

Phase Two Environmental Site Assessment

1970 & 1980 Fowler Drive, Mississauga, Ontario

Client:

IMH 1970 & 1980 Fowler Drive Ltd.
1400 - 3280 Bloor Street West
Centre Tower
Toronto, Ontario; M8X 2X3

Attention:

Mr. Matthew Cesta

Type of Document:

FINAL

Project Name:

Phase Two Environmental Site Assessment

Project Number:

GTR-22022660-C0

Prepared By:

EXP Services Inc.
1595 Clark Boulevard
Brampton, ON, L6T 4V1
t: 905.793.9800
f: 905.793.0641

Date Submitted:

November 27, 2025

Table of Contents

1. Legal Notification	5
2. Executive Summary	6
3. Introduction	8
3.1 Site Description.....	8
3.2 Legal Description and Property Ownership	9
3.3 Current and Proposed Future Uses.....	10
3.4 Applicable Site Condition Standards (SCS).....	10
4. Background Information.....	12
4.1 Physical Setting	12
4.2 Previous Environmental Investigations	12
5. Scope of Investigation.....	15
5.1 Overview of Site Investigation	15
5.2 Media Investigated	15
5.3 Phase One Conceptual Site Model (CSM).....	16
5.4 Deviations from Sampling and Analysis Plan (SAP).....	16
5.5 Impediments.....	16
6. Investigation Method	17
6.1 General	17
6.2 Underground Utilities	17
6.3 Borehole Drilling	17
6.4 Soil Sampling.....	18
6.5 Field Screening Measurements	18
6.6 Monitoring Well Installation.....	19
6.7 Field Measurements of Water Quality Parameters.....	20
6.8 Groundwater Sampling.....	20
6.9 Sediment Sampling	20
6.10 Analytical Testing	21
6.11 Elevation Survey.....	21

6.12	Quality Assurance and Quality Control (QA/QC) Measures	21
7.	Review and Evaluation.....	23
7.1	Geology	23
7.1.1.	Surface Material.....	23
7.1.2.	Fill Material.....	23
7.1.3.	Sandy Silt	23
7.1.5	Bedrock.....	23
7.2	Groundwater Elevations and Flow Direction.....	23
7.2.1	Groundwater Hydraulic Gradients.....	24
7.3	Soil Texture	24
7.4	Soil Field Screening	24
7.5	Soil Quality	25
7.5.1	Petroleum Hydrocarbons (PHCs) including Benezene, Toluene, Ethylbenzene, Xylene (BTEX).....	25
7.5.2	Polycyclic Aromatic Hydrocarbons (PAHs).....	25
7.5.3	Metals Including Hydride Forming Metals (HFMs).....	25
7.5.4	Other Regulated Parameters (Chromium VI, Boron (hot water soluble), Mercury, Cyanide).....	25
7.5.5	Electrical Conductivity (EC) and Sodium Absorption Ratio (SAR)	26
7.5.6	pH.....	26
7.5.7	Chemical Transformation and Soil Contaminant Source	26
7.5.8	Evidence of Non-Aqueous Phase Liquid	27
7.6	Groundwater Quality	27
7.6.1	Petroleum Hydrocarbons (PHCs) including Benezene, Toluene, Ethylbenzene, Xylene (BTEX).....	27
7.6.2	Volatile Organic Compounds (VOCs)	27
7.6.3	Polycyclic Aromatic Hydrocarbons (PAHs).....	27
7.6.4	Metals Including Hydride Forming Metals (HFMs)	28
7.6.4	Mercury.....	28
7.6.5	Chemical Transformation and Groundwater Contaminant Source	28

7.6.6	Evidence of Non-Aqueous Phase Liquid (NAPL)	28
7.7	Sediment Quality	28
7.8	Quality Assurance and Quality Control (QA/QC) Measures	28
7.9	Phase Two Conceptual Site Model (CSM).....	29
8.	Conclusions	31
9.	General Limitations.....	33
10.	Closure	34
11.	References	35

List of Tables

- Table 1: Areas of Potential Environmental Concern (APECs)
- Table 2: Borehole Log Information
- Table 3: Summary of Soil Samples Submitted for Chemical Analysis
- Table 4: Summary of Groundwater Samples Submitted for Chemical Analysis
- Table 5: Water Level Depths and Elevations
- Table 6: Summary of Horizontal Hydraulic Gradients

List of Figures

- Figure 1: Site Location Plan
- Figure 2: Phase One Study Area, Surrounding Land Use and Potentially Contaminating Activities
- Figure 3: Site Plan
- Figure 4: Areas of Potential Environmental Concern
- Figure 5A: Borehole/Monitoring Well Location Plan
- Figure 5B: Borehole/Monitoring Well Location Plan and APECs
- Figure 5C: Cross Section A-A'
- Figure 5D: Cross Section B-B'
- Figure 6: Groundwater Contour Plan
- Figure 7: Soil Analytical Results – Petroleum Hydrocarbons (PHCs) Including Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
- Figure 8: Soil Analytical Results – Polycyclic Aromatic Hydrocarbons (PAHs)
- Figure 9: Soil Analytical Results – Metals (including hydride-forming metals)
- Figure 10: Soil Analytical Results – Other regulated parameters (HWS-B, CrVI, CN-, Hg, pH)

Figure 11: Soil Analytical Results – Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR)

Figure 12: Groundwater Analytical Results – Petroleum Hydrocarbons (PHCs) Including Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

Figure 13: Groundwater Analytical Results – Volatile Organic Compounds (VOCs)

Figure 13A: Groundwater Analytical Results – Volatile Organic Compounds (VOCs) – Cross Section B-B'

Figure 14: Groundwater Analytical Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Figure 15: Groundwater Analytical Results – Metals (including hydride-forming metals)

Figure 16: Groundwater Analytical Results – Other regulated parameters (CrVI, CN-, Hg, Na, Cl, pH)

List of Appendices

Appendix A – Sampling and Analysis Plan (SAP)

Appendix B – Survey Plan

Appendix C – Borehole Logs

Appendix D – Analytical Results

Appendix E – Laboratory Certificates of Analysis

Appendix E1 – Soil

Appendix E2 – Groundwater

Appendix F – Phase Two Conceptual Site Model (CSM)

Appendix G – Limitations and Use of Report

Appendix H - QAQC Measures

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

1. Legal Notification

This report was prepared by EXP Services Inc. (EXP) for the account IMH 1970 & 1980 Fowler Drive Ltd..

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

2. Executive Summary

EXP Services Inc. (EXP) was retained by IMH 1970 & 1980 Fowler Drive Ltd. (the “Client”) to conduct a Phase Two Environmental Site Assessment (ESA) for a property located at 1970 & 1980 Fowler Drive in the city of Mississauga, Ontario (referred to herein as the “Site”). The location of the Site is shown on Figure 1.

For this assessment, Fowler Drive considered to be in a north-south configuration and Roche Court in the east-west configuration. The Site is located in an area developed primarily for commercial and residential use.

The Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation (O. Reg.) 153/04, as amended, and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 9 and Appendix G of this report.

It is EXP’s understanding that the Site is planned for redevelopment into a high-rise residential building comprising 24 storeys, with up to 3.5 levels of underground parking, along with associated surface parking and an access road. The proposed development is expected to occupy the landscaped area currently situated between the parking lots of 1970 and 1980 Fowler Drive and a Record of Site Condition (RSC) may not be required as there is no change in the land use. However, the Client requires this Phase Two ESA to be completed to support that ZBA and SPA submissions. As such, the objective of the investigation was to prepare a Phase One ESA in accordance with Ontario Regulation (O. Reg.) 153/04 (as amended).

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in a Phase One ESA completed by EXP and dated July 4, 2025, and to support the filing of a Record of Site Condition (RSC) on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Environmental Brownfield Site Registry. The detailed information about the APECs is outlined in Section 4.0 of the report.

The results and findings of the Phase Two ESA conducted at the Site are summarized as follows:

1. Eight (8) boreholes were advanced by Strata Drilling Group on November 10, 2025, up to a maximum depth of 5.18 m bgs, under the supervision of EXP staff.
2. The general stratigraphy at the Site, as observed in boreholes, generally consisted of a surficial layer of asphalt, topsoil or concrete and granular fill over a fill stratum overlying a sandy silt deposit. Asphalt (75–152 mm), patio bricks (75 mm), or topsoil (152 mm) were encountered at the surface across the boreholes, underlain by a thin sand and gravel layer. Fill materials were present at all locations, extending from approximately 0.2 to 3.05 m bgs and consisting of brown, sand and gravel, and sandy silt with occasional rock/shale and brick fragments. Sandy silt was encountered below the fill, extending to 5.18 m bgs at BH/MW25-105. Bedrock was encountered in six boreholes at shallow depths ranging from 0.91 to 5.18 m bgs.
3. For assessment purposes, EXP selected the Ministry of Environment Conservation and Parks (MECP) Table 6: Full Depth Generic Site Condition Standards for Shallow Soils in a Potable Groundwater Condition residential/Parkland/ Institutional Property Use – coarse Textured Soil (Table 6 SCS).
4. Soil samples were submitted for the analysis of petroleum hydrocarbons (PHCs) including benzene, toluene, ethylbenzene and xylenes (BTEX), metals (including hydride-forming metals), other regulated parameters (ORPs) including boron (hot water soluble), chromium VI, and mercury, pH, electrical conductivity (EC) and/or sodium adsorption ratio (SAR), polycyclic aromatic hydrocarbons (PAHs). The analytical results of the tested parameters in the soil samples were either not detected or detected below the Table 6 for shallow soil residential/parkland/institutional (RPI) SCS with the exception the following:

- **Electrical Conductivity - Table 6 SCS exceedance > 0.7 ms/cm**
 - BH25-101 S1 (0-0.76) – reported concentration of **2.92** ms/cm.
 - BH25-104 S1 (0-0.76) – reported concentration of **3.06** ms/cm.
 - BH25-107 S1 (0-0.76) – reported concentration of **4.26** ms/cm.

- **Sodium Absorption Ratio - Table 6 SCS exceedance > 5**
 - BH25-101 S1 (0-0.76) – reported concentration of **28**.
 - BH25-104 S1 (0-0.76) – reported concentration of **33.1**.
 - BH25-107 S1 (0-0.76) – reported concentration of **7.08**.

Based on the reported analytical results, EC and/or SAR were detected at concentrations above the applicable MECP Table 6 SCS in soil; however, it is the QP's opinion that the elevated levels of salt-related parameters (EC and SAR) are likely associated with the application of de-icing materials for the purpose of snow and ice removal in the winter months and as such are not considered to be in excess of the SCS for the purposes of filing an RSC, based on the exemption outlined in Section 49.1 of O. Reg. 153/04, as amended

5. The groundwater levels at each of the newly installed and existing monitoring wells were measured on November 19, 2025. The groundwater elevation recorded in the shallow wells ranged from 116.594 masl (4.313 mbgs at BH/MA25-105) to 118.7666 masl (4.769 mbgs at BH/MW3). The groundwater elevation recorded for the deep well ranged from 113.4407 masl (8.934 mbgs at BH1D) to 114.773 masl (6.432 mbgs at BH/MW25-2). Accordingly, the groundwater flow directions in the shallow overburden and deep shale bedrock are interpreted to be northeast of the Site towards Credit River.

6. Groundwater samples were submitted for the analysis of PHCs incl. BTEX, VOCs, PAHs, metals (including hydride-forming metals (HFMs)), and/or other regulated parameters (ORPs). All the analytical results of the tested parameters in the groundwater samples were either non-detected or detected below their applicable MECP (2011) Table 6 SCS with the exception of the following:
 - **Tetrachloroethylene - Table 6 SCS exceedance > 0.5 µg/g**
 - BH/MW25-105 (screened at 2.13 - 5.18) – reported concentration of **2.79** µg/g. (November 14, 2025)
 - BH/MW25-1050 (Duplicate of BH/MW25-105) (screened at 2.13 - 5.18) – reported concentration of **2.18** µg/g. (November 14, 2025)

 - **Note: Two (2) additional confirmatory GW samples were submitted on November 19th, and November 24th for the analysis of VOCs. The concentrations of all parameters for VOCs in the groundwater samples analyzed were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLs). It is likely that the elevated VOCs in the original groundwater sample on November 14, 2025 is associated with sediment in the samples. Therefore, the VOCs parameters are not considered as Contaminants of Concerns (COCs) in the Phase Two ESA.**

7. No evidence of free product (i.e. visible film or sheen), or odour was observed during soil sampling, groundwater purging, or groundwater sampling activities.

Based on the findings of the Phase Two ESA investigation, no contamination was identified at this time. However, during this Phase Two ESA, bedrock was encountered at shallow depths in two borehole locations (BH/MW25-106 and BH/MW25-108). Due to the limited overburden thickness and the inability to advance the boreholes further without rock coring, monitoring wells were not installed at these locations during this Phase Two ESA. Further environmental works (i.e. Rock coring, monitoring wells installation and groundwater analysis etc.) are required to assess the identified environmental concern at the southern portion of the Site.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

3. Introduction

EXP Services Inc. (EXP) was retained by IMH 1970 & 1980 Fowler Drive Ltd. (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) for a property located at 1970 & 1980 Fowler Drive in the city of Mississauga, Ontario (referred to herein as the "Site"). The location of the Site is shown on Figure 1.

For this assessment, Fowler Drive considered to be in a north-south configuration and Roche Court in the east-west configuration. The Site is located in an area developed primarily for commercial and residential use.

The Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation (O. Reg.) 153/04, as amended, and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 9 and Appendix G of this report.

It is EXP's understanding that the Site is planned for redevelopment into a high-rise residential building comprising 24 storeys, with up to 3.5 levels of underground parking, along with associated surface parking and an access road. The proposed development is expected to occupy the landscaped area currently situated between the parking lots of 1970 and 1980 Fowler Drive and a Record of Site Condition (RSC) may not be required as there is no change in the land use. However, the Client requires this Phase Two ESA to be completed to support that ZBA and SPA submissions. As such, the objective of the investigation was to prepare a Phase One ESA in accordance with Ontario Regulation (O. Reg.) 153/04 (as amended).

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in a Phase One ESA completed by EXP and dated July 4, 2025, and to support the filing of a Record of Site Condition (RSC) on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Environmental Brownfield Site Registry. The detailed information about the APECs is outlined in Section 4.0 of the report.

3.1 Site Description

The Site encompasses approximately 26,925.69 square meters (6.66 acres) and is developed with two (2) residential apartment buildings, each featuring a penthouse mechanical room and a single-level basement that includes laundry rooms, mechanical rooms, and locker areas for storage purposes. Each building includes a single-level underground parking garage, which extends beyond the footprint of the structures.

- The Site building at 1970 Fowler Drive (Building A) has an estimated footprint of 1,062 m² (11,434 ft²) and was constructed circa 1969.
- The Site building at 1980 Fowler Drive (Building B) has an estimated footprint of 1,034 m² (11,126 ft²) and was constructed circa 1970.

Both Site buildings collectively contain 336 residential suites (a mix of one-, two-, and three-bedroom units), with approximately 168 units per building. Additional features include aboveground visitor parking, basketball court east of Parking lot of Building B and landscaped areas surrounding the buildings. A small children's playground was located northeast of both the Site buildings respectively.

The Site is situated on the east side of Fowler Drive, approximately 130 metres east of Erin Mills Parkway, in the City of Mississauga, Ontario.

According to a review of historical records, aerial photographs, and an interview with the Site representative, the Site was first developed for residential purposes since its development circa 1969. A Site Plan is shown on Figure 3.

3.2 Legal Description and Property Ownership

At the time of the Phase Two ESA investigation, the Site was occupied by two (2) residential apartment buildings.

Details of the Site are outlined in the table below:

Municipal Address	1970 & 1980 Fowler Drive, Mississauga, Ontario
Current Land Use	Residential use
Proposed Land Use	Residential Use
Legal Description	<p>1970 Fowler Drive - PT BLK A PL 842 DES PTS 3, 4 PL 43R-11814; S/T EASEMENT IN FAVOUR OF CORPORATION OF THE TOWNSHIP OF TORONTO OVER PT BLK A PL 842 DES PT 3 PL 43R-11814; S/T EASEMENT IN FAVOUR OF ROGERS CABLE INC., OVER PT BLKA PL 842 DES PTS 3, 4 PL 43R-11814, AS IN PR5100; MISSISSAUGA.</p> <p>1980 Fowler Drive - PT BLK A PL 842 DES PTS 1, 2 PL 43R-11814; S/T EASEMENT IN FAVOUR OF THE CORPORATION OF THE TOWNSHIP OF TORONTO OVER PT BLK A PL 842 DES PT1 PL 43R-11814, AS IN VS17870; S/T EASEMENT IN FAVOUR OF ROGERS CABLE INC., OVER PT BLK A PL 842 DES PTS 1, 2 PL 43R-11814, AS IN PR5100; MISSISSAUGA.</p>
Property Identification Number (PIN)	<p>1970 Fowler Drive – 13441 -1205 (LT)</p> <p>1980 Fowler Drive – 13441 - 1204 (LT)</p>
Approximate Universal Transverse Mercator (UTM) coordinates	NAD83 17T 609063.01 m E 4820501.52 m N
Accuracy Estimate of UTM	10-15 m
Measurement Method	Global Positioning System
Site Area	2.69 hectares (6.66 acres)
Property Owners, Owner Contact and Address	<p>IMH 1970 & 1980 Fowler Drive Ltd. 1400 - 3280 Bloor Street West Centre Tower Toronto, Ontario; M8X 2X3</p> <p>Mr. Mathew Cesta</p>

A copy of a signed and sealed survey plan by an Ontario Land Surveyor (OLS) dated April 6, 1990, is included in Appendix B.

3.3 Current and Proposed Future Uses

At the time of this investigation, the Site was occupied with two (2) residential apartments with a children's playground area and basketball court in the eastern portion. It is EXP's understanding that the Site is planned for redevelopment into a high-rise residential building comprising 24 storeys, with up to 3.5 levels of underground parking, along with associated surface parking and an access road. The proposed development is expected to occupy the landscaped area currently situated in the eastern portion of the Site between the parking lots of 1970 and 1980 Fowler Drive.

3.4 Applicable Site Condition Standards (SCS)

Analytical results obtained for Site soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4 (1) of the Environmental Protection Act, and presented in the document MECP "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", ("SGWS" Standards), (MECP, 2011). Tabulated background SCS (Table 1) applicable to environmentally Sensitive Sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally Sensitive Sites are provided in MECP (2011). The effects based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Tables 1 to 9 of MECP Standards are summarized as follows:

- Table 1 – Applicable to sites where background concentrations must be met (full depth), such as Sensitive Sites where site-specific criteria have not been derived,
- Table 2 – Applicable to sites with potable groundwater and full depth restoration,
- Table 3 – Applicable to sites with non-potable groundwater and full depth restoration,
- Table 4 – Applicable to sites with potable groundwater and stratified restoration,
- Table 5 – Applicable to sites with non-potable groundwater and stratified restoration,
- Table 6 – Applicable to sites with potable groundwater and shallow soils,
- Table 7 – Applicable to sites with non-potable groundwater and shallow soils,
- Table 8 – Applicable to sites with potable groundwater and that are within 30 meters (m) of a water body, and
- Table 9 – Applicable to sites with non-potable groundwater and that are within 30 m of a water body.

For assessment purposes, EXP selected the MECP (2011) Table 6: Full Depth Generic Site Condition Standards (SCS) for shallow soils in a Potable Groundwater Condition, for residential/parkland/institutional (RPI) property use with coarse soil (hereinafter referred to as the "Table 6 SCS"). The selection of this category was based on the following factors:

- As per the requirements of Section 43.1 of O. Reg. 153/04, a property is considered to be a "shallow soil property" if 1/3 or more of the property consists of soil equal to or less than 2 m in depth beneath the soil surface. Five (5) of the boreholes advanced at the Site indicated an overburden thickness less than 2 m, and as such, the Site is considered as a "shallow soil property".
- The Site was not identified as a Sensitive Site as defined by O. Reg. 153/04 on the following basis:
 - The Site is not located on or within 30 meters from an Area of Natural Significance as defined in O. Reg. 153/04,
 - Measurements of soil pH at the Site was 6.35 (BH25-103 S2; 0.76-1.52 m bgs) for surface soils, which is within the MECP acceptable range of 5 to 9 for surface soil. Measurements of soil pH at the Site were between 6.17 (BH25-102 S3; 1.52 – 2.29 m bgs) for subsurface soils, which is within the MECP acceptable range of 5 to 11 for subsurface soil, and

- The Site is not located within 30 meters of a water body.
- Two (2) soil samples from BH25-105 SS2 (0.76–1.52 m bgs) and BH25-105 SS4 (2.29 – 3.05 m bgs) was submitted to AGAT Labs (CoA – 25T373318). Based on the 75-micron sieve of the soil sample, the soil texture at the Site was determined to be coarse-grained for the surface soils and fine-grained for the subsurface soils as the soil submitted consisted of sandy silt. Based on the observations made during drilling investigations and the result of the grain size analysis, as per Section 42 of O. Reg. 153/04, the QPESA has determined that more than 1/3 of the soil at the Site, measured by volume, consists of coarse-textured soil and hence standards for coarse textured soil at the property are applicable.
- The proposed future land use of the Site is residential and as such, EXP selected the SCS for residential/parkland/ institutional (RPI) property use based on the most sensitive land use.
- There was no intention to carry out a stratified restoration at the Site.

4. Background Information

4.1 Physical Setting

The following physiographic, geological and soil maps were reviewed:

- "Toporama"; Natural Resources Canada. Map 030M11. Scale 1:15,000, 2008.
- Quaternary Geology of Ontario - geology_ll.shp [computer file], Ontario: Ontario Geological Survey, 2000.
- Bedrock Geology of Ontario - geology_ll.shp [computer file], Ontario: Ontario Geological Survey, 2000.
- Bedrock Topography and Overburden Thickness Mapping, Southern Ontario, prepared by Ontario Geological Survey, published 2006.
- 1859 Historical County Map of Peel County, Ont., Digital Library of Tremaine.

Based on the review of the above maps, the following information was obtained:

- A review of the topographic map indicated that the Site is generally flat with an elevation of approximately 124 m above sea level (asl) north of the Site and 131 m above sea level (asl) south of the Site and that the Phase I Study Area gently slopes to the north towards Loyalist creek, located approximately 0.1 km north of the Site draining in Credit River. Based on the information provided on the topographic map, regional groundwater is expected to flow north towards Loyalist creek.
- The Site is located within the broad physiographic region known as the beaches and surficial geology is dominated by coarse textured (foreshore-basinal) glaciolacustrine deposits consisting of sand, gravel, minor silt and clay in Paleozoic bedrock deposits.
- The bedrock in the general area of the Site is part of a group belonging to the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member, and Eastview Member, primarily consisting of shale, limestone, dolostone and siltstone.
- Based on a review of "Bedrock Topography and Overburden Thickness Mapping, Southern Ontario, prepared by Ontario Geological Survey, published 2006," the bedrock in the vicinity of the Site is anticipated to be encountered between depths of approximately 5 to 7 metres below ground surface (m bgs).
- According to the historical map, the Site was located within the property owned by Charles Cameron in 1859 and was likely used for agricultural purposes.

4.2 Previous Environmental Investigations

The following reports were available for review at the time of this Phase Two ESA:

1. A report entitled "Phase One Environmental Site Assessment, at 1970 & 1980 Fowler Drive, Mississauga, Ontario", prepared for IMH 1970 & 1980 Fowler Drive Ltd., prepared by EXP Services Inc. (EXP), dated July 4, 2025. Pertinent information from the report is as follows:
 - The Site encompasses approximately 26,925.69 m² (6.66 acres) and is developed with two (2) residential apartment buildings, each featuring a penthouse mechanical room and a single-level basement that includes laundry rooms, mechanical rooms, and locker areas for storage purposes. Each building includes a single-level underground parking garage, which extends beyond the footprint of the structures. The Site is located in an area developed primarily for commercial and residential use.
 - The Site building at 1970 Fowler Drive (Building A) has an estimated footprint of 1,062 m² (11,434 ft²) and was constructed circa 1969.

- The Site building at 1980 Fowler Drive (Building B) has an estimated footprint of 1,034 m² (11,126 ft²) and was constructed circa 1970.

Both Site buildings collectively contain 336 residential suites (a mix of one-, two-, and three-bedroom units), with approximately 168 units per building. Additional features include aboveground visitor parking, basketball court east of Parking lot of Building B and landscaped areas surrounding the buildings. A small children's playground was located northeast of both the Site buildings respectively.

- According to the Chain of Title, the Site was Crown land in 1853. Based on information from the reviews, the Site was first developed for residential purposes since it's development circa 1969.
- Based on information from the records review and observations made at the time of the Site reconnaissance, the following areas of potential environmental concern (APECs) were identified for the Site and off-Site potentially contaminating activity (PCA):

Table 1-1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ¹	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Location of the former swimming pool	Northeast exterior portion of the Site Building B at the Site (1980 Fowler Drive)	PCA#30-Importation of Fill Materials of Unknown Quality. (PCA-1)	On-Site	PHCs, BTEX, PAHs, Metals, As, Sb, Se, Hg, Cr VI, CN-, pH, EC, SAR and B-HWS	Soil
APEC 2A: Application of de-icing agents during winter season	East exterior of Building A (1970 Fowler Drive)	PCA# "Other"- Application of de-icing agents (PCA-2A)	On-Site	EC, SAR	Soil
APEC 2B: Application of de-icing agents during winter season	North, East and West exterior of Building B (1980 Fowler Drive)	PCA# "Other"- Application of de-icing agents (PCA-2B)	On-Site	EC, SAR	Soil

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ¹	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 3: Former presence of Spring bank Road Dump operated as a Sanitary landfill.	Eastern Portion of the Site	PCA#58-Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners (PCA-3)	Off-Site	PHCs, BTEX, VOCs, PAHs, Metals, As, Sb, Se, Hg	Groundwater
APEC 4: Presence of an RFO – Shell Gas service station and storage of USTs	Southern boundary of the Site	PCA#28-Gasoline and Associated Products Storage in Fixed Tanks (PCA-4A, 4B, and 4C)	Off-Site	PHCs, BTEX, VOCs	Groundwater

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O.Reg.153/04, as amended) that is occurring or has occurred in a phase one Study area.

Based on the findings of the Phase One ESA and conclusions, a Phase Two ESA is required to assess the soil and groundwater conditions at the Site prior to submitting an RSC.

5. Scope of Investigation

5.1 Overview of Site Investigation

The investigation included the following activities:

- Preparation of a Site-Specific Health and Safety Plan (HASP),
- Requesting, obtaining, and reviewing public utility locates and Client provided utility drawings prior to the Phase Two investigation field work,
- Retaining a subcontractor to locate on-Site private utility locates prior to the Phase Two investigation field work,
- Retaining a subcontractor for daylighting as needed for the utilities in the vicinity of the boreholes,
- Inspecting soil and groundwater conditions by advancing eight (8) boreholes (BH25-101 to BH25-108) across the Site, as part of the environmental investigation,
- Three (3) boreholes were completed as groundwater monitoring wells (BH/MW25-105, BH/MW25-106, and BH/NW25-108),
- Field screening of all recovered soil samples for evidence of environmental impact (i.e. petroleum vapours, chemical staining, or odours),
- Collect representative soil samples from the boreholes for laboratory analysis of some or all of the following: PHCs, BTEX, metals (including hydride-forming metals (HFMs)), other regulated parameters (ORPs) (including hot water-soluble boron, chromium VI, free cyanide, mercury, and pH), PAHs, and/or VOCs,
- Monitoring and measuring groundwater levels in the monitors to determine groundwater elevations and groundwater flow direction,
- Collecting and submitting groundwater samples from the newly installed monitoring wells for laboratory analysis of some or all of the following: PHCs, BTEX, VOCs, PAHs, metals (including HFMs),
- Conducting soil and groundwater sampling in accordance with the MECP Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, dated December 1996,
- Following standard operating procedures (SOPs), and quality assurance and quality control (QA/QC) measures to ensure defined quality standards were met,
- Determining the appropriate Site Condition Standards (SCS) in accordance with O. Reg. 153/04 and comparing the results of the soil and groundwater analyses to these SCSs, and
- Documenting the results of the investigation.

EXP has confirmed neither the completeness nor the accuracy of any of the records that were obtained or of any of the statements made by others. EXP personnel who conducted assessment work for this project included Mr. Omar Jaffer, Mr. Alessandro Girardo, C.E.T., and Mr. Samuel Lee, P.Geo. (QP_{ESA}).

5.2 Media Investigated

A Phase Two ESA was conducted to evaluate soil and groundwater quality within the APECs identified in the Phase One ESA (dated July 4, 2025). As there were no surface water bodies on the Site, sediment sampling was not required.

Soil samples were collected from five (5) borehole locations (BH25-101, BH25-102, BH25-103, BH25-104 and BH25-10) across the Site and analyzed for some or all of the following: PHCs, BTEX, VOCs, metals (including HFMs), ORPs, pH and/or PAHs.

Groundwater samples were collected from one (1) newly installed monitoring wells (BMW25-105) and analyzed for some or all of the following: PHCs, BTEX, VOCs, PAHs, metals (including HFMIs) and/or ORPs.

5.3 Phase One Conceptual Site Model (CSM)

The Phase One Conceptual Site Model (CSM) is incorporated into the Phase Two CSM, presented in Appendix F.

5.4 Deviations from Sampling and Analysis Plan (SAP)

The field investigative and sampling program was carried out following the requirements of the Site Sampling and Analysis Plan (SAP) presented in Appendix A.

- During the drilling program, bedrock was encountered at shallow depths (approximately 1.22 to 1.68 m bgs) in two borehole locations (BH/MW25-106 and BH/MW25-108). Due to the limited overburden thickness and the inability to advance the boreholes further without rock coring, monitoring wells were not installed at these locations, and coring was not completed during this mobilization. EXP notes that, should groundwater quality assessment in this portion of the Site be required, monitoring wells can be installed at a later date using an air hammer to advance through bedrock, subject to utility clearances and coordination with the drilling contractor. This work would allow for confirmation of groundwater conditions within the shallow bedrock unit, if deemed necessary as part of the ongoing environmental investigation.

No other significant deviations from the SAP were reported, that could affect the sampling and data quality objectives for the Site.

5.5 Impediments

The Site was accessible at the time of the investigation, and no physical impediments were encountered during the field investigation.

6. Investigation Method

6.1 General

The Site investigative activities consisted of the following:

- Advancement of eight (8) boreholes (BH/MW25-101 to BH/MW25-108) to a maximum depth of 5.18 m bgs to facilitate the collection of soil samples for geologic characterization and/or chemical analysis as part of the environmental investigation.
- The installation of monitoring well in one (1) borehole (BH/MW25-105) for monitoring groundwater levels and collecting groundwater samples for chemical analysis as part of the environmental investigation.

The Phase Two ESA was completed in accordance with the requirements of O. Reg. 153/04, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MECP, 1996), and in accordance with generally accepted professional practices.

EXP followed SOPs and QA/QC measures to ensure defined quality standards were met; there were no deviations from the associated SOPs.

6.2 Underground Utilities

Prior to the commencement of drilling activities, the locations of underground utilities including but not limited to cable, telephone, natural gas, electrical lines, water, sewer and storm water conduits were marked out by public locating companies. In addition, a private utility locating service (Geo-Daylighting Inc.) was retained to clear private utilities at all borehole locations.

In addition, Super Sucker Hydro Vac Service Inc. was utilized to daylight prior to drilling activities to check for any underground utilities including but not limited to cable, telephone, natural gas, electrical lines, water, sewer and storm water conduits that were marked out by public locating companies.

6.3 Borehole Drilling

Eight (8) boreholes were advanced by Strata Drilling Group on November 10, 2025, up to a maximum depth of 5.18 m bgs. The boreholes were advanced using a track mounted drill rig Geoprobe 7822 DT equipped with direct push sampling equipment. Soil samples were recovered from the boreholes using split spoons and single use split tube sampling equipment at 0.76 and 1.52 m intervals. No petroleum-based greases or solvents were used during drilling activities.

A summary of the boreholes advanced is provided in Table 1.

EXP continuously monitored the drilling activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. Field observations are summarized on the borehole logs provided in Appendix C. Representative soil samples were recovered in the overburden of the boreholes at regular intervals using a split spoon or split tube sampler.

Drill cuttings were temporarily stored in sealed on-Site drums pending analytical results. Upon completion of the investigative activities, any drums left at the Site will need to be removed by a licensed contractor to an appropriate dumping facility. Proper field sampling procedures as documented in Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996), including decontamination of sampling equipment, were followed to minimize the potential for cross-contamination.

The locations of the boreholes are shown on Figure 5A.

6.4 Soil Sampling

The soil sampling conducted during the completion of this Phase Two ESA was undertaken in accordance with the SAP presented in Appendix A, to ensure that soil quality within the APECs identified in the Phase One ESA were characterized in accordance with O. Reg. 153/04.

Soil samples for geologic characterization and chemical analysis were collected on a continuous basis in the overburden materials using sampling equipment advanced into the subsurface using a GeoProbe 7822 DT. Upon retrieval from the boreholes, the split spoons and single use split tubes were placed on a flat surface and disassembled by drilling personnel to provide access of the recovered cores. Geologic and sampling details of the recovered cores were logged and assessed for the potential presence of non-aqueous phase liquids. Soil stratigraphy encountered in the boreholes were texturally, visually and olfactory classified in the field and in the laboratory. Soil samples were logged for colour, grain size, moisture content, density, structures, texture and/or staining. Field observations are summarized on the borehole logs provided in Appendix C. The soil samples selected for laboratory analysis were immediately placed into laboratory prepared glass jars, labelled, and stored in a cooler with ice at less than 10°C.

Measures were taken in the field and during transport to preserve sample integrity prior to chemical analysis. Recommended volumes of soil samples selected for chemical analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample jars/vials identified for the specified analytical test group.

All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, AGAT Laboratories (AGAT Labs) in Mississauga, Ontario. The samples were transported/submitted within the acceptable holding time to AGAT Labs following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used for the handling and sampling of each retrieved soil core. The sampling equipment was decontaminated between sampling intervals by the drilling contractor using a potable water/phosphate-free detergent solution followed by rinses with potable water and de-ionized water. Wash and rinse waters were collected in sealed, labeled containers. Drill cuttings were placed in labeled, sealed drums upon completion of sampling pending disposal.

Soil samples submitted for specific chemical analysis were selected on the basis of visual inspection of the recovered cores, sample location and/or depth interval. The rationale for soil sample submission is presented in Table 3.

Geologic details of the soil cores recovered from the boreholes advanced at the Site are provided in finalized boreholes logs presented in Appendix C.

Field duplicate soil samples were collected and analyzed for QA/QC purposes. Refer to Appendix D and Table 2 for further information.

6.5 Field Screening Measurements

Readings of the petroleum vapour concentrations in the soil samples collected during the drilling investigation were measured using an RKI Instruments Eagle 2, where there was sufficient recovery. This instrument is designed to detect and measure concentrations of combustible gas in the atmosphere. It is equipped with two ranges of measurement, reading concentrations in parts per million by volume (ppm) or in percentage lower explosive limit (LEL). The RKI Eagle 2 instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppm of hexane. The instrument was configured to eliminate any response from methane for all sampling conducted at the Site. Instrument calibration is checked on a daily basis in the LEL range using standard gases with a known concentration of hexane in air. If the instrument readings are within \pm 10% of the standard gas value, then the instrument is deemed to be calibrated; however, if the readings are greater than \pm 10% of the standard gas value then the instrument is re-calibrated prior to use. The vapour concentrations are accurate to within \pm 5%

of reading or $\pm 2\%$ LEL (whichever is greater) in the 0 to 100% LEL range and to within ± 50 ppm or $\pm 10\%$ of reading (whichever is greater) in the 0 to 50,000 ppm range.

A portion of each soil sample was placed in a sealed plastic bag and allowed to reach ambient temperature prior to field screening using an RKI Eagle calibrated with hexane (H) and isobutylene (I). The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of contamination and the selection of soil samples for analysis; samples with the highest PID readings were selected for submission to AGAT Labs for chemical analysis of VOCs or PHCs. Prior to use in the field, the Eagle 2 was calibrated by Spectra Scientific, and a copy of the calibration was provided with the instrument. Additionally, an ambient air reading of zero ppm was observed confirming the PID's proper operation. Each sample was additionally examined for visual, textural and olfactory classification at the time of sampling. The field screening measurements, in parts per million (ppm) isobutylene equivalents, are presented on the borehole logs in Appendix C.

6.6 Monitoring Well Installation

One (1) borehole instrumented with groundwater monitoring wells (BH/MW25-105) during this Phase Two ESA was facilitated for monitoring groundwater levels and collecting groundwater samples for chemical analysis as part of the environmental investigation. The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - Amended to O. Reg. 128/03 and was installed by a licensed contractor.

The monitoring well was constructed using a 50 mm and a 25.4 diameter pipe in addition to a 3.05 m long, Schedule 40 PVC screen and appropriate length riser pipe. The well screen has a slot size of approximately 0.25 mm (slot 10) and was sealed at the base with a PVC well point. The annular space around the well screen was backfilled with silica sand to approximately 0.3 m above the top of the screen. The sand pack was extended above the screen to allow for compaction of the sand pack and expansion of the overlying well seal. A granular bentonite ('Hole Plug') seal was placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below ground surface.

All monitoring wells were completed with a flush mount protective steel casing and cemented into place. When constructing the monitoring wells, only new materials were used. Additionally, no lubricants or adhesives were used. Details of the well installations are provided on the borehole logs in Appendix C.

Proper field sampling procedures as documented in Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MECP, 1996), including decontamination of sampling equipment, were followed to minimize the potential for cross-contamination.

Approximately three to five well volumes of water were removed (or until purged dry three times) from the wells during the development activities. Development was undertaken to ensure that any potential residual materials from the drilling had been removed and to ensure that representative groundwater from the surrounding formation was infiltrating the well screen. The monitoring wells were developed using dedicated low-density polyethylene (LDPE) tubing and an inertial foot valve at each monitoring well. Purge water was examined for the presence of petroleum product (i.e. non-aqueous phase liquid, surface sheen, petroleum odour, etc.).

The locations of the groundwater monitoring wells are shown in Figure 5A.

When the monitoring wells are no longer required, they should be decommissioned in accordance with procedures outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O. Reg. 128/03

6.7 Field Measurements of Water Quality Parameters

Prior to collecting groundwater samples, field measurements of water quality parameters were recorded from the monitoring well used for environmental purposes and sampled utilizing low flow purging and sampling methodologies. Groundwater was purged from each location using a peristaltic pump and dedicated LDPE tubing. Field measurements of dissolved oxygen concentration, electrical conductivity, oxidation-reduction potential, pH, temperature, turbidity and water levels were recorded at three (3) minute intervals during the purging activities using a pre-calibrated multi probe water quality meter, a turbidity meter and a water level meter. Groundwater was considered to be chemically stable when the pH measurements of three (3) successive readings agreed to within ± 1 pH units, the specific conductance within $\pm 10\%$, and the temperature within $\pm 10\%$. The multi-meter electrodes were calibrated prior to receipt of the meter by the supplier using in-house reference standards.

6.8 Groundwater Sampling

Groundwater sampling conducted during the completion of this Phase Two ESA was undertaken in accordance with the SAP presented in Appendix A, to ensure that the APECs identified in the Phase One ESA were properly investigated, in accordance with O. Reg. 153/04.

Upon completion of purging activities, groundwater samples were collected from monitoring wells. Recommended groundwater sample volumes were collected into pre-cleaned laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples were placed in an insulated cooler pre-chilled with ice immediately upon collection.

On November 14th, 2025, one (1) newly installed well (BH/MW25-105) was sampled and submitted for the analysis of some or all of the following: PHCs, VOCs, PAHs, and metals including HFMs.

On November 19th, 2025, one (1) newly installed monitoring well (BH/MW25-105) was resampled and submitted for the analysis of the following: VOCs.

On November 24th, 2025, one (1) newly installed monitoring well (BH/MW25-105) was resampled and submitted for the analysis of the following: VOCs

The groundwater samples selected for laboratory analysis were immediately placed into laboratory prepared glass bottles and vials, labeled, and transported to the laboratory stored in a cooler with ice at less than 10°C. The samples were transported/submitted following appropriate holding time requirements following AGAT Labs Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used at each monitoring well location.

Groundwater samples submitted for specific chemical analysis were selected on the basis of sample location and/or depth interval. The rationale for groundwater sample submission is presented in Table 4.

Appropriate QA/QC samples were collected during groundwater sampling, where required, as presented in Tables 3 and 4.

6.9 Sediment Sampling

As no water body was present at the Site, sediment sampling was not part of the Phase Two ESA.

6.10 Analytical Testing

All laboratory analyses were completed by AGAT Laboratories (AGAT), an accredited laboratory located in Mississauga, Ontario. BV performed the work following formal written methods and procedures. These methods include all the minimum requirements as specified in the document entitled Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (March 9, 2004, amended as of July 1, 2011).

6.11 Elevation Survey

An elevation survey was conducted by EXP on November 19, 2025, with the purpose of obtaining relative vertical control of monitoring well locations. The ground surface elevations of each newly installed monitoring well were surveyed using Topcon Laser level for BH/MW25-105 in reference to the previously installed wells during EXP's Geotechnical and Hydrogeological investigations. The elevations are recorded in the Log of Borehole sheets in Appendix C.

6.12 Quality Assurance and Quality Control (QA/QC) Measures

Quality Control/Quality Assurance (QA/QC) measures, as set out in the SAP, were implemented during sample collection, storage and transport to provide accurate data representative of conditions in the surficial and upper overburden soils and the water table aquifer. The QA/QC measures included decontamination procedures to minimize the potential for sample cross contamination, the execution of standard operating procedures to collect representative and unbiased samples, the collection of quality control samples to evaluate sample precision and accuracy, and the implementation of measures to preserve sample integrity.

Decontamination protocols were followed during sample collection and handling to minimize the potential for cross-contamination. During the collection of soil samples, split-spoon and dual tube samplers were scraped and decontaminated between sampling intervals by washing with a potable water/phosphate-free detergent solution followed by a rinse with potable water. New disposable nitrile gloves were used for the handling and collection of samples from each soil core and for sample collection from each borehole.

Soil samples selected for chemical analyses were collected from the retrieved soil cores and placed directly into pre-cleaned, laboratory-supplied glass jars or vials. Sample volumes were consistent with analytical test group requirements as specified by the receiving laboratory.

Groundwater samples were collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. Recommended analytical test group specific sample volumes were collected as specified by the contractual laboratory.

Measures were followed to preserve sample integrity between collection and receipt by the contractual laboratory. All samples, both soil and groundwater, immediately upon collection were placed in insulated coolers pre-chilled with ice for storage and transport to the contractual laboratory. Samples were received by the contractual laboratory within specific analytical test group holding time requirements.

Documentation procedures were followed to confirm sample identification and tracked sample movement. Each sample was assigned a unique identification ID number, which was recorded along with the date, time of sampling and requested analyses on labels affixed to the sampling containers, and in a bound field notebook. Chain of Custody protocols were followed to track sample handling and movement until receipt by the contractual laboratory. Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision to evaluate the potential for sample cross-contamination during handling and transport.

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision and trip blanks were included to evaluate the potential for sample cross-contamination during handling and transport.

7. Review and Evaluation

7.1 Geology

The soil investigation conducted at the Site consisted of the advancement of eight (8) boreholes into the overburden materials to a maximum depth of 5.18 m bgs. The borehole logs describing geologic details of the soil cores recovered during the Site drilling activities are presented in Appendix C. Boundaries of soil indicated on the log of borehole sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as observed in boreholes, generally consisted of a surficial layer of asphalt, topsoil or concrete and granular fill over a fill stratum overlying a sandy silt deposit. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. Refer to borehole logs provided in Appendix C for details of soil stratigraphy which include EXP's geotechnical boreholes and environmental boreholes.

7.1.1. Surface Material

Asphalt with a thickness of approximately 75mm to 152 was encountered at the surface of BH25-101, BH25-104, and BH25-107. Patio Brick with a thickness of approximately 75mm was encountered at the surface of BH25-102 and BH25-103. Topsoil with a thickness of approximately 152 mm was encountered at the surface of BH/MW25-105, BH25-106, and BH25-108. All the surficial material was underlain by sand and gravel fill with thickness ranging from approximately 25 mm.

7.1.2. Fill Material

Fill materials were encountered below the surficial material at each borehole location. The fill extended to depths ranging from approximately 0.2 to 3.05 m bgs. The fill materials consisted of mix of brown sand, sand and gravel, and sandy silt with occasional rock / shale fragments, and occasional brick fragments (BH25-102 and BH25-103). The fill materials were brown and moist.

7.1.3. Sandy Silt

Deposit of sandy silt was encountered beneath the fill in all boreholes and extended from 2.4 to 5.18 m bgs in only BH/MW25-105. The sandy silt contains trace gravel, brown to grey and moist.

7.1.5 Bedrock

Bedrock was in six (6) of the boreholes (BH25-103, BH25-104, BH/MW25-105, BH25-106, BH25-107, and BH25-108) at shallow depths ranging approximately between 0.91 to 5.18 m bgs.

7.2 Groundwater Elevations and Flow Direction

A monitoring well network was advanced as part of Geotechnical and Hydrogeological investigations completed at the Site by EXP in June 2023 and March 2025. In addition, one (1) monitoring well was advanced as a part of the Phase Two ESA by EXP in November 2025. Due to the limited groundwater elevation information, monitoring wells from the Geotechnical (EXP, 2023) and Hydrogeological investigations (EXP, 2025) were utilized to determine the groundwater flow direction. The groundwater elevations used to develop the contour plans were obtained on November 19, 2025 and are presented in Figures 6.

Details of the monitoring wells and their groundwater elevation are as follows:

- Six (6) shallow monitoring wells (BH1S, BH2, BH3, BH4, BH5 and BH6) were installed to an approximate depth ranging from approximately 4 to 7 mbgs as part of the Geotechnical investigation. (Preliminary Geotechnical Investigation, EXP, 2023).
- Five (5) deep bedrock monitoring wells (BH1D, BH25-1, BH25-2, BH25-3, BH25-4) were installed to an approximate depth of 12 mbgs to 18 mbgs. (Hydrogeological Investigation, EXP, 2025).

Groundwater levels were measured on November 19, 2025. The groundwater elevation recorded in the shallow wells ranged from 116.594 masl (4.313 mbgs at BH/MA25-105) to 118.7666 masl (4.769 mbgs at BH/MW3). The groundwater elevation recorded for the deep well ranged from 113.4407 masl (8.934 mbgs at BH1D) to 114.773 masl (6.432 mbgs at BH/MW25-2).

One (1) map was created for the Site to show groundwater contours and accordingly the groundwater is interpreted to be flowing northeast of the Site towards Credit River. The groundwater levels and corresponding elevations are summarized in Table 4 and presented in the borehole logs provided in Appendix C.

7.2.1 Groundwater Hydraulic Gradients

The horizontal hydraulic gradient is calculated using the following equation:

$$i = \Delta h / \Delta s$$

Where,

i = horizontal hydraulic gradient,

Δh (m) = groundwater elevation difference, and

Δs (m) = separation distance.

The groundwater monitoring results on November 19, 2025, indicate a northeasterly groundwater flow direction in the shallow overburden, with a localized horizontal hydraulic gradient of 0.051 m/m within the sandy silt beneath the Site.

The average horizontal hydraulic gradient on Site was calculated as 0.051 m/m and presented in Table 6 and groundwater contour maps with measured elevations obtained for the Site, are provided in Figures 6.

7.3 Soil Texture

Two (2) soil samples from BH25-105 SS2 (0.76–1.52 m bgs) and BH25-105 SS4 (2.29 – 3.05 m bgs) was submitted to AGAT Labs (CoA – 25T373318). Based on the 75-micron sieve of the soil sample, the soil texture at the Site was determined to be coarse-grained for the surface soils and fine-grained for the subsurface soils as the soil submitted consisted of sandy silt. Based on the observations made during drilling investigations and the result of the grain size analysis, as per Section 42 of O. Reg. 153/04, the QPESA has determined that more than 1/3 of the soil at the Site, measured by volume, consists of coarse-textured soil and hence standards for coarse textured soil at the property are applicable.

Based on the observations made during drilling investigations and the result of the grain size analysis, as per Section 42 of O. Reg. 153/04, the QPESA has determined that more than 1/3 of the soil at the Site, measured by volume, consists of medium-fine textured soil and hence standards for medium- fine textured soil at the property are applicable.

7.4 Soil Field Screening

Total Organic Vapour (TOV) readings from each sample interval were measured for soil sample selected for BTEX/PHC and VOC analysis from all advanced boreholes. Vapour concentrations readings collected during subsurface drilling were measured using

the RKI Eagle 2 in parts per million (ppm) calibrated with isobutylene and hexane or equivalent. The vapour readings, in ppm, are provided on the borehole logs in Appendix C.

Soil samples submitted for chemical analysis were selected on the basis of visual inspection of the recovered cores, TOV readings, sample location and/or depth interval. Both hexane and isobutylene readings indicate that there are insignificant volatile particles in the soil vapours.

7.5 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative “worst case” soil samples was based on field screening, visual and/or olfactory evidence of impacts. In addition, delineation samples were also submitted for chemical analyses. A sample submission table is provided as Table 3. Copies of the laboratory Certificates of Analysis for the analyzed soil samples are provided in Appendix E. A summary of the analytical results for the soil samples, including the locations and depths of each sample, a comparison of concentrations against applicable SCS, and the identification of the contaminants of potential concern (COPCs), are provided on Table D-1 to Table D-4 in Appendix D. Soil sample locations are provided in Figures 7 through 11.

7.5.1 Petroleum Hydrocarbons (PHCs) including Benzene, Toluene, Ethylbenzene, Xylene (BTEX)

Three (3) soil samples including one (1) duplicate were analyzed for PHCs including BTEX analysis.

The concentrations of all parameters for PHC including BTEX in the analyzed soil samples were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLs).

The results are presented in Table D-1.

7.5.2 Polycyclic Aromatic Hydrocarbons (PAHs)

Three (3) soil samples including one (1) duplicate were analyzed for PAHs.

The concentrations of all parameters for PAHs in the analyzed soil samples were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLs).

The results are presented in Table D-2.

7.5.3 Metals Including Hydride Forming Metals (HFM)

Three (3) soil samples including one (1) duplicate were analyzed for metals (including HFM).

All the samples analyzed for Metals (including HFM) were either not detected or detected below the applicable Table 6 SCS. The laboratory Reporting Detection Limits (RDLs).

The results are presented in Table D-3.

7.5.4 Other Regulated Parameters (Chromium VI, Boron (hot water soluble), Mercury, Cyanide)

Three (3) soil samples including one (1) duplicate were analyzed for other regulated parameters (Chromium VI, Boron (hot water soluble), Mercury, Cyanide).

All the samples analyzed for ORPs were either not detected or detected below the applicable Table 6 SCS. The laboratory reporting detection limits (RDLs) were below Table 6 SCS.

The results are presented in Table D-3.

7.5.5 Electrical Conductivity (EC) and Sodium Absorption Ratio (SAR)

Six (6) soil samples including one (1) duplicate were analyzed for EC or SAR were submitted for analysis.

All the samples analyzed for EC and SAR were either not detected or detected below the applicable Table 6 SCS with the exception of the following:

- **Electrical Conductivity - Table 6 SCS exceedance > 0.7 ms/cm**
 - BH25-101 S1 (0-0.76) – reported concentration of **2.92** ms/cm.
 - BH25-104 S1 (0-0.76) – reported concentration of **3.06** ms/cm.
 - BH25-107 S1 (0-0.76) – reported concentration of **4.26** ms/cm.

- **Sodium Absorption Ratio - Table 6 SCS exceedance > 5**
 - BH25-101 S1 (0-0.76) – reported concentration of **28**.
 - BH25-104 S1 (0-0.76) – reported concentration of **33.1**.
 - BH25-107 S1 (0-0.76) – reported concentration of **7.08**.

Based on the reported analytical results, EC and/or SAR were detected at concentrations above the applicable MECP Table 6 SCS in soil; however, it is the QP's opinion that the elevated levels of salt-related parameters (EC and SAR) are likely associated with the application of de-icing materials for the purpose of snow and ice removal in the winter months and as such are not considered to be in excess of the SCS for the purposes of filing an RSC, based on the exemption outlined in Section 49.1 of O. Reg. 153/04, as amended.

The results are presented in Table D-4.

7.5.6 pH

Three (3) soil samples were analyzed for pH.

- Measurements of soil pH at the Site was 6.35 (BH25-103 S2; 0.76-1.52 m bgs) for surface soils, which is within the MECP acceptable range of 5 to 9 for surface soil.

- Measurements of soil pH at the Site were between 6.17 (BH25-102 S3; 1.52 – 2.29 m bgs) for subsurface soils, which is within the MECP acceptable range of 5 to 11 for subsurface soil.

The reported pH values were within the acceptable range for the use of Table 6 SCS. The results are presented in Table D-4.

7.5.7 Chemical Transformation and Soil Contaminant Source

No chemical constituents were detected in the soil samples except EC and SAR. Please note that EC and SAR are likely associated with the application of de-icing materials for the purpose of snow and ice removal in the winter months and as such are not considered to be in excess of the SCS. As such no contaminant source or chemical transformations are anticipated.

7.5.8 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of light and/or dense non-aqueous phase liquid (LNAPL and/or DNAPL) at the time of the Phase Two ESA.

7.6 Groundwater Quality

In accordance with the scope of work, chemical analyses were performed on groundwater samples recovered from select monitoring wells. The selection of groundwater samples was based on location and/or screen depth. A sample submission table is provided as Table 4. Copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix E. A summary of the analytical results for the groundwater samples, including the locations and screened depths of each monitoring well, a comparison of concentrations against applicable SCS, and the identification of the contaminants of potential concern (COPCs), are provided on Table D-5 to D-8 in Appendix D. Groundwater sample locations are provided in Figures 12 through 16.

7.6.1 Petroleum Hydrocarbons (PHCs) including Benzene, Toluene, Ethylbenzene, Xylene (BTEX)

Two (2) groundwater samples including one (1) duplicate were submitted for PHCs including BTEX analysis.

The concentrations of all parameters for PHC including BTEX in the groundwater samples analyzed were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLs).

The results are presented in Table D-5.

7.6.2 Volatile Organic Compounds (VOCs)

Two (2) groundwater samples including one (1) duplicate sample plus one (1) trip blanks were analyzed for VOCs.

The concentrations of all parameters for VOCs in the groundwater samples analyzed were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLs) with the exception of the following:

- **Tetrachloroethylene - Table 6 SCS exceedance > 0.5 µg/g)**
 - BH/MW25-105 (screened at 2.13 - 5.18) – reported concentration of **2.79 µg/g. (November 14, 2025)**
 - BH/MW25-1050 (Duplicate of BH/MW25-105) (screened at 2.13 - 5.18) – reported concentration of **2.18 µg/g. (November 14, 2025)**

Note: Two (2) additional confirmatory GW samples were submitted on November 19th, and November 24th for the analysis of VOCs. The concentrations of all parameters for VOCs in the groundwater samples analyzed were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLs). It is likely that the elevated VOCs in the original groundwater sample on November 14, 2025 is associated with sediment in the samples. Therefore, the VOCs parameters are not considered as Contaminants of Concerns (COCs) in the Phase Two ESA.

The results are presented in Table D -6.

7.6.3 Polycyclic Aromatic Hydrocarbons (PAHs)

Two (2) groundwater samples including one (1) duplicate were analyzed for PAHs.

The laboratory analytical results indicated that the tested groundwater samples meet the Table 6 SCS for PAHs. The laboratory RDLs were below Table 6 SCS. The results are presented in Table D-7.

7.6.4 Metals Including Hydride Forming Metals (HFMs)

Two (2) groundwater samples including one (1) duplicate were analyzed for metals (including HFM)s).

The laboratory analytical results indicated that the tested groundwater samples meet the Table 6 SCS for metals (including HFM)s). The laboratory RDLs were below Table 6 SCS. The results are presented in Table D-8.

7.6.4 Mercury

Two (2) groundwater samples including one (1) duplicate sample were analyzed for mercury.

The laboratory analytical results indicated that the tested groundwater samples meet the Table 6 SCS for ORPs. The laboratory RDLs were below the Table 6 SCS. The results are presented in Table D-8.

7.6.5 Chemical Transformation and Groundwater Contaminant Source

No chemical constituents were detected in the groundwater samples. As such no contaminant source or chemical transformations are anticipated.

7.6.6 Evidence of Non-Aqueous Phase Liquid (NAPL)

No evidence of NAPL was observed during groundwater monitoring, purging and sampling activities.

7.7 Sediment Quality

As no surface water body was located on-Site, the Phase Two ESA did not include sediment sampling.

7.8 Quality Assurance and Quality Control (QA/QC) Measures

Quality assurance and quality control (QA/QC) measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the overburden and bedrock materials, and water table units at the Site.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (MECP, 2004). Samples were preserved at the required temperatures in pre-chilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

One (1) soil sample/field duplicate sample pairs were collected and analyzed for the following pCOCs:

- BH25-103 S2/ BH25-103 S2-0, was analyzed for PHCs including BTEX, PAHs, Metals including HFMs, ORPs, and pH;
- BH25-102 S1/ BH25-102 S1-0 for EC and SAR.

One (1) groundwater sample/field duplicate sample pairs were collected and analyzed for the following pCOCs:

- BH/MW25-105 / BH/MW25-1050 were analyzed for PHCs including BTEX, VOCs, PAHs, Metals (including Hydride Forming Metals).

The relative percent differences (RPDs) of the soil and groundwater field duplicate samples are provided in this appendix. It should be noted that meaningful RPDs cannot be calculated if the analytical results are less than 5 times the reporting detection limits (RDLs) or if the average of the two sample concentrations are less than 5 times the RDL.

For soil samples, the alert limit criteria for the field duplicate RPD is >30% for PHCs, >50% for VOCs, >40% for PAHs, >30% for metals and inorganics. The calculated RPD between the duplicate samples and the parent samples for soil was below the relevant alert criteria for all of the parameters analyzed.

For groundwater samples, the alert limit criteria for the field duplicate RPD is >20% for metals (including hydride-forming metals), Hg, Cr (VI), CN-, Na and Cl, and >30% for PHC F1 to F4, PAHs, and VOCs. The calculated RPD between the duplicate samples and the original samples for groundwater was below the applicable alert limit criteria for all of the parameters analyzed with the following exceptions:

The RPD between sample BH/MW25-105/ BH/MW25-1050 was:

- 45% for Cobalt
- 48% for Lead)
- 30% for Nickel
- 71% for Vanadium

It is to be noted that based on the QP's opinion that the elevated concentrations are associated with sample heterogeneity of the representative soil sample.

No laboratory data quality issues were identified that would have a material effect on the interpretation of results presented in this report.

The contractual laboratories selected to perform the chemical analyses were AGAT Laboratories (AGAT) located in Mississauga, Ontario. AGAT is accredited laboratories under the Standards Council of Canada/Canadian Association of Laboratory Accreditation (CALA) (Accredited Laboratory No. A3200, respectively) in accordance with ISO/IEC 17025:2005 – "General Requirements for the Competence of Testing and Calibration Laboratories". Certificates of Analysis were received from AGAT, reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the Certificates of Analysis are provided in Appendix E. Review of the Certificates of Analysis, prepared by AGAT, indicates that they were in compliance with the requirements set out under subsection 47(3) of O. Reg. 153/04.

The analytical program conducted by AGAT included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by AGAT. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, relative percent difference (RPD) for laboratory duplicates and analyte concentrations for method blanks. The QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by AGAT indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported are of acceptable quality and data qualifications are not required.

7.9 Phase Two Conceptual Site Model (CSM)

A Phase Two Conceptual Site Model (CSM) provides a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern (APECs)/potential

contaminating activities (PCAs), the presence and distribution of contaminants of potential concern (COPCs), contaminant fate and transport, and potential exposure pathways. The Phase Two CSM was completed in accordance with O. Reg. 153/04 as defined by the MECP and is presented in Appendix F.

8. Conclusions

The results and findings of the Phase Two ESA conducted at the Site are summarized as follows:

1. Eight (8) boreholes were advanced by Strata Drilling Group on November 10, 2025, up to a maximum depth of 5.18 m bgs, under the supervision of EXP staff.
2. The general stratigraphy at the Site, as observed in boreholes, generally consisted of a surficial layer of asphalt, topsoil or concrete and granular fill over a fill stratum overlying a sandy silt deposit. Asphalt (75–152 mm), patio bricks (75 mm), or topsoil (152 mm) were encountered at the surface across the boreholes, underlain by a thin sand and gravel layer. Fill materials were present at all locations, extending from approximately 0.2 to 3.05 m bgs and consisting of brown, sand and gravel, and sandy silt with occasional rock/shale and brick fragments. Sandy silt was encountered below the fill, extending to 5.18 m bgs at BH/MW25-105. Bedrock was encountered in six boreholes at shallow depths ranging from 0.91 to 5.18 m bgs.
3. For assessment purposes, EXP selected the Ministry of Environment Conservation and Parks (MECP) Table 6: Full Depth Generic Site Condition Standards for Shallow Soils in a Potable Groundwater Condition residential/Parkland/Institutional Property Use – coarse Textured Soil (Table 6 SCS).
4. Soil samples were submitted for the analysis of petroleum hydrocarbons (PHCs) including benzene, toluene, ethylbenzene and xylenes (BTEX), metals (including hydride-forming metals), other regulated parameters (ORPs) including boron (hot water soluble), chromium VI, and mercury, pH, electrical conductivity (EC) and/or sodium adsorption ratio (SAR), polycyclic aromatic hydrocarbons (PAHs). The analytical results of the tested parameters in the soil samples were either not detected or detected below the Table 6 for shallow soil residential/parkland/institutional (RPI) SCS with the exception the following:
 - **Electrical Conductivity - Table 6 SCS exceedance > 0.7 ms/cm**
 - BH25-101 S1 (0-0.76) – reported concentration of **2.92** ms/cm.
 - BH25-104 S1 (0-0.76) – reported concentration of **3.06** ms/cm.
 - BH25-107 S1 (0-0.76) – reported concentration of **4.26** ms/cm.
 - **Sodium Absorption Ratio - Table 6 SCS exceedance > 5**
 - BH25-101 S1 (0-0.76) – reported concentration of **28**.
 - BH25-104 S1 (0-0.76) – reported concentration of **33.1**.
 - BH25-107 S1 (0-0.76) – reported concentration of **7.08**.

Based on the reported analytical results, EC and/or SAR were detected at concentrations above the applicable MECP Table 6 SCS in soil; however, it is the QP's opinion that the elevated levels of salt-related parameters (EC and SAR) are likely associated with the application of de-icing materials for the purpose of snow and ice removal in the winter months and as such are not considered to be in excess of the SCS for the purposes of filing an RSC, based on the exemption outlined in Section 49.1 of O. Reg. 153/04, as amended

5. The groundwater levels at each of the newly installed and existing monitoring wells were measured on November 19, 2025. The groundwater elevation recorded in the shallow wells ranged from 116.594 masl (4.313 mbgs at BH/MA25-105) to 118.7666 masl (4.769 mbgs at BH/MW3). The groundwater elevation recorded for the deep well ranged from 113.4407 masl (8.934 mbgs at BH1D) to 114.773 masl (6.432 mbgs at BH/MW25-2). Accordingly, the groundwater flow directions in the shallow overburden and deep shale bedrock are interpreted to be northeast of the Site towards Credit River.

6. Groundwater samples were submitted for the analysis of PHCs incl. BTEX, VOCs, PAHs, metals (including hydride-forming metals (HFMs)), and/or other regulated parameters (ORPs). All the analytical results of the tested parameters in the groundwater samples were either non-detected or detected below their applicable MECP (2011) Table 6 SCS with the exception of the following:
 - **Tetrachloroethylene - Table 6 SCS exceedance > 0.5 µg/g)**
 - BH/MW25-105 (screened at 2.13 - 5.18) – reported concentration of **2.79 µg/g. (November 14, 2025)**
 - BH/MW25-1050 (Duplicate of BH/MW25-105) (screened at 2.13 - 5.18) – reported concentration of **2.18 µg/g. (November 14, 2025)**
 - ***Note: Two (2) additional confirmatory GW samples were submitted on November 19th, and November 24th for the analysis of VOCs. The concentrations of all parameters for VOCs in the groundwater samples analyzed were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLs). It is likely that the elevated VOCs in the original groundwater sample on November 14, 2025 is associated with sediment in the samples. Therefore, the VOCs parameters are not considered as Contaminants of Concerns (COCs) in the Phase Two ESA***
7. No evidence of free product (i.e. visible film or sheen), or odour was observed during soil sampling, groundwater purging, or groundwater sampling activities.

Based on the findings of the Phase Two ESA investigation, no contamination was identified at this time. However, during this Phase Two ESA, bedrock was encountered at shallow depths in two borehole locations (BH/MW25-106 and BH/MW25-108). Due to the limited overburden thickness and the inability to advance the boreholes further without rock coring, monitoring wells were not installed at these locations during this Phase Two ESA. Further environmental works (i.e. Rock coring, monitoring wells installation and groundwater analysis etc.) are required to assess the identified environmental concern at the southern portion of the Site.

9. General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during any such excavation operations. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent. Should this occur, EXP Services Inc. should be contacted to assess the situation, and the need for additional testing and reporting. EXP has qualified personnel to provide assistance in regards to any future geotechnical and environmental issues related to this property.

The environmental investigation was carried out to address the intent of applicable provincial Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the MECP. It should also be noted that current environmental Regulations, Guidelines, Policies, Standards, Protocols and Objectives are subject to change, and such changes, when put into effect, could alter the conclusions and recommendations noted throughout this report. Achieving the study objectives stated in this report has required us to arrive at conclusions based upon the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing information obtained and in the formulation of the conclusions. Like all professional persons rendering advice, we do not act as absolute insurers of the conclusions we reach, but we commit ourselves to care and competence in reaching those conclusions.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of **IMH 1970 & 1980 Fowler Drive Ltd.** and may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

10. Closure

EXP trusts this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

EXP Services Inc.

Omar Jaffer
Environmental Scientist
Environmental Services

Samuel Lee, P.Geo., QP_{ESA}
Senior Project Manager
Environmental Services

Alessandro Girardo, C.E.T.
Senior Project Manager
Environmental Services

11. References

This study was conducted in general accordance with the applicable regulations, guidelines, policies, standards, protocols and objectives administered by the MECP. Specific reference is made to the following:

1. Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004.
2. Ministry of the Environment [MECP] (1996) Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of the Environment, December 1996.
3. MECP (2011a) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, March 2004, amended as of July 1, 2011.
4. MECP (2011) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, April 15, 2010.
5. Occupational Health and Safety Act - Ministry of Labour (MOL).
6. Ontario Regulation 153/04, made under the Environmental Protection Act, May 2004, amended.
7. Ontario Water Resources Act – R.R.O. 1990, Regulation 903, amended.
8. Ontario Geological Survey (2010a) Physiography of Southern Ontario (Scale 1:22,000).
9. Topographic Map available at the Natural Resources Canada (NRC) website
<http://atlas.nrcan.gc.ca/site/english/maps/topo/map>
10. Ontario Geological Survey (2010b) Surficial geology of Southern Ontario (Scale 1:22,000).
11. Ontario Geological Survey (2011) Bedrock geology of Ontario (Scale 1:22,000).
12. Ontario Ministry of Environment. *Technical Update – Environmentally Sensitive Area: pH Levels*, January 2007.
13. Phase One Environmental Site Assessment, at 1280 and 1286 College Street, Toronto, Ontario”, prepared for Markee Missing Middle (Danforth) L.P c/o Collecdev-Markee Developments., prepared by EXP Services Inc. (EXP), dated July 25, 2025.
14. Preliminary Environmental Assessment and Subsoil Investigation Proposed Car Wash 1286 College Street, Toronto, Ontario, dated May 4, 1990. For Triple Sandhu Ltd. c/o N.R.S Westside Realty by Trow Consulting Engineers Ltd (Trow).
15. Phase I Environmental Site Assessment Update 1286 College Street, Toronto, Ontario, dated March 5, 1997. For Triple Sanhu Ltd. c/o Royal Bank of Canada by Trow Consulting Engineers Ltd (Trow).

Tables

TABLE i - Areas of Potential Environmental Concern (APECs)

GTR-22022660 - C0 - Phase Two Environmental Site Assessment

1970 & 1980 Fowler Drive, Mississauga, Ontario

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Location of the former swimming pool	Northeast exterior portion of the Site Building B at the Site (1980 Fowler Drive)	PCA#30-Importation of Fill Materials of Unknown Quality.	On-Site	PHCs, BTEX, PAHs, Metals, As, Sb, Se, Hg, Cr VI, CN-, pH, EC, SAR and B-HWS	Soil
APEC 2A: Application of de-icing agents during winter season	East exterior of Building A (1970 Fowler Drive)	PCA# "Other"- Application of de-icing agents	On-Site	EC, SAR	Soil
APEC 2B: Application of de-icing agents during winter season	North, East and West exterior of Building B (1980 Fowler Drive)	PCA# "Other"- Application of de-icing agents	On-Site	EC, SAR	Soil
APEC 3: Former presence of Spring bank Road Dump operated as a Sanitary landfill.	Eastern Portion of the Site	PCA#58-Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosolids as soil conditioners	Off-Site	PHCs, BTEX, VOCs, PAHs, Metals, As, Sb, Se, Hg	Groundwater
APEC 4: Presence of an RFO – Shell Gas service station and storage of USTs	Southern boundary of the Site	PCA#28-Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	PHCs, BTEX, VOCs	Groundwater

1. Area of Potential Environmental Concern means the area on, in or under a phase one study area where one or more contaminants are potentially present, as determined through the P One ESA, including through,

- (a) identification of past or present uses on, in or under the phase one property, and
- (b) identification of potentially contaminating activities.

2. Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area

3. When completing this column, identify all contaminants of potential concern using the Method Groups as identified in the "Protocol for the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011, as specified below:

ABNs	PCBs	PCBs	Metals	Electrical Conductivity	SAR
CPs	PAHs	PAHs	As, Sb, Se	Cr (VI)	
1,4- Dioxane	THMs	THMs	Na	Hg	
Dioxins/Furans, PCDDs/PCC VOCs	VOCs	VOCs	B-HWS	Methyl Mercury	
Ocs	BTEX	BTEX	Cl-	high pH	
PHCs	Ca, Mg	Ca, Mg	CN-	low pH	

4. When submitting a record of site condition for filing, a copy of this table must be attached

***Cette publication hautement spécialisée n'est disponible qu'en anglais en vertu du règlement 671/92, qui en exempte l'application de la Loi sur les services en français. Pour obtenir de l'aide en français, veuillez communiquer avec le ministère de l'Environnement au 1-800-461-6290*

TABLE 1 - Borehole Log Information

*GTR-22022660 - CO - Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario*

Location ID	Ground Elevation (m)	Depth of BH (m bgs)	Bottom Elevation (m bgs)	Date Drilled	Drilling Contractor
BH25-101	-	1.52	-	10-Nov-25	Strata Drilling
BH25-102	-	3.05	-	10-Nov-25	Strata Drilling
BH25-103	-	2.44	-	10-Nov-25	Strata Drilling
BH25-104	-	0.91	-	10-Nov-25	Strata Drilling
BH/MW25-105	121.829	5.18	116.65	10-Nov-25	Strata Drilling
BH25-106	-	1.22	-	10-Nov-25	Strata Drilling
BH25-107	-	1.52	-	10-Nov-25	Strata Drilling
BH25-108	-	1.52	-	10-Nov-25	Strata Drilling

Elevation based on Relative / Geodetic benchmark.

TABLE 2 - Summary of Soil Samples Submitted for Chemical Analysis

*GTR-22022660 - C0 - Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario*

Soil Sample ID	Sample Depth Interval (m)	Rationale	Analysis
BH25-101 S1	0-0.76	APEC-2B	EC, SAR
BH25-102 S1	0-0.76	APEC-1	EC, SAR
BH25-102 S3	1.52 - 2.29	APEC-1	Metals (including Hydride Forming metals) PHCs, BTEX, PAHs, pH
BH25-103 S1	0-0.76	APEC-1	EC, SAR
BH25-103 S2	0.76 - 1.52	APEC-1	Metals (including Hydride Forming metals) PHCs, BTEX, PAHs, pH
BH25-104 S1	0-0.76	APEC-2B	EC, SAR
BH25-107 S1	0-0.76	APEC-2A	EC, SAR
QA/QC Samples:			
BH25-102 S1-0	0-0.76	Duplicate of BH25-102 S1	EC, SAR
BH25-103 S2-0	0.76 - 1.52	Duplicate of BH25-103 S2	Metals (including Hydride Forming metals) PHCs, BTEX, PAHs, pH
<p>PAHs - Polycyclic Aromatic Hydrocarbons PHCs - Petroleum Hydrocarbons BTEX - Benzene, Toluene, Ethylbenzene and Xylenes VOCs - Volatile Organic Compound</p>			

TABLE 3 - Summary of Groundwater Samples Submitted for Chemical Analysis*GTR-22022660 - C0 - Phase Two Environmental Site Assessment**1970 & 1980 Fowler Drive, Mississauga, Ontario*

GW Sample ID	Sampling Date	Rationale	Analysis
BH / MW25-105	14-Nov-2025	APEC-3	PHCs, BTEX, VOCs, PAHs, Metals (including Hydride Forming Metals)
BH / MW25-105	19-Nov-2025	Resampling VOCs	VOCs
BH / MW25-105	24-Nov-2025	Confirmatory Resampling VOCs	VOCs
QA/QC Samples:			
MW25-1050	14-Nov-2025	Dup of MW25-105	PHCs, BTEX, VOCs, PAHs, Metals (including Hydride Forming Metals)
PAH - Polycyclic Aromatic Hydrocarbons PHC - Petroleum Hydrocarbons BTEX - Benzene, Toluene, Ethylbenzene and Xylenes VOC - Volatile Organic Compound			

TABLE 4 - Water Level Depths and Elevations

GTR-22022660 - C0 - Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario

Test Hole I.D.	Measurement Date	Elevation at Ground Surface (masl)	Depth to Top of Screened Interval (m)	Depth to Bottom of Screened Interval (m)	Stick up (m)	Ground Water Depth Below Top of Pipe (m)	Ground Water Depth (mbgs)	Ground Water Table Elevation (masl)	Top of Screen Elevation (masl)	Bottom of Screen Elevation (masl)
BH/MW25-105	19-Nov-25	121.829	2.13	5.18	0.922	5.235	4.313	117.516	119.699	116.649
BH/MW 1D	19-Nov-25	123.2997	9.4	12.4	0.925	9.859	8.934	114.3657	113.900	110.900
BH/MW 1S	19-Nov-25	123.2997	2.35	3.87	0.857	4.556	3.699	119.6007	120.950	119.430
BH/MW 2	19-Nov-25	122.4432	2.35	3.87	0.82	Damaged	Damaged	Damaged	120.093	118.573
BH/MW 3	19-Nov-25	123.5356	1.22	4.3	0.905	4.769	3.864	119.6716	122.316	119.236
BH/MW 4	19-Nov-25	123.4026	3.2	4.72	0.96	Damaged	Damaged	Damaged	120.203	118.683
BH/MW5	19-Nov-25	123.3468	4.0	7.0	0.91	Damaged	Damaged	Damaged	119.347	116.347
BH/MW6	19-Nov-25	123.855	1.52	4.6	0.791	5.595	4.804	119.051	122.335	119.255
BH/MW25-1	19-Nov-25	121.51	14.46	17.51	0.754	6.331	5.577	115.933	107.050	104.000
BH/MW25-2	19-Nov-25	121.8	12.35	15.4	0.595	7.027	6.432	115.368	109.450	106.400
BH/MW25-3	19-Nov-25	124.04	12.54	15.59	0.728	5.844	5.116	118.924	111.500	108.450
BH/MW25-4	19-Nov-25	123.87	12.78	15.78	0.748	8.775	8.027	115.843	111.090	108.090

NOTES:

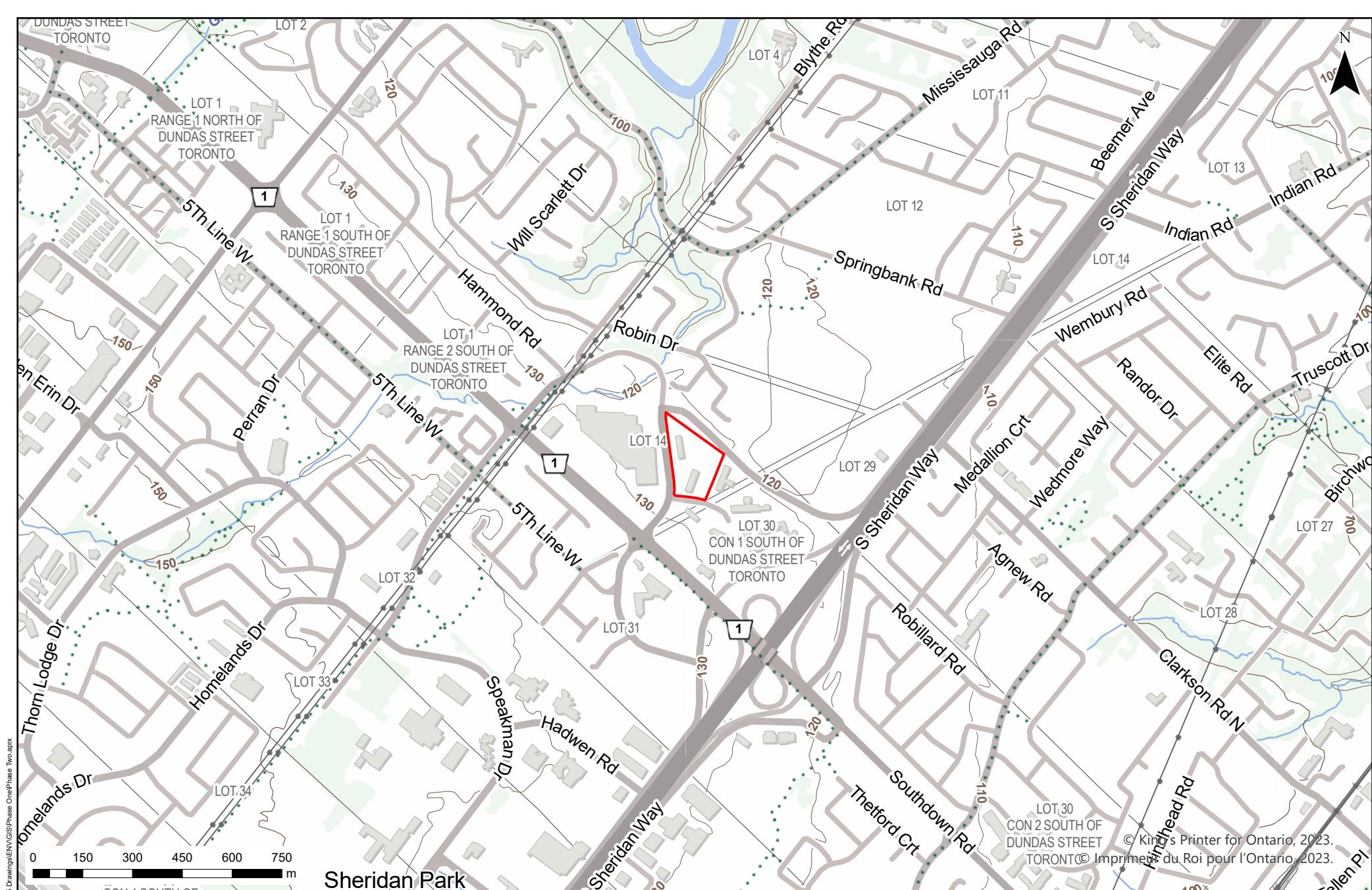
Elevations were derived from the SokkiaNET satellite system using a Sokkia GNSS, with $\pm 0.02\text{m}$ vertical and horizontal accuracy.

masl means "metres above sea level"; NC means "non-calculable".

TABLE 5 - Summary of Horizontal Hydraulic Gradients

GTR-22022660 - CO - Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario

Well Pair	Date	Separation Distance (m)	Groundwater Elevations** (m)	Elevation Difference (m)	Hydraulic Gradient* (m/m)
BH/MW25-105			116.59		
BH/MW1S	11-Nov-25	42.0	118.74	2.15	0.051
				Average	0.051
				Geometric mean	0.051
				Min	0.051
				Max	0.051


Water Level Data = November 19, 2025


*The horizontal hydraulic gradient between monitoring well pair is calculated from $i = \Delta h / \Delta s$, where i is the horizontal hydraulic gradient, Δh (m) is the groundwater elevation difference and Δs (m) is the distance apart.

EXP Services Inc.

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

Figures

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

- PCA CONTRIBUTING TO AN APEC
- PCA NOT CONTRIBUTING TO AN APEC
- PHASE ONE STUDY AREA
- APPROXIMATE SITE BOUNDARY

LANDUSE

- AGRICULTURAL OR OTHER USE
- COMMERCIAL
- PARKLAND
- RESIDENTIAL

TITLE AND LOCATION:

PHASE ONE STUDY AREA, LAND USE PLAN
AND POTENTIALLY CONTAMINATING
ACTIVITIES (PCAs)
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

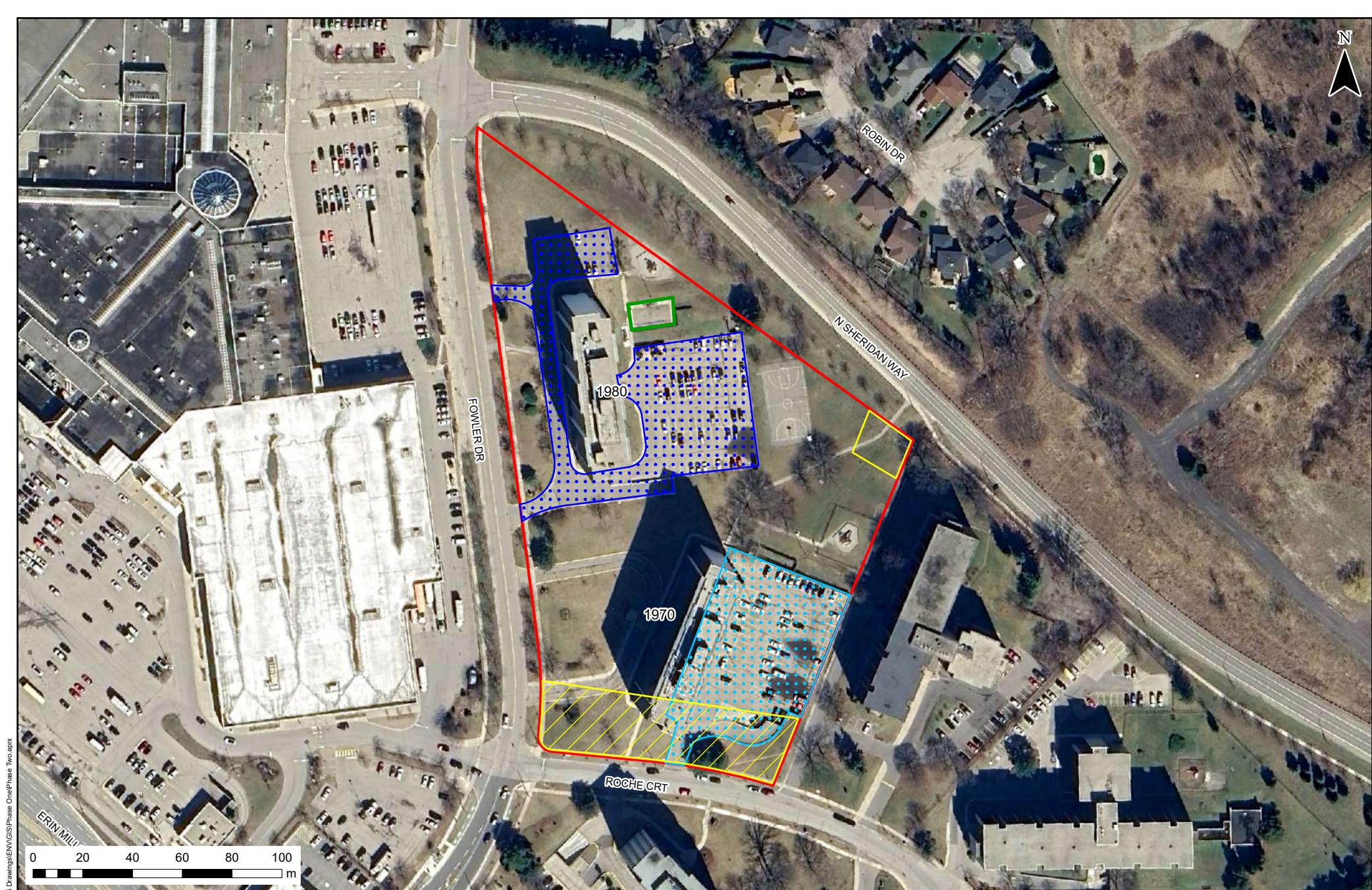
PROJECT NO.:	GTR-22022660-C0	DWN:	MS
SCALE:	AS NOTED	CHKD:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	2

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:


- BOREHOLE / MONITORING WELL (EXP, 2025)
- BOREHOLE / MONITORING WELL (EXP, 2023)
- FORMER SWIMMING POOL
- APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

SITE PLAN

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DRAWN:	MS
SCALE:	AS NOTED	CHKD:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	3

K:\data\BRM\GTR-2202260-A0160 Execution\65 Drawings\ENV\GIS\Phase One\Phase Two.aprx

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard

Brampton, ON L
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

LEGEND.

APEC 1

 APEC 2A

APEC 2B

APEC 3

APEC 4

TITLE AND LOCATION:

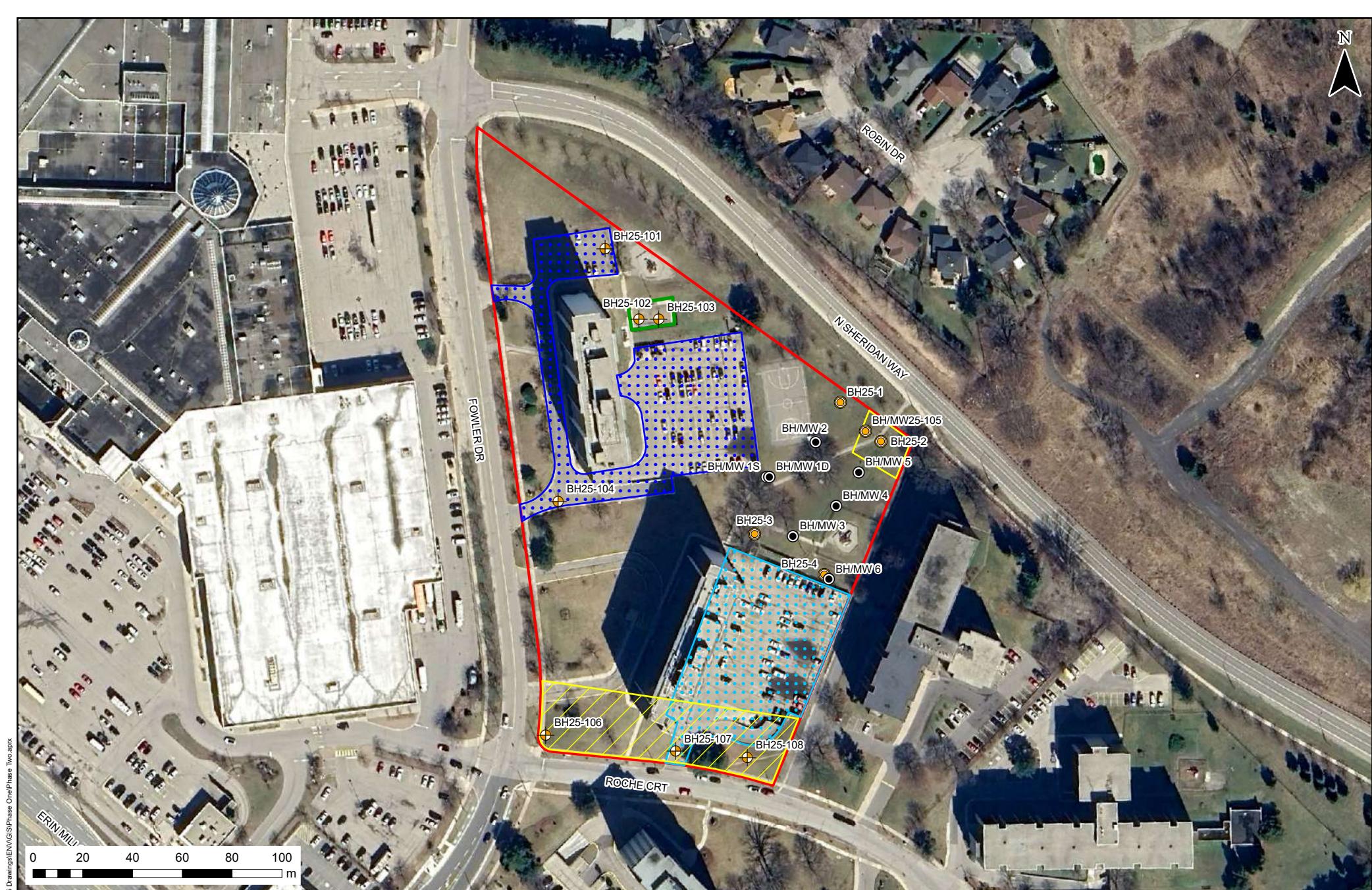
AREA OF POTENTIAL
ENVIRONMENTAL CONCERNS (APECs)

PROJECT NO.:	GTR-22022660-C0	DNW:	MS
SCALE:	AS NOTED	CHKD:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	4

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •


LEGEND:

- BOREHOLE (EXP, 2025)
- BOREHOLE / MONITORING WELL (EXP, 2025)
- BOREHOLE / MONITORING WELL (EXP, 2023)
- CROSS SECTION AXIS
- APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

BOREHOLE / MONITORING WELL
LOCATION PLAN
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DRAWING NO.:	MS
SCALE:	AS NOTED	CHKD:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	5A

Drawing: BNGS Phase One Phase Two.spt

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

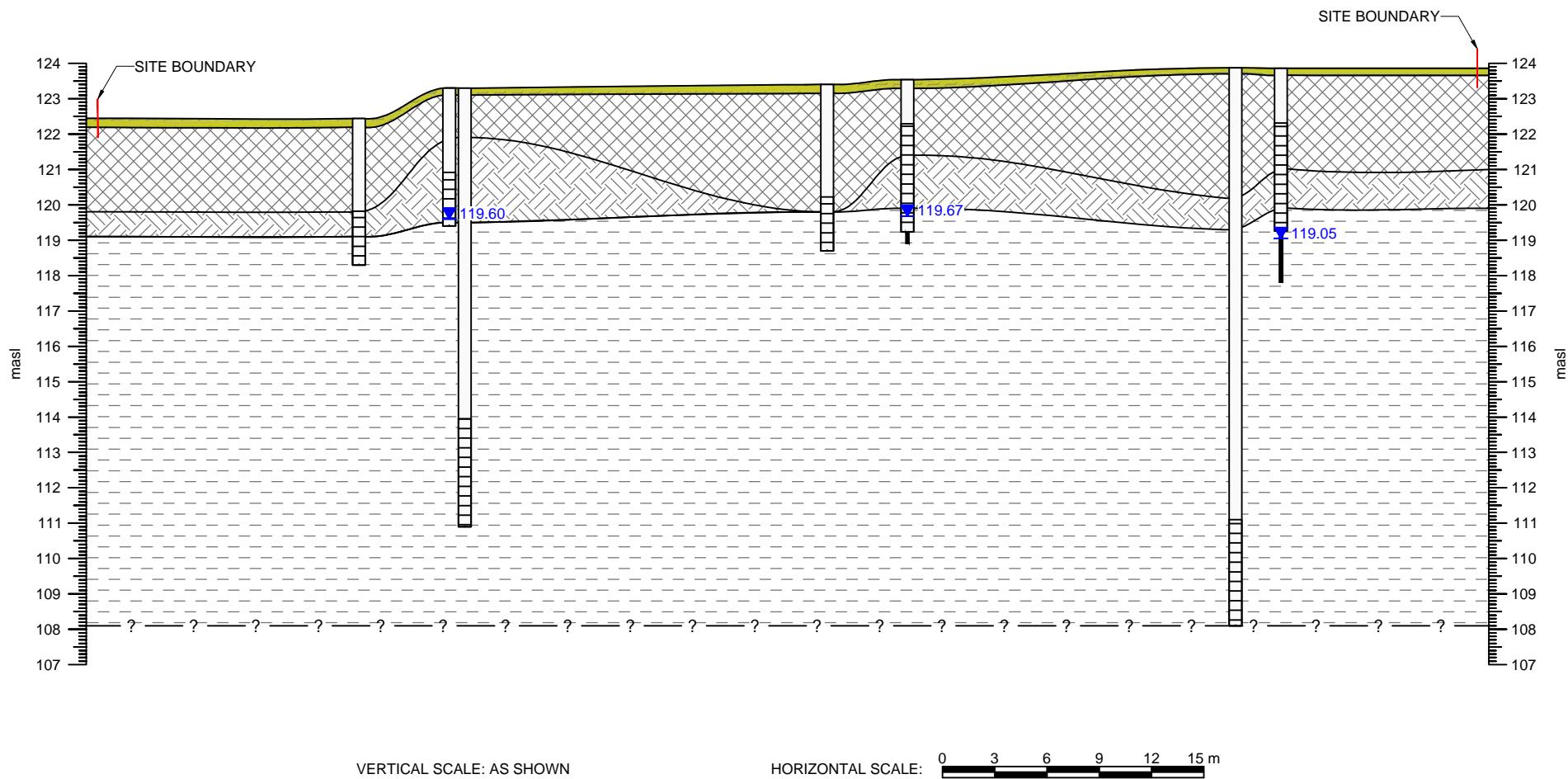
LEGEND:

- BOREHOLE (EXP, 2025)
- BOREHOLE / MONITORING WELL (EXP, 2025)
- BOREHOLE / MONITORING WELL (EXP, 2023)
- APEC 1
- APEC 2A
- APEC 2B
- APEC 3
- APEC 4
- APPROXIMATE SITE BOUNDARY

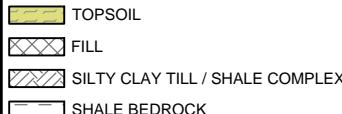
TITLE AND LOCATION:

BOREHOLE / MONITORING WELL
LOCATION PLAN AND APECs
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DWN:	MS
SCALE:	AS NOTED	CHKD:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	5B


A
NORTH

A'
SOUTH


BH/MW 2 BH/MW 1S/D
EL:122.44 EL:123.30

BH/MW 4 BH/MW 3
EL:123.40 EL:123.54

BH25-4 BH/MW 6
EL:123.87 EL:123.86

LEGEND:

GROUNDWATER ELEVATION (masl) AS
MEASURED ON NOVEMBER 19, 2025

TITLE AND LOCATION:

CROSS SECTION A-A'
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:

GTR-22022660-C0

DWN.:

MS

SCALE:

AS NOTED

CK:

AG

DATE:

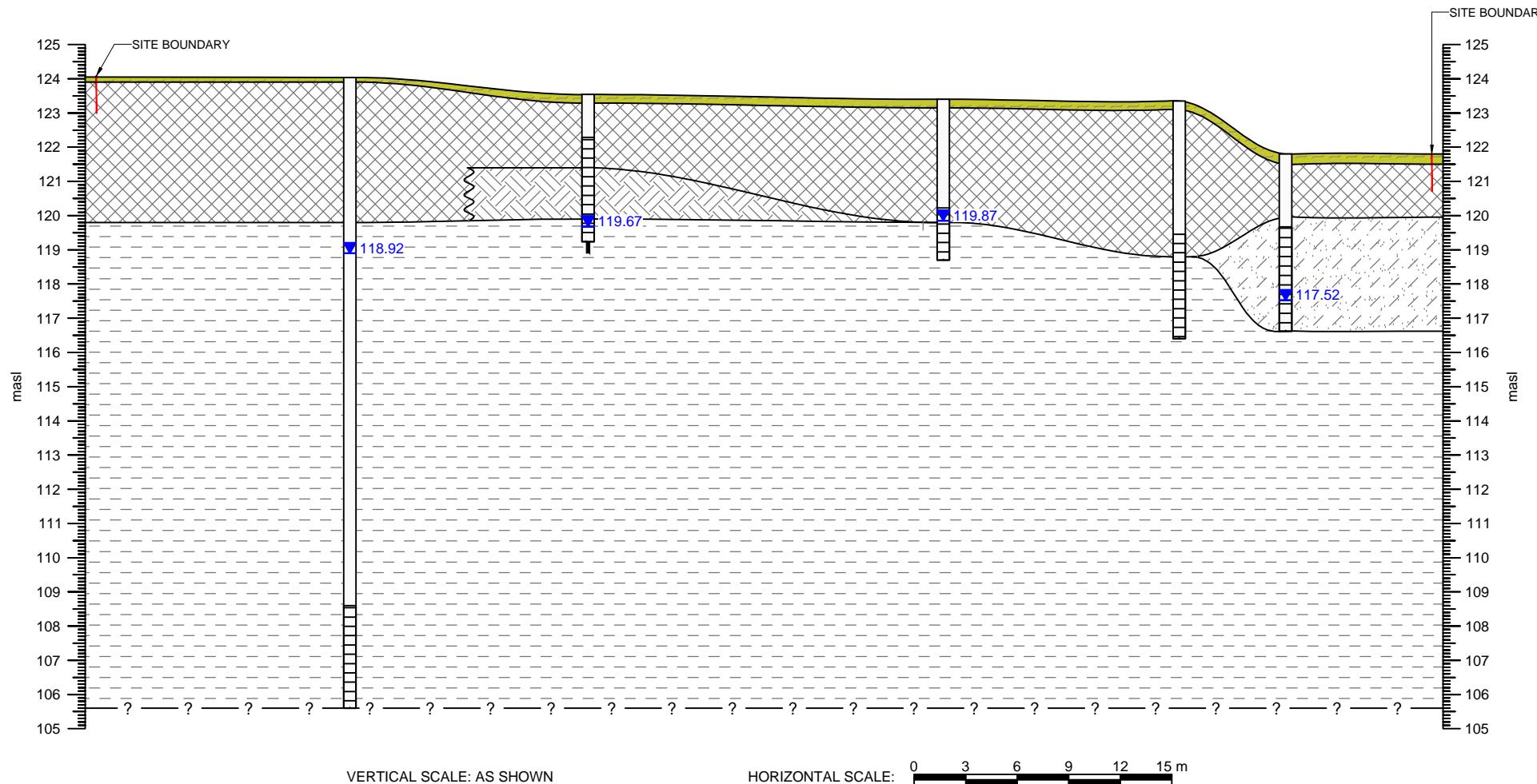
NOVEMBER 2025

FIG. NO.:

5A

B
WEST

B'
EAST


BH25-3
EL:124.06

BH/MW 3
EL:123.54

BHMW 4
EL:123.40

BHMW 5
EL:123.35

BHMW25-105
EL:121.83

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641

1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

- SOIL SAMPLE MEETS TABLE 6 SCS RPI FOR PHCs
- APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

SOIL ANALYTICAL RESULTS -
PETROLEUM HYDROCARBONS (PHCs)
INCLUDING BENZENE, TOLUENE,
ETHYLBENZENE AND XYLENE
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DNW:	MS
SCALE:	AS NOTED	CHK:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	7

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641

1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

● SOIL SAMPLE MEETS TABLE 6 SCS RPI FOR PAHs

■ APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

SOIL ANALYTICAL RESULTS -
POLYCYCLIC AROMATIC
HYDROCARBONS (PAHs)
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DNW:	MS
SCALE:	AS NOTED	CHK:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	8

\k:\data\BRM\GTR-22022660-A0160 Execution\65 Drawings\ENV\GIS\Phase One\Phase Two.aprx

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard

1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada

www.exp.com

LEGEND:

- SOIL SAMPLE MEETS TABLE 6 SCS RPI FOR METALS
- APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

SOIL ANALYTICAL RESULTS -
METALS INCLUDING
HYDRIDE-FORMING METALS
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	DWN:	
GTR-22022660-C0	MS	
SCALE:	CHKD:	
AS NOTED		AG
DATE:	FIG. NO.:	
NOVEMBER 2025		9

Other Regulated Parameters (ORPs)	
B-HWS - Boron (hot water soluble)	
Cr(VI) - Chromium VI	
CN- - Free Cyanide	
Hg - Mercury	
pH	

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1

BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

- SOIL SAMPLE MEETS TABLE 6 SCS RPI FOR ORPs
- APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

SOIL ANALYTICAL RESULTS -
OTHER REGULATED PARAMETERS (ORPs)
(B-HWS, Cr(VI), CN-, Hg, pH)
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DRAWN:	MS
SCALE:	AS NOTED	CHKD:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	10

N

EXP Services Inc.
 t: +1.905.793.9800 | f: +1.905.793.0641
 1595 Clark Boulevard
 Brampton, ON L6T 4V1
 Canada
www.exp.com

LEGEND:

- SOIL SAMPLE CONSIDERED TO MEET TABLE 6 SCS RPI FOR EC AND SAR
- SOIL SAMPLE MEETS TABLE 6 SCS RPI FOR EC AND SAR

■ APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

SOIL ANALYTICAL RESULTS -
 ELECTRICAL CONDUCTIVITY (EC) AND
 SODIUM ADSORPTION RATIO (SAR)
 PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
 1970 & 1980 FOWLER DRIVE
 MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DNW:	MS
SCALE:	AS NOTED	CHK:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	11

LEGEND:

- GROUNDWATER SAMPLE MEETS TABLE 6 SCS RPI FOR PHCs
- APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

GROUNDWATER ANALYTICAL RESULTS -
PETROLEUM HYDROCARBONS (PHCs)
INCLUDING BENZENE, TOLUENE,
ETHYLBENZENE AND XYLENE
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DNW:	MS
SCALE:	AS NOTED	CHK:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	12

N

BH/MW25-105	MW25-105	MW25-1050 (Duplicate of MW25-105)	MW25-105	MW25-105
	14-Nov-25	14-Nov-25	19-Nov-25	24-Nov-25
Tetrachloroethylene	2.79	2.18	<0.20	<0.20

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641

1595 Clark Boulevard

Brampton, ON L6T 4V1

Canada

www.exp.com

LEGEND:

● GROUNDWATER SAMPLE MEETS TABLE 6 SCS RPI FOR VOCs

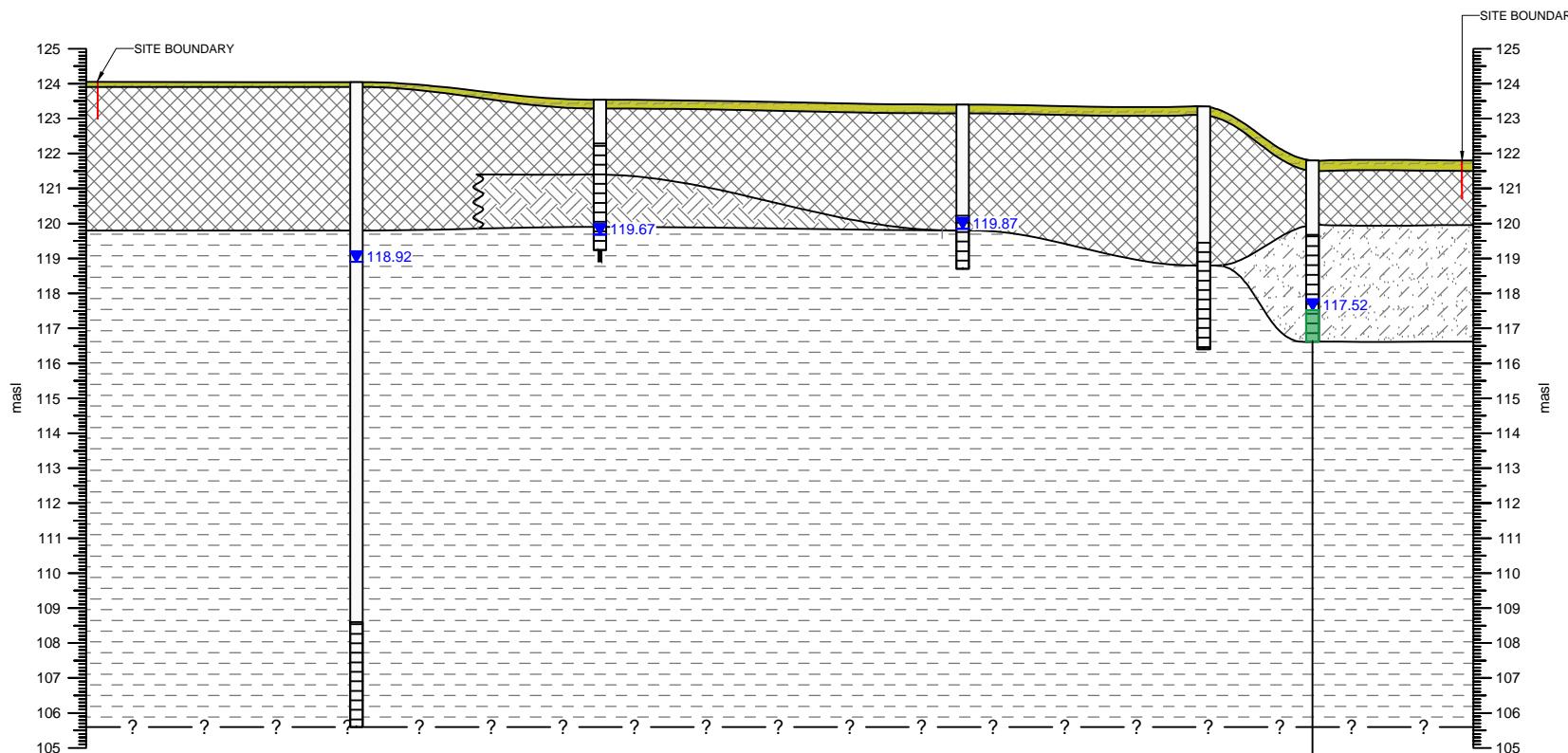
■ APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

GROUNDWATER ANALYTICAL RESULTS -
VOLATILE ORGANIC COMPOUNDS (VOCs)
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DW#:	MS
SCALE:		CHD#:	
DATE:	AS NOTED	AG	
FIG. NO.:	NOVEMBER 2025	FIG. NO.:	13

B
WEST


B'
EAST

BH25-3
EL:124.06

BH/MW 3
EL:123.54

BHMW 4
EL:123.40

BHMW 5 BHMW25-10
EL:123.35 EL:121.83

VERTICAL SCALE: AS SHOWN

HORIZONTAL SCALE: 0 3 6 9 12 15 m

BH/MW25-105	MW25-105	MW25-1050 (Duplicate of MW25-105)	MW25-105	MW25-105
	14-Nov-25	14-Nov-25	19-Nov-25	24-Nov-25
	2.13 - 5.18	2.13 - 5.18	2.13 - 5.18	2.13 - 5.18
Tetrachloroethylene	2.79	2.18	<0.20	<0.20

Sample ID	Date (dd-mm-yy)
	Screen (mbgs)

MECP (2011) Table 6: Full Depth Background SCS in a Non-Potable Groundwater Condition (coarse textured soil)

BOLD Concentration exceeds Table 6 SCS

EXP Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

TOPSOIL

100

The logo for FIRE (Free Information Recovery Everywhere) is displayed. It consists of a small square icon containing a diamond pattern of diagonal lines, followed by the acronym "FIRE" in a bold, sans-serif font.

 SILTY CLA

 SANDY SILT

■ GROUNDWATER ELEVATION (masl) AS
MEASURED ON NOVEMBER 19, 2025

■ GROUNDWATER SAMPLE MEETS TABLE 6 SCS PRL FOR VOCs

TITLE AND LOCATION:

CROSS SECTION B-B'
GROUNDWATER ANALYTICAL RESULTS -
VOLATILE ORGANIC COMPOUNDS (VOCs)
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1984 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	DWN.:
GTR-22022660-C0	MS
SCALE:	CK:
AS NOTED	AG
DATE:	FIG. NO.:
NOVEMBER 2025	13A

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1

www.exp.com
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

● GROUNDWATER SAMPLE MEETS TABLE 6 SCS RPI FOR PAHS

■ APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

GROUNDWATER ANALYTICAL RESULTS -
POLYCYCLIC AROMATIC
HYDROCARBONS (PAHs)
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DNW:	MS
SCALE:	AS NOTED	CHK:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	14

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641

1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

● GROUNDWATER SAMPLE MEETS TABLE 6 SCS RPI FOR METALS

■ APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

**GROUNDWATER ANALYTICAL RESULTS -
METALS INCLUDING
HYDRIDE-FORMING METALS
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO**

PROJECT NO.:	GTR-22022660-C0	DNW:	MS
SCALE:	AS NOTED	CHK:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	15

EXP Services Inc.

t: +1.905.793.9800 | f: +1.905.793.0641

1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

● GROUNDWATER SAMPLE MEETS TABLE 6 SCS RPI FOR METALS

■ APPROXIMATE SITE BOUNDARY

TITLE AND LOCATION:

GROUNDWATER ANALYTICAL RESULTS -
OTHER REGULATED PARAMETERS (ORPs)
(Cr(VI), CN-, Hg, Na, Cl, pH)
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
1970 & 1980 FOWLER DRIVE
MISSISSAUGA, ONTARIO

PROJECT NO.:	GTR-22022660-C0	DRAWN:	MS
SCALE:	AS NOTED	CHKD:	AG
DATE:	NOVEMBER 2025	FIG. NO.:	16

EXP Services Inc.

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

Appendix A – Sampling and Analysis Plan (SAP)

1 Introduction

This appendix presents the Sampling and Analysis Plan (SAAP) that was developed in support of the Phase Two Environmental Site Assessment (ESA) at the property located at 1970 & 1980 Fowler Drive in the city of Mississauga, Ontario (hereinafter referred to as the "site", "subject property", and "Phase Two property").

The Phase Two ESA will be conducted to assess the areas of potential environmental concern (APECs) identified in EXP's Phase One ESA (dated July 4, 2024) as part of the proposed redevelopment for the Site. The SAAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the Site conditions and meet the data quality objectives of the Phase Two ESA.

The SAAP presents the sampling program proposed for the Site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/quality control measures that are recommended to be undertaken to provide for the collection of accurate, reproducible and representative data.

2 Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials for chemical analysis of petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), metals (including hydride-forming metals), and other regulated parameters (ORPs) (including boron (hot water soluble) (B-HWS), hexavalent chromium (Cr (VI)), mercury (Hg), cyanide (CN-), electrical conductivity (EC), sodium adsorption ratio (SAR) and pH) in soil. The soil sampling media consists of the surface soils and upper overburden materials (depths up to 6.1 metres below ground surface (mbgs)). A total of eight (8) boreholes (BH25-101 to BH25-108) will be advanced at the Site. The soil sample intervals will extend from the surface up to 6.1 mbgs. The field sampling program was developed to also provide for the collection of groundwater samples from three (3) newly installed monitoring wells (BH/MW25-105, BH/MW25-106 and BH/MW25-108) for chemical analysis of PHCs, BTEX, VOCs, PAHs and/or metals (including hydride-forming metals). New monitoring wells are to be installed up to a depth of 6.1 mbgs.

Vertical control of the boreholes and monitoring wells should be obtained through the completion of an elevation survey with reference to a geodetic benchmark.

It was noted that additional parameters in addition to the contaminants of potential concern (COPCs) identified in the media from the APECs were included for due diligence purposes.

3 Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- Borehole Drilling;
- Soil Sampling;
- Elevation Survey;
- Monitoring Well Installation;

- Monitoring Well Development;
- Groundwater Level Measurements; and,
- Groundwater Sampling.

The field investigative methods will be performed following the procedures and protocols set out in EXP's standard operating procedures and are outlined below.

3.1 Borehole Drilling

Boreholes will be advanced at the Site to facilitate the collection of soil samples for geologic characterization; soil chemical analysis; and, for the installation of groundwater monitoring wells. A total of eight (8) boreholes (BH25-101 to BH25-108) are proposed to be advanced at the Site for the environmental investigation, up to a maximum depth of approximately 6.1 mbgs. It is to be noted that continuous soil sampling will be completed to termination for the environmental investigation to provide for the collection of samples of the surficial and overburden materials beneath the Site. The borehole locations will be selected to determine the presence or absence of impacts in the soils and groundwater to address the APECs outlined in the Phase One ESA completed by EXP (dated July 4, 2024).

Prior to borehole drilling, utility clearances will be obtained from public and private locators, as required. If any uncertainty regarding the location of a buried utility at a borehole location is encountered, hand digging will be performed beforehand to confirm the location of the utility.

Where there is overlying asphalt or concrete, the overlying material will be mechanically cored to provide access to the underlying soil materials. The borehole drilling program will be conducted by a licensed driller under the oversight of EXP field staff. Auger flights will be cleaned prior to the commencement of drilling at each borehole location.

3.2 Soil Sampling

Soil samples will be collected for chemical analysis and geological characterization. The soil samples will be collected using 5 cm diameter steel split spoons or Shelby tubes advanced into the subsurface using a track-mounted drill rig using direct push or split spoon sampling equipment and hollow stem augers or a hand auger. Upon retrieval from the boreholes of the split spoons or Shelby tubes, the spoons or Shelby tubes will be placed on a flat surface and disassembled by drilling personnel to provide access of the recovered cores. Geologic and sampling details of the recovered cores will be logged and the samples will be assessed for the potential presence of non-aqueous phase liquids. Soil stratigraphy encountered in the boreholes will be texturally, visually and olfactory classified in the field and in the laboratory. Soil samples will be logged for colour, grain size, moisture content, density, structures, texture, staining, and field vapour readings. Representative worst-case soil samples from each borehole will be collected and submitted to a certified laboratory for analysis based on sample depth, visual observations and/or olfactory field observations.

Recommended volumes of soil samples selected for chemical analysis will be collected into pre-cleaned laboratory-supplied glass sample jars/vials identified for the specified analytical test group and placed directly into clean insulated coolers chilled with ice for storage and transport. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field notebook. The samples will be submitted to the contractual laboratory within analytical test group holding times under Chain of Custody protocols. New disposable chemical resistant gloves will be used for each soil core to prevent sample cross-contamination.

3.3 Elevation Survey

An elevation survey will be conducted to obtain vertical control of the newly installed monitoring well locations and boreholes. The top of the PVC riser pipe of the monitoring well and ground surface elevation of the monitoring well and borehole locations

will be surveyed against a geodetic benchmark. Elevations measured against a geodetic benchmark will be recorded as meters above sea level (masl). The elevation survey will be accurate to within ± 0.3 cm.

3.4 Monitoring Well Installation

A proposed total of three (3) boreholes (BH/MW25-105, BH/MW25-106 and BH/MW25-108) will be instrumented as groundwater monitoring wells installed with 1.5 to 3 m long screens intercepting the native overburden material, where the water table at the aquifer is expected, extending to depths of approximately 6.1 mbgs. The monitoring wells will be constructed using 51 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screen will be sealed with threaded flush PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The annular space around the well screen will be backfilled with silica sand, to an average height of 0.6 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below grade. The monitoring wells will be completed with monument or flushmount protective steel casings cemented into place.

3.5 Monitoring Well Development

The newly installed monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance hydraulic communication with the surrounding formation waters. The monitoring wells will be developed using dedicated low-density polyethylene (LDPE) or high-density polyethylene (HDPE) tubing, equipped with an inertial foot valve to disturb the water column. The wells will be developed until approximately 3 to 5 well volumes of water are removed and/or until purged dry. Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All development waters will be collected and stored in labeled, sealed containers.

3.6 Groundwater Level Measurements

Groundwater level measurements will be recorded for the newly installed monitoring wells to determine the depth of the water table at the aquifer beneath the Site. The water levels will be measured with respect to the top of the PVC riser pipe by means of an electronic water level meter. The water levels will be recorded on water level log sheets or in a bound field notebook. The water level meter probe will be decontaminated between monitoring well locations.

3.7 Field Measurements of Water Quality Parameters

Prior to collecting the groundwater sample, field measurements of water quality parameters will be recorded from the monitoring wells utilizing low-flow purging and sampling methodologies. Groundwater will be purged from the monitoring wells using a peristaltic pump and dedicated LDPE tubing. Field measurements of dissolved oxygen concentration, electrical conductivity, oxidation-reduction potential, pH, temperature, turbidity and water levels will be recorded in three (3) minute intervals during the purging activities using a pre-calibrated multi probe water quality meter, a turbidity meter and a water level meter. Generally, well purging will continue until the purged water has chemically stabilized as indicated by field parameter measurements and the well head drawdown is maintained within 10 cm for 3 consecutive readings. In the event that the parameters do not stabilize or the well head drawdown is substantially over 10 cm, the groundwater is to recover to approximately 75% of static levels before sampling.

The multi-meter electrodes will be calibrated prior to receipt of the meter by the supplier using in-house pH and conductivity reference standards. All collected purged water will be stored on-Site in labeled, sealed containers. Equipment used during groundwater monitoring will be thoroughly cleaned and decontaminated between wells.

3.8 Groundwater Sampling

Upon completion of the field measurements of water quality parameters, groundwater samples will be collected for chemical analysis using the peristaltic pump and dedicated LDPE tubing. Recommended groundwater sample volumes will be collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The

samples will be placed in an insulated cooler chilled with ice for storage and transport. Samples for BTEX and VOC analysis will be collected in triplicate vials prepared with concentrated hydrochloric acid or an acceptable substitute as a preservative. Each vial will be inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no head-space is present.

The groundwater samples will be assigned a unique identification number, and the date, time, project number, company name, location and requested analyses will be documented in a bound hard cover notebook. The sample will be submitted to the contractual laboratory within analytical test group holding times under chain of custody protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

4 Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil samples, groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e. non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- Decontamination Protocols;
- Equipment Calibration;
- Sample Preservation;
- Sample Documentation; and,
- Field Quality Control Samples.

Details on the field QA/QC measures are provided below.

4.1 Decontamination Protocols

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, soil sampling devices will be cleaned/decontaminated between sampling intervals and auger flights between borehole locations in accordance with SOP requirements. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development and purging activities. For hydraulic conductivity tests, the electronic water level meters will be decontaminated between sampling locations. All decontamination fluids will be collected and stored in sealed, labeled containers.

4.2 Equipment Calibration

All equipment requiring calibration will be calibrated in the field according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities, and subsequently checked in the field. The calibration of all pre-calibrated instruments will be checked in the field using analytical grade reagents and re-calibrated as required. For multiple day sampling events, equipment calibration will be checked prior to the beginning of sampling activities. All calibration data will be documented in a bound hard cover notebook.

4.3 Sample Preservation

All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in pre-chilled insulated coolers packed with ice for storage and transport.

4.4 Sample Documentation

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number, company name, location and requested analysis in a bound field notebook. All samples will be handled and transported following COC protocols.

4.5 Field Quality Control

Field quality control samples will be collected to evaluate the accuracy and reproducibility of the field sampling procedures. For soil and groundwater sampling, one (1) field duplicate is to be collected for every ten (10) samples submitted for chemical analysis. For multiple day sampling events, at least one (1) field duplicate soil and groundwater sample will be submitted for chemical analysis. The field duplicate samples will be assessed by calculating the relative percent difference and comparing to the analytical test group specific acceptance criteria.

EXP Services Inc.

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

Appendix B – Survey Plan

Appendix C – Borehole Logs

Log of Borehole BH/MW25-105

Project No. GTR-22022660-C0

Drawing No. 5

Project: Phase Two ESA

Sheet No. 1 of 1

Location: 1970 and 1980 Fowler Drive, Mississauga, Ontario

Please Refer to Borehole Location Plan

Date Drilled: November 10, 2025

Chemical Analysis

Drill Type: Geoprobe 7822 DT

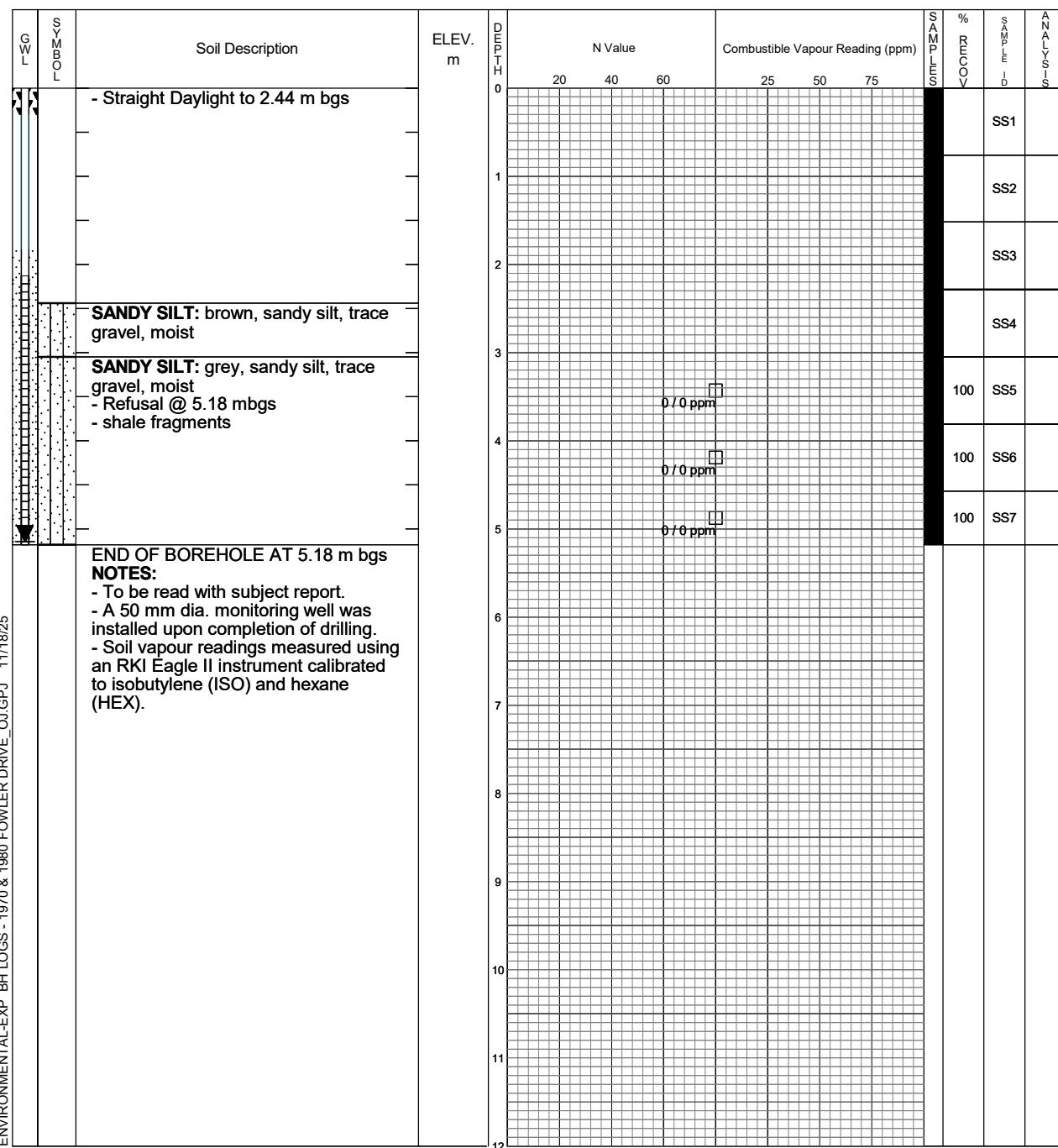
BTEX Benzene, Toluene, Ethylbenzene and Xylenes

* Duplicate Sample

Datum: Geodetic

ING Metals and Inorganics

PCB Polychlorinated Biphenyls


MET Metals

PHC Petroleum Hydrocarbons (F1-F4)

PAH Polycyclic Aromatic Hydrocarbons

VOC Volatile Organic Compounds

PEST Organochlorine Pesticides

ENVIRONMENTAL-EXP BH LOGS - 1970 & 1980 FOWLER DRIVE_OJGPJ 11/18/25

EXP Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
November 14, 2025	5.312	

Log of Borehole BH25-101

Project No. GTR-22022660-C0

Drawing No. 1

Project: Phase Two ESA

Sheet No. 1 of 1

Location: 1970 and 1980 Fowler Drive, Mississauga, Ontario

Please Refer to Borehole Location Plan

Date Drilled: November 10, 2025

Chemical Analysis

Drill Type: Hand Auger

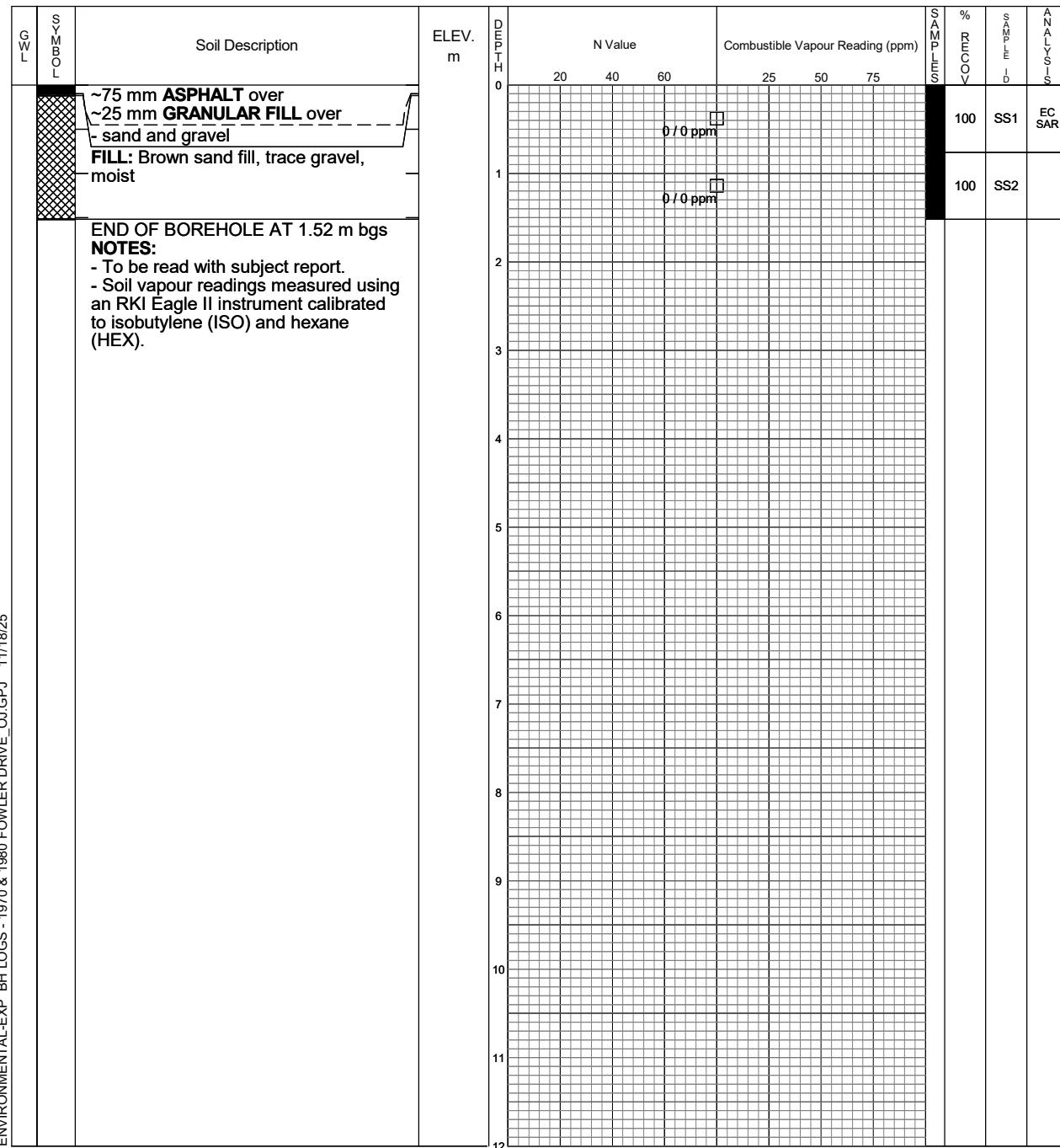
BTEX Benzene, Toluene, Ethylbenzene and Xylenes

* Duplicate Sample

Datum: Geodetic

ING Metals and Inorganics

PCB Polychlorinated Biphenyls


MET Metals

PHC Petroleum Hydrocarbons (F1-F4)

PAH Polycyclic Aromatic Hydrocarbons

VOC Volatile Organic Compounds

PEST Organochlorine Pesticides

ENVIRONMENTAL-EXP BH LOGS - 1970 & 1980 FOWLER DRIVE_OJGPJ 11/18/25

EXP Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH25-102

Project No. GTR-22022660-C0

Drawing No. 2

Project: Phase Two ESA

Sheet No. 1 of 1

Location: 1970 and 1980 Fowler Drive, Mississauga, Ontario

Please Refer to Borehole Location Plan

Date Drilled: November 10, 2025

Chemical Analysis

Drill Type: Geoprobe 7822 DT

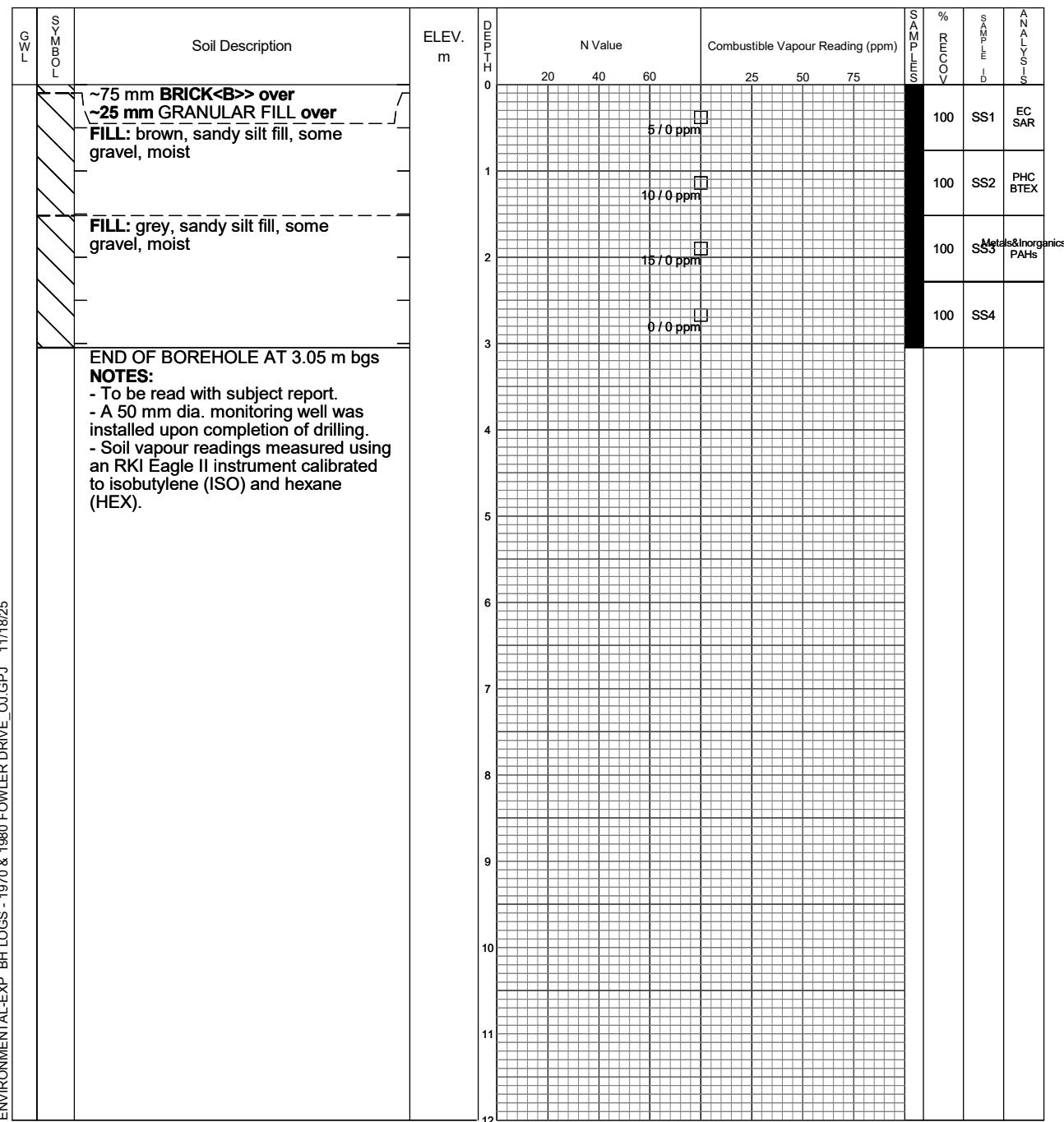
BTEX Benzene, Toluene, Ethylbenzene and Xylenes

* Duplicate Sample

Datum: Geodetic

ING Metals and Inorganics

PCB Polychlorinated Biphenyls


MET Metals

PHC Petroleum Hydrocarbons (F1-F4)

PAH Polycyclic Aromatic Hydrocarbons

VOC Volatile Organic Compounds

PEST Organochlorine Pesticides

ENVIRONMENTAL-EXP BH LOGS - 1970 & 1980 FOWLER DRIVE_OJGPJ 11/18/25

EXP Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH25-103

Project No. GTR-22022660-C0

Drawing No. 3

Project: Phase Two ESA

Sheet No. 1 of 1

Location: 1970 and 1980 Fowler Drive, Mississauga, Ontario

Please Refer to Borehole Location Plan

Date Drilled: November 10, 2025

Chemical Analysis

Drill Type: Geoprobe 7822 DT

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

* Duplicate Sample

Datum: Geodetic

ING Metals and Inorganics

PCB Polychlorinated Biphenyls


MET Metals

PHC Petroleum Hydrocarbons (F1-F4)

PAH Polycyclic Aromatic Hydrocarbons

VOC Volatile Organic Compounds

PEST Organochlorine Pesticides

ENVIRONMENTAL-EXP BH LOGS - 1970 & 1980 FOWLER DRIVE_OJGPJ 11/18/25

EXP Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH25-104

Project No. GTR-22022660-C0

Drawing No. 4

Project: Phase Two ESA

Sheet No. 1 of 1

Location: 1970 and 1980 Fowler Drive, Mississauga, Ontario

Please Refer to Borehole Location Plan

Date Drilled: November 10, 2025

Chemical Analysis

Drill Type: Hand Auger

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

* Duplicate Sample

Datum: Geodetic

ING Metals and Inorganics

PCB Polychlorinated Biphenyls


MET Metals

PHC Petroleum Hydrocarbons (F1-F4)

PAH Polycyclic Aromatic Hydrocarbons

VOC Volatile Organic Compounds

PEST Organochlorine Pesticides

ENVIRONMENTAL-EXP BH LOGS - 1970 & 1980 FOWLER DRIVE_OJGPJ 11/18/25

EXP Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH25-106

Project No. GTR-22022660-C0

Drawing No. 6

Project: Phase Two ESA

Sheet No. 1 of 1

Location: 1970 and 1980 Fowler Drive, Mississauga, Ontario

Please Refer to Borehole Location Plan

Date Drilled: November 10, 2025

Chemical Analysis

Drill Type: Hand Auger

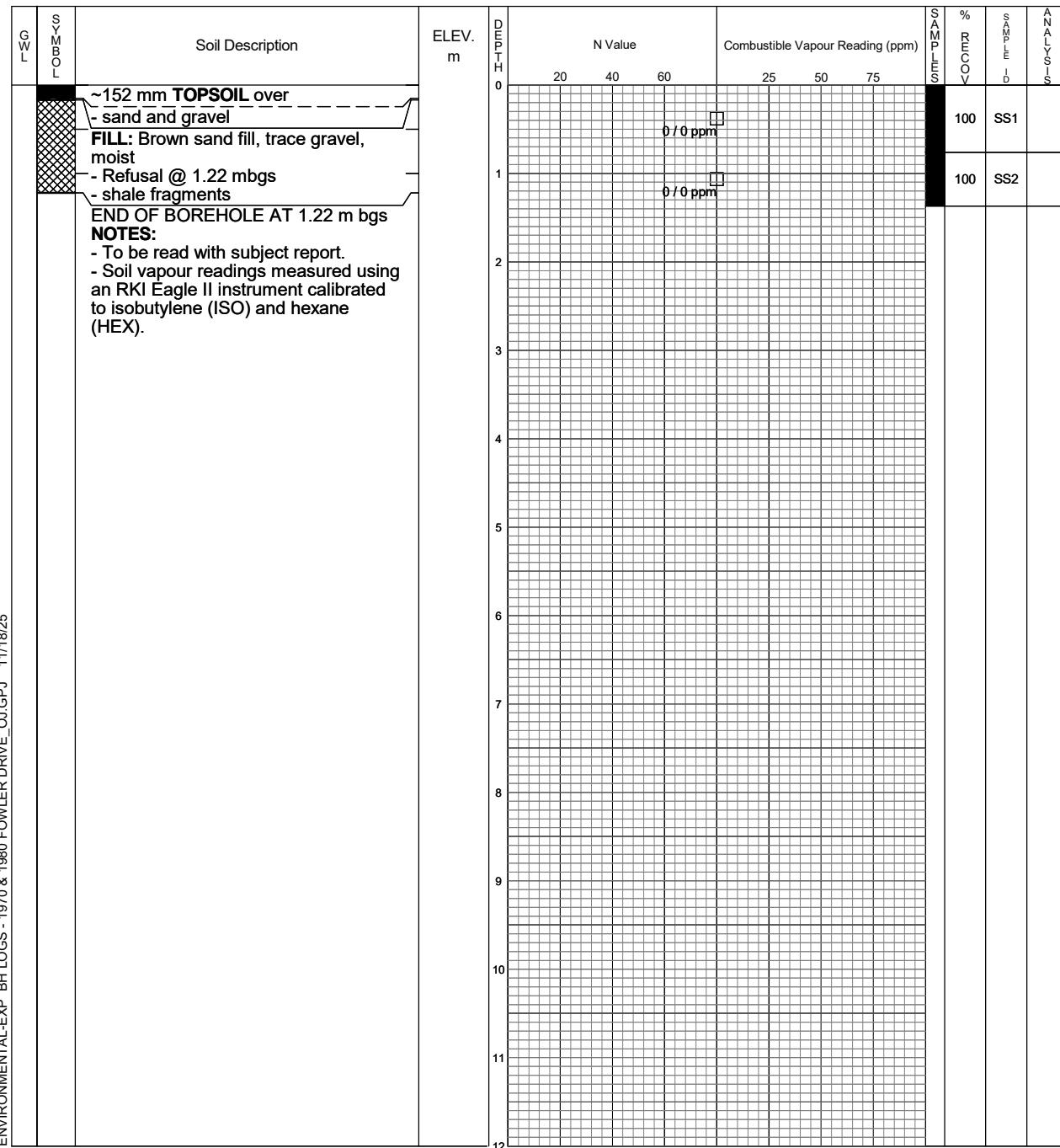
BTEX Benzene, Toluene, Ethylbenzene and Xylenes

* Duplicate Sample

Datum: Geodetic

ING Metals and Inorganics

PCB Polychlorinated Biphenyls


MET Metals

PHC Petroleum Hydrocarbons (F1-F4)

PAH Polycyclic Aromatic Hydrocarbons

VOC Volatile Organic Compounds

PEST Organochlorine Pesticides

ENVIRONMENTAL-EXP BH LOGS - 1970 & 1980 FOWLER DRIVE_OJGPJ 11/18/25

EXP Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH25-107

Project No. GTR-22022660-C0

Drawing No. 7

Project: Phase Two ESA

Sheet No. 1 of 1

Location: 1970 and 1980 Fowler Drive, Mississauga, Ontario

Please Refer to Borehole Location Plan

Date Drilled: November 10, 2025

Chemical Analysis

Drill Type: Hand Auger

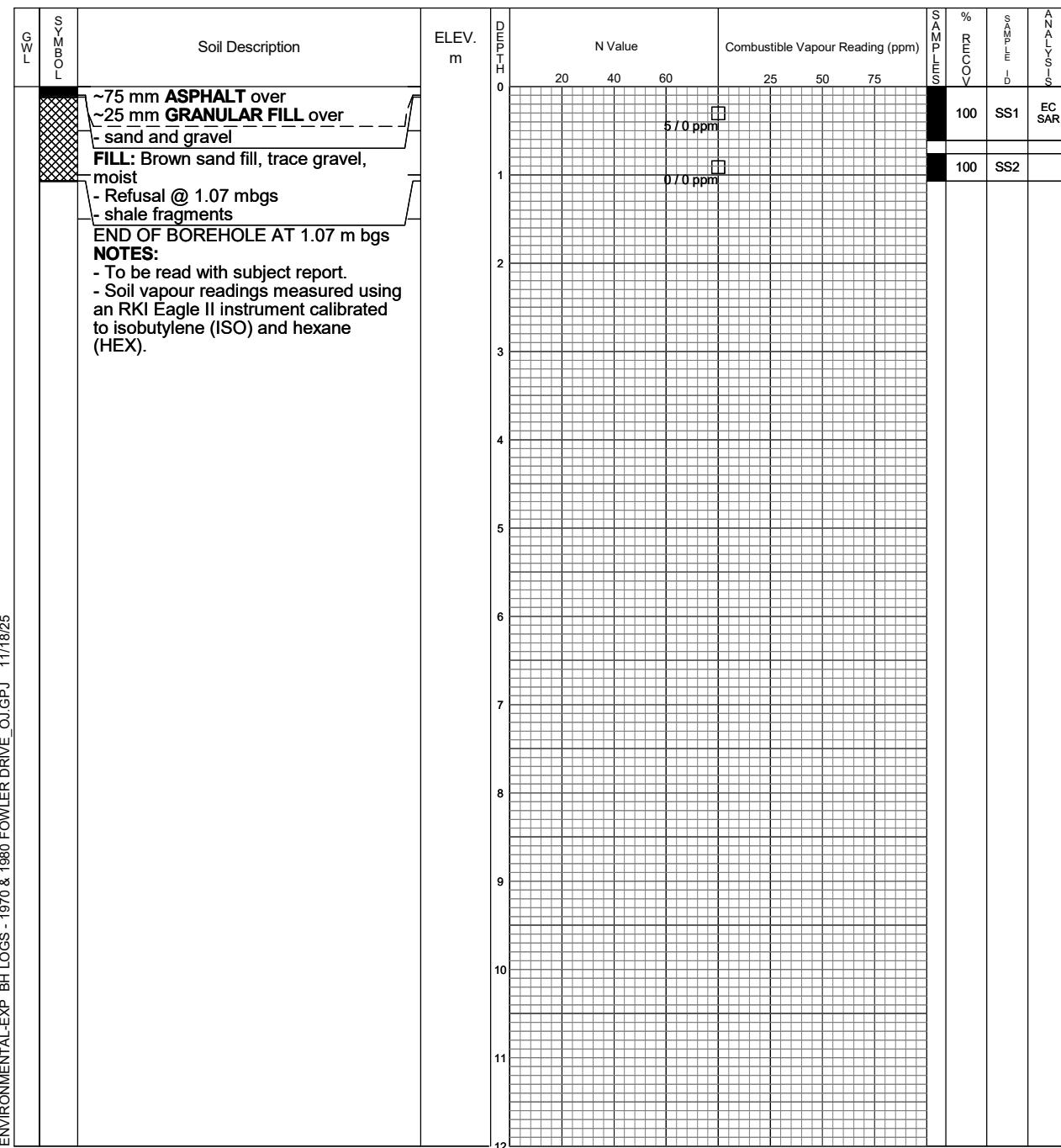
BTEX Benzene, Toluene, Ethylbenzene and Xylenes

* Duplicate Sample

Datum: Geodetic

ING Metals and Inorganics

PCB Polychlorinated Biphenyls


MET Metals

PHC Petroleum Hydrocarbons (F1-F4)

PAH Polycyclic Aromatic Hydrocarbons

VOC Volatile Organic Compounds

PEST Organochlorine Pesticides

ENVIRONMENTAL-EXP BH LOGS - 1970 & 1980 FOWLER DRIVE_OJGPJ 11/18/25

EXP Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH25-108

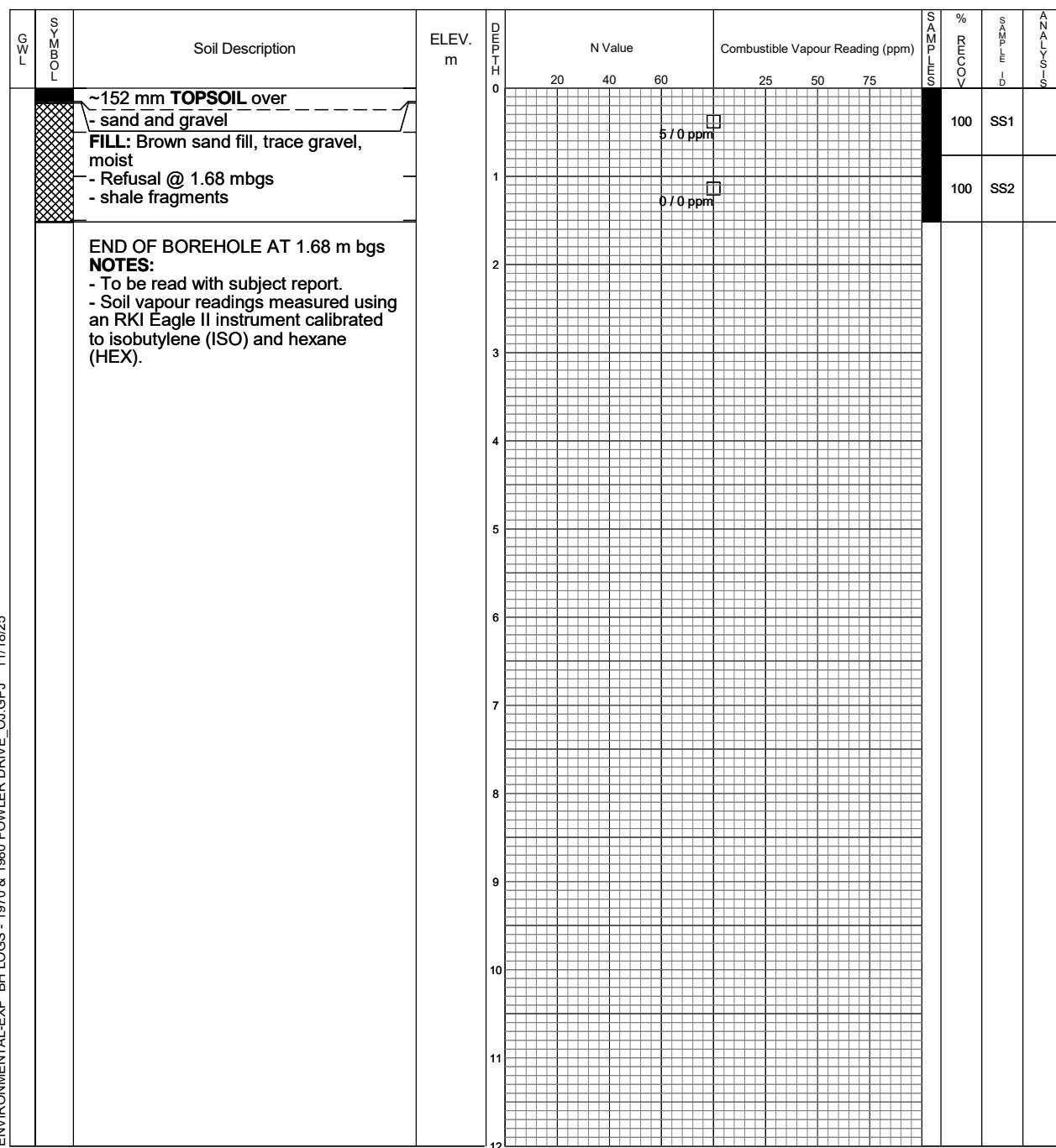
Project No. GTR-22022660-C0

Drawing No. 8

Project: Phase Two ESA

Sheet No. 1 of 1

Location: 1970 and 1980 Fowler Drive, Mississauga, Ontario


Please Refer to Borehole Location Plan

Date Drilled: November 10, 2025

Drill Type: Hand Auger

Datum: Geodetic

Chemical Analysis			
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes	*	Duplicate Sample
ING	Metals and Inorganics	PCB	Polychlorinated Biphenyls
MET	Metals	PHC	Petroleum Hydrocarbons (F1-F4)
PAH	Polycyclic Aromatic Hydrocarbons	VOC	Volatile Organic Compounds
PEST	Organochlorine Pesticides		

ENVIRONMENTAL-EXP BH LOGS - 1970 & 1980 FOWLER DRIVE OY, GPY 11/18/25

EXP Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole 1s

Project No. GTR-22022660-A0

Drawing No. 2

Project: Geotechnical Investigation

Sheet No. 1 of 1

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan

Date Drilled: Jue 21, 2023

Auger Sample

Combustible Vapour Reading

SPT (N) Value

Natural Moisture

Dynamic Cone Test

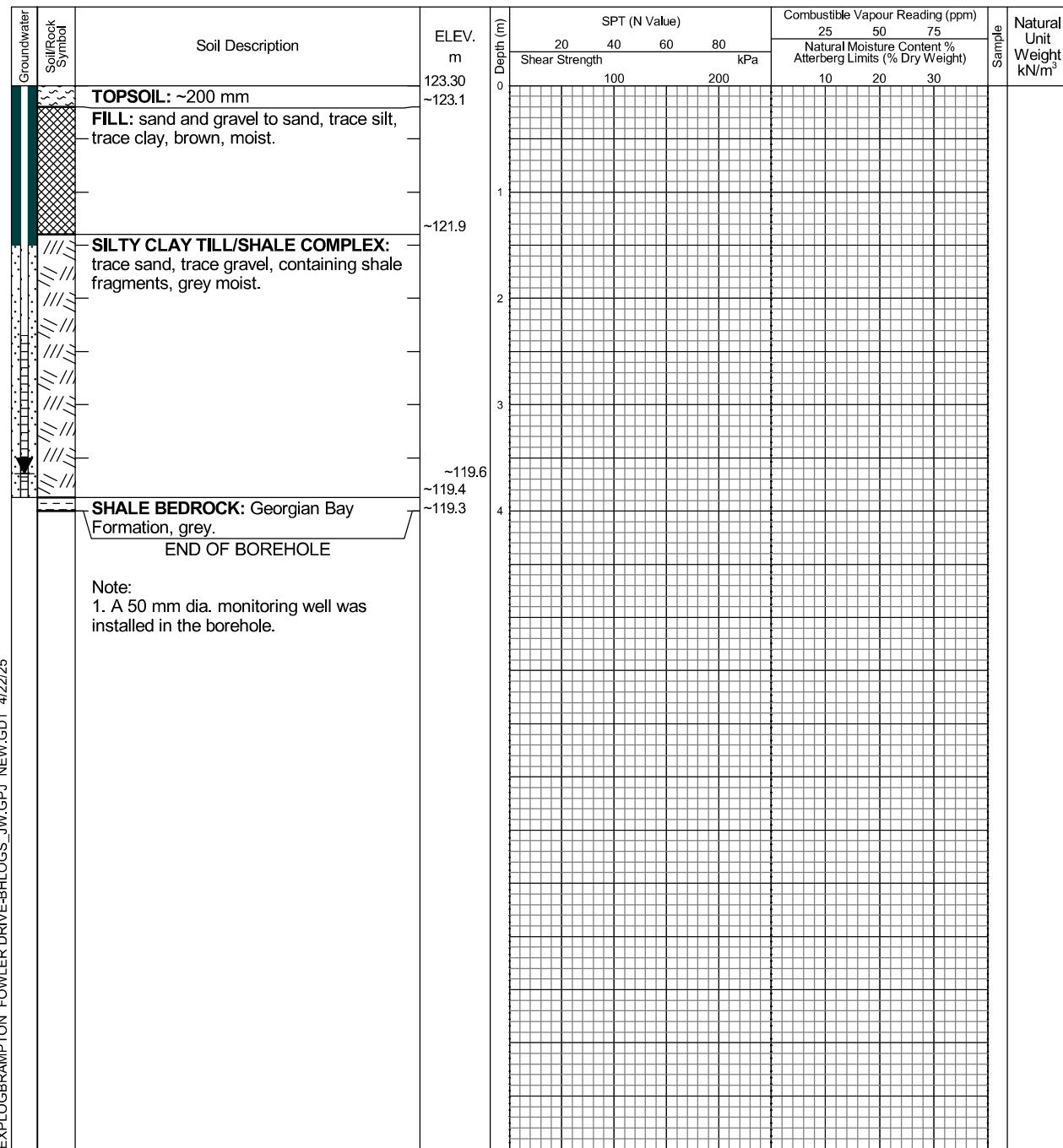
Plastic and Liquid Limit

Shelby Tube

Undrained Triaxial at

Field Vane Test

% Strain at Failure



Drill Type: Hollow Stem Auger / Rock Coring

Penetrometer

Datum: Geodetic

EXPLOGBRAMPTON FOWLER DRIVE-BHLOGS_JW.GPJ NEW.GDT 4/22/25

Date	Water Level (m)	Hole Open to (m)
July 11, 2023	3.68	
April 11, 2025	4.45	
April 21, 2025	4.49	

Log of Borehole 2

Project No. GTR-22022660-A0

Drawing No. 3

Project: Geotechnical Investigation

Sheet No. 1 of 1

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan

Date Drilled: Jun 21, 2023

Auger Sample

Combustible Vapour Reading

Natural Moisture

Drill Type: Soild Stem Auger

SPT (N) Value

Plastic and Liquid Limit

Datum: Geodetic

Dynamic Cone Test

Undrained Triaxial at

% Strain at Failure

Shelby Tube

Penetrometer

EXPLOGBRAZPTON FOWLER DRIVE-BHLOGS_JW.GPJ NEW.GDT 4/22/25

Date	Water Level (m)	Hole Open to (m)

Log of Borehole 3

Project No. GTR-22022660-A0

Drawing No. 4

Project: Geotechnical Investigation

Sheet No. 1 of 1

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan

Date Drilled: Jue 20, 2023

Auger Sample

Drill Type: Soild Stem Auger

SPT (N) Value

Datum: Geodetic

Dynamic Cone Test

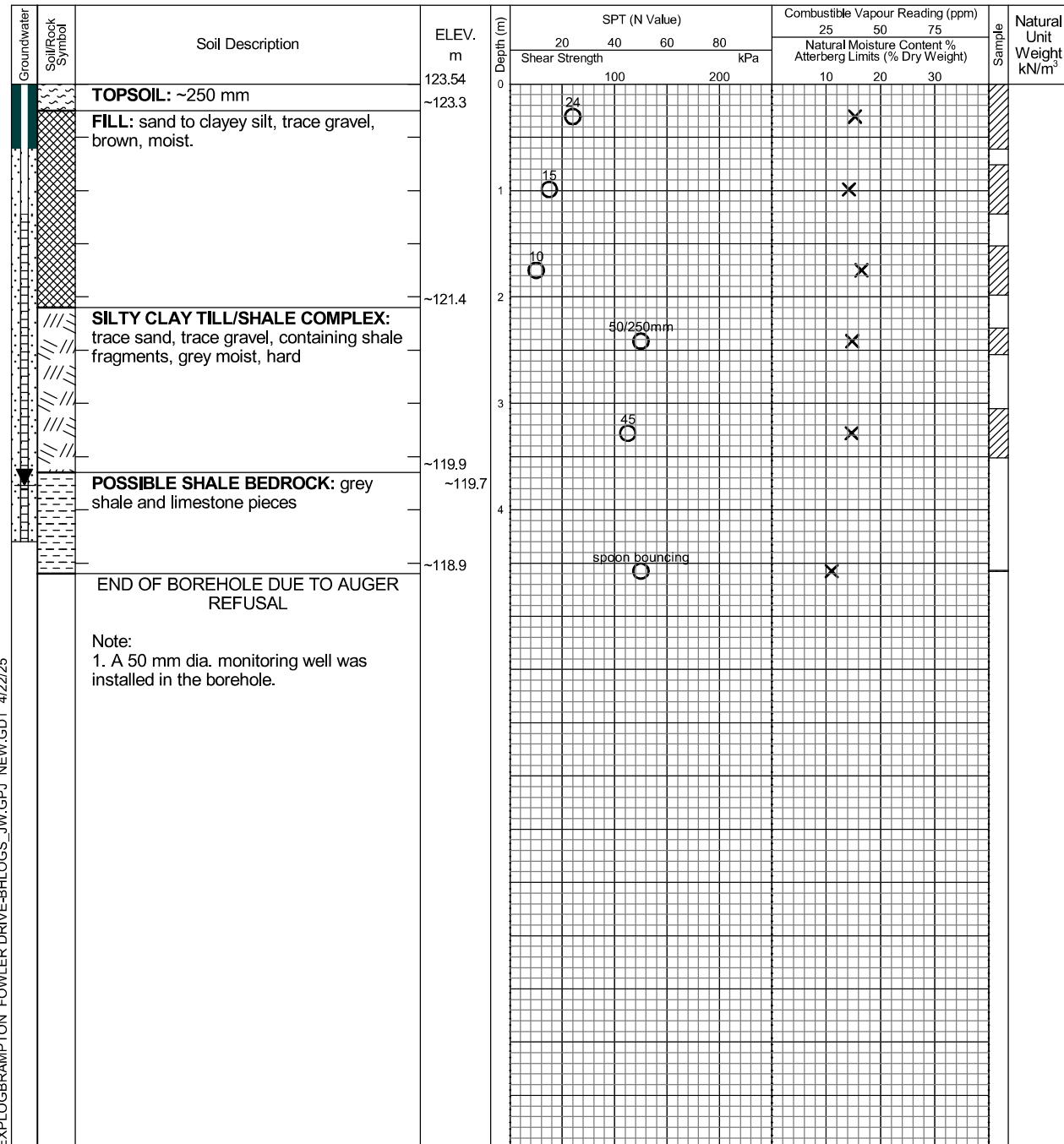
Shelby Tube

Field Vane Test

Combustible Vapour Reading

Natural Moisture

Plastic and Liquid Limit


Undrained Triaxial at

% Strain at Failure

Penetrometer

Date	Water Level (m)	Hole Open to (m)
July 11, 2023	3.8	
April 11, 2025	4.56	
April 21, 2025	4.58	

Log of Borehole 4

Project No. BRM-22022660-A0

Drawing No. 5

Project: Geotechnical Investigation

Sheet No. 1 of 1

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan

Date Drilled: Jun 21, 2023

Auger Sample

Combustible Vapour Reading

Natural Moisture

Drill Type: Soild Stem Auger

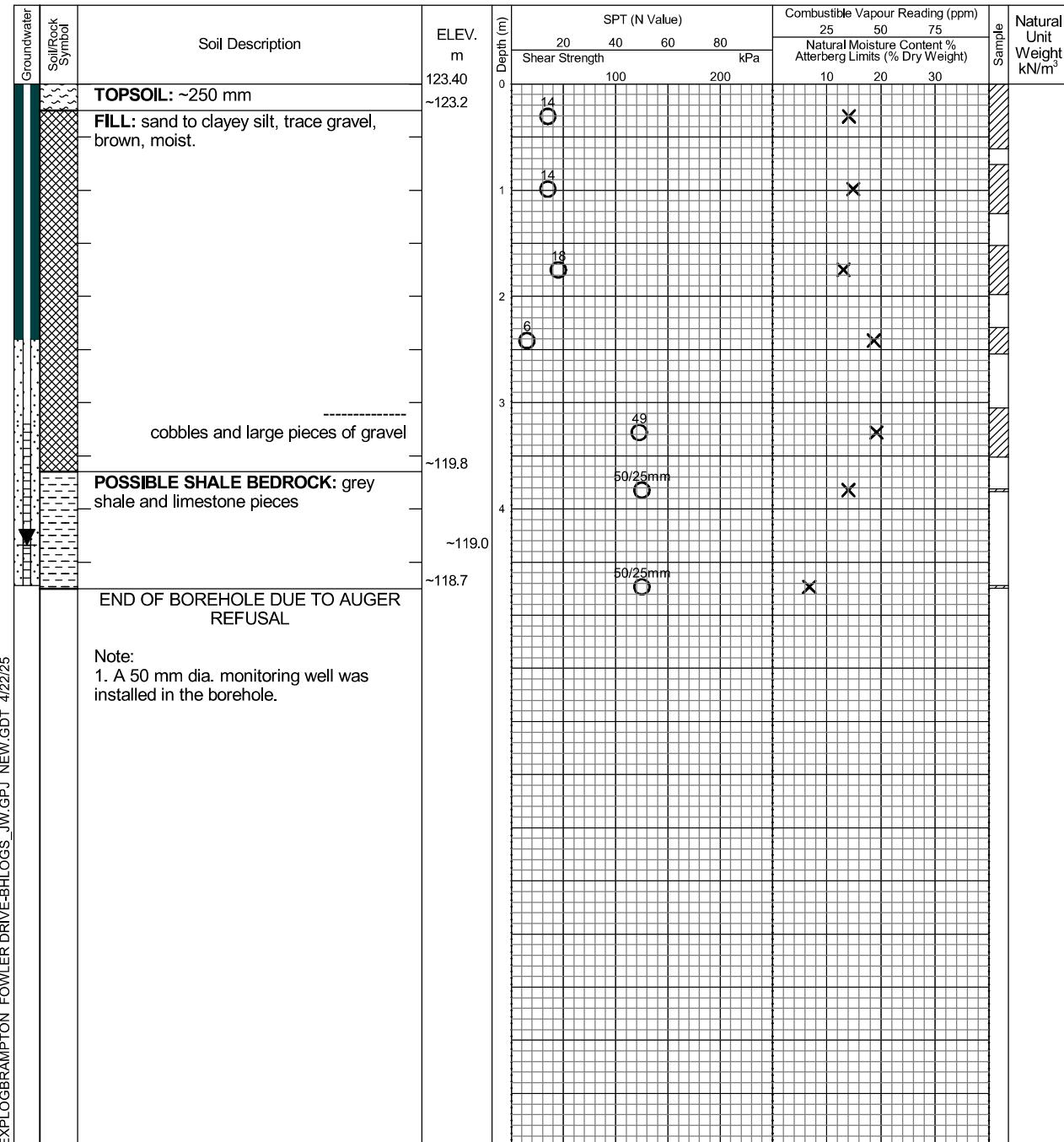
SPT (N) Value

Plastic and Liquid Limit

Datum: Geodetic

Dynamic Cone Test

Undrained Triaxial at % Strain at Failure



Geodetic

Shelby Tube

Penetrometer

Date	Water Level (m)	Hole Open to (m)
July 11, 2023	4.37	
April 11, 2025	4.24	
April 21, 2025	4.49	

Log of Borehole 5

Project No. GTR-22022660-A0

Drawing No. 6

Project: Geotechnical Investigation

Sheet No. 1 of 1

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan

Date Drilled: Jun 21, 2023

Auger Sample

Combustible Vapour Reading

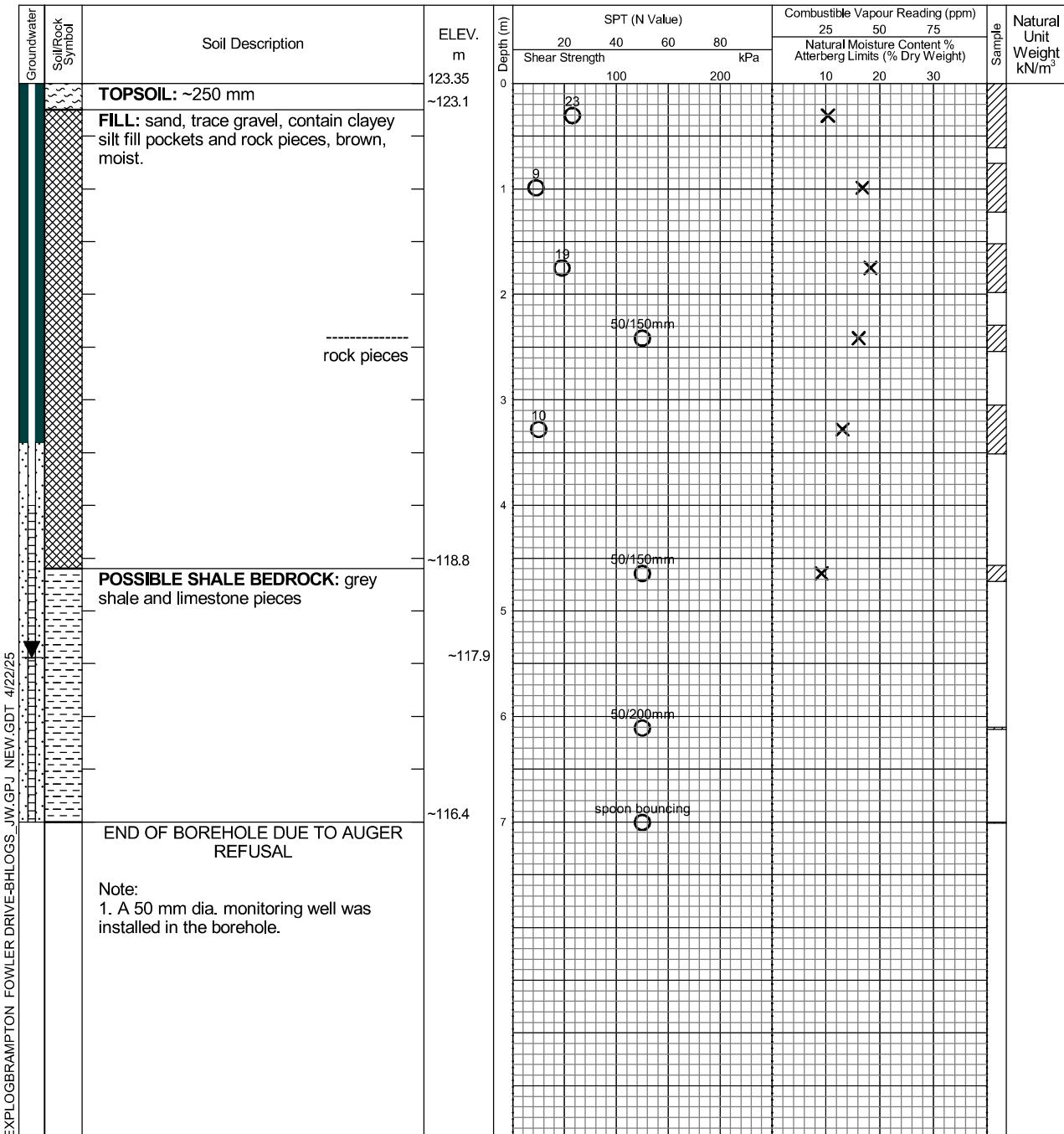
Drill Type: **Soild Stem Auger**

SPT (N) Value

Natural Moisture

Datum: Geodetic

SP (N) values


Natural Moisture

Shelby Tube

Undrained Triaxial at 2% Strain at Failure

water
rock
oil

Penetrometer

Date	Water Level (m)	Hole Open to (m)
July 11, 2023	5.47	

Log of Borehole 6

Project No. GTR-22022660-A0

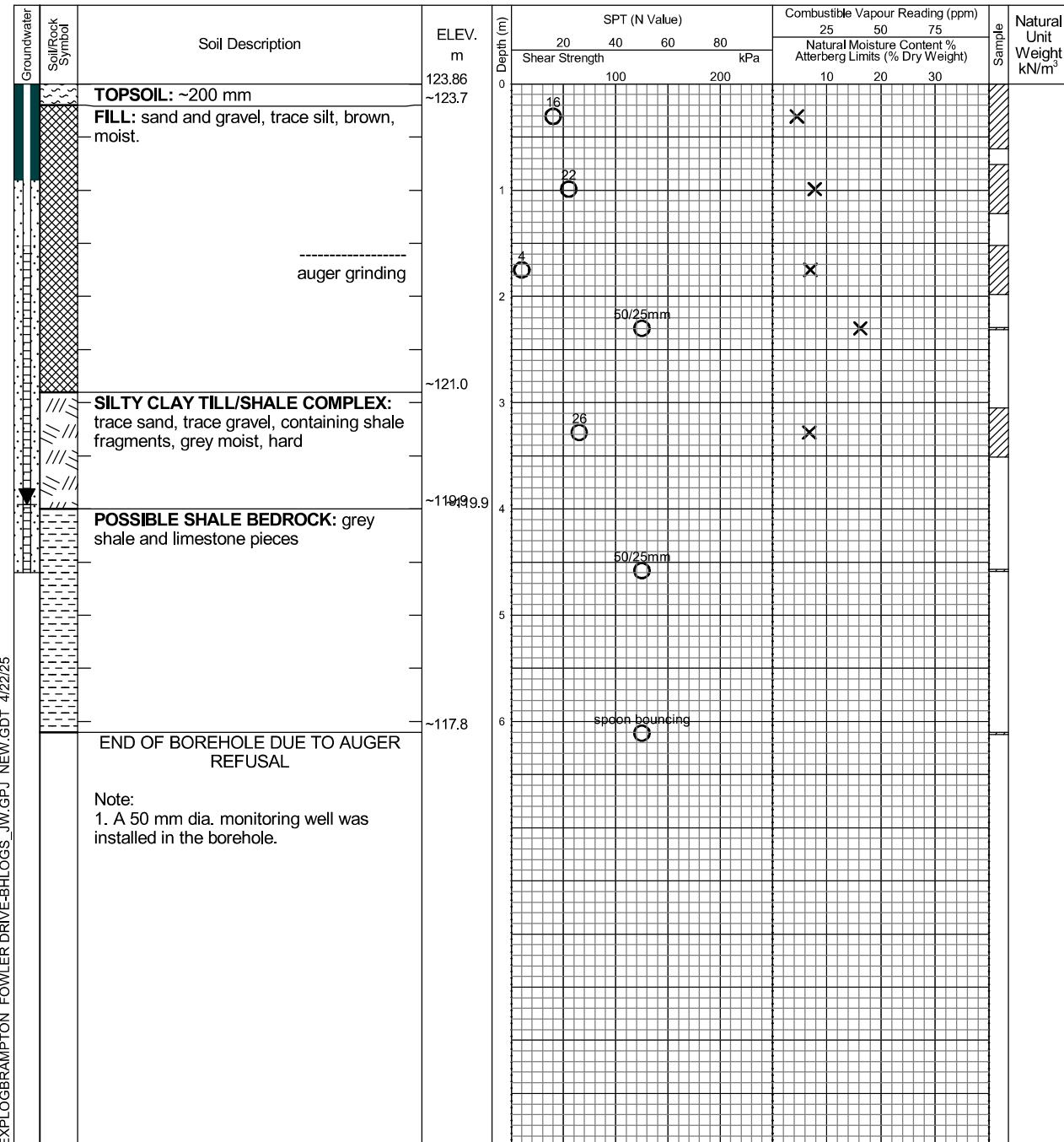
Drawing No. 7

Project: Geotechnical Investigation

Sheet No. 1 of 1

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan


Date Drilled: Jue 20, 2023

Auger Sample
SPT (N) Value
Dynamic Cone Test
Shelby Tube
Field Vane Test

Combustible Vapour Reading
Natural Moisture
Plastic and Liquid Limit
Undrained Triaxial at
% Strain at Failure
Penetrometer

Drill Type: Soild Stem Auger

Datum: Geodetic

EXPLOGBRAMPTON FOWLER DRIVE-BHLOGS_JW.GPJ NEW.GDT 4/22/25

Date	Water Level (m)	Hole Open to (m)
July 11, 2023	3.99	

Log of Borehole 25-1

Project No. BRM-22022660-B0

Drawing No. 8

Project: Geotechnical Investigation

Sheet No. 1 of 2

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan

Date Drilled: March 19, 2025

Auger Sample

Combustible Vapour Reading

SPT (N) Value

Natural Moisture

Dynamic Cone Test

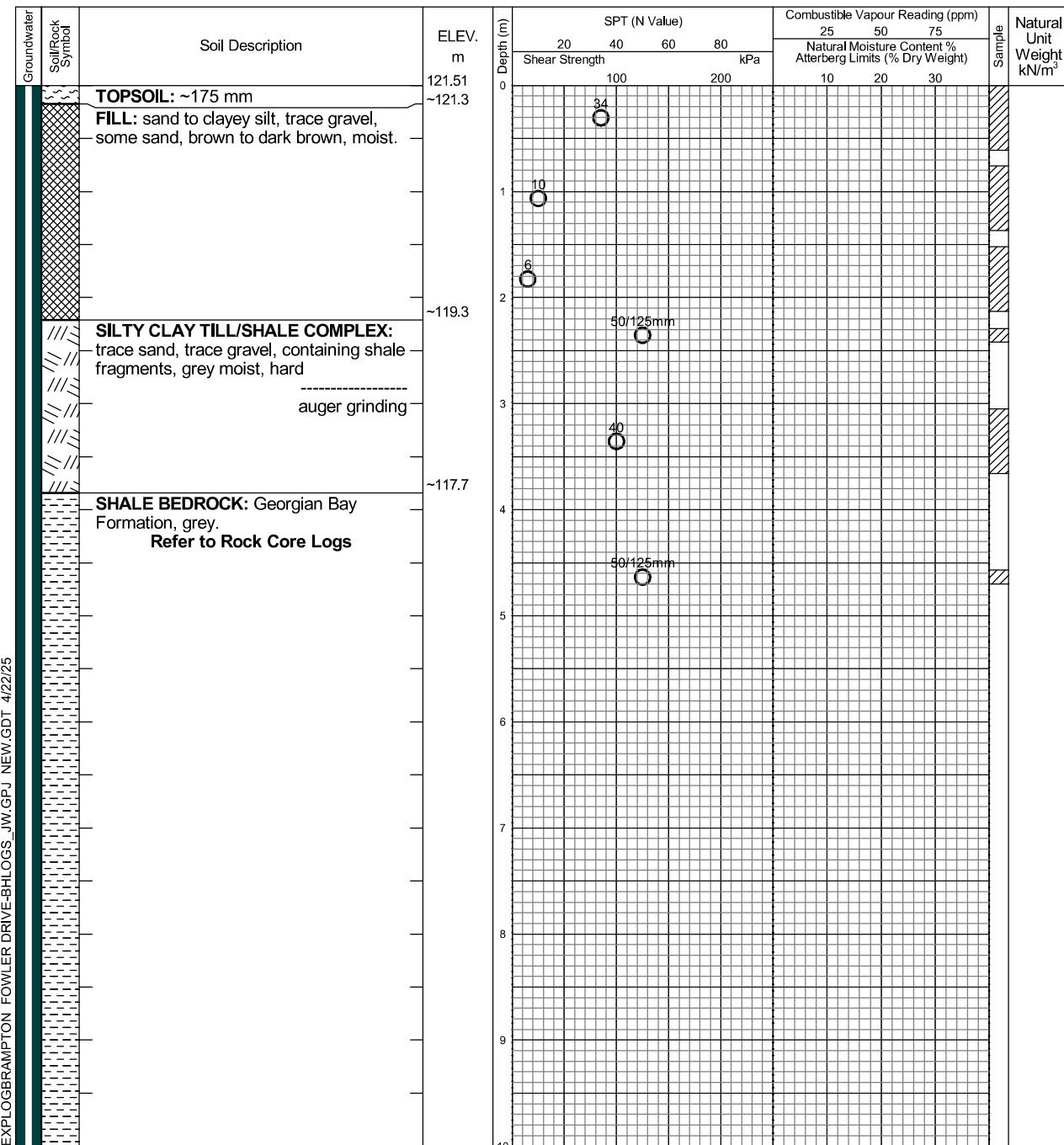
Plastic and Liquid Limit

Shelby Tube

Undrained Triaxial at

Field Vane Test

% Strain at Failure



Drill Type: Hollow Stem Auger / Rock Coring

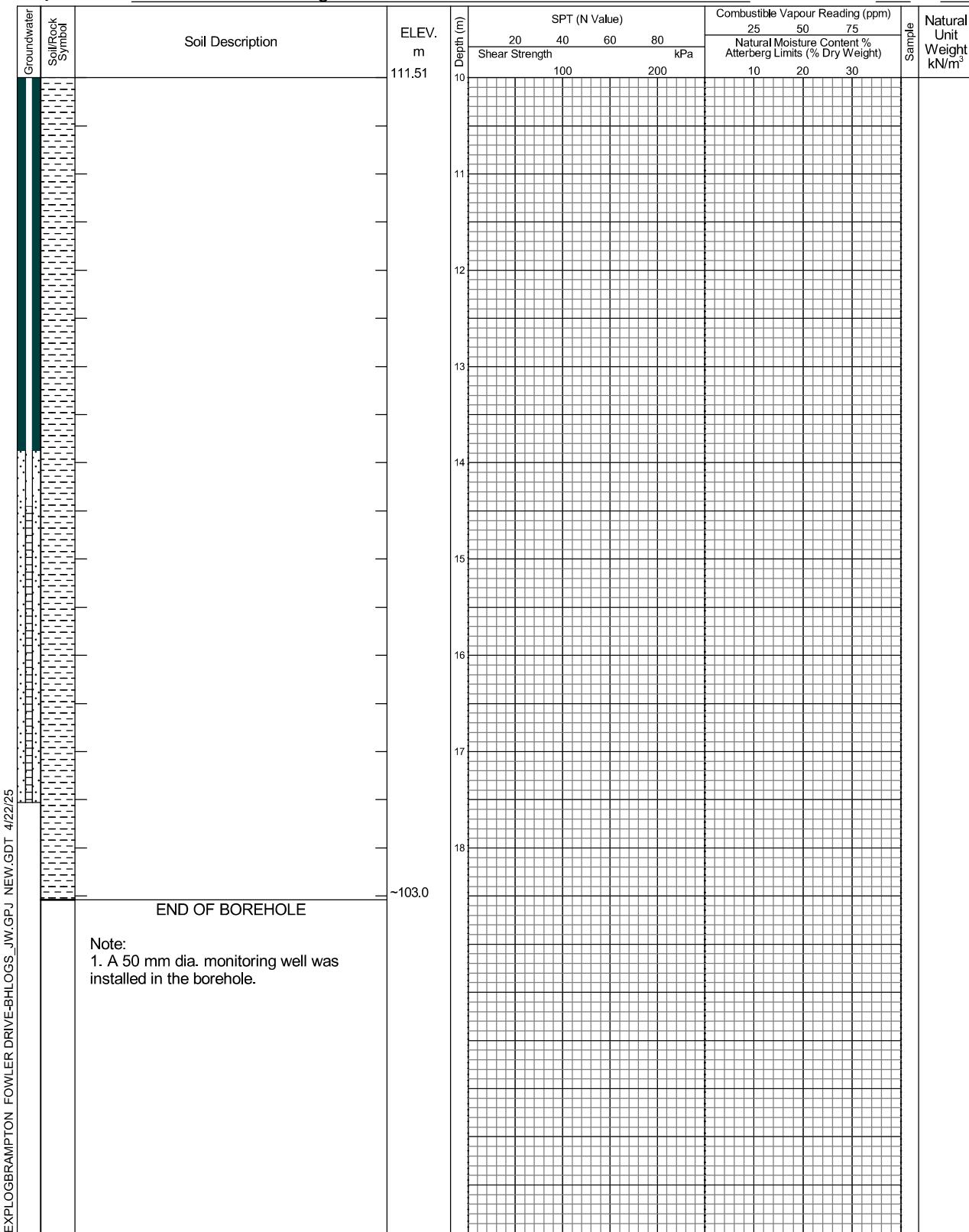
Penetrometer

Datum: Geodetic

Continued Next Page

EXPLOGBRAKPTON FOWLER DRIVE-BHLOGS_JW GPJ NEW.GDT 4/22/25

Date	Water Level (m)	Hole Open to (m)
April 11, 2025	6.18	
April 21, 2025	6.30	


Log of Borehole 25-1

Project No. BRM-22022660-B0

Drawing No. 8

Project: Geotechnical Investigation

Sheet No. 2 of 2

EXPLOGBRAMPTON FOWLER DRIVE-BHLOGS_JW.GPJ NEW.GDT 4/22/25

Date	Water Level (m)	Hole Open to (m)
April 11, 2025 April 21, 2025	6.18 6.30	

Log of Borehole 25-2

Project No. BRM-22022660-B0

Drawing No. 9

Project: Geotechnical Investigation

Sheet No. 1 of 2

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan

Date Drilled: March 18, 2025

Auger Sample

Combustible Vapour Reading

SPT (N) Value

Natural Moisture

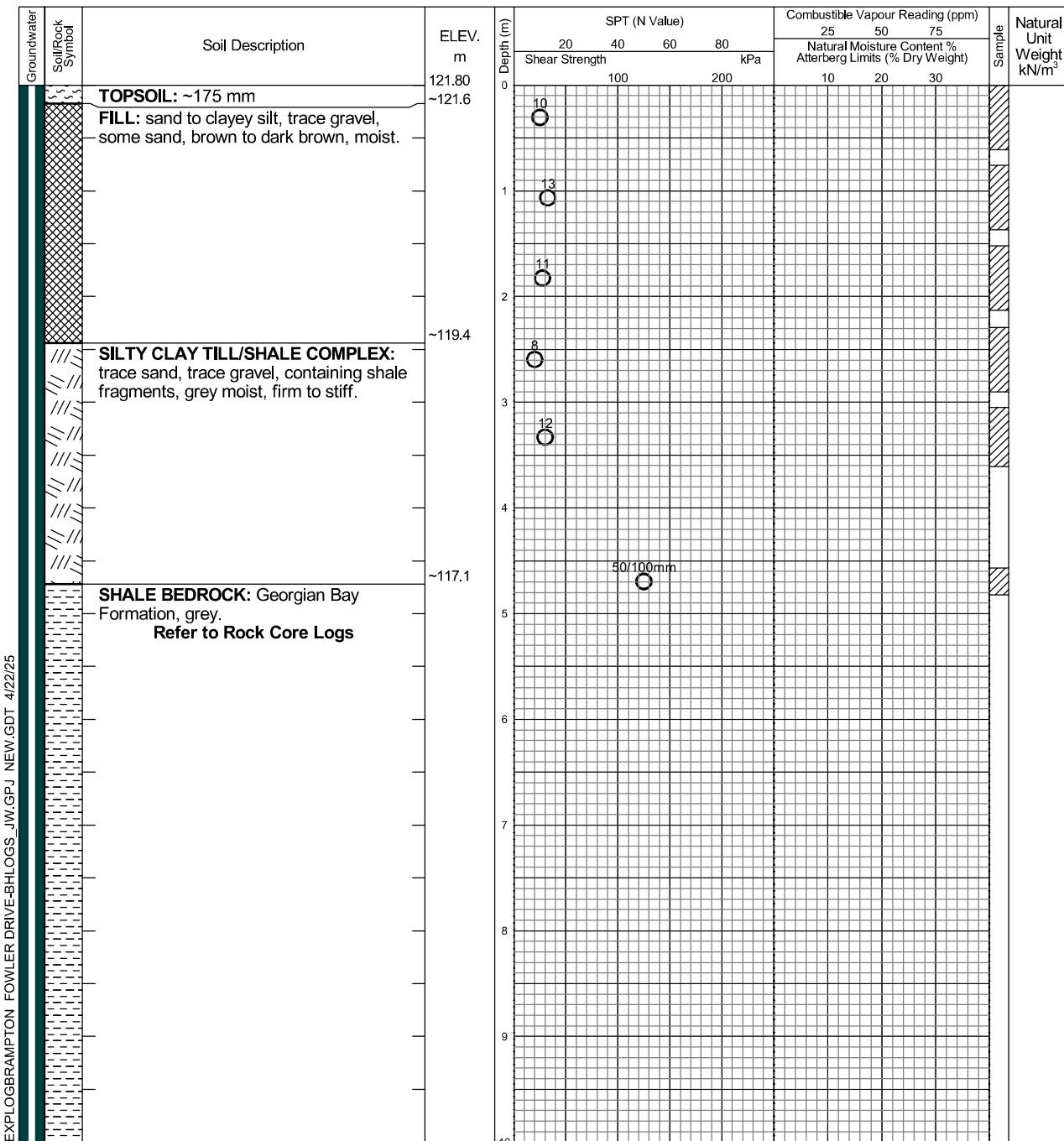
Dynamic Cone Test

Plastic and Liquid Limit

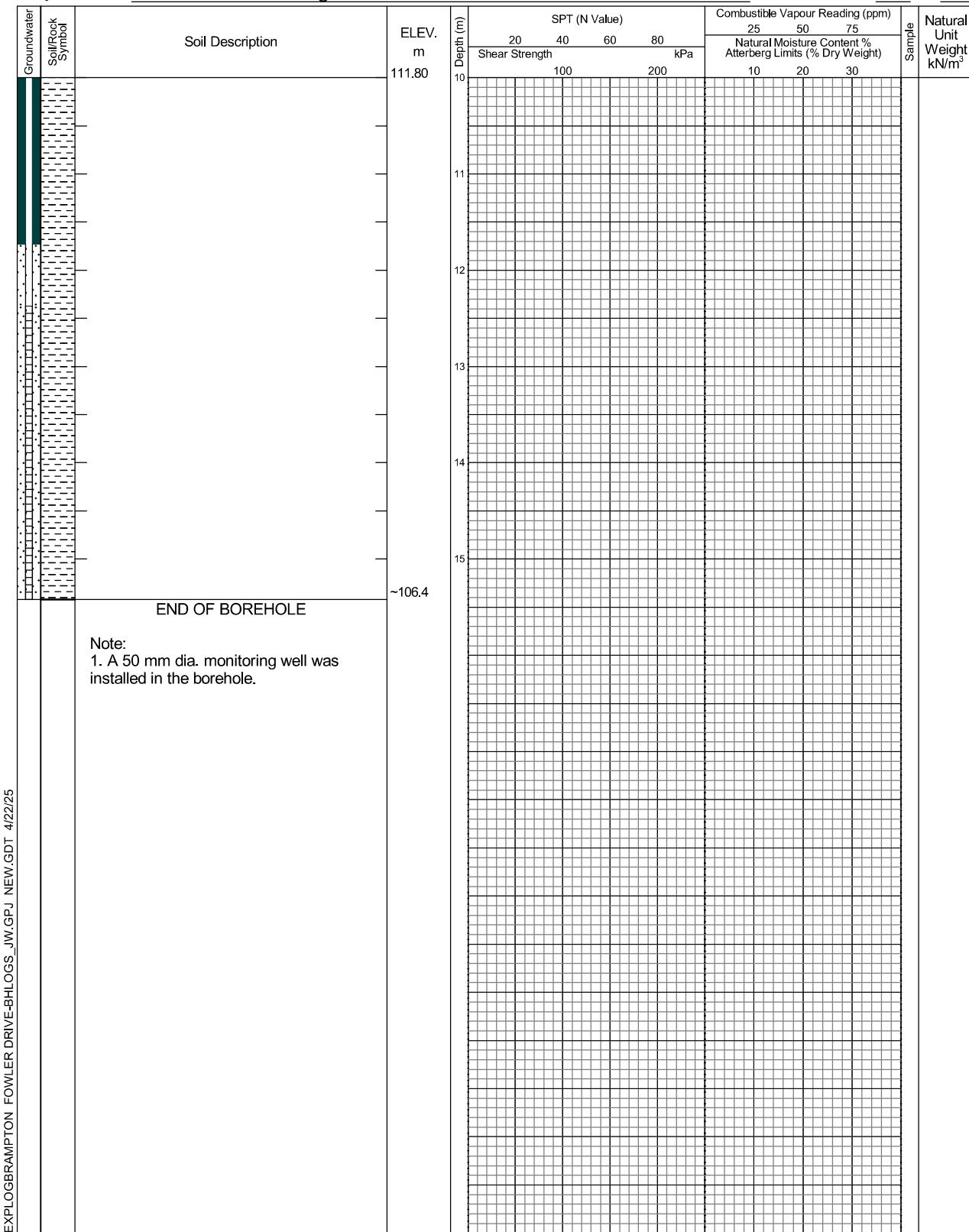
Shelby Tube

Undrained Triaxial at

Field Vane Test



% Strain at Failure


Datum: Geodetic

Penetrometer

Continued Next Page

Date	Water Level (m)	Hole Open to (m)
April 11, 2025 April 21, 2025	5.52 5.65	

EXPLOGBRAMPTON FOWLER DRIVE-BHLOGS_JW.GPJ NEW.GDT 4/22/25

Date	Water Level (m)	Hole Open to (m)
April 11, 2025 April 21, 2025	5.52 5.65	

Log of Borehole 25-3

Project No. BRM-22022660-B0

Drawing No. 10

Project: Geotechnical Investigation

Sheet No. 1 of 2

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan

Date Drilled: March 25, 2025

Auger Sample

Combustible Vapour Reading

SPT (N) Value

Natural Moisture

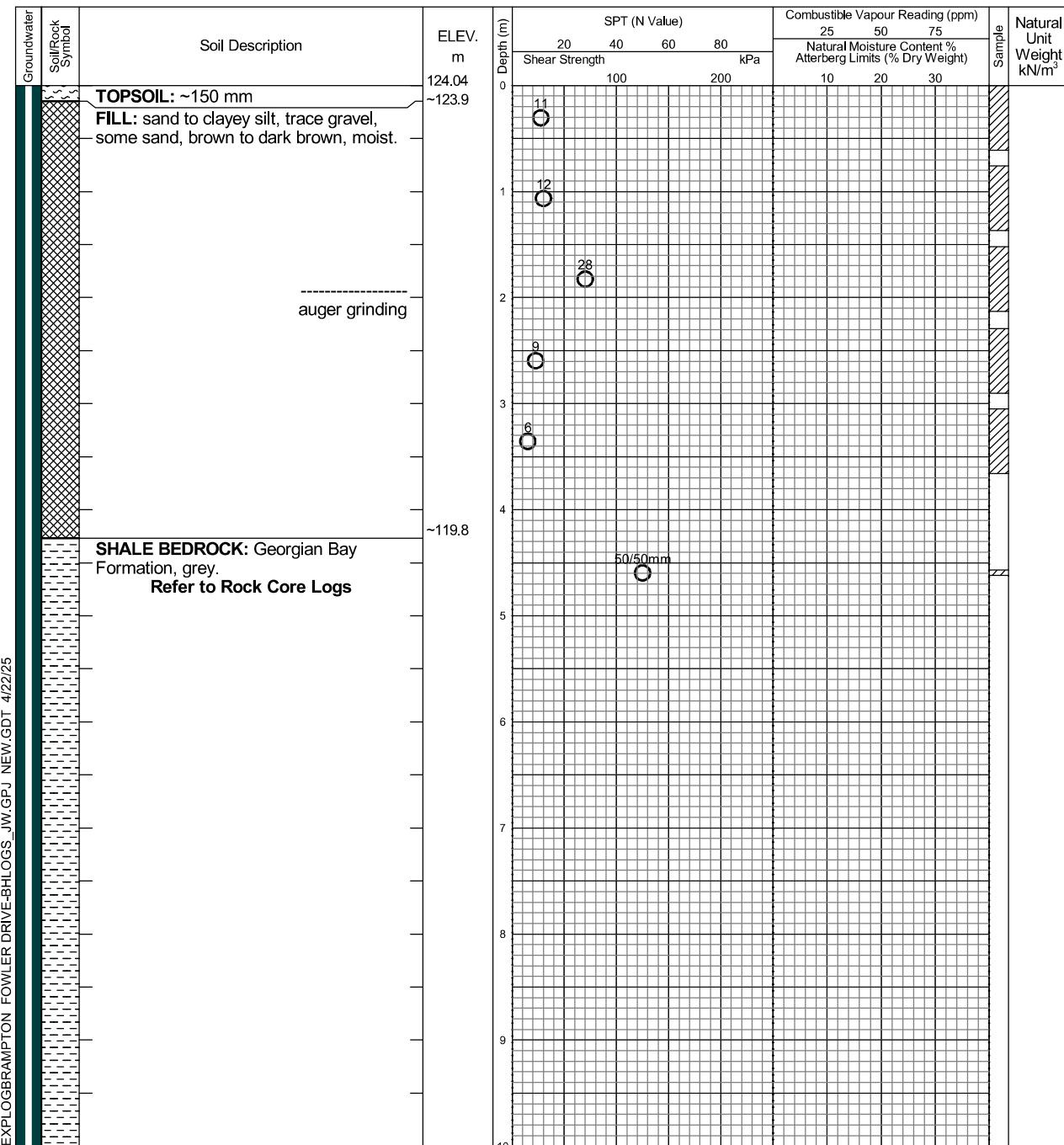
Dynamic Cone Test

Plastic and Liquid Limit

Shelby Tube

Undrained Triaxial at

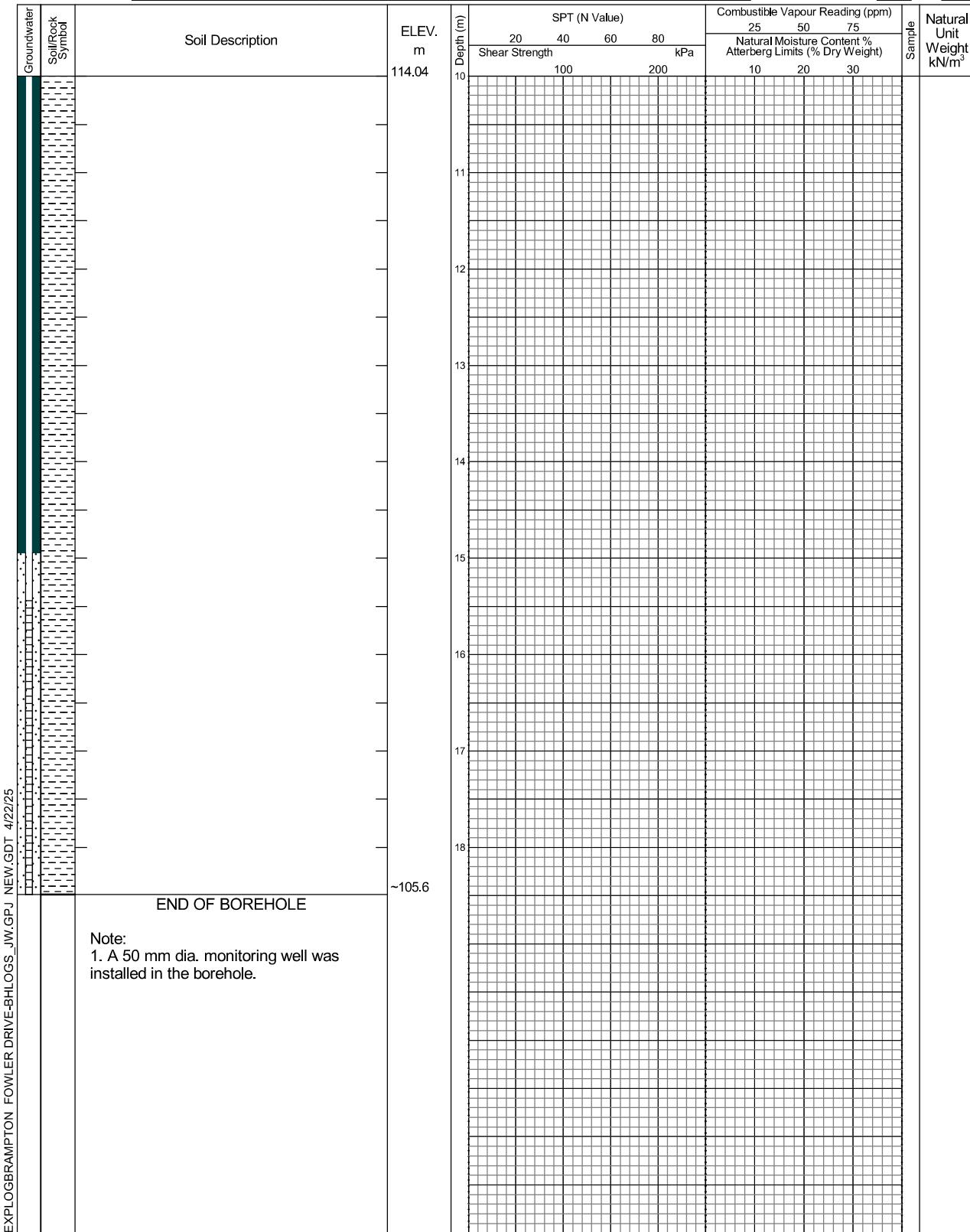
% Strain at Failure


Field Vane Test

Penetrometer

Datum: Geodetic

Continued Next Page


EXPLOGBRAMPTON FOWLER DRIVE-BHLOGS_JW.GPJ NEW.GDT 4/22/25

Date	Water Level (m)	Hole Open to (m)
April 11, 2025 April 21, 2025	5.24 5.68	

Project: Geotechnical Investigation

Sheet No. 2 of 2

Date	Water Level (m)	Hole Open to (m)
April 11, 2025	5.24	
April 21, 2025	5.68	

Log of Borehole 25-4

Project No. BRM-22022660-B0

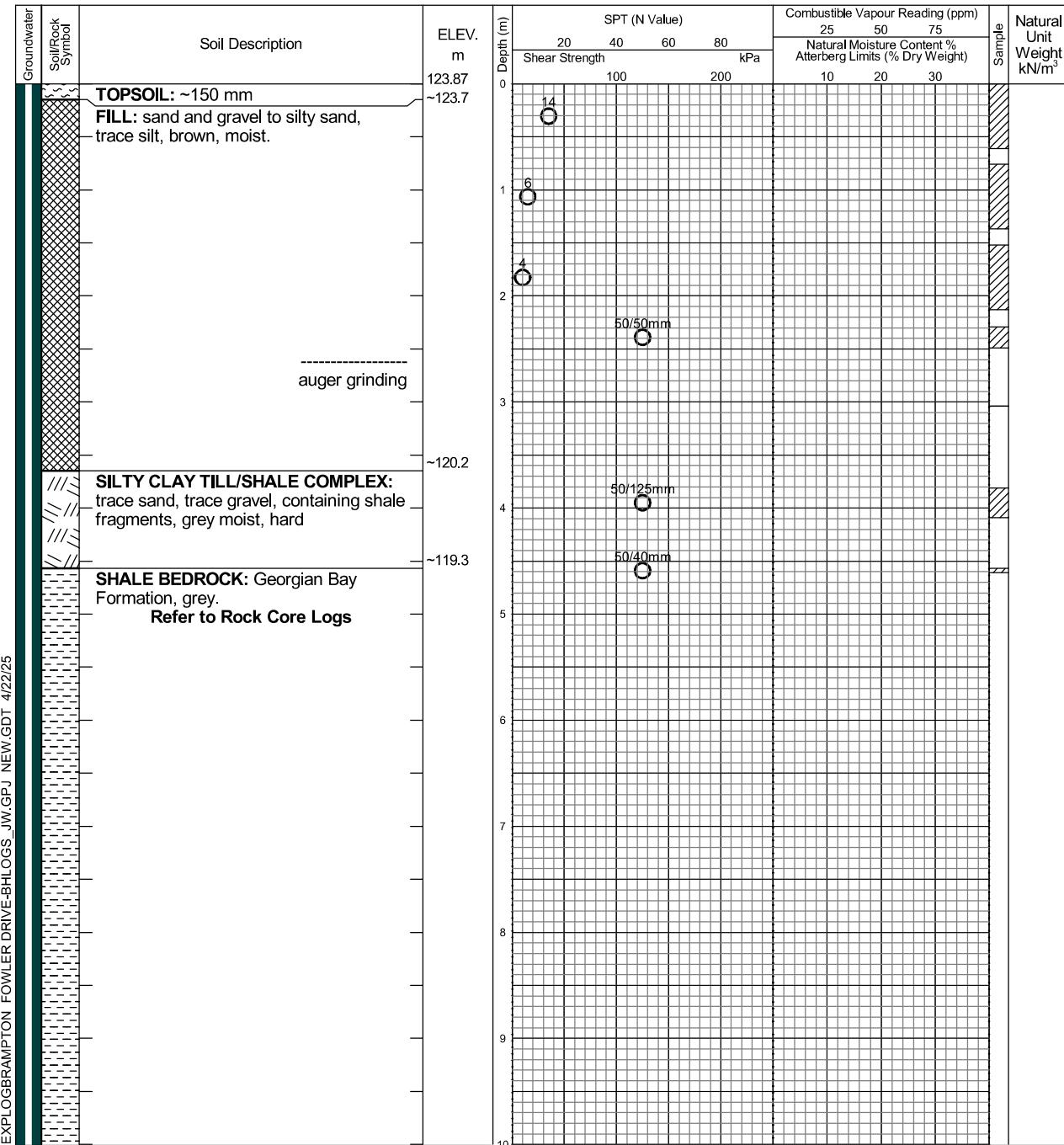
Drawing No. 11

Project: Geotechnical Investigation

Sheet No. 1 of 2

Location: 1970&1980 Fowler Drive, Mississauga, Ontario

See Borehole Location Plan


Date Drilled: March 21, 2025

Auger Sample
SPT (N) Value
Dynamic Cone Test
Shelby Tube
Field Vane Test

Combustible Vapour Reading
Natural Moisture
Plastic and Liquid Limit
Undrained Triaxial at
% Strain at Failure
Penetrometer

Drill Type: Hollow Stem Auger / Rock Coring

Datum: Geodetic

Continued Next Page

Date	Water Level (m)	Hole Open to (m)
April 11, 2025	7.76	
April 21, 2025	8.66	

Project: Geotechnical Investigation

Sheet No. 2 of 2

water

Sheet No. 2 of 2

EXPLORATION FOWLER DRIVE-BHLOGS_JW.GPJ NEW.GDT 4/22/25

Date	Water Level (m)	Hole Open to (m)
April 11, 2025	7.76	
April 21, 2025	8.66	

Appendix D – Analytical Results

SOIL ANALYTICAL RESULTS:

Table D-1 - Petroleum Hydrocarbons including BTEX in Soil

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Location ID	MECP (2011) Table 6: Generic SCS for Shallow Soils in a Potable Groundwater Condition RPI Land Use (coarse textured soil)	Reporting Detection Limit (RDL)*	BH25-102	BH25-103	
			BH25-102 S3	BH25-103 S2	BH25-103 S2-0 (Duplicate of BH25-103 S2)
Field Sample ID			7234676	7235122	7235123
Lab ID			10-Nov-25	10-Nov-25	10-Nov-25
Sampling Date			1.52 - 2.29	0.76 - 1.52	0.76 - 1.52
Soil Sample Depth (m)			EXP	EXP	EXP
Consultant			AGAT	AGAT	AGAT
Laboratory			25T367696	25T367696	25T367696
Certificate of Analysis Number					
Benzene	0.21	0.02	<0.02	<0.02	<0.02
Toluene	2.3	0.05	<0.05	<0.05	<0.05
Ethylbenzene	1.1	0.05	<0.05	<0.05	<0.05
m-Xylene + p-Xylene	NV	0.05	<0.05	<0.05	<0.05
o-Xylene	NV	0.05	<0.05	<0.05	<0.05
Xylenes (Total)	3.1	0.05	<0.05	<0.05	<0.05
PHC F1 (C6-C10)	NV	5	<5	<5	<5
PHC F1 (C6-C10) - BTEX	55	5	<5	<5	<5
PHC F2 (C10-C16)	98	7	<7	<7	<7
PHC F3 (C16-C34)	300	50	<50	<50	<50
PHC F4 (C34-C50)	2800	50	<50	<50	<50
PHC F4 (C34-C50)-gravimetric	2800	50	NA	NA	NA

All soil concentrations reported in µg/g.

* Maximum RDL below MECP (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

NA= Not applicable or not analyzed

Bold

Concentration exceeds MECP (2011) Table 6 SCS.

Non-detect but detection limit exceeds the MECP (2011) SCS

SOIL ANALYTICAL RESULTS:

Table D-2 - Polycyclic Aromatic Hydrocarbons in Soil
GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Location ID	MECP (2011) Table 6: Generic SCS for Shallow Soils in a Potable Groundwater Condition	Reporting Detection Limit (RDL)*	BH25-102	BH25-103	
			BH25-102 S3	BH25-103 S2	BH25-103 S2-0 (Duplicate of BH25-103 S2)
Field Sample ID			BH25-102 S3	BH25-103 S2	BH25-103 S2-0 (Duplicate of BH25-103 S2)
Lab ID			7234676	7235122	7235123
Sampling Date			10-Nov-25	10-Nov-25	10-Nov-25
Soil Sample Depth (m)			1.52 - 2.29	0.76 - 1.52	0.76 - 1.52
Consultant			EXP	EXP	EXP
Laboratory			AGAT	AGAT	AGAT
Certificate of Analysis Number			25T367696	25T367696	25T367696
Naphthalene	0.6	0.05	<0.05	<0.05	<0.05
Acenaphthylene	0.15	0.05	<0.05	<0.05	<0.05
Acenaphthene	7.9	0.05	<0.05	<0.05	<0.05
Fluorene	62	0.05	<0.05	<0.05	<0.05
Phenanthrene	6.2	0.05	<0.05	<0.05	<0.05
Anthracene	0.67	0.05	<0.05	<0.05	<0.05
Fluoranthene	0.69	0.05	<0.05	<0.05	<0.05
Pyrene	78	0.05	<0.05	<0.05	<0.05
Benzo(a)anthracene	0.5	0.05	<0.05	<0.05	<0.05
Chrysene	7	0.05	<0.05	<0.05	<0.05
Benzo(b/j)fluoranthene	0.78	0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	0.78	0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	0.3	0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-cd)pyrene	0.38	0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	0.1	0.05	<0.05	<0.05	<0.05
Benzo(ghi)perylene	6.6	0.05	<0.05	<0.05	<0.05
1&2-Methylnaphthalene	0.99	0.05	<0.05	<0.05	<0.05

All soil concentrations reported in µg/g.

* Maximum RDL below MECP (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV' = No value

NA = Not applicable or not analyzed

Bold Concentration exceeds MECP (2011) Table 6 SCS.

Non-detect but detection limit exceeds the MECP (2011) SCS

SOIL ANALYTICAL RESULTS:

Table D-4 - Metals, Hydride-Forming Metals, and Other Regulated Parameters in
GTR-2202660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Location ID	MECP (2011) Table 6: Generic SCS for Shallow Soils in a Potable Groundwater Condition RPI Land Use (coarse textured soil)	Reporting Detection Limit (RDL)*	BH25-102		BH25-103
			BH25-102 S3	BH25-103 S2	BH25-103 S2-0 (Duplicate of BH25-103 S2)
Field Sample ID			7234676	7235122	7235123
Lab ID			10-Nov-25	10-Nov-25	10-Nov-25
Sampling Date			1.52 - 2.29	0.76 - 1.52	0.76 - 1.52
Soil Sample Depth (m)			EXP	EXP	EXP
Consultant			AGAT	AGAT	AGAT
Laboratory			25T367696	25T367696	25T367696
Certificate of Analysis Number					
Metals					
Antimony	7.5	0.8	<0.8	<0.8	<0.8
Arsenic	18	1	7	5	4
Barium	390	2.0	57.4	128	132
Beryllium	4	0.5	0.8	0.7	0.7
Boron (Total)	120	5	9	13	13
Cadmium	1.2	0.5	<0.5	<0.5	<0.5
Chromium (total)	160	5	22	21	20
Cobalt	22	0.8	12	10.6	10.1
Copper	140	1.0	24.3	14.3	14.2
Lead	120	1	13	18	15
Molybdenum	6.9	0.5	<0.5	1.1	1.1
Nickel	100	1	24	22	21
Selenium	2.4	0.8	<0.8	<0.8	<0.8
Silver	20	0.5	<0.5	<0.5	<0.5
Thallium	1	0.5	<0.5	<0.5	<0.5
Uranium	23	0.50	<0.50	0.7	0.75
Vanadium	86	2.0	28.6	27.9	26.6
Zinc	340	5	59	62	57
Boron (hot water soluble)	1.5	0.10	0.24	0.3	0.33
Chromium VI	8	0.2	<0.2	<0.2	<0.2
Free Cyanide	0.051	0.040	<0.040	<0.040	<0.040
Mercury	0.27	0.10	<0.10	<0.10	<0.10

All soil concentrations reported in µg/g.

* Maximum RDL below MECP (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

NA= Not applicable or not analyzed

Bold Concentration exceeds MECP (2011) Table 6 SCS.
Non-detect but

SOIL ANALYTICAL RESULTS:

Table D-4 - Electrical Conductivity, Sodium Absorption Ratio and pH in Soil

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Location ID	MECP (2011) Table 6: Generic SCS for Shallow Soils in a Potable Groundwater Condition	Reporting Detection Limit (RDL)*	BH25-101		BH25-102			BH25-103			BH25-104		BH25-107	
			BH25-101 S1	BH25-102 S1	BH25-102 S1-0 (Duplicate of BH25-102 S1)	BH25-102 S3	BH25-103 S1	BH25-103 S2	BH25-103 S2-0 (Duplicate of BH25-103 S2)	BH25-104 S1	BH25-107 S1			
Sample ID			7234673	7234674	7234675	7234676	7235120	7235122	7235123	7235125	7235126			
Lab ID			10-Nov-25	10-Nov-25	10-Nov-25	10-Nov-25	10-Nov-25	10-Nov-25	10-Nov-25	10-Nov-25	10-Nov-25			
Sampling Date			0-0.76	0-0.76	0-0.76	1.52 - 2.29	0-0.76	0.76 - 1.52	0.76 - 1.52	0-0.76	0-0.76			
Soil Sample Depth (m)			EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP			
RPI Land Use (coarse textured soil)			AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT			
Consultant			25T367696	25T367696	25T367696	25T367696	25T367696	25T367696	25T367696	25T367696	25T367696			
Laboratory														
Certificate of Analysis Number														
Other Regulated Parameters (ORPs) in Soil														
Electrical Conductivity (mS/cm)	0.700	0.005	2.92	0.516	0.491	-	0.239	-	-	3.06	4.26			
Sodium Adsorption Ratio (unitless)	5	N/A	28	1.43	1.47	-	0.381	-	-	33.1	7.08			
pH (pH Units)	5-9 (surface soil); 5-11 (subsurface soil)	N/A	-	-	-	6.17	-	6.35	6.49	-	-			

All soil concentrations reported in µg/g.

* Maximum RDL below MECP (2011) SCS

' < = Parameter below detection limit, as indicated

'NV= No value

NA= Not applicable or not analyzed

Bold Concentration exceeds MECP (2011) Table 6 SCS.

Non-detect but detection limit exceeds the MECP (2011) SCS

GROUNDWATER ANALYTICAL RESULTS:

Table D-5 - Petroleum Hydrocarbons including BTEX in Groundwater

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Location ID	MECP (2011) Table 6: Generic SCS for Shallow Soils in a Potable Groundwater Condition	Reporting	MW25-105	
			MW25-105	MW25-1050 (Duplicate of MW25-105)
Field Sample ID	All Types of Land Use (coarse textured soil)	Detection Limit (RDL)*	7249425	7249430
Lab ID			14-Nov-2025	14-Nov-2025
Sampling Date			2.13 - 5.18	2.13 - 5.18
Screen Interval Depth (m)			EXP	EXP
Consultant			AGAT	AGAT
Laboratory			25T369358	25T369358
Certificate of Analysis Number				
Benzene	0.5	0.20	<0.20	<0.20
Toluene	24	0.20	<0.20	<0.20
Ethylbenzene	2.4	0.10	<0.10	<0.10
m-Xylene + p-Xylene	NV	0.20	<0.20	<0.20
o-Xylene	NV	0.10	<0.10	<0.10
Xylenes (Total)	72	0.20	<0.20	<0.20
PHC F1 (C6-C10)	NV	25	<25	<25
PHC F1 (C6-C10) - BTEX	420	25	<25	<25
PHC F2 (C10-C16)	150	100	<100	<100
PHC F3 (C16-C34)	500	100	<100	<100
PHC F4 (C34-C50)	500	100	<100	<100
Reached baseline at C50?	-	-	NA	NA

All groundwater concentrations reported in µg/L.

* Maximum RDL below MECP (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV' = No value

NA = Not applicable or not analyzed

Bold	Concentration exceeds MECP (2011) Table 6 SCS.
	Non-detect but detection limit exceeds the MECP (2011) SCS

GROUNDWATER ANALYTICAL RESULTS:
Table D-6 - Volatile Organic Compounds in Groundwater
GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Location ID	MECP (2011) Table 6: Generic SCS for Shallow Soils in a Potable Groundwater Condition All Types of Land Use (coarse textured soil)	Reporting Detection Limit (RDL)*	MW25-105				TRIP BLANK	TRIP BLANK	TRIP BLANK
			MW25-105	MW25-1050	MW25-105	MW25-105	TRIP BLANK	TRIP BLANK	TRIP BLANK
			7249425	7249430	7262975	7277920	7249431	7262976	7277922
			14-Nov-2025	14-Nov-2025	19-Nov-2025	24-Nov-2025	14-Nov-2025	19-Nov-2025	24-Nov-2025
			2.13 - 5.18	2.13 - 5.18	2.13 - 5.18	2.13 - 5.18	-	-	-
			EXP						
			AGAT						
Certificate of Analysis Number		25T369358		25T369358	25T373320	25T375125	25T369358	25T373320	25T375125
Dichlorodifluoromethane	590	0.4	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	0.89	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	150	0.4	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	2700	1	<1.0	<1.0	<1.0	<1.1	<1.0	<1.0	<1.0
1,1-Dichloroethylene	0.5	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methylene chloride (Dichloromethane)	26	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans-1,2-Dichloroethylene	1.6	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl t-butyl ether (MTBE)	15	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	5	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methyl ethyl ketone (2-Butanone)	1800	1	<1.0	<1.0	<1.0	<1.1	<1.0	<1.0	<1.0
cis-1,2-Dichloroethylene	1.6	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	2	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	0.5	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	23	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	0.2	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	0.5	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	0.58	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	0.5	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	16	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	640	1	<1.0	<1.0	<1.0	<1.1	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	0.5	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	24	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	25	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide (1,2-Dibromoethane)	0.2	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	0.5	0.2	2.79	2.18	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Tetrachloroethane	1.1	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	30	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	2.4	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Bromoform	5	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	5.4	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	0.5	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	59	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	0.5	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	3	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	0.5	0.3	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes (total)	72	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Hexane (n)	5	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene-d8	#N/A	1	115	84	102	109	120	107	95
4-Bromofluorobenzene	#N/A	1	107	106	104	88	116	122	89

All groundwater concentrations reported in µg/L.

* Maximum RDL below MECP (2011) SCS

'<' = Parameter below detection limit, as indicated

NA= Not applicable or not analyzed

'NV'= No value

Bold

Concentration exceeds MECP (2011) Table 6 SCS.

Non-detect but detection limit exceeds the MECP (2011) SCS

GROUNDWATER ANALYTICAL RESULTS:

Table D-7 - Polyaromatic Hydrocarbons in Groundwater

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Location ID Field Sample ID Laboratory ID Sampling Date Screen Interval Depth (m) Consultant Certificate of Analysis Number Laboratory	MECP (2011) Table 6: Generic SCS for Shallow Soils in a Potable Groundwater Condition All Types of Land Use (coarse textured soil)	Reporting Detection Limit (RDL)*	MW25-105	
			MW25-105	MW25-1050 (Duplicate of MW25-105)
			7249425	7249430
			14-Nov-2025	14-Nov-2025
			2.13 - 5.18	2.13 - 5.18
			EXP	EXP
			AGAT	AGAT
			25T369358	25T369358
Naphthalene	7	0.20	<0.20	<0.20
Acenaphthylene	1.0	0.20	<0.20	<0.20
Acenaphthene	4	0.20	<0.20	<0.20
Fluorene	120	0.20	<0.20	<0.20
Phenanthrene	1	0.10	<0.10	<0.10
Anthracene	1.0	0.10	<0.10	<0.10
Fluoranthene	0	0.20	<0.20	<0.20
Pyrene	4	0.20	<0.20	<0.20
Benzo(a)anthracene	1.0	0.20	<0.20	<0.20
Chrysene	0	0.10	<0.10	<0.10
Benzo(b/j)fluoranthene	0.10	0.10	<0.10	<0.10
Benzo(k)fluoranthene	0.10	0.10	<0.10	<0.10
Benzo(a)pyrene	0.01	0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	0.20	0.20	<0.20	<0.20
Dibenz(a,h)anthracene	0.20	0.20	<0.20	<0.20
Benzo(ghi)perylene	0.20	0.20	<0.20	<0.20
1&2-Methylnaphthalene	3	0.20	<0.20	<0.20

All groundwater concentrations reported in µg/L.

* Maximum RDL below MECP (2011) SCS

'<' = Parameter below detection limit, as indicated

NA= Not applicable or not analyzed

'NV'= No value

Concentration exceeds MECP (2011) Table 6 SCS.

Non-detect but detection limit exceeds the MECP (2011) SCS

GROUNDWATER ANALYTICAL RESULTS:

Table D-8 - Metals, Hydride-Forming Metals and Other Regulated Parameters in Groundwater

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Location ID	Field Sample ID	Lab ID	Sampling Date	Screen Interval Depth (m)	Consultant	Laboratory	MW25-105	
							MW25-105	MW25-1050 (Duplicate of MW25-105)
MECP (2011) Table 6: Generic SCS for Shallow Soils in a Potable Groundwater Condition							7249425	7249430
All Types of Land Use (coarse textured soil)							14-Nov-2025	14-Nov-2025
							2.13 - 5.18	2.13 - 5.18
							EXP	EXP
							AGAT	AGAT
							25T369358	25T369358
Metals								
Antimony	6						<1.0	<1.0
Arsenic	25						<1.0	<1.0
Barium	1000						230	234
Beryllium	4						<0.50	<0.50
Boron (Total)	5000						120	125
Cadmium	2.1						<0.20	<0.20
Chromium (total)	50						<2.0	<2.0
Cobalt	3.8						0.6	0.95
Copper	69						<1.0	<1.0
Lead	10						3.28	2.02
Molybdenum	70						5.77	5.56
Nickel	100						3.5	2.6
Selenium	10						<1.0	<1.0
Silver	1.2						<0.20	<0.20
Thallium	2						<0.30	<0.30
Uranium	20						2.44	2.47
Vanadium	6.2						0.44	0.92
Zinc	890						<5.0	<5.0
Other Regulated Parameters								
Chromium VI	25						<2.000	<2.000
Free Cyanide	52						<2	<2
Mercury	0.1						<0.02	<0.02
Sodium	490000						203,000	197,000
Chloride	790000						654000	640000
Electrical Conductivity	NA						3,540	99,900
pH	NA						7.75	7.76

All groundwater concentrations reported in µg/L.

* Maximum RDL below MECP (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

'^' = Not applicable or not analyzed

Concentration exceeds MECP (2011) Table 6 SCS.

Non-detect but detection limit exceeds the MECP (2011) SCS

EXP Services Inc.

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

Appendix E – Laboratory Certificates of Analysis

EXP Services Inc.

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

Appendix E1 – Soil

**CLIENT NAME: EXP SERVICES INC
1595 CLARK BLVD.
BRAMPTON, ON L6T4V1
(905) 793-9809**

ATTENTION TO: Alessandro Gira

PROJECT: GTR-22022660-C0

AGAT WORK ORDER: 25T367696

SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 12, 2025

PAGES (INCLUDING COVER): 15

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

Certificate of Analysis

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - All Metals (Soil)

DATE RECEIVED: 2025-11-11

DATE REPORTED: 2025-11-12

Parameter	Unit	SAMPLE DESCRIPTION:		BH25-102 S3	BH25-103 S2	BH25-103 S2-0
		G / S	RDL	SAMPLE TYPE:	Soil	Soil
				DATE SAMPLED:	2025-11-10 10:15	2025-11-10 10:30
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	7	5	4
Barium	µg/g	390	2.0	57.4	128	132
Beryllium	µg/g	4	0.5	0.8	0.7	0.7
Boron	µg/g	120	5	9	13	13
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.24	0.30	0.33
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	5	22	21	20
Cobalt	µg/g	22	0.8	12.0	10.6	10.1
Copper	µg/g	140	1.0	24.3	14.3	14.2
Lead	µg/g	120	1	13	18	15
Molybdenum	µg/g	6.9	0.5	<0.5	1.1	1.1
Nickel	µg/g	100	1	24	22	21
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5
Uranium	µg/g	23	0.50	<0.50	0.70	0.75
Vanadium	µg/g	86	2.0	28.6	27.9	26.6
Zinc	µg/g	340	5	59	62	57
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2025-11-11

DATE REPORTED: 2025-11-12

SAMPLE DESCRIPTION:				BH25-102 S3	BH25-103 S2	BH25-103 S2-0
Parameter	Unit	G / S	RDL	7234676	7235122	7235123
pH, 2:1 CaCl ₂ Extraction	pH Units	5.0-9.0	NA	6.17	6.35	6.49
Cyanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7234676-7235123 pH was determined on the 0.01M CaCl₂ extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2025-11-11

DATE REPORTED: 2025-11-12

SAMPLE DESCRIPTION:				BH25-101 S1	BH25-102 S1	BH25-102 S1-0	BH25-103 S1	BH25-104 S1	BH25-107 S1
Parameter	Unit	G / S	RDL	7234673	7234674	7234675	7235120	7235125	7235126
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	2.92	0.516	0.491	0.239	3.06	4.26
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	28.0	1.43	1.47	0.381	33.1	7.08

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7234673-7235126 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2025-11-11

DATE REPORTED: 2025-11-12

SAMPLE DESCRIPTION:				BH25-102 S3	BH25-103 S2	BH25-103 S2-0
Parameter	Unit	G / S	RDL	7234676	7235122	7235123
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	<0.05
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05
Acenaphthene	µg/g	7.9	0.05	<0.05	<0.05	<0.05
Fluorene	µg/g	62	0.05	<0.05	<0.05	<0.05
Phenanthrene	µg/g	6.2	0.05	<0.05	<0.05	<0.05
Anthracene	µg/g	0.67	0.05	<0.05	<0.05	<0.05
Fluoranthene	µg/g	0.69	0.05	<0.05	<0.05	<0.05
Pyrene	µg/g	78	0.05	<0.05	<0.05	<0.05
Benzo(a)anthracene	µg/g	0.5	0.05	<0.05	<0.05	<0.05
Chrysene	µg/g	7	0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	<0.05	<0.05
2-and 1-methyl Naphthalene	µg/g	0.99	0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	17.6	19.3	16.1
Surrogate	Unit	Acceptable Limits				
Naphthalene-d8	%	50-140		80	75	110
Acridine-d9	%	50-140		90	75	110
Terphenyl-d14	%	50-140		90	85	100

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7234676-7235123 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2025-11-11

DATE REPORTED: 2025-11-12

SAMPLE DESCRIPTION:				BH25-102 S3	BH25-103 S2	BH25-103 S2-0
Parameter	Unit	G / S	RDL	7234676	7235122	7235123
Benzene	µg/g	0.21	0.02	<0.02	<0.02	<0.02
Toluene	µg/g	2.3	0.05	<0.05	<0.05	<0.05
Ethylbenzene	µg/g	2	0.05	<0.05	<0.05	<0.05
m & p-Xylene	µg/g		0.05	<0.05	<0.05	<0.05
o-Xylene	µg/g		0.05	<0.05	<0.05	<0.05
Xylenes (Total)	µg/g	3.1	0.05	<0.05	<0.05	<0.05
F1 (C6 to C10)	µg/g	55	5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5
F2 (C10 to C16)	µg/g	98	7	<7	<7	<7
F2 (C10 to C16) minus Naphthalene	µg/g		7	<7	<7	<7
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50	<50
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA
Moisture Content	%		0.1	17.6	19.3	16.1
Surrogate	Unit	Acceptable Limits				
Toluene-d8	% Recovery	60-140		83	84	85
Terphenyl	%	60-140		93	69	76

Certified By:

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Certificate of Analysis

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2025-11-11

DATE REPORTED: 2025-11-12

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7234676-7235123 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

Exceedance Summary

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

ATTENTION TO: Alessandro Gira

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
7234673	BH25-101 S1	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	2.92
7234673	BH25-101 S1	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	28.0
7235125	BH25-104 S1	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	3.06
7235125	BH25-104 S1	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	33.1
7235126	BH25-107 S1	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	4.26
7235126	BH25-107 S1	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	7.08

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

Soil Analysis

RPT Date: Nov 12, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Recovery	Lower	Upper

O. Reg. 153(511) - ORPs (Soil)

Electrical Conductivity (2:1)	7233973	0.766	0.781	1.9%	< 0.005	104%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	7233973	4.11	4.10	0.2%	NA	NA								

Comments: NA signifies Not Applicable.

O. Reg. 153(511) - All Metals (Soil)

Antimony	7234676	7234676	<0.8	<0.8	NA	< 0.8	117%	70%	130%	99%	80%	120%	102%	70%	130%
Arsenic	7234676	7234676	7	7	0.0%	< 1	104%	70%	130%	96%	80%	120%	91%	70%	130%
Barium	7234676	7234676	57.4	58.4	1.7%	< 2.0	108%	70%	130%	99%	80%	120%	105%	70%	130%
Beryllium	7234676	7234676	0.8	0.8	NA	< 0.5	92%	70%	130%	101%	80%	120%	94%	70%	130%
Boron	7234676	7234676	9	9	NA	< 5	78%	70%	130%	101%	80%	120%	84%	70%	130%
Boron (Hot Water Soluble)	7233973		0.41	0.34	NA	< 0.10	92%	60%	140%	97%	70%	130%	95%	60%	140%
Cadmium	7234676	7234676	<0.5	<0.5	NA	< 0.5	109%	70%	130%	94%	80%	120%	96%	70%	130%
Chromium	7234676	7234676	22	22	NA	< 5	92%	70%	130%	99%	80%	120%	NA	70%	130%
Cobalt	7234676	7234676	12.0	12.0	0.0%	< 0.8	90%	70%	130%	97%	80%	120%	89%	70%	130%
Copper	7234676	7234676	24.3	24.2	0.4%	< 1.0	90%	70%	130%	99%	80%	120%	81%	70%	130%
Lead	7234676	7234676	13	13	0.0%	< 1	107%	70%	130%	112%	80%	120%	105%	70%	130%
Molybdenum	7234676	7234676	<0.5	<0.5	NA	< 0.5	108%	70%	130%	98%	80%	120%	96%	70%	130%
Nickel	7234676	7234676	24	24	0.0%	< 1	94%	70%	130%	95%	80%	120%	83%	70%	130%
Selenium	7234676	7234676	<0.8	<0.8	NA	< 0.8	112%	70%	130%	96%	80%	120%	98%	70%	130%
Silver	7234676	7234676	<0.5	<0.5	NA	< 0.5	112%	70%	130%	95%	80%	120%	94%	70%	130%
Thallium	7234676	7234676	<0.5	<0.5	NA	< 0.5	106%	70%	130%	96%	80%	120%	100%	70%	130%
Uranium	7234676	7234676	<0.50	<0.50	NA	< 0.50	107%	70%	130%	106%	80%	120%	99%	70%	130%
Vanadium	7234676	7234676	28.6	28.7	0.3%	< 2.0	95%	70%	130%	96%	80%	120%	87%	70%	130%
Zinc	7234676	7234676	59	59	0.0%	< 5	98%	70%	130%	97%	80%	120%	NA	70%	130%
Chromium, Hexavalent	7225241		<0.2	<0.2	NA	< 0.2	80%	70%	130%	85%	80%	120%	85%	70%	130%
Mercury	7234676	7234676	<0.10	<0.10	NA	< 0.10	106%	70%	130%	93%	80%	120%	86%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

O. Reg. 153(511) - ORPs (Soil)

pH, 2:1 CaCl ₂ Extraction	7234676	7234676	6.17	6.31	2.2%	NA	101%	80%	120%						
Cyanide, WAD	7234676	7234676	<0.040	<0.040	NA	< 0.040	94%	70%	130%	102%	80%	120%	82%	70%	130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-22022660-C0

SAMPLING SITE: 1970 and 1980 Fowler Dr.

AGAT WORK ORDER: 25T367696

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

Soil Analysis (Continued)

RPT Date: Nov 12, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.calac.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Results relate only to the items tested. Results apply to samples as received.

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

Trace Organics Analysis

RPT Date: Nov 12, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

Benzene	7226917	<0.02	<0.02	NA	< 0.02	108%	60%	140%	117%	60%	140%	100%	60%	140%
Toluene	7226917	<0.05	<0.05	NA	< 0.05	104%	60%	140%	115%	60%	140%	94%	60%	140%
Ethylbenzene	7226917	<0.05	<0.05	NA	< 0.05	95%	60%	140%	104%	60%	140%	84%	60%	140%
m & p-Xylene	7226917	<0.05	<0.05	NA	< 0.05	92%	60%	140%	99%	60%	140%	86%	60%	140%
o-Xylene	7226917	<0.05	<0.05	NA	< 0.05	89%	60%	140%	101%	60%	140%	101%	60%	140%
F1 (C6 to C10)	7226917	<5	<5	NA	< 5	93%	60%	140%	96%	60%	140%	97%	60%	140%
F2 (C10 to C16)	7222396	< 10	< 10	NA	< 7	120%	60%	140%	100%	60%	140%	95%	60%	140%
F3 (C16 to C34)	7222396	< 50	< 50	NA	< 50	109%	60%	140%	106%	60%	140%	101%	60%	140%
F4 (C34 to C50)	7222396	< 50	< 50	NA	< 50	89%	60%	140%	106%	60%	140%	90%	60%	140%

O. Reg. 153(511) - PAHs (Soil)

Naphthalene	7204310	<0.05	<0.05	NA	< 0.05	91%	50%	140%	100%	50%	140%	88%	50%	140%
Acenaphthylene	7204310	<0.05	<0.05	NA	< 0.05	89%	50%	140%	90%	50%	140%	88%	50%	140%
Acenaphthene	7204310	<0.05	<0.05	NA	< 0.05	117%	50%	140%	93%	50%	140%	93%	50%	140%
Fluorene	7204310	<0.05	<0.05	NA	< 0.05	122%	50%	140%	90%	50%	140%	95%	50%	140%
Phenanthrene	7204310	<0.05	<0.05	NA	< 0.05	81%	50%	140%	100%	50%	140%	100%	50%	140%
Anthracene	7204310	<0.05	<0.05	NA	< 0.05	70%	50%	140%	93%	50%	140%	93%	50%	140%
Fluoranthene	7204310	<0.05	<0.05	NA	< 0.05	106%	50%	140%	98%	50%	140%	95%	50%	140%
Pyrene	7204310	<0.05	<0.05	NA	< 0.05	110%	50%	140%	90%	50%	140%	98%	50%	140%
Benzo(a)anthracene	7204310	<0.05	<0.05	NA	< 0.05	70%	50%	140%	88%	50%	140%	98%	50%	140%
Chrysene	7204310	<0.05	<0.05	NA	< 0.05	77%	50%	140%	88%	50%	140%	88%	50%	140%
Benzo(b)fluoranthene	7204310	<0.05	<0.05	NA	< 0.05	76%	50%	140%	98%	50%	140%	88%	50%	140%
Benzo(k)fluoranthene	7204310	<0.05	<0.05	NA	< 0.05	86%	50%	140%	93%	50%	140%	93%	50%	140%
Benzo(a)pyrene	7204310	<0.05	<0.05	NA	< 0.05	93%	50%	140%	98%	50%	140%	93%	50%	140%
Indeno(1,2,3-cd)pyrene	7204310	<0.05	<0.05	NA	< 0.05	112%	50%	140%	95%	50%	140%	90%	50%	140%
Dibenz(a,h)anthracene	7204310	<0.05	<0.05	NA	< 0.05	96%	50%	140%	95%	50%	140%	98%	50%	140%
Benzo(g,h,i)perylene	7204310	<0.05	<0.05	NA	< 0.05	111%	50%	140%	88%	50%	140%	95%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Method Summary

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T367696

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
pH, 2:1 CaCl ₂ Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-22022660-C0

SAMPLING SITE: 1970 and 1980 Fowler Dr.

AGAT WORK ORDER: 25T367696

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Method Summary

CLIENT NAME: EXP SERVICES INC**PROJECT:** GTR-22022660-C0**SAMPLING SITE:** 1970 and 1980 Fowler Dr.**AGAT WORK ORDER:** 25T367696**ATTENTION TO:** Alessandro Gira**SAMPLED BY:** M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

Have feedback?
Scan here for a quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webearth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

Company: EXP Services Inc
Contact: Alessandro Girardo
Address: 1595 Clark Blvd
Brampton, ON L6T 4V1
Phone: 905 793 9800 Fax:
Reports to be sent to:
1. Email: Alessandro.girardo@exp.com
2. Email: Samuel.lee@exp.com

Project Information:

Project: GTR-22022660-Co
Site Location: 1970 and 1980 Fowler Dr.
Sampled By: M.L.
AGAT Quote #: EXP Competitive Rate PO:
Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No
Company: _____
Contact: _____
Address: _____
Email: _____

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N
1. BH25-101 S1	Nov 10, 2025	10:00 AM	1	S		
2. BH25-102 S1		10:15 AM	1	S		
3. BH25-102 S1-0		10:15 PM	1	S		
4. BH25-102 S3		10:15 PM	4	S		
5. BH25-103 S1		10:30 AM	1	S		
6. BH25-103 S2		10:30 PM	4	S		
7. BH25-103 S2-0		10:30 PM	4	S		
8. BH25-104 S1		12:00 AM	1	S		
9. BH25-107 S1		15:00 AM	1	S		
10.						
11.						

Samples Relinquished By (Print Name and Sign)

Mike Luong

Samples Relinquished By (Print Name and Sign):

Mike Luong

Samples Relinquished By (Print Name and Sign):

Mike Luong

Document ID: DRW-78-1511-024

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatlabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

Laboratory Use Only

Work Order #: 25T367696

Cooler Quantity:

1L
62 16.4 66

Arrival Temperatures:

Depot Temperatures:

Custody Seal Intact: Yes No N/A

Notes: L11

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04

Table 3 Regulation 406

Table Ind/Com Sewer Use

Res/Park Sanitary

Agriculture Storm

Soil Texture Coarse

Fine

Regulation 558

CCME

Other

Indicate One

Table Ind/Com Region

Res/Park Prov. Water Quality

Agriculture Objectives (PWQO)

Other

Indicate One

Is this submission for a Record of Site Condition (RSC)?

Yes No

Report Guideline on Certificate of Analysis

Yes No

Legal Sample

Sample Matrix Legend

GW	Ground Water	SD	Sediment
O	Oil	SW	Surface Water
P	Paint	R	Rock/Shale
S	Soil		

Field Filtered - Metals, Hg, CrVI, DOC	O. Reg 153	O. Reg 406	O. Reg 558
Metals & Inorganics	Metals - CrVI, <input checked="" type="checkbox"/> Hg, <input checked="" type="checkbox"/> HWSB	Regulation 406 Characterization Package	Regulation 558 Characterization Package
	BTEX, F1-F4 PHCs	pH, Metals, BTEX, F1-F4	pH, Metals, BTEX, F1-F4
	VOC	EC, SAR	EC, SAR
	PAHs	Regulation 406 SP/LP Rainwater Leach	Regulation 406 SP/LP Rainwater Leach
	PCBs, Aroclors	inSP/LP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> SVOCs <input type="checkbox"/> DOC	inSP/LP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> SVOCs <input type="checkbox"/> DOC
		Landfill Disposal Characterization TLP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> SVOCs <input type="checkbox"/> DOC	Landfill Disposal Characterization TLP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> SVOCs <input type="checkbox"/> DOC
		Corrosivity: <input type="checkbox"/> Moisture <input type="checkbox"/> Sulphide	Corrosivity: <input type="checkbox"/> Moisture <input type="checkbox"/> Sulphide
		As, Sb, Se, Hg, CrVI, PH	As, Sb, Se, Hg, CrVI, PH

Potentially Hazardous or High Concentration (Y/N)

November 12, 2025

Please provide prior notification for rush TAT
* TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CSR

**CLIENT NAME: EXP SERVICES INC
1595 CLARK BLVD.
BRAMPTON, ON L6T4V1
(905) 793-9809**

ATTENTION TO: Alessandro Girardo

PROJECT: GTR-22022660-C0

AGAT WORK ORDER: 25T373318

SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead

DATE REPORTED: Nov 20, 2025

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Certificate of Analysis

AGAT WORK ORDER: 25T373318

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Girardo

SAMPLED BY: M.L.

Particle Size by Sieve (Wet)

DATE RECEIVED: 2025-11-19

DATE REPORTED: 2025-11-20

SAMPLE DESCRIPTION: BH25-105 SS2 BH25-105 SS4

SAMPLE TYPE: Soil Soil

DATE SAMPLED: 2025-11-10 12:00 2025-11-10 12:00

Parameter	Unit	G / S	RDL	7262969	7262970
Sieve Analysis - 75 µm (retained)	%	NA		73.80	28.30
Sieve Analysis - 75 µm (passing)	%	NA		26.20	71.70
Soil Texture (Toronto)				Coarse	Fine

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7262969-7262970 Value reported is the amount of sample passing through or retained on sieve after wash with water and represents proportion by weight particles smaller or larger than indicated sieve size.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T373318

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Girardo

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

Soil Analysis

RPT Date: Nov 20, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

Particle Size by Sieve (Wet)

Sieve Analysis - 75 µm (retained)	7178192	60.44	58.26	3.7%	NA	101%	75%	125%
Sieve Analysis - 75 µm (passing)	7178192	39.56	41.74	5.4%	NA	NA		

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By: skar

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.calac.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Results relate only to the items tested. Results apply to samples as received.

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Method Summary

CLIENT NAME: EXP SERVICES INC**PROJECT:** GTR-22022660-C0**SAMPLING SITE:** 1970 and 1980 Fowler Dr.**AGAT WORK ORDER:** 25T373318**ATTENTION TO:** Alessandro Girardo**SAMPLED BY:** M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Sieve Analysis - 75 µm (retained)	INOR-93-6065	Modified from ASTM D1140-17	SIEVE
Sieve Analysis - 75 µm (passing)	INOR-93-6065	Modified from ASTM D1140-17	SIEVE

EXP Services Inc.

*Phase Two Environmental Site Assessment
1970 & 1980 Fowler Drive, Mississauga, Ontario
GTR-22022660-C0
November 27, 2025*

Appendix E2 – Groundwater

**CLIENT NAME: EXP SERVICES INC
1595 CLARK BLVD.
BRAMPTON, ON L6T4V1
(905) 793-9809**

ATTENTION TO: Alessandro Gira

PROJECT: GTR-22022660-C0

AGAT WORK ORDER: 25T369358

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: Nov 17, 2025

PAGES (INCLUDING COVER): 21

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

SAMPLE DESCRIPTION:				MW25-105	MW25-1050
Parameter	Unit	G / S	RDL	7249425	7249430
Naphthalene	µg/L	1400	0.20	<0.20	<0.20
Acenaphthylene	µg/L	1.8	0.20	<0.20	<0.20
Acenaphthene	µg/L	600	0.20	<0.20	<0.20
Fluorene	µg/L	400	0.20	<0.20	<0.20
Phenanthrene	µg/L	580	0.10	<0.10	<0.10
Anthracene	µg/L	2.4	0.10	<0.10	<0.10
Fluoranthene	µg/L	130	0.20	<0.20	<0.20
Pyrene	µg/L	68	0.20	<0.20	<0.20
Benzo(a)anthracene	µg/L	4.7	0.20	<0.20	<0.20
Chrysene	µg/L	1	0.10	<0.10	<0.10
Benzo(b)fluoranthene	µg/L	0.75	0.10	<0.10	<0.10
Benzo(k)fluoranthene	µg/L	0.4	0.10	<0.10	<0.10
Benzo(a)pyrene	µg/L	0.81	0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	µg/L	0.2	0.20	<0.20	<0.20
Dibenz(a,h)anthracene	µg/L	0.52	0.20	<0.20	<0.20
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20
2-and 1-methyl Naphthalene	µg/L	1800	0.20	<0.20	<0.20
Sediment				1	1
Surrogate	Unit	Acceptable Limits			
Naphthalene-d8	%	50-140		89	92
Acridine-d9	%	50-140		77	74
Terphenyl-d14	%	50-140		102	88

Certified By:*N Popovikof*

AGAT

Laboratories

CLIENT NAME: EXP SERVICES INC**SAMPLING SITE:** 1970 and 1980 Fowler Dr.

Certificate of Analysis

AGAT WORK ORDER: 25T369358**PROJECT:** GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira**SAMPLED BY:** M.L.

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2025-11-14**DATE REPORTED:** 2025-11-17

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7249425-7249430 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

SAMPLE DESCRIPTION:				MW25-105	MW25-1050
Parameter	Unit	G / S	RDL	7249425	7249430
F1 (C6 to C10)	µg/L	750	25	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100
F2 (C10 to C16) minus Naphthalene	µg/L		100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100
F3 (C16 to C34) minus PAHs	µg/L		100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA
Sediment				1	1
Surrogate	Unit	Acceptable Limits			
Toluene-d8	%	50-140	115	84	
Terphenyl	% Recovery	60-140	67	69	

Certified By:

N Popovikoff

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7249425-7249430 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

Parameter	Unit	G / S	RDL	7249431
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17
Bromomethane	µg/L	5.6	0.20	<0.20
Trichlorofluoromethane	µg/L	2500	0.40	<0.40
Acetone	µg/L	130000	1.0	<1.0
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30
Methylene Chloride	µg/L	610	0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20
Methyl tert-butyl ether	µg/L	190	0.20	<0.20
1,1-Dichloroethane	µg/L	320	0.30	<0.30
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20
Chloroform	µg/L	2.4	0.20	<0.20
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20
Benzene	µg/L	44	0.20	<0.20
1,2-Dichloropropane	µg/L	16	0.20	<0.20
Trichloroethylene	µg/L	1.6	0.20	<0.20
Bromodichloromethane	µg/L	85000	0.20	<0.20
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20
Toluene	µg/L	18000	0.20	<0.20
Dibromochloromethane	µg/L	82000	0.10	<0.10
Ethylene Dibromide	µg/L	0.25	0.10	<0.10
Tetrachloroethylene	µg/L	1.6	0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10
Chlorobenzene	µg/L	630	0.10	<0.10
Ethylbenzene	µg/L	2300	0.10	<0.10

Certified By:

AGAT

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

SAMPLE DESCRIPTION: Trip Blank				
SAMPLE TYPE: Water				
DATE SAMPLED: 2025-11-14 11:30				
Parameter	Unit	G / S	RDL	7249431
m & p-Xylene	µg/L	0.20	<0.20	
Bromoform	µg/L	380	0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10
o-Xylene	µg/L	0.10	<0.10	
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30
Xylenes (Total)	µg/L	4200	0.20	<0.20
n-Hexane	µg/L	51	0.20	<0.20
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	50-140	120	
4-Bromofluorobenzene	% Recovery	50-140	116	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7249431 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.
The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:*N Popovikoff*

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

Parameter	Unit	SAMPLE DESCRIPTION:		MW25-105	MW25-1050
		G / S	RDL	Water	Water
				DATE SAMPLED:	2025-11-14 11:30
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17
Bromomethane	µg/L	5.6	0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	<0.40
Acetone	µg/L	130000	1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	<0.30
Methylene Chloride	µg/L	610	0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	320	0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20
Chloroform	µg/L	2.4	0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	<0.20
Benzene	µg/L	44	0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	16	0.20	<0.20	<0.20
Trichloroethylene	µg/L	1.6	0.20	<0.20	<0.20
Bromodichloromethane	µg/L	85000	0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	<0.20
Toluene	µg/L	18000	0.20	<0.20	<0.20
Dibromochloromethane	µg/L	82000	0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	1.6	0.20	2.79	2.18
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	<0.10
Chlorobenzene	µg/L	630	0.10	<0.10	<0.10
Ethylbenzene	µg/L	2300	0.10	<0.10	<0.10

Certified By:

N Popovikoff

AGAT

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

SAMPLE DESCRIPTION:				MW25-105	MW25-1050
Parameter	Unit	G / S	RDL	7249425	7249430
m & p-Xylene	µg/L		0.20	<0.20	<0.20
Bromoform	µg/L	380	0.10	<0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	<0.10	<0.10
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	<0.30
Xylenes (Total)	µg/L	4200	0.20	<0.20	<0.20
n-Hexane	µg/L	51	0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	50-140	115	84	
4-Bromofluorobenzene	% Recovery	50-140	107	106	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7249425-7249430 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:*N Popovikoff*

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

Parameter	Unit	SAMPLE DESCRIPTION:		MW25-105	MW25-1050
		G / S	RDL	Water	Water
				DATE SAMPLED:	2025-11-14 11:30
Dissolved Antimony	µg/L	20000	1.0	<1.0	<1.0
Dissolved Arsenic	µg/L	1900	1.0	<1.0	<1.0
Dissolved Barium	µg/L	29000	2.0	230	234
Dissolved Beryllium	µg/L	67	0.50	<0.50	<0.50
Dissolved Boron	µg/L	45000	10.0	120	125
Dissolved Cadmium	µg/L	2.7	0.20	<0.20	<0.20
Dissolved Chromium	µg/L	810	2.0	<2.0	<2.0
Dissolved Cobalt	µg/L	66	0.50	0.60	0.95
Dissolved Copper	µg/L	87	1.0	<1.0	<1.0
Dissolved Lead	µg/L	25	0.50	3.28	2.02
Dissolved Molybdenum	µg/L	9200	0.50	5.77	5.56
Dissolved Nickel	µg/L	490	1.0	3.5	2.6
Dissolved Selenium	µg/L	63	1.0	<1.0	<1.0
Dissolved Silver	µg/L	1.5	0.20	<0.20	<0.20
Dissolved Thallium	µg/L	510	0.30	<0.30	<0.30
Dissolved Uranium	µg/L	420	0.50	2.44	2.47
Dissolved Vanadium	µg/L	250	0.40	0.44	0.92
Dissolved Zinc	µg/L	1100	5.0	<5.0	<5.0
Mercury	µg/L	0.29	0.02	<0.02	<0.02
Chromium VI	µg/L	140	2.000	<2.000	<2.000
Cyanide, WAD	µg/L	66	2	<2	<2
Dissolved Sodium	µg/L	2300000	50	203000	197000
Chloride	µg/L	2300000	100	654000	640000
pH	pH Units		NA	7.75	7.76

Certified By:

Yris Verastegui

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Certificate of Analysis

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-11-14

DATE REPORTED: 2025-11-17

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7249425-7249430 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

CLIENT NAME: EXP SERVICES INC

Exceedance Summary

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
7249425	MW25-105	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Tetrachloroethylene	µg/L	1.6	2.79
7249430	MW25-1050	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Tetrachloroethylene	µg/L	1.6	2.18

Quality Assurance

CLIENT NAME: EXP SERVICES INC
AGAT WORK ORDER: 25T369358
PROJECT: GTR-22022660-C0
ATTENTION TO: Alessandro Gira
SAMPLING SITE: 1970 and 1980 Fowler Dr.
SAMPLED BY: M.L.

Trace Organics Analysis																
RPT Date: Nov 17, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
							Lower	Upper	Lower	Upper	Lower	Upper				
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)																
F1 (C6 to C10)	7242232		<25	<25	NA	< 25	86%	60%	140%	89%	60%	130%	85%	50%	140%	
F2 (C10 to C16)	7223050		514	437	NA	< 100	99%	60%	140%	78%	60%	140%	69%	60%	140%	
F3 (C16 to C34)	7223050		494	381	NA	< 100	104%	60%	140%	95%	60%	140%	80%	60%	140%	
F4 (C34 to C50)	7223050		< 100	< 100	NA	< 100	81%	60%	140%	96%	60%	140%	71%	60%	140%	
O. Reg. 153(511) - PAHs (Water)																
Naphthalene	7222728		<0.20	<0.20	NA	< 0.20	136%	50%	140%	80%	50%	140%	75%	50%	140%	
Acenaphthylene	7222728		<0.20	<0.20	NA	< 0.20	130%	50%	140%	104%	50%	140%	95%	50%	140%	
Acenaphthene	7222728		<0.20	<0.20	NA	< 0.20	112%	50%	140%	89%	50%	140%	83%	50%	140%	
Fluorene	7222728		<0.20	<0.20	NA	< 0.20	96%	50%	140%	76%	50%	140%	76%	50%	140%	
Phenanthrene	7222728		<0.10	<0.10	NA	< 0.10	60%	50%	140%	88%	50%	140%	80%	50%	140%	
Anthracene	7222728		<0.10	<0.10	NA	< 0.10	77%	50%	140%	82%	50%	140%	71%	50%	140%	
Fluoranthene	7222728		<0.20	<0.20	NA	< 0.20	108%	50%	140%	72%	50%	140%	94%	50%	140%	
Pyrene	7222728		<0.20	<0.20	NA	< 0.20	122%	50%	140%	93%	50%	140%	87%	50%	140%	
Benzo(a)anthracene	7222728		<0.20	<0.20	NA	< 0.20	73%	50%	140%	68%	50%	140%	73%	50%	140%	
Chrysene	7222728		<0.10	<0.10	NA	< 0.10	120%	50%	140%	96%	50%	140%	88%	50%	140%	
Benzo(b)fluoranthene	7222728		<0.10	<0.10	NA	< 0.10	117%	50%	140%	80%	50%	140%	108%	50%	140%	
Benzo(k)fluoranthene	7222728		<0.10	<0.10	NA	< 0.10	114%	50%	140%	77%	50%	140%	110%	50%	140%	
Benzo(a)pyrene	7222728		<0.01	<0.01	NA	< 0.01	106%	50%	140%	83%	50%	140%	109%	50%	140%	
Indeno(1,2,3-cd)pyrene	7222728		<0.20	<0.20	NA	< 0.20	72%	50%	140%	75%	50%	140%	107%	50%	140%	
Dibenz(a,h)anthracene	7222728		<0.20	<0.20	NA	< 0.20	79%	50%	140%	70%	50%	140%	86%	50%	140%	
Benzo(g,h,i)perylene	7222728		<0.20	<0.20	NA	< 0.20	72%	50%	140%	74%	50%	140%	102%	50%	140%	
O. Reg. 153(511) - VOCs (with PHC) (Water)																
Dichlorodifluoromethane	7242232		<0.40	<0.40	NA	< 0.40	71%	60%	140%	84%	50%	140%	109%	50%	140%	
Vinyl Chloride	7242232		<0.17	<0.17	NA	< 0.17	97%	60%	140%	104%	50%	140%	85%	50%	140%	
Bromomethane	7242232		<0.20	<0.20	NA	< 0.20	92%	60%	140%	92%	50%	140%	105%	50%	140%	
Trichlorofluoromethane	7242232		<0.40	<0.40	NA	< 0.40	103%	60%	140%	90%	50%	140%	86%	50%	140%	
Acetone	7242232		<1.0	<1.0	NA	< 1.0	71%	60%	140%	89%	50%	140%	74%	50%	140%	
1,1-Dichloroethylene	7242232		<0.30	<0.30	NA	< 0.30	69%	60%	140%	72%	50%	140%	78%	50%	140%	
Methylene Chloride	7242232		<0.30	<0.30	NA	< 0.30	67%	60%	140%	64%	50%	140%	87%	50%	140%	
trans- 1,2-Dichloroethylene	7242232		<0.20	<0.20	NA	< 0.20	63%	60%	140%	60%	50%	140%	81%	50%	140%	
Methyl tert-butyl ether	7242232		<0.20	<0.20	NA	< 0.20	88%	60%	140%	89%	50%	140%	98%	50%	140%	
1,1-Dichloroethane	7242232		<0.30	<0.30	NA	< 0.30	75%	60%	140%	68%	50%	140%	79%	50%	140%	
Methyl Ethyl Ketone	7242232		<1.0	<1.0	NA	< 1.0	66%	60%	140%	84%	50%	140%	101%	50%	140%	
cis- 1,2-Dichloroethylene	7242232		<0.20	<0.20	NA	< 0.20	75%	60%	140%	84%	50%	140%	99%	50%	140%	
Chloroform	7242232		<0.20	<0.20	NA	< 0.20	76%	60%	140%	97%	50%	140%	92%	50%	140%	
1,2-Dichloroethane	7242232		<0.20	<0.20	NA	< 0.20	82%	60%	140%	71%	50%	140%	81%	50%	140%	
1,1,1-Trichloroethane	7242232		<0.30	<0.30	NA	< 0.30	61%	60%	140%	69%	50%	140%	81%	50%	140%	
Carbon Tetrachloride	7242232		<0.20	<0.20	NA	< 0.20	88%	60%	140%	74%	50%	140%	85%	50%	140%	

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

Trace Organics Analysis (Continued)

RPT Date: Nov 17, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
Benzene	7242232		<0.20	<0.20	NA	< 0.20	94%	60%	140%	87%	50%	140%	87%	50%	140%	
1,2-Dichloropropane	7242232		<0.20	<0.20	NA	< 0.20	75%	60%	140%	88%	50%	140%	88%	50%	140%	
Trichloroethylene	7242232		<0.20	<0.20	NA	< 0.20	90%	60%	140%	98%	50%	140%	69%	50%	140%	
Bromodichloromethane	7242232		<0.20	<0.20	NA	< 0.20	83%	60%	140%	81%	50%	140%	77%	50%	140%	
Methyl Isobutyl Ketone	7242232		<1.0	<1.0	NA	< 1.0	NA	60%	140%	95%	50%	140%	74%	50%	140%	
1,1,2-Trichloroethane	7242232		<0.20	<0.20	NA	< 0.20	85%	60%	140%	79%	50%	140%	95%	50%	140%	
Toluene	7242232		<0.20	<0.20	NA	< 0.20	99%	60%	140%	85%	50%	140%	87%	50%	140%	
Dibromochloromethane	7242232		<0.10	<0.10	NA	< 0.10	78%	60%	140%	91%	50%	140%	88%	50%	140%	
Ethylene Dibromide	7242232		<0.10	<0.10	NA	< 0.10	92%	60%	140%	96%	50%	140%	80%	50%	140%	
Tetrachloroethylene	7242232		<0.20	<0.20	NA	< 0.20	86%	60%	140%	95%	50%	140%	91%	50%	140%	
1,1,1,2-Tetrachloroethane	7242232		<0.10	<0.10	NA	< 0.10	79%	60%	140%	84%	50%	140%	74%	50%	140%	
Chlorobenzene	7242232		<0.10	<0.10	NA	< 0.10	89%	60%	140%	88%	50%	140%	99%	50%	140%	
Ethylbenzene	7242232		<0.10	<0.10	NA	< 0.10	69%	60%	140%	82%	50%	140%	72%	50%	140%	
m & p-Xylene	7242232		<0.20	<0.20	NA	< 0.20	97%	60%	140%	106%	50%	140%	110%	50%	140%	
Bromoform	7242232		<0.10	<0.10	NA	< 0.10	69%	60%	140%	95%	50%	140%	93%	50%	140%	
Styrene	7242232		<0.10	<0.10	NA	< 0.10	74%	60%	140%	84%	50%	140%	73%	50%	140%	
1,1,2,2-Tetrachloroethane	7242232		<0.10	<0.10	NA	< 0.10	69%	60%	140%	80%	50%	140%	72%	50%	140%	
o-Xylene	7242232		<0.10	<0.10	NA	< 0.10	88%	60%	140%	90%	50%	140%	91%	50%	140%	
1,3-Dichlorobenzene	7242232		<0.10	<0.10	NA	< 0.10	74%	60%	140%	97%	50%	140%	94%	50%	140%	
1,4-Dichlorobenzene	7242232		<0.10	<0.10	NA	< 0.10	61%	60%	140%	101%	50%	140%	83%	50%	140%	
1,2-Dichlorobenzene	7242232		<0.10	<0.10	NA	< 0.10	86%	60%	140%	91%	50%	140%	81%	50%	140%	
n-Hexane	7242232		<0.20	<0.20	NA	< 0.20	61%	60%	140%	73%	50%	140%	66%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - VOCs (Water)

Dichlorodifluoromethane	7242232	<0.40	<0.40	NA	< 0.40	71%	60%	140%	84%	50%	140%	109%	50%	140%
Vinyl Chloride	7242232	<0.17	<0.17	NA	< 0.17	97%	60%	140%	104%	50%	140%	85%	50%	140%
Bromomethane	7242232	<0.20	<0.20	NA	< 0.20	92%	60%	140%	92%	50%	140%	105%	50%	140%
Trichlorofluoromethane	7242232	<0.40	<0.40	NA	< 0.40	103%	60%	140%	90%	50%	140%	86%	50%	140%
Acetone	7242232	<1.0	<1.0	NA	< 1.0	71%	60%	140%	89%	50%	140%	74%	50%	140%
1,1-Dichloroethylene	7242232	<0.30	<0.30	NA	< 0.30	69%	60%	140%	72%	50%	140%	78%	50%	140%
Methylene Chloride	7242232	<0.30	<0.30	NA	< 0.30	67%	60%	140%	64%	50%	140%	87%	50%	140%
trans- 1,2-Dichloroethylene	7242232	<0.20	<0.20	NA	< 0.20	63%	60%	140%	60%	50%	140%	81%	50%	140%
Methyl tert-butyl ether	7242232	<0.20	<0.20	NA	< 0.20	88%	60%	140%	89%	50%	140%	98%	50%	140%
1,1-Dichloroethane	7242232	<0.30	<0.30	NA	< 0.30	75%	60%	140%	68%	50%	140%	79%	50%	140%
Methyl Ethyl Ketone	7242232	<1.0	<1.0	NA	< 1.0	66%	60%	140%	84%	50%	140%	101%	50%	140%
cis- 1,2-Dichloroethylene	7242232	<0.20	<0.20	NA	< 0.20	75%	60%	140%	84%	50%	140%	99%	50%	140%
Chloroform	7242232	<0.20	<0.20	NA	< 0.20	76%	60%	140%	97%	50%	140%	92%	50%	140%
1,2-Dichloroethane	7242232	<0.20	<0.20	NA	< 0.20	82%	60%	140%	71%	50%	140%	81%	50%	140%
1,1,1-Trichloroethane	7242232	<0.30	<0.30	NA	< 0.30	61%	60%	140%	69%	50%	140%	81%	50%	140%

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

Trace Organics Analysis (Continued)																
RPT Date: Nov 17, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
Carbon Tetrachloride	7242232		<0.20	<0.20	NA	< 0.20	88%	60%	140%	74%	50%	140%	85%	50%	140%	
Benzene	7242232		<0.20	<0.20	NA	< 0.20	94%	60%	140%	87%	50%	140%	87%	50%	140%	
1,2-Dichloropropane	7242232		<0.20	<0.20	NA	< 0.20	75%	60%	140%	88%	50%	140%	88%	50%	140%	
Trichloroethylene	7242232		<0.20	<0.20	NA	< 0.20	90%	60%	140%	98%	50%	140%	69%	50%	140%	
Bromodichloromethane	7242232		<0.20	<0.20	NA	< 0.20	83%	60%	140%	81%	50%	140%	77%	50%	140%	
Methyl Isobutyl Ketone	7242232		<1.0	<1.0	NA	< 1.0	NA	60%	140%	95%	50%	140%	74%	50%	140%	
1,1,2-Trichloroethane	7242232		<0.20	<0.20	NA	< 0.20	85%	60%	140%	79%	50%	140%	95%	50%	140%	
Toluene	7242232		<0.20	<0.20	NA	< 0.20	99%	60%	140%	85%	50%	140%	87%	50%	140%	
Dibromochloromethane	7242232		<0.10	<0.10	NA	< 0.10	78%	60%	140%	91%	50%	140%	88%	50%	140%	
Ethylene Dibromide	7242232		<0.10	<0.10	NA	< 0.10	92%	60%	140%	96%	50%	140%	80%	50%	140%	
Tetrachloroethylene	7242232		<0.20	<0.20	NA	< 0.20	86%	60%	140%	95%	50%	140%	91%	50%	140%	
1,1,1,2-Tetrachloroethane	7242232		<0.10	<0.10	NA	< 0.10	79%	60%	140%	84%	50%	140%	74%	50%	140%	
Chlorobenzene	7242232		<0.10	<0.10	NA	< 0.10	89%	60%	140%	88%	50%	140%	99%	50%	140%	
Ethylbenzene	7242232		<0.10	<0.10	NA	< 0.10	69%	60%	140%	82%	50%	140%	72%	50%	140%	
m & p-Xylene	7242232		<0.20	<0.20	NA	< 0.20	97%	60%	140%	106%	50%	140%	110%	50%	140%	
Bromoform	7242232		<0.10	<0.10	NA	< 0.10	69%	60%	140%	95%	50%	140%	93%	50%	140%	
Styrene	7242232		<0.10	<0.10	NA	< 0.10	74%	60%	140%	84%	50%	140%	73%	50%	140%	
1,1,2,2-Tetrachloroethane	7242232		<0.10	<0.10	NA	< 0.10	69%	60%	140%	80%	50%	140%	72%	50%	140%	
o-Xylene	7242232		<0.10	<0.10	NA	< 0.10	88%	60%	140%	90%	50%	140%	91%	50%	140%	
1,3-Dichlorobenzene	7242232		<0.10	<0.10	NA	< 0.10	74%	60%	140%	97%	50%	140%	94%	50%	140%	
1,4-Dichlorobenzene	7242232		<0.10	<0.10	NA	< 0.10	61%	60%	140%	101%	50%	140%	83%	50%	140%	
1,2-Dichlorobenzene	7242232		<0.10	<0.10	NA	< 0.10	86%	60%	140%	91%	50%	140%	81%	50%	140%	
n-Hexane	7242232		<0.20	<0.20	NA	< 0.20	61%	60%	140%	73%	50%	140%	66%	50%	140%	

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

Water Analysis

RPT Date: Nov 17, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	

O. Reg. 153(511) - Metals & Inorganics (Water)

Dissolved Antimony	7249425	7249425	<1.0	<1.0	NA	< 1.0	109%	70%	130%	116%	80%	120%	120%	70%	130%
Dissolved Arsenic	7249425	7249425	<1.0	<1.0	NA	< 1.0	101%	70%	130%	98%	80%	120%	104%	70%	130%
Dissolved Barium	7249425	7249425	230	242	5.1%	< 2.0	106%	70%	130%	116%	80%	120%	126%	70%	130%
Dissolved Beryllium	7249425	7249425	<0.50	<0.50	NA	< 0.50	110%	70%	130%	117%	80%	120%	130%	70%	130%
Dissolved Boron	7249425	7249425	120	122	1.7%	< 10.0	101%	70%	130%	112%	80%	120%	120%	70%	130%
Dissolved Cadmium	7249425	7249425	<0.20	<0.20	NA	< 0.20	100%	70%	130%	100%	80%	120%	118%	70%	130%
Dissolved Chromium	7249425	7249425	<2.0	<2.0	NA	< 2.0	100%	70%	130%	111%	80%	120%	109%	70%	130%
Dissolved Cobalt	7249425	7249425	0.60	0.66	NA	< 0.50	108%	70%	130%	110%	80%	120%	110%	70%	130%
Dissolved Copper	7249425	7249425	<1.0	1.3	NA	< 1.0	100%	70%	130%	108%	80%	120%	102%	70%	130%
Dissolved Lead	7249425	7249425	3.28	2.75	17.6%	< 0.50	96%	70%	130%	96%	80%	120%	92%	70%	130%
Dissolved Molybdenum	7249425	7249425	5.77	5.87	1.7%	< 0.50	99%	70%	130%	109%	80%	120%	107%	70%	130%
Dissolved Nickel	7249425	7249425	3.5	3.2	NA	< 1.0	108%	70%	130%	113%	80%	120%	105%	70%	130%
Dissolved Selenium	7249425	7249425	<1.0	3.7	NA	< 1.0	102%	70%	130%	90%	80%	120%	119%	70%	130%
Dissolved Silver	7249425	7249425	<0.20	<0.20	NA	< 0.20	98%	70%	130%	108%	80%	120%	105%	70%	130%
Dissolved Thallium	7249425	7249425	<0.30	<0.30	NA	< 0.30	102%	70%	130%	99%	80%	120%	97%	70%	130%
Dissolved Uranium	7249425	7249425	2.44	2.50	NA	< 0.50	105%	70%	130%	109%	80%	120%	105%	70%	130%
Dissolved Vanadium	7249425	7249425	0.44	1.52	NA	< 0.40	105%	70%	130%	115%	80%	120%	118%	70%	130%
Dissolved Zinc	7249425	7249425	<5.0	6.3	NA	< 5.0	100%	70%	130%	97%	80%	120%	101%	70%	130%
Mercury	7250004		<0.02	<0.02	NA	< 0.02	99%	70%	130%	100%	80%	120%	102%	70%	130%
Chromium VI	7249425	7249425	<2.000	<2.000	NA	< 2	98%	70%	130%	100%	80%	120%	98%	70%	130%
Cyanide, WAD	7249425	7249425	<2	<2	NA	< 2	100%	70%	130%	109%	80%	120%	79%	70%	130%
Dissolved Sodium	7249425	7249425	203	204	NA	< 50	87%	70%	130%	101%	80%	120%	121%	70%	130%
Chloride	7247977		25900	25900	0.0%	< 100	91%	70%	130%	100%	80%	120%	NA	70%	130%
pH	7248950		9.15	9.20	0.5%	NA	97%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:*Iris Verastegui*

Method Summary

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment			N/A
F1 (C6 to C10)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F1 (C6 to C10) minus BTEX	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID

Method Summary

CLIENT NAME: EXP SERVICES INC
PROJECT: GTR-22022660-C0
SAMPLING SITE: 1970 and 1980 Fowler Dr.
AGAT WORK ORDER: 25T369358
ATTENTION TO: Alessandro Gira
SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-22022660-C0

SAMPLING SITE: 1970 and 1980 Fowler Dr.

AGAT WORK ORDER: 25T369358

ATTENTION TO: Alessandro Gira

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T369358

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

Have feedback?
Scan here for a
quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webearth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

Company: EXP Services Inc
Contact: Alessandro Girardo
Address: 1595 Clark Blvd
Brumpton ON L6T 4V1
Phone: 905 793 9800 Fax:
Reports to be sent to:
1. Email: Alessandro.Girardo@exp.com
2. Email: Omar.Jaffer@exp.com

Project Information:

Project: GTR-22022660 - Co
Site Location: 1970 and 1980 Fowler Dr.
Sampled By: M.L.
AGAT Quote #: EXP Competitive Rate PO:
Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No

Company: _____
Contact: _____
Address: _____
Email: _____

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04 Regulation 406
 Table 3 Regulation 406
 Ind/Com Sewer Use
 Res/Park Sanitary Storm
 Agriculture
 Soil Texture (Check One) Region
 Coarse Prov. Water Quality Objectives (PWQO)
 Fine Other
 CCME
 Indicate One

Is this submission for a Record of Site Condition (RSC)?

Yes No

Report Guideline on Certificate of Analysis

Yes No

Legal Sample

Sample Matrix Legend

GW	Ground Water	SD	Sediment
O	Oil	SW	Surface Water
P	Paint	R	Rock/Shale
S	Soil		

Field Filtered - Metals, Hg, CrVI, DOC	O. Reg 153		O. Reg 406		O. Reg 552	
	Metals & Inorganics	Metals - CrVI, Hg, HWSB	BTEX, F1-F4 PHCs	VOC	PAHs	PCBs, Aroclors
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>				

**CLIENT NAME: EXP SERVICES INC
1595 CLARK BLVD.
BRAMPTON, ON L6T4V1
(905) 793-9809**

ATTENTION TO: Alessandro Girardo

PROJECT: GTR-22022660-C0

AGAT WORK ORDER: 25T373320

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 20, 2025

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T373320

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Girardo

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-11-19

DATE REPORTED: 2025-11-20

Parameter	Unit	SAMPLE DESCRIPTION:		MW25-105	Trip Blank
		SAMPLE TYPE:	DATE SAMPLED:	Water	Water
				2025-11-19 10:00	2025-11-19 10:00
Parameter	Unit	G / S	RDL	7262975	7262976
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17
Bromomethane	µg/L	5.6	0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	<0.40
Acetone	µg/L	130000	1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	<0.30
Methylene Chloride	µg/L	610	0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	320	0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20
Chloroform	µg/L	2.4	0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	<0.20
Benzene	µg/L	44	0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	16	0.20	<0.20	<0.20
Trichloroethylene	µg/L	1.6	0.20	<0.20	<0.20
Bromodichloromethane	µg/L	85000	0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	<0.20
Toluene	µg/L	18000	0.20	<0.20	<0.20
Dibromochloromethane	µg/L	82000	0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	<0.10
Chlorobenzene	µg/L	630	0.10	<0.10	<0.10
Ethylbenzene	µg/L	2300	0.10	<0.10	<0.10

Certified By:

N Popovikof

AGAT

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 and 1980 Fowler Dr.

Certificate of Analysis

AGAT WORK ORDER: 25T373320

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Girardo

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-11-19

DATE REPORTED: 2025-11-20

SAMPLE DESCRIPTION:				MW25-105	Trip Blank
Parameter	Unit	G / S	RDL	7262975	7262976
m & p-Xylene	µg/L		0.20	<0.20	<0.20
Bromoform	µg/L	380	0.10	<0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	<0.10	<0.10
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	<0.30
Xylenes (Total)	µg/L	4200	0.20	<0.20	<0.20
n-Hexane	µg/L	51	0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	50-140	102	107	
4-Bromofluorobenzene	% Recovery	50-140	104	122	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7262975-7262976 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.
The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:*N Popovikoff*

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T373320

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Girardo

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

Trace Organics Analysis

RPT Date: Nov 20, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	
O. Reg. 153(511) - VOCs (Water)																
Dichlorodifluoromethane	7258046		<0.40	<0.40	NA	< 0.40	98%	60%	140%	71%	50%	140%	93%	50%	140%	
Vinyl Chloride	7258046		<0.17	<0.17	NA	< 0.17	88%	60%	140%	85%	50%	140%	103%	50%	140%	
Bromomethane	7258046		<0.20	<0.20	NA	< 0.20	99%	60%	140%	109%	50%	140%	103%	50%	140%	
Trichlorofluoromethane	7258046		<0.40	<0.40	NA	< 0.40	107%	60%	140%	81%	50%	140%	97%	50%	140%	
Acetone	7258046		<1.0	<1.0	NA	< 1.0	83%	60%	140%	73%	50%	140%	82%	50%	140%	
1,1-Dichloroethylene	7258046		<0.30	<0.30	NA	< 0.30	77%	60%	140%	95%	50%	140%	81%	50%	140%	
Methylene Chloride	7258046		<0.30	<0.30	NA	< 0.30	92%	60%	140%	75%	50%	140%	80%	50%	140%	
trans- 1,2-Dichloroethylene	7258046		<0.20	<0.20	NA	< 0.20	94%	60%	140%	65%	50%	140%	85%	50%	140%	
Methyl tert-butyl ether	7258046		<0.20	<0.20	NA	< 0.20	87%	60%	140%	83%	50%	140%	67%	50%	140%	
1,1-Dichloroethane	7258046		<0.30	<0.30	NA	< 0.30	64%	60%	140%	90%	50%	140%	80%	50%	140%	
Methyl Ethyl Ketone	7258046		<1.0	<1.0	NA	< 1.0	85%	60%	140%	76%	50%	140%	91%	50%	140%	
cis- 1,2-Dichloroethylene	7258046		<0.20	<0.20	NA	< 0.20	98%	60%	140%	95%	50%	140%	77%	50%	140%	
Chloroform	7258046		<0.20	<0.20	NA	< 0.20	90%	60%	140%	96%	50%	140%	91%	50%	140%	
1,2-Dichloroethane	7258046		<0.20	<0.20	NA	< 0.20	86%	60%	140%	94%	50%	140%	94%	50%	140%	
1,1,1-Trichloroethane	7258046		<0.30	<0.30	NA	< 0.30	85%	60%	140%	79%	50%	140%	85%	50%	140%	
Carbon Tetrachloride	7258046		<0.20	<0.20	NA	< 0.20	90%	60%	140%	79%	50%	140%	98%	50%	140%	
Benzene	7258046		<0.20	<0.20	NA	< 0.20	78%	60%	140%	91%	50%	140%	86%	50%	140%	
1,2-Dichloropropane	7258046		<0.20	<0.20	NA	< 0.20	63%	60%	140%	76%	50%	140%	90%	50%	140%	
Trichloroethylene	7258046		<0.20	<0.20	NA	< 0.20	89%	60%	140%	93%	50%	140%	109%	50%	140%	
Bromodichloromethane	7258046		<0.20	<0.20	NA	< 0.20	88%	60%	140%	82%	50%	140%	71%	50%	140%	
Methyl Isobutyl Ketone	7258046		<1.0	<1.0	NA	< 1.0	86%	60%	140%	93%	50%	140%	86%	50%	140%	
1,1,2-Trichloroethane	7258046		<0.20	<0.20	NA	< 0.20	98%	60%	140%	69%	50%	140%	97%	50%	140%	
Toluene	7258046		<0.20	<0.20	NA	< 0.20	62%	60%	140%	79%	50%	140%	90%	50%	140%	
Dibromochloromethane	7258046		<0.10	<0.10	NA	< 0.10	79%	60%	140%	83%	50%	140%	75%	50%	140%	
Ethylene Dibromide	7258046		<0.10	<0.10	NA	< 0.10	81%	60%	140%	87%	50%	140%	95%	50%	140%	
Tetrachloroethylene	7258046		<0.20	<0.20	NA	< 0.20	84%	60%	140%	72%	50%	140%	94%	50%	140%	
1,1,1,2-Tetrachloroethane	7258046		<0.10	<0.10	NA	< 0.10	88%	60%	140%	89%	50%	140%	92%	50%	140%	
Chlorobenzene	7258046		<0.10	<0.10	NA	< 0.10	97%	60%	140%	85%	50%	140%	68%	50%	140%	
Ethylbenzene	7258046		<0.10	<0.10	NA	< 0.10	79%	60%	140%	96%	50%	140%	96%	50%	140%	
m & p-Xylene	7258046		<0.20	<0.20	NA	< 0.20	92%	60%	140%	107%	50%	140%	98%	50%	140%	
Bromoform	7258046		<0.10	<0.10	NA	< 0.10	85%	60%	140%	99%	50%	140%	85%	50%	140%	
Styrene	7258046		<0.10	<0.10	NA	< 0.10	74%	60%	140%	83%	50%	140%	83%	50%	140%	
1,1,2,2-Tetrachloroethane	7258046		<0.10	<0.10	NA	< 0.10	99%	60%	140%	94%	50%	140%	62%	50%	140%	
o-Xylene	7258046		<0.10	<0.10	NA	< 0.10	74%	60%	140%	73%	50%	140%	87%	50%	140%	
1,3-Dichlorobenzene	7258046		<0.10	<0.10	NA	< 0.10	83%	60%	140%	99%	50%	140%	72%	50%	140%	
1,4-Dichlorobenzene	7258046		<0.10	<0.10	NA	< 0.10	80%	60%	140%	80%	50%	140%	94%	50%	140%	
1,2-Dichlorobenzene	7258046		<0.10	<0.10	NA	< 0.10	75%	60%	140%	77%	50%	140%	80%	50%	140%	
n-Hexane	7258046		<0.20	<0.20	NA	< 0.20	71%	60%	140%	86%	50%	140%	72%	50%	140%	

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-22022660-C0

SAMPLING SITE: 1970 and 1980 Fowler Dr.

AGAT WORK ORDER: 25T373320

ATTENTION TO: Alessandro Girardo

SAMPLED BY: M.L.

Trace Organics Analysis (Continued)

RPT Date: Nov 20, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits	Recovery	Acceptable Limits		Recovery	Acceptable Limits		
							Lower	Upper		Lower	Upper		Lower	Upper	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Method Summary

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T373320

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Girardo

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Method Summary

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T373320

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Girardo

SAMPLING SITE: 1970 and 1980 Fowler Dr.

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Have feedback?
Scan here for a
quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webearth.agatlabs.com

Laboratory Use Only

Work Order #: 25T373320

Cooler Quantity: 15

Arrival Temperatures: 5.3 5.5 5.7

Depot Temperatures:

Custody Seal Intact: Yes No N/A

Notes: LL

Report Information:

Company: EXP Services Inc
Contact: Alessandro Girardo
Address: 1595 Clark Blvd
Brampton ON L6T 4V1
Phone: 905 743 9800 Fax:
Reports to be sent to:
1. Email: Alessandro.girardo@exp.com
2. Email: Omar.jaffer@exp.com

Project Information:

Project: GTR-22022660 - Co
Site Location: 1970 and 1980 Fowler Dr.
Sampled By: M.L.
AGAT Quote #: EXP competitive Rate PO:
Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No
Company:
Contact:
Address:
Email:
Please note: If quotation number is not provided, client will be billed full price for analysis.

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04

Table 3

Indicate One

Ind/Com

Res/Park

Agriculture

Regulation 406

Table

Indicate One

Ind/Com

Res/Park

Agriculture

Sewer Use

Sanitary

Storm

Region

Prov. Water Quality Objectives (PWQO)

Other

Indicate One

Soil Texture (Check One)

Coarse

Fine

Regulation 558

CCME

Is this submission for a Record of Site Condition (RSC)?

Yes No

Report Guideline on Certificate of Analysis

Yes No

Legal Sample

Sample Matrix Legend

GW	Ground Water	SD	Sediment
O	Oil	SW	Surface Water
P	Paint	R	Rock/Shale
S	Soil		

Field Filtered - Metals, Hg, CrVI, DOC

Metals - CrVI, Hg, HWSB

STEX, F1-F4 PHCs

VOC

PAHs

PCBs: Aroclors

Regulation 406 Characterization Package

pH, Metals, ETEX, F1-F4

EC, SAR

Regulation 406 SPL Rainwater Leach

msPLP, Metals, VOCs, SVOCs, DOC

Landfill Disposal Characterization TCLP:

TCLP, Metals, VOCs, SVOCs, PCBs

Corrosivity: Moisture, Sulphide

Potentially Hazardous or High Concentration (Y/N)

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N
1. MW25-105	11/19/2025	10:00 AM	3	GW		X
2. Trip Blank	↓	↓ AM	3	GW		X
3.		AM				
4.		AM				
5.		AM				
6.		AM				
7.		AM				
8.		AM				
9.		AM				
10.		AM				
11.		AM				

Samples Relinquished By (Print Name and Sign): Mike Luong

Date: 11/19/2025 Time: 12:15

Samples Received By (Print Name and Sign): Dawn

Date: 11/19/25 Time: 12:20

Page 1 of 1

Samples Relinquished By (Print Name and Sign):

Date: Time:

Samples Received By (Print Name and Sign):

Date: Time:

N: T - 172643

**CLIENT NAME: EXP SERVICES INC
1595 CLARK BLVD.
BRAMPTON, ON L6T4V1
(905) 793-9809**

ATTENTION TO: Alessandro Gira

PROJECT: GTR-22022660-C0

AGAT WORK ORDER: 25T375125

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 25, 2025

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 FOWLER DR, MISSISSAUGA

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T375125

PROJECT: GTR-22022660-C0

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: SUKHBIR DHANDWAR

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-11-24

DATE REPORTED: 2025-11-25

Parameter	Unit	SAMPLE DESCRIPTION:		MW25-105	TRIP BLANK
		G / S	RDL	Water	Water
				DATE SAMPLED:	2025-11-24 11:30
Dichlorodifluoromethane	µg/L	590	0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	150	0.40	<0.40	<0.40
Acetone	µg/L	2700	1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	0.5	0.30	<0.30	<0.30
Methylene Chloride	µg/L	26	0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	15	0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	5	0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	1800	1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20
Chloroform	µg/L	2	0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	0.5	0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	23	0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.2	0.20	<0.20	<0.20
Benzene	µg/L	0.5	0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	0.58	0.20	<0.20	<0.20
Trichloroethylene	µg/L	0.5	0.20	<0.20	<0.20
Bromodichloromethane	µg/L	16	0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	640	1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	0.5	0.20	<0.20	<0.20
Toluene	µg/L	24	0.20	<0.20	<0.20
Dibromochloromethane	µg/L	25	0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	0.5	0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10
Chlorobenzene	µg/L	30	0.10	<0.10	<0.10
Ethylbenzene	µg/L	2.4	0.10	<0.10	<0.10

Certified By:

N Popiwka

Certificate of Analysis

AGAT WORK ORDER: 25T375125

PROJECT: GTR-22022660-C0

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: 1970 FOWLER DR, MISSISSAUGA

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Alessandro Gira

SAMPLED BY: SUKHBIR DHANDWAR

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-11-24

DATE REPORTED: 2025-11-25

SAMPLE DESCRIPTION:				MW25-105	TRIP BLANK
Parameter	Unit	G / S	RDL	7277920	7277922
m & p-Xylene	µg/L		0.20	<0.20	<0.20
Bromoform	µg/L	5	0.10	<0.10	<0.10
Styrene	µg/L	5.4	0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	0.5	0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	<0.10	<0.10
1,3-Dichlorobenzene	µg/L	59	0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	0.5	0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	3	0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30
Xylenes (Total)	µg/L	72	0.20	<0.20	<0.20
n-Hexane	µg/L	5	0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	50-140		109	95
4-Bromofluorobenzene	% Recovery	50-140		88	89

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

7277920-7277922 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T375125

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 FOWLER DR, MISSISSAUGA

SAMPLED BY: SUKHBIR DHANDWAR

Trace Organics Analysis

RPT Date: Nov 25, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	
O. Reg. 153(511) - VOCs (Water)																
Dichlorodifluoromethane	7272750		<0.40	<0.40	NA	< 0.40	99%	60%	140%	102%	50%	140%	76%	50%	140%	
Vinyl Chloride	7272750		<0.17	<0.17	NA	< 0.17	99%	60%	140%	91%	50%	140%	94%	50%	140%	
Bromomethane	7272750		<0.20	<0.20	NA	< 0.20	105%	60%	140%	75%	50%	140%	90%	50%	140%	
Trichlorofluoromethane	7272750		<0.40	<0.40	NA	< 0.40	101%	60%	140%	97%	50%	140%	74%	50%	140%	
Acetone	7272750		<1.0	<1.0	NA	< 1.0	97%	60%	140%	84%	50%	140%	88%	50%	140%	
1,1-Dichloroethylene	7272750		<0.30	<0.30	NA	< 0.30	72%	60%	140%	67%	50%	140%	72%	50%	140%	
Methylene Chloride	7272750		<0.30	<0.30	NA	< 0.30	83%	60%	140%	64%	50%	140%	75%	50%	140%	
trans- 1,2-Dichloroethylene	7272750		<0.20	<0.20	NA	< 0.20	62%	60%	140%	61%	50%	140%	73%	50%	140%	
Methyl tert-butyl ether	7272750		<0.20	<0.20	NA	< 0.20	66%	60%	140%	71%	50%	140%	87%	50%	140%	
1,1-Dichloroethane	7272750		<0.30	<0.30	NA	< 0.30	64%	60%	140%	81%	50%	140%	69%	50%	140%	
Methyl Ethyl Ketone	7272750		<1.0	<1.0	NA	< 1.0	85%	60%	140%	84%	50%	140%	63%	50%	140%	
cis- 1,2-Dichloroethylene	7272750		<0.20	<0.20	NA	< 0.20	67%	60%	140%	62%	50%	140%	63%	50%	140%	
Chloroform	7272750		<0.20	<0.20	NA	< 0.20	75%	60%	140%	66%	50%	140%	77%	50%	140%	
1,2-Dichloroethane	7272750		<0.20	<0.20	NA	< 0.20	68%	60%	140%	70%	50%	140%	66%	50%	140%	
1,1,1-Trichloroethane	7272750		<0.30	<0.30	NA	< 0.30	78%	60%	140%	68%	50%	140%	61%	50%	140%	
Carbon Tetrachloride	7272750		<0.20	<0.20	NA	< 0.20	72%	60%	140%	64%	50%	140%	61%	50%	140%	
Benzene	7272750		<0.20	<0.20	NA	< 0.20	71%	60%	140%	67%	50%	140%	66%	50%	140%	
1,2-Dichloropropane	7272750		<0.20	<0.20	NA	< 0.20	94%	60%	140%	80%	50%	140%	80%	50%	140%	
Trichloroethylene	7272750		<0.20	<0.20	NA	< 0.20	70%	60%	140%	62%	50%	140%	63%	50%	140%	
Bromodichloromethane	7272750		<0.20	<0.20	NA	< 0.20	69%	60%	140%	65%	50%	140%	64%	50%	140%	
Methyl Isobutyl Ketone	7272750		<1.0	<1.0	NA	< 1.0	76%	60%	140%	67%	50%	140%	100%	50%	140%	
1,1,2-Trichloroethane	7272750		<0.20	<0.20	NA	< 0.20	66%	60%	140%	62%	50%	140%	99%	50%	140%	
Toluene	7272750		<0.20	<0.20	NA	< 0.20	71%	60%	140%	63%	50%	140%	72%	50%	140%	
Dibromochloromethane	7272750		<0.10	<0.10	NA	< 0.10	67%	60%	140%	60%	50%	140%	63%	50%	140%	
Ethylene Dibromide	7272750		<0.10	<0.10	NA	< 0.10	85%	60%	140%	70%	50%	140%	73%	50%	140%	
Tetrachloroethylene	7272750		<0.20	<0.20	NA	< 0.20	75%	60%	140%	63%	50%	140%	72%	50%	140%	
1,1,1,2-Tetrachloroethane	7272750		<0.10	<0.10	NA	< 0.10	62%	60%	140%	76%	50%	140%	99%	50%	140%	
Chlorobenzene	7272750		<0.10	<0.10	NA	< 0.10	64%	60%	140%	63%	50%	140%	66%	50%	140%	
Ethylbenzene	7272750		<0.10	<0.10	NA	< 0.10	66%	60%	140%	70%	50%	140%	67%	50%	140%	
m & p-Xylene	7272750		<0.20	<0.20	NA	< 0.20	72%	60%	140%	82%	50%	140%	72%	50%	140%	
Bromoform	7272750		<0.10	<0.10	NA	< 0.10	77%	60%	140%	78%	50%	140%	69%	50%	140%	
Styrene	7272750		<0.10	<0.10	NA	< 0.10	62%	60%	140%	64%	50%	140%	66%	50%	140%	
1,1,2,2-Tetrachloroethane	7272750		<0.10	<0.10	NA	< 0.10	62%	60%	140%	68%	50%	140%	72%	50%	140%	
o-Xylene	7272750		<0.10	<0.10	NA	< 0.10	74%	60%	140%	79%	50%	140%	75%	50%	140%	
1,3-Dichlorobenzene	7272750		<0.10	<0.10	NA	< 0.10	63%	60%	140%	60%	50%	140%	62%	50%	140%	
1,4-Dichlorobenzene	7272750		<0.10	<0.10	NA	< 0.10	64%	60%	140%	76%	50%	140%	63%	50%	140%	
1,2-Dichlorobenzene	7272750		<0.10	<0.10	NA	< 0.10	64%	60%	140%	63%	50%	140%	64%	50%	140%	
n-Hexane	7272750		<0.20	<0.20	NA	< 0.20	87%	60%	140%	92%	50%	140%	78%	50%	140%	

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-22022660-C0

SAMPLING SITE: 1970 FOWLER DR, MISSISSAUGA

AGAT WORK ORDER: 25T375125

ATTENTION TO: Alessandro Gira

SAMPLED BY: SUKHBIR DHANDWAR

Trace Organics Analysis (Continued)

RPT Date: Nov 25, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits	Recovery	Acceptable Limits		Recovery	Acceptable Limits		
							Lower	Upper		Lower	Upper		Lower	Upper	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-22022660-C0

SAMPLING SITE: 1970 FOWLER DR, MISSISSAUGA

AGAT WORK ORDER: 25T375125

ATTENTION TO: Alessandro Gira

SAMPLED BY: SUKHBIR DHANDWAR

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Method Summary

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 25T375125

PROJECT: GTR-22022660-C0

ATTENTION TO: Alessandro Gira

SAMPLING SITE: 1970 FOWLER DR, MISSISSAUGA

SAMPLED BY: SUKHBIR DHANDWAR

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Have feedback?
Scan here for a quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webearth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

Company: EXP SERVICES INC
Contact: ALESSANDRO GIRARDO
Address: 1595 CLARK BLVD
BRAMPTON, ON, L6T 4V1
Phone: 905-793-9800 Fax:
Reports to be sent to:
1. Email: ALESSANDRO.GIRARDO@EXP.COM
2. Email: OMAR.JAFFER@EXP.COM

Project Information:

Project: GTR-22022660-C0
Site Location: 1970 FOWLER DR, MISSISSAUGA
Sampled By: SUKHBIR DHANDWAR
AGAT Quote #: 29385697579 PO:

Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No
Company: EXP SERVICES INC
Contact: ACCOUNTS PAYABLE
Address:
Email: AP@EXP.COM, KAREN.BURKE@EXP.COM

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N	Field Filtered - Metals, Hg, CrVI, DOC	O. Reg 153	O. Reg 406	U. Reg 558
1. MW25-105	11/24/2025	11:30 AM	3	GW			Metals & Inorganics	BTEX, F1-F4 PHCs	Regulation 406 Characterization Package	
2. TRIP BLANK		AM	1				Metals - <input type="checkbox"/> CrVI, <input type="checkbox"/> Hg, <input type="checkbox"/> HW88	VOC	Regulation 406 Characterization Package	
3.		PM					PAHs: Aroclors <input type="checkbox"/>		Regulation 406 Characterization Package	
4.		AM					PAHs: Aroclors <input type="checkbox"/>		Regulation 406 Characterization Package	
5.		PM						EC, SAR	Regulation 406 Characterization Package	
6.		AM						Regulation 406 Characterization Package	Regulation 406 Characterization Package	
7.		PM						Regulation 406 Characterization Package	Regulation 406 Characterization Package	
8.		AM						Regulation 406 Characterization Package	Regulation 406 Characterization Package	
9.		PM						Regulation 406 Characterization Package	Regulation 406 Characterization Package	
10.		AM						Regulation 406 Characterization Package	Regulation 406 Characterization Package	
11.		PM						Regulation 406 Characterization Package	Regulation 406 Characterization Package	

Samples Relinquished By (Print Name and Sign)	Date	Time	Samples Received By (Print Name and Sign)	Date	Time	
SUKHBIR DHANDWAR	2025/11/24	12:00PM	Dawn	11/24/25	12pm	
Samples Relinquished By (Print Name and Sign)	Date	Time	Samples Received By (Print Name and Sign)	Date	Time	
Samples Relinquished By (Print Name and Sign)	Date	Time	Samples Received By (Print Name and Sign)	Date	Time	

Laboratory Use Only

Work Order #: 25T57K125

Cooler Quantity: 15

Arrival Temperatures: 8.1 18.3 18.5

Depot Temperatures: 1

Custody Seal Intact: Yes No N/A

Notes: L11

Turnaround Time (TAT) Required:

Regular TAT 5 to 7 Business Days

Rush TAT (Rush Surcharges Apply)

3 Business Days 2 Business Days Next Business Day

OR Date Required (Rush Surcharges May Apply):

NOVEMBER 25, 2025

Please provide prior notification for rush TAT
*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CSR

Appendix F – Phase Two Conceptual Site Model (CSM)

Phase Two Conceptual Site Model – 1280 1286 College Street, Toronto, ON

A Phase Two Conceptual Site Model (CSM) has been prepared for the site. The CSM makes reference to the following figures:

Figure 1: Site Location Plan

Figure 2: Phase One Study Area, Surrounding Land Use and Potentially Contaminating Activities

Figure 3: Site Plan

Figure 4: Areas of Potential Environmental Concern

Figure 5A: Borehole/Monitoring Well Location Plan

Figure 5B: Borehole/Monitoring Well Location Plan and APECs

Figure 5C: Cross Section A-A'

Figure 5D: Cross Section B-B'

Figure 6: Groundwater Contour Plan

Figure 7: Soil Analytical Results – Petroleum Hydrocarbons (PHCs) Including Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

Figure 8: Soil Analytical Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Figure 9: Soil Analytical Results – Metals (including hydride-forming metals)

Figure 10: Soil Analytical Results – Other regulated parameters (HWS-B, CrVI, CN-, Hg, pH)

Figure 11: Soil Analytical Results – Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR)

Figure 12: Groundwater Analytical Results – Petroleum Hydrocarbons (PHCs) Including Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

Figure 13: Groundwater Analytical Results – Volatile Organic Compounds (VOCs)

Figure 13A: Groundwater Analytical Results – Volatile Organic Compounds (VOCs) – Cross Section B-B'

Figure 14: Groundwater Analytical Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Figure 15: Groundwater Analytical Results – Metals (including hydride-forming metals)

Figure 16: Groundwater Analytical Results – Other regulated parameters (CrVI, CN-, Hg, Na, Cl, pH)

1 Phase Two Conceptual Site Model

This section presents a Phase Two Conceptual Site Model (CSM), as it relates to the Site designated as at 1970 & 1980 Fowler Drive in the city of Mississauga, Ontario identified (herein after referred to as the 'Site'). The Phase Two CSM provides a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways. These components are discussed in the following sections. The Phase Two CSM was completed in accordance with Ontario Regulation (O. Reg.) 153/04 as defined by the Ministry of the Environment, Conservation, and Parks (MECP).

For assessment purposes, EXP selected the Ministry of Environment Conservation and Parks (MECP) Table 6: Full Depth Generic Site Condition Standards for Shallow Soils in a Potable Groundwater Condition residential/Parkland/Institutional Property Use – coarse Textured Soil (Table 6 SCS).

1.1 Introduction

The Site encompasses approximately 26,925.69 square meters (6.66 acres) and is developed with two (2) residential apartment buildings, each featuring a penthouse mechanical room and a single-level basement that includes laundry rooms, mechanical rooms, and locker areas for storage purposes. Each building includes a single-level underground parking garage, which extends beyond the footprint of the structures.

- The Site building at 1970 Fowler Drive (Building A) has an estimated footprint of 1,062 m² (11,434 ft²) and was constructed circa 1969.
- The Site building at 1980 Fowler Drive (Building B) has an estimated footprint of 1,034 m² (11,126 ft²) and was constructed circa 1970.

Both Site buildings collectively contain 336 residential suites (a mix of one-, two-, and three-bedroom units), with approximately 168 units per building. Additional features include aboveground visitor parking, basketball court east of Parking lot of Building B and landscaped areas surrounding the buildings. A small children's playground was located northeast of both the Site buildings respectively.

The Site is situated on the east side of Fowler Drive, approximately 130 metres east of Erin Mills Parkway, in the City of Mississauga, Ontario.

According to a review of historical records, aerial photographs, and an interview with the Site representative, the Site was first developed for residential purposes since it's development circa 1969. A Site Plan is shown on Figure 3.

Refer to Table 1 for the Site identification information.

Table 1: Site Identification Information

Municipal Address	1970 & 1980 Fowler Drive, Mississauga, Ontario
Current Land Use	Residential use
Proposed Land Use	Residential Use
Legal Description	1970 Fowler Drive -

	<p>PT BLK A PL 842 DES PTS 3, 4 PL 43R-11814; S/T EASEMENT IN FAVOUR OF CORPORATION OF THE TOWNSHIP OF TORONTO OVER PT BLK A PL 842 DES PT 3 PL 43R-11814; S/T EASEMENT IN FAVOUR OF ROGERS CABLE INC., OVER PT BLKA PL 842 DES PTS 3, 4 PL 43R-11814, AS IN PR5100; MISSISSAUGA.</p> <p>1980 Fowler Drive -</p> <p>PT BLK A PL 842 DES PTS 1, 2 PL 43R-11814; S/T EASEMENT IN FAVOUR OF THE CORPORATION OF THE TOWNSHIP OF TORONTO OVER PT BLK A PL 842 DES PT1 PL 43R-11814, AS IN VS17870; S/T EASEMENT IN FAVOUR OF ROGERS CABLE INC., OVER PT BLK A PL 842 DES PTS 1, 2 PL 43R-11814, AS IN PR5100; MISSISSAUGA.</p>
Property Identification Number (PIN)	<p>1970 Fowler Drive – 13441 -1205 (LT)</p> <p>1980 Fowler Drive – 13441 - 1204 (LT)</p>
Approximate Universal Transverse Mercator (UTM) coordinates	NAD83 17T 609063.01 m E 4820501.52 m N
Accuracy Estimate of UTM	10-15 m
Measurement Method	Global Positioning System
Site Area	2.69 hectares (6.66 acres)
Property Owners, Owner Contact and Address	<p>IMH 1970 &1980 Fowler Drive Ltd. 1400 - 3280 Bloor Street West Centre Tower Toronto, Ontario; M8X 2X3</p> <p>Mr. Mathew Cesta</p>

1.2 Potentially Contaminating Activities and Areas of Potential Environmental Concern

A Phase One ESA, in accordance with O. Reg. 153/04, has been completed by EXP (dated July 4, 2025) for the Site. Several potentially contaminating activities (PCAs) were identified on-Site and within 250 m from the Phase One Property site boundaries. All PCAs that were identified within 250 m property are shown on Figure 2A. A total of fifteen (15) PCAs were identified within the Site and Study Area.

Each PCA was further evaluated to determine if the activity may be contributing to an area of potential environmental concern (APECs) at the Phase One Property. The potential for each PCA to result in an APEC was evaluated based on the nature of the activity, the proximity to the Site and the location of the PCA relative to the inferred groundwater flow direction.

Figures 2 and 4 illustrate the PCAs and associated APECs, respectively. The PCAs are summarized as follows:

Table 2: Potentially Contaminating Activities

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Approximate timeline that PCA occurred	Contributes to APEC (Yes or No)?
Site					
1	1980 Fowler Drive	On-Site	PCA#30- Importation of Fill Materials of Unknown Quality.	Based on the Site visit and the previous 2019 Risk check Phase I ESA report, a former swimming pool was located on the northeast exterior side of Site Building B (1980 Fowler Drive). The swimming pool was reportedly filled in with unknown soil quality and covered with interlocking brick.	Yes, due to the PCA occurring on-Site.
2A	1970 Fowler Drive	On-Site	PCA# "Other"- Application of de-icing agents	Based on the Site visit, the east exterior portion of Building A (1970 Fowler Drive) is designated as the parking lot for the tenants and visitors. Therefore, during winter season, there may be application of de-icing agents or road salts.	Yes, due to the PCA occurring on-Site.
2B	1980 Fowler Drive	On-Site	PCA# "Other"- Application of de-icing agents	Based on the Site visit, the east and north exterior portion of Building B (1980 Fowler Drive) is designated as the parking lot for the tenants and visitors. Therefore, during winter season, there may be application of de-icing agents or road salts.	Yes, due to the PCA occurring on-Site.
Surrounding Properties					
3	Toronto Tp Con 1 SDS Lot 12 pt –	~30 m east	PCA#58-Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosolids as soil conditioners	Based on the reviewed ERIS report, the green space located about 30 meters east of the Site was previously identified as the Springbank Road Dump, a 2.56-hectare area that operated as a sanitary landfill.	Yes, due to the close proximity to the Site.

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Approximate timeline that PCA occurred	Contributes to APEC (Yes or No)?
4A			PCA#28-Gasoline and Associated Products Storage in Fixed Tanks	Based on the reviewed ERIS report, the property is operating as a Shell Canada Gas Station - RFO, and is a storage to multiple USTs	
4B	2165 Erin Mills Parkway	~85 m southwest	PCA# "Other"- spills	Based on the reviewed ERIS report, there were multiple gasoline spills reported at this property.	Yes, due to the proximity to the Site, the presence of the bulk fuel storage tanks (USTs), current RFO and the inferred up-gradient location relative to the direction of groundwater flow.
4C			PCA# "other"- petroleum based wastes	Based on the reviewed ERIS report, this property was registered for generation of other specified inorganic sludges, light fuels and waste oils/sludges (petroleum based) from 2006 to 2022.	
5A	2225 Erin Mills Pkwy	~30 m west	PCA# "other"- chemical wastes	Based on the reviewed ERIS report, the property from various stores inside the Sheridan Mall was registered for the generation of wastes including alkaline wastes, other metals, aliphatic solvents, waste oils and lubricants, paint/pigment/coating residues, pathological wastes, halogenated pesticides and herbicides, petroleum distillates, other specified inorganics, detergents and soaps, waste compressed gases, pharmaceuticals, acid wastes - heavy metals, inorganic laboratory chemicals, and organic laboratory chemicals, aliphatic solvents, photo processing wastes, waste oils and lubricants etc. from 1995 to 2024.	The property is current occupied by retail shopping mall (Sheridan Mall) Based on the inferred trans-gradient position relative to the direction of groundwater flow, and considering the property's current use, the site is considered to pose a low risk of potential environmental concern.
5B			PCA#40 - Pesticides (including Herbicides, Fungicides and Anti-Fouling)	Based on the reviewed ERIS report, some of the retail stores at the property – Sheridan Mall were operating as a limited vendor of pesticides.	

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Approximate timeline that PCA occurred	Contributes to APEC (Yes or No)?
			Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications		
6	2121 Roche Court	100 m southeast	PCA#40 - Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.	Based on the reviewed ERIS report, the property was registered as an operator of pesticides.	No, based on the separation distance from the Site and the inferred trans-gradient location relative to the direction of groundwater flow.
7A			PCA#28-Gasoline and Associated Products Storage in Fixed Tanks	Based on the reviewed ERIS report, the property formerly operated as an RFO, was a storage to multiple expired liquid fuel storage tank.	
7B	2185 Erin Mills Pkwy	110 m southwest	PCA# "Other"- petroleum wastes	Based on the reviewed ERIS report, this property was registered for generation of oil skimmings & sludges and light fuels in 2005.	No, based on the separation distance from the Site.
7C			PCA# "Other"- spills	Based on the reviewed ERIS report, a minor spill of 30 L of gasoline was reported in 2003 at this property.	
8A	1910 Fowler Drive	135 m south	PCA# "other"- chemical wastes	Based on the reviewed ERIS report, this property was registered for generation of aliphatic solvents, polymeric resin, organic laboratory chemicals, paint/pigment/coating residues, waste compressed gases, Misc. waste organic chemicals, wastes from the use of pigments, coatings and paints, waste compressed	No, based on the separation distance from the Site.

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Approximate timeline that PCA occurred	Contributes to APEC (Yes or No)?
	8B		PCA#39- Paints Manufacturing, Processing and Bulk Storage	gases including cylinders from 2017 to 2024.	
9	2215 Erin Mills Parkway & Fowler	135 m southwest	PCA# "Other"- spills	Based on the reviewed ERIS report, a spill of 1200 L water\diesel from UST to ground was reported to MOE in 2010 at this property.	No, based on the separation distance from the Site.
10	Erin Mills Parkway & Fowler Drive	165 m southwest	PCA# "Other"- spills	Based on the reviewed ERIS report, a spill of 100 L of fuel oil was recorded due to fuel tank being stuck by a backhoe at the construction Site in 2010 at this property.	No, based on the separation distance from the Site.
11	2055 Fowler Crescent	215 m southwest	PCA#49- Salvage Yard, including automobile wrecking	Based on the reviewed ERIS report, this property was listed in Automobile Wrecking & Supplies registry and as occupied Artia Scrap Metals, for scrap metals.	No, based on the separation distance from the Site.
12A	2185 Leanne Blvd	225 m southwest	PCA#28-Gasoline and Associated Products Storage in Fixed Tanks	Based on the reviewed ERIS report, this property was listed as an ESSO Gas Service Station – RFO, storage to multiple fuel storage tanks.	No, based on the separation distance from the Site.
12B			PCA# "Other"- spills	Based on the reviewed ERIS report, a spill of 200 L gasoline to the lot was recorded in 1999. at this property.	
13	1925 Fowler Drive	110 m southwest	PCA#39- Paints Manufacturing, Processing and Bulk Storage	Based on the reviewed city directories, the property was occupied by "Dulux" since 2017.	No, based on the separation distance from the Site.

(1) Distances are approximate. Precise distances are not possible due to the age of some listings and the aggregation and/or loss of addresses.

(2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O. Reg. 153/04, as amended) that is occurring or has occurred in a Phase One Study area.

Based on the evaluation of the PCAs located within the Phase One Study Area, areas of potential environmental concern (APECs) were identified, as presented in Figure 4, and summarized in Table 3 below.

Table 3: Areas of Potential Environmental Concern (APECs)

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Site	Potentially Contaminating Activity (PCA)	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern (COPCs) ²	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC 1: Location of the former swimming pool	Northeast exterior portion of the Site Building B at the Site (1980 Fowler Drive)	PCA#30-Importation of Fill Materials of Unknown Quality. (PCA-1)	On-Site	PHCs, BTEX, PAHs, Metals, As, Sb, Se, Hg, Cr VI, CN-, pH, EC, SAR and B-HWS	Soil
APEC 2A: Application of de-icing agents during winter season	East exterior of Building A (1970 Fowler Drive)	PCA# "Other"- Application of de-icing agents (PCA-2A)	On-Site	EC, SAR	Soil
APEC 2B: Application of de-icing agents during winter season	North, East and West exterior of Building B (1980 Fowler Drive)	PCA# "Other"- Application of de-icing agents (PCA-2B)	On-Site	EC, SAR	Soil
APEC 3: Former presence of Spring bank Road Dump operated as a Sanitary landfill.	Eastern Portion of the Site	PCA#58-Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners (PCA-3)	Off-Site	PHCs, BTEX, VOCs, PAHs, Metals, As, Sb, Se, Hg	Groundwater
APEC 4: Presence of an RFO – Shell Gas service station and storage of USTs	Southern boundary of the Site	PCA#28-Gasoline and Associated Products Storage in Fixed Tanks (PCA-4A, 4B, and 4C)	Off-Site	PHCs, BTEX, VOCs	Groundwater

(1) Area of Potential Environmental Concern means the area on, in or under a phase one study area where one or more contaminants are potentially present, as determined through the PI ESA, including through (a) identification of post or present uses on, in or under the phase one property, and (b) identification of potentially contaminating activities.

(2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O.Reg.153/04, as amended) that is occurring or has occurred in a phase one Study area.
(3) Distances are approximately only. Precise distances are not possible due to the age of some listings and the aggregation and/or loss of addresses.

Boreholes and monitoring wells advanced as a part of the Phase Two ESA at the Site to investigate the identified APECs are shown on Figures 5A and 5B.

1.3 Underground Utilities

The Site utilities and services were identified at the Site based on relevant utility infrastructure observed during the Site reconnaissance, and the information from the locates that were completed for the Site. The Site utilities are summarized as follows and noted on Figure 3, where available. It is noted that the precise underground location of the utilities cannot be determined without professional locate services. The site is serviced by the following:

Table 4: Underground Utilities

Utility	Source	Location	Site Entry
Natural Gas	Enbridge Gas	Underground	<p>One (1) natural gas pipeline was observed on the north wall of Building B (1980 Fowler Drive). However, the natural gas pipeline was not visible at Building A (1970 Fowler Drive) at the time of Site visit.</p> <p>The natural gas is expected to enter the Site from Fowler Drive.</p>
Sanitary Sewer	City of Mississauga	Underground	The sanitary sewer is entering the Site along Fowler Drive and North Sheridan Way.
Storm Sewer	City of Mississauga	Underground	The storm sewer is entering the Site along Fowler Drive and North Sheridan Way.
Water	City of Mississauga	Underground	The water is entering the Site along Fowler Drive and North Sheridan Way.
Electricity	Alectra	Underground	The electric panels are located in the basement of the Site buildings.
Telecommunications	Unknown	Underground	One (1) Bell manhole was observed in the landscaped area at the southwest corner of the Site.

Soil and groundwater exceedance was identified at the Site, the subsurface structure, foundation and the underground utilities may cause the potential migration and pathway of the contaminant.

2 Physical Site Description

2.1 Geological Conditions and Hydrogeological Conditions

According to the Geology of Ontario Map, the Site is located within the broad physiographic region known as the beaches and surficial geology is dominated by Paleozoic bedrock deposits. The bedrock in the general area of the Site is part of a group belonging to the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member, and Eastview Member, primarily consisting of shale, limestone, dolostone and siltstone. Based on a review of "Bedrock Topography and Overburden Thickness Mapping, Southern Ontario, prepared by Ontario Geological Survey, published 2006," the bedrock in the vicinity of the Site is anticipated to be encountered between depths of approximately 16 to 23 metres below ground surface (m bgs). A more detailed description of these layers based on observations from previous investigations is provided in Section 1.4.

A review of the topographic map indicated that the Site is generally flat with an elevation of approximately 124 m above sea level (asl) north of the Site and 131 m above sea level (asl) south of the Site and that the Phase I Study Area gently slopes to the north towards Loyalist creek, located approximately 0.1 km north of the Site draining in Credit River. Based on the information provided on the topographic map, regional groundwater is expected to flow north towards Loyalist creek.

Based on the review of available resources from the Ministry of Natural Resources and Forestry (MNRF) website June 18, 2025, no Areas of Natural Significance were identified at the Site or within 30 m of the Site.

2.2 Stratigraphy

The general stratigraphy at the Site, as observed in boreholes, generally consisted of a surficial layer of asphalt, topsoil or concrete and granular fill over a fill stratum overlying a sandy silt deposit. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections.

2.2.1 Surface Material

Asphalt with a thickness of approximately 75mm to 152 was encountered at the surface of BH25-101, BH25-104, and BH25-107. Patio Brick with a thickness of approximately 75mm was encountered at the surface of BH25-102 and BH25-103. Topsoil with a thickness of approximately 152 mm was encountered at the surface of BH/MW25-105, BH25-106, and BH25-108. All the surficial material was underlain by sand and gravel fill with thickness ranging from approximately 25 mm.

2.2.2 Fill Material

Fill materials were encountered below the surficial material at each borehole location. The fill extended to depths ranging from approximately 0.2 to 3.05 m bgs. The fill materials consisted of mix of brown sand, sand and gravel, and sandy silt with occasional rock / shale fragments, and occasional brick fragments (BH25-102 and BH25-103). The fill materials were brown and moist.

2.2.3 Sandy Silt / Silty Sand

Deposit of sandy silt was encountered beneath the fill in all boreholes and extended from 2.4 to 5.18 m bgs in only BH/MW25-105. The sandy silt contains trace gravel, brown to grey and moist.

2.2.4 Bedrock

Bedrock was in six (6) of the boreholes (BH25-103, BH25-104, BH/MW25-105, BH25-106, BH25-107, and BH25-108) at shallow depths ranging approximately between 0.91 to 5.18 m bgs.

2.3 Hydrogeology

Based on the groundwater contour map calculated for the Site, the overall groundwater is anticipated to flow in a northern direction. Refer to Table 5 below for the Site hydrogeology characteristics based on groundwater monitoring observations. The groundwater contour plans are presented in Figures 6.

Table 5: Site Hydrogeology Characteristics

Location	Observation
Depth to Groundwater	3.69 m bgs to 8.93 m bgs
Groundwater Elevation	114.36 to 119.60 masl

Location	Observation
Direction of Groundwater Flow	Northeast
Horizontal Hydraulic Gradient	0.051 m/m (between BH/MW25-105 and BH/MW1S)

2.4 Site Sensitivity

The Site Sensitivity classification with respect to the conditions set out under Section 35, 41 and 43.1 of O. Reg. 153/04, as amended, were evaluated to determine if the Site is sensitive:

Table 6: Site Sensitivity

Sensitivity	Classification	Does Sensitivity Apply to Site?
Section 35 applies if	Not Applicable	
Section 41 applies if	(i) property is within an area of natural significance	No
	(ii) property includes or is adjacent to an area of natural significance or part of such an area	No
	(iii) property includes land that is within 30 m of an area of natural significance or part of such an area	No
	(iv) soil at property has a pH value for surface soil less than 5 or greater than 9	No
	(v) soil at property has a pH value for sub-surface soil less than 5 or greater than 11	No
	(vi) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property	No
Section 43.1 applies if	(i) property is a shallow soil property	Yes
	(ii) property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 m of a water body	No

2.5 Areas where Excess Soil Has Been Brought from Another Property

No excess soil has been brought to the Site during the Phase Two ESA.

2.6 Land Use

It is EXP's understanding that the Site is proposed to be redeveloped for residential use.

3 Contaminants of Concern

3.1 Applicable Site Condition Standards

For assessment purposes, EXP selected MECP (2011) MECP Table 6: Full Depth Generic Site Condition Standards for Shallow Soils in a Potable Groundwater Condition residential/Parkland/ Institutional Property Use – coarse Textured Soil (Table 6 SCS) for the entire Site. The selection of this category was based on the following factors:

Table 7: Site Condition Standards

Description		Site Specific Condition
Section 35 Site Sensitivity	Not Applicable	
Section 41 Site Sensitivity	Applicable <ul style="list-style-type: none">The Site is a shallow soil property	
Section 43.1 Site Sensitivity	Applicable <ul style="list-style-type: none">The Site is considered a shallow soil property, based on the recovered soil cores, which indicated that more than two-thirds of the Site has an overburden thickness in excess of 2 m.	
Ground Water	Potable <ul style="list-style-type: none">The Site is developed for residential use and is serviced with municipal water distribution system.	
Land Use	Residential/Parkland/Institutional <ul style="list-style-type: none">The proposed future use of the Site is for residential use.	
Soil Texture	Coarse textured <ul style="list-style-type: none">The predominant texture of soils at the Site is considered to be coarse textured, based on soil characteristics identified in the borehole logs and 75-micron sieve analysis.	

3.2 Areas of Contamination and Distribution of Contaminants

Subsurface investigations were completed to assess the impact of PCAs in soil and groundwater media within APECs at the Site. The analyzed concentrations of potential contaminants of concern (PCOCs) in soil and groundwater with the Table 6 SCS. The potential soil PCOCs associated with the identified APECs are petroleum hydrocarbons (PHCs) including benzene, toluene, ethylbenzene and xylenes (collectively referred to as "BTEX"), polycyclic aromatic hydrocarbons (PAHs), metals (including hydride-forming metals) and other regulated parameters (ORPs) including pH, mercury (Hg), cyanide (CN-), boron [hot-water-soluble] (B-HWS), hexavalent chromium (Cr (VI)), electrical conductivity (EC) and sodium adsorption ratio (SAR). The potential groundwater PCOCs associated with the identified APECs are PHCs including BTEX, VOCs, PAHs, metals (including hydride-forming metals), sodium (Na). A summary of the assessment of APECs is provided as follows:

Table 8: Assessment of APECs

APEC	Location of APEC on Phase Two Property	PCA ¹	Location of PCA	COPC and Media Affected	Phase Two Assessments	Current Status (Exceedances of MECP Table 6 SCS
APEC 1: Location of the former swimming pool	Northeast exterior portion of the Site Building B at the Site (1980 Fowler Drive)	PCA#30- Importation of Fill Materials of Unknown Quality. (PCA-1)	On-Site	Soil PHCs, BTEX, PAHs, Metals, As, Sb, Se, Hg, Cr VI, CN-, pH, EC, SAR and B-HWS	Soil: Soil samples were collected from BH/MW 25-102, and BH25-103 and analyzed for PHCs, BTEX, PAHs, Metals, As, Sb, Se, Hg, Cr VI, CN-, pH, EC, SAR and ORPs including Boron (HWS), Cr VI, and Hg.	Soil: No exceedances were identified in the soil samples
APEC 2A: Application of de-icing agents during winter season	East exterior of Building A (1970 Fowler Drive)	PCA# "Other"- Application of de-icing agents	On-Site	Soil EC, SAR	Soil: Soil samples were collected from BH/MW 25-107 analyzed for EC, SAR	Soil: No exceedances were identified in the soil samples with the exception of the following: ➤ Electrical Conductivity - Table 6 SCS exceedance > 0.7 ms/cm ○ BH25-107 S1 (0-0.76) – reported concentration of 4.26 ms/cm. ➤ Sodium Absorption Ratio - Table 6 SCS exceedance > 5 ○ BH25-101 S1 (0-0.76) – reported concentration of 7.08 .
APEC 2B: Application of de-icing agents during winter season	North, East and West exterior of Building B (1980 Fowler Drive)	PCA# "Other"- Application of de-icing agents	On-Site	Soil EC, SAR	Soil:	Soil: No exceedances were identified in the soil samples with the exception of the following:

APEC	Location of APEC on Phase Two Property	PCA ¹	Location of PCA	COPC and Media Affected	Phase Two Assessments	Current Status (Exceedances of MECP Table 6 SCS)
				Soil samples were collected from BH/MW 25-101 and BH/MW 25-107 analyzed for EC, SAR	<ul style="list-style-type: none"> ➤ Electrical Conductivity - Table 6 SCS exceedance > 0.7 ms/cm <ul style="list-style-type: none"> ○ BH25-101 S1 (0-0.76) – reported concentration of 2.92 ms/cm. ○ BH25-104 S1 (0-0.76) – reported concentration of 3.06 ms/cm. ➤ Sodium Absorption Ratio - Table 6 SCS exceedance > 5 <ul style="list-style-type: none"> ○ BH25-101 S1 (0-0.76) – reported concentration of 28. ○ BH25-104 S1 (0-0.76) – reported concentration of 33.1. <p>Based on the reported analytical results, EC and/or SAR were detected at concentrations above the applicable MECP Table 6 SCS in soil; however, it is the QP's opinion that the elevated levels of salt-related parameters (EC and SAR) are likely associated with the application of de-icing materials for the purpose of snow and ice removal in the winter months and as such are not considered to be in excess of the SCS for the purposes of filing an RSC, based on the exemption outlined in Section 49.1 of O. Reg. 153/04, as amended.</p>	
APEC 3: Former presence of Spring bank Road Dump operated as a Sanitary landfill.	Eastern Portion of the Site	PCA#58-Waste Disposal and Waste Management, including thermal treatment, landfilling and	Off-Site	<u>Groundwater</u> PHCs, BTEX, VOCs, PAHs, Metals, As, Sb, Se, Hg		<p>Groundwater:</p> <p>No exceedances were identified in the groundwater samples with the exception of the following:</p> <ul style="list-style-type: none"> ➤ Tetrachloroethylene - Table 6 SCS exceedance > 0.5 µg/g <ul style="list-style-type: none"> ○ BH/MW25-105 (screened at 2.13 - 5.18) – reported

APEC	Location of APEC on Phase Two Property	PCA ¹	Location of PCA	COPC and Media Affected	Phase Two Assessments	Current Status (Exceedances of MECP Table 6 SCS)
		transfer of waste, other than use of biosoils as soil conditioners		Groundwater: Groundwater samples were collected from BH/MW25-2 analyzed for PHCs, BTEX, PAHs, VOCs, Metals, As, Sb, Se, and ORPs including Hg	Groundwater: concentration of 2.79 µg/g. (November 14, 2025) ○ BH/MW25-1050 (Duplicate of BH/MW25-105) (screened at 2.13 - 5.18) – reported concentration of 2.18 µg/g. (November 14, 2025) <i>Note: Two (2) additional confirmatory GW samples were submitted on November 19th, and November 24th for the analysis of VOCs. The concentrations of all parameters for VOCs in the groundwater samples analyzed were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLS). It is likely that the elevated VOCs in the original groundwater sample on November 14, 2025 is associated with sediment in the samples. Therefore, the VOCs parameters are not considered as Contaminants of Concerns (COCs) in the Phase Two ESA.</i>	
APEC 4: Presence of an RFO – Shell Gas service station and storage of USTs	Southern boundary of the Site	PCA#28-Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	Groundwater: PHCs, BTEX, VOCs	Groundwater: No Wells were installed at the proposed locations.	During the drilling program, bedrock was encountered at shallow depths (approximately 1.22 to 1.68 m bgs) in two borehole locations (BH/MW25-106 and BH/MW25-108). Due to the limited overburden thickness and the inability to advance the boreholes further without rock coring, monitoring wells were not installed at these locations during this Phase Two ESA. Further environmental works (i.e. Rock coring, monitoring wells installation and groundwater

APEC	Location of APEC on Phase Two Property	PCA ¹	Location of PCA	COPC and Media Affected	Phase Two Assessments	Current Status (Exceedances of MECP Table 6 SCS)
(1)						analysis etc.) are required to assess this APEC.

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O. Reg. 153/04, as amended) that is occurring or has occurred in a phase one Study area.

3.3 Soil COCs

A chemical constituent was selected as a COC if it was detected in soil obtained from the Site at a concentration in excess of the applicable MECP Table 6 SCS.

Soil samples were submitted for the analysis of PHCs, BTEX, VOCs, PAHs, metals (including hydride-forming metals) and ORPs including Hg, CN, B-HWS, Cr(VI), EC, SAR and pH. The following parameters exceeded their respective Table 6 SCS and were identified as COCs in soil:

- **Electrical Conductivity - Table 6 SCS exceedance > 0.7 ms/cm**
 - BH25-101 S1 (0-0.76) – reported concentration of **2.92** ms/cm.
 - BH25-104 S1 (0-0.76) – reported concentration of **3.06** ms/cm.
 - BH25-107 S1 (0-0.76) – reported concentration of **4.26** ms/cm.

- **Sodium Absorption Ratio - Table 6 SCS exceedance > 5**
 - BH25-101 S1 (0-0.76) – reported concentration of **28**.
 - BH25-104 S1 (0-0.76) – reported concentration of **33.1**.
 - BH25-107 S1 (0-0.76) – reported concentration of **7.08**.

Based on the reported analytical results, EC and/or SAR were detected at concentrations above the applicable MECP Table 6 SCS in soil; however, it is the QP's opinion that the elevated levels of salt-related parameters (EC and SAR) are likely associated with the application of de-icing materials for the purpose of snow and ice removal in the winter months and as such are not considered to be in excess of the SCS for the purposes of filing an RSC, based on the exemption outlined in Section 49.1 of O. Reg. 153/04, as amended.

No evidence of free products was observed in soil during the investigation. The exceedances in the soil samples will be addressed via a delineation plan.

3.4 Groundwater COCs

A chemical constituent was selected as a COC if it was detected in groundwater obtained from the Site at a concentration in excess of the applicable Table 6 SCS.

The pCOCs associated with the identified APECs included PHCs, BTEX, VOCs, PAHs, Metals, As, Sb, Se. The following parameters exceeded their respective Table 6 SCS and were identified as COCs in groundwater:

- **Tetrachloroethylene - Table 6 SCS exceedance > 0.5 µg/g)**

- BH/MW25-105 (screened at 2.13 - 5.18) – reported concentration of **2.79 µg/g.** (**November 14, 2025**)
- BH/MW25-1050 (Duplicate of BH/MW25-105) (screened at 2.13 - 5.18) – reported concentration of **2.18 µg/g.** (**November 14, 2025**)

Two (2) additional confirmatory GW samples were submitted on November 19th, and November 24th for the analysis of VOCs. The concentrations of all parameters for VOCs in the groundwater samples analyzed were either below the MECP (2011) Table 6 SCS or not detected above the laboratory reportable detection limits (RDLs). It is likely that the elevated VOCs in the original groundwater sample on November 14, 2025 is associated with sediment in the samples. Therefore, the VOCs parameters are not considered as Contaminants of Concerns (COCs) in the Phase Two ESA.

3.5 Sediment COC

As no water body was present at the Site, sediment sampling was not part of the Phase Two ESA.

3.6 Areas Where Contaminants Are Present

No exceedances of the applicable MECP Table 6 SCS are present at the Site.

3.7 Contaminant Fate and Transport

3.7.1 Soil Media

No exceedances were identified in soil, and analytical results of soil samples collected on the Site are presented in a plan view on Figures 7 to 11.

3.7.2 Groundwater Media

No exceedances were identified in groundwater media, and analytical results of groundwater samples collected on the Site are presented in a plan view on Figures 12 to 16.

3.8 Distribution, Discharge and Migration of Contaminants

No COCs in soil and groundwater are identified at the Site.

3.9 Influence of Climatic or Meteorological Conditions

No COCs in soil and groundwater are identified at the Site.

3.10 Vapour Intrusion Pathway Considerations

No COCs in soil and groundwater are identified at the Site.

4 Exposure Pathways

The selection of human receptors is based on the intended residential use of the site. Therefore, the potential on-site receptors include child and adult residents and visitors, trespassers, and maintenance workers. Construction/utility workers may also be present during construction. Based on the residential and commercial uses of the surrounding lands, off-site human receptors consist of child and adult residents, child and adult visitors.

Exposure routes for humans include soil particulate inhalation, direct contact with soil and groundwater, and incidental ingestion. However, as there are no soil or groundwater COCs identified on-site, there are no potential on- or off-site exposure pathways for human receptors.

Given the intended residential use of the site, the potential ecological receptors that may be present on-site comprise terrestrial vegetation, soil invertebrates, mammals and birds. Off-site ecological receptors consist of the same as those found on-site. On-site exposure routes include direct contact with soil and uptake of soil COCs by inhalation, ingestion and dermal contact, in addition to plant root uptake. Groundwater on-site is found beyond the depth at which plant root uptake is considered to be likely. As no COCs were identified, there are no relevant on- or off-site exposure pathways for ecological receptors.

5. Uncertainty in the Phase Two Investigation

The investigation undertaken by EXP, and any conclusions or recommendations resulting from the work, reflect EXP's judgment based on the Site conditions observed at the time of EXP's site inspections and on information available at the time of preparation of the work. EXP has confirmed neither the completeness nor the accuracy of the records that were provided by others; as such, the historical records review is identified as a potential source of uncertainty during the investigation. The CSM is developed using multiple lines of evidence, searches and source information to make every reasonable attempt to ensure that findings of environmental significance are captured.

To reduce uncertainty in the analytical results obtained during the Phase Two ESA, a documented quality assurance/quality control (QA/QC) program, including Field QA/QC and Laboratory QA/QC components, was implemented. Written field and laboratory sampling procedures for soil and groundwater developed by EXP were used to ensure consistency in sample collection and preparation of samples for submission to the laboratory. The MECP document entitled Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (1996) was used as a reference. Sampling analysis was performed using generally accepted principles and with appropriate sampling equipment. The staff involved in the field sampling have participated in regular, ongoing EXP training programs and were qualified and experienced in collecting, describing, and preparing environmental samples for laboratory analysis.

Data quality objectives for the parameters of concern were set to meet acceptable Reporting Detection Limits (RDLs) to achieve the goal of defining areas where such parameters are present at levels in excess of applicable generic Standards. A field QA/QC program of blind field duplicate samples, trip blank sample and trip spike sample were implemented to reduce uncertainty related to the QA/QC. Relative percent differences (RPDs) were calculated for each of the sample/field duplicate sets and compared to acceptable alert limit criteria for each parameter.

One (1) soil sample/field duplicate sample pairs were collected and analyzed for the following pCOCs:

- BH25-103 S2/ BH25-103 S2-0, was analyzed for PHCs including BTEX, PAHs, Metals including HFM, ORPs, and pH;
- BH25-102 S1/ BH25-102 S1-0 for EC and SAR.

One (1) groundwater sample/field duplicate sample pairs were collected and analyzed for the following pCOCs:

- BH/MW25-105 / BH/MW25-1050 were analyzed for PHCs including BTEX, VOCs, PAHs, Metals (including Hydride Forming Metals).

The relative percent differences (RPDs) of the soil and groundwater field duplicate samples are provided in this appendix. It should be noted that meaningful RPDs cannot be calculated if the analytical results are less than 5 times the reporting detection limits (RDLs) or if the average of the two sample concentrations are less than 5 times the RDL.

For soil samples, the alert limit criteria for the field duplicate RPD is >30% for PHCs, >50% for VOCs, >40% for PAHs, >30% for metals and inorganics. The calculated RPD between the duplicate samples and the parent samples for soil was below the relevant alert criteria for all of the parameters analyzed.

For groundwater samples, the alert limit criteria for the field duplicate RPD is >20% for metals (including hydride-forming metals), Hg, Cr (VI), CN-, Na and Cl, and >30% for PHC F1 to F4, PAHs, and VOCs. The calculated RPD between the duplicate samples and the original samples for groundwater was below the applicable alert limit criteria for all of the parameters analyzed with the following exceptions:

The RPD between sample BH/MW25-105/ BH/MW25-1050 was:

- 45% for Cobalt
- 48% for Lead)
- 30% for Nickel
- 71% for Vanadium

It is to be noted that based on the QP's opinion that the elevated concentrations are associated with sample heterogeneity of the representative soil sample.

No laboratory data quality issues were identified that would have a material effect on the interpretation of results presented in this report.

Any uncertainty or absence of information in the records review, interviews, and site reconnaissance components of the Phase One investigation, or any uncertainty or absence of information within the Phase Two or subsequent investigations, are not anticipated to materially affect the validity of the Phase Two CSM.

6 References

- Atlas of Canada Topographic Map (also known as Toporama) found on the Natural Resources Canada website (<http://atlas.nrcan.gc.ca/site/english/maps/topo/map>).
- Brennand, T.A., Moore, A., Logan, C., Kenny, F., Russell, H.A.J., Sharpe, D.R. and Barnett, P.J., *Bedrock Topography of the Greater Toronto & Oak Ridges Moraine Areas, southern Ontario; Geological Survey of Canada*, Geological Survey of Canada Open File 3419, scale 1:200,000; 1998.
- Chapman, L.J. and D.F. Putnam, *The Physiography of Southern Ontario*, Third Edition, Ontario Ministry of Natural Resources, 1984.
- Phase One Environmental Site Assessment, at 1970 & 1980 Fowler Drive, Mississauga, Ontario”, prepared for Starlight Developments, prepared by EXP Services Inc. (EXP), dated July 4, 2025.
- Google Earth, Version 6.1.0.5001 (<http://www.google.com/earth/index.html>).
- McWhorter, D.B. and D.K. Sunada, *Groundwater Hydrology and Hydraulics*, Water Resources Publications, 1977.
- Ontario Geological Survey, *Bedrock Geology of Ontario*, Southern Sheet, Ontario Geological Survey Map 2544, Scale 1:1,000,000, 1991.
- Ontario Ministry of the Environment, Conservation and Parks, Species at Risk in Ontario website (<https://www.ontario.ca/page/species-risk-ontario>).
- Ontario Ministry of Natural Resources and Forestry, *Heritage Areas Map*, (http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR_NHLUPS_NaturalHeritage&viewer=NaturalHeritage&locale=en-US).
- Ontario Regulation 153/04 made under Part XV.1 of the *Environmental Protection Act*, July 1, 2011.
- Sharpe, D.R., *Quaternary Geology of Toronto and Surrounding Area, Ontario Geological Survey Preliminary Map P. 2204, Geological Series*, scale 1:100,000, 1980.

Appendix G – Limitations and Use of Report

LIMITATIONS AND USE OF REPORT

BASIS OF REPORT

The Report is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require re-evaluation. Where special concerns exist, or the Client has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Where applicable, recommended field services are the minimum necessary to ascertain that construction is being carried out in general conformity with building code guidelines, generally accepted practices and EXP's recommendations. Any reduction in the level of services recommended will result in EXP providing qualified opinions regarding the adequacy of the work. EXP can assist design professionals or contractors retained by the Client to review applicable plans, drawings, and specifications as they relate to the Report or to conduct field reviews during construction.

RELIANCE ON INFORMATION PROVIDED

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to EXP.

STANDARD OF CARE

This report ("Report") has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, EXPRESSED or IMPLIED, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

USE OF REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

REPORT FORMAT

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

Appendix H - QAQC Measures

Quality Management, Control and Assurance

Project Quality Management

Sample collection was performed using generally accepted principles and with appropriate sampling equipment. Written field sampling procedures for soil and groundwater developed by EXP were used to ensure consistency in sample collection and preparation of samples for submission to the laboratory. The Ministry of Environment, Conservation and Parks (MECP) document entitled *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, December 1996, was used as a reference.

The staff involved in the field sampling have participated in regular, ongoing EXP training programs and were qualified and experienced in collecting, describing, and preparing environmental samples for laboratory analysis.

Laboratory analysis was performed using generally accepted principles in accordance with the *Protocol for Analytical Methods Used in the Assessment of Properties* under Part XV.1 of the Environmental Protection Act (Protocol).

Data quality objectives for the parameters of concern were set to meet acceptable Reporting Detection Limits (RDLs) to achieve the goal of defining areas where such parameters are present at levels in excess of applicable generic Standards, as defined in Ontario Regulation (O. Reg.) 153/04, as amended to date, under the Environmental Protection Act. This included providing written instruction to the participating analytical laboratory describing the required analyses on the Chain of Custody prepared and delivered with the samples.

Field Quality Assurance/Quality Control

The Sampling and Analysis Plan was prepared and executed based on the findings of the Phase One ESA (EXP, dated July 4, 2025), the needs of the client during future site redevelopment activities, and on professional judgment at the time of the investigation.

Field observations were made and documented in a field book in accordance with generally accepted practices and with the procedures developed and utilized by EXP.

EXP field sampling Quality Assurance/ Quality Control (QA/QC) protocols are tailored to the investigation and include, where appropriate:

- the collection of at least one duplicate sample per site for both soil and groundwater (where three or more such samples are collected);
- where volatile organic chemical analysis of groundwater is required, one trip blank shall be submitted for laboratory analysis with each submission;
- where volatile organic chemical analysis is required, the collection of discrete samples directly into sample bottles with teflon-lined lids and immediate placement into a cooler with free ice to maintain the temperature at less than 10°C for transport to the laboratory;
- the use of dedicated equipment for groundwater sampling at different monitors and the thorough cleaning of soil sampling equipment between sample sites; and,

- where sampling for trace organics (organic chemicals with a criterion value of less than 1 µg/g and/or samples collected for determination of background trace organic concentrations), ensuring that neither the bare hand or latex glove comes into contact with the soil or water as it is being placed into the laboratory sample container; soil sampling equipment used for the collection of trace organics is cleaned using soap & water, followed by a water rinse and a methanol rinse between sampling sites.

The results of the duplicate samples are presented along with the tabulated data in the report. Tabulated data are presented to a maximum of three significant digits where reported by the laboratory.

Laboratory Quality Assurance/Quality Control

All laboratory analyses were completed by AGAT Laboratories (AGAT), an accredited laboratory for these tests. AGAT performed the work following formal written methods and procedures. These methods include all the minimum requirements as specified in the Protocol.

EXP has accepted the data provided by AGAT based on the assurance from AGAT that as a minimum, the following requirements have been met and documentation to demonstrate compliance can be produced on request:

- the method performance criteria identified in the Protocol were met;
- sample storage requirements, pre-analysis processing techniques, and holding times for all sample types as identified in the Protocol were met;
- the results of all laboratory QC samples were within statistically determined control limits and if not, reasons were provided;
- surrogate recoveries (for organic analyses) were monitored and recorded;
- details on the precision and accuracy of the data have been recorded and retained and are available from the laboratory should they be required as a result of an MECP audit;
- the analytical data were reported without blank correction (unless the correction was clearly identified on the Certificate of Analysis);
- all soil sampling results were reported on a dry weight basis; and,
- a Certificate of Analysis with all QA/QC sample data, including surrogate recoveries, has been received from the laboratory and is appended.

One (1) soil sample/field duplicate sample pairs were collected and analyzed for the following pCOCs:

- BH25-103 S2/ BH25-103 S2-0, was analyzed for PHCs including BTEX, PAHs, Metals including HFMs, ORPs, and pH;
- BH25-102 S1/ BH25-102 S1-0 for EC and SAR.

One (1) groundwater sample/field duplicate sample pairs were collected and analyzed for the following pCOCs:

- BH/MW25-105 / BH/MW25-1050 were analyzed for PHCs including BTEX, VOCs, PAHs, Metals (including Hydride Forming Metals).

The relative percent differences (RPDs) of the soil and groundwater field duplicate samples are provided in this appendix. It should be noted that meaningful RPDs cannot be calculated if the analytical results are less than 5 times the reporting detection limits (RDLs) or if the average of the two sample concentrations are less than 5 times the RDL.

For soil samples, the alert limit criteria for the field duplicate RPD is >30% for PHCs, >50% for VOCs, >40% for PAHs, >30% for metals and inorganics. The calculated RPD between the duplicate samples and the parent samples for soil was below the relevant alert criteria for all of the parameters analyzed.

For groundwater samples, the alert limit criteria for the field duplicate RPD is >20% for metals (including hydride-forming metals), Hg, Cr (VI), CN-, Na and Cl, and >30% for PHC F1 to F4, PAHs, and VOCs. The calculated RPD between the duplicate samples and the original samples for groundwater was below the applicable alert limit criteria for all of the parameters analyzed with the following exceptions:

The RPD between sample BH/MW25-105/ BH/MW25-1050 was:

- 45% for Cobalt
- 48% for Lead)
- 30% for Nickel
- 71% for Vanadium

It is to be noted that based on the QP's opinion that the elevated concentrations are associated with sample heterogeneity of the representative soil sample.

No laboratory data quality issues were identified that would have a material effect on the interpretation of results presented in this report.

The contractual laboratories selected to perform the chemical analyses were AGAT Laboratories (AGAT) located in Mississauga, Ontario. AGAT is accredited laboratories under the Standards Council of Canada/Canadian Association of Laboratory Accreditation (CALA) (Accredited Laboratory No. A3200, respectively) in accordance with ISO/IEC 17025:2005 – "General Requirements for the Competence of Testing and Calibration Laboratories". Certificates of Analysis were received from AGAT, reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the Certificates of Analysis are provided in Appendix E. Review of the Certificates of Analysis, prepared by AGAT, indicates that they were in compliance with the requirements set out under subsection 47(3) of O. Reg. 153/04.

The analytical program conducted by AGAT included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by AGAT. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, relative percent difference (RPD) for laboratory duplicates and analyte concentrations for method blanks. The QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by AGAT indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and

analytical test groups. Based on the assessment of the QA/QC, the analytical results reported are of acceptable quality and data qualifications are not required.

SOIL FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

Petroleum Hydrocarbons including BTEX in Soil

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Nov-25

Page 1 of 3

Location ID	MDL*	BH/MW25-103		RPD	Alert Limit
		BH25-103 S2	BH25-103 S2-0 (Duplicate of BH25-103 S2)		
Field Sample ID		7235122	7235123		
Lab ID		10-Nov-25	10-Nov-25		
Sampling Date		0.76 - 1.52	0.76 - 1.52		
Soil Sample Depth (m)		EXP	EXP		
Consultant		AGAT	AGAT		
Laboratory		25T367696	25T367696		
Certificate of Analysis Number					
Benzene	0.02	<0.02	<0.02	nc	>50%
Toluene	0.05	<0.05	<0.05	nc	>50%
Ethylbenzene	0.05	<0.05	<0.05	nc	>50%
m-Xylene + p-Xylene	0.05	<0.05	<0.05	nc	>50%
o-Xylene	0.05	<0.05	<0.05	nc	>50%
Xylenes (Total)	0.05	<0.05		nc	>50%
PHC F1 (C6-C10)	5	<5	<5	nc	>50%
PHC F1 (C6-C10) - BTEX	5	<5		nc	>30%
PHC F2 (C10-C16)	7	<7	<7	nc	>30%
PHC F3 (C16-C34)	50	<50	<50	nc	>30%
PHC F4 (C34-C50)	50	<50	<50	nc	>30%
PHC F4 (C34-C50)-gravimetric	50	-	-	nc	>30%

NOTES:

Analysis by AGAT Labs.

All results in ppm ($\mu\text{g/g}$) and based on dry weight basis.

* Maximum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

'nc' means "not calculable", since one (or both) of the results are less than the RDL or the average of the two sample concentrations are less than 5 times the MDL.

Exceedences of alert limits are shown in **bold**.

SOIL FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

Polycyclic Aromatic Hydrocarbons in Soil

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Nov-25

Page 2 of 3

Location ID	Field Sample ID	Lab ID	BH/MW25-103		RPD	Alert Limit
			BH25-103 S2	BH25-103 S2-0 (Duplicate of BH25-103 S2)		
Sampling Date		7235122	10-Nov-25	10-Nov-25		
Soil Sample Depth (m)		0.76 - 1.52		0.76 - 1.52		
Consultant		EXP		EXP		
Laboratory		AGAT		AGAT		
Certificate of Analysis Number		25T367696		25T367696		
Naphthalene	0.05	<0.05		<0.05	nc	>40%
Acenaphthylene	0.05	<0.05		<0.05	nc	>40%
Acenaphthene	0.05	<0.05		<0.05	nc	>40%
Fluorene	0.05	<0.05		<0.05	nc	>40%
Phenanthrene	0.05	<0.05		<0.05	nc	>40%
Anthracene	0.05	<0.05		<0.05	nc	>40%
Fluoranthene	0.05	<0.05		<0.05	nc	>40%
Pyrene	0.05	<0.05		<0.05	nc	>40%
Benzo(a)anthracene	0.05	<0.05		<0.05	nc	>40%
Chrysene	0.05	<0.05		<0.05	nc	>40%
Benzo(b/j)fluoranthene	0.05	<0.05		<0.05	nc	>40%
Benzo(k)fluoranthene	0.05	<0.05		<0.05	nc	>40%
Benzo(a)pyrene	0.05	<0.05		<0.05	nc	>40%
Indeno(1,2,3-cd)pyrene	0.05	<0.05		<0.05	nc	>40%
Dibenz(a,h)anthracene	0.05	<0.05		<0.05	nc	>40%
Benzo(ghi)perylene	0.05	<0.05		<0.05	nc	>40%
1&2-Methylnaphthalene	0.05	<0.05		<0.05	nc	>40%

NOTES:

Analysis by AGAT Labs.

All results in ppm ($\mu\text{g/g}$) and based on dry weight basis.

* Maximum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

'nc' means "not calculable", since one (or both) of the results are less than the RDL or the average of the two sample concentrations are less than 5 times the MDL.

Exceedences of alert limits are shown in **bold**.

SOIL FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

Metals, Hydride-Forming Metals and Other Regulated Parameters in Soil

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Nov-25

Page 3 of 3

Location ID	MDL*	BH/MW25-103		RPD	Alert Limit
		BH25-103 S2	BH25-103 S2-0 (Duplicate of BH25-103 S2)		
Field Sample ID		7235122	7235123		
Lab ID					
Sampling Date		10-Nov-25	10-Nov-25		
Soil Sample Depth (m)		0.76 - 1.52	0.76 - 1.52		
Consultant		EXP	EXP		
Laboratory		AGAT	AGAT		
Certificate of Analysis Number		25T367696	25T367696		
Antimony	0.8	<0.8	<0.8	nc	>30%
Arsenic	1	5	4	22	>30%
Barium	2.0	128	132	3	>30%
Beryllium	0.5	0.7	0.7	nc	>30%
Boron (Total)	5	13	13	nc	>30%
Cadmium	0.5	<0.5	<0.5	nc	>30%
Chromium (total)	5	21	20	5	>35%
Cobalt	0.8	10.6	10.1	5	>30%
Copper	1.0	14.3	14.2	1	>30%
Lead	1	18	15	18	>30%
Molybdenum	0.5	1.1	1.1	nc	>30%
Nickel	1	22	21	5	>30%
Selenium	0.8	<0.8	<0.8	nc	>30%
Silver	0.5	<0.5	<0.5	nc	>30%
Thallium	0.5	<0.5	<0.5	nc	>30%
Uranium	0.50	0.7	0.75	nc	>30%
Vanadium	2.0	27.9	26.6	5	>30%
Zinc	5	62	57	8	>30%
Other Regulated Parameters					
Boron (hot water soluble)	0.10	0.3	0.33	nc	>40%
Chromium VI	0.2	<0.2	<0.2	nc	>35%
Free Cyanide	0.040	<0.040	<0.040	nc	>35%
Mercury	0.10	<0.10	<0.10	nc	>30%
Electrical Conductivity (mS/cm)	0.005	0.516	0.491	5	>10%
Sodium Adsorption Ratio (unitless)	-	1.43	1.47	3	>30%
pH (pH Units)	-	-	-	nc	NA

NOTES:

Analysis by AGAT Labs.

All results in ppm ($\mu\text{g/g}$) and based on dry weight basis.

* Maximum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

'nc' means "not calculable", since one (or both) of the results are less than the RDL or the average of the two sample concentrations are less than 5 times the MDL.

Exceedences of alert limits are shown in **bold**.

GROUND WATER FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

Petroleum Hydrocarbons including BTEX in Groundwater

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Nov-25

Page 1 of 4

Location ID	Field Sample ID	BH/MW25-105		RPD	Alert Limit
		MW25-105	MW25-1050 (Duplicate of MW25-105)		
Lab ID		7249425	7249430		
Sampling Date		14-Nov-25	14-Nov-25		
Soil Sample Depth (m)		2.13 - 5.18	2.13 - 5.18		
Consultant		EXP	EXP		
Laboratory		AGAT	AGAT		
Certificate of Analysis Number		25T369358	25T369358		
Benzene	0.20	<0.20	<0.20	nc	>30%
Toluene	0.20	<0.20	<0.20	nc	>30%
Ethylbenzene	0.10	<0.10	<0.10	nc	>30%
m-Xylene + p-Xylene	0.20	<0.20	<0.20	nc	>30%
o-Xylene	0.10	<0.10	<0.10	nc	>30%
Xylenes (Total)	0.20	<0.20	<0.20	nc	>30%
PHC F1 (C6-C10)	25	<25	<25	nc	>30%
PHC F1 (C6-C10) - BTEX	25	<25	<25	nc	>30%
PHC F2 (C10-C16)	100	<100	<100	nc	>30%
PHC F3 (C16-C34)	100	<100	<100	nc	>30%
PHC F4 (C34-C50)	100	<100	<100	nc	>30%

NOTES:

Analysis by AGAT Labs.

NA means 'not analyzed'.

All results in ppb (μ g/L).

* Maximum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

'nc' means "not calculable", since one (or both) of the results are less than the RDL or the average of the two sample concentrations are less than 5 times the MDL.

Exceedences of alert limits are shown in **bold**.

GROUND WATER FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

Volatile Organic Compounds

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Nov-25

Page 24 of 4

Location ID	MDL*	BH/MW25-105		RPD	Alert Limit
		MW25-105	MW25-1050 (Duplicate of MW25-105)		
Field Sample ID		7249425	7249430		
Lab ID		14-Nov-25	14-Nov-25		
Sampling Date		2.13 - 5.18	2.13 - 5.18		
Soil Sample Depth (m)		EXP	EXP		
Consultant		AGAT	AGAT		
Laboratory		25T369358	25T369358		
Certificate of Analysis Number					
Dichlorodifluoromethane	0.4	<0.40	<0.40	nc	>30%
Vinyl Chloride	0.17	<0.17	<0.17	nc	>30%
Bromomethane	0.2	<0.20	<0.20	nc	>30%
Trichlorofluoromethane	0.4	<0.40	<0.40	nc	>30%
Acetone	1	<1.0	<1.0	nc	>30%
1,1-Dichloroethylene	0.3	<0.30	<0.30	nc	>30%
Methylene chloride (Dichloromethane)	0.3	<0.30	<0.30	nc	>30%
trans-1,2-Dichloroethylene	0.2	<0.20	<0.20	nc	>30%
Methyl t-butyl ether (MTBE)	0.2	<0.20	<0.20	nc	>30%
1,1-Dichloroethane	0.3	<0.30	<0.30	nc	>30%
Methyl ethyl ketone (2-Butanone)	1	<1.0	<1.0	nc	>30%
cis-1,2-Dichloroethylene	0.2	<0.20	<0.20	nc	>30%
Chloroform	0.2	<0.20	<0.20	nc	>30%
1,2-Dichloroethane	0.2	<0.20	<0.20	nc	>30%
1,1,1-Trichloroethane	0.3	<0.30	<0.30	nc	>30%
Carbon Tetrachloride	0.2	<0.20	<0.20	nc	>30%
Benzene	0.2	<0.20	<0.20	nc	>30%
1,2-Dichloropropane	0.2	<0.20	<0.20	nc	>30%
Trichloroethylene	0.2	<0.20	<0.20	nc	>30%
Bromodichloromethane	0.2	<0.20	<0.20	nc	>30%
Methyl Isobutyl Ketone	1	<1.0	<1.0	nc	>30%
1,1,2-Trichloroethane	0.2	<0.20	<0.20	nc	>30%
Toluene	0.2	<0.20	<0.20	nc	>30%
Dibromochloromethane	0.1	<0.10	<0.10	nc	>30%
Ethylene Dibromide (1,2-Dibromoethane)	0.1	<0.10	<0.10	nc	>30%
Tetrachloroethylene	0.2	2.79	2.18	25	>30%
1,1,1,2-Tetrachloroethane	0.1	<0.10	<0.10	nc	>30%
Chlorobenzene	0.1	<0.10	<0.10	nc	>30%
Ethylbenzene	0.1	<0.10	<0.10	nc	>30%
Bromoform	0.1	<0.10	<0.10	nc	>30%
Styrene	0.1	<0.10	<0.10	nc	>30%
1,1,2,2-Tetrachloroethane	0.1	<0.10	<0.10	nc	>30%
1,3-Dichlorobenzene	0.1	<0.10	<0.10	nc	>30%
1,4-Dichlorobenzene	0.1	<0.10	<0.10	nc	>30%
1,2-Dichlorobenzene	0.1	<0.10	<0.10	nc	>30%
1,3-Dichloropropene	0.3	<0.30	<0.30	nc	>30%
Xylenes (total)	0.2	<0.20	<0.20	nc	>30%
Hexane (n)	0.2	<0.20	<0.20	nc	>30%

NOTES:

Analysis by AGAT Labs.

All results in ppb (μ g/L).

* Maximum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

'nc' means "not calculable", since one (or both) of the results are less than the RDL or the average of the two sample concentrations are less than 5 times the MDL.

Exceedences of alert limits are shown in **bold**.

GROUND WATER FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

Polycyclic Aromatic Hydrocarbons

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Nov-25

Page 3 of 4

Location ID	MDL *	BH/MW25-105		RPD	Alert Limit
		MW25-105	MW25-1050 (Duplicate of MW25-105)		
Field Sample ID		7249425	7249430		
Lab ID		14-Nov-25	14-Nov-25		
Sampling Date		2.13 - 5.18	2.13 - 5.18		
Soil Sample Depth (m)		EXP	EXP		
Consultant		AGAT	AGAT		
Laboratory		25T369358	25T369358		
Certificate of Analysis Number					
Naphthalene	0.2	<0.20	<0.20	nc	>30%
Acenaphthylene	0.2	<0.20	<0.20	nc	>30%
Acenaphthene	0.2	<0.20	<0.20	nc	>30%
Fluorene	0.2	<0.20	<0.20	nc	>30%
Phenanthrene	0.1	<0.10	<0.10	nc	>30%
Anthracene	0.1	<0.10	<0.10	nc	>30%
Fluoranthene	0.2	<0.20	<0.20	nc	>30%
Pyrene	0.2	<0.20	<0.20	nc	>30%
Benzo(a)anthracene	0.2	<0.20	<0.20	nc	>30%
Chrysene	0.1	<0.10	<0.10	nc	>30%
Benzo(b/j)fluoranthene	0.1	<0.10	<0.10	nc	>30%
Benzo(k)fluoranthene	0.1	<0.10	<0.10	nc	>30%
Benzo(a)pyrene	0.01	<0.01	<0.01	nc	>30%
Indeno(1,2,3-cd)pyrene	0.2	<0.20	<0.20	nc	>30%
Dibenz(a,h)anthracene	0.2	<0.20	<0.20	nc	>30%
Benzo(ghi)perylene	0.2	<0.20	<0.20	nc	>30%
1&2-Methylnaphthalene	0.2	<0.20	<0.20	nc	>30%

NOTES:

Analysis by AGAT Labs.

All results in ppb (μ g/L).

* Maximum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

'nc' means "not calculable", since one (or both) of the results are less than the RDL or the average of the two sample concentrations are less than 5 times the MDL.

Exceedences of alert limits are shown in **bold**.

GROUND WATER FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

Metals, Hydride-Forming Metals and Other Regulated Parameters

GTR-22022660-C0, 1970 & 1980 Fowler Drive, Mississauga, Ontario

Nov-25

Page 4 of 4

Location ID	MDL*	BH/MW25-105		RPD	Alert Limit
		MW25-105	V25-1050 (Duplicate of MW25-1)		
Field Sample ID		7249425	7249430		
Lab ID		14-Nov-25	14-Nov-25		
Sampling Date		2.13 - 5.18	2.13 - 5.18		
Soil Sample Depth (m)		EXP	EXP		
Consultant		AGAT	AGAT		
Laboratory		25T369358	25T369358		
Certificate of Analysis Number					
Antimony	1	<1.0	<1.0	nc	>20%
Arsenic	1	<1.0	<1.0	nc	>20%
Barium	2	230	234	2	>20%
Beryllium	0.5	<0.50	<0.50	nc	>20%
Boron (Total)	10	120	125	4	>20%
Cadmium	0.2	<0.20	<0.20	nc	>20%
Chromium (total)	2	<2.0	<2.0	nc	>20%
Cobalt	0.5	0.6	0.95	45	>20%
Copper	1	<1.0	<1.0	nc	>20%
Lead	0.5	3.28	2.02	48	>20%
Molybdenum	0.5	5.77	5.56	4	>20%
Nickel	1	3.5	2.6	30	>20%
Selenium	1	<1.0	<1.0	nc	>20%
Silver	0.2	<0.20	<0.20	nc	>20%
Thallium	0.3	<0.30	<0.30	nc	>20%
Uranium	0.5	2.44	2.47	1	>20%
Vanadium	0.4	0.44	0.92	71	>20%
Zinc	5	<5.0	<5.0	nc	>20%
Other Regulated Parameters					
Chromium VI	2	<2.000	<2.000	nc	>20%
Free Cyanide	2	<2	<2	nc	>20%
Mercury	0.02	<0.02	<0.02	nc	>20%
Sodium	50	203000	197000	3	>20%
Chloride	100	654000	640000	2	>20%

NOTES:

Analysis by AGAT Labs.

All results in ppb (μ g/L).

* Maximum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

'nc' means "not calculable", since one (or both) of the results are less than the RDL or the average of the two sample concentrations are less than 5 times the MDL.

Exceedences of alert limits are shown in **bold**.