25	106	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	78.0		0.0	81.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		0.99	1.00		0.99		0.96	0.98	0.98	
Frt		0.996			0.988				0.850		0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1750	3445	0	1750	3442	0	1750	0	1566	1750	1628	0
Flt Permitted	0.950			0.950			0.738			0.950		
Satd. Flow (perm)	1746	3445	0	1736	3442	0	1339	0	1509	1707	1628	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			11				55		20	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		208.5			336.2			112.0			112.9	
Travel Time (s)		12.5			20.2			10.1			10.2	
Confl. Peds. (#/hr)	12		18	18		12	12		19	19		12
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	47	1330	40	49	1792	159	82	0	27	114	10	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	47	1370	0	49	1951	0	82	0	27	114	30	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5	Ŭ		3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1		1	1	2	
Detector Template	Left	Thru		Left	Thru		Left		Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0		2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0		2.0	2.0	0.6	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex		CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel		· ·			· ·		• • • • • • • • • • • • • • • • • • • •			· ·		
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0		0.0	0.0	9.4	
Detector 2 Size(m)		0.6			0.6						0.6	
Detector 2 Type		Cl+Ex			CI+Ex						CI+Ex	
Detector 2 Channel		OI / LX			OI? EX						OI · LX	
Detector 2 Extend (s)		0.0			0.0						0.0	
		0.0			0.0						0.0	

08-01-2024 MC

CGH Transportation Page 5

	٠	-	*	1	•	•	1	1	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Detector Phase	5	2		1	6		4		4	8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0		8.0	8.0	8.0	
Minimum Split (s)	11.0	34.0		11.0	34.0		44.0		44.0	44.0	44.0	
Total Split (s)	11.0	102.0		14.0	105.0		44.0		44.0	44.0	44.0	
Total Split (%)	6.9%	63.8%		8.8%	65.6%		27.5%		27.5%	27.5%	27.5%	
Maximum Green (s)	7.0	95.0		10.0	98.0		37.0		37.0	37.0	37.0	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0		3.0	3.0	3.0	
All-Red Time (s)	1.0	3.0		1.0	3.0		4.0		4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None		None	None	None	
Walk Time (s)		10.0			10.0		10.0		10.0	10.0	10.0	
Flash Dont Walk (s)		17.0			17.0		27.0		27.0	27.0	27.0	
Pedestrian Calls (#/hr)		18			12		19		19	12	12	
Act Effct Green (s)	7.3	108.3		9.0	110.0		26.9		26.9	26.9	26.9	
Actuated g/C Ratio	0.05	0.68		0.06	0.69		0.17		0.17	0.17	0.17	
v/c Ratio	0.59	0.59		0.50	0.82		0.37		0.09	0.40	0.10	
Control Delay	117.1	5.6		82.0	12.6		60.2		2.0	60.6	25.0	
Queue Delay	0.0	0.0		0.0	0.1		0.0		0.0	0.0	0.0	
Total Delay	117.1	5.6		82.0	12.7		60.2		2.0	60.6	25.0	
LOS	F	Α		F	В		Е		Α	Е	С	
Approach Delay		9.3			14.4			45.7			53.1	
Approach LOS		Α			В			D			D	
Queue Length 50th (m)	15.9	26.8		16.1	98.0		21.6		0.0	30.2	2.5	
Queue Length 95th (m)	m#30.4	33.5		m18.7	m95.2		38.0		1.5	48.8	11.7	
Internal Link Dist (m)		184.5			312.2			88.0			88.9	
Turn Bay Length (m)	78.0			81.0								
Base Capacity (vph)	79	2332		109	2370		309		391	394	391	
Starvation Cap Reductn	0	19		0	45		0		0	0	0	
Spillback Cap Reductn	0	0		0	0		0		0	0	0	
Storage Cap Reductn	0	0		0	0		0		0	0	0	
Reduced v/c Ratio	0.59	0.59		0.45	0.84		0.27		0.07	0.29	0.08	
Intono - 4' O												

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 14.9 Intersection LOS: B

1225 Dundas Street

Intersection Capacity Utilization 81.1% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 2: Blundell Rd /Queen Frederica Dr & Dundas St E # 95th percentile queue is metered by upstream signal. Splits and Phases: 2: Blundell Rd /Queen Frederica Dr & Dundas St E # 95th percentile queue is metered by upstream signal. # 95th percentile queue is metered by upstream signal. # 95th percentile queue is metered by upstream signal.

	۶	→	*	•	+	•	1	1	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		7	↑ ↑		*		7	7	1	
Traffic Volume (vph)	44	1237	37	46	1667	148	76	0	25	106	9	19
Future Volume (vph)	44	1237	37	46	1667	148	76	0	25	106	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.96	1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99		1.00	0.98	1.00	
Frt	1.00	1.00		1.00	0.99		1.00		0.85	1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1750	3443		1750	3442		1724		1509	1707	1628	
Flt Permitted	0.95	1.00		0.95	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	1750	3443		1750	3442		1338		1509	1707	1628	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	47	1330	40	49	1792	159	82	0	27	114	10	20
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	22	0	17	0
Lane Group Flow (vph)	47	1369	0	49	1948	0	82	0	5	114	13	0
Confl. Peds. (#/hr)	12	00/	18	18	00/	12	12	00/	19	19	00/	12
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6					•	8	
Permitted Phases	5 0	407.5		7.0	400.0		4		4	8	00.0	
Actuated Green, G (s)	5.9	107.5		7.6	109.2		26.9		26.9	26.9	26.9	
Effective Green, g (s)	5.9	107.5		7.6	109.2		26.9		26.9	26.9	26.9	
Actuated g/C Ratio	0.04 4.0	0.67 7.0		0.05	0.68		0.17 7.0		0.17 7.0	0.17 7.0	0.17 7.0	
Clearance Time (s)	3.0	3.0		4.0 3.0	7.0 3.0		3.0			3.0	3.0	
Vehicle Extension (s)	64								3.0			
Lane Grp Cap (vph) v/s Ratio Prot		2313 0.40		83	2349		224		253	286	273 0.01	
v/s Ratio Perm	0.03	0.40		c0.03	c0.57		0.06		0.00	c0.07	0.01	
v/c Ratio	0.73	0.59		0.59	0.83		0.00		0.00	0.40	0.05	
Uniform Delay, d1	76.3	14.3		74.7	18.6		59.0		55.5	59.3	55.8	
Progression Factor	1.24	0.28		1.01	0.49		1.00		1.00	1.00	1.00	
Incremental Delay, d2	31.1	1.0		5.1	1.7		1.00		0.0	0.9	0.1	
Delay (s)	125.6	4.9		80.3	10.8		60.0		55.6	60.3	55.9	
Level of Service	125.0 F	Α.5		60.5 F	В		E		55.6 E	60.5 E	55.5 E	
Approach Delay (s)		8.9		'	12.5		_	58.9	_	_	59.3	
Approach LOS		Α.			12.0			E			E	
• •		,,										
Intersection Summary			110		ON 0000	1 1 - 6 - 6	i					
HCM 2000 Control Delay	-14 C		14.3	Н	CM 2000	Level of S	service		В			
HCM 2000 Volume to Capa	acity ratio		0.74		[] - (4:			40.0			
Actuated Cycle Length (s)	-41		160.0		um of lost				18.0			
Intersection Capacity Utiliza	สแดก		81.1%	IC	CU Level o	or Service			D			
Analysis Period (min)			15									

c Critical Lane Group

	۶	→	*	•	←	*	1	1	~	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†		ň	†		*	f)		7	f)	
Traffic Volume (vph)	37	1231	19	88	1581	20	21	11	110	15	2	26
Future Volume (vph)	37	1231	19	88	1581	20	21	11	110	15	2	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	46.0		0.0	60.0		0.0	48.5		0.0	35.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		0.99	1.00		0.98	0.98		0.99	0.97	
Frt		0.998			0.998			0.864			0.861	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1733	3454	0	1750	3457	0	1700	1555	0	1750	1542	0
Flt Permitted	0.950			0.950		-	0.739			0.623		•
Satd. Flow (perm)	1727	3454	0	1730	3457	0	1299	1555	0	1135	1542	0
Right Turn on Red		0.01	Yes	1100	0.101	Yes	1200	1000	Yes	1100	1012	Yes
Satd. Flow (RTOR)		1			1	. 00		111	. 00		26	1 00
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		172.2			208.5			142.2			131.5	
Travel Time (s)		10.3			12.5			12.8			11.8	
Confl. Peds. (#/hr)	11	10.0	24	24	12.0	11	15	12.0	11	11	11.0	15
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Adj. Flow (vph)	37	1243	19	89	1597	20	21	11	111	15	2	26
Shared Lane Traffic (%)	01	1210	10		1001	20	<u> </u>	• • •		10		20
Lane Group Flow (vph)	37	1262	0	89	1617	0	21	122	0	15	28	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	3.5	rtigiit	Loit	3.5	rtigitt	LOIL	3.5	rtigit	LOIL	3.5	rtigit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane		0.0			0.0			0.0			0.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	1.01	15	25	1.01	15	25	1.01	15	25	1.01	15
Number of Detectors	1	2	10	1	2	10	1	2	10	1	2	10
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OITEX	OITEX		OITEX	OITEX		OIILX	OITEX		OIILX	OIILX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
• ()	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	
Detector 2 Position(m)		0.6									0.6	
Detector 2 Size(m)					0.6			0.6				
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

08-01-2024 MC CGH Transportation Page 9

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SB Turn Type Prot NA Prot NA Perm NA Perm NA Protected Phases 5 2 1 6 4 8 Permitted Phases 4 8	
Protected Phases 5 2 1 6 4 8	Turn Type
	ruiii ryp c
Dormitted Dhages	Protected Phases
remilled rhases 4 8	Permitted Phases
Detector Phase 5 2 1 6 4 4 8 8	Detector Phase
Switch Phase	Switch Phase
Minimum Initial (s) 7.0 8.0 7.0 8.0 8.0 8.0 8.0	Minimum Initial (s)
Minimum Split (s) 11.0 35.5 11.0 35.5 46.5 46.5 46.5	Minimum Split (s)
Total Split (s) 13.0 94.0 19.0 100.0 47.0 47.0 47.0 47.0	Total Split (s)
Total Split (%) 8.1% 58.8% 11.9% 62.5% 29.4% 29.4% 29.4% 29.4%	Total Split (%)
Maximum Green (s) 9.0 87.5 15.0 93.5 39.5 39.5 39.5	Maximum Green (s)
Yellow Time (s) 3.0 4.0 3.0 3.0 3.0 3.0	Yellow Time (s)
All-Red Time (s) 1.0 2.5 1.0 2.5 4.5 4.5 4.5	All-Red Time (s)
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Lost Time Adjust (s)
Total Lost Time (s) 4.0 6.5 4.0 6.5 7.5 7.5 7.5	Total Lost Time (s)
Lead/Lag Lead Lag Lead Lag	Lead/Lag
Lead-Lag Optimize? Yes Yes Yes	Lead-Lag Optimize?
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Vehicle Extension (s)
Recall Mode None C-Max None C-Max None None None None	Recall Mode
Walk Time (s) 10.0 10.0 10.0 10.0 10.0	Walk Time (s)
Flash Dont Walk (s) 19.0 19.0 29.0 29.0 29.0 29.0	Flash Dont Walk (s)
Pedestrian Calls (#/hr) 24 11 11 15 15	Pedestrian Calls (#/hr)
Act Effct Green (s) 8.4 102.6 12.8 109.2 26.6 26.6 26.6 26.6	Act Effct Green (s)
Actuated g/C Ratio 0.05 0.64 0.08 0.68 0.17 0.17 0.17	Actuated g/C Ratio
v/c Ratio 0.41 0.57 0.64 0.69 0.10 0.35 0.08 0.10	v/c Ratio
Control Delay 86.4 20.5 94.7 11.3 50.3 12.7 49.3 17.2	Control Delay
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Queue Delay
Total Delay 86.4 20.5 94.7 11.6 50.3 12.7 49.3 17.2	Total Delay
LOS F C F B D B	LOS
Approach Delay 22.4 15.9 18.2 28.4	Approach Delay
Approach LOS C B B C	Approach LOS
Queue Length 50th (m) 11.6 142.2 30.0 60.4 5.2 2.7 3.7 0.5	Queue Length 50th (m)
Queue Length 95th (m) 24.3 170.7 m37.2 64.3 12.9 19.4 10.3 9.0	Queue Length 95th (m)
Internal Link Dist (m) 148.2 184.5 118.2 107.5	Internal Link Dist (m)
Turn Bay Length (m) 46.0 60.0 48.5 35.0	Turn Bay Length (m)
Base Capacity (vph) 99 2214 166 2358 320 467 280 400	
Starvation Cap Reductn 0 0 0 205 0 0 0	Starvation Cap Reductn
Spillback Cap Reductn 0 0 0 0 0 0	Spillback Cap Reductn
Storage Cap Reductn 0 0 0 0 0 0 0	
Reduced v/c Ratio 0.37 0.57 0.54 0.75 0.07 0.26 0.05 0.07	Reduced v/c Ratio

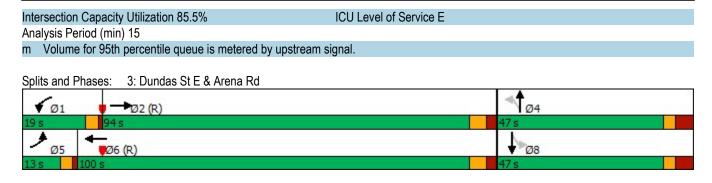
Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 108 (68%), Referenced to phase 2:EBT and 6:WBT, Start of Green


Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.69

Intersection Signal Delay: 18.8 Intersection LOS: B

1225 Dundas Street

CGH Transportation 08-01-2024 Page 11 MC

	۶	→	*	1	—	•	1	1	~	-		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		Y	↑ ↑		Y	ĵ.		Y	f	
Traffic Volume (vph)	37	1231	19	88	1581	20	21	11	110	15	2	26
Future Volume (vph)	37	1231	19	88	1581	20	21	11	110	15	2	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.98	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.86		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3453		1750	3458		1670	1554		1731	1541	
FIt Permitted	0.95	1.00		0.95	1.00		0.74	1.00		0.62	1.00	
Satd. Flow (perm)	1733	3453		1750	3458		1299	1554		1134	1541	
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	37	1243	19	89	1597	20	21	11	111	15	2	26
RTOR Reduction (vph)	0	0	0	0	0	0	0	93	0	0	22	0
Lane Group Flow (vph)	37	1262	0	89	1617	0	21	29	0	15	6	0
Confl. Peds. (#/hr)	11		24	24		11	15		11	11		15
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases							4			8		
Actuated Green, G (s)	7.0	102.6		12.8	108.4		26.6	26.6		26.6	26.6	
Effective Green, g (s)	7.0	102.6		12.8	108.4		26.6	26.6		26.6	26.6	
Actuated g/C Ratio	0.04	0.64		0.08	0.68		0.17	0.17		0.17	0.17	
Clearance Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	75	2214		140	2342		215	258		188	256	
v/s Ratio Prot	0.02	0.37		c0.05	c0.47			c0.02			0.00	
v/s Ratio Perm							0.02			0.01		
v/c Ratio	0.49	0.57		0.64	0.69		0.10	0.11		0.08	0.02	
Uniform Delay, d1	74.8	16.2		71.3	15.6		56.5	56.7		56.4	55.8	
Progression Factor	1.00	1.00		1.16	0.53		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.0	1.1		5.4	1.0		0.2	0.2		0.2	0.0	
Delay (s)	79.8	17.3		88.3	9.3		56.7	56.9		56.5	55.9	
Level of Service	E	В		F	Α		Е	Е		Е	Е	
Approach Delay (s)		19.1			13.4			56.9			56.1	
Approach LOS		В			В			Е			Е	
Intersection Summary			40.0		011.0000							
HCM 2000 Control Delay	.,		18.3	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.59						40.0			
Actuated Cycle Length (s)			160.0		um of lost				18.0			
Intersection Capacity Utiliza	ation		85.5%	IC	CU Level of	ot Service			Е			
Analysis Period (min)			15									

c Critical Lane Group

Lanes, Volumes, Timings 4: Queen Frederica Dr & Dundix Rd

	٠	*	1	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स	ĵ»	
Traffic Volume (vph)	22	30	38	149	113	37
Future Volume (vph)	22	30	38	149	113	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.921				0.967	
Flt Protected	0.980			0.990		
Satd. Flow (prot)	1663	0	0	1824	1781	0
Flt Permitted	0.980			0.990		
Satd. Flow (perm)	1663	0	0	1824	1781	0
Link Speed (k/h)	40			40	40	
Link Distance (m)	217.8			112.9	77.9	
Travel Time (s)	19.6			10.2	7.0	
Confl. Peds. (#/hr)	6	5	5			4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	23	32	40	159	120	39
Shared Lane Traffic (%)						
Lane Group Flow (vph)	55	0	0	199	159	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 33.8%			IC	CU Level o	of Service A

Analysis Period (min) 15

08-01-2024 CGH Transportation Page 13 MC

	٠	•	4	†	ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			र्स	f)		_
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	22	30	38	149	113	37	
Future Volume (vph)	22	30	38	149	113	37	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	23	32	40	159	120	39	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	55	199	159				
Volume Left (vph)	23	40	0				
Volume Right (vph)	32	0	39				
Hadj (s)	-0.23	0.07	-0.11				
Departure Headway (s)	4.4	4.3	4.1				
Degree Utilization, x	0.07	0.24	0.18				
Capacity (veh/h)	742	823	854				
Control Delay (s)	7.8	8.6	8.0				
Approach Delay (s)	7.8	8.6	8.0				
Approach LOS	Α	Α	Α				
Intersection Summary							
Delay			8.3				
Level of Service			Α				
Intersection Capacity Utiliza	ition		33.8%	IC	U Level c	of Service	
Analysis Period (min)			15				

Intersection								
Intersection Delay, s/veh	8.2							
Intersection LOS	Α							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	10.0				Φ.	5511	<u> </u>	
	Т			- 4	P			
Traffic Vol, veh/h	22	30	38	149	113	37		
Future Vol, veh/h	22	30	38	149	113	37		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Heavy Vehicles, %	2	2	2	2	2	2		

Mvmt Flow	23	32	40	159	120	39	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		NB		SB		
Opposing Approach			SB		NB		
Opposing Lanes	0		1		1		
Conflicting Approach Left	SB		EB				
Conflicting Lanes Left	1		1		0		
Conflicting Approach Right	NB				EB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay	7.8		8.5		8		
HCM LOS	Α		Α		Α		

Lane	NBLn1	EBLn1	SBLn1
Vol Left, %	20%	42%	0%
Vol Thru, %	80%	0%	75%
Vol Right, %	0%	58%	25%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	187	52	150
LT Vol	38	22	0
Through Vol	149	0	113
RT Vol	0	30	37
Lane Flow Rate	199	55	160
Geometry Grp	1	1	1
Degree of Util (X)	0.232	0.068	0.179
Departure Headway (Hd)	4.193	4.445	4.033
Convergence, Y/N	Yes	Yes	Yes
Cap	847	811	876
Service Time	2.263	2.445	2.12
HCM Lane V/C Ratio	0.235	0.068	0.183
HCM Control Delay	8.5	7.8	8
HCM Lane LOS	Α	Α	Α
HCM 95th-tile Q	0.9	0.2	0.6

08-01-2024

	۶	→	•	•	•	•	4	†	/	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.919			0.955			0.931				
Flt Protected					0.973			0.999			0.976	
Satd. Flow (prot)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Flt Permitted					0.973			0.999			0.976	
Satd. Flow (perm)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Link Speed (k/h)		40			40			40			20	
Link Distance (m)		67.0			217.8			131.5			82.6	
Travel Time (s)		6.0			19.6			11.8			14.9	
Confl. Peds. (#/hr)	5		4	4		5	3		6	6		3
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	2%	2%	2%	6%	2%	2%	2%	2%	3%	2%	2%	2%
Adj. Flow (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	5	0	0	63	0	0	68	0	0	20	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Stop			Stop	

Intersection Summary

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 24.3%

Analysis Period (min) 15

ICU Level of Service A

08-01-2024 CGH Transportation MC Page 16

	۶	→	*	1	←	•	1	†	~	-	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	5	63	68	20								
Volume Left (vph)	0	35	2	10								
Volume Right (vph)	3	21	35	0								
Hadj (s)	-0.33	-0.02	-0.26	0.13								
Departure Headway (s)	3.8	4.1	3.8	4.2								
Degree Utilization, x	0.01	0.07	0.07	0.02								
Capacity (veh/h)	913	862	918	828								
Control Delay (s)	6.8	7.4	7.1	7.3								
Approach Delay (s)	6.8	7.4	7.1	7.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									
Level of Service			Α									
Intersection Capacity Utilizat	tion		24.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

08-01-2024 CGH Transportation MC Page 17

Intersection	
Intersection Delay, s/veh	7.2
Intersection Delay, s/veh Intersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Future Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles, %	2	2	2	6	2	2	2	2	3	2	2	2
Mvmt Flow	0	2	3	35	7	21	2	31	35	10	10	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		1		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			1		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			1			1		
HCM Control Delay		6.8		7.4			7.1			7.3		
HCM LOS		Α		Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	0%	55%	50%	
Vol Thru, %	45%	40%	11%	50%	
Vol Right, %	52%	60%	34%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	66	5	62	20	
LT Vol	2	0	34	10	
Through Vol	30	2	7	10	
RT Vol	34	3	21	0	
Lane Flow Rate	67	5	63	20	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.07	0.005	0.071	0.024	
Departure Headway (Hd)	3.765	3.774	4.065	4.205	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	948	943	880	849	
Service Time	1.8	1.818	2.096	2.244	
HCM Lane V/C Ratio	0.071	0.005	0.072	0.024	
HCM Control Delay	7.1	6.8	7.4	7.3	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0	0.2	0.1	

08-01-2024 CGH Transportation MC Page 18

Appendix Q

2033 Future Total Conditions Synchro Worksheets

	۶	→	•	•	←	•	•	†	/	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ î≽		7	∱ ∱		Ť	↑ ↑₽		44	ተተተ	7
Traffic Volume (vph)	172	929	166	96	459	169	87	806	139	368	946	183
Future Volume (vph)	172	929	166	96	459	169	87	806	139	368	946	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	95.0		0.0	197.5		61.5	96.0		0.0	107.5		148.0
Storage Lanes	1		0	1		0	1		0	2		1
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.91	0.91	0.97	0.91	1.00
Ped Bike Factor	0.99	1.00		1.00	0.99		1.00	1.00		1.00		0.99
Frt		0.977			0.960			0.978				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1623	3317	0	1638	3098	0	1716	4647	0	3267	4794	1479
Flt Permitted	0.950			0.950			0.252			0.950		
Satd. Flow (perm)	1614	3317	0	1632	3098	0	455	4647	0	3261	4794	1459
Right Turn on Red			Yes			Yes			Yes	0_0		Yes
Satd. Flow (RTOR)		15			34			20				191
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		336.2			205.0			231.1			222.2	
Travel Time (s)		20.2			12.3			13.9			13.3	
Confl. Peds. (#/hr)	11		15	15	0	11	1		3	3		1
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	10%	5%	3%	9%	8%	15%	4%	8%	6%	6%	7%	8%
Adj. Flow (vph)	179	968	173	100	478	176	91	840	145	383	985	191
Shared Lane Traffic (%)							<u> </u>	0.0				
Lane Group Flow (vph)	179	1141	0	100	654	0	91	985	0	383	985	191
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			7.0			7.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane		0.0			0.0			0.0			0.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	1.01	15	25	1.01	15	25	1.01	15	25	1.01	15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OI LX	OI LX		OI · LX	OI · LX		OI LX	OI · LX		OI LX	OITEX	OI · LX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
• . ,	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	0.0
Detector 2 Position(m) Detector 2 Size(m)		0.6			0.6			0.6			0.6	
		CI+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Type		UI+EX			UI+EX			UI+EX			OI+EX	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	۶	-	•	•	←	•	1	†	~	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Detector Phase	3	8		7	4		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	10.0		7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	10.0	47.8		10.0	47.8		15.0	42.5		15.0	42.5	42.5
Total Split (s)	29.0	67.0		17.0	55.0		15.0	47.0		29.0	61.0	61.0
Total Split (%)	18.1%	41.9%		10.6%	34.4%		9.4%	29.4%		18.1%	38.1%	38.1%
Maximum Green (s)	26.0	60.2		14.0	48.2		12.0	40.5		24.0	54.5	54.5
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	0.0	2.8		0.0	2.8		0.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0			10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0			26.0			26.0	26.0
Pedestrian Calls (#/hr)		15			11			3			1	1
Act Effct Green (s)	21.9	58.2		12.9	49.3		58.6	45.2		22.4	59.6	59.6
Actuated g/C Ratio	0.14	0.36		0.08	0.31		0.37	0.28		0.14	0.37	0.37
v/c Ratio	0.81	0.94		0.76	0.67		0.37	0.74		0.84	0.55	0.29
Control Delay	95.3	54.6		104.1	49.6		30.1	56.1		83.5	42.0	5.6
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	95.3	54.6		104.1	49.6		30.1	56.1		83.5	42.0	5.6
LOS	F	D		F	D		С	Е		F	D	Α
Approach Delay		60.1			56.9			53.9			47.7	
Approach LOS		Е			Е			D			D	
Queue Length 50th (m)	47.5	183.6		31.5	89.3		16.5	107.3		61.3	93.8	0.0
Queue Length 95th (m)	81.4	#79.9		#58.2	114.6		27.9	125.1		80.0	110.7	17.3
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	95.0			197.5			96.0			107.5		148.0
Base Capacity (vph)	263	1257		143	982		266	1326		490	1784	663
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.68	0.91		0.70	0.67		0.34	0.74		0.78	0.55	0.29

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 145 (91%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

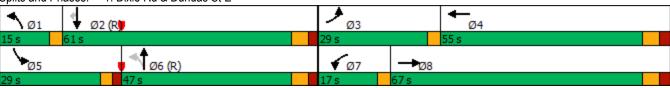
Intersection Signal Delay: 54.1

07-07-2025
JL CGH Transportation
Page 2

Intersection LOS: D

1225 Dundas Street

Intersection Capacity Utilization 97.3%


ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

	٠	→	•	•	←	•	•	†	~	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	∱ ∱		ň	∱ β		Ĭ	ተተኈ		ሻሻ	ተተተ	7
Traffic Volume (vph)	172	929	166	96	459	169	87	806	139	368	946	183
Future Volume (vph)	172	929	166	96	459	169	87	806	139	368	946	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	0.98		1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1623	3317		1638	3097		1716	4646		3267	4794	1459
FIt Permitted	0.95	1.00		0.95	1.00		0.25	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1623	3317		1638	3097		455	4646		3267	4794	1459
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	179	968	173	100	478	176	91	840	145	383	985	191
RTOR Reduction (vph)	0	10	0	0	24	0	0	14	0	0	0	120
Lane Group Flow (vph)	179	1131	0	100	630	0	91	971	0	383	985	71
Confl. Peds. (#/hr)	11		15	15		11	1		3	3		1
Heavy Vehicles (%)	10%	5%	3%	9%	8%	15%	4%	8%	6%	6%	7%	8%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Actuated Green, G (s)	21.9	58.3		12.9	49.3		55.1	45.1		22.4	59.5	59.5
Effective Green, g (s)	21.9	58.3		12.9	49.3		55.1	45.1		22.4	59.5	59.5
Actuated g/C Ratio	0.14	0.36		0.08	0.31		0.34	0.28		0.14	0.37	0.37
Clearance Time (s)	3.0	6.8		3.0	6.8		3.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	222	1208		132	954		235	1309		457	1782	542
v/s Ratio Prot	c0.11	c0.34		0.06	0.20		0.02	c0.21		c0.12	0.21	
v/s Ratio Perm							0.11					0.05
v/c Ratio	0.81	0.94		0.76	0.66		0.39	0.74		0.84	0.55	0.13
Uniform Delay, d1	67.0	49.1		72.0	48.1		36.4	52.2		67.0	39.7	33.2
Progression Factor	1.08	0.85		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	16.8	12.0		21.7	1.7		1.1	3.8		12.6	1.2	0.5
Delay (s)	89.1	53.7		93.7	49.8		37.4	56.0		79.7	41.0	33.7
Level of Service	F	D		F	D		D	Е		Е	D	С
Approach Delay (s)		58.5			55.6			54.4			49.6	
Approach LOS		Е			Е			D			D	
Intersection Summary												
HCM 2000 Control Delay			54.2	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.85									
Actuated Cycle Length (s)			160.0	Sı	um of lost	time (s)			21.3			
Intersection Capacity Utiliza	ation		97.3%	IC	U Level o	of Service)		F			
Analysis Period (min)			15									
0.10. 11. 0												

c Critical Lane Group

Lanes, Volumes, Timings 2: Blundell Rd /Queen Frederica Dr & Dundas St E

	۶	→	•	•	←	•	•	†	<i>></i>	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ î≽		7	∱ ∱		7		7	*	£	
Traffic Volume (vph)	14	1185	25	18	736	63	18	0	9	175	9	19
Future Volume (vph)	14	1185	25	18	736	63	18	0	9	175	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	78.0		0.0	81.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		1.00	1.00		0.99		0.99	1.00	0.99	
Frt		0.997			0.988				0.850		0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1566	3420	0	1750	3287	0	1750	0	1309	1750	1633	0
Flt Permitted	0.950			0.950			0.738			0.950		
Satd. Flow (perm)	1559	3420	0	1747	3287	0	1346	0	1290	1745	1633	0
Right Turn on Red		• 1.20	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			9				55		20	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		208.5			336.2			112.0			112.9	
Travel Time (s)		12.5			20.2			10.1			10.2	
Confl. Peds. (#/hr)	5		3	3		5	8		2	2		8
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
Adj. Flow (vph)	15	1274	27	19	791	68	19	0	10	188	10	20
Shared Lane Traffic (%)	10								10	100		
Lane Group Flow (vph)	15	1301	0	19	859	0	19	0	10	188	30	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	20.0	3.5	, agaic	20.0	3.5	, agaic	20.0	3.5	ı uğını	LOIL	3.5	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane		0.0			0.0			0.0			0.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	1.01	15	25	1.01	15	25	1.01	15	25	1.01	15
Number of Detectors	1	2		1	2	.0	1		1	1	2	
Detector Template	Left	Thru		Left	Thru		Left		Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0		2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0		2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex		CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	OI · LX	OI LX		OI · LX	OI LX		OI LX		OI · LX	OI · LX	OI · LX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0		0.0	0.0	9.4	
Detector 2 Size(m)		0.6			0.6						0.6	
		CI+Ex			CI+Ex						CI+Ex	
Detector 2 Type		UI+EX			UI+EX						UI+EX	
Detector 2 Channel		0.0			0.0						0.0	
Detector 2 Extend (s)		0.0			0.0						0.0	

07-07-2025 JL

CGH Transportation Page 5

2: Blundell Rd /Queen Frederica Dr & Dundas St E

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR Turn Type Prot NA Prot NA Perm Perm Perm Perm NA Protected Phases 5 2 1 6 8 8 Permitted Phases 4 4 8 8 Detector Phase 5 2 1 6 4 4 8 8 Switch Phase Switch Phase 8.0 8.0 8.0 8.0 8.0 8.0 Minimum Initial (s) 7.0 8.0 7.0 8.0 44.0 44.0 44.0 44.0		•	-	* •		←	•	\blacktriangleleft	†	/	-	ţ	4
Protected Phases 5 2 1 6 8 Permitted Phases 4 4 8 Detector Phase 5 2 1 6 4 4 8 8 Switch Phase 8	Lane Group	EBL	EBT	EBR W	3L	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases 4 4 8 Detector Phase 5 2 1 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0	Turn Type	Prot	NA	Р	rot	NA		Perm		Perm	Perm	NA	
Detector Phase 5 2 1 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0	Protected Phases	5	2		1	6						8	
Switch Phase Minimum Initial (s) 7.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0	Permitted Phases							4		4	8		
Minimum Initial (s) 7.0 8.0 7.0 8.0 8.0 8.0 8.0	Detector Phase	5	2		1	6		4		4	8	8	
	Switch Phase												
Minimum Split (s) 11.0 34.0 11.0 34.0 44.0 44.0 44.0	Minimum Initial (s)	7.0	8.0		'.0	8.0		8.0		8.0	8.0	8.0	
	Minimum Split (s)	11.0	34.0	1	.0	34.0		44.0		44.0	44.0	44.0	
Total Split (s) 13.0 99.0 13.0 99.0 48.0 48.0 48.0 48.0	Total Split (s)	13.0	99.0	1;	3.0	99.0		48.0		48.0	48.0	48.0	
Total Split (%) 8.1% 61.9% 8.1% 61.9% 30.0% 30.0% 30.0% 30.0%	Total Split (%)	8.1%	61.9%	8.	% 6	61.9%		30.0%		30.0%	30.0%	30.0%	
Maximum Green (s) 9.0 92.0 9.0 92.0 41.0 41.0 41.0	Maximum Green (s)												
Yellow Time (s) 3.0 4.0 3.0 3.0 3.0 3.0 3.0	Yellow Time (s)	3.0	4.0	;	3.0			3.0		3.0	3.0	3.0	
All-Red Time (s) 1.0 3.0 1.0 3.0 4.0 4.0 4.0 4.0	All-Red Time (s)	1.0	3.0		.0	3.0		4.0		4.0	4.0	4.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0	Lost Time Adjust (s)		0.0	(0.0			0.0		0.0	0.0	0.0	
Total Lost Time (s) 4.0 7.0 4.0 7.0 7.0 7.0 7.0 7.0		4.0	7.0	4	.0	7.0		7.0		7.0	7.0	7.0	
Lead/Lag Lead Lag Lead Lag													
Lead-Lag Optimize? Yes Yes Yes	Lead-Lag Optimize?												
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0	Vehicle Extension (s)	3.0						3.0		3.0	3.0		
Recall Mode None C-Max None C-Max None None None	Recall Mode	None		No	ne C	C-Max							
Walk Time (s) 10.0 10.0 10.0 10.0 10.0	` ,												
Flash Dont Walk (s) 17.0 17.0 27.0 27.0 27.0 27.0	Flash Dont Walk (s)		17.0									27.0	
Pedestrian Calls (#/hr) 3 5 2 2 8 8	Pedestrian Calls (#/hr)												
Act Effct Green (s) 7.7 114.6 7.8 116.9 24.0 24.0 24.0 24.0	Act Effct Green (s)									24.0			
Actuated g/C Ratio 0.05 0.72 0.05 0.73 0.15 0.15 0.15													
v/c Ratio 0.20 0.53 0.22 0.36 0.09 0.04 0.72 0.11													
Control Delay 103.4 4.8 74.6 7.1 55.4 0.3 79.2 27.4	•												
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
Total Delay 103.4 4.9 74.6 7.1 55.4 0.3 79.2 27.4		103.4	4.9	74									
LOS F A E A E C		F			Е			Е		Α	Е		
Approach Delay 6.0 8.5 36.4 72.1									36.4				
Approach LOS A A D E									D				
Queue Length 50th (m) 4.9 101.8 6.4 25.5 5.4 0.0 58.4 2.8													
Queue Length 95th (m) m10.1 16.3 m12.1 54.6 12.3 0.0 77.5 11.7		m10.1		m1:				12.3		0.0	77.5		
Internal Link Dist (m) 184.5 312.2 88.0 88.9	()		184.5			312.2			88.0			88.9	
Turn Bay Length (m) 78.0 81.0	Turn Bay Length (m)												
Base Capacity (vph) 89 2450 99 2404 344 371 447 433		89			99	2404		344		371	447	433	
Starvation Cap Reductn 0 98 0 0 0 0 0													
Spillback Cap Reductn 0 0 0 0 0 0								0		0			
Storage Cap Reductn 0 0 0 0 0 0			0			-							
Reduced v/c Ratio 0.17 0.55 0.19 0.36 0.06 0.03 0.42 0.07	Reduced v/c Ratio	0.17	0.55	0.	19	0.36		0.06		0.03	0.42	0.07	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 32 (20%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.72

Intersection Signal Delay: 13.2

Intersection LOS: B

1225 Dundas Street

	٠	→	•	•	←	4	4	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	J.	∱ ∱		ķ	ħβ		Į,		7	¥	f)	
Traffic Volume (vph)	14	1185	25	18	736	63	18	0	9	175	9	19
Future Volume (vph)	14	1185	25	18	736	63	18	0	9	175	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.99	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99		1.00	1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00		0.85	1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1566	3420		1750	3288		1733		1290	1745	1633	
FIt Permitted	0.95	1.00		0.95	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	1566	3420		1750	3288		1345		1290	1745	1633	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	15	1274	27	19	791	68	19	0	10	188	10	20
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	9	0	17	0
Lane Group Flow (vph)	15	1300	0	19	856	0	19	0	2	188	13	0
Confl. Peds. (#/hr)	5		3	3		5	8		2	2		8
Heavy Vehicles (%)	14%	4%	4%	2%	7%	7%	2%	2%	22%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Actuated Green, G (s)	3.5	113.0		5.0	114.5		24.0		24.0	24.0	24.0	
Effective Green, g (s)	3.5	113.0		5.0	114.5		24.0		24.0	24.0	24.0	
Actuated g/C Ratio	0.02	0.71		0.03	0.72		0.15		0.15	0.15	0.15	
Clearance Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)	34	2415		54	2352		201		193	261	244	
v/s Ratio Prot	0.01	c0.38		c0.01	0.26						0.01	
v/s Ratio Perm							0.01		0.00	c0.11		
v/c Ratio	0.44	0.54		0.35	0.36		0.09		0.01	0.72	0.05	
Uniform Delay, d1	77.3	11.1		75.9	8.7		58.6		57.9	64.8	58.3	
Progression Factor	1.34	0.33		0.95	0.71		1.00		1.00	1.00	1.00	
Incremental Delay, d2	7.8	8.0		3.6	0.4		0.2		0.0	9.4	0.1	
Delay (s)	111.6	4.4		75.3	6.6		58.8		57.9	74.2	58.4	
Level of Service	F	Α		Е	Α		Е		Е	Е	Е	
Approach Delay (s)		5.7			8.1			58.5			72.0	
Approach LOS		Α			Α			Е			E	
Intersection Summary												
HCM 2000 Control Delay			13.1	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.56									
Actuated Cycle Length (s)			160.0		um of lost				18.0			
Intersection Capacity Utiliza	ition		69.0%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									

c Critical Lane Group

Lane Configurations T		۶	→	•	•	←	•	•	†	/	/	↓	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	ሻ	∱ Љ		ሻ	ተ ኈ		ሻ	£		ሻ	ĵ.	
Ideal Flow (ryphp 1900	Traffic Volume (vph)	37		17	44		23			54	25		76
Storage Langth (m)	Future Volume (vph)	37	1225	17	44	789	23	7	1	54	25	3	76
Storage Lanes	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Taper Length (m)	Storage Length (m)	46.0		0.0	60.0		0.0	48.5		0.0	35.0		0.0
Lane Util. Factor	Storage Lanes	1		0	1		0	1		0	1		0
Ped Bike Factor 0.99	Taper Length (m)	15.0			15.0			15.0			15.0		
Fith	Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected 0.950	Ped Bike Factor	0.99	1.00		1.00	1.00		1.00	0.98		0.99	0.98	
Satd. Flow (prot) 1608 3425 0 1700 3323 0 1750 1469 0 1653 1549 0 Fit Permitted	Frt		0.998			0.996			0.852			0.855	
Fit Permitted	Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (perm) 1596 3425 0 1693 3323 0 1286 1469 0 1241 1549 1549	Satd. Flow (prot)	1608	3425	0	1700	3323	0	1750	1469	0	1653	1549	0
Right Turn on Red	Flt Permitted	0.950			0.950			0.701			0.718		
Satd. Flow (RTOR)	Satd. Flow (perm)	1596	3425	0	1693	3323	0	1286	1469	0	1241	1549	0
Link Speed (k/h)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (m)	Satd. Flow (RTOR)		1			3			59			83	
Travel Time (s)	Link Speed (k/h)		60			60			40			40	
Confi. Peds. (#/hr)	Link Distance (m)		172.2			208.5			142.2			79.4	
Peak Hour Factor	Travel Time (s)		10.3			12.5			12.8			7.1	
Heavy Vehicles (%)	Confl. Peds. (#/hr)	9		9	9		9	4		6	6		4
Adj. Flow (vph)	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%) Lane Group Flow (yph) 40 1350 0 48 883 0 8 60 0 27 86 0 0 Enter Blocked Intersection No No No No No No No	Heavy Vehicles (%)	11%	4%	2%	5%	7%	2%	2%	2%	7%	8%	2%	2%
Shared Lane Traffic (%) Lane Group Flow (yph) 40 1350 0 48 883 0 8 60 0 27 86 0 0 27 86 0 0 27 86 0 0 27 86 0 0 0 0 0 0 0 0 0	Adj. Flow (vph)	40	1332	18	48	858	25	8	1	59	27	3	83
Enter Blocked Intersection No No No No No No No													
Left Left Right Right Median Width(m) 3.5 3	Lane Group Flow (vph)	40	1350	0	48	883	0	8	60	0	27	86	0
Median Width(m) 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Median Width(m) 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.01	Median Width(m)		3.5			3.5			3.5			3.5	
Two way Left Turn Lane Headway Factor 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	Link Offset(m)		0.0			0.0			0.0			0.0	
Headway Factor 1.01	Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Turning Speed (k/h) 25 15 25 15 25 15 25 15 25 15 15 25 15 25 15 15 25 15 Number of Detectors 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Two way Left Turn Lane												
Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 0.6 2.0 0.0 0.0 <td>Headway Factor</td> <td>1.01</td>	Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Detector Template	Turning Speed (k/h)	25		15	25		15	25		15	25		15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0	Number of Detectors	1	2		1	2		1	2		1	2	
Trailing Detector (m) 0.0	Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 0.0	Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex	Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Type CI+Ex	Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Channel Detector 1 Extend (s) 0.0 <	Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Extend (s) 0.0	Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Queue (s) 0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s) 0.0	Detector 1 Queue (s)	0.0	0.0			0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m) 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	. ,												
Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	• ()												
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel													
Detector 2 Channel													
	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

07-07-2025

CGH Transportation Page 9

	•	-	•	•	•	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	11.0	35.5		11.0	35.5		46.5	46.5		46.5	46.5	
Total Split (s)	11.0	97.0		16.0	102.0		47.0	47.0		47.0	47.0	
Total Split (%)	6.9%	60.6%		10.0%	63.8%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	7.0	90.5		12.0	95.5		39.5	39.5		39.5	39.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.5		1.0	2.5		4.5	4.5		4.5	4.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		19.0			19.0		29.0	29.0		29.0	29.0	
Pedestrian Calls (#/hr)		9			9		6	6		4	4	
Act Effct Green (s)	8.6	119.5		9.8	120.7		14.9	14.9		14.9	14.9	
Actuated g/C Ratio	0.05	0.75		0.06	0.75		0.09	0.09		0.09	0.09	
v/c Ratio	0.47	0.53		0.46	0.35		0.07	0.32		0.23	0.39	
Control Delay	90.4	12.0		81.0	8.7		59.7	16.9		66.9	16.5	
Queue Delay	0.0	0.0		0.0	0.1		0.0	0.0		0.0	0.0	
Total Delay	90.4	12.0		81.0	8.8		59.7	16.9		66.9	16.5	
LOS	F	В		F	Α		Е	В		Е	В	
Approach Delay		14.2			12.5			21.9			28.6	
Approach LOS		В			В			С			С	
Queue Length 50th (m)	12.5	76.2		15.7	31.2		2.5	0.3		8.5	0.9	
Queue Length 95th (m)	#27.9	182.3		30.9	58.4		6.7	12.3		15.6	14.9	
Internal Link Dist (m)		148.2			184.5			118.2			55.4	
Turn Bay Length (m)	46.0			60.0			48.5			35.0		
Base Capacity (vph)	86	2557		128	2507		317	407		306	444	
Starvation Cap Reductn	0	0		0	445		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.47	0.53		0.38	0.43		0.03	0.15		0.09	0.19	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 24 (15%), Referenced to phase 2:WBT and 6:EBT, Start of Green

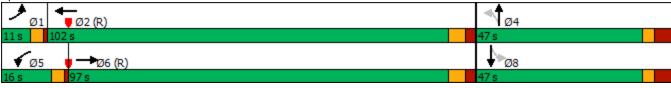
Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.53

Intersection Signal Delay: 14.5

Intersection LOS: B


Intersection Capacity Utilization 59.6%

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Dundas St E & Arena Rd

	۶	→	•	•	+	•	4	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		Ť	∱ ∱		7	₽		Ť	f)	
Traffic Volume (vph)	37	1225	17	44	789	23	7	1	54	25	3	76
Future Volume (vph)	37	1225	17	44	789	23	7	1	54	25	3	76
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1608	3425		1700	3322		1742	1470		1641	1550	
Flt Permitted	0.95	1.00		0.95	1.00		0.70	1.00		0.72	1.00	
Satd. Flow (perm)	1608	3425		1700	3322		1286	1470		1240	1550	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	40	1332	18	48	858	25	8	1	59	27	3	83
RTOR Reduction (vph)	0	0	0	0	1	0	0	54	0	0	75	0
Lane Group Flow (vph)	40	1350	0	48	882	0	8	6	0	27	11	0
Confl. Peds. (#/hr)	9		9	9		9	4		6	6		4
Heavy Vehicles (%)	11%	4%	2%	5%	7%	2%	2%	2%	7%	8%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		
Actuated Green, G (s)	7.2	118.7		8.4	119.9		14.9	14.9		14.9	14.9	
Effective Green, g (s)	7.2	118.7		8.4	119.9		14.9	14.9		14.9	14.9	
Actuated g/C Ratio	0.05	0.74		0.05	0.75		0.09	0.09		0.09	0.09	
Clearance Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	72	2540		89	2489		119	136		115	144	
v/s Ratio Prot	0.02	c0.39		c0.03	0.27			0.00			0.01	
v/s Ratio Perm							0.01			c0.02		
v/c Ratio	0.56	0.53		0.54	0.35		0.07	0.05		0.23	0.07	
Uniform Delay, d1	74.8	8.8		73.9	6.8		66.2	66.1		67.3	66.3	
Progression Factor	1.00	1.00		0.94	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	9.0	0.8		6.0	0.4		0.2	0.1		1.1	0.2	
Delay (s)	83.8	9.6		75.1	7.2		66.4	66.2		68.3	66.5	
Level of Service	F	Α		Е	Α		Е	Е		E	Е	
Approach Delay (s)		11.7			10.7			66.3			66.9	
Approach LOS		В			В			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			15.3	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.50	- 11	2W 2000	_0101010	331 1100					
Actuated Cycle Length (s)	ionly ratio		160.0	Q	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	ation		59.6%		CU Level	` '			В			
Analysis Period (min)			15	ıc	JO LOVOI (7. OOI VIOC			U			
Alialysis i Gliou (IIIIII)			10									

c Critical Lane Group

Intersection Capacity Utilization 31.1%

Analysis Period (min) 15

4: Queen Frederica	Dr & D	undix	Rd				1225 Dundas Street
	۶	•	4	†	ļ	✓	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			4	1>		
Traffic Volume (vph)	29	92	23	58	114	25	
Future Volume (vph)	29	92	23	58	114	25	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt	0.897				0.976		
Flt Protected	0.988			0.986			
Satd. Flow (prot)	1614	0	0	1713	1798	0	
Flt Permitted	0.988			0.986			
Satd. Flow (perm)	1614	0	0	1713	1798	0	
Link Speed (k/h)	40			40	40		
Link Distance (m)	126.4			112.9	77.9		
Travel Time (s)	11.4			10.2	7.0		
Confl. Peds. (#/hr)	3	4	4			5	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Heavy Vehicles (%)	7%	2%	6%	9%	2%	2%	
Adj. Flow (vph)	31	99	25	62	123	27	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	130	0	0	87	150	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	3.5			0.0	0.0		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	3.0			3.0	3.0		
Two way Left Turn Lane							
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	
Turning Speed (k/h)	25	15	25			15	
Sign Control	Stop			Stop	Stop		
Intersection Summary							
, i	Other						
Control Type: Unsignalized							
Later and the American Company	. 04 40/			10	MILL I .		Δ.

07-07-2025
JL CGH Transportation
Page 13

ICU Level of Service A

	•	•	4	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	î,	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	29	92	23	58	114	25
Future Volume (vph)	29	92	23	58	114	25
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	31	99	25	62	123	27
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	130	87	150			
Volume Left (vph)	31	25	0			
Volume Right (vph)	99	0	27			
Hadj (s)	-0.35	0.20	-0.07			
Departure Headway (s)	4.1	4.5	4.2			
Degree Utilization, x	0.15	0.11	0.18			
Capacity (veh/h)	836	760	827			
Control Delay (s)	7.8	8.1	8.1			
Approach Delay (s)	7.8	8.1	8.1			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.0			
Level of Service			Α			
Intersection Capacity Utiliz	zation		31.1%	IC	U Level o	of Service
Analysis Period (min)			15			

07-07-2025 CGH Transportation Page 14 JL

Intersection						
Intersection Delay, s/veh	8					
Intersection LOS	A					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		.,,,,,	4	1→	
Traffic Vol, veh/h	29	92	23	58	114	25
Future Vol, veh/h	29	92	23	58	114	25
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	7	2	6	9	2	2
Mvmt Flow	31	99	25	62	123	27
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	7.9		8.1		8.1	
HCM LOS	Α		Α		Α	
I IOW LOO	$\overline{}$		А		A	
TIOW LOO	Л		A		A	
Lane	Α	NBLn1	EBLn1	SBLn1	A	
	A	NBLn1 28%		SBLn1	A	
Lane	^		EBLn1		A	
Lane Vol Left, %	^	28%	EBLn1 24%	0%	A	
Lane Vol Left, % Vol Thru, %	^	28% 72%	EBLn1 24% 0%	0% 82%	A	
Lane Vol Left, % Vol Thru, % Vol Right, %	^	28% 72% 0%	EBLn1 24% 0% 76%	0% 82% 18%	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control	^	28% 72% 0% Stop	EBLn1 24% 0% 76% Stop	0% 82% 18% Stop	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		28% 72% 0% Stop 81 23 58	EBLn1 24% 0% 76% Stop 121 29 0	0% 82% 18% Stop 139 0	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		28% 72% 0% Stop 81 23 58	EBLn1 24% 0% 76% Stop 121 29 0	0% 82% 18% Stop 139 0 114 25	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		28% 72% 0% Stop 81 23 58 0	EBLn1 24% 0% 76% Stop 121 29 0	0% 82% 18% Stop 139 0 114 25	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		28% 72% 0% Stop 81 23 58 0 87	EBLn1 24% 0% 76% Stop 121 29 0 92 130	0% 82% 18% Stop 139 0 114 25 149	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		28% 72% 0% Stop 81 23 58 0 87 1 0.109	EBLn1 24% 0% 76% Stop 121 29 0 92 130 1 0.15	0% 82% 18% Stop 139 0 114 25 149 1	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		28% 72% 0% Stop 81 23 58 0 87 1 0.109 4.509	EBLn1 24% 0% 76% Stop 121 29 0 92 130 1 0.15 4.14	0% 82% 18% Stop 139 0 114 25 149 1 0.171 4.123	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		28% 72% 0% Stop 81 23 58 0 87 1 0.109 4.509 Yes	EBLn1 24% 0% 76% Stop 121 29 0 92 130 1 0.15 4.14 Yes	0% 82% 18% Stop 139 0 114 25 149 1 0.171 4.123 Yes	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		28% 72% 0% Stop 81 23 58 0 87 1 0.109 4.509 Yes 800	EBLn1 24% 0% 76% Stop 121 29 0 92 130 1 0.15 4.14 Yes 870	0% 82% 18% Stop 139 0 114 25 149 1 0.171 4.123 Yes 855	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		28% 72% 0% Stop 81 23 58 0 87 1 0.109 4.509 Yes 800 2.509	EBLn1 24% 0% 76% Stop 121 29 0 92 130 1 0.15 4.14 Yes 870 2.144	0% 82% 18% Stop 139 0 114 25 149 1 0.171 4.123 Yes 855 2.219	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		28% 72% 0% Stop 81 23 58 0 87 1 0.109 4.509 Yes 800 2.509 0.109	EBLn1 24% 0% 76% Stop 121 29 0 92 130 1 0.15 4.14 Yes 870 2.144 0.149	0% 82% 18% Stop 139 0 114 25 149 1 0.171 4.123 Yes 855 2.219 0.174	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		28% 72% 0% Stop 81 23 58 0 87 1 0.109 4.509 Yes 800 2.509 0.109 8.1	EBLn1 24% 0% 76% Stop 121 29 0 92 130 1 0.15 4.14 Yes 870 2.144 0.149 7.9	0% 82% 18% Stop 139 0 114 25 149 1 0.171 4.123 Yes 855 2.219 0.174 8.1	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		28% 72% 0% Stop 81 23 58 0 87 1 0.109 4.509 Yes 800 2.509 0.109	EBLn1 24% 0% 76% Stop 121 29 0 92 130 1 0.15 4.14 Yes 870 2.144 0.149	0% 82% 18% Stop 139 0 114 25 149 1 0.171 4.123 Yes 855 2.219 0.174	A	

07-07-2025 CGH Transportation Page 15 JL

	۶	→	•	•	←	•	•	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			4	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.932			0.986			0.897				
Flt Protected					0.958						0.981	
Satd. Flow (prot)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
Flt Permitted					0.958						0.981	
Satd. Flow (perm)	0	1717	0	0	1682	0	0	1570	0	0	1807	0
Link Speed (k/h)		40			40			40			20	
Link Distance (m)		67.0			91.4			52.1			82.6	
Travel Time (s)		6.0			8.2			4.7			14.9	
Confl. Peds. (#/hr)	1		1	1		1	2		1	1		2
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	2%	2%	2%	6%	2%	2%	2%	2%	9%	2%	2%	2%
Adj. Flow (vph)	0	6	6	41	1	5	0	8	26	15	24	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	12	0	0	47	0	0	34	0	0	39	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 24.5%

Analysis Period (min) 15

ICU Level of Service A

CGH Transportation Page 16 07-07-2025 JL

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Future Volume (vph)	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	0	6	6	41	1	5	0	8	26	15	24	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	12	47	34	39								
Volume Left (vph)	0	41	0	15								
Volume Right (vph)	6	5	26	0								
Hadj (s)	-0.27	0.20	-0.33	0.11								
Departure Headway (s)	3.8	4.3	3.7	4.2								
Degree Utilization, x	0.01	0.06	0.04	0.05								
Capacity (veh/h)	913	825	935	845								
Control Delay (s)	6.9	7.5	6.9	7.4								
Approach Delay (s)	6.9	7.5	6.9	7.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.3									
Level of Service			Α									
Intersection Capacity Utilizatio	n		24.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Future Vol, veh/h	0	5	5	35	1	4	0	7	22	13	21	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	6	2	2	2	2	9	2	2	2
Mvmt Flow	0	6	6	41	1	5	0	8	26	15	24	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		1		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		1		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				1		1		
HCM Control Delay		6.9		7.5				6.8		7.4		
HCM LOS		Α		Α				Α		Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	88%	38%	
Vol Thru, %	24%	50%	3%	62%	
Vol Right, %	76%	50%	10%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	29	10	40	34	
LT Vol	0	0	35	13	
Through Vol	7	5	1	21	
RT Vol	22	5	4	0	
Lane Flow Rate	34	12	47	40	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.034	0.012	0.055	0.045	
Departure Headway (Hd)	3.608	3.796	4.253	4.136	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	987	939	841	864	
Service Time	1.648	1.835	2.282	2.171	
HCM Lane V/C Ratio	0.034	0.013	0.056	0.046	
HCM Control Delay	6.8	6.9	7.5	7.4	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.1	0	0.2	0.1	

	•	•	†	/	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		f)			ર્ન
Traffic Volume (vph)	52	0	29	33	0	61
Future Volume (vph)	52	0	29	33	0	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.928			
Flt Protected	0.950					
Satd. Flow (prot)	1750	0	1709	0	0	1842
Flt Permitted	0.950					
Satd. Flow (perm)	1750	0	1709	0	0	1842
Link Speed (k/h)	50		40			40
Link Distance (m)	55.0		79.4			52.1
Travel Time (s)	4.0		7.1			4.7
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	58	0	32	37	0	68
Shared Lane Traffic (%)						
Lane Group Flow (vph)	58	0	69	0	0	68
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5		3.5			3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	3.0		3.0			3.0
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	15		15	25	
Sign Control	Stop		Free			Free
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 13.5%			IC	U Level c	of Service

Analysis Period (min) 15

Intersection	0.0					
Int Delay, s/veh	2.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	N/		ĵ.			सी
Traffic Vol, veh/h	52	0	29	33	0	61
Future Vol, veh/h	52	0	29	33	0	61
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	58	0	32	37	0	68
IVIVIIIL FIOW	56	U	JΖ	31	U	00
Major/Minor	Minor1		//ajor1	1	Major2	
Conflicting Flow All	119	51	0	0	69	0
Stage 1	51	_	-	-	-	-
Stage 2	68	-	-	-	_	-
Critical Hdwy	6.42	6.22	_	-	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_		_
Critical Hdwy Stg 2	5.42	_				
Follow-up Hdwy	3.518		_		2.218	_
Pot Cap-1 Maneuver	877	1017	-	_	1532	-
•	971	1017	_	-	1002	
Stage 1			-	-	-	-
Stage 2	955	-	-	-	-	-
Platoon blocked, %	0	4047	-	-	4500	-
Mov Cap-1 Maneuver	877	1017	-	-	1532	-
Mov Cap-2 Maneuver	877	-	-	-	-	-
Stage 1	971	-	-	-	-	-
Stage 2	955	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.4		0		0	
HCM LOS	9.4 A		U		U	
HOWI LOS	А					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-		1532	-
HCM Lane V/C Ratio		-	_	0.066	-	-
HCM Control Delay (s)		_	_	9.4	0	-
HCM Lane LOS		_	_	A	A	_
HCM 95th %tile Q(veh))	_	_	0.2	0	_
HOW JOHN JOHN Q(VEIL))			U.Z	U	

	-	•	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			ર્ન	N/	
Traffic Volume (vph)	58	0	8	40	0	46
Future Volume (vph)	58	0	8	40	0	46
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.992		
Satd. Flow (prot)	1842	0	0	1827	1593	0
Flt Permitted				0.992		
Satd. Flow (perm)	1842	0	0	1827	1593	0
Link Speed (k/h)	40			40	50	
Link Distance (m)	91.4			126.4	41.7	
Travel Time (s)	8.2			11.4	3.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	64	0	9	44	0	51
Shared Lane Traffic (%)						
Lane Group Flow (vph)	64	0	0	53	51	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						

Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 18.9%
Analysis Period (min) 15

ICU Level of Service A

CGH Transportation Page 22 07-07-2025 JL

	→	•	•	•	1	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	W		
Traffic Volume (veh/h)	58	0	8	40	0	46	
Future Volume (Veh/h)	58	0	8	40	0	46	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	64	0	9	44	0	51	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			64		126	64	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			64		126	64	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			99		100	95	
cM capacity (veh/h)			1538		864	1000	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	64	53	51				
Volume Left	0	9	0				
Volume Right	0	0	51				
cSH	1700	1538	1000				
Volume to Capacity	0.04	0.01	0.05				
Queue Length 95th (m)	0.0	0.1	1.2				
Control Delay (s)	0.0	1.3	8.8				
Lane LOS	0.0	Α	0.0 A				
Approach Delay (s)	0.0	1.3	8.8				
Approach LOS	0.0	1.0	0.0 A				
••							
Intersection Summary							
Average Delay			3.1				
Intersection Capacity Utiliza	ation		18.9%	IC	U Level c	f Service	
Analysis Period (min)			15				

Intersection						
Int Delay, s/veh	3					
		EDD	14/51	\A/D.T	ND	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			4	¥	
Traffic Vol, veh/h	58	0	8	40	0	46
Future Vol, veh/h	58	0	8	40	0	46
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	64	0	9	44	0	51
NA ' (NA' NA			4 : 0			
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	64	0	126	64
Stage 1	-	-	-	-	64	-
Stage 2	-	-	-	-	62	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	_	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1538	-	869	1000
Stage 1	-	-	-	-	959	-
Stage 2	-	-	-	-	961	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1538	_	864	1000
Mov Cap-2 Maneuver	_	_		_	864	
Stage 1	_	_	_	_	959	_
Stage 2		_			955	_
Slaye 2	_	_	_	_	300	<u>-</u>
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.2		8.8	
HCM LOS					Α	
NAII/NANA		IDL 4	CDT.	EBB	MDI	WOT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1000	-		1538	-
HCM Lane V/C Ratio		0.051	-	-	0.006	-
HCM Control Delay (s)		8.8	-	-		0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.2	-	-	0	-

	۶	→	•	•	←	•	1	†	<i>></i>	/	↓	</th
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ }		ሻ	∱ }		ሻ	ተተኈ		ሻሻ	ተተተ	7
Traffic Volume (vph)	207	855	161	257	1193	355	250	1004	222	452	1136	266
Future Volume (vph)	207	855	161	257	1193	355	250	1004	222	452	1136	266
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	95.0		0.0	197.5		61.5	96.0		0.0	107.5		148.0
Storage Lanes	1		0	1		0	1		0	2		1
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.91	0.91	0.97	0.91	1.00
Ped Bike Factor	0.99	0.99		0.99	0.98		1.00	1.00		1.00		0.98
Frt		0.976			0.966			0.973				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1716	3325	0	1750	3311	0	1750	4822	0	3395	5029	1536
Flt Permitted	0.950		-	0.950			0.101			0.950		
Satd. Flow (perm)	1705	3325	0	1731	3311	0	186	4822	0	3380	5029	1503
Right Turn on Red	1100	0020	Yes	1101	0011	Yes	100	1022	Yes	0000	0020	Yes
Satd. Flow (RTOR)		15			29			29				210
Link Speed (k/h)		60			60			60			60	210
Link Distance (m)		336.2			205.0			231.1			222.2	
Travel Time (s)		20.2			12.3			13.9			13.3	
Confl. Peds. (#/hr)	51	20.2	40	40	12.0	51	7	10.0	11	11	10.0	7
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Adj. Flow (vph)	211	872	164	262	1217	362	255	1024	227	461	1159	271
Shared Lane Traffic (%)	<u> </u>	012	101	202	1217	002	200	1021		101	1100	
Lane Group Flow (vph)	211	1036	0	262	1579	0	255	1251	0	461	1159	271
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	3.5	rtigitt	Loit	3.5	rugiit	Loit	7.0	rugiit	Loit	7.0	ragin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane		0.0			0.0			0.0			0.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	1.01	1.01	25	1.01	1.01	25	1.01	1.01	25	1.01	1.01
Number of Detectors	1	2	10	1	2	10	1	2	10	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	CITLX	OITLX		CITLX	CITLX		CITLX	CITLX		CITLX	OITLX	CITLX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
` ,	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)												0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	۶	-	•	•	←	*	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Detector Phase	3	8		7	4		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	7.0	10.0		7.0	20.0		7.0	10.0		7.0	10.0	10.0
Minimum Split (s)	11.0	47.8		11.0	47.8		12.0	42.5		12.0	42.5	42.5
Total Split (s)	20.0	60.0		31.0	71.0		21.0	46.0		23.0	48.0	48.0
Total Split (%)	12.5%	37.5%		19.4%	44.4%		13.1%	28.8%		14.4%	30.0%	30.0%
Maximum Green (s)	16.0	53.2		27.0	64.2		16.0	39.5		18.0	41.5	41.5
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	4.0		3.0	4.0	4.0
All-Red Time (s)	1.0	2.8		1.0	2.8		2.0	2.5		2.0	2.5	2.5
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0			10.0			10.0	10.0
Flash Dont Walk (s)		31.0			31.0			26.0			26.0	26.0
Pedestrian Calls (#/hr)		40			51			11			7	7
Act Effct Green (s)	16.0	54.1		26.1	64.2		57.0	39.5		18.0	41.5	41.5
Actuated g/C Ratio	0.10	0.34		0.16	0.40		0.36	0.25		0.11	0.26	0.26
v/c Ratio	1.23	0.91		0.92	1.17		1.15	1.03		1.21	0.89	0.50
Control Delay	204.5	51.1		101.2	128.0		146.6	90.9		173.3	66.4	15.5
Queue Delay	0.0	0.0		0.0	0.1		0.0	0.0		0.0	0.0	0.0
Total Delay	204.5	51.1		101.2	128.1		146.6	90.9		173.3	66.4	15.5
LOS	F	D		F	F		F	F		F	Е	В
Approach Delay		77.1			124.3			100.3			85.2	
Approach LOS		Е			F			F			F	
Queue Length 50th (m)	~84.7	100.8		82.7	~312.1		~78.8	~153.0		~91.7	130.9	15.1
Queue Length 95th (m)	#139.4	#202.5		#132.7	#354.6		#136.9	#183.1		#127.3	149.8	43.0
Internal Link Dist (m)		312.2			181.0			207.1			198.2	
Turn Bay Length (m)	95.0			197.5			96.0			107.5		148.0
Base Capacity (vph)	171	1134		295	1345		222	1212		381	1304	545
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	46		0	0		0	0	2
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	1.23	0.91		0.89	1.22		1.15	1.03		1.21	0.89	0.50

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 48 (30%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.23

Intersection Signal Delay: 98.2

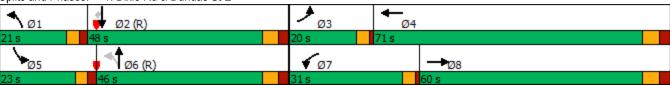
Intersection LOS: F

1225 Dundas Street

Intersection Capacity Utilization 119.1%

ICU Level of Service H

Analysis Period (min) 15


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Dixie Rd & Dundas St E

CGH Transportation 07-07-2025 Page 3

	۶	→	•	•	←	•	•	†	<i>></i>	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ŋ	∱ }		¥	↑ ↑		¥	ተተኈ		14.54	ተተተ	7
Traffic Volume (vph)	207	855	161	257	1193	355	250	1004	222	452	1136	266
Future Volume (vph)	207	855	161	257	1193	355	250	1004	222	452	1136	266
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		0.97	0.91	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.98		1.00	1.00		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.97		1.00	0.97		1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1716	3325		1750	3310		1750	4821		3395	5029	1503
FIt Permitted	0.95	1.00		0.95	1.00		0.10	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1716	3325		1750	3310		187	4821		3395	5029	1503
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	211	872	164	262	1217	362	255	1024	227	461	1159	271
RTOR Reduction (vph)	0	10	0	0	17	0	0	22	0	0	0	156
Lane Group Flow (vph)	211	1026	0	262	1562	0	255	1229	0	461	1159	115
Confl. Peds. (#/hr)	51		40	40		51	7		11	11		7
Heavy Vehicles (%)	4%	4%	3%	2%	2%	4%	2%	3%	3%	2%	2%	4%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA		Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases							6					2
Actuated Green, G (s)	16.0	54.1		26.1	64.2		55.5	39.5		18.0	41.5	41.5
Effective Green, g (s)	16.0	54.1		26.1	64.2		55.5	39.5		18.0	41.5	41.5
Actuated g/C Ratio	0.10	0.34		0.16	0.40		0.35	0.25		0.11	0.26	0.26
Clearance Time (s)	4.0	6.8		4.0	6.8		5.0	6.5		5.0	6.5	6.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	171	1124		285	1328		221	1190		381	1304	389
v/s Ratio Prot	c0.12	0.31		0.15	c0.47		0.12	0.25		c0.14	0.23	
v/s Ratio Perm							c0.29					0.08
v/c Ratio	1.23	0.91		0.92	1.18		1.15	1.03		1.21	0.89	0.30
Uniform Delay, d1	72.0	50.7		65.9	47.9		47.4	60.2		71.0	57.0	47.5
Progression Factor	1.19	0.80		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	140.0	9.6		32.5	87.4		108.3	34.9		116.6	9.3	1.9
Delay (s)	226.0	50.0		98.4	135.3		155.7	95.2		187.6	66.3	49.5
Level of Service	F	D		F	F		F	F		F	Е	D
Approach Delay (s)		79.8			130.0			105.4			93.5	
Approach LOS		Е			F			F			F	
Intersection Summary			1010									
HCM 2000 Control Delay			104.0	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.18									
Actuated Cycle Length (s)			160.0		um of lost				22.3			
Intersection Capacity Utiliza	tion		119.1%	IC	U Level c	t Service)		Н			
Analysis Period (min)			15									

c Critical Lane Group

Lanes, Volumes, Timings 2: Blundell Rd /Queen Frederica Dr & Dundas St E

	۶	-	\rightarrow	•	←	•	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ }		ኻ	↑ ↑		ሻ		7	ሻ	f)	
Traffic Volume (vph)	44	1243	37	46	1708	165	76	0	25	136	9	19
Future Volume (vph)	44	1243	37	46	1708	165	76	0	25	136	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	78.0		0.0	81.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		0.99	1.00		0.99		0.96	0.98	0.98	
Frt		0.996			0.987				0.850		0.900	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1750	3445	0	1750	3438	0	1750	0	1566	1750	1628	0
Flt Permitted	0.950			0.950			0.738			0.950		
Satd. Flow (perm)	1746	3445	0	1736	3438	0	1339	0	1509	1707	1628	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			12				55		20	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		208.5			336.2			112.0			112.9	
Travel Time (s)		12.5			20.2			10.1			10.2	
Confl. Peds. (#/hr)	12		18	18		12	12		19	19		12
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	47	1337	40	49	1837	177	82	0	27	146	10	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	47	1377	0	49	2014	0	82	0	27	146	30	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	•	15	25	•	15	25		15	25	•	15
Number of Detectors	1	2		1	2		1		1	1	2	
Detector Template	Left	Thru		Left	Thru		Left		Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0		2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0		2.0	2.0	0.6	
Detector 1 Type Detector 1 Channel	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex		CI+Ex	Cl+Ex	CI+Ex	
	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Detector 1 Queue (s) Detector 1 Delay (s)							0.0					
3 ()	0.0	0.0 9.4		0.0	0.0 9.4		0.0		0.0	0.0	0.0 9.4	
Detector 2 Position(m) Detector 2 Size(m)		0.6			0.6						0.6	
Detector 2 Type		CI+Ex			Cl+Ex						CI+Ex	
Detector 2 Type Detector 2 Channel		CITEX			OI+EX						CITEX	
Detector 2 Extend (s)		0.0			0.0						0.0	
DEIECIOI Z EXIEIIU (S)		0.0			0.0						0.0	

07-07-2025 CGH Transportation Page 5 JL

	۶	→	•	•	•	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Detector Phase	5	2		1	6		4		4	8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0		8.0	8.0	8.0	
Minimum Split (s)	11.0	34.0		11.0	34.0		44.0		44.0	44.0	44.0	
Total Split (s)	11.0	102.0		14.0	105.0		44.0		44.0	44.0	44.0	
Total Split (%)	6.9%	63.8%		8.8%	65.6%		27.5%		27.5%	27.5%	27.5%	
Maximum Green (s)	7.0	95.0		10.0	98.0		37.0		37.0	37.0	37.0	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0		3.0	3.0	3.0	
All-Red Time (s)	1.0	3.0		1.0	3.0		4.0		4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None		None	None	None	
Walk Time (s)		10.0			10.0		10.0		10.0	10.0	10.0	
Flash Dont Walk (s)		17.0			17.0		27.0		27.0	27.0	27.0	
Pedestrian Calls (#/hr)		18			12		19		19	12	12	
Act Effct Green (s)	7.3	107.3		9.0	109.0		27.9		27.9	27.9	27.9	
Actuated g/C Ratio	0.05	0.67		0.06	0.68		0.17		0.17	0.17	0.17	
v/c Ratio	0.59	0.60		0.50	0.86		0.35		0.09	0.49	0.10	
Control Delay	117.6	6.0		80.9	13.9		59.3		1.9	63.2	24.9	
Queue Delay	0.0	0.0		0.0	0.2		0.0		0.0	0.0	0.0	
Total Delay	117.6	6.0		80.9	14.1		59.3		1.9	63.2	24.9	
LOS	F	Α		F	В		Е		Α	Е	С	
Approach Delay		9.7			15.7			45.1			56.7	
Approach LOS		Α			В			D			Е	
Queue Length 50th (m)	15.8	27.9		16.2	104.5		21.6		0.0	39.5	2.5	
Queue Length 95th (m)	m#30.6	34.7		m18.8	m99.1		38.0		1.5	61.1	11.7	
Internal Link Dist (m)		184.5			312.2			88.0			88.9	
Turn Bay Length (m)	78.0			81.0								
Base Capacity (vph)	79	2311		109	2346		309		391	394	391	
Starvation Cap Reductn	0	18		0	42		0		0	0	0	
Spillback Cap Reductn	0	0		0	10		0		0	0	0	
Storage Cap Reductn	0	0		0	0		0		0	0	0	
Reduced v/c Ratio	0.59	0.60		0.45	0.87		0.27		0.07	0.37	0.08	
I-t												

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 104 (65%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 16.2

Intersection LOS: B

1225 Dundas Street

Intersection Capacity Utilization 83.9%

ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Blundell Rd /Queen Frederica Dr & Dundas St E

	۶	-	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ β		ሻ	∱ ∱		ሻ		7	ሻ	₽	
Traffic Volume (vph)	44	1243	37	46	1708	165	76	0	25	136	9	19
Future Volume (vph)	44	1243	37	46	1708	165	76	0	25	136	9	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00		1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00		0.96	1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99		1.00	0.98	1.00	
Frt	1.00	1.00		1.00	0.99		1.00		0.85	1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95		1.00	0.95	1.00	
Satd. Flow (prot)	1750	3444		1750	3437		1724		1509	1707	1628	
FIt Permitted	0.95	1.00		0.95	1.00		0.74		1.00	0.95	1.00	
Satd. Flow (perm)	1750	3444		1750	3437		1338		1509	1707	1628	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	47	1337	40	49	1837	177	82	0	27	146	10	20
RTOR Reduction (vph)	0	1	0	0	4	0	0	0	22	0	17	0
Lane Group Flow (vph)	47	1376	0	49	2010	0	82	0	5	146	13	0
Confl. Peds. (#/hr)	12		18	18		12	12		19	19		12
Heavy Vehicles (%)	2%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm		Perm	Perm	NA	
Protected Phases	5	2		1	6						8	
Permitted Phases							4		4	8		
Actuated Green, G (s)	5.9	106.5		7.6	108.2		27.9		27.9	27.9	27.9	
Effective Green, g (s)	5.9	106.5		7.6	108.2		27.9		27.9	27.9	27.9	
Actuated g/C Ratio	0.04	0.67		0.05	0.68		0.17		0.17	0.17	0.17	
Clearance Time (s)	4.0	7.0		4.0	7.0		7.0		7.0	7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
Lane Grp Cap (vph)	64	2292		83	2324		233		263	297	283	
v/s Ratio Prot	0.03	0.40		c0.03	c0.58						0.01	
v/s Ratio Perm							0.06		0.00	c0.09		
v/c Ratio	0.73	0.60		0.59	0.86		0.35		0.02	0.49	0.05	
Uniform Delay, d1	76.3	14.9		74.7	20.2		58.1		54.7	59.6	55.0	
Progression Factor	1.24	0.29		1.00	0.50		1.00		1.00	1.00	1.00	
Incremental Delay, d2	31.1	1.0		4.6	2.0		0.9		0.0	1.3	0.1	
Delay (s)	126.0	5.3		79.5	12.1		59.0		54.7	60.9	55.1	
Level of Service	F	Α		Е	В		Е		D	Е	Е	
Approach Delay (s)		9.3			13.7			58.0			59.9	
Approach LOS		Α			В			Е			E	
Intersection Summary												
HCM 2000 Control Delay			15.5	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.79									
Actuated Cycle Length (s)	•		160.0	S	um of lost	time (s)			18.0			
Intersection Capacity Utiliza	ation		83.9%		U Level				Е			
Analysis Period (min)			15									

c Critical Lane Group

	۶	→	•	•	←	•	•	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	∱ }		ř	↑ }		ř	f)		ř	£	
Traffic Volume (vph)	81	1231	19	88	1575	67	21	11	110	21	2	60
Future Volume (vph)	81	1231	19	88	1575	67	21	11	110	21	2	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	46.0		0.0	60.0		0.0	48.5		0.0	35.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	15.0			15.0			15.0			15.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00		0.99	1.00		0.98	0.98		0.99	0.97	
Frt		0.998			0.994			0.864			0.855	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1733	3454	0	1750	3439	0	1700	1555	0	1750	1529	0
Flt Permitted	0.950			0.950			0.716			0.623		
Satd. Flow (perm)	1728	3454	0	1730	3439	0	1260	1555	0	1135	1529	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			5			111			61	
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		172.2			208.5			142.2			79.4	
Travel Time (s)		10.3			12.5			12.8			7.1	
Confl. Peds. (#/hr)	11		24	24		11	15		11	11		15
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Adj. Flow (vph)	82	1243	19	89	1591	68	21	11	111	21	2	61
Shared Lane Traffic (%)												
Lane Group Flow (vph)	82	1262	0	89	1659	0	21	122	0	21	63	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

07-07-2025

CGH Transportation Page 9

	•	-	•	•	•	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases							4			8		
Detector Phase	5	2		1	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	7.0	8.0		7.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	11.0	35.5		11.0	35.5		46.5	46.5		46.5	46.5	
Total Split (s)	13.0	94.0		19.0	100.0		47.0	47.0		47.0	47.0	
Total Split (%)	8.1%	58.8%		11.9%	62.5%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	9.0	87.5		15.0	93.5		39.5	39.5		39.5	39.5	
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.5		1.0	2.5		4.5	4.5		4.5	4.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		19.0			19.0		29.0	29.0		29.0	29.0	
Pedestrian Calls (#/hr)		24			11		11	11		15	15	
Act Effct Green (s)	10.0	102.6		12.8	105.4		26.6	26.6		26.6	26.6	
Actuated g/C Ratio	0.06	0.64		0.08	0.66		0.17	0.17		0.17	0.17	
v/c Ratio	0.76	0.57		0.64	0.73		0.10	0.35		0.11	0.21	
Control Delay	111.5	20.5		93.9	12.3		50.4	12.7		50.8	12.6	
Queue Delay	0.0	0.0		0.0	0.4		0.0	0.0		0.0	0.0	
Total Delay	111.5	20.5		93.9	12.8		50.4	12.7		50.8	12.6	
LOS	F	С		F	В		D	В		D	В	
Approach Delay		26.1			16.9			18.3			22.1	
Approach LOS		С			В			В			С	
Queue Length 50th (m)	26.3	142.2		30.2	61.2		5.2	2.7		5.2	0.5	
Queue Length 95th (m)	#57.0	170.7		m35.8	65.3		12.9	19.4		13.0	13.1	
Internal Link Dist (m)		148.2			184.5			118.2			55.4	
Turn Bay Length (m)	46.0			60.0			48.5			35.0		
Base Capacity (vph)	108	2214		166	2266		311	467		280	423	
Starvation Cap Reductn	0	0		0	201		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.76	0.57		0.54	0.80		0.07	0.26		0.07	0.15	

Intersection Summary

Area Type: Other

Cycle Length: 160

Actuated Cycle Length: 160

Offset: 108 (68%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.76

Intersection Signal Delay: 20.8

Intersection LOS: C

	٠	→	•	•	←	•	4	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	J.	∱ }		, N	∱ }		¥	f)		¥	f)	
Traffic Volume (vph)	81	1231	19	88	1575	67	21	11	110	21	2	60
Future Volume (vph)	81	1231	19	88	1575	67	21	11	110	21	2	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.98	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.86		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3453		1750	3439		1671	1554		1731	1529	
FIt Permitted	0.95	1.00		0.95	1.00		0.72	1.00		0.62	1.00	
Satd. Flow (perm)	1733	3453		1750	3439		1259	1554		1134	1529	
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	82	1243	19	89	1591	68	21	11	111	21	2	61
RTOR Reduction (vph)	0	0	0	0	2	0	0	93	0	0	51	0
Lane Group Flow (vph)	82	1262	0	89	1657	0	21	29	0	21	12	0
Confl. Peds. (#/hr)	11	20/	24	24	20/	11	15	00/	11	11	00/	15
Heavy Vehicles (%)	3%	3%	5%	2%	3%	2%	5%	2%	2%	2%	2%	2%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6		4	4		0	8	
Permitted Phases	10.0	100.6		10.0	105.4		4	00.0		8	00.0	
Actuated Green, G (s)	10.0	102.6 102.6		12.8 12.8	105.4 105.4		26.6 26.6	26.6 26.6		26.6 26.6	26.6 26.6	
Effective Green, g (s)	10.0 0.06	0.64		0.08	0.66		0.17	0.17		0.17	0.17	
Actuated g/C Ratio Clearance Time (s)	4.0	6.5		4.0	6.5		7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
	108	2214		140	2265			258		188	254	
Lane Grp Cap (vph) v/s Ratio Prot	c0.05	0.37		0.05	c0.48		209	c0.02		100	0.01	
v/s Ratio Prot v/s Ratio Perm	00.05	0.37		0.05	00.40		0.02	00.02		0.02	0.01	
v/c Ratio	0.76	0.57		0.64	0.73		0.02	0.11		0.02	0.05	
Uniform Delay, d1	73.8	16.2		71.3	18.0		56.6	56.7		56.7	56.1	
Progression Factor	1.00	1.00		1.16	0.53		1.00	1.00		1.00	1.00	
Incremental Delay, d2	25.9	1.1		5.0	1.2		0.2	0.2		0.3	0.1	
Delay (s)	99.7	17.3		88.0	10.7		56.8	56.9		56.9	56.1	
Level of Service	F	В		F	В		E	E		E	E	
Approach Delay (s)	•	22.3		•	14.6		_	56.9		_	56.3	
Approach LOS		C			В			E			E	
••												
Intersection Summary			00.0		014 0000	1	<u> </u>					
HCM 2000 Control Delay	noite (notic		20.6	Н	CM 2000	Level of S	service		С			
HCM 2000 Volume to Capa	acity ratio		0.62	0.	um of lost	time (a)			10.0			
Actuated Cycle Length (s)	otion		160.0 89.9%		um of lost CU Level o				18.0 E			
Intersection Capacity Utiliza Analysis Period (min)	auOH		15	IC	O LEVEL	JI SEIVICE			С			
Alialysis Fellou (IIIIII)			10									

c Critical Lane Group

٠	•	4	†	Ţ	4
EBL	EBR	NBL	NBT	SBT	SBR
¥			ર્ન	ĵ»	
26	62	59	145	111	39
26	62	59	145	111	39
1900	1900	1900	1900	1900	1900
1.00	1.00	1.00	1.00	1.00	1.00
0.905				0.965	
0.985			0.986		
1642	0	0	1816	1778	0
0.985			0.986		
1642	0	0	1816	1778	0
40			40	40	
126.4			112.9	77.9	
11.4			10.2	7.0	
6	5	5			4
0.94	0.94	0.94	0.94	0.94	0.94
28	66	63	154	118	41
94	0	0	217	159	0
No	No	No	No	No	No
Left	Right	Left	Left	Left	Right
3.5			0.0	0.0	
			0.0		
3.0			3.0	3.0	
			1.01	1.01	1.01
	15	25			15
Stop			Stop	Stop	
Other					
ion 36.7%			IC	U Level o	of Service A
	EBL 26 26 1900 1.00 0.905 0.985 1642 0.985 1642 40 126.4 11.4 6 0.94 28 94 No Left 3.5 0.0 3.0 1.01 25 Stop	EBL EBR 26 62 26 62 1900 1900 1.00 1.00 0.905 0.985 1642 0 0.985 1642 0 40 126.4 11.4 6 5 0.94 0.94 28 66 94 0 No No Left Right 3.5 0.0 3.0 1.01 1.01 25 15 Stop	EBL EBR NBL 26 62 59 26 62 59 1900 1900 1900 1.00 1.00 1.00 0.905 0.985 1642 0 0 0.985 1642 0 0 40 126.4 11.4 6 5 5 0.94 0.94 0.94 28 66 63 94 0 0 No No No No Left Right Left 3.5 0.0 3.0 1.01 1.01 1.01 25 15 25 Stop	EBL EBR NBL NBT 26 62 59 145 26 62 59 145 1900 1900 1900 1900 1.00 1.00 1.00 1.00 0.905 0.985 0.986 1642 0 0 1816 0.985 0.986 1642 0 0 1816 40 40 126.4 112.9 11.4 10.2 6 5 5 0.94 0.94 0.94 0.94 28 66 63 154 94 0 0 217 No No No No No Left Right Left 3.5 0.0 0.0 3.0 3.0 1.01 1.01 1.01 1.01 25 15 25 Stop Stop	EBL EBR NBL NBT SBT 26 62 59 145 111 26 62 59 145 111 1900 1900 1900 1900 1900 1.00 1.00 1.00 1.00 1.00 0.905 0.985 0.985 0.986 1642 0 0 1816 1778 0.985 0.986 1642 0 0 1816 1778 40 40 40 126.4 112.9 77.9 11.4 10.2 7.0 6 5 5 0.94 0.94 0.94 0.94 0.94 28 66 63 154 118 94 0 0 217 159 No No No No No No Left Right Left Left 3.5 0.0 0.0 0.0 3.0 3.0 3.0 1.01 1.01 1.01 1.01 1.01 25 15 25 Stop Stop Stop

Analysis Period (min) 15

07-07-2025 CGH Transportation Page 13 JL

	•	•	4	†	ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	f)	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	26	62	59	145	111	39
Future Volume (vph)	26	62	59	145	111	39
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	28	66	63	154	118	41
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	94	217	159			
Volume Left (vph)	28	63	0			
Volume Right (vph)	66	0	41			
Hadj (s)	-0.33	0.09	-0.12			
Departure Headway (s)	4.4	4.4	4.2			
Degree Utilization, x	0.11	0.26	0.19			
Capacity (veh/h)	749	797	816			
Control Delay (s)	8.0	8.9	8.2			
Approach Delay (s)	8.0	8.9	8.2			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.5			
Level of Service			Α			
Intersection Capacity Utiliz	zation		36.7%	IC	U Level c	of Service
Analysis Period (min)			15			

07-07-2025 CGH Transportation Page 14 JL

1225 Dundas Street

Intersection						
Intersection Delay, s/veh	8.5					
Intersection LOS	Α					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1>	
Traffic Vol, veh/h	26	62	59	145	111	39
Future Vol, veh/h	26	62	59	145	111	39
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	28	66	63	154	118	41
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	8		8.9		8.2	
HCM LOS	Α		Α		Α	
Lane		NBLn1	EBLn1	SBLn1		
Vol Left, %		NBLn1 29% 71%	30%	SBLn1 0% 74%		
Vol Left, % Vol Thru, %		29%		0%		
Vol Left, %		29% 71%	30% 0%	0% 74%		
Vol Left, % Vol Thru, % Vol Right, %		29% 71% 0%	30% 0% 70%	0% 74% 26%		
Vol Left, % Vol Thru, % Vol Right, % Sign Control		29% 71% 0% Stop	30% 0% 70% Stop	0% 74% 26% Stop		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		29% 71% 0% Stop 204	30% 0% 70% Stop 88	0% 74% 26% Stop 150		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		29% 71% 0% Stop 204 59	30% 0% 70% Stop 88 26	0% 74% 26% Stop 150 0 111		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		29% 71% 0% Stop 204 59 145	30% 0% 70% Stop 88 26 0	0% 74% 26% Stop 150 0		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		29% 71% 0% Stop 204 59 145 0 217	30% 0% 70% Stop 88 26 0 62 94	0% 74% 26% Stop 150 0 111		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		29% 71% 0% Stop 204 59 145 0 217 1 0.264	30% 0% 70% Stop 88 26 0 62 94 1	0% 74% 26% Stop 150 0 111 39 160 1 0.187		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		29% 71% 0% Stop 204 59 145 0 217 1 0.264 4.382	30% 0% 70% Stop 88 26 0 62 94 1 0.114 4.395	0% 74% 26% Stop 150 0 111 39 160 1 0.187 4.219		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		29% 71% 0% Stop 204 59 145 0 217 1 0.264 4.382 Yes	30% 0% 70% Stop 88 26 0 62 94 1 0.114 4.395 Yes	0% 74% 26% Stop 150 0 111 39 160 1 0.187 4.219 Yes		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		29% 71% 0% Stop 204 59 145 0 217 1 0.264 4.382 Yes 825	30% 0% 70% Stop 88 26 0 62 94 1 0.114 4.395 Yes 816	0% 74% 26% Stop 150 0 111 39 160 1 0.187 4.219 Yes 852		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		29% 71% 0% Stop 204 59 145 0 217 1 0.264 4.382 Yes 825 2.382	30% 0% 70% Stop 88 26 0 62 94 1 0.114 4.395 Yes 816 2.415	0% 74% 26% Stop 150 0 111 39 160 1 0.187 4.219 Yes 852 2.235		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		29% 71% 0% Stop 204 59 145 0 217 1 0.264 4.382 Yes 825 2.382 0.263	30% 0% 70% Stop 88 26 0 62 94 1 0.114 4.395 Yes 816 2.415 0.115	0% 74% 26% Stop 150 0 111 39 160 1 0.187 4.219 Yes 852 2.235 0.188		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		29% 71% 0% Stop 204 59 145 0 217 1 0.264 4.382 Yes 825 2.382 0.263 8.9	30% 0% 70% Stop 88 26 0 62 94 1 0.114 4.395 Yes 816 2.415 0.115 8	0% 74% 26% Stop 150 0 111 39 160 1 0.187 4.219 Yes 852 2.235 0.188 8.2		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		29% 71% 0% Stop 204 59 145 0 217 1 0.264 4.382 Yes 825 2.382 0.263	30% 0% 70% Stop 88 26 0 62 94 1 0.114 4.395 Yes 816 2.415 0.115	0% 74% 26% Stop 150 0 111 39 160 1 0.187 4.219 Yes 852 2.235 0.188		

	٠	→	•	•	←	4	1	†	/	/	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.919			0.955			0.931				
Flt Protected					0.973			0.999			0.976	
Satd. Flow (prot)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Flt Permitted					0.973			0.999			0.976	
Satd. Flow (perm)	0	1693	0	0	1675	0	0	1705	0	0	1798	0
Link Speed (k/h)		40			40			40			20	
Link Distance (m)		67.0			91.4			52.1			82.6	
Travel Time (s)		6.0			8.2			4.7			14.9	
Confl. Peds. (#/hr)	5		4	4		5	3		6	6		3
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	2%	2%	2%	6%	2%	2%	2%	2%	3%	2%	2%	2%
Adj. Flow (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	5	0	0	63	0	0	68	0	0	20	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Stop			Stop	
latana a stiana O												

Intersection Summary

Area Type: Other

Control Type: Unsignalized Intersection Capacity Utilization 24.3%

Analysis Period (min) 15

ICU Level of Service A

	۶	→	•	•	←	•	4	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Future Volume (vph)	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	0	2	3	35	7	21	2	31	35	10	10	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	5	63	68	20								
Volume Left (vph)	0	35	2	10								
Volume Right (vph)	3	21	35	0								
Hadj (s)	-0.33	-0.02	-0.26	0.13								
Departure Headway (s)	3.8	4.1	3.8	4.2								
Degree Utilization, x	0.01	0.07	0.07	0.02								
Capacity (veh/h)	913	862	918	828								
Control Delay (s)	6.8	7.4	7.1	7.3								
Approach Delay (s)	6.8	7.4	7.1	7.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.2									
Level of Service			Α									
Intersection Capacity Utilizati	ion		24.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

ntersection	
ntersection Delay, s/veh	7.2
ntersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Future Vol, veh/h	0	2	3	34	7	21	2	30	34	10	10	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles, %	2	2	2	6	2	2	2	2	3	2	2	2
Mvmt Flow	0	2	3	35	7	21	2	31	35	10	10	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		1		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			1		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			1			1		
HCM Control Delay		6.8		7.4			7.1			7.3		
HCM LOS		Α		Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	0%	55%	50%	
Vol Thru, %	45%	40%	11%	50%	
Vol Right, %	52%	60%	34%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	66	5	62	20	
LT Vol	2	0	34	10	
Through Vol	30	2	7	10	
RT Vol	34	3	21	0	
Lane Flow Rate	67	5	63	20	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.07	0.005	0.071	0.024	
Departure Headway (Hd)	3.765	3.774	4.065	4.205	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	948	943	880	849	
Service Time	1.8	1.818	2.096	2.244	
HCM Lane V/C Ratio	0.071	0.005	0.072	0.024	
HCM Control Delay	7.1	6.8	7.4	7.3	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0	0.2	0.1	

07-07-2025 CGH Transportation Page 18 JL

	•	4	†	/	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		f _a			ર્ન
Traffic Volume (vph)	40	0	66	91	0	47
Future Volume (vph)	40	0	66	91	0	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.922			
Flt Protected	0.950					
Satd. Flow (prot)	1750	0	1698	0	0	1842
Flt Permitted	0.950					
Satd. Flow (perm)	1750	0	1698	0	0	1842
Link Speed (k/h)	50		40			40
Link Distance (m)	55.0		79.4			52.1
Travel Time (s)	4.0		7.1			4.7
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	44	0	73	101	0	52
Shared Lane Traffic (%)						
Lane Group Flow (vph)	44	0	174	0	0	52
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5		3.5			3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	3.0		3.0			3.0
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25	15		15	25	
Sign Control	Stop		Free			Free
Intersection Summary						
, , , , , , , , , , , , , , , , , , ,	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 19.0%			IC	U Level c	of Service

Analysis Period (min) 15

•	†	<i>></i>	-	†
WBR	NBT	NBR	SBL	SBT
				र्स
0	66	91	0	47
0	66	91	0	47
	Free			Free
	0%			0%
0.90	0.90	0.90	0.90	0.90
0	73	101	0	52
	None			None
	79			
124			174	
124			174	
6.2			4.1	
3.3			2.2	
100			100	
927			1403	
NB 1	SB 1			
0.0	0.0			
	1.6			
	19.0%	IC	U Level c	f Service
	15			
	WBR 0 0 0 0.90 0 124 124 6.2 3.3 100	WBR NBT 0 66 0 66 0 66 Free 0% 0.90 0.90 0 73 None 79 124 124 6.2 3.3 100 927 NB 1 SB 1 174 52 0 0 0 101 0 1700 1403 0.10 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 19.0%	WBR NBT NBR 0 66 91 0 66 91 Free 0% 0.90 0.90 0.90 0 73 101 None 79 124 124 6.2 3.3 100 927 NB 1 SB 1 174 52 0 0 0 101 0 1700 1403 0.10 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	WBR NBT NBR SBL 0 66 91 0 0 66 91 0 Free 0% 0.90 0.90 0.90 0.90 0 73 101 0 None 79 124 174 6.2 4.1 3.3 2.2 100 100 927 1403 NB 1 SB 1 174 52 0 0 0 101 0 1700 1403 0.10 0.00 0.0

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		₽			4
Traffic Vol, veh/h	40	0	66	91	0	47
Future Vol, veh/h	40	0	66	91	0	47
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	44	0	73	101	0	52
WWW.CT IOW	• • •	•	70	101	Ū	UL.
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	176	124	0	0	174	0
Stage 1	124	-	-	-	-	-
Stage 2	52	-	-	-	_	_
Critical Hdwy	6.42	6.22	_	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	_	_
Critical Hdwy Stg 2	5.42	_	-	-	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	814	927	_	_	1403	_
Stage 1	902	υ Δ1		_	1-00	
Stage 2	970	_	_	-		_
Platoon blocked, %	310	_	_		-	
	01/	007	-	-	1400	-
Mov Cap-1 Maneuver	814	927	-	-	1403	-
Mov Cap-2 Maneuver	814	-	-	-	-	-
Stage 1	902	-	-	-	-	-
Stage 2	970	-	-	-	-	-
Approach	WB		NB		SB	
	9.7		0		0	
HCM Control Delay, s HCM LOS			U		U	
I IOWI LOS	A					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	_	• • • •	1403	-
HCM Lane V/C Ratio		_		0.055	-	_
HCM Control Delay (s)	_	_	9.7	0	_
HCM Lane LOS		_	_	A	A	_
HCM 95th %tile Q(veh	1)		_	0.2	0	_
HOW JOHN JOHNE W(VEI	1)	_	_	0.2	U	_

	-	•	•	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f)			ર્ન	W	
Traffic Volume (vph)	49	0	23	69	0	36
Future Volume (vph)	49	0	23	69	0	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.988		
Satd. Flow (prot)	1842	0	0	1820	1593	0
Flt Permitted				0.988		
Satd. Flow (perm)	1842	0	0	1820	1593	0
Link Speed (k/h)	40			40	50	
Link Distance (m)	91.4			126.4	41.7	
Travel Time (s)	8.2			11.4	3.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	54	0	26	77	0	40
Shared Lane Traffic (%)						
Lane Group Flow (vph)	54	0	0	103	40	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						

Area Type:

Control Type: Unsignalized
Intersection Capacity Utilization 21.6%
Analysis Period (min) 15

Other

ICU Level of Service A

CGH Transportation Page 22 07-07-2025 JL

	-	•	•	•	1	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	W		
Traffic Volume (veh/h)	49	0	23	69	0	36	
Future Volume (Veh/h)	49	0	23	69	0	36	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	54	0	26	77	0	40	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			54		183	54	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			54		183	54	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)					• • •	V. <u> </u>	
tF (s)			2.2		3.5	3.3	
p0 queue free %			98		100	96	
cM capacity (veh/h)			1551		793	1013	
	ED 4	WD 4					
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	54	103	40				
Volume Left	0	26	0				
Volume Right	0	0	40				
cSH	1700	1551	1013				
Volume to Capacity	0.03	0.02	0.04				
Queue Length 95th (m)	0.0	0.4	0.9				
Control Delay (s)	0.0	2.0	8.7				
Lane LOS		Α	Α				
Approach Delay (s)	0.0	2.0	8.7				
Approach LOS			Α				
Intersection Summary							
Average Delay			2.8				
Intersection Capacity Utiliza	ation		21.6%	IC	U Level c	f Service	
Analysis Period (min)			15				

Intersection						
Int Delay, s/veh	2.7					
		===	14/51	14/5-		
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			4	¥	
Traffic Vol, veh/h	49	0	23	69	0	36
Future Vol, veh/h	49	0	23	69	0	36
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	54	0	26	77	0	40
Major/Minor M	-:1		/a:a#0		Min = #1	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	54	0	183	54
Stage 1	-	-	-	-	54	-
Stage 2	-	-	-	-	129	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1551	-	806	1013
Stage 1	-	-	-	-	969	-
Stage 2	-	-	-	-	897	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	_	1551	_	791	1013
Mov Cap-2 Maneuver	_	_	-	_	791	-
Stage 1	_	_	-	_	969	_
Stage 2	_	_	_	_	881	_
Olago Z					301	
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.8		8.7	
HCM LOS					Α	
Minor Lang/Major Mysst		JDI ~1	EDT	EDD	WDI	WDT
Minor Lane/Major Mvmt	ľ	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1013	-		1551	-
HCM Lane V/C Ratio		0.039	-		0.016	-
HCM Control Delay (s)		8.7	-	-	7.4	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0.1	-